1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/f2fs_fs.h> 12 #include <linux/kthread.h> 13 #include <linux/delay.h> 14 #include <linux/freezer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/random.h> 17 #include <linux/sched/mm.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "gc.h" 23 #include "iostat.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *victim_entry_slab; 27 28 static unsigned int count_bits(const unsigned long *addr, 29 unsigned int offset, unsigned int len); 30 31 static int gc_thread_func(void *data) 32 { 33 struct f2fs_sb_info *sbi = data; 34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 37 unsigned int wait_ms; 38 struct f2fs_gc_control gc_control = { 39 .victim_segno = NULL_SEGNO, 40 .should_migrate_blocks = false, 41 .err_gc_skipped = false }; 42 43 wait_ms = gc_th->min_sleep_time; 44 45 set_freezable(); 46 do { 47 bool sync_mode, foreground = false; 48 49 wait_event_interruptible_timeout(*wq, 50 kthread_should_stop() || freezing(current) || 51 waitqueue_active(fggc_wq) || 52 gc_th->gc_wake, 53 msecs_to_jiffies(wait_ms)); 54 55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) 56 foreground = true; 57 58 /* give it a try one time */ 59 if (gc_th->gc_wake) 60 gc_th->gc_wake = 0; 61 62 if (try_to_freeze()) { 63 stat_other_skip_bggc_count(sbi); 64 continue; 65 } 66 if (kthread_should_stop()) 67 break; 68 69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 70 increase_sleep_time(gc_th, &wait_ms); 71 stat_other_skip_bggc_count(sbi); 72 continue; 73 } 74 75 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 76 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 77 f2fs_stop_checkpoint(sbi, false, 78 STOP_CP_REASON_FAULT_INJECT); 79 } 80 81 if (!sb_start_write_trylock(sbi->sb)) { 82 stat_other_skip_bggc_count(sbi); 83 continue; 84 } 85 86 /* 87 * [GC triggering condition] 88 * 0. GC is not conducted currently. 89 * 1. There are enough dirty segments. 90 * 2. IO subsystem is idle by checking the # of writeback pages. 91 * 3. IO subsystem is idle by checking the # of requests in 92 * bdev's request list. 93 * 94 * Note) We have to avoid triggering GCs frequently. 95 * Because it is possible that some segments can be 96 * invalidated soon after by user update or deletion. 97 * So, I'd like to wait some time to collect dirty segments. 98 */ 99 if (sbi->gc_mode == GC_URGENT_HIGH) { 100 spin_lock(&sbi->gc_urgent_high_lock); 101 if (sbi->gc_urgent_high_remaining) { 102 sbi->gc_urgent_high_remaining--; 103 if (!sbi->gc_urgent_high_remaining) 104 sbi->gc_mode = GC_NORMAL; 105 } 106 spin_unlock(&sbi->gc_urgent_high_lock); 107 } 108 109 if (sbi->gc_mode == GC_URGENT_HIGH || 110 sbi->gc_mode == GC_URGENT_MID) { 111 wait_ms = gc_th->urgent_sleep_time; 112 f2fs_down_write(&sbi->gc_lock); 113 goto do_gc; 114 } 115 116 if (foreground) { 117 f2fs_down_write(&sbi->gc_lock); 118 goto do_gc; 119 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 120 stat_other_skip_bggc_count(sbi); 121 goto next; 122 } 123 124 if (!is_idle(sbi, GC_TIME)) { 125 increase_sleep_time(gc_th, &wait_ms); 126 f2fs_up_write(&sbi->gc_lock); 127 stat_io_skip_bggc_count(sbi); 128 goto next; 129 } 130 131 if (has_enough_invalid_blocks(sbi)) 132 decrease_sleep_time(gc_th, &wait_ms); 133 else 134 increase_sleep_time(gc_th, &wait_ms); 135 do_gc: 136 if (!foreground) 137 stat_inc_bggc_count(sbi->stat_info); 138 139 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC; 140 141 /* foreground GC was been triggered via f2fs_balance_fs() */ 142 if (foreground) 143 sync_mode = false; 144 145 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC; 146 gc_control.no_bg_gc = foreground; 147 gc_control.nr_free_secs = foreground ? 1 : 0; 148 149 /* if return value is not zero, no victim was selected */ 150 if (f2fs_gc(sbi, &gc_control)) { 151 /* don't bother wait_ms by foreground gc */ 152 if (!foreground) 153 wait_ms = gc_th->no_gc_sleep_time; 154 } 155 156 if (foreground) 157 wake_up_all(&gc_th->fggc_wq); 158 159 trace_f2fs_background_gc(sbi->sb, wait_ms, 160 prefree_segments(sbi), free_segments(sbi)); 161 162 /* balancing f2fs's metadata periodically */ 163 f2fs_balance_fs_bg(sbi, true); 164 next: 165 sb_end_write(sbi->sb); 166 167 } while (!kthread_should_stop()); 168 return 0; 169 } 170 171 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 172 { 173 struct f2fs_gc_kthread *gc_th; 174 dev_t dev = sbi->sb->s_bdev->bd_dev; 175 int err = 0; 176 177 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 178 if (!gc_th) { 179 err = -ENOMEM; 180 goto out; 181 } 182 183 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 184 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 185 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 186 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 187 188 gc_th->gc_wake = 0; 189 190 sbi->gc_thread = gc_th; 191 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 192 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 193 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 194 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 195 if (IS_ERR(gc_th->f2fs_gc_task)) { 196 err = PTR_ERR(gc_th->f2fs_gc_task); 197 kfree(gc_th); 198 sbi->gc_thread = NULL; 199 } 200 out: 201 return err; 202 } 203 204 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 205 { 206 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 207 208 if (!gc_th) 209 return; 210 kthread_stop(gc_th->f2fs_gc_task); 211 wake_up_all(&gc_th->fggc_wq); 212 kfree(gc_th); 213 sbi->gc_thread = NULL; 214 } 215 216 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 217 { 218 int gc_mode; 219 220 if (gc_type == BG_GC) { 221 if (sbi->am.atgc_enabled) 222 gc_mode = GC_AT; 223 else 224 gc_mode = GC_CB; 225 } else { 226 gc_mode = GC_GREEDY; 227 } 228 229 switch (sbi->gc_mode) { 230 case GC_IDLE_CB: 231 gc_mode = GC_CB; 232 break; 233 case GC_IDLE_GREEDY: 234 case GC_URGENT_HIGH: 235 gc_mode = GC_GREEDY; 236 break; 237 case GC_IDLE_AT: 238 gc_mode = GC_AT; 239 break; 240 } 241 242 return gc_mode; 243 } 244 245 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 246 int type, struct victim_sel_policy *p) 247 { 248 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 249 250 if (p->alloc_mode == SSR) { 251 p->gc_mode = GC_GREEDY; 252 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 253 p->max_search = dirty_i->nr_dirty[type]; 254 p->ofs_unit = 1; 255 } else if (p->alloc_mode == AT_SSR) { 256 p->gc_mode = GC_GREEDY; 257 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 258 p->max_search = dirty_i->nr_dirty[type]; 259 p->ofs_unit = 1; 260 } else { 261 p->gc_mode = select_gc_type(sbi, gc_type); 262 p->ofs_unit = sbi->segs_per_sec; 263 if (__is_large_section(sbi)) { 264 p->dirty_bitmap = dirty_i->dirty_secmap; 265 p->max_search = count_bits(p->dirty_bitmap, 266 0, MAIN_SECS(sbi)); 267 } else { 268 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 269 p->max_search = dirty_i->nr_dirty[DIRTY]; 270 } 271 } 272 273 /* 274 * adjust candidates range, should select all dirty segments for 275 * foreground GC and urgent GC cases. 276 */ 277 if (gc_type != FG_GC && 278 (sbi->gc_mode != GC_URGENT_HIGH) && 279 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 280 p->max_search > sbi->max_victim_search) 281 p->max_search = sbi->max_victim_search; 282 283 /* let's select beginning hot/small space first in no_heap mode*/ 284 if (f2fs_need_rand_seg(sbi)) 285 p->offset = prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec); 286 else if (test_opt(sbi, NOHEAP) && 287 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 288 p->offset = 0; 289 else 290 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 291 } 292 293 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 294 struct victim_sel_policy *p) 295 { 296 /* SSR allocates in a segment unit */ 297 if (p->alloc_mode == SSR) 298 return sbi->blocks_per_seg; 299 else if (p->alloc_mode == AT_SSR) 300 return UINT_MAX; 301 302 /* LFS */ 303 if (p->gc_mode == GC_GREEDY) 304 return 2 * sbi->blocks_per_seg * p->ofs_unit; 305 else if (p->gc_mode == GC_CB) 306 return UINT_MAX; 307 else if (p->gc_mode == GC_AT) 308 return UINT_MAX; 309 else /* No other gc_mode */ 310 return 0; 311 } 312 313 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 314 { 315 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 316 unsigned int secno; 317 318 /* 319 * If the gc_type is FG_GC, we can select victim segments 320 * selected by background GC before. 321 * Those segments guarantee they have small valid blocks. 322 */ 323 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 324 if (sec_usage_check(sbi, secno)) 325 continue; 326 clear_bit(secno, dirty_i->victim_secmap); 327 return GET_SEG_FROM_SEC(sbi, secno); 328 } 329 return NULL_SEGNO; 330 } 331 332 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 333 { 334 struct sit_info *sit_i = SIT_I(sbi); 335 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 336 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 337 unsigned long long mtime = 0; 338 unsigned int vblocks; 339 unsigned char age = 0; 340 unsigned char u; 341 unsigned int i; 342 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno); 343 344 for (i = 0; i < usable_segs_per_sec; i++) 345 mtime += get_seg_entry(sbi, start + i)->mtime; 346 vblocks = get_valid_blocks(sbi, segno, true); 347 348 mtime = div_u64(mtime, usable_segs_per_sec); 349 vblocks = div_u64(vblocks, usable_segs_per_sec); 350 351 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 352 353 /* Handle if the system time has changed by the user */ 354 if (mtime < sit_i->min_mtime) 355 sit_i->min_mtime = mtime; 356 if (mtime > sit_i->max_mtime) 357 sit_i->max_mtime = mtime; 358 if (sit_i->max_mtime != sit_i->min_mtime) 359 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 360 sit_i->max_mtime - sit_i->min_mtime); 361 362 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 363 } 364 365 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 366 unsigned int segno, struct victim_sel_policy *p) 367 { 368 if (p->alloc_mode == SSR) 369 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 370 371 /* alloc_mode == LFS */ 372 if (p->gc_mode == GC_GREEDY) 373 return get_valid_blocks(sbi, segno, true); 374 else if (p->gc_mode == GC_CB) 375 return get_cb_cost(sbi, segno); 376 377 f2fs_bug_on(sbi, 1); 378 return 0; 379 } 380 381 static unsigned int count_bits(const unsigned long *addr, 382 unsigned int offset, unsigned int len) 383 { 384 unsigned int end = offset + len, sum = 0; 385 386 while (offset < end) { 387 if (test_bit(offset++, addr)) 388 ++sum; 389 } 390 return sum; 391 } 392 393 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi, 394 unsigned long long mtime, unsigned int segno, 395 struct rb_node *parent, struct rb_node **p, 396 bool left_most) 397 { 398 struct atgc_management *am = &sbi->am; 399 struct victim_entry *ve; 400 401 ve = f2fs_kmem_cache_alloc(victim_entry_slab, 402 GFP_NOFS, true, NULL); 403 404 ve->mtime = mtime; 405 ve->segno = segno; 406 407 rb_link_node(&ve->rb_node, parent, p); 408 rb_insert_color_cached(&ve->rb_node, &am->root, left_most); 409 410 list_add_tail(&ve->list, &am->victim_list); 411 412 am->victim_count++; 413 414 return ve; 415 } 416 417 static void insert_victim_entry(struct f2fs_sb_info *sbi, 418 unsigned long long mtime, unsigned int segno) 419 { 420 struct atgc_management *am = &sbi->am; 421 struct rb_node **p; 422 struct rb_node *parent = NULL; 423 bool left_most = true; 424 425 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most); 426 attach_victim_entry(sbi, mtime, segno, parent, p, left_most); 427 } 428 429 static void add_victim_entry(struct f2fs_sb_info *sbi, 430 struct victim_sel_policy *p, unsigned int segno) 431 { 432 struct sit_info *sit_i = SIT_I(sbi); 433 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 434 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 435 unsigned long long mtime = 0; 436 unsigned int i; 437 438 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 439 if (p->gc_mode == GC_AT && 440 get_valid_blocks(sbi, segno, true) == 0) 441 return; 442 } 443 444 for (i = 0; i < sbi->segs_per_sec; i++) 445 mtime += get_seg_entry(sbi, start + i)->mtime; 446 mtime = div_u64(mtime, sbi->segs_per_sec); 447 448 /* Handle if the system time has changed by the user */ 449 if (mtime < sit_i->min_mtime) 450 sit_i->min_mtime = mtime; 451 if (mtime > sit_i->max_mtime) 452 sit_i->max_mtime = mtime; 453 if (mtime < sit_i->dirty_min_mtime) 454 sit_i->dirty_min_mtime = mtime; 455 if (mtime > sit_i->dirty_max_mtime) 456 sit_i->dirty_max_mtime = mtime; 457 458 /* don't choose young section as candidate */ 459 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 460 return; 461 462 insert_victim_entry(sbi, mtime, segno); 463 } 464 465 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi, 466 struct victim_sel_policy *p) 467 { 468 struct atgc_management *am = &sbi->am; 469 struct rb_node *parent = NULL; 470 bool left_most; 471 472 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most); 473 474 return parent; 475 } 476 477 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 478 struct victim_sel_policy *p) 479 { 480 struct sit_info *sit_i = SIT_I(sbi); 481 struct atgc_management *am = &sbi->am; 482 struct rb_root_cached *root = &am->root; 483 struct rb_node *node; 484 struct rb_entry *re; 485 struct victim_entry *ve; 486 unsigned long long total_time; 487 unsigned long long age, u, accu; 488 unsigned long long max_mtime = sit_i->dirty_max_mtime; 489 unsigned long long min_mtime = sit_i->dirty_min_mtime; 490 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi); 491 unsigned int vblocks; 492 unsigned int dirty_threshold = max(am->max_candidate_count, 493 am->candidate_ratio * 494 am->victim_count / 100); 495 unsigned int age_weight = am->age_weight; 496 unsigned int cost; 497 unsigned int iter = 0; 498 499 if (max_mtime < min_mtime) 500 return; 501 502 max_mtime += 1; 503 total_time = max_mtime - min_mtime; 504 505 accu = div64_u64(ULLONG_MAX, total_time); 506 accu = min_t(unsigned long long, div_u64(accu, 100), 507 DEFAULT_ACCURACY_CLASS); 508 509 node = rb_first_cached(root); 510 next: 511 re = rb_entry_safe(node, struct rb_entry, rb_node); 512 if (!re) 513 return; 514 515 ve = (struct victim_entry *)re; 516 517 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 518 goto skip; 519 520 /* age = 10000 * x% * 60 */ 521 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 522 age_weight; 523 524 vblocks = get_valid_blocks(sbi, ve->segno, true); 525 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 526 527 /* u = 10000 * x% * 40 */ 528 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 529 (100 - age_weight); 530 531 f2fs_bug_on(sbi, age + u >= UINT_MAX); 532 533 cost = UINT_MAX - (age + u); 534 iter++; 535 536 if (cost < p->min_cost || 537 (cost == p->min_cost && age > p->oldest_age)) { 538 p->min_cost = cost; 539 p->oldest_age = age; 540 p->min_segno = ve->segno; 541 } 542 skip: 543 if (iter < dirty_threshold) { 544 node = rb_next(node); 545 goto next; 546 } 547 } 548 549 /* 550 * select candidates around source section in range of 551 * [target - dirty_threshold, target + dirty_threshold] 552 */ 553 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 554 struct victim_sel_policy *p) 555 { 556 struct sit_info *sit_i = SIT_I(sbi); 557 struct atgc_management *am = &sbi->am; 558 struct rb_node *node; 559 struct rb_entry *re; 560 struct victim_entry *ve; 561 unsigned long long age; 562 unsigned long long max_mtime = sit_i->dirty_max_mtime; 563 unsigned long long min_mtime = sit_i->dirty_min_mtime; 564 unsigned int seg_blocks = sbi->blocks_per_seg; 565 unsigned int vblocks; 566 unsigned int dirty_threshold = max(am->max_candidate_count, 567 am->candidate_ratio * 568 am->victim_count / 100); 569 unsigned int cost; 570 unsigned int iter = 0; 571 int stage = 0; 572 573 if (max_mtime < min_mtime) 574 return; 575 max_mtime += 1; 576 next_stage: 577 node = lookup_central_victim(sbi, p); 578 next_node: 579 re = rb_entry_safe(node, struct rb_entry, rb_node); 580 if (!re) { 581 if (stage == 0) 582 goto skip_stage; 583 return; 584 } 585 586 ve = (struct victim_entry *)re; 587 588 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 589 goto skip_node; 590 591 age = max_mtime - ve->mtime; 592 593 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 594 f2fs_bug_on(sbi, !vblocks); 595 596 /* rare case */ 597 if (vblocks == seg_blocks) 598 goto skip_node; 599 600 iter++; 601 602 age = max_mtime - abs(p->age - age); 603 cost = UINT_MAX - vblocks; 604 605 if (cost < p->min_cost || 606 (cost == p->min_cost && age > p->oldest_age)) { 607 p->min_cost = cost; 608 p->oldest_age = age; 609 p->min_segno = ve->segno; 610 } 611 skip_node: 612 if (iter < dirty_threshold) { 613 if (stage == 0) 614 node = rb_prev(node); 615 else if (stage == 1) 616 node = rb_next(node); 617 goto next_node; 618 } 619 skip_stage: 620 if (stage < 1) { 621 stage++; 622 iter = 0; 623 goto next_stage; 624 } 625 } 626 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 627 struct victim_sel_policy *p) 628 { 629 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 630 &sbi->am.root, true)); 631 632 if (p->gc_mode == GC_AT) 633 atgc_lookup_victim(sbi, p); 634 else if (p->alloc_mode == AT_SSR) 635 atssr_lookup_victim(sbi, p); 636 else 637 f2fs_bug_on(sbi, 1); 638 } 639 640 static void release_victim_entry(struct f2fs_sb_info *sbi) 641 { 642 struct atgc_management *am = &sbi->am; 643 struct victim_entry *ve, *tmp; 644 645 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 646 list_del(&ve->list); 647 kmem_cache_free(victim_entry_slab, ve); 648 am->victim_count--; 649 } 650 651 am->root = RB_ROOT_CACHED; 652 653 f2fs_bug_on(sbi, am->victim_count); 654 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 655 } 656 657 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno) 658 { 659 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 660 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 661 662 if (!dirty_i->enable_pin_section) 663 return false; 664 if (!test_and_set_bit(secno, dirty_i->pinned_secmap)) 665 dirty_i->pinned_secmap_cnt++; 666 return true; 667 } 668 669 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i) 670 { 671 return dirty_i->pinned_secmap_cnt; 672 } 673 674 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i, 675 unsigned int secno) 676 { 677 return dirty_i->enable_pin_section && 678 f2fs_pinned_section_exists(dirty_i) && 679 test_bit(secno, dirty_i->pinned_secmap); 680 } 681 682 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable) 683 { 684 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 685 686 if (f2fs_pinned_section_exists(DIRTY_I(sbi))) { 687 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size); 688 DIRTY_I(sbi)->pinned_secmap_cnt = 0; 689 } 690 DIRTY_I(sbi)->enable_pin_section = enable; 691 } 692 693 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type, 694 unsigned int segno) 695 { 696 if (!f2fs_is_pinned_file(inode)) 697 return 0; 698 if (gc_type != FG_GC) 699 return -EBUSY; 700 if (!f2fs_pin_section(F2FS_I_SB(inode), segno)) 701 f2fs_pin_file_control(inode, true); 702 return -EAGAIN; 703 } 704 705 /* 706 * This function is called from two paths. 707 * One is garbage collection and the other is SSR segment selection. 708 * When it is called during GC, it just gets a victim segment 709 * and it does not remove it from dirty seglist. 710 * When it is called from SSR segment selection, it finds a segment 711 * which has minimum valid blocks and removes it from dirty seglist. 712 */ 713 static int get_victim_by_default(struct f2fs_sb_info *sbi, 714 unsigned int *result, int gc_type, int type, 715 char alloc_mode, unsigned long long age) 716 { 717 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 718 struct sit_info *sm = SIT_I(sbi); 719 struct victim_sel_policy p; 720 unsigned int secno, last_victim; 721 unsigned int last_segment; 722 unsigned int nsearched; 723 bool is_atgc; 724 int ret = 0; 725 726 mutex_lock(&dirty_i->seglist_lock); 727 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 728 729 p.alloc_mode = alloc_mode; 730 p.age = age; 731 p.age_threshold = sbi->am.age_threshold; 732 733 retry: 734 select_policy(sbi, gc_type, type, &p); 735 p.min_segno = NULL_SEGNO; 736 p.oldest_age = 0; 737 p.min_cost = get_max_cost(sbi, &p); 738 739 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 740 nsearched = 0; 741 742 if (is_atgc) 743 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 744 745 if (*result != NULL_SEGNO) { 746 if (!get_valid_blocks(sbi, *result, false)) { 747 ret = -ENODATA; 748 goto out; 749 } 750 751 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 752 ret = -EBUSY; 753 else 754 p.min_segno = *result; 755 goto out; 756 } 757 758 ret = -ENODATA; 759 if (p.max_search == 0) 760 goto out; 761 762 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 763 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 764 p.min_segno = sbi->next_victim_seg[BG_GC]; 765 *result = p.min_segno; 766 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 767 goto got_result; 768 } 769 if (gc_type == FG_GC && 770 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 771 p.min_segno = sbi->next_victim_seg[FG_GC]; 772 *result = p.min_segno; 773 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 774 goto got_result; 775 } 776 } 777 778 last_victim = sm->last_victim[p.gc_mode]; 779 if (p.alloc_mode == LFS && gc_type == FG_GC) { 780 p.min_segno = check_bg_victims(sbi); 781 if (p.min_segno != NULL_SEGNO) 782 goto got_it; 783 } 784 785 while (1) { 786 unsigned long cost, *dirty_bitmap; 787 unsigned int unit_no, segno; 788 789 dirty_bitmap = p.dirty_bitmap; 790 unit_no = find_next_bit(dirty_bitmap, 791 last_segment / p.ofs_unit, 792 p.offset / p.ofs_unit); 793 segno = unit_no * p.ofs_unit; 794 if (segno >= last_segment) { 795 if (sm->last_victim[p.gc_mode]) { 796 last_segment = 797 sm->last_victim[p.gc_mode]; 798 sm->last_victim[p.gc_mode] = 0; 799 p.offset = 0; 800 continue; 801 } 802 break; 803 } 804 805 p.offset = segno + p.ofs_unit; 806 nsearched++; 807 808 #ifdef CONFIG_F2FS_CHECK_FS 809 /* 810 * skip selecting the invalid segno (that is failed due to block 811 * validity check failure during GC) to avoid endless GC loop in 812 * such cases. 813 */ 814 if (test_bit(segno, sm->invalid_segmap)) 815 goto next; 816 #endif 817 818 secno = GET_SEC_FROM_SEG(sbi, segno); 819 820 if (sec_usage_check(sbi, secno)) 821 goto next; 822 823 /* Don't touch checkpointed data */ 824 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 825 if (p.alloc_mode == LFS) { 826 /* 827 * LFS is set to find source section during GC. 828 * The victim should have no checkpointed data. 829 */ 830 if (get_ckpt_valid_blocks(sbi, segno, true)) 831 goto next; 832 } else { 833 /* 834 * SSR | AT_SSR are set to find target segment 835 * for writes which can be full by checkpointed 836 * and newly written blocks. 837 */ 838 if (!f2fs_segment_has_free_slot(sbi, segno)) 839 goto next; 840 } 841 } 842 843 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 844 goto next; 845 846 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno)) 847 goto next; 848 849 if (is_atgc) { 850 add_victim_entry(sbi, &p, segno); 851 goto next; 852 } 853 854 cost = get_gc_cost(sbi, segno, &p); 855 856 if (p.min_cost > cost) { 857 p.min_segno = segno; 858 p.min_cost = cost; 859 } 860 next: 861 if (nsearched >= p.max_search) { 862 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 863 sm->last_victim[p.gc_mode] = 864 last_victim + p.ofs_unit; 865 else 866 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 867 sm->last_victim[p.gc_mode] %= 868 (MAIN_SECS(sbi) * sbi->segs_per_sec); 869 break; 870 } 871 } 872 873 /* get victim for GC_AT/AT_SSR */ 874 if (is_atgc) { 875 lookup_victim_by_age(sbi, &p); 876 release_victim_entry(sbi); 877 } 878 879 if (is_atgc && p.min_segno == NULL_SEGNO && 880 sm->elapsed_time < p.age_threshold) { 881 p.age_threshold = 0; 882 goto retry; 883 } 884 885 if (p.min_segno != NULL_SEGNO) { 886 got_it: 887 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 888 got_result: 889 if (p.alloc_mode == LFS) { 890 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 891 if (gc_type == FG_GC) 892 sbi->cur_victim_sec = secno; 893 else 894 set_bit(secno, dirty_i->victim_secmap); 895 } 896 ret = 0; 897 898 } 899 out: 900 if (p.min_segno != NULL_SEGNO) 901 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 902 sbi->cur_victim_sec, 903 prefree_segments(sbi), free_segments(sbi)); 904 mutex_unlock(&dirty_i->seglist_lock); 905 906 return ret; 907 } 908 909 static const struct victim_selection default_v_ops = { 910 .get_victim = get_victim_by_default, 911 }; 912 913 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 914 { 915 struct inode_entry *ie; 916 917 ie = radix_tree_lookup(&gc_list->iroot, ino); 918 if (ie) 919 return ie->inode; 920 return NULL; 921 } 922 923 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 924 { 925 struct inode_entry *new_ie; 926 927 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 928 iput(inode); 929 return; 930 } 931 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, 932 GFP_NOFS, true, NULL); 933 new_ie->inode = inode; 934 935 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 936 list_add_tail(&new_ie->list, &gc_list->ilist); 937 } 938 939 static void put_gc_inode(struct gc_inode_list *gc_list) 940 { 941 struct inode_entry *ie, *next_ie; 942 943 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 944 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 945 iput(ie->inode); 946 list_del(&ie->list); 947 kmem_cache_free(f2fs_inode_entry_slab, ie); 948 } 949 } 950 951 static int check_valid_map(struct f2fs_sb_info *sbi, 952 unsigned int segno, int offset) 953 { 954 struct sit_info *sit_i = SIT_I(sbi); 955 struct seg_entry *sentry; 956 int ret; 957 958 down_read(&sit_i->sentry_lock); 959 sentry = get_seg_entry(sbi, segno); 960 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 961 up_read(&sit_i->sentry_lock); 962 return ret; 963 } 964 965 /* 966 * This function compares node address got in summary with that in NAT. 967 * On validity, copy that node with cold status, otherwise (invalid node) 968 * ignore that. 969 */ 970 static int gc_node_segment(struct f2fs_sb_info *sbi, 971 struct f2fs_summary *sum, unsigned int segno, int gc_type) 972 { 973 struct f2fs_summary *entry; 974 block_t start_addr; 975 int off; 976 int phase = 0; 977 bool fggc = (gc_type == FG_GC); 978 int submitted = 0; 979 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 980 981 start_addr = START_BLOCK(sbi, segno); 982 983 next_step: 984 entry = sum; 985 986 if (fggc && phase == 2) 987 atomic_inc(&sbi->wb_sync_req[NODE]); 988 989 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 990 nid_t nid = le32_to_cpu(entry->nid); 991 struct page *node_page; 992 struct node_info ni; 993 int err; 994 995 /* stop BG_GC if there is not enough free sections. */ 996 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 997 return submitted; 998 999 if (check_valid_map(sbi, segno, off) == 0) 1000 continue; 1001 1002 if (phase == 0) { 1003 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1004 META_NAT, true); 1005 continue; 1006 } 1007 1008 if (phase == 1) { 1009 f2fs_ra_node_page(sbi, nid); 1010 continue; 1011 } 1012 1013 /* phase == 2 */ 1014 node_page = f2fs_get_node_page(sbi, nid); 1015 if (IS_ERR(node_page)) 1016 continue; 1017 1018 /* block may become invalid during f2fs_get_node_page */ 1019 if (check_valid_map(sbi, segno, off) == 0) { 1020 f2fs_put_page(node_page, 1); 1021 continue; 1022 } 1023 1024 if (f2fs_get_node_info(sbi, nid, &ni, false)) { 1025 f2fs_put_page(node_page, 1); 1026 continue; 1027 } 1028 1029 if (ni.blk_addr != start_addr + off) { 1030 f2fs_put_page(node_page, 1); 1031 continue; 1032 } 1033 1034 err = f2fs_move_node_page(node_page, gc_type); 1035 if (!err && gc_type == FG_GC) 1036 submitted++; 1037 stat_inc_node_blk_count(sbi, 1, gc_type); 1038 } 1039 1040 if (++phase < 3) 1041 goto next_step; 1042 1043 if (fggc) 1044 atomic_dec(&sbi->wb_sync_req[NODE]); 1045 return submitted; 1046 } 1047 1048 /* 1049 * Calculate start block index indicating the given node offset. 1050 * Be careful, caller should give this node offset only indicating direct node 1051 * blocks. If any node offsets, which point the other types of node blocks such 1052 * as indirect or double indirect node blocks, are given, it must be a caller's 1053 * bug. 1054 */ 1055 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 1056 { 1057 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 1058 unsigned int bidx; 1059 1060 if (node_ofs == 0) 1061 return 0; 1062 1063 if (node_ofs <= 2) { 1064 bidx = node_ofs - 1; 1065 } else if (node_ofs <= indirect_blks) { 1066 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 1067 1068 bidx = node_ofs - 2 - dec; 1069 } else { 1070 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 1071 1072 bidx = node_ofs - 5 - dec; 1073 } 1074 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 1075 } 1076 1077 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1078 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 1079 { 1080 struct page *node_page; 1081 nid_t nid; 1082 unsigned int ofs_in_node, max_addrs; 1083 block_t source_blkaddr; 1084 1085 nid = le32_to_cpu(sum->nid); 1086 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1087 1088 node_page = f2fs_get_node_page(sbi, nid); 1089 if (IS_ERR(node_page)) 1090 return false; 1091 1092 if (f2fs_get_node_info(sbi, nid, dni, false)) { 1093 f2fs_put_page(node_page, 1); 1094 return false; 1095 } 1096 1097 if (sum->version != dni->version) { 1098 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1099 __func__); 1100 set_sbi_flag(sbi, SBI_NEED_FSCK); 1101 } 1102 1103 if (f2fs_check_nid_range(sbi, dni->ino)) { 1104 f2fs_put_page(node_page, 1); 1105 return false; 1106 } 1107 1108 max_addrs = IS_INODE(node_page) ? DEF_ADDRS_PER_INODE : 1109 DEF_ADDRS_PER_BLOCK; 1110 if (ofs_in_node >= max_addrs) { 1111 f2fs_err(sbi, "Inconsistent ofs_in_node:%u in summary, ino:%u, nid:%u, max:%u", 1112 ofs_in_node, dni->ino, dni->nid, max_addrs); 1113 return false; 1114 } 1115 1116 *nofs = ofs_of_node(node_page); 1117 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 1118 f2fs_put_page(node_page, 1); 1119 1120 if (source_blkaddr != blkaddr) { 1121 #ifdef CONFIG_F2FS_CHECK_FS 1122 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1123 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1124 1125 if (unlikely(check_valid_map(sbi, segno, offset))) { 1126 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1127 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1128 blkaddr, source_blkaddr, segno); 1129 set_sbi_flag(sbi, SBI_NEED_FSCK); 1130 } 1131 } 1132 #endif 1133 return false; 1134 } 1135 return true; 1136 } 1137 1138 static int ra_data_block(struct inode *inode, pgoff_t index) 1139 { 1140 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1141 struct address_space *mapping = inode->i_mapping; 1142 struct dnode_of_data dn; 1143 struct page *page; 1144 struct extent_info ei = {0, 0, 0}; 1145 struct f2fs_io_info fio = { 1146 .sbi = sbi, 1147 .ino = inode->i_ino, 1148 .type = DATA, 1149 .temp = COLD, 1150 .op = REQ_OP_READ, 1151 .op_flags = 0, 1152 .encrypted_page = NULL, 1153 .in_list = false, 1154 .retry = false, 1155 }; 1156 int err; 1157 1158 page = f2fs_grab_cache_page(mapping, index, true); 1159 if (!page) 1160 return -ENOMEM; 1161 1162 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1163 dn.data_blkaddr = ei.blk + index - ei.fofs; 1164 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1165 DATA_GENERIC_ENHANCE_READ))) { 1166 err = -EFSCORRUPTED; 1167 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1168 goto put_page; 1169 } 1170 goto got_it; 1171 } 1172 1173 set_new_dnode(&dn, inode, NULL, NULL, 0); 1174 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1175 if (err) 1176 goto put_page; 1177 f2fs_put_dnode(&dn); 1178 1179 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1180 err = -ENOENT; 1181 goto put_page; 1182 } 1183 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1184 DATA_GENERIC_ENHANCE))) { 1185 err = -EFSCORRUPTED; 1186 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1187 goto put_page; 1188 } 1189 got_it: 1190 /* read page */ 1191 fio.page = page; 1192 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1193 1194 /* 1195 * don't cache encrypted data into meta inode until previous dirty 1196 * data were writebacked to avoid racing between GC and flush. 1197 */ 1198 f2fs_wait_on_page_writeback(page, DATA, true, true); 1199 1200 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1201 1202 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1203 dn.data_blkaddr, 1204 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1205 if (!fio.encrypted_page) { 1206 err = -ENOMEM; 1207 goto put_page; 1208 } 1209 1210 err = f2fs_submit_page_bio(&fio); 1211 if (err) 1212 goto put_encrypted_page; 1213 f2fs_put_page(fio.encrypted_page, 0); 1214 f2fs_put_page(page, 1); 1215 1216 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 1217 f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1218 1219 return 0; 1220 put_encrypted_page: 1221 f2fs_put_page(fio.encrypted_page, 1); 1222 put_page: 1223 f2fs_put_page(page, 1); 1224 return err; 1225 } 1226 1227 /* 1228 * Move data block via META_MAPPING while keeping locked data page. 1229 * This can be used to move blocks, aka LBAs, directly on disk. 1230 */ 1231 static int move_data_block(struct inode *inode, block_t bidx, 1232 int gc_type, unsigned int segno, int off) 1233 { 1234 struct f2fs_io_info fio = { 1235 .sbi = F2FS_I_SB(inode), 1236 .ino = inode->i_ino, 1237 .type = DATA, 1238 .temp = COLD, 1239 .op = REQ_OP_READ, 1240 .op_flags = 0, 1241 .encrypted_page = NULL, 1242 .in_list = false, 1243 .retry = false, 1244 }; 1245 struct dnode_of_data dn; 1246 struct f2fs_summary sum; 1247 struct node_info ni; 1248 struct page *page, *mpage; 1249 block_t newaddr; 1250 int err = 0; 1251 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1252 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1253 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1254 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1255 1256 /* do not read out */ 1257 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 1258 if (!page) 1259 return -ENOMEM; 1260 1261 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1262 err = -ENOENT; 1263 goto out; 1264 } 1265 1266 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1267 if (err) 1268 goto out; 1269 1270 set_new_dnode(&dn, inode, NULL, NULL, 0); 1271 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1272 if (err) 1273 goto out; 1274 1275 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1276 ClearPageUptodate(page); 1277 err = -ENOENT; 1278 goto put_out; 1279 } 1280 1281 /* 1282 * don't cache encrypted data into meta inode until previous dirty 1283 * data were writebacked to avoid racing between GC and flush. 1284 */ 1285 f2fs_wait_on_page_writeback(page, DATA, true, true); 1286 1287 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1288 1289 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1290 if (err) 1291 goto put_out; 1292 1293 /* read page */ 1294 fio.page = page; 1295 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1296 1297 if (lfs_mode) 1298 f2fs_down_write(&fio.sbi->io_order_lock); 1299 1300 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1301 fio.old_blkaddr, false); 1302 if (!mpage) { 1303 err = -ENOMEM; 1304 goto up_out; 1305 } 1306 1307 fio.encrypted_page = mpage; 1308 1309 /* read source block in mpage */ 1310 if (!PageUptodate(mpage)) { 1311 err = f2fs_submit_page_bio(&fio); 1312 if (err) { 1313 f2fs_put_page(mpage, 1); 1314 goto up_out; 1315 } 1316 1317 f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO, 1318 F2FS_BLKSIZE); 1319 f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO, 1320 F2FS_BLKSIZE); 1321 1322 lock_page(mpage); 1323 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1324 !PageUptodate(mpage))) { 1325 err = -EIO; 1326 f2fs_put_page(mpage, 1); 1327 goto up_out; 1328 } 1329 } 1330 1331 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1332 1333 /* allocate block address */ 1334 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1335 &sum, type, NULL); 1336 1337 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1338 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1339 if (!fio.encrypted_page) { 1340 err = -ENOMEM; 1341 f2fs_put_page(mpage, 1); 1342 goto recover_block; 1343 } 1344 1345 /* write target block */ 1346 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1347 memcpy(page_address(fio.encrypted_page), 1348 page_address(mpage), PAGE_SIZE); 1349 f2fs_put_page(mpage, 1); 1350 invalidate_mapping_pages(META_MAPPING(fio.sbi), 1351 fio.old_blkaddr, fio.old_blkaddr); 1352 f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr); 1353 1354 set_page_dirty(fio.encrypted_page); 1355 if (clear_page_dirty_for_io(fio.encrypted_page)) 1356 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1357 1358 set_page_writeback(fio.encrypted_page); 1359 ClearPageError(page); 1360 1361 fio.op = REQ_OP_WRITE; 1362 fio.op_flags = REQ_SYNC; 1363 fio.new_blkaddr = newaddr; 1364 f2fs_submit_page_write(&fio); 1365 if (fio.retry) { 1366 err = -EAGAIN; 1367 if (PageWriteback(fio.encrypted_page)) 1368 end_page_writeback(fio.encrypted_page); 1369 goto put_page_out; 1370 } 1371 1372 f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE); 1373 1374 f2fs_update_data_blkaddr(&dn, newaddr); 1375 set_inode_flag(inode, FI_APPEND_WRITE); 1376 if (page->index == 0) 1377 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1378 put_page_out: 1379 f2fs_put_page(fio.encrypted_page, 1); 1380 recover_block: 1381 if (err) 1382 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1383 true, true, true); 1384 up_out: 1385 if (lfs_mode) 1386 f2fs_up_write(&fio.sbi->io_order_lock); 1387 put_out: 1388 f2fs_put_dnode(&dn); 1389 out: 1390 f2fs_put_page(page, 1); 1391 return err; 1392 } 1393 1394 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1395 unsigned int segno, int off) 1396 { 1397 struct page *page; 1398 int err = 0; 1399 1400 page = f2fs_get_lock_data_page(inode, bidx, true); 1401 if (IS_ERR(page)) 1402 return PTR_ERR(page); 1403 1404 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1405 err = -ENOENT; 1406 goto out; 1407 } 1408 1409 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1410 if (err) 1411 goto out; 1412 1413 if (gc_type == BG_GC) { 1414 if (PageWriteback(page)) { 1415 err = -EAGAIN; 1416 goto out; 1417 } 1418 set_page_dirty(page); 1419 set_page_private_gcing(page); 1420 } else { 1421 struct f2fs_io_info fio = { 1422 .sbi = F2FS_I_SB(inode), 1423 .ino = inode->i_ino, 1424 .type = DATA, 1425 .temp = COLD, 1426 .op = REQ_OP_WRITE, 1427 .op_flags = REQ_SYNC, 1428 .old_blkaddr = NULL_ADDR, 1429 .page = page, 1430 .encrypted_page = NULL, 1431 .need_lock = LOCK_REQ, 1432 .io_type = FS_GC_DATA_IO, 1433 }; 1434 bool is_dirty = PageDirty(page); 1435 1436 retry: 1437 f2fs_wait_on_page_writeback(page, DATA, true, true); 1438 1439 set_page_dirty(page); 1440 if (clear_page_dirty_for_io(page)) { 1441 inode_dec_dirty_pages(inode); 1442 f2fs_remove_dirty_inode(inode); 1443 } 1444 1445 set_page_private_gcing(page); 1446 1447 err = f2fs_do_write_data_page(&fio); 1448 if (err) { 1449 clear_page_private_gcing(page); 1450 if (err == -ENOMEM) { 1451 memalloc_retry_wait(GFP_NOFS); 1452 goto retry; 1453 } 1454 if (is_dirty) 1455 set_page_dirty(page); 1456 } 1457 } 1458 out: 1459 f2fs_put_page(page, 1); 1460 return err; 1461 } 1462 1463 /* 1464 * This function tries to get parent node of victim data block, and identifies 1465 * data block validity. If the block is valid, copy that with cold status and 1466 * modify parent node. 1467 * If the parent node is not valid or the data block address is different, 1468 * the victim data block is ignored. 1469 */ 1470 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1471 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1472 bool force_migrate) 1473 { 1474 struct super_block *sb = sbi->sb; 1475 struct f2fs_summary *entry; 1476 block_t start_addr; 1477 int off; 1478 int phase = 0; 1479 int submitted = 0; 1480 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1481 1482 start_addr = START_BLOCK(sbi, segno); 1483 1484 next_step: 1485 entry = sum; 1486 1487 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1488 struct page *data_page; 1489 struct inode *inode; 1490 struct node_info dni; /* dnode info for the data */ 1491 unsigned int ofs_in_node, nofs; 1492 block_t start_bidx; 1493 nid_t nid = le32_to_cpu(entry->nid); 1494 1495 /* 1496 * stop BG_GC if there is not enough free sections. 1497 * Or, stop GC if the segment becomes fully valid caused by 1498 * race condition along with SSR block allocation. 1499 */ 1500 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1501 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1502 CAP_BLKS_PER_SEC(sbi))) 1503 return submitted; 1504 1505 if (check_valid_map(sbi, segno, off) == 0) 1506 continue; 1507 1508 if (phase == 0) { 1509 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1510 META_NAT, true); 1511 continue; 1512 } 1513 1514 if (phase == 1) { 1515 f2fs_ra_node_page(sbi, nid); 1516 continue; 1517 } 1518 1519 /* Get an inode by ino with checking validity */ 1520 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1521 continue; 1522 1523 if (phase == 2) { 1524 f2fs_ra_node_page(sbi, dni.ino); 1525 continue; 1526 } 1527 1528 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1529 1530 if (phase == 3) { 1531 int err; 1532 1533 inode = f2fs_iget(sb, dni.ino); 1534 if (IS_ERR(inode) || is_bad_inode(inode) || 1535 special_file(inode->i_mode)) 1536 continue; 1537 1538 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1539 if (err == -EAGAIN) { 1540 iput(inode); 1541 return submitted; 1542 } 1543 1544 if (!f2fs_down_write_trylock( 1545 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1546 iput(inode); 1547 sbi->skipped_gc_rwsem++; 1548 continue; 1549 } 1550 1551 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1552 ofs_in_node; 1553 1554 if (f2fs_post_read_required(inode)) { 1555 int err = ra_data_block(inode, start_bidx); 1556 1557 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1558 if (err) { 1559 iput(inode); 1560 continue; 1561 } 1562 add_gc_inode(gc_list, inode); 1563 continue; 1564 } 1565 1566 data_page = f2fs_get_read_data_page(inode, 1567 start_bidx, REQ_RAHEAD, true); 1568 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1569 if (IS_ERR(data_page)) { 1570 iput(inode); 1571 continue; 1572 } 1573 1574 f2fs_put_page(data_page, 0); 1575 add_gc_inode(gc_list, inode); 1576 continue; 1577 } 1578 1579 /* phase 4 */ 1580 inode = find_gc_inode(gc_list, dni.ino); 1581 if (inode) { 1582 struct f2fs_inode_info *fi = F2FS_I(inode); 1583 bool locked = false; 1584 int err; 1585 1586 if (S_ISREG(inode->i_mode)) { 1587 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[READ])) { 1588 sbi->skipped_gc_rwsem++; 1589 continue; 1590 } 1591 if (!f2fs_down_write_trylock( 1592 &fi->i_gc_rwsem[WRITE])) { 1593 sbi->skipped_gc_rwsem++; 1594 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1595 continue; 1596 } 1597 locked = true; 1598 1599 /* wait for all inflight aio data */ 1600 inode_dio_wait(inode); 1601 } 1602 1603 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1604 + ofs_in_node; 1605 if (f2fs_post_read_required(inode)) 1606 err = move_data_block(inode, start_bidx, 1607 gc_type, segno, off); 1608 else 1609 err = move_data_page(inode, start_bidx, gc_type, 1610 segno, off); 1611 1612 if (!err && (gc_type == FG_GC || 1613 f2fs_post_read_required(inode))) 1614 submitted++; 1615 1616 if (locked) { 1617 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1618 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1619 } 1620 1621 stat_inc_data_blk_count(sbi, 1, gc_type); 1622 } 1623 } 1624 1625 if (++phase < 5) 1626 goto next_step; 1627 1628 return submitted; 1629 } 1630 1631 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1632 int gc_type) 1633 { 1634 struct sit_info *sit_i = SIT_I(sbi); 1635 int ret; 1636 1637 down_write(&sit_i->sentry_lock); 1638 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, 1639 NO_CHECK_TYPE, LFS, 0); 1640 up_write(&sit_i->sentry_lock); 1641 return ret; 1642 } 1643 1644 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1645 unsigned int start_segno, 1646 struct gc_inode_list *gc_list, int gc_type, 1647 bool force_migrate) 1648 { 1649 struct page *sum_page; 1650 struct f2fs_summary_block *sum; 1651 struct blk_plug plug; 1652 unsigned int segno = start_segno; 1653 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1654 int seg_freed = 0, migrated = 0; 1655 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1656 SUM_TYPE_DATA : SUM_TYPE_NODE; 1657 int submitted = 0; 1658 1659 if (__is_large_section(sbi)) 1660 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1661 1662 /* 1663 * zone-capacity can be less than zone-size in zoned devices, 1664 * resulting in less than expected usable segments in the zone, 1665 * calculate the end segno in the zone which can be garbage collected 1666 */ 1667 if (f2fs_sb_has_blkzoned(sbi)) 1668 end_segno -= sbi->segs_per_sec - 1669 f2fs_usable_segs_in_sec(sbi, segno); 1670 1671 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1672 1673 /* readahead multi ssa blocks those have contiguous address */ 1674 if (__is_large_section(sbi)) 1675 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1676 end_segno - segno, META_SSA, true); 1677 1678 /* reference all summary page */ 1679 while (segno < end_segno) { 1680 sum_page = f2fs_get_sum_page(sbi, segno++); 1681 if (IS_ERR(sum_page)) { 1682 int err = PTR_ERR(sum_page); 1683 1684 end_segno = segno - 1; 1685 for (segno = start_segno; segno < end_segno; segno++) { 1686 sum_page = find_get_page(META_MAPPING(sbi), 1687 GET_SUM_BLOCK(sbi, segno)); 1688 f2fs_put_page(sum_page, 0); 1689 f2fs_put_page(sum_page, 0); 1690 } 1691 return err; 1692 } 1693 unlock_page(sum_page); 1694 } 1695 1696 blk_start_plug(&plug); 1697 1698 for (segno = start_segno; segno < end_segno; segno++) { 1699 1700 /* find segment summary of victim */ 1701 sum_page = find_get_page(META_MAPPING(sbi), 1702 GET_SUM_BLOCK(sbi, segno)); 1703 f2fs_put_page(sum_page, 0); 1704 1705 if (get_valid_blocks(sbi, segno, false) == 0) 1706 goto freed; 1707 if (gc_type == BG_GC && __is_large_section(sbi) && 1708 migrated >= sbi->migration_granularity) 1709 goto skip; 1710 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1711 goto skip; 1712 1713 sum = page_address(sum_page); 1714 if (type != GET_SUM_TYPE((&sum->footer))) { 1715 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1716 segno, type, GET_SUM_TYPE((&sum->footer))); 1717 set_sbi_flag(sbi, SBI_NEED_FSCK); 1718 f2fs_stop_checkpoint(sbi, false, 1719 STOP_CP_REASON_CORRUPTED_SUMMARY); 1720 goto skip; 1721 } 1722 1723 /* 1724 * this is to avoid deadlock: 1725 * - lock_page(sum_page) - f2fs_replace_block 1726 * - check_valid_map() - down_write(sentry_lock) 1727 * - down_read(sentry_lock) - change_curseg() 1728 * - lock_page(sum_page) 1729 */ 1730 if (type == SUM_TYPE_NODE) 1731 submitted += gc_node_segment(sbi, sum->entries, segno, 1732 gc_type); 1733 else 1734 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1735 segno, gc_type, 1736 force_migrate); 1737 1738 stat_inc_seg_count(sbi, type, gc_type); 1739 sbi->gc_reclaimed_segs[sbi->gc_mode]++; 1740 migrated++; 1741 1742 freed: 1743 if (gc_type == FG_GC && 1744 get_valid_blocks(sbi, segno, false) == 0) 1745 seg_freed++; 1746 1747 if (__is_large_section(sbi) && segno + 1 < end_segno) 1748 sbi->next_victim_seg[gc_type] = segno + 1; 1749 skip: 1750 f2fs_put_page(sum_page, 0); 1751 } 1752 1753 if (submitted) 1754 f2fs_submit_merged_write(sbi, 1755 (type == SUM_TYPE_NODE) ? NODE : DATA); 1756 1757 blk_finish_plug(&plug); 1758 1759 stat_inc_call_count(sbi->stat_info); 1760 1761 return seg_freed; 1762 } 1763 1764 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control) 1765 { 1766 int gc_type = gc_control->init_gc_type; 1767 unsigned int segno = gc_control->victim_segno; 1768 int sec_freed = 0, seg_freed = 0, total_freed = 0; 1769 int ret = 0; 1770 struct cp_control cpc; 1771 struct gc_inode_list gc_list = { 1772 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1773 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1774 }; 1775 unsigned int skipped_round = 0, round = 0; 1776 1777 trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc, 1778 gc_control->nr_free_secs, 1779 get_pages(sbi, F2FS_DIRTY_NODES), 1780 get_pages(sbi, F2FS_DIRTY_DENTS), 1781 get_pages(sbi, F2FS_DIRTY_IMETA), 1782 free_sections(sbi), 1783 free_segments(sbi), 1784 reserved_segments(sbi), 1785 prefree_segments(sbi)); 1786 1787 cpc.reason = __get_cp_reason(sbi); 1788 sbi->skipped_gc_rwsem = 0; 1789 gc_more: 1790 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1791 ret = -EINVAL; 1792 goto stop; 1793 } 1794 if (unlikely(f2fs_cp_error(sbi))) { 1795 ret = -EIO; 1796 goto stop; 1797 } 1798 1799 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { 1800 /* 1801 * For example, if there are many prefree_segments below given 1802 * threshold, we can make them free by checkpoint. Then, we 1803 * secure free segments which doesn't need fggc any more. 1804 */ 1805 if (prefree_segments(sbi)) { 1806 ret = f2fs_write_checkpoint(sbi, &cpc); 1807 if (ret) 1808 goto stop; 1809 } 1810 if (has_not_enough_free_secs(sbi, 0, 0)) 1811 gc_type = FG_GC; 1812 } 1813 1814 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1815 if (gc_type == BG_GC && gc_control->no_bg_gc) { 1816 ret = -EINVAL; 1817 goto stop; 1818 } 1819 retry: 1820 ret = __get_victim(sbi, &segno, gc_type); 1821 if (ret) { 1822 /* allow to search victim from sections has pinned data */ 1823 if (ret == -ENODATA && gc_type == FG_GC && 1824 f2fs_pinned_section_exists(DIRTY_I(sbi))) { 1825 f2fs_unpin_all_sections(sbi, false); 1826 goto retry; 1827 } 1828 goto stop; 1829 } 1830 1831 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, 1832 gc_control->should_migrate_blocks); 1833 total_freed += seg_freed; 1834 1835 if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) 1836 sec_freed++; 1837 1838 if (gc_type == FG_GC) 1839 sbi->cur_victim_sec = NULL_SEGNO; 1840 1841 if (gc_control->init_gc_type == FG_GC || 1842 !has_not_enough_free_secs(sbi, 1843 (gc_type == FG_GC) ? sec_freed : 0, 0)) { 1844 if (gc_type == FG_GC && sec_freed < gc_control->nr_free_secs) 1845 goto go_gc_more; 1846 goto stop; 1847 } 1848 1849 /* FG_GC stops GC by skip_count */ 1850 if (gc_type == FG_GC) { 1851 if (sbi->skipped_gc_rwsem) 1852 skipped_round++; 1853 round++; 1854 if (skipped_round > MAX_SKIP_GC_COUNT && 1855 skipped_round * 2 >= round) { 1856 ret = f2fs_write_checkpoint(sbi, &cpc); 1857 goto stop; 1858 } 1859 } 1860 1861 /* Write checkpoint to reclaim prefree segments */ 1862 if (free_sections(sbi) < NR_CURSEG_PERSIST_TYPE && 1863 prefree_segments(sbi)) { 1864 ret = f2fs_write_checkpoint(sbi, &cpc); 1865 if (ret) 1866 goto stop; 1867 } 1868 go_gc_more: 1869 segno = NULL_SEGNO; 1870 goto gc_more; 1871 1872 stop: 1873 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1874 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno; 1875 1876 if (gc_type == FG_GC) 1877 f2fs_unpin_all_sections(sbi, true); 1878 1879 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, 1880 get_pages(sbi, F2FS_DIRTY_NODES), 1881 get_pages(sbi, F2FS_DIRTY_DENTS), 1882 get_pages(sbi, F2FS_DIRTY_IMETA), 1883 free_sections(sbi), 1884 free_segments(sbi), 1885 reserved_segments(sbi), 1886 prefree_segments(sbi)); 1887 1888 f2fs_up_write(&sbi->gc_lock); 1889 1890 put_gc_inode(&gc_list); 1891 1892 if (gc_control->err_gc_skipped && !ret) 1893 ret = sec_freed ? 0 : -EAGAIN; 1894 return ret; 1895 } 1896 1897 int __init f2fs_create_garbage_collection_cache(void) 1898 { 1899 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 1900 sizeof(struct victim_entry)); 1901 if (!victim_entry_slab) 1902 return -ENOMEM; 1903 return 0; 1904 } 1905 1906 void f2fs_destroy_garbage_collection_cache(void) 1907 { 1908 kmem_cache_destroy(victim_entry_slab); 1909 } 1910 1911 static void init_atgc_management(struct f2fs_sb_info *sbi) 1912 { 1913 struct atgc_management *am = &sbi->am; 1914 1915 if (test_opt(sbi, ATGC) && 1916 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 1917 am->atgc_enabled = true; 1918 1919 am->root = RB_ROOT_CACHED; 1920 INIT_LIST_HEAD(&am->victim_list); 1921 am->victim_count = 0; 1922 1923 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 1924 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 1925 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 1926 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 1927 } 1928 1929 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1930 { 1931 DIRTY_I(sbi)->v_ops = &default_v_ops; 1932 1933 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1934 1935 /* give warm/cold data area from slower device */ 1936 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1937 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1938 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1939 1940 init_atgc_management(sbi); 1941 } 1942 1943 static int free_segment_range(struct f2fs_sb_info *sbi, 1944 unsigned int secs, bool gc_only) 1945 { 1946 unsigned int segno, next_inuse, start, end; 1947 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1948 int gc_mode, gc_type; 1949 int err = 0; 1950 int type; 1951 1952 /* Force block allocation for GC */ 1953 MAIN_SECS(sbi) -= secs; 1954 start = MAIN_SECS(sbi) * sbi->segs_per_sec; 1955 end = MAIN_SEGS(sbi) - 1; 1956 1957 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 1958 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 1959 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 1960 SIT_I(sbi)->last_victim[gc_mode] = 0; 1961 1962 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 1963 if (sbi->next_victim_seg[gc_type] >= start) 1964 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 1965 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 1966 1967 /* Move out cursegs from the target range */ 1968 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) 1969 f2fs_allocate_segment_for_resize(sbi, type, start, end); 1970 1971 /* do GC to move out valid blocks in the range */ 1972 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 1973 struct gc_inode_list gc_list = { 1974 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1975 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1976 }; 1977 1978 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true); 1979 put_gc_inode(&gc_list); 1980 1981 if (!gc_only && get_valid_blocks(sbi, segno, true)) { 1982 err = -EAGAIN; 1983 goto out; 1984 } 1985 if (fatal_signal_pending(current)) { 1986 err = -ERESTARTSYS; 1987 goto out; 1988 } 1989 } 1990 if (gc_only) 1991 goto out; 1992 1993 err = f2fs_write_checkpoint(sbi, &cpc); 1994 if (err) 1995 goto out; 1996 1997 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 1998 if (next_inuse <= end) { 1999 f2fs_err(sbi, "segno %u should be free but still inuse!", 2000 next_inuse); 2001 f2fs_bug_on(sbi, 1); 2002 } 2003 out: 2004 MAIN_SECS(sbi) += secs; 2005 return err; 2006 } 2007 2008 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 2009 { 2010 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 2011 int section_count; 2012 int segment_count; 2013 int segment_count_main; 2014 long long block_count; 2015 int segs = secs * sbi->segs_per_sec; 2016 2017 f2fs_down_write(&sbi->sb_lock); 2018 2019 section_count = le32_to_cpu(raw_sb->section_count); 2020 segment_count = le32_to_cpu(raw_sb->segment_count); 2021 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 2022 block_count = le64_to_cpu(raw_sb->block_count); 2023 2024 raw_sb->section_count = cpu_to_le32(section_count + secs); 2025 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 2026 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 2027 raw_sb->block_count = cpu_to_le64(block_count + 2028 (long long)segs * sbi->blocks_per_seg); 2029 if (f2fs_is_multi_device(sbi)) { 2030 int last_dev = sbi->s_ndevs - 1; 2031 int dev_segs = 2032 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 2033 2034 raw_sb->devs[last_dev].total_segments = 2035 cpu_to_le32(dev_segs + segs); 2036 } 2037 2038 f2fs_up_write(&sbi->sb_lock); 2039 } 2040 2041 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 2042 { 2043 int segs = secs * sbi->segs_per_sec; 2044 long long blks = (long long)segs * sbi->blocks_per_seg; 2045 long long user_block_count = 2046 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 2047 2048 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 2049 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 2050 MAIN_SECS(sbi) += secs; 2051 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 2052 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 2053 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 2054 2055 if (f2fs_is_multi_device(sbi)) { 2056 int last_dev = sbi->s_ndevs - 1; 2057 2058 FDEV(last_dev).total_segments = 2059 (int)FDEV(last_dev).total_segments + segs; 2060 FDEV(last_dev).end_blk = 2061 (long long)FDEV(last_dev).end_blk + blks; 2062 #ifdef CONFIG_BLK_DEV_ZONED 2063 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz + 2064 (int)(blks >> sbi->log_blocks_per_blkz); 2065 #endif 2066 } 2067 } 2068 2069 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count) 2070 { 2071 __u64 old_block_count, shrunk_blocks; 2072 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2073 unsigned int secs; 2074 int err = 0; 2075 __u32 rem; 2076 2077 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 2078 if (block_count > old_block_count) 2079 return -EINVAL; 2080 2081 if (f2fs_is_multi_device(sbi)) { 2082 int last_dev = sbi->s_ndevs - 1; 2083 __u64 last_segs = FDEV(last_dev).total_segments; 2084 2085 if (block_count + last_segs * sbi->blocks_per_seg <= 2086 old_block_count) 2087 return -EINVAL; 2088 } 2089 2090 /* new fs size should align to section size */ 2091 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 2092 if (rem) 2093 return -EINVAL; 2094 2095 if (block_count == old_block_count) 2096 return 0; 2097 2098 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2099 f2fs_err(sbi, "Should run fsck to repair first."); 2100 return -EFSCORRUPTED; 2101 } 2102 2103 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2104 f2fs_err(sbi, "Checkpoint should be enabled."); 2105 return -EINVAL; 2106 } 2107 2108 shrunk_blocks = old_block_count - block_count; 2109 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2110 2111 /* stop other GC */ 2112 if (!f2fs_down_write_trylock(&sbi->gc_lock)) 2113 return -EAGAIN; 2114 2115 /* stop CP to protect MAIN_SEC in free_segment_range */ 2116 f2fs_lock_op(sbi); 2117 2118 spin_lock(&sbi->stat_lock); 2119 if (shrunk_blocks + valid_user_blocks(sbi) + 2120 sbi->current_reserved_blocks + sbi->unusable_block_count + 2121 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2122 err = -ENOSPC; 2123 spin_unlock(&sbi->stat_lock); 2124 2125 if (err) 2126 goto out_unlock; 2127 2128 err = free_segment_range(sbi, secs, true); 2129 2130 out_unlock: 2131 f2fs_unlock_op(sbi); 2132 f2fs_up_write(&sbi->gc_lock); 2133 if (err) 2134 return err; 2135 2136 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2137 2138 freeze_super(sbi->sb); 2139 f2fs_down_write(&sbi->gc_lock); 2140 f2fs_down_write(&sbi->cp_global_sem); 2141 2142 spin_lock(&sbi->stat_lock); 2143 if (shrunk_blocks + valid_user_blocks(sbi) + 2144 sbi->current_reserved_blocks + sbi->unusable_block_count + 2145 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2146 err = -ENOSPC; 2147 else 2148 sbi->user_block_count -= shrunk_blocks; 2149 spin_unlock(&sbi->stat_lock); 2150 if (err) 2151 goto out_err; 2152 2153 err = free_segment_range(sbi, secs, false); 2154 if (err) 2155 goto recover_out; 2156 2157 update_sb_metadata(sbi, -secs); 2158 2159 err = f2fs_commit_super(sbi, false); 2160 if (err) { 2161 update_sb_metadata(sbi, secs); 2162 goto recover_out; 2163 } 2164 2165 update_fs_metadata(sbi, -secs); 2166 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2167 set_sbi_flag(sbi, SBI_IS_DIRTY); 2168 2169 err = f2fs_write_checkpoint(sbi, &cpc); 2170 if (err) { 2171 update_fs_metadata(sbi, secs); 2172 update_sb_metadata(sbi, secs); 2173 f2fs_commit_super(sbi, false); 2174 } 2175 recover_out: 2176 if (err) { 2177 set_sbi_flag(sbi, SBI_NEED_FSCK); 2178 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2179 2180 spin_lock(&sbi->stat_lock); 2181 sbi->user_block_count += shrunk_blocks; 2182 spin_unlock(&sbi->stat_lock); 2183 } 2184 out_err: 2185 f2fs_up_write(&sbi->cp_global_sem); 2186 f2fs_up_write(&sbi->gc_lock); 2187 thaw_super(sbi->sb); 2188 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2189 return err; 2190 } 2191