1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/f2fs_fs.h> 12 #include <linux/kthread.h> 13 #include <linux/delay.h> 14 #include <linux/freezer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/random.h> 17 #include <linux/sched/mm.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "gc.h" 23 #include "iostat.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *victim_entry_slab; 27 28 static unsigned int count_bits(const unsigned long *addr, 29 unsigned int offset, unsigned int len); 30 31 static int gc_thread_func(void *data) 32 { 33 struct f2fs_sb_info *sbi = data; 34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 37 unsigned int wait_ms; 38 39 wait_ms = gc_th->min_sleep_time; 40 41 set_freezable(); 42 do { 43 bool sync_mode, foreground = false; 44 45 wait_event_interruptible_timeout(*wq, 46 kthread_should_stop() || freezing(current) || 47 waitqueue_active(fggc_wq) || 48 gc_th->gc_wake, 49 msecs_to_jiffies(wait_ms)); 50 51 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) 52 foreground = true; 53 54 /* give it a try one time */ 55 if (gc_th->gc_wake) 56 gc_th->gc_wake = 0; 57 58 if (try_to_freeze()) { 59 stat_other_skip_bggc_count(sbi); 60 continue; 61 } 62 if (kthread_should_stop()) 63 break; 64 65 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 66 increase_sleep_time(gc_th, &wait_ms); 67 stat_other_skip_bggc_count(sbi); 68 continue; 69 } 70 71 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 72 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 73 f2fs_stop_checkpoint(sbi, false); 74 } 75 76 if (!sb_start_write_trylock(sbi->sb)) { 77 stat_other_skip_bggc_count(sbi); 78 continue; 79 } 80 81 /* 82 * [GC triggering condition] 83 * 0. GC is not conducted currently. 84 * 1. There are enough dirty segments. 85 * 2. IO subsystem is idle by checking the # of writeback pages. 86 * 3. IO subsystem is idle by checking the # of requests in 87 * bdev's request list. 88 * 89 * Note) We have to avoid triggering GCs frequently. 90 * Because it is possible that some segments can be 91 * invalidated soon after by user update or deletion. 92 * So, I'd like to wait some time to collect dirty segments. 93 */ 94 if (sbi->gc_mode == GC_URGENT_HIGH) { 95 wait_ms = gc_th->urgent_sleep_time; 96 down_write(&sbi->gc_lock); 97 goto do_gc; 98 } 99 100 if (foreground) { 101 down_write(&sbi->gc_lock); 102 goto do_gc; 103 } else if (!down_write_trylock(&sbi->gc_lock)) { 104 stat_other_skip_bggc_count(sbi); 105 goto next; 106 } 107 108 if (!is_idle(sbi, GC_TIME)) { 109 increase_sleep_time(gc_th, &wait_ms); 110 up_write(&sbi->gc_lock); 111 stat_io_skip_bggc_count(sbi); 112 goto next; 113 } 114 115 if (has_enough_invalid_blocks(sbi)) 116 decrease_sleep_time(gc_th, &wait_ms); 117 else 118 increase_sleep_time(gc_th, &wait_ms); 119 do_gc: 120 if (!foreground) 121 stat_inc_bggc_count(sbi->stat_info); 122 123 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC; 124 125 /* foreground GC was been triggered via f2fs_balance_fs() */ 126 if (foreground) 127 sync_mode = false; 128 129 /* if return value is not zero, no victim was selected */ 130 if (f2fs_gc(sbi, sync_mode, !foreground, false, NULL_SEGNO)) 131 wait_ms = gc_th->no_gc_sleep_time; 132 133 if (foreground) 134 wake_up_all(&gc_th->fggc_wq); 135 136 trace_f2fs_background_gc(sbi->sb, wait_ms, 137 prefree_segments(sbi), free_segments(sbi)); 138 139 /* balancing f2fs's metadata periodically */ 140 f2fs_balance_fs_bg(sbi, true); 141 next: 142 sb_end_write(sbi->sb); 143 144 } while (!kthread_should_stop()); 145 return 0; 146 } 147 148 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 149 { 150 struct f2fs_gc_kthread *gc_th; 151 dev_t dev = sbi->sb->s_bdev->bd_dev; 152 int err = 0; 153 154 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 155 if (!gc_th) { 156 err = -ENOMEM; 157 goto out; 158 } 159 160 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 161 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 162 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 163 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 164 165 gc_th->gc_wake = 0; 166 167 sbi->gc_thread = gc_th; 168 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 169 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 170 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 171 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 172 if (IS_ERR(gc_th->f2fs_gc_task)) { 173 err = PTR_ERR(gc_th->f2fs_gc_task); 174 kfree(gc_th); 175 sbi->gc_thread = NULL; 176 } 177 out: 178 return err; 179 } 180 181 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 182 { 183 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 184 185 if (!gc_th) 186 return; 187 kthread_stop(gc_th->f2fs_gc_task); 188 wake_up_all(&gc_th->fggc_wq); 189 kfree(gc_th); 190 sbi->gc_thread = NULL; 191 } 192 193 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 194 { 195 int gc_mode; 196 197 if (gc_type == BG_GC) { 198 if (sbi->am.atgc_enabled) 199 gc_mode = GC_AT; 200 else 201 gc_mode = GC_CB; 202 } else { 203 gc_mode = GC_GREEDY; 204 } 205 206 switch (sbi->gc_mode) { 207 case GC_IDLE_CB: 208 gc_mode = GC_CB; 209 break; 210 case GC_IDLE_GREEDY: 211 case GC_URGENT_HIGH: 212 gc_mode = GC_GREEDY; 213 break; 214 case GC_IDLE_AT: 215 gc_mode = GC_AT; 216 break; 217 } 218 219 return gc_mode; 220 } 221 222 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 223 int type, struct victim_sel_policy *p) 224 { 225 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 226 227 if (p->alloc_mode == SSR) { 228 p->gc_mode = GC_GREEDY; 229 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 230 p->max_search = dirty_i->nr_dirty[type]; 231 p->ofs_unit = 1; 232 } else if (p->alloc_mode == AT_SSR) { 233 p->gc_mode = GC_GREEDY; 234 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 235 p->max_search = dirty_i->nr_dirty[type]; 236 p->ofs_unit = 1; 237 } else { 238 p->gc_mode = select_gc_type(sbi, gc_type); 239 p->ofs_unit = sbi->segs_per_sec; 240 if (__is_large_section(sbi)) { 241 p->dirty_bitmap = dirty_i->dirty_secmap; 242 p->max_search = count_bits(p->dirty_bitmap, 243 0, MAIN_SECS(sbi)); 244 } else { 245 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 246 p->max_search = dirty_i->nr_dirty[DIRTY]; 247 } 248 } 249 250 /* 251 * adjust candidates range, should select all dirty segments for 252 * foreground GC and urgent GC cases. 253 */ 254 if (gc_type != FG_GC && 255 (sbi->gc_mode != GC_URGENT_HIGH) && 256 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 257 p->max_search > sbi->max_victim_search) 258 p->max_search = sbi->max_victim_search; 259 260 /* let's select beginning hot/small space first in no_heap mode*/ 261 if (f2fs_need_rand_seg(sbi)) 262 p->offset = prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec); 263 else if (test_opt(sbi, NOHEAP) && 264 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 265 p->offset = 0; 266 else 267 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 268 } 269 270 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 271 struct victim_sel_policy *p) 272 { 273 /* SSR allocates in a segment unit */ 274 if (p->alloc_mode == SSR) 275 return sbi->blocks_per_seg; 276 else if (p->alloc_mode == AT_SSR) 277 return UINT_MAX; 278 279 /* LFS */ 280 if (p->gc_mode == GC_GREEDY) 281 return 2 * sbi->blocks_per_seg * p->ofs_unit; 282 else if (p->gc_mode == GC_CB) 283 return UINT_MAX; 284 else if (p->gc_mode == GC_AT) 285 return UINT_MAX; 286 else /* No other gc_mode */ 287 return 0; 288 } 289 290 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 291 { 292 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 293 unsigned int secno; 294 295 /* 296 * If the gc_type is FG_GC, we can select victim segments 297 * selected by background GC before. 298 * Those segments guarantee they have small valid blocks. 299 */ 300 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 301 if (sec_usage_check(sbi, secno)) 302 continue; 303 clear_bit(secno, dirty_i->victim_secmap); 304 return GET_SEG_FROM_SEC(sbi, secno); 305 } 306 return NULL_SEGNO; 307 } 308 309 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 310 { 311 struct sit_info *sit_i = SIT_I(sbi); 312 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 313 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 314 unsigned long long mtime = 0; 315 unsigned int vblocks; 316 unsigned char age = 0; 317 unsigned char u; 318 unsigned int i; 319 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno); 320 321 for (i = 0; i < usable_segs_per_sec; i++) 322 mtime += get_seg_entry(sbi, start + i)->mtime; 323 vblocks = get_valid_blocks(sbi, segno, true); 324 325 mtime = div_u64(mtime, usable_segs_per_sec); 326 vblocks = div_u64(vblocks, usable_segs_per_sec); 327 328 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 329 330 /* Handle if the system time has changed by the user */ 331 if (mtime < sit_i->min_mtime) 332 sit_i->min_mtime = mtime; 333 if (mtime > sit_i->max_mtime) 334 sit_i->max_mtime = mtime; 335 if (sit_i->max_mtime != sit_i->min_mtime) 336 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 337 sit_i->max_mtime - sit_i->min_mtime); 338 339 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 340 } 341 342 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 343 unsigned int segno, struct victim_sel_policy *p) 344 { 345 if (p->alloc_mode == SSR) 346 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 347 348 /* alloc_mode == LFS */ 349 if (p->gc_mode == GC_GREEDY) 350 return get_valid_blocks(sbi, segno, true); 351 else if (p->gc_mode == GC_CB) 352 return get_cb_cost(sbi, segno); 353 354 f2fs_bug_on(sbi, 1); 355 return 0; 356 } 357 358 static unsigned int count_bits(const unsigned long *addr, 359 unsigned int offset, unsigned int len) 360 { 361 unsigned int end = offset + len, sum = 0; 362 363 while (offset < end) { 364 if (test_bit(offset++, addr)) 365 ++sum; 366 } 367 return sum; 368 } 369 370 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi, 371 unsigned long long mtime, unsigned int segno, 372 struct rb_node *parent, struct rb_node **p, 373 bool left_most) 374 { 375 struct atgc_management *am = &sbi->am; 376 struct victim_entry *ve; 377 378 ve = f2fs_kmem_cache_alloc(victim_entry_slab, 379 GFP_NOFS, true, NULL); 380 381 ve->mtime = mtime; 382 ve->segno = segno; 383 384 rb_link_node(&ve->rb_node, parent, p); 385 rb_insert_color_cached(&ve->rb_node, &am->root, left_most); 386 387 list_add_tail(&ve->list, &am->victim_list); 388 389 am->victim_count++; 390 391 return ve; 392 } 393 394 static void insert_victim_entry(struct f2fs_sb_info *sbi, 395 unsigned long long mtime, unsigned int segno) 396 { 397 struct atgc_management *am = &sbi->am; 398 struct rb_node **p; 399 struct rb_node *parent = NULL; 400 bool left_most = true; 401 402 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most); 403 attach_victim_entry(sbi, mtime, segno, parent, p, left_most); 404 } 405 406 static void add_victim_entry(struct f2fs_sb_info *sbi, 407 struct victim_sel_policy *p, unsigned int segno) 408 { 409 struct sit_info *sit_i = SIT_I(sbi); 410 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 411 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 412 unsigned long long mtime = 0; 413 unsigned int i; 414 415 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 416 if (p->gc_mode == GC_AT && 417 get_valid_blocks(sbi, segno, true) == 0) 418 return; 419 } 420 421 for (i = 0; i < sbi->segs_per_sec; i++) 422 mtime += get_seg_entry(sbi, start + i)->mtime; 423 mtime = div_u64(mtime, sbi->segs_per_sec); 424 425 /* Handle if the system time has changed by the user */ 426 if (mtime < sit_i->min_mtime) 427 sit_i->min_mtime = mtime; 428 if (mtime > sit_i->max_mtime) 429 sit_i->max_mtime = mtime; 430 if (mtime < sit_i->dirty_min_mtime) 431 sit_i->dirty_min_mtime = mtime; 432 if (mtime > sit_i->dirty_max_mtime) 433 sit_i->dirty_max_mtime = mtime; 434 435 /* don't choose young section as candidate */ 436 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 437 return; 438 439 insert_victim_entry(sbi, mtime, segno); 440 } 441 442 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi, 443 struct victim_sel_policy *p) 444 { 445 struct atgc_management *am = &sbi->am; 446 struct rb_node *parent = NULL; 447 bool left_most; 448 449 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most); 450 451 return parent; 452 } 453 454 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 455 struct victim_sel_policy *p) 456 { 457 struct sit_info *sit_i = SIT_I(sbi); 458 struct atgc_management *am = &sbi->am; 459 struct rb_root_cached *root = &am->root; 460 struct rb_node *node; 461 struct rb_entry *re; 462 struct victim_entry *ve; 463 unsigned long long total_time; 464 unsigned long long age, u, accu; 465 unsigned long long max_mtime = sit_i->dirty_max_mtime; 466 unsigned long long min_mtime = sit_i->dirty_min_mtime; 467 unsigned int sec_blocks = BLKS_PER_SEC(sbi); 468 unsigned int vblocks; 469 unsigned int dirty_threshold = max(am->max_candidate_count, 470 am->candidate_ratio * 471 am->victim_count / 100); 472 unsigned int age_weight = am->age_weight; 473 unsigned int cost; 474 unsigned int iter = 0; 475 476 if (max_mtime < min_mtime) 477 return; 478 479 max_mtime += 1; 480 total_time = max_mtime - min_mtime; 481 482 accu = div64_u64(ULLONG_MAX, total_time); 483 accu = min_t(unsigned long long, div_u64(accu, 100), 484 DEFAULT_ACCURACY_CLASS); 485 486 node = rb_first_cached(root); 487 next: 488 re = rb_entry_safe(node, struct rb_entry, rb_node); 489 if (!re) 490 return; 491 492 ve = (struct victim_entry *)re; 493 494 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 495 goto skip; 496 497 /* age = 10000 * x% * 60 */ 498 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 499 age_weight; 500 501 vblocks = get_valid_blocks(sbi, ve->segno, true); 502 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 503 504 /* u = 10000 * x% * 40 */ 505 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 506 (100 - age_weight); 507 508 f2fs_bug_on(sbi, age + u >= UINT_MAX); 509 510 cost = UINT_MAX - (age + u); 511 iter++; 512 513 if (cost < p->min_cost || 514 (cost == p->min_cost && age > p->oldest_age)) { 515 p->min_cost = cost; 516 p->oldest_age = age; 517 p->min_segno = ve->segno; 518 } 519 skip: 520 if (iter < dirty_threshold) { 521 node = rb_next(node); 522 goto next; 523 } 524 } 525 526 /* 527 * select candidates around source section in range of 528 * [target - dirty_threshold, target + dirty_threshold] 529 */ 530 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 531 struct victim_sel_policy *p) 532 { 533 struct sit_info *sit_i = SIT_I(sbi); 534 struct atgc_management *am = &sbi->am; 535 struct rb_node *node; 536 struct rb_entry *re; 537 struct victim_entry *ve; 538 unsigned long long age; 539 unsigned long long max_mtime = sit_i->dirty_max_mtime; 540 unsigned long long min_mtime = sit_i->dirty_min_mtime; 541 unsigned int seg_blocks = sbi->blocks_per_seg; 542 unsigned int vblocks; 543 unsigned int dirty_threshold = max(am->max_candidate_count, 544 am->candidate_ratio * 545 am->victim_count / 100); 546 unsigned int cost; 547 unsigned int iter = 0; 548 int stage = 0; 549 550 if (max_mtime < min_mtime) 551 return; 552 max_mtime += 1; 553 next_stage: 554 node = lookup_central_victim(sbi, p); 555 next_node: 556 re = rb_entry_safe(node, struct rb_entry, rb_node); 557 if (!re) { 558 if (stage == 0) 559 goto skip_stage; 560 return; 561 } 562 563 ve = (struct victim_entry *)re; 564 565 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 566 goto skip_node; 567 568 age = max_mtime - ve->mtime; 569 570 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 571 f2fs_bug_on(sbi, !vblocks); 572 573 /* rare case */ 574 if (vblocks == seg_blocks) 575 goto skip_node; 576 577 iter++; 578 579 age = max_mtime - abs(p->age - age); 580 cost = UINT_MAX - vblocks; 581 582 if (cost < p->min_cost || 583 (cost == p->min_cost && age > p->oldest_age)) { 584 p->min_cost = cost; 585 p->oldest_age = age; 586 p->min_segno = ve->segno; 587 } 588 skip_node: 589 if (iter < dirty_threshold) { 590 if (stage == 0) 591 node = rb_prev(node); 592 else if (stage == 1) 593 node = rb_next(node); 594 goto next_node; 595 } 596 skip_stage: 597 if (stage < 1) { 598 stage++; 599 iter = 0; 600 goto next_stage; 601 } 602 } 603 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 604 struct victim_sel_policy *p) 605 { 606 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 607 &sbi->am.root, true)); 608 609 if (p->gc_mode == GC_AT) 610 atgc_lookup_victim(sbi, p); 611 else if (p->alloc_mode == AT_SSR) 612 atssr_lookup_victim(sbi, p); 613 else 614 f2fs_bug_on(sbi, 1); 615 } 616 617 static void release_victim_entry(struct f2fs_sb_info *sbi) 618 { 619 struct atgc_management *am = &sbi->am; 620 struct victim_entry *ve, *tmp; 621 622 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 623 list_del(&ve->list); 624 kmem_cache_free(victim_entry_slab, ve); 625 am->victim_count--; 626 } 627 628 am->root = RB_ROOT_CACHED; 629 630 f2fs_bug_on(sbi, am->victim_count); 631 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 632 } 633 634 /* 635 * This function is called from two paths. 636 * One is garbage collection and the other is SSR segment selection. 637 * When it is called during GC, it just gets a victim segment 638 * and it does not remove it from dirty seglist. 639 * When it is called from SSR segment selection, it finds a segment 640 * which has minimum valid blocks and removes it from dirty seglist. 641 */ 642 static int get_victim_by_default(struct f2fs_sb_info *sbi, 643 unsigned int *result, int gc_type, int type, 644 char alloc_mode, unsigned long long age) 645 { 646 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 647 struct sit_info *sm = SIT_I(sbi); 648 struct victim_sel_policy p; 649 unsigned int secno, last_victim; 650 unsigned int last_segment; 651 unsigned int nsearched; 652 bool is_atgc; 653 int ret = 0; 654 655 mutex_lock(&dirty_i->seglist_lock); 656 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 657 658 p.alloc_mode = alloc_mode; 659 p.age = age; 660 p.age_threshold = sbi->am.age_threshold; 661 662 retry: 663 select_policy(sbi, gc_type, type, &p); 664 p.min_segno = NULL_SEGNO; 665 p.oldest_age = 0; 666 p.min_cost = get_max_cost(sbi, &p); 667 668 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 669 nsearched = 0; 670 671 if (is_atgc) 672 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 673 674 if (*result != NULL_SEGNO) { 675 if (!get_valid_blocks(sbi, *result, false)) { 676 ret = -ENODATA; 677 goto out; 678 } 679 680 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 681 ret = -EBUSY; 682 else 683 p.min_segno = *result; 684 goto out; 685 } 686 687 ret = -ENODATA; 688 if (p.max_search == 0) 689 goto out; 690 691 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 692 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 693 p.min_segno = sbi->next_victim_seg[BG_GC]; 694 *result = p.min_segno; 695 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 696 goto got_result; 697 } 698 if (gc_type == FG_GC && 699 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 700 p.min_segno = sbi->next_victim_seg[FG_GC]; 701 *result = p.min_segno; 702 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 703 goto got_result; 704 } 705 } 706 707 last_victim = sm->last_victim[p.gc_mode]; 708 if (p.alloc_mode == LFS && gc_type == FG_GC) { 709 p.min_segno = check_bg_victims(sbi); 710 if (p.min_segno != NULL_SEGNO) 711 goto got_it; 712 } 713 714 while (1) { 715 unsigned long cost, *dirty_bitmap; 716 unsigned int unit_no, segno; 717 718 dirty_bitmap = p.dirty_bitmap; 719 unit_no = find_next_bit(dirty_bitmap, 720 last_segment / p.ofs_unit, 721 p.offset / p.ofs_unit); 722 segno = unit_no * p.ofs_unit; 723 if (segno >= last_segment) { 724 if (sm->last_victim[p.gc_mode]) { 725 last_segment = 726 sm->last_victim[p.gc_mode]; 727 sm->last_victim[p.gc_mode] = 0; 728 p.offset = 0; 729 continue; 730 } 731 break; 732 } 733 734 p.offset = segno + p.ofs_unit; 735 nsearched++; 736 737 #ifdef CONFIG_F2FS_CHECK_FS 738 /* 739 * skip selecting the invalid segno (that is failed due to block 740 * validity check failure during GC) to avoid endless GC loop in 741 * such cases. 742 */ 743 if (test_bit(segno, sm->invalid_segmap)) 744 goto next; 745 #endif 746 747 secno = GET_SEC_FROM_SEG(sbi, segno); 748 749 if (sec_usage_check(sbi, secno)) 750 goto next; 751 752 /* Don't touch checkpointed data */ 753 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 754 if (p.alloc_mode == LFS) { 755 /* 756 * LFS is set to find source section during GC. 757 * The victim should have no checkpointed data. 758 */ 759 if (get_ckpt_valid_blocks(sbi, segno, true)) 760 goto next; 761 } else { 762 /* 763 * SSR | AT_SSR are set to find target segment 764 * for writes which can be full by checkpointed 765 * and newly written blocks. 766 */ 767 if (!f2fs_segment_has_free_slot(sbi, segno)) 768 goto next; 769 } 770 } 771 772 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 773 goto next; 774 775 if (is_atgc) { 776 add_victim_entry(sbi, &p, segno); 777 goto next; 778 } 779 780 cost = get_gc_cost(sbi, segno, &p); 781 782 if (p.min_cost > cost) { 783 p.min_segno = segno; 784 p.min_cost = cost; 785 } 786 next: 787 if (nsearched >= p.max_search) { 788 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 789 sm->last_victim[p.gc_mode] = 790 last_victim + p.ofs_unit; 791 else 792 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 793 sm->last_victim[p.gc_mode] %= 794 (MAIN_SECS(sbi) * sbi->segs_per_sec); 795 break; 796 } 797 } 798 799 /* get victim for GC_AT/AT_SSR */ 800 if (is_atgc) { 801 lookup_victim_by_age(sbi, &p); 802 release_victim_entry(sbi); 803 } 804 805 if (is_atgc && p.min_segno == NULL_SEGNO && 806 sm->elapsed_time < p.age_threshold) { 807 p.age_threshold = 0; 808 goto retry; 809 } 810 811 if (p.min_segno != NULL_SEGNO) { 812 got_it: 813 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 814 got_result: 815 if (p.alloc_mode == LFS) { 816 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 817 if (gc_type == FG_GC) 818 sbi->cur_victim_sec = secno; 819 else 820 set_bit(secno, dirty_i->victim_secmap); 821 } 822 ret = 0; 823 824 } 825 out: 826 if (p.min_segno != NULL_SEGNO) 827 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 828 sbi->cur_victim_sec, 829 prefree_segments(sbi), free_segments(sbi)); 830 mutex_unlock(&dirty_i->seglist_lock); 831 832 return ret; 833 } 834 835 static const struct victim_selection default_v_ops = { 836 .get_victim = get_victim_by_default, 837 }; 838 839 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 840 { 841 struct inode_entry *ie; 842 843 ie = radix_tree_lookup(&gc_list->iroot, ino); 844 if (ie) 845 return ie->inode; 846 return NULL; 847 } 848 849 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 850 { 851 struct inode_entry *new_ie; 852 853 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 854 iput(inode); 855 return; 856 } 857 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, 858 GFP_NOFS, true, NULL); 859 new_ie->inode = inode; 860 861 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 862 list_add_tail(&new_ie->list, &gc_list->ilist); 863 } 864 865 static void put_gc_inode(struct gc_inode_list *gc_list) 866 { 867 struct inode_entry *ie, *next_ie; 868 869 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 870 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 871 iput(ie->inode); 872 list_del(&ie->list); 873 kmem_cache_free(f2fs_inode_entry_slab, ie); 874 } 875 } 876 877 static int check_valid_map(struct f2fs_sb_info *sbi, 878 unsigned int segno, int offset) 879 { 880 struct sit_info *sit_i = SIT_I(sbi); 881 struct seg_entry *sentry; 882 int ret; 883 884 down_read(&sit_i->sentry_lock); 885 sentry = get_seg_entry(sbi, segno); 886 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 887 up_read(&sit_i->sentry_lock); 888 return ret; 889 } 890 891 /* 892 * This function compares node address got in summary with that in NAT. 893 * On validity, copy that node with cold status, otherwise (invalid node) 894 * ignore that. 895 */ 896 static int gc_node_segment(struct f2fs_sb_info *sbi, 897 struct f2fs_summary *sum, unsigned int segno, int gc_type) 898 { 899 struct f2fs_summary *entry; 900 block_t start_addr; 901 int off; 902 int phase = 0; 903 bool fggc = (gc_type == FG_GC); 904 int submitted = 0; 905 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 906 907 start_addr = START_BLOCK(sbi, segno); 908 909 next_step: 910 entry = sum; 911 912 if (fggc && phase == 2) 913 atomic_inc(&sbi->wb_sync_req[NODE]); 914 915 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 916 nid_t nid = le32_to_cpu(entry->nid); 917 struct page *node_page; 918 struct node_info ni; 919 int err; 920 921 /* stop BG_GC if there is not enough free sections. */ 922 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 923 return submitted; 924 925 if (check_valid_map(sbi, segno, off) == 0) 926 continue; 927 928 if (phase == 0) { 929 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 930 META_NAT, true); 931 continue; 932 } 933 934 if (phase == 1) { 935 f2fs_ra_node_page(sbi, nid); 936 continue; 937 } 938 939 /* phase == 2 */ 940 node_page = f2fs_get_node_page(sbi, nid); 941 if (IS_ERR(node_page)) 942 continue; 943 944 /* block may become invalid during f2fs_get_node_page */ 945 if (check_valid_map(sbi, segno, off) == 0) { 946 f2fs_put_page(node_page, 1); 947 continue; 948 } 949 950 if (f2fs_get_node_info(sbi, nid, &ni)) { 951 f2fs_put_page(node_page, 1); 952 continue; 953 } 954 955 if (ni.blk_addr != start_addr + off) { 956 f2fs_put_page(node_page, 1); 957 continue; 958 } 959 960 err = f2fs_move_node_page(node_page, gc_type); 961 if (!err && gc_type == FG_GC) 962 submitted++; 963 stat_inc_node_blk_count(sbi, 1, gc_type); 964 } 965 966 if (++phase < 3) 967 goto next_step; 968 969 if (fggc) 970 atomic_dec(&sbi->wb_sync_req[NODE]); 971 return submitted; 972 } 973 974 /* 975 * Calculate start block index indicating the given node offset. 976 * Be careful, caller should give this node offset only indicating direct node 977 * blocks. If any node offsets, which point the other types of node blocks such 978 * as indirect or double indirect node blocks, are given, it must be a caller's 979 * bug. 980 */ 981 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 982 { 983 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 984 unsigned int bidx; 985 986 if (node_ofs == 0) 987 return 0; 988 989 if (node_ofs <= 2) { 990 bidx = node_ofs - 1; 991 } else if (node_ofs <= indirect_blks) { 992 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 993 994 bidx = node_ofs - 2 - dec; 995 } else { 996 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 997 998 bidx = node_ofs - 5 - dec; 999 } 1000 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 1001 } 1002 1003 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1004 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 1005 { 1006 struct page *node_page; 1007 nid_t nid; 1008 unsigned int ofs_in_node; 1009 block_t source_blkaddr; 1010 1011 nid = le32_to_cpu(sum->nid); 1012 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1013 1014 node_page = f2fs_get_node_page(sbi, nid); 1015 if (IS_ERR(node_page)) 1016 return false; 1017 1018 if (f2fs_get_node_info(sbi, nid, dni)) { 1019 f2fs_put_page(node_page, 1); 1020 return false; 1021 } 1022 1023 if (sum->version != dni->version) { 1024 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1025 __func__); 1026 set_sbi_flag(sbi, SBI_NEED_FSCK); 1027 } 1028 1029 *nofs = ofs_of_node(node_page); 1030 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 1031 f2fs_put_page(node_page, 1); 1032 1033 if (source_blkaddr != blkaddr) { 1034 #ifdef CONFIG_F2FS_CHECK_FS 1035 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1036 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1037 1038 if (unlikely(check_valid_map(sbi, segno, offset))) { 1039 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1040 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1041 blkaddr, source_blkaddr, segno); 1042 f2fs_bug_on(sbi, 1); 1043 } 1044 } 1045 #endif 1046 return false; 1047 } 1048 return true; 1049 } 1050 1051 static int ra_data_block(struct inode *inode, pgoff_t index) 1052 { 1053 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1054 struct address_space *mapping = inode->i_mapping; 1055 struct dnode_of_data dn; 1056 struct page *page; 1057 struct extent_info ei = {0, 0, 0}; 1058 struct f2fs_io_info fio = { 1059 .sbi = sbi, 1060 .ino = inode->i_ino, 1061 .type = DATA, 1062 .temp = COLD, 1063 .op = REQ_OP_READ, 1064 .op_flags = 0, 1065 .encrypted_page = NULL, 1066 .in_list = false, 1067 .retry = false, 1068 }; 1069 int err; 1070 1071 page = f2fs_grab_cache_page(mapping, index, true); 1072 if (!page) 1073 return -ENOMEM; 1074 1075 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1076 dn.data_blkaddr = ei.blk + index - ei.fofs; 1077 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1078 DATA_GENERIC_ENHANCE_READ))) { 1079 err = -EFSCORRUPTED; 1080 goto put_page; 1081 } 1082 goto got_it; 1083 } 1084 1085 set_new_dnode(&dn, inode, NULL, NULL, 0); 1086 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1087 if (err) 1088 goto put_page; 1089 f2fs_put_dnode(&dn); 1090 1091 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1092 err = -ENOENT; 1093 goto put_page; 1094 } 1095 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1096 DATA_GENERIC_ENHANCE))) { 1097 err = -EFSCORRUPTED; 1098 goto put_page; 1099 } 1100 got_it: 1101 /* read page */ 1102 fio.page = page; 1103 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1104 1105 /* 1106 * don't cache encrypted data into meta inode until previous dirty 1107 * data were writebacked to avoid racing between GC and flush. 1108 */ 1109 f2fs_wait_on_page_writeback(page, DATA, true, true); 1110 1111 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1112 1113 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1114 dn.data_blkaddr, 1115 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1116 if (!fio.encrypted_page) { 1117 err = -ENOMEM; 1118 goto put_page; 1119 } 1120 1121 err = f2fs_submit_page_bio(&fio); 1122 if (err) 1123 goto put_encrypted_page; 1124 f2fs_put_page(fio.encrypted_page, 0); 1125 f2fs_put_page(page, 1); 1126 1127 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1128 f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1129 1130 return 0; 1131 put_encrypted_page: 1132 f2fs_put_page(fio.encrypted_page, 1); 1133 put_page: 1134 f2fs_put_page(page, 1); 1135 return err; 1136 } 1137 1138 /* 1139 * Move data block via META_MAPPING while keeping locked data page. 1140 * This can be used to move blocks, aka LBAs, directly on disk. 1141 */ 1142 static int move_data_block(struct inode *inode, block_t bidx, 1143 int gc_type, unsigned int segno, int off) 1144 { 1145 struct f2fs_io_info fio = { 1146 .sbi = F2FS_I_SB(inode), 1147 .ino = inode->i_ino, 1148 .type = DATA, 1149 .temp = COLD, 1150 .op = REQ_OP_READ, 1151 .op_flags = 0, 1152 .encrypted_page = NULL, 1153 .in_list = false, 1154 .retry = false, 1155 }; 1156 struct dnode_of_data dn; 1157 struct f2fs_summary sum; 1158 struct node_info ni; 1159 struct page *page, *mpage; 1160 block_t newaddr; 1161 int err = 0; 1162 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1163 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1164 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1165 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1166 1167 /* do not read out */ 1168 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 1169 if (!page) 1170 return -ENOMEM; 1171 1172 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1173 err = -ENOENT; 1174 goto out; 1175 } 1176 1177 if (f2fs_is_atomic_file(inode)) { 1178 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 1179 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 1180 err = -EAGAIN; 1181 goto out; 1182 } 1183 1184 if (f2fs_is_pinned_file(inode)) { 1185 f2fs_pin_file_control(inode, true); 1186 err = -EAGAIN; 1187 goto out; 1188 } 1189 1190 set_new_dnode(&dn, inode, NULL, NULL, 0); 1191 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1192 if (err) 1193 goto out; 1194 1195 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1196 ClearPageUptodate(page); 1197 err = -ENOENT; 1198 goto put_out; 1199 } 1200 1201 /* 1202 * don't cache encrypted data into meta inode until previous dirty 1203 * data were writebacked to avoid racing between GC and flush. 1204 */ 1205 f2fs_wait_on_page_writeback(page, DATA, true, true); 1206 1207 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1208 1209 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni); 1210 if (err) 1211 goto put_out; 1212 1213 /* read page */ 1214 fio.page = page; 1215 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1216 1217 if (lfs_mode) 1218 down_write(&fio.sbi->io_order_lock); 1219 1220 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1221 fio.old_blkaddr, false); 1222 if (!mpage) { 1223 err = -ENOMEM; 1224 goto up_out; 1225 } 1226 1227 fio.encrypted_page = mpage; 1228 1229 /* read source block in mpage */ 1230 if (!PageUptodate(mpage)) { 1231 err = f2fs_submit_page_bio(&fio); 1232 if (err) { 1233 f2fs_put_page(mpage, 1); 1234 goto up_out; 1235 } 1236 1237 f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1238 f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1239 1240 lock_page(mpage); 1241 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1242 !PageUptodate(mpage))) { 1243 err = -EIO; 1244 f2fs_put_page(mpage, 1); 1245 goto up_out; 1246 } 1247 } 1248 1249 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1250 1251 /* allocate block address */ 1252 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1253 &sum, type, NULL); 1254 1255 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1256 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1257 if (!fio.encrypted_page) { 1258 err = -ENOMEM; 1259 f2fs_put_page(mpage, 1); 1260 goto recover_block; 1261 } 1262 1263 /* write target block */ 1264 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1265 memcpy(page_address(fio.encrypted_page), 1266 page_address(mpage), PAGE_SIZE); 1267 f2fs_put_page(mpage, 1); 1268 invalidate_mapping_pages(META_MAPPING(fio.sbi), 1269 fio.old_blkaddr, fio.old_blkaddr); 1270 f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr); 1271 1272 set_page_dirty(fio.encrypted_page); 1273 if (clear_page_dirty_for_io(fio.encrypted_page)) 1274 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1275 1276 set_page_writeback(fio.encrypted_page); 1277 ClearPageError(page); 1278 1279 fio.op = REQ_OP_WRITE; 1280 fio.op_flags = REQ_SYNC; 1281 fio.new_blkaddr = newaddr; 1282 f2fs_submit_page_write(&fio); 1283 if (fio.retry) { 1284 err = -EAGAIN; 1285 if (PageWriteback(fio.encrypted_page)) 1286 end_page_writeback(fio.encrypted_page); 1287 goto put_page_out; 1288 } 1289 1290 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE); 1291 1292 f2fs_update_data_blkaddr(&dn, newaddr); 1293 set_inode_flag(inode, FI_APPEND_WRITE); 1294 if (page->index == 0) 1295 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1296 put_page_out: 1297 f2fs_put_page(fio.encrypted_page, 1); 1298 recover_block: 1299 if (err) 1300 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1301 true, true, true); 1302 up_out: 1303 if (lfs_mode) 1304 up_write(&fio.sbi->io_order_lock); 1305 put_out: 1306 f2fs_put_dnode(&dn); 1307 out: 1308 f2fs_put_page(page, 1); 1309 return err; 1310 } 1311 1312 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1313 unsigned int segno, int off) 1314 { 1315 struct page *page; 1316 int err = 0; 1317 1318 page = f2fs_get_lock_data_page(inode, bidx, true); 1319 if (IS_ERR(page)) 1320 return PTR_ERR(page); 1321 1322 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1323 err = -ENOENT; 1324 goto out; 1325 } 1326 1327 if (f2fs_is_atomic_file(inode)) { 1328 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 1329 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 1330 err = -EAGAIN; 1331 goto out; 1332 } 1333 if (f2fs_is_pinned_file(inode)) { 1334 if (gc_type == FG_GC) 1335 f2fs_pin_file_control(inode, true); 1336 err = -EAGAIN; 1337 goto out; 1338 } 1339 1340 if (gc_type == BG_GC) { 1341 if (PageWriteback(page)) { 1342 err = -EAGAIN; 1343 goto out; 1344 } 1345 set_page_dirty(page); 1346 set_page_private_gcing(page); 1347 } else { 1348 struct f2fs_io_info fio = { 1349 .sbi = F2FS_I_SB(inode), 1350 .ino = inode->i_ino, 1351 .type = DATA, 1352 .temp = COLD, 1353 .op = REQ_OP_WRITE, 1354 .op_flags = REQ_SYNC, 1355 .old_blkaddr = NULL_ADDR, 1356 .page = page, 1357 .encrypted_page = NULL, 1358 .need_lock = LOCK_REQ, 1359 .io_type = FS_GC_DATA_IO, 1360 }; 1361 bool is_dirty = PageDirty(page); 1362 1363 retry: 1364 f2fs_wait_on_page_writeback(page, DATA, true, true); 1365 1366 set_page_dirty(page); 1367 if (clear_page_dirty_for_io(page)) { 1368 inode_dec_dirty_pages(inode); 1369 f2fs_remove_dirty_inode(inode); 1370 } 1371 1372 set_page_private_gcing(page); 1373 1374 err = f2fs_do_write_data_page(&fio); 1375 if (err) { 1376 clear_page_private_gcing(page); 1377 if (err == -ENOMEM) { 1378 memalloc_retry_wait(GFP_NOFS); 1379 goto retry; 1380 } 1381 if (is_dirty) 1382 set_page_dirty(page); 1383 } 1384 } 1385 out: 1386 f2fs_put_page(page, 1); 1387 return err; 1388 } 1389 1390 /* 1391 * This function tries to get parent node of victim data block, and identifies 1392 * data block validity. If the block is valid, copy that with cold status and 1393 * modify parent node. 1394 * If the parent node is not valid or the data block address is different, 1395 * the victim data block is ignored. 1396 */ 1397 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1398 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1399 bool force_migrate) 1400 { 1401 struct super_block *sb = sbi->sb; 1402 struct f2fs_summary *entry; 1403 block_t start_addr; 1404 int off; 1405 int phase = 0; 1406 int submitted = 0; 1407 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1408 1409 start_addr = START_BLOCK(sbi, segno); 1410 1411 next_step: 1412 entry = sum; 1413 1414 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1415 struct page *data_page; 1416 struct inode *inode; 1417 struct node_info dni; /* dnode info for the data */ 1418 unsigned int ofs_in_node, nofs; 1419 block_t start_bidx; 1420 nid_t nid = le32_to_cpu(entry->nid); 1421 1422 /* 1423 * stop BG_GC if there is not enough free sections. 1424 * Or, stop GC if the segment becomes fully valid caused by 1425 * race condition along with SSR block allocation. 1426 */ 1427 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1428 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1429 BLKS_PER_SEC(sbi))) 1430 return submitted; 1431 1432 if (check_valid_map(sbi, segno, off) == 0) 1433 continue; 1434 1435 if (phase == 0) { 1436 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1437 META_NAT, true); 1438 continue; 1439 } 1440 1441 if (phase == 1) { 1442 f2fs_ra_node_page(sbi, nid); 1443 continue; 1444 } 1445 1446 /* Get an inode by ino with checking validity */ 1447 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1448 continue; 1449 1450 if (phase == 2) { 1451 f2fs_ra_node_page(sbi, dni.ino); 1452 continue; 1453 } 1454 1455 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1456 1457 if (phase == 3) { 1458 inode = f2fs_iget(sb, dni.ino); 1459 if (IS_ERR(inode) || is_bad_inode(inode)) 1460 continue; 1461 1462 if (!down_write_trylock( 1463 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1464 iput(inode); 1465 sbi->skipped_gc_rwsem++; 1466 continue; 1467 } 1468 1469 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1470 ofs_in_node; 1471 1472 if (f2fs_post_read_required(inode)) { 1473 int err = ra_data_block(inode, start_bidx); 1474 1475 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1476 if (err) { 1477 iput(inode); 1478 continue; 1479 } 1480 add_gc_inode(gc_list, inode); 1481 continue; 1482 } 1483 1484 data_page = f2fs_get_read_data_page(inode, 1485 start_bidx, REQ_RAHEAD, true); 1486 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1487 if (IS_ERR(data_page)) { 1488 iput(inode); 1489 continue; 1490 } 1491 1492 f2fs_put_page(data_page, 0); 1493 add_gc_inode(gc_list, inode); 1494 continue; 1495 } 1496 1497 /* phase 4 */ 1498 inode = find_gc_inode(gc_list, dni.ino); 1499 if (inode) { 1500 struct f2fs_inode_info *fi = F2FS_I(inode); 1501 bool locked = false; 1502 int err; 1503 1504 if (S_ISREG(inode->i_mode)) { 1505 if (!down_write_trylock(&fi->i_gc_rwsem[READ])) { 1506 sbi->skipped_gc_rwsem++; 1507 continue; 1508 } 1509 if (!down_write_trylock( 1510 &fi->i_gc_rwsem[WRITE])) { 1511 sbi->skipped_gc_rwsem++; 1512 up_write(&fi->i_gc_rwsem[READ]); 1513 continue; 1514 } 1515 locked = true; 1516 1517 /* wait for all inflight aio data */ 1518 inode_dio_wait(inode); 1519 } 1520 1521 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1522 + ofs_in_node; 1523 if (f2fs_post_read_required(inode)) 1524 err = move_data_block(inode, start_bidx, 1525 gc_type, segno, off); 1526 else 1527 err = move_data_page(inode, start_bidx, gc_type, 1528 segno, off); 1529 1530 if (!err && (gc_type == FG_GC || 1531 f2fs_post_read_required(inode))) 1532 submitted++; 1533 1534 if (locked) { 1535 up_write(&fi->i_gc_rwsem[WRITE]); 1536 up_write(&fi->i_gc_rwsem[READ]); 1537 } 1538 1539 stat_inc_data_blk_count(sbi, 1, gc_type); 1540 } 1541 } 1542 1543 if (++phase < 5) 1544 goto next_step; 1545 1546 return submitted; 1547 } 1548 1549 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1550 int gc_type) 1551 { 1552 struct sit_info *sit_i = SIT_I(sbi); 1553 int ret; 1554 1555 down_write(&sit_i->sentry_lock); 1556 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, 1557 NO_CHECK_TYPE, LFS, 0); 1558 up_write(&sit_i->sentry_lock); 1559 return ret; 1560 } 1561 1562 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1563 unsigned int start_segno, 1564 struct gc_inode_list *gc_list, int gc_type, 1565 bool force_migrate) 1566 { 1567 struct page *sum_page; 1568 struct f2fs_summary_block *sum; 1569 struct blk_plug plug; 1570 unsigned int segno = start_segno; 1571 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1572 int seg_freed = 0, migrated = 0; 1573 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1574 SUM_TYPE_DATA : SUM_TYPE_NODE; 1575 int submitted = 0; 1576 1577 if (__is_large_section(sbi)) 1578 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1579 1580 /* 1581 * zone-capacity can be less than zone-size in zoned devices, 1582 * resulting in less than expected usable segments in the zone, 1583 * calculate the end segno in the zone which can be garbage collected 1584 */ 1585 if (f2fs_sb_has_blkzoned(sbi)) 1586 end_segno -= sbi->segs_per_sec - 1587 f2fs_usable_segs_in_sec(sbi, segno); 1588 1589 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1590 1591 /* readahead multi ssa blocks those have contiguous address */ 1592 if (__is_large_section(sbi)) 1593 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1594 end_segno - segno, META_SSA, true); 1595 1596 /* reference all summary page */ 1597 while (segno < end_segno) { 1598 sum_page = f2fs_get_sum_page(sbi, segno++); 1599 if (IS_ERR(sum_page)) { 1600 int err = PTR_ERR(sum_page); 1601 1602 end_segno = segno - 1; 1603 for (segno = start_segno; segno < end_segno; segno++) { 1604 sum_page = find_get_page(META_MAPPING(sbi), 1605 GET_SUM_BLOCK(sbi, segno)); 1606 f2fs_put_page(sum_page, 0); 1607 f2fs_put_page(sum_page, 0); 1608 } 1609 return err; 1610 } 1611 unlock_page(sum_page); 1612 } 1613 1614 blk_start_plug(&plug); 1615 1616 for (segno = start_segno; segno < end_segno; segno++) { 1617 1618 /* find segment summary of victim */ 1619 sum_page = find_get_page(META_MAPPING(sbi), 1620 GET_SUM_BLOCK(sbi, segno)); 1621 f2fs_put_page(sum_page, 0); 1622 1623 if (get_valid_blocks(sbi, segno, false) == 0) 1624 goto freed; 1625 if (gc_type == BG_GC && __is_large_section(sbi) && 1626 migrated >= sbi->migration_granularity) 1627 goto skip; 1628 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1629 goto skip; 1630 1631 sum = page_address(sum_page); 1632 if (type != GET_SUM_TYPE((&sum->footer))) { 1633 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1634 segno, type, GET_SUM_TYPE((&sum->footer))); 1635 set_sbi_flag(sbi, SBI_NEED_FSCK); 1636 f2fs_stop_checkpoint(sbi, false); 1637 goto skip; 1638 } 1639 1640 /* 1641 * this is to avoid deadlock: 1642 * - lock_page(sum_page) - f2fs_replace_block 1643 * - check_valid_map() - down_write(sentry_lock) 1644 * - down_read(sentry_lock) - change_curseg() 1645 * - lock_page(sum_page) 1646 */ 1647 if (type == SUM_TYPE_NODE) 1648 submitted += gc_node_segment(sbi, sum->entries, segno, 1649 gc_type); 1650 else 1651 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1652 segno, gc_type, 1653 force_migrate); 1654 1655 stat_inc_seg_count(sbi, type, gc_type); 1656 sbi->gc_reclaimed_segs[sbi->gc_mode]++; 1657 migrated++; 1658 1659 freed: 1660 if (gc_type == FG_GC && 1661 get_valid_blocks(sbi, segno, false) == 0) 1662 seg_freed++; 1663 1664 if (__is_large_section(sbi) && segno + 1 < end_segno) 1665 sbi->next_victim_seg[gc_type] = segno + 1; 1666 skip: 1667 f2fs_put_page(sum_page, 0); 1668 } 1669 1670 if (submitted) 1671 f2fs_submit_merged_write(sbi, 1672 (type == SUM_TYPE_NODE) ? NODE : DATA); 1673 1674 blk_finish_plug(&plug); 1675 1676 stat_inc_call_count(sbi->stat_info); 1677 1678 return seg_freed; 1679 } 1680 1681 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, 1682 bool background, bool force, unsigned int segno) 1683 { 1684 int gc_type = sync ? FG_GC : BG_GC; 1685 int sec_freed = 0, seg_freed = 0, total_freed = 0; 1686 int ret = 0; 1687 struct cp_control cpc; 1688 unsigned int init_segno = segno; 1689 struct gc_inode_list gc_list = { 1690 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1691 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1692 }; 1693 unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC]; 1694 unsigned long long first_skipped; 1695 unsigned int skipped_round = 0, round = 0; 1696 1697 trace_f2fs_gc_begin(sbi->sb, sync, background, 1698 get_pages(sbi, F2FS_DIRTY_NODES), 1699 get_pages(sbi, F2FS_DIRTY_DENTS), 1700 get_pages(sbi, F2FS_DIRTY_IMETA), 1701 free_sections(sbi), 1702 free_segments(sbi), 1703 reserved_segments(sbi), 1704 prefree_segments(sbi)); 1705 1706 cpc.reason = __get_cp_reason(sbi); 1707 sbi->skipped_gc_rwsem = 0; 1708 first_skipped = last_skipped; 1709 gc_more: 1710 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1711 ret = -EINVAL; 1712 goto stop; 1713 } 1714 if (unlikely(f2fs_cp_error(sbi))) { 1715 ret = -EIO; 1716 goto stop; 1717 } 1718 1719 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { 1720 /* 1721 * For example, if there are many prefree_segments below given 1722 * threshold, we can make them free by checkpoint. Then, we 1723 * secure free segments which doesn't need fggc any more. 1724 */ 1725 if (prefree_segments(sbi) && 1726 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 1727 ret = f2fs_write_checkpoint(sbi, &cpc); 1728 if (ret) 1729 goto stop; 1730 } 1731 if (has_not_enough_free_secs(sbi, 0, 0)) 1732 gc_type = FG_GC; 1733 } 1734 1735 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1736 if (gc_type == BG_GC && !background) { 1737 ret = -EINVAL; 1738 goto stop; 1739 } 1740 ret = __get_victim(sbi, &segno, gc_type); 1741 if (ret) 1742 goto stop; 1743 1744 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, force); 1745 if (gc_type == FG_GC && 1746 seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) 1747 sec_freed++; 1748 total_freed += seg_freed; 1749 1750 if (gc_type == FG_GC) { 1751 if (sbi->skipped_atomic_files[FG_GC] > last_skipped || 1752 sbi->skipped_gc_rwsem) 1753 skipped_round++; 1754 last_skipped = sbi->skipped_atomic_files[FG_GC]; 1755 round++; 1756 } 1757 1758 if (gc_type == FG_GC) 1759 sbi->cur_victim_sec = NULL_SEGNO; 1760 1761 if (sync) 1762 goto stop; 1763 1764 if (has_not_enough_free_secs(sbi, sec_freed, 0)) { 1765 if (skipped_round <= MAX_SKIP_GC_COUNT || 1766 skipped_round * 2 < round) { 1767 segno = NULL_SEGNO; 1768 goto gc_more; 1769 } 1770 1771 if (first_skipped < last_skipped && 1772 (last_skipped - first_skipped) > 1773 sbi->skipped_gc_rwsem) { 1774 f2fs_drop_inmem_pages_all(sbi, true); 1775 segno = NULL_SEGNO; 1776 goto gc_more; 1777 } 1778 if (gc_type == FG_GC && !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1779 ret = f2fs_write_checkpoint(sbi, &cpc); 1780 } 1781 stop: 1782 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1783 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno; 1784 1785 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, 1786 get_pages(sbi, F2FS_DIRTY_NODES), 1787 get_pages(sbi, F2FS_DIRTY_DENTS), 1788 get_pages(sbi, F2FS_DIRTY_IMETA), 1789 free_sections(sbi), 1790 free_segments(sbi), 1791 reserved_segments(sbi), 1792 prefree_segments(sbi)); 1793 1794 up_write(&sbi->gc_lock); 1795 1796 put_gc_inode(&gc_list); 1797 1798 if (sync && !ret) 1799 ret = sec_freed ? 0 : -EAGAIN; 1800 return ret; 1801 } 1802 1803 int __init f2fs_create_garbage_collection_cache(void) 1804 { 1805 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 1806 sizeof(struct victim_entry)); 1807 if (!victim_entry_slab) 1808 return -ENOMEM; 1809 return 0; 1810 } 1811 1812 void f2fs_destroy_garbage_collection_cache(void) 1813 { 1814 kmem_cache_destroy(victim_entry_slab); 1815 } 1816 1817 static void init_atgc_management(struct f2fs_sb_info *sbi) 1818 { 1819 struct atgc_management *am = &sbi->am; 1820 1821 if (test_opt(sbi, ATGC) && 1822 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 1823 am->atgc_enabled = true; 1824 1825 am->root = RB_ROOT_CACHED; 1826 INIT_LIST_HEAD(&am->victim_list); 1827 am->victim_count = 0; 1828 1829 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 1830 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 1831 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 1832 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 1833 } 1834 1835 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1836 { 1837 DIRTY_I(sbi)->v_ops = &default_v_ops; 1838 1839 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1840 1841 /* give warm/cold data area from slower device */ 1842 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1843 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1844 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1845 1846 init_atgc_management(sbi); 1847 } 1848 1849 static int free_segment_range(struct f2fs_sb_info *sbi, 1850 unsigned int secs, bool gc_only) 1851 { 1852 unsigned int segno, next_inuse, start, end; 1853 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1854 int gc_mode, gc_type; 1855 int err = 0; 1856 int type; 1857 1858 /* Force block allocation for GC */ 1859 MAIN_SECS(sbi) -= secs; 1860 start = MAIN_SECS(sbi) * sbi->segs_per_sec; 1861 end = MAIN_SEGS(sbi) - 1; 1862 1863 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 1864 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 1865 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 1866 SIT_I(sbi)->last_victim[gc_mode] = 0; 1867 1868 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 1869 if (sbi->next_victim_seg[gc_type] >= start) 1870 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 1871 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 1872 1873 /* Move out cursegs from the target range */ 1874 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) 1875 f2fs_allocate_segment_for_resize(sbi, type, start, end); 1876 1877 /* do GC to move out valid blocks in the range */ 1878 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 1879 struct gc_inode_list gc_list = { 1880 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1881 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1882 }; 1883 1884 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true); 1885 put_gc_inode(&gc_list); 1886 1887 if (!gc_only && get_valid_blocks(sbi, segno, true)) { 1888 err = -EAGAIN; 1889 goto out; 1890 } 1891 if (fatal_signal_pending(current)) { 1892 err = -ERESTARTSYS; 1893 goto out; 1894 } 1895 } 1896 if (gc_only) 1897 goto out; 1898 1899 err = f2fs_write_checkpoint(sbi, &cpc); 1900 if (err) 1901 goto out; 1902 1903 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 1904 if (next_inuse <= end) { 1905 f2fs_err(sbi, "segno %u should be free but still inuse!", 1906 next_inuse); 1907 f2fs_bug_on(sbi, 1); 1908 } 1909 out: 1910 MAIN_SECS(sbi) += secs; 1911 return err; 1912 } 1913 1914 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 1915 { 1916 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 1917 int section_count; 1918 int segment_count; 1919 int segment_count_main; 1920 long long block_count; 1921 int segs = secs * sbi->segs_per_sec; 1922 1923 down_write(&sbi->sb_lock); 1924 1925 section_count = le32_to_cpu(raw_sb->section_count); 1926 segment_count = le32_to_cpu(raw_sb->segment_count); 1927 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 1928 block_count = le64_to_cpu(raw_sb->block_count); 1929 1930 raw_sb->section_count = cpu_to_le32(section_count + secs); 1931 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 1932 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 1933 raw_sb->block_count = cpu_to_le64(block_count + 1934 (long long)segs * sbi->blocks_per_seg); 1935 if (f2fs_is_multi_device(sbi)) { 1936 int last_dev = sbi->s_ndevs - 1; 1937 int dev_segs = 1938 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 1939 1940 raw_sb->devs[last_dev].total_segments = 1941 cpu_to_le32(dev_segs + segs); 1942 } 1943 1944 up_write(&sbi->sb_lock); 1945 } 1946 1947 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 1948 { 1949 int segs = secs * sbi->segs_per_sec; 1950 long long blks = (long long)segs * sbi->blocks_per_seg; 1951 long long user_block_count = 1952 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 1953 1954 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 1955 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 1956 MAIN_SECS(sbi) += secs; 1957 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 1958 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 1959 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 1960 1961 if (f2fs_is_multi_device(sbi)) { 1962 int last_dev = sbi->s_ndevs - 1; 1963 1964 FDEV(last_dev).total_segments = 1965 (int)FDEV(last_dev).total_segments + segs; 1966 FDEV(last_dev).end_blk = 1967 (long long)FDEV(last_dev).end_blk + blks; 1968 #ifdef CONFIG_BLK_DEV_ZONED 1969 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz + 1970 (int)(blks >> sbi->log_blocks_per_blkz); 1971 #endif 1972 } 1973 } 1974 1975 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count) 1976 { 1977 __u64 old_block_count, shrunk_blocks; 1978 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1979 unsigned int secs; 1980 int err = 0; 1981 __u32 rem; 1982 1983 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 1984 if (block_count > old_block_count) 1985 return -EINVAL; 1986 1987 if (f2fs_is_multi_device(sbi)) { 1988 int last_dev = sbi->s_ndevs - 1; 1989 __u64 last_segs = FDEV(last_dev).total_segments; 1990 1991 if (block_count + last_segs * sbi->blocks_per_seg <= 1992 old_block_count) 1993 return -EINVAL; 1994 } 1995 1996 /* new fs size should align to section size */ 1997 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 1998 if (rem) 1999 return -EINVAL; 2000 2001 if (block_count == old_block_count) 2002 return 0; 2003 2004 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2005 f2fs_err(sbi, "Should run fsck to repair first."); 2006 return -EFSCORRUPTED; 2007 } 2008 2009 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2010 f2fs_err(sbi, "Checkpoint should be enabled."); 2011 return -EINVAL; 2012 } 2013 2014 shrunk_blocks = old_block_count - block_count; 2015 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2016 2017 /* stop other GC */ 2018 if (!down_write_trylock(&sbi->gc_lock)) 2019 return -EAGAIN; 2020 2021 /* stop CP to protect MAIN_SEC in free_segment_range */ 2022 f2fs_lock_op(sbi); 2023 2024 spin_lock(&sbi->stat_lock); 2025 if (shrunk_blocks + valid_user_blocks(sbi) + 2026 sbi->current_reserved_blocks + sbi->unusable_block_count + 2027 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2028 err = -ENOSPC; 2029 spin_unlock(&sbi->stat_lock); 2030 2031 if (err) 2032 goto out_unlock; 2033 2034 err = free_segment_range(sbi, secs, true); 2035 2036 out_unlock: 2037 f2fs_unlock_op(sbi); 2038 up_write(&sbi->gc_lock); 2039 if (err) 2040 return err; 2041 2042 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2043 2044 freeze_super(sbi->sb); 2045 down_write(&sbi->gc_lock); 2046 down_write(&sbi->cp_global_sem); 2047 2048 spin_lock(&sbi->stat_lock); 2049 if (shrunk_blocks + valid_user_blocks(sbi) + 2050 sbi->current_reserved_blocks + sbi->unusable_block_count + 2051 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2052 err = -ENOSPC; 2053 else 2054 sbi->user_block_count -= shrunk_blocks; 2055 spin_unlock(&sbi->stat_lock); 2056 if (err) 2057 goto out_err; 2058 2059 err = free_segment_range(sbi, secs, false); 2060 if (err) 2061 goto recover_out; 2062 2063 update_sb_metadata(sbi, -secs); 2064 2065 err = f2fs_commit_super(sbi, false); 2066 if (err) { 2067 update_sb_metadata(sbi, secs); 2068 goto recover_out; 2069 } 2070 2071 update_fs_metadata(sbi, -secs); 2072 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2073 set_sbi_flag(sbi, SBI_IS_DIRTY); 2074 2075 err = f2fs_write_checkpoint(sbi, &cpc); 2076 if (err) { 2077 update_fs_metadata(sbi, secs); 2078 update_sb_metadata(sbi, secs); 2079 f2fs_commit_super(sbi, false); 2080 } 2081 recover_out: 2082 if (err) { 2083 set_sbi_flag(sbi, SBI_NEED_FSCK); 2084 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2085 2086 spin_lock(&sbi->stat_lock); 2087 sbi->user_block_count += shrunk_blocks; 2088 spin_unlock(&sbi->stat_lock); 2089 } 2090 out_err: 2091 up_write(&sbi->cp_global_sem); 2092 up_write(&sbi->gc_lock); 2093 thaw_super(sbi->sb); 2094 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2095 return err; 2096 } 2097