1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/f2fs_fs.h> 12 #include <linux/kthread.h> 13 #include <linux/delay.h> 14 #include <linux/freezer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/random.h> 17 #include <linux/sched/mm.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "gc.h" 23 #include "iostat.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *victim_entry_slab; 27 28 static unsigned int count_bits(const unsigned long *addr, 29 unsigned int offset, unsigned int len); 30 31 static int gc_thread_func(void *data) 32 { 33 struct f2fs_sb_info *sbi = data; 34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 37 unsigned int wait_ms; 38 39 wait_ms = gc_th->min_sleep_time; 40 41 set_freezable(); 42 do { 43 bool sync_mode, foreground = false; 44 45 wait_event_interruptible_timeout(*wq, 46 kthread_should_stop() || freezing(current) || 47 waitqueue_active(fggc_wq) || 48 gc_th->gc_wake, 49 msecs_to_jiffies(wait_ms)); 50 51 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) 52 foreground = true; 53 54 /* give it a try one time */ 55 if (gc_th->gc_wake) 56 gc_th->gc_wake = 0; 57 58 if (try_to_freeze()) { 59 stat_other_skip_bggc_count(sbi); 60 continue; 61 } 62 if (kthread_should_stop()) 63 break; 64 65 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 66 increase_sleep_time(gc_th, &wait_ms); 67 stat_other_skip_bggc_count(sbi); 68 continue; 69 } 70 71 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 72 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 73 f2fs_stop_checkpoint(sbi, false); 74 } 75 76 if (!sb_start_write_trylock(sbi->sb)) { 77 stat_other_skip_bggc_count(sbi); 78 continue; 79 } 80 81 /* 82 * [GC triggering condition] 83 * 0. GC is not conducted currently. 84 * 1. There are enough dirty segments. 85 * 2. IO subsystem is idle by checking the # of writeback pages. 86 * 3. IO subsystem is idle by checking the # of requests in 87 * bdev's request list. 88 * 89 * Note) We have to avoid triggering GCs frequently. 90 * Because it is possible that some segments can be 91 * invalidated soon after by user update or deletion. 92 * So, I'd like to wait some time to collect dirty segments. 93 */ 94 if (sbi->gc_mode == GC_URGENT_HIGH) { 95 spin_lock(&sbi->gc_urgent_high_lock); 96 if (sbi->gc_urgent_high_limited) { 97 if (!sbi->gc_urgent_high_remaining) { 98 sbi->gc_urgent_high_limited = false; 99 spin_unlock(&sbi->gc_urgent_high_lock); 100 sbi->gc_mode = GC_NORMAL; 101 continue; 102 } 103 sbi->gc_urgent_high_remaining--; 104 } 105 spin_unlock(&sbi->gc_urgent_high_lock); 106 107 wait_ms = gc_th->urgent_sleep_time; 108 down_write(&sbi->gc_lock); 109 goto do_gc; 110 } 111 112 if (foreground) { 113 down_write(&sbi->gc_lock); 114 goto do_gc; 115 } else if (!down_write_trylock(&sbi->gc_lock)) { 116 stat_other_skip_bggc_count(sbi); 117 goto next; 118 } 119 120 if (!is_idle(sbi, GC_TIME)) { 121 increase_sleep_time(gc_th, &wait_ms); 122 up_write(&sbi->gc_lock); 123 stat_io_skip_bggc_count(sbi); 124 goto next; 125 } 126 127 if (has_enough_invalid_blocks(sbi)) 128 decrease_sleep_time(gc_th, &wait_ms); 129 else 130 increase_sleep_time(gc_th, &wait_ms); 131 do_gc: 132 if (!foreground) 133 stat_inc_bggc_count(sbi->stat_info); 134 135 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC; 136 137 /* foreground GC was been triggered via f2fs_balance_fs() */ 138 if (foreground) 139 sync_mode = false; 140 141 /* if return value is not zero, no victim was selected */ 142 if (f2fs_gc(sbi, sync_mode, !foreground, false, NULL_SEGNO)) 143 wait_ms = gc_th->no_gc_sleep_time; 144 145 if (foreground) 146 wake_up_all(&gc_th->fggc_wq); 147 148 trace_f2fs_background_gc(sbi->sb, wait_ms, 149 prefree_segments(sbi), free_segments(sbi)); 150 151 /* balancing f2fs's metadata periodically */ 152 f2fs_balance_fs_bg(sbi, true); 153 next: 154 sb_end_write(sbi->sb); 155 156 } while (!kthread_should_stop()); 157 return 0; 158 } 159 160 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 161 { 162 struct f2fs_gc_kthread *gc_th; 163 dev_t dev = sbi->sb->s_bdev->bd_dev; 164 int err = 0; 165 166 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 167 if (!gc_th) { 168 err = -ENOMEM; 169 goto out; 170 } 171 172 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 173 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 174 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 175 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 176 177 gc_th->gc_wake = 0; 178 179 sbi->gc_thread = gc_th; 180 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 181 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 182 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 183 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 184 if (IS_ERR(gc_th->f2fs_gc_task)) { 185 err = PTR_ERR(gc_th->f2fs_gc_task); 186 kfree(gc_th); 187 sbi->gc_thread = NULL; 188 } 189 out: 190 return err; 191 } 192 193 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 194 { 195 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 196 197 if (!gc_th) 198 return; 199 kthread_stop(gc_th->f2fs_gc_task); 200 wake_up_all(&gc_th->fggc_wq); 201 kfree(gc_th); 202 sbi->gc_thread = NULL; 203 } 204 205 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 206 { 207 int gc_mode; 208 209 if (gc_type == BG_GC) { 210 if (sbi->am.atgc_enabled) 211 gc_mode = GC_AT; 212 else 213 gc_mode = GC_CB; 214 } else { 215 gc_mode = GC_GREEDY; 216 } 217 218 switch (sbi->gc_mode) { 219 case GC_IDLE_CB: 220 gc_mode = GC_CB; 221 break; 222 case GC_IDLE_GREEDY: 223 case GC_URGENT_HIGH: 224 gc_mode = GC_GREEDY; 225 break; 226 case GC_IDLE_AT: 227 gc_mode = GC_AT; 228 break; 229 } 230 231 return gc_mode; 232 } 233 234 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 235 int type, struct victim_sel_policy *p) 236 { 237 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 238 239 if (p->alloc_mode == SSR) { 240 p->gc_mode = GC_GREEDY; 241 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 242 p->max_search = dirty_i->nr_dirty[type]; 243 p->ofs_unit = 1; 244 } else if (p->alloc_mode == AT_SSR) { 245 p->gc_mode = GC_GREEDY; 246 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 247 p->max_search = dirty_i->nr_dirty[type]; 248 p->ofs_unit = 1; 249 } else { 250 p->gc_mode = select_gc_type(sbi, gc_type); 251 p->ofs_unit = sbi->segs_per_sec; 252 if (__is_large_section(sbi)) { 253 p->dirty_bitmap = dirty_i->dirty_secmap; 254 p->max_search = count_bits(p->dirty_bitmap, 255 0, MAIN_SECS(sbi)); 256 } else { 257 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 258 p->max_search = dirty_i->nr_dirty[DIRTY]; 259 } 260 } 261 262 /* 263 * adjust candidates range, should select all dirty segments for 264 * foreground GC and urgent GC cases. 265 */ 266 if (gc_type != FG_GC && 267 (sbi->gc_mode != GC_URGENT_HIGH) && 268 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 269 p->max_search > sbi->max_victim_search) 270 p->max_search = sbi->max_victim_search; 271 272 /* let's select beginning hot/small space first in no_heap mode*/ 273 if (f2fs_need_rand_seg(sbi)) 274 p->offset = prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec); 275 else if (test_opt(sbi, NOHEAP) && 276 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 277 p->offset = 0; 278 else 279 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 280 } 281 282 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 283 struct victim_sel_policy *p) 284 { 285 /* SSR allocates in a segment unit */ 286 if (p->alloc_mode == SSR) 287 return sbi->blocks_per_seg; 288 else if (p->alloc_mode == AT_SSR) 289 return UINT_MAX; 290 291 /* LFS */ 292 if (p->gc_mode == GC_GREEDY) 293 return 2 * sbi->blocks_per_seg * p->ofs_unit; 294 else if (p->gc_mode == GC_CB) 295 return UINT_MAX; 296 else if (p->gc_mode == GC_AT) 297 return UINT_MAX; 298 else /* No other gc_mode */ 299 return 0; 300 } 301 302 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 303 { 304 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 305 unsigned int secno; 306 307 /* 308 * If the gc_type is FG_GC, we can select victim segments 309 * selected by background GC before. 310 * Those segments guarantee they have small valid blocks. 311 */ 312 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 313 if (sec_usage_check(sbi, secno)) 314 continue; 315 clear_bit(secno, dirty_i->victim_secmap); 316 return GET_SEG_FROM_SEC(sbi, secno); 317 } 318 return NULL_SEGNO; 319 } 320 321 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 322 { 323 struct sit_info *sit_i = SIT_I(sbi); 324 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 325 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 326 unsigned long long mtime = 0; 327 unsigned int vblocks; 328 unsigned char age = 0; 329 unsigned char u; 330 unsigned int i; 331 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno); 332 333 for (i = 0; i < usable_segs_per_sec; i++) 334 mtime += get_seg_entry(sbi, start + i)->mtime; 335 vblocks = get_valid_blocks(sbi, segno, true); 336 337 mtime = div_u64(mtime, usable_segs_per_sec); 338 vblocks = div_u64(vblocks, usable_segs_per_sec); 339 340 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 341 342 /* Handle if the system time has changed by the user */ 343 if (mtime < sit_i->min_mtime) 344 sit_i->min_mtime = mtime; 345 if (mtime > sit_i->max_mtime) 346 sit_i->max_mtime = mtime; 347 if (sit_i->max_mtime != sit_i->min_mtime) 348 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 349 sit_i->max_mtime - sit_i->min_mtime); 350 351 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 352 } 353 354 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 355 unsigned int segno, struct victim_sel_policy *p) 356 { 357 if (p->alloc_mode == SSR) 358 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 359 360 /* alloc_mode == LFS */ 361 if (p->gc_mode == GC_GREEDY) 362 return get_valid_blocks(sbi, segno, true); 363 else if (p->gc_mode == GC_CB) 364 return get_cb_cost(sbi, segno); 365 366 f2fs_bug_on(sbi, 1); 367 return 0; 368 } 369 370 static unsigned int count_bits(const unsigned long *addr, 371 unsigned int offset, unsigned int len) 372 { 373 unsigned int end = offset + len, sum = 0; 374 375 while (offset < end) { 376 if (test_bit(offset++, addr)) 377 ++sum; 378 } 379 return sum; 380 } 381 382 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi, 383 unsigned long long mtime, unsigned int segno, 384 struct rb_node *parent, struct rb_node **p, 385 bool left_most) 386 { 387 struct atgc_management *am = &sbi->am; 388 struct victim_entry *ve; 389 390 ve = f2fs_kmem_cache_alloc(victim_entry_slab, 391 GFP_NOFS, true, NULL); 392 393 ve->mtime = mtime; 394 ve->segno = segno; 395 396 rb_link_node(&ve->rb_node, parent, p); 397 rb_insert_color_cached(&ve->rb_node, &am->root, left_most); 398 399 list_add_tail(&ve->list, &am->victim_list); 400 401 am->victim_count++; 402 403 return ve; 404 } 405 406 static void insert_victim_entry(struct f2fs_sb_info *sbi, 407 unsigned long long mtime, unsigned int segno) 408 { 409 struct atgc_management *am = &sbi->am; 410 struct rb_node **p; 411 struct rb_node *parent = NULL; 412 bool left_most = true; 413 414 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most); 415 attach_victim_entry(sbi, mtime, segno, parent, p, left_most); 416 } 417 418 static void add_victim_entry(struct f2fs_sb_info *sbi, 419 struct victim_sel_policy *p, unsigned int segno) 420 { 421 struct sit_info *sit_i = SIT_I(sbi); 422 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 423 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 424 unsigned long long mtime = 0; 425 unsigned int i; 426 427 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 428 if (p->gc_mode == GC_AT && 429 get_valid_blocks(sbi, segno, true) == 0) 430 return; 431 } 432 433 for (i = 0; i < sbi->segs_per_sec; i++) 434 mtime += get_seg_entry(sbi, start + i)->mtime; 435 mtime = div_u64(mtime, sbi->segs_per_sec); 436 437 /* Handle if the system time has changed by the user */ 438 if (mtime < sit_i->min_mtime) 439 sit_i->min_mtime = mtime; 440 if (mtime > sit_i->max_mtime) 441 sit_i->max_mtime = mtime; 442 if (mtime < sit_i->dirty_min_mtime) 443 sit_i->dirty_min_mtime = mtime; 444 if (mtime > sit_i->dirty_max_mtime) 445 sit_i->dirty_max_mtime = mtime; 446 447 /* don't choose young section as candidate */ 448 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 449 return; 450 451 insert_victim_entry(sbi, mtime, segno); 452 } 453 454 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi, 455 struct victim_sel_policy *p) 456 { 457 struct atgc_management *am = &sbi->am; 458 struct rb_node *parent = NULL; 459 bool left_most; 460 461 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most); 462 463 return parent; 464 } 465 466 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 467 struct victim_sel_policy *p) 468 { 469 struct sit_info *sit_i = SIT_I(sbi); 470 struct atgc_management *am = &sbi->am; 471 struct rb_root_cached *root = &am->root; 472 struct rb_node *node; 473 struct rb_entry *re; 474 struct victim_entry *ve; 475 unsigned long long total_time; 476 unsigned long long age, u, accu; 477 unsigned long long max_mtime = sit_i->dirty_max_mtime; 478 unsigned long long min_mtime = sit_i->dirty_min_mtime; 479 unsigned int sec_blocks = BLKS_PER_SEC(sbi); 480 unsigned int vblocks; 481 unsigned int dirty_threshold = max(am->max_candidate_count, 482 am->candidate_ratio * 483 am->victim_count / 100); 484 unsigned int age_weight = am->age_weight; 485 unsigned int cost; 486 unsigned int iter = 0; 487 488 if (max_mtime < min_mtime) 489 return; 490 491 max_mtime += 1; 492 total_time = max_mtime - min_mtime; 493 494 accu = div64_u64(ULLONG_MAX, total_time); 495 accu = min_t(unsigned long long, div_u64(accu, 100), 496 DEFAULT_ACCURACY_CLASS); 497 498 node = rb_first_cached(root); 499 next: 500 re = rb_entry_safe(node, struct rb_entry, rb_node); 501 if (!re) 502 return; 503 504 ve = (struct victim_entry *)re; 505 506 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 507 goto skip; 508 509 /* age = 10000 * x% * 60 */ 510 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 511 age_weight; 512 513 vblocks = get_valid_blocks(sbi, ve->segno, true); 514 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 515 516 /* u = 10000 * x% * 40 */ 517 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 518 (100 - age_weight); 519 520 f2fs_bug_on(sbi, age + u >= UINT_MAX); 521 522 cost = UINT_MAX - (age + u); 523 iter++; 524 525 if (cost < p->min_cost || 526 (cost == p->min_cost && age > p->oldest_age)) { 527 p->min_cost = cost; 528 p->oldest_age = age; 529 p->min_segno = ve->segno; 530 } 531 skip: 532 if (iter < dirty_threshold) { 533 node = rb_next(node); 534 goto next; 535 } 536 } 537 538 /* 539 * select candidates around source section in range of 540 * [target - dirty_threshold, target + dirty_threshold] 541 */ 542 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 543 struct victim_sel_policy *p) 544 { 545 struct sit_info *sit_i = SIT_I(sbi); 546 struct atgc_management *am = &sbi->am; 547 struct rb_node *node; 548 struct rb_entry *re; 549 struct victim_entry *ve; 550 unsigned long long age; 551 unsigned long long max_mtime = sit_i->dirty_max_mtime; 552 unsigned long long min_mtime = sit_i->dirty_min_mtime; 553 unsigned int seg_blocks = sbi->blocks_per_seg; 554 unsigned int vblocks; 555 unsigned int dirty_threshold = max(am->max_candidate_count, 556 am->candidate_ratio * 557 am->victim_count / 100); 558 unsigned int cost; 559 unsigned int iter = 0; 560 int stage = 0; 561 562 if (max_mtime < min_mtime) 563 return; 564 max_mtime += 1; 565 next_stage: 566 node = lookup_central_victim(sbi, p); 567 next_node: 568 re = rb_entry_safe(node, struct rb_entry, rb_node); 569 if (!re) { 570 if (stage == 0) 571 goto skip_stage; 572 return; 573 } 574 575 ve = (struct victim_entry *)re; 576 577 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 578 goto skip_node; 579 580 age = max_mtime - ve->mtime; 581 582 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 583 f2fs_bug_on(sbi, !vblocks); 584 585 /* rare case */ 586 if (vblocks == seg_blocks) 587 goto skip_node; 588 589 iter++; 590 591 age = max_mtime - abs(p->age - age); 592 cost = UINT_MAX - vblocks; 593 594 if (cost < p->min_cost || 595 (cost == p->min_cost && age > p->oldest_age)) { 596 p->min_cost = cost; 597 p->oldest_age = age; 598 p->min_segno = ve->segno; 599 } 600 skip_node: 601 if (iter < dirty_threshold) { 602 if (stage == 0) 603 node = rb_prev(node); 604 else if (stage == 1) 605 node = rb_next(node); 606 goto next_node; 607 } 608 skip_stage: 609 if (stage < 1) { 610 stage++; 611 iter = 0; 612 goto next_stage; 613 } 614 } 615 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 616 struct victim_sel_policy *p) 617 { 618 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 619 &sbi->am.root, true)); 620 621 if (p->gc_mode == GC_AT) 622 atgc_lookup_victim(sbi, p); 623 else if (p->alloc_mode == AT_SSR) 624 atssr_lookup_victim(sbi, p); 625 else 626 f2fs_bug_on(sbi, 1); 627 } 628 629 static void release_victim_entry(struct f2fs_sb_info *sbi) 630 { 631 struct atgc_management *am = &sbi->am; 632 struct victim_entry *ve, *tmp; 633 634 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 635 list_del(&ve->list); 636 kmem_cache_free(victim_entry_slab, ve); 637 am->victim_count--; 638 } 639 640 am->root = RB_ROOT_CACHED; 641 642 f2fs_bug_on(sbi, am->victim_count); 643 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 644 } 645 646 /* 647 * This function is called from two paths. 648 * One is garbage collection and the other is SSR segment selection. 649 * When it is called during GC, it just gets a victim segment 650 * and it does not remove it from dirty seglist. 651 * When it is called from SSR segment selection, it finds a segment 652 * which has minimum valid blocks and removes it from dirty seglist. 653 */ 654 static int get_victim_by_default(struct f2fs_sb_info *sbi, 655 unsigned int *result, int gc_type, int type, 656 char alloc_mode, unsigned long long age) 657 { 658 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 659 struct sit_info *sm = SIT_I(sbi); 660 struct victim_sel_policy p; 661 unsigned int secno, last_victim; 662 unsigned int last_segment; 663 unsigned int nsearched; 664 bool is_atgc; 665 int ret = 0; 666 667 mutex_lock(&dirty_i->seglist_lock); 668 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 669 670 p.alloc_mode = alloc_mode; 671 p.age = age; 672 p.age_threshold = sbi->am.age_threshold; 673 674 retry: 675 select_policy(sbi, gc_type, type, &p); 676 p.min_segno = NULL_SEGNO; 677 p.oldest_age = 0; 678 p.min_cost = get_max_cost(sbi, &p); 679 680 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 681 nsearched = 0; 682 683 if (is_atgc) 684 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 685 686 if (*result != NULL_SEGNO) { 687 if (!get_valid_blocks(sbi, *result, false)) { 688 ret = -ENODATA; 689 goto out; 690 } 691 692 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 693 ret = -EBUSY; 694 else 695 p.min_segno = *result; 696 goto out; 697 } 698 699 ret = -ENODATA; 700 if (p.max_search == 0) 701 goto out; 702 703 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 704 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 705 p.min_segno = sbi->next_victim_seg[BG_GC]; 706 *result = p.min_segno; 707 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 708 goto got_result; 709 } 710 if (gc_type == FG_GC && 711 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 712 p.min_segno = sbi->next_victim_seg[FG_GC]; 713 *result = p.min_segno; 714 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 715 goto got_result; 716 } 717 } 718 719 last_victim = sm->last_victim[p.gc_mode]; 720 if (p.alloc_mode == LFS && gc_type == FG_GC) { 721 p.min_segno = check_bg_victims(sbi); 722 if (p.min_segno != NULL_SEGNO) 723 goto got_it; 724 } 725 726 while (1) { 727 unsigned long cost, *dirty_bitmap; 728 unsigned int unit_no, segno; 729 730 dirty_bitmap = p.dirty_bitmap; 731 unit_no = find_next_bit(dirty_bitmap, 732 last_segment / p.ofs_unit, 733 p.offset / p.ofs_unit); 734 segno = unit_no * p.ofs_unit; 735 if (segno >= last_segment) { 736 if (sm->last_victim[p.gc_mode]) { 737 last_segment = 738 sm->last_victim[p.gc_mode]; 739 sm->last_victim[p.gc_mode] = 0; 740 p.offset = 0; 741 continue; 742 } 743 break; 744 } 745 746 p.offset = segno + p.ofs_unit; 747 nsearched++; 748 749 #ifdef CONFIG_F2FS_CHECK_FS 750 /* 751 * skip selecting the invalid segno (that is failed due to block 752 * validity check failure during GC) to avoid endless GC loop in 753 * such cases. 754 */ 755 if (test_bit(segno, sm->invalid_segmap)) 756 goto next; 757 #endif 758 759 secno = GET_SEC_FROM_SEG(sbi, segno); 760 761 if (sec_usage_check(sbi, secno)) 762 goto next; 763 764 /* Don't touch checkpointed data */ 765 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 766 if (p.alloc_mode == LFS) { 767 /* 768 * LFS is set to find source section during GC. 769 * The victim should have no checkpointed data. 770 */ 771 if (get_ckpt_valid_blocks(sbi, segno, true)) 772 goto next; 773 } else { 774 /* 775 * SSR | AT_SSR are set to find target segment 776 * for writes which can be full by checkpointed 777 * and newly written blocks. 778 */ 779 if (!f2fs_segment_has_free_slot(sbi, segno)) 780 goto next; 781 } 782 } 783 784 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 785 goto next; 786 787 if (is_atgc) { 788 add_victim_entry(sbi, &p, segno); 789 goto next; 790 } 791 792 cost = get_gc_cost(sbi, segno, &p); 793 794 if (p.min_cost > cost) { 795 p.min_segno = segno; 796 p.min_cost = cost; 797 } 798 next: 799 if (nsearched >= p.max_search) { 800 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 801 sm->last_victim[p.gc_mode] = 802 last_victim + p.ofs_unit; 803 else 804 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 805 sm->last_victim[p.gc_mode] %= 806 (MAIN_SECS(sbi) * sbi->segs_per_sec); 807 break; 808 } 809 } 810 811 /* get victim for GC_AT/AT_SSR */ 812 if (is_atgc) { 813 lookup_victim_by_age(sbi, &p); 814 release_victim_entry(sbi); 815 } 816 817 if (is_atgc && p.min_segno == NULL_SEGNO && 818 sm->elapsed_time < p.age_threshold) { 819 p.age_threshold = 0; 820 goto retry; 821 } 822 823 if (p.min_segno != NULL_SEGNO) { 824 got_it: 825 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 826 got_result: 827 if (p.alloc_mode == LFS) { 828 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 829 if (gc_type == FG_GC) 830 sbi->cur_victim_sec = secno; 831 else 832 set_bit(secno, dirty_i->victim_secmap); 833 } 834 ret = 0; 835 836 } 837 out: 838 if (p.min_segno != NULL_SEGNO) 839 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 840 sbi->cur_victim_sec, 841 prefree_segments(sbi), free_segments(sbi)); 842 mutex_unlock(&dirty_i->seglist_lock); 843 844 return ret; 845 } 846 847 static const struct victim_selection default_v_ops = { 848 .get_victim = get_victim_by_default, 849 }; 850 851 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 852 { 853 struct inode_entry *ie; 854 855 ie = radix_tree_lookup(&gc_list->iroot, ino); 856 if (ie) 857 return ie->inode; 858 return NULL; 859 } 860 861 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 862 { 863 struct inode_entry *new_ie; 864 865 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 866 iput(inode); 867 return; 868 } 869 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, 870 GFP_NOFS, true, NULL); 871 new_ie->inode = inode; 872 873 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 874 list_add_tail(&new_ie->list, &gc_list->ilist); 875 } 876 877 static void put_gc_inode(struct gc_inode_list *gc_list) 878 { 879 struct inode_entry *ie, *next_ie; 880 881 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 882 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 883 iput(ie->inode); 884 list_del(&ie->list); 885 kmem_cache_free(f2fs_inode_entry_slab, ie); 886 } 887 } 888 889 static int check_valid_map(struct f2fs_sb_info *sbi, 890 unsigned int segno, int offset) 891 { 892 struct sit_info *sit_i = SIT_I(sbi); 893 struct seg_entry *sentry; 894 int ret; 895 896 down_read(&sit_i->sentry_lock); 897 sentry = get_seg_entry(sbi, segno); 898 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 899 up_read(&sit_i->sentry_lock); 900 return ret; 901 } 902 903 /* 904 * This function compares node address got in summary with that in NAT. 905 * On validity, copy that node with cold status, otherwise (invalid node) 906 * ignore that. 907 */ 908 static int gc_node_segment(struct f2fs_sb_info *sbi, 909 struct f2fs_summary *sum, unsigned int segno, int gc_type) 910 { 911 struct f2fs_summary *entry; 912 block_t start_addr; 913 int off; 914 int phase = 0; 915 bool fggc = (gc_type == FG_GC); 916 int submitted = 0; 917 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 918 919 start_addr = START_BLOCK(sbi, segno); 920 921 next_step: 922 entry = sum; 923 924 if (fggc && phase == 2) 925 atomic_inc(&sbi->wb_sync_req[NODE]); 926 927 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 928 nid_t nid = le32_to_cpu(entry->nid); 929 struct page *node_page; 930 struct node_info ni; 931 int err; 932 933 /* stop BG_GC if there is not enough free sections. */ 934 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 935 return submitted; 936 937 if (check_valid_map(sbi, segno, off) == 0) 938 continue; 939 940 if (phase == 0) { 941 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 942 META_NAT, true); 943 continue; 944 } 945 946 if (phase == 1) { 947 f2fs_ra_node_page(sbi, nid); 948 continue; 949 } 950 951 /* phase == 2 */ 952 node_page = f2fs_get_node_page(sbi, nid); 953 if (IS_ERR(node_page)) 954 continue; 955 956 /* block may become invalid during f2fs_get_node_page */ 957 if (check_valid_map(sbi, segno, off) == 0) { 958 f2fs_put_page(node_page, 1); 959 continue; 960 } 961 962 if (f2fs_get_node_info(sbi, nid, &ni, false)) { 963 f2fs_put_page(node_page, 1); 964 continue; 965 } 966 967 if (ni.blk_addr != start_addr + off) { 968 f2fs_put_page(node_page, 1); 969 continue; 970 } 971 972 err = f2fs_move_node_page(node_page, gc_type); 973 if (!err && gc_type == FG_GC) 974 submitted++; 975 stat_inc_node_blk_count(sbi, 1, gc_type); 976 } 977 978 if (++phase < 3) 979 goto next_step; 980 981 if (fggc) 982 atomic_dec(&sbi->wb_sync_req[NODE]); 983 return submitted; 984 } 985 986 /* 987 * Calculate start block index indicating the given node offset. 988 * Be careful, caller should give this node offset only indicating direct node 989 * blocks. If any node offsets, which point the other types of node blocks such 990 * as indirect or double indirect node blocks, are given, it must be a caller's 991 * bug. 992 */ 993 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 994 { 995 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 996 unsigned int bidx; 997 998 if (node_ofs == 0) 999 return 0; 1000 1001 if (node_ofs <= 2) { 1002 bidx = node_ofs - 1; 1003 } else if (node_ofs <= indirect_blks) { 1004 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 1005 1006 bidx = node_ofs - 2 - dec; 1007 } else { 1008 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 1009 1010 bidx = node_ofs - 5 - dec; 1011 } 1012 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 1013 } 1014 1015 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1016 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 1017 { 1018 struct page *node_page; 1019 nid_t nid; 1020 unsigned int ofs_in_node; 1021 block_t source_blkaddr; 1022 1023 nid = le32_to_cpu(sum->nid); 1024 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1025 1026 node_page = f2fs_get_node_page(sbi, nid); 1027 if (IS_ERR(node_page)) 1028 return false; 1029 1030 if (f2fs_get_node_info(sbi, nid, dni, false)) { 1031 f2fs_put_page(node_page, 1); 1032 return false; 1033 } 1034 1035 if (sum->version != dni->version) { 1036 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1037 __func__); 1038 set_sbi_flag(sbi, SBI_NEED_FSCK); 1039 } 1040 1041 if (f2fs_check_nid_range(sbi, dni->ino)) 1042 return false; 1043 1044 *nofs = ofs_of_node(node_page); 1045 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 1046 f2fs_put_page(node_page, 1); 1047 1048 if (source_blkaddr != blkaddr) { 1049 #ifdef CONFIG_F2FS_CHECK_FS 1050 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1051 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1052 1053 if (unlikely(check_valid_map(sbi, segno, offset))) { 1054 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1055 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1056 blkaddr, source_blkaddr, segno); 1057 set_sbi_flag(sbi, SBI_NEED_FSCK); 1058 } 1059 } 1060 #endif 1061 return false; 1062 } 1063 return true; 1064 } 1065 1066 static int ra_data_block(struct inode *inode, pgoff_t index) 1067 { 1068 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1069 struct address_space *mapping = inode->i_mapping; 1070 struct dnode_of_data dn; 1071 struct page *page; 1072 struct extent_info ei = {0, 0, 0}; 1073 struct f2fs_io_info fio = { 1074 .sbi = sbi, 1075 .ino = inode->i_ino, 1076 .type = DATA, 1077 .temp = COLD, 1078 .op = REQ_OP_READ, 1079 .op_flags = 0, 1080 .encrypted_page = NULL, 1081 .in_list = false, 1082 .retry = false, 1083 }; 1084 int err; 1085 1086 page = f2fs_grab_cache_page(mapping, index, true); 1087 if (!page) 1088 return -ENOMEM; 1089 1090 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1091 dn.data_blkaddr = ei.blk + index - ei.fofs; 1092 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1093 DATA_GENERIC_ENHANCE_READ))) { 1094 err = -EFSCORRUPTED; 1095 goto put_page; 1096 } 1097 goto got_it; 1098 } 1099 1100 set_new_dnode(&dn, inode, NULL, NULL, 0); 1101 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1102 if (err) 1103 goto put_page; 1104 f2fs_put_dnode(&dn); 1105 1106 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1107 err = -ENOENT; 1108 goto put_page; 1109 } 1110 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1111 DATA_GENERIC_ENHANCE))) { 1112 err = -EFSCORRUPTED; 1113 goto put_page; 1114 } 1115 got_it: 1116 /* read page */ 1117 fio.page = page; 1118 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1119 1120 /* 1121 * don't cache encrypted data into meta inode until previous dirty 1122 * data were writebacked to avoid racing between GC and flush. 1123 */ 1124 f2fs_wait_on_page_writeback(page, DATA, true, true); 1125 1126 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1127 1128 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1129 dn.data_blkaddr, 1130 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1131 if (!fio.encrypted_page) { 1132 err = -ENOMEM; 1133 goto put_page; 1134 } 1135 1136 err = f2fs_submit_page_bio(&fio); 1137 if (err) 1138 goto put_encrypted_page; 1139 f2fs_put_page(fio.encrypted_page, 0); 1140 f2fs_put_page(page, 1); 1141 1142 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1143 f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1144 1145 return 0; 1146 put_encrypted_page: 1147 f2fs_put_page(fio.encrypted_page, 1); 1148 put_page: 1149 f2fs_put_page(page, 1); 1150 return err; 1151 } 1152 1153 /* 1154 * Move data block via META_MAPPING while keeping locked data page. 1155 * This can be used to move blocks, aka LBAs, directly on disk. 1156 */ 1157 static int move_data_block(struct inode *inode, block_t bidx, 1158 int gc_type, unsigned int segno, int off) 1159 { 1160 struct f2fs_io_info fio = { 1161 .sbi = F2FS_I_SB(inode), 1162 .ino = inode->i_ino, 1163 .type = DATA, 1164 .temp = COLD, 1165 .op = REQ_OP_READ, 1166 .op_flags = 0, 1167 .encrypted_page = NULL, 1168 .in_list = false, 1169 .retry = false, 1170 }; 1171 struct dnode_of_data dn; 1172 struct f2fs_summary sum; 1173 struct node_info ni; 1174 struct page *page, *mpage; 1175 block_t newaddr; 1176 int err = 0; 1177 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1178 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1179 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1180 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1181 1182 /* do not read out */ 1183 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 1184 if (!page) 1185 return -ENOMEM; 1186 1187 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1188 err = -ENOENT; 1189 goto out; 1190 } 1191 1192 if (f2fs_is_atomic_file(inode)) { 1193 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 1194 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 1195 err = -EAGAIN; 1196 goto out; 1197 } 1198 1199 if (f2fs_is_pinned_file(inode)) { 1200 f2fs_pin_file_control(inode, true); 1201 err = -EAGAIN; 1202 goto out; 1203 } 1204 1205 set_new_dnode(&dn, inode, NULL, NULL, 0); 1206 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1207 if (err) 1208 goto out; 1209 1210 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1211 ClearPageUptodate(page); 1212 err = -ENOENT; 1213 goto put_out; 1214 } 1215 1216 /* 1217 * don't cache encrypted data into meta inode until previous dirty 1218 * data were writebacked to avoid racing between GC and flush. 1219 */ 1220 f2fs_wait_on_page_writeback(page, DATA, true, true); 1221 1222 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1223 1224 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1225 if (err) 1226 goto put_out; 1227 1228 /* read page */ 1229 fio.page = page; 1230 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1231 1232 if (lfs_mode) 1233 down_write(&fio.sbi->io_order_lock); 1234 1235 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1236 fio.old_blkaddr, false); 1237 if (!mpage) { 1238 err = -ENOMEM; 1239 goto up_out; 1240 } 1241 1242 fio.encrypted_page = mpage; 1243 1244 /* read source block in mpage */ 1245 if (!PageUptodate(mpage)) { 1246 err = f2fs_submit_page_bio(&fio); 1247 if (err) { 1248 f2fs_put_page(mpage, 1); 1249 goto up_out; 1250 } 1251 1252 f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1253 f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1254 1255 lock_page(mpage); 1256 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1257 !PageUptodate(mpage))) { 1258 err = -EIO; 1259 f2fs_put_page(mpage, 1); 1260 goto up_out; 1261 } 1262 } 1263 1264 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1265 1266 /* allocate block address */ 1267 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1268 &sum, type, NULL); 1269 1270 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1271 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1272 if (!fio.encrypted_page) { 1273 err = -ENOMEM; 1274 f2fs_put_page(mpage, 1); 1275 goto recover_block; 1276 } 1277 1278 /* write target block */ 1279 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1280 memcpy(page_address(fio.encrypted_page), 1281 page_address(mpage), PAGE_SIZE); 1282 f2fs_put_page(mpage, 1); 1283 invalidate_mapping_pages(META_MAPPING(fio.sbi), 1284 fio.old_blkaddr, fio.old_blkaddr); 1285 f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr); 1286 1287 set_page_dirty(fio.encrypted_page); 1288 if (clear_page_dirty_for_io(fio.encrypted_page)) 1289 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1290 1291 set_page_writeback(fio.encrypted_page); 1292 ClearPageError(page); 1293 1294 fio.op = REQ_OP_WRITE; 1295 fio.op_flags = REQ_SYNC; 1296 fio.new_blkaddr = newaddr; 1297 f2fs_submit_page_write(&fio); 1298 if (fio.retry) { 1299 err = -EAGAIN; 1300 if (PageWriteback(fio.encrypted_page)) 1301 end_page_writeback(fio.encrypted_page); 1302 goto put_page_out; 1303 } 1304 1305 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE); 1306 1307 f2fs_update_data_blkaddr(&dn, newaddr); 1308 set_inode_flag(inode, FI_APPEND_WRITE); 1309 if (page->index == 0) 1310 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1311 put_page_out: 1312 f2fs_put_page(fio.encrypted_page, 1); 1313 recover_block: 1314 if (err) 1315 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1316 true, true, true); 1317 up_out: 1318 if (lfs_mode) 1319 up_write(&fio.sbi->io_order_lock); 1320 put_out: 1321 f2fs_put_dnode(&dn); 1322 out: 1323 f2fs_put_page(page, 1); 1324 return err; 1325 } 1326 1327 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1328 unsigned int segno, int off) 1329 { 1330 struct page *page; 1331 int err = 0; 1332 1333 page = f2fs_get_lock_data_page(inode, bidx, true); 1334 if (IS_ERR(page)) 1335 return PTR_ERR(page); 1336 1337 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1338 err = -ENOENT; 1339 goto out; 1340 } 1341 1342 if (f2fs_is_atomic_file(inode)) { 1343 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 1344 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 1345 err = -EAGAIN; 1346 goto out; 1347 } 1348 if (f2fs_is_pinned_file(inode)) { 1349 if (gc_type == FG_GC) 1350 f2fs_pin_file_control(inode, true); 1351 err = -EAGAIN; 1352 goto out; 1353 } 1354 1355 if (gc_type == BG_GC) { 1356 if (PageWriteback(page)) { 1357 err = -EAGAIN; 1358 goto out; 1359 } 1360 set_page_dirty(page); 1361 set_page_private_gcing(page); 1362 } else { 1363 struct f2fs_io_info fio = { 1364 .sbi = F2FS_I_SB(inode), 1365 .ino = inode->i_ino, 1366 .type = DATA, 1367 .temp = COLD, 1368 .op = REQ_OP_WRITE, 1369 .op_flags = REQ_SYNC, 1370 .old_blkaddr = NULL_ADDR, 1371 .page = page, 1372 .encrypted_page = NULL, 1373 .need_lock = LOCK_REQ, 1374 .io_type = FS_GC_DATA_IO, 1375 }; 1376 bool is_dirty = PageDirty(page); 1377 1378 retry: 1379 f2fs_wait_on_page_writeback(page, DATA, true, true); 1380 1381 set_page_dirty(page); 1382 if (clear_page_dirty_for_io(page)) { 1383 inode_dec_dirty_pages(inode); 1384 f2fs_remove_dirty_inode(inode); 1385 } 1386 1387 set_page_private_gcing(page); 1388 1389 err = f2fs_do_write_data_page(&fio); 1390 if (err) { 1391 clear_page_private_gcing(page); 1392 if (err == -ENOMEM) { 1393 memalloc_retry_wait(GFP_NOFS); 1394 goto retry; 1395 } 1396 if (is_dirty) 1397 set_page_dirty(page); 1398 } 1399 } 1400 out: 1401 f2fs_put_page(page, 1); 1402 return err; 1403 } 1404 1405 /* 1406 * This function tries to get parent node of victim data block, and identifies 1407 * data block validity. If the block is valid, copy that with cold status and 1408 * modify parent node. 1409 * If the parent node is not valid or the data block address is different, 1410 * the victim data block is ignored. 1411 */ 1412 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1413 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1414 bool force_migrate) 1415 { 1416 struct super_block *sb = sbi->sb; 1417 struct f2fs_summary *entry; 1418 block_t start_addr; 1419 int off; 1420 int phase = 0; 1421 int submitted = 0; 1422 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1423 1424 start_addr = START_BLOCK(sbi, segno); 1425 1426 next_step: 1427 entry = sum; 1428 1429 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1430 struct page *data_page; 1431 struct inode *inode; 1432 struct node_info dni; /* dnode info for the data */ 1433 unsigned int ofs_in_node, nofs; 1434 block_t start_bidx; 1435 nid_t nid = le32_to_cpu(entry->nid); 1436 1437 /* 1438 * stop BG_GC if there is not enough free sections. 1439 * Or, stop GC if the segment becomes fully valid caused by 1440 * race condition along with SSR block allocation. 1441 */ 1442 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1443 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1444 BLKS_PER_SEC(sbi))) 1445 return submitted; 1446 1447 if (check_valid_map(sbi, segno, off) == 0) 1448 continue; 1449 1450 if (phase == 0) { 1451 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1452 META_NAT, true); 1453 continue; 1454 } 1455 1456 if (phase == 1) { 1457 f2fs_ra_node_page(sbi, nid); 1458 continue; 1459 } 1460 1461 /* Get an inode by ino with checking validity */ 1462 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1463 continue; 1464 1465 if (phase == 2) { 1466 f2fs_ra_node_page(sbi, dni.ino); 1467 continue; 1468 } 1469 1470 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1471 1472 if (phase == 3) { 1473 inode = f2fs_iget(sb, dni.ino); 1474 if (IS_ERR(inode) || is_bad_inode(inode) || 1475 special_file(inode->i_mode)) 1476 continue; 1477 1478 if (!down_write_trylock( 1479 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1480 iput(inode); 1481 sbi->skipped_gc_rwsem++; 1482 continue; 1483 } 1484 1485 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1486 ofs_in_node; 1487 1488 if (f2fs_post_read_required(inode)) { 1489 int err = ra_data_block(inode, start_bidx); 1490 1491 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1492 if (err) { 1493 iput(inode); 1494 continue; 1495 } 1496 add_gc_inode(gc_list, inode); 1497 continue; 1498 } 1499 1500 data_page = f2fs_get_read_data_page(inode, 1501 start_bidx, REQ_RAHEAD, true); 1502 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1503 if (IS_ERR(data_page)) { 1504 iput(inode); 1505 continue; 1506 } 1507 1508 f2fs_put_page(data_page, 0); 1509 add_gc_inode(gc_list, inode); 1510 continue; 1511 } 1512 1513 /* phase 4 */ 1514 inode = find_gc_inode(gc_list, dni.ino); 1515 if (inode) { 1516 struct f2fs_inode_info *fi = F2FS_I(inode); 1517 bool locked = false; 1518 int err; 1519 1520 if (S_ISREG(inode->i_mode)) { 1521 if (!down_write_trylock(&fi->i_gc_rwsem[READ])) { 1522 sbi->skipped_gc_rwsem++; 1523 continue; 1524 } 1525 if (!down_write_trylock( 1526 &fi->i_gc_rwsem[WRITE])) { 1527 sbi->skipped_gc_rwsem++; 1528 up_write(&fi->i_gc_rwsem[READ]); 1529 continue; 1530 } 1531 locked = true; 1532 1533 /* wait for all inflight aio data */ 1534 inode_dio_wait(inode); 1535 } 1536 1537 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1538 + ofs_in_node; 1539 if (f2fs_post_read_required(inode)) 1540 err = move_data_block(inode, start_bidx, 1541 gc_type, segno, off); 1542 else 1543 err = move_data_page(inode, start_bidx, gc_type, 1544 segno, off); 1545 1546 if (!err && (gc_type == FG_GC || 1547 f2fs_post_read_required(inode))) 1548 submitted++; 1549 1550 if (locked) { 1551 up_write(&fi->i_gc_rwsem[WRITE]); 1552 up_write(&fi->i_gc_rwsem[READ]); 1553 } 1554 1555 stat_inc_data_blk_count(sbi, 1, gc_type); 1556 } 1557 } 1558 1559 if (++phase < 5) 1560 goto next_step; 1561 1562 return submitted; 1563 } 1564 1565 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1566 int gc_type) 1567 { 1568 struct sit_info *sit_i = SIT_I(sbi); 1569 int ret; 1570 1571 down_write(&sit_i->sentry_lock); 1572 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, 1573 NO_CHECK_TYPE, LFS, 0); 1574 up_write(&sit_i->sentry_lock); 1575 return ret; 1576 } 1577 1578 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1579 unsigned int start_segno, 1580 struct gc_inode_list *gc_list, int gc_type, 1581 bool force_migrate) 1582 { 1583 struct page *sum_page; 1584 struct f2fs_summary_block *sum; 1585 struct blk_plug plug; 1586 unsigned int segno = start_segno; 1587 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1588 int seg_freed = 0, migrated = 0; 1589 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1590 SUM_TYPE_DATA : SUM_TYPE_NODE; 1591 int submitted = 0; 1592 1593 if (__is_large_section(sbi)) 1594 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1595 1596 /* 1597 * zone-capacity can be less than zone-size in zoned devices, 1598 * resulting in less than expected usable segments in the zone, 1599 * calculate the end segno in the zone which can be garbage collected 1600 */ 1601 if (f2fs_sb_has_blkzoned(sbi)) 1602 end_segno -= sbi->segs_per_sec - 1603 f2fs_usable_segs_in_sec(sbi, segno); 1604 1605 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1606 1607 /* readahead multi ssa blocks those have contiguous address */ 1608 if (__is_large_section(sbi)) 1609 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1610 end_segno - segno, META_SSA, true); 1611 1612 /* reference all summary page */ 1613 while (segno < end_segno) { 1614 sum_page = f2fs_get_sum_page(sbi, segno++); 1615 if (IS_ERR(sum_page)) { 1616 int err = PTR_ERR(sum_page); 1617 1618 end_segno = segno - 1; 1619 for (segno = start_segno; segno < end_segno; segno++) { 1620 sum_page = find_get_page(META_MAPPING(sbi), 1621 GET_SUM_BLOCK(sbi, segno)); 1622 f2fs_put_page(sum_page, 0); 1623 f2fs_put_page(sum_page, 0); 1624 } 1625 return err; 1626 } 1627 unlock_page(sum_page); 1628 } 1629 1630 blk_start_plug(&plug); 1631 1632 for (segno = start_segno; segno < end_segno; segno++) { 1633 1634 /* find segment summary of victim */ 1635 sum_page = find_get_page(META_MAPPING(sbi), 1636 GET_SUM_BLOCK(sbi, segno)); 1637 f2fs_put_page(sum_page, 0); 1638 1639 if (get_valid_blocks(sbi, segno, false) == 0) 1640 goto freed; 1641 if (gc_type == BG_GC && __is_large_section(sbi) && 1642 migrated >= sbi->migration_granularity) 1643 goto skip; 1644 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1645 goto skip; 1646 1647 sum = page_address(sum_page); 1648 if (type != GET_SUM_TYPE((&sum->footer))) { 1649 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1650 segno, type, GET_SUM_TYPE((&sum->footer))); 1651 set_sbi_flag(sbi, SBI_NEED_FSCK); 1652 f2fs_stop_checkpoint(sbi, false); 1653 goto skip; 1654 } 1655 1656 /* 1657 * this is to avoid deadlock: 1658 * - lock_page(sum_page) - f2fs_replace_block 1659 * - check_valid_map() - down_write(sentry_lock) 1660 * - down_read(sentry_lock) - change_curseg() 1661 * - lock_page(sum_page) 1662 */ 1663 if (type == SUM_TYPE_NODE) 1664 submitted += gc_node_segment(sbi, sum->entries, segno, 1665 gc_type); 1666 else 1667 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1668 segno, gc_type, 1669 force_migrate); 1670 1671 stat_inc_seg_count(sbi, type, gc_type); 1672 sbi->gc_reclaimed_segs[sbi->gc_mode]++; 1673 migrated++; 1674 1675 freed: 1676 if (gc_type == FG_GC && 1677 get_valid_blocks(sbi, segno, false) == 0) 1678 seg_freed++; 1679 1680 if (__is_large_section(sbi) && segno + 1 < end_segno) 1681 sbi->next_victim_seg[gc_type] = segno + 1; 1682 skip: 1683 f2fs_put_page(sum_page, 0); 1684 } 1685 1686 if (submitted) 1687 f2fs_submit_merged_write(sbi, 1688 (type == SUM_TYPE_NODE) ? NODE : DATA); 1689 1690 blk_finish_plug(&plug); 1691 1692 stat_inc_call_count(sbi->stat_info); 1693 1694 return seg_freed; 1695 } 1696 1697 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, 1698 bool background, bool force, unsigned int segno) 1699 { 1700 int gc_type = sync ? FG_GC : BG_GC; 1701 int sec_freed = 0, seg_freed = 0, total_freed = 0; 1702 int ret = 0; 1703 struct cp_control cpc; 1704 unsigned int init_segno = segno; 1705 struct gc_inode_list gc_list = { 1706 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1707 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1708 }; 1709 unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC]; 1710 unsigned long long first_skipped; 1711 unsigned int skipped_round = 0, round = 0; 1712 1713 trace_f2fs_gc_begin(sbi->sb, sync, background, 1714 get_pages(sbi, F2FS_DIRTY_NODES), 1715 get_pages(sbi, F2FS_DIRTY_DENTS), 1716 get_pages(sbi, F2FS_DIRTY_IMETA), 1717 free_sections(sbi), 1718 free_segments(sbi), 1719 reserved_segments(sbi), 1720 prefree_segments(sbi)); 1721 1722 cpc.reason = __get_cp_reason(sbi); 1723 sbi->skipped_gc_rwsem = 0; 1724 first_skipped = last_skipped; 1725 gc_more: 1726 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1727 ret = -EINVAL; 1728 goto stop; 1729 } 1730 if (unlikely(f2fs_cp_error(sbi))) { 1731 ret = -EIO; 1732 goto stop; 1733 } 1734 1735 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { 1736 /* 1737 * For example, if there are many prefree_segments below given 1738 * threshold, we can make them free by checkpoint. Then, we 1739 * secure free segments which doesn't need fggc any more. 1740 */ 1741 if (prefree_segments(sbi) && 1742 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 1743 ret = f2fs_write_checkpoint(sbi, &cpc); 1744 if (ret) 1745 goto stop; 1746 } 1747 if (has_not_enough_free_secs(sbi, 0, 0)) 1748 gc_type = FG_GC; 1749 } 1750 1751 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1752 if (gc_type == BG_GC && !background) { 1753 ret = -EINVAL; 1754 goto stop; 1755 } 1756 ret = __get_victim(sbi, &segno, gc_type); 1757 if (ret) 1758 goto stop; 1759 1760 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, force); 1761 if (gc_type == FG_GC && 1762 seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) 1763 sec_freed++; 1764 total_freed += seg_freed; 1765 1766 if (gc_type == FG_GC) { 1767 if (sbi->skipped_atomic_files[FG_GC] > last_skipped || 1768 sbi->skipped_gc_rwsem) 1769 skipped_round++; 1770 last_skipped = sbi->skipped_atomic_files[FG_GC]; 1771 round++; 1772 } 1773 1774 if (gc_type == FG_GC) 1775 sbi->cur_victim_sec = NULL_SEGNO; 1776 1777 if (sync) 1778 goto stop; 1779 1780 if (has_not_enough_free_secs(sbi, sec_freed, 0)) { 1781 if (skipped_round <= MAX_SKIP_GC_COUNT || 1782 skipped_round * 2 < round) { 1783 segno = NULL_SEGNO; 1784 goto gc_more; 1785 } 1786 1787 if (first_skipped < last_skipped && 1788 (last_skipped - first_skipped) > 1789 sbi->skipped_gc_rwsem) { 1790 f2fs_drop_inmem_pages_all(sbi, true); 1791 segno = NULL_SEGNO; 1792 goto gc_more; 1793 } 1794 if (gc_type == FG_GC && !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1795 ret = f2fs_write_checkpoint(sbi, &cpc); 1796 } 1797 stop: 1798 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1799 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno; 1800 1801 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, 1802 get_pages(sbi, F2FS_DIRTY_NODES), 1803 get_pages(sbi, F2FS_DIRTY_DENTS), 1804 get_pages(sbi, F2FS_DIRTY_IMETA), 1805 free_sections(sbi), 1806 free_segments(sbi), 1807 reserved_segments(sbi), 1808 prefree_segments(sbi)); 1809 1810 up_write(&sbi->gc_lock); 1811 1812 put_gc_inode(&gc_list); 1813 1814 if (sync && !ret) 1815 ret = sec_freed ? 0 : -EAGAIN; 1816 return ret; 1817 } 1818 1819 int __init f2fs_create_garbage_collection_cache(void) 1820 { 1821 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 1822 sizeof(struct victim_entry)); 1823 if (!victim_entry_slab) 1824 return -ENOMEM; 1825 return 0; 1826 } 1827 1828 void f2fs_destroy_garbage_collection_cache(void) 1829 { 1830 kmem_cache_destroy(victim_entry_slab); 1831 } 1832 1833 static void init_atgc_management(struct f2fs_sb_info *sbi) 1834 { 1835 struct atgc_management *am = &sbi->am; 1836 1837 if (test_opt(sbi, ATGC) && 1838 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 1839 am->atgc_enabled = true; 1840 1841 am->root = RB_ROOT_CACHED; 1842 INIT_LIST_HEAD(&am->victim_list); 1843 am->victim_count = 0; 1844 1845 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 1846 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 1847 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 1848 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 1849 } 1850 1851 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1852 { 1853 DIRTY_I(sbi)->v_ops = &default_v_ops; 1854 1855 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1856 1857 /* give warm/cold data area from slower device */ 1858 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1859 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1860 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1861 1862 init_atgc_management(sbi); 1863 } 1864 1865 static int free_segment_range(struct f2fs_sb_info *sbi, 1866 unsigned int secs, bool gc_only) 1867 { 1868 unsigned int segno, next_inuse, start, end; 1869 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1870 int gc_mode, gc_type; 1871 int err = 0; 1872 int type; 1873 1874 /* Force block allocation for GC */ 1875 MAIN_SECS(sbi) -= secs; 1876 start = MAIN_SECS(sbi) * sbi->segs_per_sec; 1877 end = MAIN_SEGS(sbi) - 1; 1878 1879 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 1880 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 1881 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 1882 SIT_I(sbi)->last_victim[gc_mode] = 0; 1883 1884 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 1885 if (sbi->next_victim_seg[gc_type] >= start) 1886 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 1887 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 1888 1889 /* Move out cursegs from the target range */ 1890 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) 1891 f2fs_allocate_segment_for_resize(sbi, type, start, end); 1892 1893 /* do GC to move out valid blocks in the range */ 1894 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 1895 struct gc_inode_list gc_list = { 1896 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1897 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1898 }; 1899 1900 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true); 1901 put_gc_inode(&gc_list); 1902 1903 if (!gc_only && get_valid_blocks(sbi, segno, true)) { 1904 err = -EAGAIN; 1905 goto out; 1906 } 1907 if (fatal_signal_pending(current)) { 1908 err = -ERESTARTSYS; 1909 goto out; 1910 } 1911 } 1912 if (gc_only) 1913 goto out; 1914 1915 err = f2fs_write_checkpoint(sbi, &cpc); 1916 if (err) 1917 goto out; 1918 1919 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 1920 if (next_inuse <= end) { 1921 f2fs_err(sbi, "segno %u should be free but still inuse!", 1922 next_inuse); 1923 f2fs_bug_on(sbi, 1); 1924 } 1925 out: 1926 MAIN_SECS(sbi) += secs; 1927 return err; 1928 } 1929 1930 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 1931 { 1932 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 1933 int section_count; 1934 int segment_count; 1935 int segment_count_main; 1936 long long block_count; 1937 int segs = secs * sbi->segs_per_sec; 1938 1939 down_write(&sbi->sb_lock); 1940 1941 section_count = le32_to_cpu(raw_sb->section_count); 1942 segment_count = le32_to_cpu(raw_sb->segment_count); 1943 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 1944 block_count = le64_to_cpu(raw_sb->block_count); 1945 1946 raw_sb->section_count = cpu_to_le32(section_count + secs); 1947 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 1948 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 1949 raw_sb->block_count = cpu_to_le64(block_count + 1950 (long long)segs * sbi->blocks_per_seg); 1951 if (f2fs_is_multi_device(sbi)) { 1952 int last_dev = sbi->s_ndevs - 1; 1953 int dev_segs = 1954 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 1955 1956 raw_sb->devs[last_dev].total_segments = 1957 cpu_to_le32(dev_segs + segs); 1958 } 1959 1960 up_write(&sbi->sb_lock); 1961 } 1962 1963 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 1964 { 1965 int segs = secs * sbi->segs_per_sec; 1966 long long blks = (long long)segs * sbi->blocks_per_seg; 1967 long long user_block_count = 1968 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 1969 1970 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 1971 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 1972 MAIN_SECS(sbi) += secs; 1973 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 1974 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 1975 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 1976 1977 if (f2fs_is_multi_device(sbi)) { 1978 int last_dev = sbi->s_ndevs - 1; 1979 1980 FDEV(last_dev).total_segments = 1981 (int)FDEV(last_dev).total_segments + segs; 1982 FDEV(last_dev).end_blk = 1983 (long long)FDEV(last_dev).end_blk + blks; 1984 #ifdef CONFIG_BLK_DEV_ZONED 1985 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz + 1986 (int)(blks >> sbi->log_blocks_per_blkz); 1987 #endif 1988 } 1989 } 1990 1991 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count) 1992 { 1993 __u64 old_block_count, shrunk_blocks; 1994 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1995 unsigned int secs; 1996 int err = 0; 1997 __u32 rem; 1998 1999 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 2000 if (block_count > old_block_count) 2001 return -EINVAL; 2002 2003 if (f2fs_is_multi_device(sbi)) { 2004 int last_dev = sbi->s_ndevs - 1; 2005 __u64 last_segs = FDEV(last_dev).total_segments; 2006 2007 if (block_count + last_segs * sbi->blocks_per_seg <= 2008 old_block_count) 2009 return -EINVAL; 2010 } 2011 2012 /* new fs size should align to section size */ 2013 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 2014 if (rem) 2015 return -EINVAL; 2016 2017 if (block_count == old_block_count) 2018 return 0; 2019 2020 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2021 f2fs_err(sbi, "Should run fsck to repair first."); 2022 return -EFSCORRUPTED; 2023 } 2024 2025 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2026 f2fs_err(sbi, "Checkpoint should be enabled."); 2027 return -EINVAL; 2028 } 2029 2030 shrunk_blocks = old_block_count - block_count; 2031 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2032 2033 /* stop other GC */ 2034 if (!down_write_trylock(&sbi->gc_lock)) 2035 return -EAGAIN; 2036 2037 /* stop CP to protect MAIN_SEC in free_segment_range */ 2038 f2fs_lock_op(sbi); 2039 2040 spin_lock(&sbi->stat_lock); 2041 if (shrunk_blocks + valid_user_blocks(sbi) + 2042 sbi->current_reserved_blocks + sbi->unusable_block_count + 2043 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2044 err = -ENOSPC; 2045 spin_unlock(&sbi->stat_lock); 2046 2047 if (err) 2048 goto out_unlock; 2049 2050 err = free_segment_range(sbi, secs, true); 2051 2052 out_unlock: 2053 f2fs_unlock_op(sbi); 2054 up_write(&sbi->gc_lock); 2055 if (err) 2056 return err; 2057 2058 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2059 2060 freeze_super(sbi->sb); 2061 down_write(&sbi->gc_lock); 2062 down_write(&sbi->cp_global_sem); 2063 2064 spin_lock(&sbi->stat_lock); 2065 if (shrunk_blocks + valid_user_blocks(sbi) + 2066 sbi->current_reserved_blocks + sbi->unusable_block_count + 2067 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2068 err = -ENOSPC; 2069 else 2070 sbi->user_block_count -= shrunk_blocks; 2071 spin_unlock(&sbi->stat_lock); 2072 if (err) 2073 goto out_err; 2074 2075 err = free_segment_range(sbi, secs, false); 2076 if (err) 2077 goto recover_out; 2078 2079 update_sb_metadata(sbi, -secs); 2080 2081 err = f2fs_commit_super(sbi, false); 2082 if (err) { 2083 update_sb_metadata(sbi, secs); 2084 goto recover_out; 2085 } 2086 2087 update_fs_metadata(sbi, -secs); 2088 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2089 set_sbi_flag(sbi, SBI_IS_DIRTY); 2090 2091 err = f2fs_write_checkpoint(sbi, &cpc); 2092 if (err) { 2093 update_fs_metadata(sbi, secs); 2094 update_sb_metadata(sbi, secs); 2095 f2fs_commit_super(sbi, false); 2096 } 2097 recover_out: 2098 if (err) { 2099 set_sbi_flag(sbi, SBI_NEED_FSCK); 2100 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2101 2102 spin_lock(&sbi->stat_lock); 2103 sbi->user_block_count += shrunk_blocks; 2104 spin_unlock(&sbi->stat_lock); 2105 } 2106 out_err: 2107 up_write(&sbi->cp_global_sem); 2108 up_write(&sbi->gc_lock); 2109 thaw_super(sbi->sb); 2110 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2111 return err; 2112 } 2113