1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 24 #include "f2fs.h" 25 #include "node.h" 26 #include "segment.h" 27 #include "xattr.h" 28 #include "acl.h" 29 #include "gc.h" 30 #include "trace.h" 31 #include <trace/events/f2fs.h> 32 33 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 34 { 35 struct inode *inode = file_inode(vmf->vma->vm_file); 36 vm_fault_t ret; 37 38 down_read(&F2FS_I(inode)->i_mmap_sem); 39 ret = filemap_fault(vmf); 40 up_read(&F2FS_I(inode)->i_mmap_sem); 41 42 return ret; 43 } 44 45 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 46 { 47 struct page *page = vmf->page; 48 struct inode *inode = file_inode(vmf->vma->vm_file); 49 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 50 struct dnode_of_data dn = { .node_changed = false }; 51 int err; 52 53 if (unlikely(f2fs_cp_error(sbi))) { 54 err = -EIO; 55 goto err; 56 } 57 58 sb_start_pagefault(inode->i_sb); 59 60 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 61 62 file_update_time(vmf->vma->vm_file); 63 down_read(&F2FS_I(inode)->i_mmap_sem); 64 lock_page(page); 65 if (unlikely(page->mapping != inode->i_mapping || 66 page_offset(page) > i_size_read(inode) || 67 !PageUptodate(page))) { 68 unlock_page(page); 69 err = -EFAULT; 70 goto out_sem; 71 } 72 73 /* block allocation */ 74 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 75 set_new_dnode(&dn, inode, NULL, NULL, 0); 76 err = f2fs_get_block(&dn, page->index); 77 f2fs_put_dnode(&dn); 78 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 79 if (err) { 80 unlock_page(page); 81 goto out_sem; 82 } 83 84 /* fill the page */ 85 f2fs_wait_on_page_writeback(page, DATA, false, true); 86 87 /* wait for GCed page writeback via META_MAPPING */ 88 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 89 90 /* 91 * check to see if the page is mapped already (no holes) 92 */ 93 if (PageMappedToDisk(page)) 94 goto out_sem; 95 96 /* page is wholly or partially inside EOF */ 97 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 98 i_size_read(inode)) { 99 loff_t offset; 100 101 offset = i_size_read(inode) & ~PAGE_MASK; 102 zero_user_segment(page, offset, PAGE_SIZE); 103 } 104 set_page_dirty(page); 105 if (!PageUptodate(page)) 106 SetPageUptodate(page); 107 108 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 109 f2fs_update_time(sbi, REQ_TIME); 110 111 trace_f2fs_vm_page_mkwrite(page, DATA); 112 out_sem: 113 up_read(&F2FS_I(inode)->i_mmap_sem); 114 115 f2fs_balance_fs(sbi, dn.node_changed); 116 117 sb_end_pagefault(inode->i_sb); 118 err: 119 return block_page_mkwrite_return(err); 120 } 121 122 static const struct vm_operations_struct f2fs_file_vm_ops = { 123 .fault = f2fs_filemap_fault, 124 .map_pages = filemap_map_pages, 125 .page_mkwrite = f2fs_vm_page_mkwrite, 126 }; 127 128 static int get_parent_ino(struct inode *inode, nid_t *pino) 129 { 130 struct dentry *dentry; 131 132 inode = igrab(inode); 133 dentry = d_find_any_alias(inode); 134 iput(inode); 135 if (!dentry) 136 return 0; 137 138 *pino = parent_ino(dentry); 139 dput(dentry); 140 return 1; 141 } 142 143 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 144 { 145 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 146 enum cp_reason_type cp_reason = CP_NO_NEEDED; 147 148 if (!S_ISREG(inode->i_mode)) 149 cp_reason = CP_NON_REGULAR; 150 else if (inode->i_nlink != 1) 151 cp_reason = CP_HARDLINK; 152 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 153 cp_reason = CP_SB_NEED_CP; 154 else if (file_wrong_pino(inode)) 155 cp_reason = CP_WRONG_PINO; 156 else if (!f2fs_space_for_roll_forward(sbi)) 157 cp_reason = CP_NO_SPC_ROLL; 158 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 159 cp_reason = CP_NODE_NEED_CP; 160 else if (test_opt(sbi, FASTBOOT)) 161 cp_reason = CP_FASTBOOT_MODE; 162 else if (F2FS_OPTION(sbi).active_logs == 2) 163 cp_reason = CP_SPEC_LOG_NUM; 164 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 165 f2fs_need_dentry_mark(sbi, inode->i_ino) && 166 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 167 TRANS_DIR_INO)) 168 cp_reason = CP_RECOVER_DIR; 169 170 return cp_reason; 171 } 172 173 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 174 { 175 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 176 bool ret = false; 177 /* But we need to avoid that there are some inode updates */ 178 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 179 ret = true; 180 f2fs_put_page(i, 0); 181 return ret; 182 } 183 184 static void try_to_fix_pino(struct inode *inode) 185 { 186 struct f2fs_inode_info *fi = F2FS_I(inode); 187 nid_t pino; 188 189 down_write(&fi->i_sem); 190 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 191 get_parent_ino(inode, &pino)) { 192 f2fs_i_pino_write(inode, pino); 193 file_got_pino(inode); 194 } 195 up_write(&fi->i_sem); 196 } 197 198 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 199 int datasync, bool atomic) 200 { 201 struct inode *inode = file->f_mapping->host; 202 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 203 nid_t ino = inode->i_ino; 204 int ret = 0; 205 enum cp_reason_type cp_reason = 0; 206 struct writeback_control wbc = { 207 .sync_mode = WB_SYNC_ALL, 208 .nr_to_write = LONG_MAX, 209 .for_reclaim = 0, 210 }; 211 unsigned int seq_id = 0; 212 213 if (unlikely(f2fs_readonly(inode->i_sb) || 214 is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 215 return 0; 216 217 trace_f2fs_sync_file_enter(inode); 218 219 if (S_ISDIR(inode->i_mode)) 220 goto go_write; 221 222 /* if fdatasync is triggered, let's do in-place-update */ 223 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 224 set_inode_flag(inode, FI_NEED_IPU); 225 ret = file_write_and_wait_range(file, start, end); 226 clear_inode_flag(inode, FI_NEED_IPU); 227 228 if (ret) { 229 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 230 return ret; 231 } 232 233 /* if the inode is dirty, let's recover all the time */ 234 if (!f2fs_skip_inode_update(inode, datasync)) { 235 f2fs_write_inode(inode, NULL); 236 goto go_write; 237 } 238 239 /* 240 * if there is no written data, don't waste time to write recovery info. 241 */ 242 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 243 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 244 245 /* it may call write_inode just prior to fsync */ 246 if (need_inode_page_update(sbi, ino)) 247 goto go_write; 248 249 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 250 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 251 goto flush_out; 252 goto out; 253 } 254 go_write: 255 /* 256 * Both of fdatasync() and fsync() are able to be recovered from 257 * sudden-power-off. 258 */ 259 down_read(&F2FS_I(inode)->i_sem); 260 cp_reason = need_do_checkpoint(inode); 261 up_read(&F2FS_I(inode)->i_sem); 262 263 if (cp_reason) { 264 /* all the dirty node pages should be flushed for POR */ 265 ret = f2fs_sync_fs(inode->i_sb, 1); 266 267 /* 268 * We've secured consistency through sync_fs. Following pino 269 * will be used only for fsynced inodes after checkpoint. 270 */ 271 try_to_fix_pino(inode); 272 clear_inode_flag(inode, FI_APPEND_WRITE); 273 clear_inode_flag(inode, FI_UPDATE_WRITE); 274 goto out; 275 } 276 sync_nodes: 277 atomic_inc(&sbi->wb_sync_req[NODE]); 278 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 279 atomic_dec(&sbi->wb_sync_req[NODE]); 280 if (ret) 281 goto out; 282 283 /* if cp_error was enabled, we should avoid infinite loop */ 284 if (unlikely(f2fs_cp_error(sbi))) { 285 ret = -EIO; 286 goto out; 287 } 288 289 if (f2fs_need_inode_block_update(sbi, ino)) { 290 f2fs_mark_inode_dirty_sync(inode, true); 291 f2fs_write_inode(inode, NULL); 292 goto sync_nodes; 293 } 294 295 /* 296 * If it's atomic_write, it's just fine to keep write ordering. So 297 * here we don't need to wait for node write completion, since we use 298 * node chain which serializes node blocks. If one of node writes are 299 * reordered, we can see simply broken chain, resulting in stopping 300 * roll-forward recovery. It means we'll recover all or none node blocks 301 * given fsync mark. 302 */ 303 if (!atomic) { 304 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 305 if (ret) 306 goto out; 307 } 308 309 /* once recovery info is written, don't need to tack this */ 310 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 311 clear_inode_flag(inode, FI_APPEND_WRITE); 312 flush_out: 313 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 314 ret = f2fs_issue_flush(sbi, inode->i_ino); 315 if (!ret) { 316 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 317 clear_inode_flag(inode, FI_UPDATE_WRITE); 318 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 319 } 320 f2fs_update_time(sbi, REQ_TIME); 321 out: 322 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 323 f2fs_trace_ios(NULL, 1); 324 return ret; 325 } 326 327 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 328 { 329 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 330 return -EIO; 331 return f2fs_do_sync_file(file, start, end, datasync, false); 332 } 333 334 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 335 pgoff_t pgofs, int whence) 336 { 337 struct page *page; 338 int nr_pages; 339 340 if (whence != SEEK_DATA) 341 return 0; 342 343 /* find first dirty page index */ 344 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY, 345 1, &page); 346 if (!nr_pages) 347 return ULONG_MAX; 348 pgofs = page->index; 349 put_page(page); 350 return pgofs; 351 } 352 353 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr, 354 pgoff_t dirty, pgoff_t pgofs, int whence) 355 { 356 switch (whence) { 357 case SEEK_DATA: 358 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 359 is_valid_data_blkaddr(sbi, blkaddr)) 360 return true; 361 break; 362 case SEEK_HOLE: 363 if (blkaddr == NULL_ADDR) 364 return true; 365 break; 366 } 367 return false; 368 } 369 370 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 371 { 372 struct inode *inode = file->f_mapping->host; 373 loff_t maxbytes = inode->i_sb->s_maxbytes; 374 struct dnode_of_data dn; 375 pgoff_t pgofs, end_offset, dirty; 376 loff_t data_ofs = offset; 377 loff_t isize; 378 int err = 0; 379 380 inode_lock(inode); 381 382 isize = i_size_read(inode); 383 if (offset >= isize) 384 goto fail; 385 386 /* handle inline data case */ 387 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 388 if (whence == SEEK_HOLE) 389 data_ofs = isize; 390 goto found; 391 } 392 393 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 394 395 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 396 397 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 398 set_new_dnode(&dn, inode, NULL, NULL, 0); 399 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 400 if (err && err != -ENOENT) { 401 goto fail; 402 } else if (err == -ENOENT) { 403 /* direct node does not exists */ 404 if (whence == SEEK_DATA) { 405 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 406 continue; 407 } else { 408 goto found; 409 } 410 } 411 412 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 413 414 /* find data/hole in dnode block */ 415 for (; dn.ofs_in_node < end_offset; 416 dn.ofs_in_node++, pgofs++, 417 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 418 block_t blkaddr; 419 420 blkaddr = datablock_addr(dn.inode, 421 dn.node_page, dn.ofs_in_node); 422 423 if (__is_valid_data_blkaddr(blkaddr) && 424 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 425 blkaddr, DATA_GENERIC)) { 426 f2fs_put_dnode(&dn); 427 goto fail; 428 } 429 430 if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty, 431 pgofs, whence)) { 432 f2fs_put_dnode(&dn); 433 goto found; 434 } 435 } 436 f2fs_put_dnode(&dn); 437 } 438 439 if (whence == SEEK_DATA) 440 goto fail; 441 found: 442 if (whence == SEEK_HOLE && data_ofs > isize) 443 data_ofs = isize; 444 inode_unlock(inode); 445 return vfs_setpos(file, data_ofs, maxbytes); 446 fail: 447 inode_unlock(inode); 448 return -ENXIO; 449 } 450 451 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 452 { 453 struct inode *inode = file->f_mapping->host; 454 loff_t maxbytes = inode->i_sb->s_maxbytes; 455 456 switch (whence) { 457 case SEEK_SET: 458 case SEEK_CUR: 459 case SEEK_END: 460 return generic_file_llseek_size(file, offset, whence, 461 maxbytes, i_size_read(inode)); 462 case SEEK_DATA: 463 case SEEK_HOLE: 464 if (offset < 0) 465 return -ENXIO; 466 return f2fs_seek_block(file, offset, whence); 467 } 468 469 return -EINVAL; 470 } 471 472 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 473 { 474 struct inode *inode = file_inode(file); 475 int err; 476 477 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 478 return -EIO; 479 480 /* we don't need to use inline_data strictly */ 481 err = f2fs_convert_inline_inode(inode); 482 if (err) 483 return err; 484 485 file_accessed(file); 486 vma->vm_ops = &f2fs_file_vm_ops; 487 return 0; 488 } 489 490 static int f2fs_file_open(struct inode *inode, struct file *filp) 491 { 492 int err = fscrypt_file_open(inode, filp); 493 494 if (err) 495 return err; 496 497 filp->f_mode |= FMODE_NOWAIT; 498 499 return dquot_file_open(inode, filp); 500 } 501 502 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 503 { 504 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 505 struct f2fs_node *raw_node; 506 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 507 __le32 *addr; 508 int base = 0; 509 510 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 511 base = get_extra_isize(dn->inode); 512 513 raw_node = F2FS_NODE(dn->node_page); 514 addr = blkaddr_in_node(raw_node) + base + ofs; 515 516 for (; count > 0; count--, addr++, dn->ofs_in_node++) { 517 block_t blkaddr = le32_to_cpu(*addr); 518 519 if (blkaddr == NULL_ADDR) 520 continue; 521 522 dn->data_blkaddr = NULL_ADDR; 523 f2fs_set_data_blkaddr(dn); 524 525 if (__is_valid_data_blkaddr(blkaddr) && 526 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) 527 continue; 528 529 f2fs_invalidate_blocks(sbi, blkaddr); 530 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 531 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 532 nr_free++; 533 } 534 535 if (nr_free) { 536 pgoff_t fofs; 537 /* 538 * once we invalidate valid blkaddr in range [ofs, ofs + count], 539 * we will invalidate all blkaddr in the whole range. 540 */ 541 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 542 dn->inode) + ofs; 543 f2fs_update_extent_cache_range(dn, fofs, 0, len); 544 dec_valid_block_count(sbi, dn->inode, nr_free); 545 } 546 dn->ofs_in_node = ofs; 547 548 f2fs_update_time(sbi, REQ_TIME); 549 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 550 dn->ofs_in_node, nr_free); 551 } 552 553 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 554 { 555 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK); 556 } 557 558 static int truncate_partial_data_page(struct inode *inode, u64 from, 559 bool cache_only) 560 { 561 loff_t offset = from & (PAGE_SIZE - 1); 562 pgoff_t index = from >> PAGE_SHIFT; 563 struct address_space *mapping = inode->i_mapping; 564 struct page *page; 565 566 if (!offset && !cache_only) 567 return 0; 568 569 if (cache_only) { 570 page = find_lock_page(mapping, index); 571 if (page && PageUptodate(page)) 572 goto truncate_out; 573 f2fs_put_page(page, 1); 574 return 0; 575 } 576 577 page = f2fs_get_lock_data_page(inode, index, true); 578 if (IS_ERR(page)) 579 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 580 truncate_out: 581 f2fs_wait_on_page_writeback(page, DATA, true, true); 582 zero_user(page, offset, PAGE_SIZE - offset); 583 584 /* An encrypted inode should have a key and truncate the last page. */ 585 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 586 if (!cache_only) 587 set_page_dirty(page); 588 f2fs_put_page(page, 1); 589 return 0; 590 } 591 592 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 593 { 594 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 595 struct dnode_of_data dn; 596 pgoff_t free_from; 597 int count = 0, err = 0; 598 struct page *ipage; 599 bool truncate_page = false; 600 601 trace_f2fs_truncate_blocks_enter(inode, from); 602 603 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 604 605 if (free_from >= sbi->max_file_blocks) 606 goto free_partial; 607 608 if (lock) 609 f2fs_lock_op(sbi); 610 611 ipage = f2fs_get_node_page(sbi, inode->i_ino); 612 if (IS_ERR(ipage)) { 613 err = PTR_ERR(ipage); 614 goto out; 615 } 616 617 if (f2fs_has_inline_data(inode)) { 618 f2fs_truncate_inline_inode(inode, ipage, from); 619 f2fs_put_page(ipage, 1); 620 truncate_page = true; 621 goto out; 622 } 623 624 set_new_dnode(&dn, inode, ipage, NULL, 0); 625 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 626 if (err) { 627 if (err == -ENOENT) 628 goto free_next; 629 goto out; 630 } 631 632 count = ADDRS_PER_PAGE(dn.node_page, inode); 633 634 count -= dn.ofs_in_node; 635 f2fs_bug_on(sbi, count < 0); 636 637 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 638 f2fs_truncate_data_blocks_range(&dn, count); 639 free_from += count; 640 } 641 642 f2fs_put_dnode(&dn); 643 free_next: 644 err = f2fs_truncate_inode_blocks(inode, free_from); 645 out: 646 if (lock) 647 f2fs_unlock_op(sbi); 648 free_partial: 649 /* lastly zero out the first data page */ 650 if (!err) 651 err = truncate_partial_data_page(inode, from, truncate_page); 652 653 trace_f2fs_truncate_blocks_exit(inode, err); 654 return err; 655 } 656 657 int f2fs_truncate(struct inode *inode) 658 { 659 int err; 660 661 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 662 return -EIO; 663 664 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 665 S_ISLNK(inode->i_mode))) 666 return 0; 667 668 trace_f2fs_truncate(inode); 669 670 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 671 f2fs_show_injection_info(FAULT_TRUNCATE); 672 return -EIO; 673 } 674 675 /* we should check inline_data size */ 676 if (!f2fs_may_inline_data(inode)) { 677 err = f2fs_convert_inline_inode(inode); 678 if (err) 679 return err; 680 } 681 682 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 683 if (err) 684 return err; 685 686 inode->i_mtime = inode->i_ctime = current_time(inode); 687 f2fs_mark_inode_dirty_sync(inode, false); 688 return 0; 689 } 690 691 int f2fs_getattr(const struct path *path, struct kstat *stat, 692 u32 request_mask, unsigned int query_flags) 693 { 694 struct inode *inode = d_inode(path->dentry); 695 struct f2fs_inode_info *fi = F2FS_I(inode); 696 struct f2fs_inode *ri; 697 unsigned int flags; 698 699 if (f2fs_has_extra_attr(inode) && 700 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 701 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 702 stat->result_mask |= STATX_BTIME; 703 stat->btime.tv_sec = fi->i_crtime.tv_sec; 704 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 705 } 706 707 flags = fi->i_flags & F2FS_FL_USER_VISIBLE; 708 if (flags & F2FS_APPEND_FL) 709 stat->attributes |= STATX_ATTR_APPEND; 710 if (flags & F2FS_COMPR_FL) 711 stat->attributes |= STATX_ATTR_COMPRESSED; 712 if (IS_ENCRYPTED(inode)) 713 stat->attributes |= STATX_ATTR_ENCRYPTED; 714 if (flags & F2FS_IMMUTABLE_FL) 715 stat->attributes |= STATX_ATTR_IMMUTABLE; 716 if (flags & F2FS_NODUMP_FL) 717 stat->attributes |= STATX_ATTR_NODUMP; 718 719 stat->attributes_mask |= (STATX_ATTR_APPEND | 720 STATX_ATTR_COMPRESSED | 721 STATX_ATTR_ENCRYPTED | 722 STATX_ATTR_IMMUTABLE | 723 STATX_ATTR_NODUMP); 724 725 generic_fillattr(inode, stat); 726 727 /* we need to show initial sectors used for inline_data/dentries */ 728 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 729 f2fs_has_inline_dentry(inode)) 730 stat->blocks += (stat->size + 511) >> 9; 731 732 return 0; 733 } 734 735 #ifdef CONFIG_F2FS_FS_POSIX_ACL 736 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 737 { 738 unsigned int ia_valid = attr->ia_valid; 739 740 if (ia_valid & ATTR_UID) 741 inode->i_uid = attr->ia_uid; 742 if (ia_valid & ATTR_GID) 743 inode->i_gid = attr->ia_gid; 744 if (ia_valid & ATTR_ATIME) 745 inode->i_atime = timespec64_trunc(attr->ia_atime, 746 inode->i_sb->s_time_gran); 747 if (ia_valid & ATTR_MTIME) 748 inode->i_mtime = timespec64_trunc(attr->ia_mtime, 749 inode->i_sb->s_time_gran); 750 if (ia_valid & ATTR_CTIME) 751 inode->i_ctime = timespec64_trunc(attr->ia_ctime, 752 inode->i_sb->s_time_gran); 753 if (ia_valid & ATTR_MODE) { 754 umode_t mode = attr->ia_mode; 755 756 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 757 mode &= ~S_ISGID; 758 set_acl_inode(inode, mode); 759 } 760 } 761 #else 762 #define __setattr_copy setattr_copy 763 #endif 764 765 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 766 { 767 struct inode *inode = d_inode(dentry); 768 int err; 769 770 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 771 return -EIO; 772 773 err = setattr_prepare(dentry, attr); 774 if (err) 775 return err; 776 777 err = fscrypt_prepare_setattr(dentry, attr); 778 if (err) 779 return err; 780 781 if (is_quota_modification(inode, attr)) { 782 err = dquot_initialize(inode); 783 if (err) 784 return err; 785 } 786 if ((attr->ia_valid & ATTR_UID && 787 !uid_eq(attr->ia_uid, inode->i_uid)) || 788 (attr->ia_valid & ATTR_GID && 789 !gid_eq(attr->ia_gid, inode->i_gid))) { 790 f2fs_lock_op(F2FS_I_SB(inode)); 791 err = dquot_transfer(inode, attr); 792 if (err) { 793 set_sbi_flag(F2FS_I_SB(inode), 794 SBI_QUOTA_NEED_REPAIR); 795 f2fs_unlock_op(F2FS_I_SB(inode)); 796 return err; 797 } 798 /* 799 * update uid/gid under lock_op(), so that dquot and inode can 800 * be updated atomically. 801 */ 802 if (attr->ia_valid & ATTR_UID) 803 inode->i_uid = attr->ia_uid; 804 if (attr->ia_valid & ATTR_GID) 805 inode->i_gid = attr->ia_gid; 806 f2fs_mark_inode_dirty_sync(inode, true); 807 f2fs_unlock_op(F2FS_I_SB(inode)); 808 } 809 810 if (attr->ia_valid & ATTR_SIZE) { 811 bool to_smaller = (attr->ia_size <= i_size_read(inode)); 812 813 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 814 down_write(&F2FS_I(inode)->i_mmap_sem); 815 816 truncate_setsize(inode, attr->ia_size); 817 818 if (to_smaller) 819 err = f2fs_truncate(inode); 820 /* 821 * do not trim all blocks after i_size if target size is 822 * larger than i_size. 823 */ 824 up_write(&F2FS_I(inode)->i_mmap_sem); 825 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 826 827 if (err) 828 return err; 829 830 if (!to_smaller) { 831 /* should convert inline inode here */ 832 if (!f2fs_may_inline_data(inode)) { 833 err = f2fs_convert_inline_inode(inode); 834 if (err) 835 return err; 836 } 837 inode->i_mtime = inode->i_ctime = current_time(inode); 838 } 839 840 down_write(&F2FS_I(inode)->i_sem); 841 F2FS_I(inode)->last_disk_size = i_size_read(inode); 842 up_write(&F2FS_I(inode)->i_sem); 843 } 844 845 __setattr_copy(inode, attr); 846 847 if (attr->ia_valid & ATTR_MODE) { 848 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode)); 849 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 850 inode->i_mode = F2FS_I(inode)->i_acl_mode; 851 clear_inode_flag(inode, FI_ACL_MODE); 852 } 853 } 854 855 /* file size may changed here */ 856 f2fs_mark_inode_dirty_sync(inode, true); 857 858 /* inode change will produce dirty node pages flushed by checkpoint */ 859 f2fs_balance_fs(F2FS_I_SB(inode), true); 860 861 return err; 862 } 863 864 const struct inode_operations f2fs_file_inode_operations = { 865 .getattr = f2fs_getattr, 866 .setattr = f2fs_setattr, 867 .get_acl = f2fs_get_acl, 868 .set_acl = f2fs_set_acl, 869 #ifdef CONFIG_F2FS_FS_XATTR 870 .listxattr = f2fs_listxattr, 871 #endif 872 .fiemap = f2fs_fiemap, 873 }; 874 875 static int fill_zero(struct inode *inode, pgoff_t index, 876 loff_t start, loff_t len) 877 { 878 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 879 struct page *page; 880 881 if (!len) 882 return 0; 883 884 f2fs_balance_fs(sbi, true); 885 886 f2fs_lock_op(sbi); 887 page = f2fs_get_new_data_page(inode, NULL, index, false); 888 f2fs_unlock_op(sbi); 889 890 if (IS_ERR(page)) 891 return PTR_ERR(page); 892 893 f2fs_wait_on_page_writeback(page, DATA, true, true); 894 zero_user(page, start, len); 895 set_page_dirty(page); 896 f2fs_put_page(page, 1); 897 return 0; 898 } 899 900 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 901 { 902 int err; 903 904 while (pg_start < pg_end) { 905 struct dnode_of_data dn; 906 pgoff_t end_offset, count; 907 908 set_new_dnode(&dn, inode, NULL, NULL, 0); 909 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 910 if (err) { 911 if (err == -ENOENT) { 912 pg_start = f2fs_get_next_page_offset(&dn, 913 pg_start); 914 continue; 915 } 916 return err; 917 } 918 919 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 920 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 921 922 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 923 924 f2fs_truncate_data_blocks_range(&dn, count); 925 f2fs_put_dnode(&dn); 926 927 pg_start += count; 928 } 929 return 0; 930 } 931 932 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 933 { 934 pgoff_t pg_start, pg_end; 935 loff_t off_start, off_end; 936 int ret; 937 938 ret = f2fs_convert_inline_inode(inode); 939 if (ret) 940 return ret; 941 942 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 943 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 944 945 off_start = offset & (PAGE_SIZE - 1); 946 off_end = (offset + len) & (PAGE_SIZE - 1); 947 948 if (pg_start == pg_end) { 949 ret = fill_zero(inode, pg_start, off_start, 950 off_end - off_start); 951 if (ret) 952 return ret; 953 } else { 954 if (off_start) { 955 ret = fill_zero(inode, pg_start++, off_start, 956 PAGE_SIZE - off_start); 957 if (ret) 958 return ret; 959 } 960 if (off_end) { 961 ret = fill_zero(inode, pg_end, 0, off_end); 962 if (ret) 963 return ret; 964 } 965 966 if (pg_start < pg_end) { 967 struct address_space *mapping = inode->i_mapping; 968 loff_t blk_start, blk_end; 969 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 970 971 f2fs_balance_fs(sbi, true); 972 973 blk_start = (loff_t)pg_start << PAGE_SHIFT; 974 blk_end = (loff_t)pg_end << PAGE_SHIFT; 975 976 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 977 down_write(&F2FS_I(inode)->i_mmap_sem); 978 979 truncate_inode_pages_range(mapping, blk_start, 980 blk_end - 1); 981 982 f2fs_lock_op(sbi); 983 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 984 f2fs_unlock_op(sbi); 985 986 up_write(&F2FS_I(inode)->i_mmap_sem); 987 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 988 } 989 } 990 991 return ret; 992 } 993 994 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 995 int *do_replace, pgoff_t off, pgoff_t len) 996 { 997 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 998 struct dnode_of_data dn; 999 int ret, done, i; 1000 1001 next_dnode: 1002 set_new_dnode(&dn, inode, NULL, NULL, 0); 1003 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1004 if (ret && ret != -ENOENT) { 1005 return ret; 1006 } else if (ret == -ENOENT) { 1007 if (dn.max_level == 0) 1008 return -ENOENT; 1009 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len); 1010 blkaddr += done; 1011 do_replace += done; 1012 goto next; 1013 } 1014 1015 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1016 dn.ofs_in_node, len); 1017 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1018 *blkaddr = datablock_addr(dn.inode, 1019 dn.node_page, dn.ofs_in_node); 1020 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1021 1022 if (test_opt(sbi, LFS)) { 1023 f2fs_put_dnode(&dn); 1024 return -ENOTSUPP; 1025 } 1026 1027 /* do not invalidate this block address */ 1028 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1029 *do_replace = 1; 1030 } 1031 } 1032 f2fs_put_dnode(&dn); 1033 next: 1034 len -= done; 1035 off += done; 1036 if (len) 1037 goto next_dnode; 1038 return 0; 1039 } 1040 1041 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1042 int *do_replace, pgoff_t off, int len) 1043 { 1044 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1045 struct dnode_of_data dn; 1046 int ret, i; 1047 1048 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1049 if (*do_replace == 0) 1050 continue; 1051 1052 set_new_dnode(&dn, inode, NULL, NULL, 0); 1053 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1054 if (ret) { 1055 dec_valid_block_count(sbi, inode, 1); 1056 f2fs_invalidate_blocks(sbi, *blkaddr); 1057 } else { 1058 f2fs_update_data_blkaddr(&dn, *blkaddr); 1059 } 1060 f2fs_put_dnode(&dn); 1061 } 1062 return 0; 1063 } 1064 1065 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1066 block_t *blkaddr, int *do_replace, 1067 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1068 { 1069 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1070 pgoff_t i = 0; 1071 int ret; 1072 1073 while (i < len) { 1074 if (blkaddr[i] == NULL_ADDR && !full) { 1075 i++; 1076 continue; 1077 } 1078 1079 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1080 struct dnode_of_data dn; 1081 struct node_info ni; 1082 size_t new_size; 1083 pgoff_t ilen; 1084 1085 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1086 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1087 if (ret) 1088 return ret; 1089 1090 ret = f2fs_get_node_info(sbi, dn.nid, &ni); 1091 if (ret) { 1092 f2fs_put_dnode(&dn); 1093 return ret; 1094 } 1095 1096 ilen = min((pgoff_t) 1097 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1098 dn.ofs_in_node, len - i); 1099 do { 1100 dn.data_blkaddr = datablock_addr(dn.inode, 1101 dn.node_page, dn.ofs_in_node); 1102 f2fs_truncate_data_blocks_range(&dn, 1); 1103 1104 if (do_replace[i]) { 1105 f2fs_i_blocks_write(src_inode, 1106 1, false, false); 1107 f2fs_i_blocks_write(dst_inode, 1108 1, true, false); 1109 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1110 blkaddr[i], ni.version, true, false); 1111 1112 do_replace[i] = 0; 1113 } 1114 dn.ofs_in_node++; 1115 i++; 1116 new_size = (dst + i) << PAGE_SHIFT; 1117 if (dst_inode->i_size < new_size) 1118 f2fs_i_size_write(dst_inode, new_size); 1119 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1120 1121 f2fs_put_dnode(&dn); 1122 } else { 1123 struct page *psrc, *pdst; 1124 1125 psrc = f2fs_get_lock_data_page(src_inode, 1126 src + i, true); 1127 if (IS_ERR(psrc)) 1128 return PTR_ERR(psrc); 1129 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1130 true); 1131 if (IS_ERR(pdst)) { 1132 f2fs_put_page(psrc, 1); 1133 return PTR_ERR(pdst); 1134 } 1135 f2fs_copy_page(psrc, pdst); 1136 set_page_dirty(pdst); 1137 f2fs_put_page(pdst, 1); 1138 f2fs_put_page(psrc, 1); 1139 1140 ret = f2fs_truncate_hole(src_inode, 1141 src + i, src + i + 1); 1142 if (ret) 1143 return ret; 1144 i++; 1145 } 1146 } 1147 return 0; 1148 } 1149 1150 static int __exchange_data_block(struct inode *src_inode, 1151 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1152 pgoff_t len, bool full) 1153 { 1154 block_t *src_blkaddr; 1155 int *do_replace; 1156 pgoff_t olen; 1157 int ret; 1158 1159 while (len) { 1160 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len); 1161 1162 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1163 array_size(olen, sizeof(block_t)), 1164 GFP_KERNEL); 1165 if (!src_blkaddr) 1166 return -ENOMEM; 1167 1168 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1169 array_size(olen, sizeof(int)), 1170 GFP_KERNEL); 1171 if (!do_replace) { 1172 kvfree(src_blkaddr); 1173 return -ENOMEM; 1174 } 1175 1176 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1177 do_replace, src, olen); 1178 if (ret) 1179 goto roll_back; 1180 1181 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1182 do_replace, src, dst, olen, full); 1183 if (ret) 1184 goto roll_back; 1185 1186 src += olen; 1187 dst += olen; 1188 len -= olen; 1189 1190 kvfree(src_blkaddr); 1191 kvfree(do_replace); 1192 } 1193 return 0; 1194 1195 roll_back: 1196 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1197 kvfree(src_blkaddr); 1198 kvfree(do_replace); 1199 return ret; 1200 } 1201 1202 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1203 { 1204 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1205 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; 1206 pgoff_t start = offset >> PAGE_SHIFT; 1207 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1208 int ret; 1209 1210 f2fs_balance_fs(sbi, true); 1211 1212 /* avoid gc operation during block exchange */ 1213 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1214 down_write(&F2FS_I(inode)->i_mmap_sem); 1215 1216 f2fs_lock_op(sbi); 1217 f2fs_drop_extent_tree(inode); 1218 truncate_pagecache(inode, offset); 1219 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1220 f2fs_unlock_op(sbi); 1221 1222 up_write(&F2FS_I(inode)->i_mmap_sem); 1223 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1224 return ret; 1225 } 1226 1227 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1228 { 1229 loff_t new_size; 1230 int ret; 1231 1232 if (offset + len >= i_size_read(inode)) 1233 return -EINVAL; 1234 1235 /* collapse range should be aligned to block size of f2fs. */ 1236 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1237 return -EINVAL; 1238 1239 ret = f2fs_convert_inline_inode(inode); 1240 if (ret) 1241 return ret; 1242 1243 /* write out all dirty pages from offset */ 1244 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1245 if (ret) 1246 return ret; 1247 1248 ret = f2fs_do_collapse(inode, offset, len); 1249 if (ret) 1250 return ret; 1251 1252 /* write out all moved pages, if possible */ 1253 down_write(&F2FS_I(inode)->i_mmap_sem); 1254 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1255 truncate_pagecache(inode, offset); 1256 1257 new_size = i_size_read(inode) - len; 1258 truncate_pagecache(inode, new_size); 1259 1260 ret = f2fs_truncate_blocks(inode, new_size, true); 1261 up_write(&F2FS_I(inode)->i_mmap_sem); 1262 if (!ret) 1263 f2fs_i_size_write(inode, new_size); 1264 return ret; 1265 } 1266 1267 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1268 pgoff_t end) 1269 { 1270 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1271 pgoff_t index = start; 1272 unsigned int ofs_in_node = dn->ofs_in_node; 1273 blkcnt_t count = 0; 1274 int ret; 1275 1276 for (; index < end; index++, dn->ofs_in_node++) { 1277 if (datablock_addr(dn->inode, dn->node_page, 1278 dn->ofs_in_node) == NULL_ADDR) 1279 count++; 1280 } 1281 1282 dn->ofs_in_node = ofs_in_node; 1283 ret = f2fs_reserve_new_blocks(dn, count); 1284 if (ret) 1285 return ret; 1286 1287 dn->ofs_in_node = ofs_in_node; 1288 for (index = start; index < end; index++, dn->ofs_in_node++) { 1289 dn->data_blkaddr = datablock_addr(dn->inode, 1290 dn->node_page, dn->ofs_in_node); 1291 /* 1292 * f2fs_reserve_new_blocks will not guarantee entire block 1293 * allocation. 1294 */ 1295 if (dn->data_blkaddr == NULL_ADDR) { 1296 ret = -ENOSPC; 1297 break; 1298 } 1299 if (dn->data_blkaddr != NEW_ADDR) { 1300 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1301 dn->data_blkaddr = NEW_ADDR; 1302 f2fs_set_data_blkaddr(dn); 1303 } 1304 } 1305 1306 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1307 1308 return ret; 1309 } 1310 1311 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1312 int mode) 1313 { 1314 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1315 struct address_space *mapping = inode->i_mapping; 1316 pgoff_t index, pg_start, pg_end; 1317 loff_t new_size = i_size_read(inode); 1318 loff_t off_start, off_end; 1319 int ret = 0; 1320 1321 ret = inode_newsize_ok(inode, (len + offset)); 1322 if (ret) 1323 return ret; 1324 1325 ret = f2fs_convert_inline_inode(inode); 1326 if (ret) 1327 return ret; 1328 1329 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1330 if (ret) 1331 return ret; 1332 1333 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1334 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1335 1336 off_start = offset & (PAGE_SIZE - 1); 1337 off_end = (offset + len) & (PAGE_SIZE - 1); 1338 1339 if (pg_start == pg_end) { 1340 ret = fill_zero(inode, pg_start, off_start, 1341 off_end - off_start); 1342 if (ret) 1343 return ret; 1344 1345 new_size = max_t(loff_t, new_size, offset + len); 1346 } else { 1347 if (off_start) { 1348 ret = fill_zero(inode, pg_start++, off_start, 1349 PAGE_SIZE - off_start); 1350 if (ret) 1351 return ret; 1352 1353 new_size = max_t(loff_t, new_size, 1354 (loff_t)pg_start << PAGE_SHIFT); 1355 } 1356 1357 for (index = pg_start; index < pg_end;) { 1358 struct dnode_of_data dn; 1359 unsigned int end_offset; 1360 pgoff_t end; 1361 1362 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1363 down_write(&F2FS_I(inode)->i_mmap_sem); 1364 1365 truncate_pagecache_range(inode, 1366 (loff_t)index << PAGE_SHIFT, 1367 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1368 1369 f2fs_lock_op(sbi); 1370 1371 set_new_dnode(&dn, inode, NULL, NULL, 0); 1372 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1373 if (ret) { 1374 f2fs_unlock_op(sbi); 1375 up_write(&F2FS_I(inode)->i_mmap_sem); 1376 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1377 goto out; 1378 } 1379 1380 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1381 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1382 1383 ret = f2fs_do_zero_range(&dn, index, end); 1384 f2fs_put_dnode(&dn); 1385 1386 f2fs_unlock_op(sbi); 1387 up_write(&F2FS_I(inode)->i_mmap_sem); 1388 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1389 1390 f2fs_balance_fs(sbi, dn.node_changed); 1391 1392 if (ret) 1393 goto out; 1394 1395 index = end; 1396 new_size = max_t(loff_t, new_size, 1397 (loff_t)index << PAGE_SHIFT); 1398 } 1399 1400 if (off_end) { 1401 ret = fill_zero(inode, pg_end, 0, off_end); 1402 if (ret) 1403 goto out; 1404 1405 new_size = max_t(loff_t, new_size, offset + len); 1406 } 1407 } 1408 1409 out: 1410 if (new_size > i_size_read(inode)) { 1411 if (mode & FALLOC_FL_KEEP_SIZE) 1412 file_set_keep_isize(inode); 1413 else 1414 f2fs_i_size_write(inode, new_size); 1415 } 1416 return ret; 1417 } 1418 1419 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1420 { 1421 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1422 pgoff_t nr, pg_start, pg_end, delta, idx; 1423 loff_t new_size; 1424 int ret = 0; 1425 1426 new_size = i_size_read(inode) + len; 1427 ret = inode_newsize_ok(inode, new_size); 1428 if (ret) 1429 return ret; 1430 1431 if (offset >= i_size_read(inode)) 1432 return -EINVAL; 1433 1434 /* insert range should be aligned to block size of f2fs. */ 1435 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1436 return -EINVAL; 1437 1438 ret = f2fs_convert_inline_inode(inode); 1439 if (ret) 1440 return ret; 1441 1442 f2fs_balance_fs(sbi, true); 1443 1444 down_write(&F2FS_I(inode)->i_mmap_sem); 1445 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1446 up_write(&F2FS_I(inode)->i_mmap_sem); 1447 if (ret) 1448 return ret; 1449 1450 /* write out all dirty pages from offset */ 1451 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1452 if (ret) 1453 return ret; 1454 1455 pg_start = offset >> PAGE_SHIFT; 1456 pg_end = (offset + len) >> PAGE_SHIFT; 1457 delta = pg_end - pg_start; 1458 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; 1459 1460 /* avoid gc operation during block exchange */ 1461 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1462 down_write(&F2FS_I(inode)->i_mmap_sem); 1463 truncate_pagecache(inode, offset); 1464 1465 while (!ret && idx > pg_start) { 1466 nr = idx - pg_start; 1467 if (nr > delta) 1468 nr = delta; 1469 idx -= nr; 1470 1471 f2fs_lock_op(sbi); 1472 f2fs_drop_extent_tree(inode); 1473 1474 ret = __exchange_data_block(inode, inode, idx, 1475 idx + delta, nr, false); 1476 f2fs_unlock_op(sbi); 1477 } 1478 up_write(&F2FS_I(inode)->i_mmap_sem); 1479 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1480 1481 /* write out all moved pages, if possible */ 1482 down_write(&F2FS_I(inode)->i_mmap_sem); 1483 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1484 truncate_pagecache(inode, offset); 1485 up_write(&F2FS_I(inode)->i_mmap_sem); 1486 1487 if (!ret) 1488 f2fs_i_size_write(inode, new_size); 1489 return ret; 1490 } 1491 1492 static int expand_inode_data(struct inode *inode, loff_t offset, 1493 loff_t len, int mode) 1494 { 1495 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1496 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1497 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1498 .m_may_create = true }; 1499 pgoff_t pg_end; 1500 loff_t new_size = i_size_read(inode); 1501 loff_t off_end; 1502 int err; 1503 1504 err = inode_newsize_ok(inode, (len + offset)); 1505 if (err) 1506 return err; 1507 1508 err = f2fs_convert_inline_inode(inode); 1509 if (err) 1510 return err; 1511 1512 f2fs_balance_fs(sbi, true); 1513 1514 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1515 off_end = (offset + len) & (PAGE_SIZE - 1); 1516 1517 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1518 map.m_len = pg_end - map.m_lblk; 1519 if (off_end) 1520 map.m_len++; 1521 1522 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1523 if (err) { 1524 pgoff_t last_off; 1525 1526 if (!map.m_len) 1527 return err; 1528 1529 last_off = map.m_lblk + map.m_len - 1; 1530 1531 /* update new size to the failed position */ 1532 new_size = (last_off == pg_end) ? offset + len : 1533 (loff_t)(last_off + 1) << PAGE_SHIFT; 1534 } else { 1535 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1536 } 1537 1538 if (new_size > i_size_read(inode)) { 1539 if (mode & FALLOC_FL_KEEP_SIZE) 1540 file_set_keep_isize(inode); 1541 else 1542 f2fs_i_size_write(inode, new_size); 1543 } 1544 1545 return err; 1546 } 1547 1548 static long f2fs_fallocate(struct file *file, int mode, 1549 loff_t offset, loff_t len) 1550 { 1551 struct inode *inode = file_inode(file); 1552 long ret = 0; 1553 1554 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1555 return -EIO; 1556 1557 /* f2fs only support ->fallocate for regular file */ 1558 if (!S_ISREG(inode->i_mode)) 1559 return -EINVAL; 1560 1561 if (IS_ENCRYPTED(inode) && 1562 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1563 return -EOPNOTSUPP; 1564 1565 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1566 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1567 FALLOC_FL_INSERT_RANGE)) 1568 return -EOPNOTSUPP; 1569 1570 inode_lock(inode); 1571 1572 if (mode & FALLOC_FL_PUNCH_HOLE) { 1573 if (offset >= inode->i_size) 1574 goto out; 1575 1576 ret = punch_hole(inode, offset, len); 1577 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1578 ret = f2fs_collapse_range(inode, offset, len); 1579 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1580 ret = f2fs_zero_range(inode, offset, len, mode); 1581 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1582 ret = f2fs_insert_range(inode, offset, len); 1583 } else { 1584 ret = expand_inode_data(inode, offset, len, mode); 1585 } 1586 1587 if (!ret) { 1588 inode->i_mtime = inode->i_ctime = current_time(inode); 1589 f2fs_mark_inode_dirty_sync(inode, false); 1590 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1591 } 1592 1593 out: 1594 inode_unlock(inode); 1595 1596 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1597 return ret; 1598 } 1599 1600 static int f2fs_release_file(struct inode *inode, struct file *filp) 1601 { 1602 /* 1603 * f2fs_relase_file is called at every close calls. So we should 1604 * not drop any inmemory pages by close called by other process. 1605 */ 1606 if (!(filp->f_mode & FMODE_WRITE) || 1607 atomic_read(&inode->i_writecount) != 1) 1608 return 0; 1609 1610 /* some remained atomic pages should discarded */ 1611 if (f2fs_is_atomic_file(inode)) 1612 f2fs_drop_inmem_pages(inode); 1613 if (f2fs_is_volatile_file(inode)) { 1614 set_inode_flag(inode, FI_DROP_CACHE); 1615 filemap_fdatawrite(inode->i_mapping); 1616 clear_inode_flag(inode, FI_DROP_CACHE); 1617 clear_inode_flag(inode, FI_VOLATILE_FILE); 1618 stat_dec_volatile_write(inode); 1619 } 1620 return 0; 1621 } 1622 1623 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1624 { 1625 struct inode *inode = file_inode(file); 1626 1627 /* 1628 * If the process doing a transaction is crashed, we should do 1629 * roll-back. Otherwise, other reader/write can see corrupted database 1630 * until all the writers close its file. Since this should be done 1631 * before dropping file lock, it needs to do in ->flush. 1632 */ 1633 if (f2fs_is_atomic_file(inode) && 1634 F2FS_I(inode)->inmem_task == current) 1635 f2fs_drop_inmem_pages(inode); 1636 return 0; 1637 } 1638 1639 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1640 { 1641 struct inode *inode = file_inode(filp); 1642 struct f2fs_inode_info *fi = F2FS_I(inode); 1643 unsigned int flags = fi->i_flags; 1644 1645 if (IS_ENCRYPTED(inode)) 1646 flags |= F2FS_ENCRYPT_FL; 1647 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 1648 flags |= F2FS_INLINE_DATA_FL; 1649 if (is_inode_flag_set(inode, FI_PIN_FILE)) 1650 flags |= F2FS_NOCOW_FL; 1651 1652 flags &= F2FS_FL_USER_VISIBLE; 1653 1654 return put_user(flags, (int __user *)arg); 1655 } 1656 1657 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags) 1658 { 1659 struct f2fs_inode_info *fi = F2FS_I(inode); 1660 unsigned int oldflags; 1661 1662 /* Is it quota file? Do not allow user to mess with it */ 1663 if (IS_NOQUOTA(inode)) 1664 return -EPERM; 1665 1666 flags = f2fs_mask_flags(inode->i_mode, flags); 1667 1668 oldflags = fi->i_flags; 1669 1670 if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL)) 1671 if (!capable(CAP_LINUX_IMMUTABLE)) 1672 return -EPERM; 1673 1674 flags = flags & F2FS_FL_USER_MODIFIABLE; 1675 flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE; 1676 fi->i_flags = flags; 1677 1678 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1679 set_inode_flag(inode, FI_PROJ_INHERIT); 1680 else 1681 clear_inode_flag(inode, FI_PROJ_INHERIT); 1682 1683 inode->i_ctime = current_time(inode); 1684 f2fs_set_inode_flags(inode); 1685 f2fs_mark_inode_dirty_sync(inode, true); 1686 return 0; 1687 } 1688 1689 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1690 { 1691 struct inode *inode = file_inode(filp); 1692 unsigned int flags; 1693 int ret; 1694 1695 if (!inode_owner_or_capable(inode)) 1696 return -EACCES; 1697 1698 if (get_user(flags, (int __user *)arg)) 1699 return -EFAULT; 1700 1701 ret = mnt_want_write_file(filp); 1702 if (ret) 1703 return ret; 1704 1705 inode_lock(inode); 1706 1707 ret = __f2fs_ioc_setflags(inode, flags); 1708 1709 inode_unlock(inode); 1710 mnt_drop_write_file(filp); 1711 return ret; 1712 } 1713 1714 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1715 { 1716 struct inode *inode = file_inode(filp); 1717 1718 return put_user(inode->i_generation, (int __user *)arg); 1719 } 1720 1721 static int f2fs_ioc_start_atomic_write(struct file *filp) 1722 { 1723 struct inode *inode = file_inode(filp); 1724 int ret; 1725 1726 if (!inode_owner_or_capable(inode)) 1727 return -EACCES; 1728 1729 if (!S_ISREG(inode->i_mode)) 1730 return -EINVAL; 1731 1732 ret = mnt_want_write_file(filp); 1733 if (ret) 1734 return ret; 1735 1736 inode_lock(inode); 1737 1738 if (f2fs_is_atomic_file(inode)) { 1739 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) 1740 ret = -EINVAL; 1741 goto out; 1742 } 1743 1744 ret = f2fs_convert_inline_inode(inode); 1745 if (ret) 1746 goto out; 1747 1748 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1749 1750 /* 1751 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 1752 * f2fs_is_atomic_file. 1753 */ 1754 if (get_dirty_pages(inode)) 1755 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING, 1756 "Unexpected flush for atomic writes: ino=%lu, npages=%u", 1757 inode->i_ino, get_dirty_pages(inode)); 1758 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 1759 if (ret) { 1760 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1761 goto out; 1762 } 1763 1764 set_inode_flag(inode, FI_ATOMIC_FILE); 1765 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 1766 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1767 1768 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1769 F2FS_I(inode)->inmem_task = current; 1770 stat_inc_atomic_write(inode); 1771 stat_update_max_atomic_write(inode); 1772 out: 1773 inode_unlock(inode); 1774 mnt_drop_write_file(filp); 1775 return ret; 1776 } 1777 1778 static int f2fs_ioc_commit_atomic_write(struct file *filp) 1779 { 1780 struct inode *inode = file_inode(filp); 1781 int ret; 1782 1783 if (!inode_owner_or_capable(inode)) 1784 return -EACCES; 1785 1786 ret = mnt_want_write_file(filp); 1787 if (ret) 1788 return ret; 1789 1790 f2fs_balance_fs(F2FS_I_SB(inode), true); 1791 1792 inode_lock(inode); 1793 1794 if (f2fs_is_volatile_file(inode)) { 1795 ret = -EINVAL; 1796 goto err_out; 1797 } 1798 1799 if (f2fs_is_atomic_file(inode)) { 1800 ret = f2fs_commit_inmem_pages(inode); 1801 if (ret) 1802 goto err_out; 1803 1804 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1805 if (!ret) { 1806 clear_inode_flag(inode, FI_ATOMIC_FILE); 1807 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 1808 stat_dec_atomic_write(inode); 1809 } 1810 } else { 1811 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 1812 } 1813 err_out: 1814 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 1815 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 1816 ret = -EINVAL; 1817 } 1818 inode_unlock(inode); 1819 mnt_drop_write_file(filp); 1820 return ret; 1821 } 1822 1823 static int f2fs_ioc_start_volatile_write(struct file *filp) 1824 { 1825 struct inode *inode = file_inode(filp); 1826 int ret; 1827 1828 if (!inode_owner_or_capable(inode)) 1829 return -EACCES; 1830 1831 if (!S_ISREG(inode->i_mode)) 1832 return -EINVAL; 1833 1834 ret = mnt_want_write_file(filp); 1835 if (ret) 1836 return ret; 1837 1838 inode_lock(inode); 1839 1840 if (f2fs_is_volatile_file(inode)) 1841 goto out; 1842 1843 ret = f2fs_convert_inline_inode(inode); 1844 if (ret) 1845 goto out; 1846 1847 stat_inc_volatile_write(inode); 1848 stat_update_max_volatile_write(inode); 1849 1850 set_inode_flag(inode, FI_VOLATILE_FILE); 1851 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1852 out: 1853 inode_unlock(inode); 1854 mnt_drop_write_file(filp); 1855 return ret; 1856 } 1857 1858 static int f2fs_ioc_release_volatile_write(struct file *filp) 1859 { 1860 struct inode *inode = file_inode(filp); 1861 int ret; 1862 1863 if (!inode_owner_or_capable(inode)) 1864 return -EACCES; 1865 1866 ret = mnt_want_write_file(filp); 1867 if (ret) 1868 return ret; 1869 1870 inode_lock(inode); 1871 1872 if (!f2fs_is_volatile_file(inode)) 1873 goto out; 1874 1875 if (!f2fs_is_first_block_written(inode)) { 1876 ret = truncate_partial_data_page(inode, 0, true); 1877 goto out; 1878 } 1879 1880 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 1881 out: 1882 inode_unlock(inode); 1883 mnt_drop_write_file(filp); 1884 return ret; 1885 } 1886 1887 static int f2fs_ioc_abort_volatile_write(struct file *filp) 1888 { 1889 struct inode *inode = file_inode(filp); 1890 int ret; 1891 1892 if (!inode_owner_or_capable(inode)) 1893 return -EACCES; 1894 1895 ret = mnt_want_write_file(filp); 1896 if (ret) 1897 return ret; 1898 1899 inode_lock(inode); 1900 1901 if (f2fs_is_atomic_file(inode)) 1902 f2fs_drop_inmem_pages(inode); 1903 if (f2fs_is_volatile_file(inode)) { 1904 clear_inode_flag(inode, FI_VOLATILE_FILE); 1905 stat_dec_volatile_write(inode); 1906 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1907 } 1908 1909 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 1910 1911 inode_unlock(inode); 1912 1913 mnt_drop_write_file(filp); 1914 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1915 return ret; 1916 } 1917 1918 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 1919 { 1920 struct inode *inode = file_inode(filp); 1921 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1922 struct super_block *sb = sbi->sb; 1923 __u32 in; 1924 int ret = 0; 1925 1926 if (!capable(CAP_SYS_ADMIN)) 1927 return -EPERM; 1928 1929 if (get_user(in, (__u32 __user *)arg)) 1930 return -EFAULT; 1931 1932 if (in != F2FS_GOING_DOWN_FULLSYNC) { 1933 ret = mnt_want_write_file(filp); 1934 if (ret) 1935 return ret; 1936 } 1937 1938 switch (in) { 1939 case F2FS_GOING_DOWN_FULLSYNC: 1940 sb = freeze_bdev(sb->s_bdev); 1941 if (IS_ERR(sb)) { 1942 ret = PTR_ERR(sb); 1943 goto out; 1944 } 1945 if (sb) { 1946 f2fs_stop_checkpoint(sbi, false); 1947 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 1948 thaw_bdev(sb->s_bdev, sb); 1949 } 1950 break; 1951 case F2FS_GOING_DOWN_METASYNC: 1952 /* do checkpoint only */ 1953 ret = f2fs_sync_fs(sb, 1); 1954 if (ret) 1955 goto out; 1956 f2fs_stop_checkpoint(sbi, false); 1957 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 1958 break; 1959 case F2FS_GOING_DOWN_NOSYNC: 1960 f2fs_stop_checkpoint(sbi, false); 1961 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 1962 break; 1963 case F2FS_GOING_DOWN_METAFLUSH: 1964 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 1965 f2fs_stop_checkpoint(sbi, false); 1966 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 1967 break; 1968 case F2FS_GOING_DOWN_NEED_FSCK: 1969 set_sbi_flag(sbi, SBI_NEED_FSCK); 1970 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 1971 set_sbi_flag(sbi, SBI_IS_DIRTY); 1972 /* do checkpoint only */ 1973 ret = f2fs_sync_fs(sb, 1); 1974 goto out; 1975 default: 1976 ret = -EINVAL; 1977 goto out; 1978 } 1979 1980 f2fs_stop_gc_thread(sbi); 1981 f2fs_stop_discard_thread(sbi); 1982 1983 f2fs_drop_discard_cmd(sbi); 1984 clear_opt(sbi, DISCARD); 1985 1986 f2fs_update_time(sbi, REQ_TIME); 1987 out: 1988 if (in != F2FS_GOING_DOWN_FULLSYNC) 1989 mnt_drop_write_file(filp); 1990 1991 trace_f2fs_shutdown(sbi, in, ret); 1992 1993 return ret; 1994 } 1995 1996 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 1997 { 1998 struct inode *inode = file_inode(filp); 1999 struct super_block *sb = inode->i_sb; 2000 struct request_queue *q = bdev_get_queue(sb->s_bdev); 2001 struct fstrim_range range; 2002 int ret; 2003 2004 if (!capable(CAP_SYS_ADMIN)) 2005 return -EPERM; 2006 2007 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2008 return -EOPNOTSUPP; 2009 2010 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2011 sizeof(range))) 2012 return -EFAULT; 2013 2014 ret = mnt_want_write_file(filp); 2015 if (ret) 2016 return ret; 2017 2018 range.minlen = max((unsigned int)range.minlen, 2019 q->limits.discard_granularity); 2020 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2021 mnt_drop_write_file(filp); 2022 if (ret < 0) 2023 return ret; 2024 2025 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2026 sizeof(range))) 2027 return -EFAULT; 2028 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2029 return 0; 2030 } 2031 2032 static bool uuid_is_nonzero(__u8 u[16]) 2033 { 2034 int i; 2035 2036 for (i = 0; i < 16; i++) 2037 if (u[i]) 2038 return true; 2039 return false; 2040 } 2041 2042 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2043 { 2044 struct inode *inode = file_inode(filp); 2045 2046 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2047 return -EOPNOTSUPP; 2048 2049 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2050 2051 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2052 } 2053 2054 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2055 { 2056 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2057 return -EOPNOTSUPP; 2058 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2059 } 2060 2061 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2062 { 2063 struct inode *inode = file_inode(filp); 2064 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2065 int err; 2066 2067 if (!f2fs_sb_has_encrypt(sbi)) 2068 return -EOPNOTSUPP; 2069 2070 err = mnt_want_write_file(filp); 2071 if (err) 2072 return err; 2073 2074 down_write(&sbi->sb_lock); 2075 2076 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2077 goto got_it; 2078 2079 /* update superblock with uuid */ 2080 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2081 2082 err = f2fs_commit_super(sbi, false); 2083 if (err) { 2084 /* undo new data */ 2085 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2086 goto out_err; 2087 } 2088 got_it: 2089 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2090 16)) 2091 err = -EFAULT; 2092 out_err: 2093 up_write(&sbi->sb_lock); 2094 mnt_drop_write_file(filp); 2095 return err; 2096 } 2097 2098 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2099 { 2100 struct inode *inode = file_inode(filp); 2101 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2102 __u32 sync; 2103 int ret; 2104 2105 if (!capable(CAP_SYS_ADMIN)) 2106 return -EPERM; 2107 2108 if (get_user(sync, (__u32 __user *)arg)) 2109 return -EFAULT; 2110 2111 if (f2fs_readonly(sbi->sb)) 2112 return -EROFS; 2113 2114 ret = mnt_want_write_file(filp); 2115 if (ret) 2116 return ret; 2117 2118 if (!sync) { 2119 if (!mutex_trylock(&sbi->gc_mutex)) { 2120 ret = -EBUSY; 2121 goto out; 2122 } 2123 } else { 2124 mutex_lock(&sbi->gc_mutex); 2125 } 2126 2127 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO); 2128 out: 2129 mnt_drop_write_file(filp); 2130 return ret; 2131 } 2132 2133 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2134 { 2135 struct inode *inode = file_inode(filp); 2136 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2137 struct f2fs_gc_range range; 2138 u64 end; 2139 int ret; 2140 2141 if (!capable(CAP_SYS_ADMIN)) 2142 return -EPERM; 2143 2144 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2145 sizeof(range))) 2146 return -EFAULT; 2147 2148 if (f2fs_readonly(sbi->sb)) 2149 return -EROFS; 2150 2151 end = range.start + range.len; 2152 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) { 2153 return -EINVAL; 2154 } 2155 2156 ret = mnt_want_write_file(filp); 2157 if (ret) 2158 return ret; 2159 2160 do_more: 2161 if (!range.sync) { 2162 if (!mutex_trylock(&sbi->gc_mutex)) { 2163 ret = -EBUSY; 2164 goto out; 2165 } 2166 } else { 2167 mutex_lock(&sbi->gc_mutex); 2168 } 2169 2170 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start)); 2171 range.start += BLKS_PER_SEC(sbi); 2172 if (range.start <= end) 2173 goto do_more; 2174 out: 2175 mnt_drop_write_file(filp); 2176 return ret; 2177 } 2178 2179 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2180 { 2181 struct inode *inode = file_inode(filp); 2182 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2183 int ret; 2184 2185 if (!capable(CAP_SYS_ADMIN)) 2186 return -EPERM; 2187 2188 if (f2fs_readonly(sbi->sb)) 2189 return -EROFS; 2190 2191 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2192 f2fs_msg(sbi->sb, KERN_INFO, 2193 "Skipping Checkpoint. Checkpoints currently disabled."); 2194 return -EINVAL; 2195 } 2196 2197 ret = mnt_want_write_file(filp); 2198 if (ret) 2199 return ret; 2200 2201 ret = f2fs_sync_fs(sbi->sb, 1); 2202 2203 mnt_drop_write_file(filp); 2204 return ret; 2205 } 2206 2207 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2208 struct file *filp, 2209 struct f2fs_defragment *range) 2210 { 2211 struct inode *inode = file_inode(filp); 2212 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2213 .m_seg_type = NO_CHECK_TYPE , 2214 .m_may_create = false }; 2215 struct extent_info ei = {0, 0, 0}; 2216 pgoff_t pg_start, pg_end, next_pgofs; 2217 unsigned int blk_per_seg = sbi->blocks_per_seg; 2218 unsigned int total = 0, sec_num; 2219 block_t blk_end = 0; 2220 bool fragmented = false; 2221 int err; 2222 2223 /* if in-place-update policy is enabled, don't waste time here */ 2224 if (f2fs_should_update_inplace(inode, NULL)) 2225 return -EINVAL; 2226 2227 pg_start = range->start >> PAGE_SHIFT; 2228 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2229 2230 f2fs_balance_fs(sbi, true); 2231 2232 inode_lock(inode); 2233 2234 /* writeback all dirty pages in the range */ 2235 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2236 range->start + range->len - 1); 2237 if (err) 2238 goto out; 2239 2240 /* 2241 * lookup mapping info in extent cache, skip defragmenting if physical 2242 * block addresses are continuous. 2243 */ 2244 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2245 if (ei.fofs + ei.len >= pg_end) 2246 goto out; 2247 } 2248 2249 map.m_lblk = pg_start; 2250 map.m_next_pgofs = &next_pgofs; 2251 2252 /* 2253 * lookup mapping info in dnode page cache, skip defragmenting if all 2254 * physical block addresses are continuous even if there are hole(s) 2255 * in logical blocks. 2256 */ 2257 while (map.m_lblk < pg_end) { 2258 map.m_len = pg_end - map.m_lblk; 2259 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2260 if (err) 2261 goto out; 2262 2263 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2264 map.m_lblk = next_pgofs; 2265 continue; 2266 } 2267 2268 if (blk_end && blk_end != map.m_pblk) 2269 fragmented = true; 2270 2271 /* record total count of block that we're going to move */ 2272 total += map.m_len; 2273 2274 blk_end = map.m_pblk + map.m_len; 2275 2276 map.m_lblk += map.m_len; 2277 } 2278 2279 if (!fragmented) 2280 goto out; 2281 2282 sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi); 2283 2284 /* 2285 * make sure there are enough free section for LFS allocation, this can 2286 * avoid defragment running in SSR mode when free section are allocated 2287 * intensively 2288 */ 2289 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2290 err = -EAGAIN; 2291 goto out; 2292 } 2293 2294 map.m_lblk = pg_start; 2295 map.m_len = pg_end - pg_start; 2296 total = 0; 2297 2298 while (map.m_lblk < pg_end) { 2299 pgoff_t idx; 2300 int cnt = 0; 2301 2302 do_map: 2303 map.m_len = pg_end - map.m_lblk; 2304 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2305 if (err) 2306 goto clear_out; 2307 2308 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2309 map.m_lblk = next_pgofs; 2310 continue; 2311 } 2312 2313 set_inode_flag(inode, FI_DO_DEFRAG); 2314 2315 idx = map.m_lblk; 2316 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2317 struct page *page; 2318 2319 page = f2fs_get_lock_data_page(inode, idx, true); 2320 if (IS_ERR(page)) { 2321 err = PTR_ERR(page); 2322 goto clear_out; 2323 } 2324 2325 set_page_dirty(page); 2326 f2fs_put_page(page, 1); 2327 2328 idx++; 2329 cnt++; 2330 total++; 2331 } 2332 2333 map.m_lblk = idx; 2334 2335 if (idx < pg_end && cnt < blk_per_seg) 2336 goto do_map; 2337 2338 clear_inode_flag(inode, FI_DO_DEFRAG); 2339 2340 err = filemap_fdatawrite(inode->i_mapping); 2341 if (err) 2342 goto out; 2343 } 2344 clear_out: 2345 clear_inode_flag(inode, FI_DO_DEFRAG); 2346 out: 2347 inode_unlock(inode); 2348 if (!err) 2349 range->len = (u64)total << PAGE_SHIFT; 2350 return err; 2351 } 2352 2353 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2354 { 2355 struct inode *inode = file_inode(filp); 2356 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2357 struct f2fs_defragment range; 2358 int err; 2359 2360 if (!capable(CAP_SYS_ADMIN)) 2361 return -EPERM; 2362 2363 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2364 return -EINVAL; 2365 2366 if (f2fs_readonly(sbi->sb)) 2367 return -EROFS; 2368 2369 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2370 sizeof(range))) 2371 return -EFAULT; 2372 2373 /* verify alignment of offset & size */ 2374 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2375 return -EINVAL; 2376 2377 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2378 sbi->max_file_blocks)) 2379 return -EINVAL; 2380 2381 err = mnt_want_write_file(filp); 2382 if (err) 2383 return err; 2384 2385 err = f2fs_defragment_range(sbi, filp, &range); 2386 mnt_drop_write_file(filp); 2387 2388 f2fs_update_time(sbi, REQ_TIME); 2389 if (err < 0) 2390 return err; 2391 2392 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2393 sizeof(range))) 2394 return -EFAULT; 2395 2396 return 0; 2397 } 2398 2399 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2400 struct file *file_out, loff_t pos_out, size_t len) 2401 { 2402 struct inode *src = file_inode(file_in); 2403 struct inode *dst = file_inode(file_out); 2404 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2405 size_t olen = len, dst_max_i_size = 0; 2406 size_t dst_osize; 2407 int ret; 2408 2409 if (file_in->f_path.mnt != file_out->f_path.mnt || 2410 src->i_sb != dst->i_sb) 2411 return -EXDEV; 2412 2413 if (unlikely(f2fs_readonly(src->i_sb))) 2414 return -EROFS; 2415 2416 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2417 return -EINVAL; 2418 2419 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2420 return -EOPNOTSUPP; 2421 2422 if (src == dst) { 2423 if (pos_in == pos_out) 2424 return 0; 2425 if (pos_out > pos_in && pos_out < pos_in + len) 2426 return -EINVAL; 2427 } 2428 2429 inode_lock(src); 2430 if (src != dst) { 2431 ret = -EBUSY; 2432 if (!inode_trylock(dst)) 2433 goto out; 2434 } 2435 2436 ret = -EINVAL; 2437 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2438 goto out_unlock; 2439 if (len == 0) 2440 olen = len = src->i_size - pos_in; 2441 if (pos_in + len == src->i_size) 2442 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2443 if (len == 0) { 2444 ret = 0; 2445 goto out_unlock; 2446 } 2447 2448 dst_osize = dst->i_size; 2449 if (pos_out + olen > dst->i_size) 2450 dst_max_i_size = pos_out + olen; 2451 2452 /* verify the end result is block aligned */ 2453 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2454 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2455 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2456 goto out_unlock; 2457 2458 ret = f2fs_convert_inline_inode(src); 2459 if (ret) 2460 goto out_unlock; 2461 2462 ret = f2fs_convert_inline_inode(dst); 2463 if (ret) 2464 goto out_unlock; 2465 2466 /* write out all dirty pages from offset */ 2467 ret = filemap_write_and_wait_range(src->i_mapping, 2468 pos_in, pos_in + len); 2469 if (ret) 2470 goto out_unlock; 2471 2472 ret = filemap_write_and_wait_range(dst->i_mapping, 2473 pos_out, pos_out + len); 2474 if (ret) 2475 goto out_unlock; 2476 2477 f2fs_balance_fs(sbi, true); 2478 2479 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2480 if (src != dst) { 2481 ret = -EBUSY; 2482 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2483 goto out_src; 2484 } 2485 2486 f2fs_lock_op(sbi); 2487 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2488 pos_out >> F2FS_BLKSIZE_BITS, 2489 len >> F2FS_BLKSIZE_BITS, false); 2490 2491 if (!ret) { 2492 if (dst_max_i_size) 2493 f2fs_i_size_write(dst, dst_max_i_size); 2494 else if (dst_osize != dst->i_size) 2495 f2fs_i_size_write(dst, dst_osize); 2496 } 2497 f2fs_unlock_op(sbi); 2498 2499 if (src != dst) 2500 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2501 out_src: 2502 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2503 out_unlock: 2504 if (src != dst) 2505 inode_unlock(dst); 2506 out: 2507 inode_unlock(src); 2508 return ret; 2509 } 2510 2511 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2512 { 2513 struct f2fs_move_range range; 2514 struct fd dst; 2515 int err; 2516 2517 if (!(filp->f_mode & FMODE_READ) || 2518 !(filp->f_mode & FMODE_WRITE)) 2519 return -EBADF; 2520 2521 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2522 sizeof(range))) 2523 return -EFAULT; 2524 2525 dst = fdget(range.dst_fd); 2526 if (!dst.file) 2527 return -EBADF; 2528 2529 if (!(dst.file->f_mode & FMODE_WRITE)) { 2530 err = -EBADF; 2531 goto err_out; 2532 } 2533 2534 err = mnt_want_write_file(filp); 2535 if (err) 2536 goto err_out; 2537 2538 err = f2fs_move_file_range(filp, range.pos_in, dst.file, 2539 range.pos_out, range.len); 2540 2541 mnt_drop_write_file(filp); 2542 if (err) 2543 goto err_out; 2544 2545 if (copy_to_user((struct f2fs_move_range __user *)arg, 2546 &range, sizeof(range))) 2547 err = -EFAULT; 2548 err_out: 2549 fdput(dst); 2550 return err; 2551 } 2552 2553 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2554 { 2555 struct inode *inode = file_inode(filp); 2556 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2557 struct sit_info *sm = SIT_I(sbi); 2558 unsigned int start_segno = 0, end_segno = 0; 2559 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2560 struct f2fs_flush_device range; 2561 int ret; 2562 2563 if (!capable(CAP_SYS_ADMIN)) 2564 return -EPERM; 2565 2566 if (f2fs_readonly(sbi->sb)) 2567 return -EROFS; 2568 2569 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2570 return -EINVAL; 2571 2572 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2573 sizeof(range))) 2574 return -EFAULT; 2575 2576 if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num || 2577 __is_large_section(sbi)) { 2578 f2fs_msg(sbi->sb, KERN_WARNING, 2579 "Can't flush %u in %d for segs_per_sec %u != 1\n", 2580 range.dev_num, sbi->s_ndevs, 2581 sbi->segs_per_sec); 2582 return -EINVAL; 2583 } 2584 2585 ret = mnt_want_write_file(filp); 2586 if (ret) 2587 return ret; 2588 2589 if (range.dev_num != 0) 2590 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2591 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2592 2593 start_segno = sm->last_victim[FLUSH_DEVICE]; 2594 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2595 start_segno = dev_start_segno; 2596 end_segno = min(start_segno + range.segments, dev_end_segno); 2597 2598 while (start_segno < end_segno) { 2599 if (!mutex_trylock(&sbi->gc_mutex)) { 2600 ret = -EBUSY; 2601 goto out; 2602 } 2603 sm->last_victim[GC_CB] = end_segno + 1; 2604 sm->last_victim[GC_GREEDY] = end_segno + 1; 2605 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2606 ret = f2fs_gc(sbi, true, true, start_segno); 2607 if (ret == -EAGAIN) 2608 ret = 0; 2609 else if (ret < 0) 2610 break; 2611 start_segno++; 2612 } 2613 out: 2614 mnt_drop_write_file(filp); 2615 return ret; 2616 } 2617 2618 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2619 { 2620 struct inode *inode = file_inode(filp); 2621 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2622 2623 /* Must validate to set it with SQLite behavior in Android. */ 2624 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2625 2626 return put_user(sb_feature, (u32 __user *)arg); 2627 } 2628 2629 #ifdef CONFIG_QUOTA 2630 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2631 { 2632 struct dquot *transfer_to[MAXQUOTAS] = {}; 2633 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2634 struct super_block *sb = sbi->sb; 2635 int err = 0; 2636 2637 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2638 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2639 err = __dquot_transfer(inode, transfer_to); 2640 if (err) 2641 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2642 dqput(transfer_to[PRJQUOTA]); 2643 } 2644 return err; 2645 } 2646 2647 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 2648 { 2649 struct inode *inode = file_inode(filp); 2650 struct f2fs_inode_info *fi = F2FS_I(inode); 2651 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2652 struct page *ipage; 2653 kprojid_t kprojid; 2654 int err; 2655 2656 if (!f2fs_sb_has_project_quota(sbi)) { 2657 if (projid != F2FS_DEF_PROJID) 2658 return -EOPNOTSUPP; 2659 else 2660 return 0; 2661 } 2662 2663 if (!f2fs_has_extra_attr(inode)) 2664 return -EOPNOTSUPP; 2665 2666 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 2667 2668 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 2669 return 0; 2670 2671 err = -EPERM; 2672 /* Is it quota file? Do not allow user to mess with it */ 2673 if (IS_NOQUOTA(inode)) 2674 return err; 2675 2676 ipage = f2fs_get_node_page(sbi, inode->i_ino); 2677 if (IS_ERR(ipage)) 2678 return PTR_ERR(ipage); 2679 2680 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 2681 i_projid)) { 2682 err = -EOVERFLOW; 2683 f2fs_put_page(ipage, 1); 2684 return err; 2685 } 2686 f2fs_put_page(ipage, 1); 2687 2688 err = dquot_initialize(inode); 2689 if (err) 2690 return err; 2691 2692 f2fs_lock_op(sbi); 2693 err = f2fs_transfer_project_quota(inode, kprojid); 2694 if (err) 2695 goto out_unlock; 2696 2697 F2FS_I(inode)->i_projid = kprojid; 2698 inode->i_ctime = current_time(inode); 2699 f2fs_mark_inode_dirty_sync(inode, true); 2700 out_unlock: 2701 f2fs_unlock_op(sbi); 2702 return err; 2703 } 2704 #else 2705 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2706 { 2707 return 0; 2708 } 2709 2710 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 2711 { 2712 if (projid != F2FS_DEF_PROJID) 2713 return -EOPNOTSUPP; 2714 return 0; 2715 } 2716 #endif 2717 2718 /* Transfer internal flags to xflags */ 2719 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags) 2720 { 2721 __u32 xflags = 0; 2722 2723 if (iflags & F2FS_SYNC_FL) 2724 xflags |= FS_XFLAG_SYNC; 2725 if (iflags & F2FS_IMMUTABLE_FL) 2726 xflags |= FS_XFLAG_IMMUTABLE; 2727 if (iflags & F2FS_APPEND_FL) 2728 xflags |= FS_XFLAG_APPEND; 2729 if (iflags & F2FS_NODUMP_FL) 2730 xflags |= FS_XFLAG_NODUMP; 2731 if (iflags & F2FS_NOATIME_FL) 2732 xflags |= FS_XFLAG_NOATIME; 2733 if (iflags & F2FS_PROJINHERIT_FL) 2734 xflags |= FS_XFLAG_PROJINHERIT; 2735 return xflags; 2736 } 2737 2738 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \ 2739 FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \ 2740 FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT) 2741 2742 /* Transfer xflags flags to internal */ 2743 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags) 2744 { 2745 unsigned long iflags = 0; 2746 2747 if (xflags & FS_XFLAG_SYNC) 2748 iflags |= F2FS_SYNC_FL; 2749 if (xflags & FS_XFLAG_IMMUTABLE) 2750 iflags |= F2FS_IMMUTABLE_FL; 2751 if (xflags & FS_XFLAG_APPEND) 2752 iflags |= F2FS_APPEND_FL; 2753 if (xflags & FS_XFLAG_NODUMP) 2754 iflags |= F2FS_NODUMP_FL; 2755 if (xflags & FS_XFLAG_NOATIME) 2756 iflags |= F2FS_NOATIME_FL; 2757 if (xflags & FS_XFLAG_PROJINHERIT) 2758 iflags |= F2FS_PROJINHERIT_FL; 2759 2760 return iflags; 2761 } 2762 2763 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg) 2764 { 2765 struct inode *inode = file_inode(filp); 2766 struct f2fs_inode_info *fi = F2FS_I(inode); 2767 struct fsxattr fa; 2768 2769 memset(&fa, 0, sizeof(struct fsxattr)); 2770 fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags & 2771 F2FS_FL_USER_VISIBLE); 2772 2773 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 2774 fa.fsx_projid = (__u32)from_kprojid(&init_user_ns, 2775 fi->i_projid); 2776 2777 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa))) 2778 return -EFAULT; 2779 return 0; 2780 } 2781 2782 static int f2fs_ioctl_check_project(struct inode *inode, struct fsxattr *fa) 2783 { 2784 /* 2785 * Project Quota ID state is only allowed to change from within the init 2786 * namespace. Enforce that restriction only if we are trying to change 2787 * the quota ID state. Everything else is allowed in user namespaces. 2788 */ 2789 if (current_user_ns() == &init_user_ns) 2790 return 0; 2791 2792 if (__kprojid_val(F2FS_I(inode)->i_projid) != fa->fsx_projid) 2793 return -EINVAL; 2794 2795 if (F2FS_I(inode)->i_flags & F2FS_PROJINHERIT_FL) { 2796 if (!(fa->fsx_xflags & FS_XFLAG_PROJINHERIT)) 2797 return -EINVAL; 2798 } else { 2799 if (fa->fsx_xflags & FS_XFLAG_PROJINHERIT) 2800 return -EINVAL; 2801 } 2802 2803 return 0; 2804 } 2805 2806 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg) 2807 { 2808 struct inode *inode = file_inode(filp); 2809 struct f2fs_inode_info *fi = F2FS_I(inode); 2810 struct fsxattr fa; 2811 unsigned int flags; 2812 int err; 2813 2814 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa))) 2815 return -EFAULT; 2816 2817 /* Make sure caller has proper permission */ 2818 if (!inode_owner_or_capable(inode)) 2819 return -EACCES; 2820 2821 if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS) 2822 return -EOPNOTSUPP; 2823 2824 flags = f2fs_xflags_to_iflags(fa.fsx_xflags); 2825 if (f2fs_mask_flags(inode->i_mode, flags) != flags) 2826 return -EOPNOTSUPP; 2827 2828 err = mnt_want_write_file(filp); 2829 if (err) 2830 return err; 2831 2832 inode_lock(inode); 2833 err = f2fs_ioctl_check_project(inode, &fa); 2834 if (err) 2835 goto out; 2836 flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) | 2837 (flags & F2FS_FL_XFLAG_VISIBLE); 2838 err = __f2fs_ioc_setflags(inode, flags); 2839 if (err) 2840 goto out; 2841 2842 err = f2fs_ioc_setproject(filp, fa.fsx_projid); 2843 out: 2844 inode_unlock(inode); 2845 mnt_drop_write_file(filp); 2846 return err; 2847 } 2848 2849 int f2fs_pin_file_control(struct inode *inode, bool inc) 2850 { 2851 struct f2fs_inode_info *fi = F2FS_I(inode); 2852 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2853 2854 /* Use i_gc_failures for normal file as a risk signal. */ 2855 if (inc) 2856 f2fs_i_gc_failures_write(inode, 2857 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 2858 2859 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 2860 f2fs_msg(sbi->sb, KERN_WARNING, 2861 "%s: Enable GC = ino %lx after %x GC trials\n", 2862 __func__, inode->i_ino, 2863 fi->i_gc_failures[GC_FAILURE_PIN]); 2864 clear_inode_flag(inode, FI_PIN_FILE); 2865 return -EAGAIN; 2866 } 2867 return 0; 2868 } 2869 2870 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 2871 { 2872 struct inode *inode = file_inode(filp); 2873 __u32 pin; 2874 int ret = 0; 2875 2876 if (!capable(CAP_SYS_ADMIN)) 2877 return -EPERM; 2878 2879 if (get_user(pin, (__u32 __user *)arg)) 2880 return -EFAULT; 2881 2882 if (!S_ISREG(inode->i_mode)) 2883 return -EINVAL; 2884 2885 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 2886 return -EROFS; 2887 2888 ret = mnt_want_write_file(filp); 2889 if (ret) 2890 return ret; 2891 2892 inode_lock(inode); 2893 2894 if (f2fs_should_update_outplace(inode, NULL)) { 2895 ret = -EINVAL; 2896 goto out; 2897 } 2898 2899 if (!pin) { 2900 clear_inode_flag(inode, FI_PIN_FILE); 2901 f2fs_i_gc_failures_write(inode, 0); 2902 goto done; 2903 } 2904 2905 if (f2fs_pin_file_control(inode, false)) { 2906 ret = -EAGAIN; 2907 goto out; 2908 } 2909 ret = f2fs_convert_inline_inode(inode); 2910 if (ret) 2911 goto out; 2912 2913 set_inode_flag(inode, FI_PIN_FILE); 2914 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 2915 done: 2916 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2917 out: 2918 inode_unlock(inode); 2919 mnt_drop_write_file(filp); 2920 return ret; 2921 } 2922 2923 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 2924 { 2925 struct inode *inode = file_inode(filp); 2926 __u32 pin = 0; 2927 2928 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2929 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 2930 return put_user(pin, (u32 __user *)arg); 2931 } 2932 2933 int f2fs_precache_extents(struct inode *inode) 2934 { 2935 struct f2fs_inode_info *fi = F2FS_I(inode); 2936 struct f2fs_map_blocks map; 2937 pgoff_t m_next_extent; 2938 loff_t end; 2939 int err; 2940 2941 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 2942 return -EOPNOTSUPP; 2943 2944 map.m_lblk = 0; 2945 map.m_next_pgofs = NULL; 2946 map.m_next_extent = &m_next_extent; 2947 map.m_seg_type = NO_CHECK_TYPE; 2948 map.m_may_create = false; 2949 end = F2FS_I_SB(inode)->max_file_blocks; 2950 2951 while (map.m_lblk < end) { 2952 map.m_len = end - map.m_lblk; 2953 2954 down_write(&fi->i_gc_rwsem[WRITE]); 2955 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 2956 up_write(&fi->i_gc_rwsem[WRITE]); 2957 if (err) 2958 return err; 2959 2960 map.m_lblk = m_next_extent; 2961 } 2962 2963 return err; 2964 } 2965 2966 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 2967 { 2968 return f2fs_precache_extents(file_inode(filp)); 2969 } 2970 2971 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 2972 { 2973 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 2974 return -EIO; 2975 2976 switch (cmd) { 2977 case F2FS_IOC_GETFLAGS: 2978 return f2fs_ioc_getflags(filp, arg); 2979 case F2FS_IOC_SETFLAGS: 2980 return f2fs_ioc_setflags(filp, arg); 2981 case F2FS_IOC_GETVERSION: 2982 return f2fs_ioc_getversion(filp, arg); 2983 case F2FS_IOC_START_ATOMIC_WRITE: 2984 return f2fs_ioc_start_atomic_write(filp); 2985 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 2986 return f2fs_ioc_commit_atomic_write(filp); 2987 case F2FS_IOC_START_VOLATILE_WRITE: 2988 return f2fs_ioc_start_volatile_write(filp); 2989 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 2990 return f2fs_ioc_release_volatile_write(filp); 2991 case F2FS_IOC_ABORT_VOLATILE_WRITE: 2992 return f2fs_ioc_abort_volatile_write(filp); 2993 case F2FS_IOC_SHUTDOWN: 2994 return f2fs_ioc_shutdown(filp, arg); 2995 case FITRIM: 2996 return f2fs_ioc_fitrim(filp, arg); 2997 case F2FS_IOC_SET_ENCRYPTION_POLICY: 2998 return f2fs_ioc_set_encryption_policy(filp, arg); 2999 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3000 return f2fs_ioc_get_encryption_policy(filp, arg); 3001 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3002 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 3003 case F2FS_IOC_GARBAGE_COLLECT: 3004 return f2fs_ioc_gc(filp, arg); 3005 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3006 return f2fs_ioc_gc_range(filp, arg); 3007 case F2FS_IOC_WRITE_CHECKPOINT: 3008 return f2fs_ioc_write_checkpoint(filp, arg); 3009 case F2FS_IOC_DEFRAGMENT: 3010 return f2fs_ioc_defragment(filp, arg); 3011 case F2FS_IOC_MOVE_RANGE: 3012 return f2fs_ioc_move_range(filp, arg); 3013 case F2FS_IOC_FLUSH_DEVICE: 3014 return f2fs_ioc_flush_device(filp, arg); 3015 case F2FS_IOC_GET_FEATURES: 3016 return f2fs_ioc_get_features(filp, arg); 3017 case F2FS_IOC_FSGETXATTR: 3018 return f2fs_ioc_fsgetxattr(filp, arg); 3019 case F2FS_IOC_FSSETXATTR: 3020 return f2fs_ioc_fssetxattr(filp, arg); 3021 case F2FS_IOC_GET_PIN_FILE: 3022 return f2fs_ioc_get_pin_file(filp, arg); 3023 case F2FS_IOC_SET_PIN_FILE: 3024 return f2fs_ioc_set_pin_file(filp, arg); 3025 case F2FS_IOC_PRECACHE_EXTENTS: 3026 return f2fs_ioc_precache_extents(filp, arg); 3027 default: 3028 return -ENOTTY; 3029 } 3030 } 3031 3032 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3033 { 3034 struct file *file = iocb->ki_filp; 3035 struct inode *inode = file_inode(file); 3036 ssize_t ret; 3037 3038 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3039 return -EIO; 3040 3041 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 3042 return -EINVAL; 3043 3044 if (!inode_trylock(inode)) { 3045 if (iocb->ki_flags & IOCB_NOWAIT) 3046 return -EAGAIN; 3047 inode_lock(inode); 3048 } 3049 3050 ret = generic_write_checks(iocb, from); 3051 if (ret > 0) { 3052 bool preallocated = false; 3053 size_t target_size = 0; 3054 int err; 3055 3056 if (iov_iter_fault_in_readable(from, iov_iter_count(from))) 3057 set_inode_flag(inode, FI_NO_PREALLOC); 3058 3059 if ((iocb->ki_flags & IOCB_NOWAIT) && 3060 (iocb->ki_flags & IOCB_DIRECT)) { 3061 if (!f2fs_overwrite_io(inode, iocb->ki_pos, 3062 iov_iter_count(from)) || 3063 f2fs_has_inline_data(inode) || 3064 f2fs_force_buffered_io(inode, 3065 iocb, from)) { 3066 clear_inode_flag(inode, 3067 FI_NO_PREALLOC); 3068 inode_unlock(inode); 3069 return -EAGAIN; 3070 } 3071 3072 } else { 3073 preallocated = true; 3074 target_size = iocb->ki_pos + iov_iter_count(from); 3075 3076 err = f2fs_preallocate_blocks(iocb, from); 3077 if (err) { 3078 clear_inode_flag(inode, FI_NO_PREALLOC); 3079 inode_unlock(inode); 3080 return err; 3081 } 3082 } 3083 ret = __generic_file_write_iter(iocb, from); 3084 clear_inode_flag(inode, FI_NO_PREALLOC); 3085 3086 /* if we couldn't write data, we should deallocate blocks. */ 3087 if (preallocated && i_size_read(inode) < target_size) 3088 f2fs_truncate(inode); 3089 3090 if (ret > 0) 3091 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); 3092 } 3093 inode_unlock(inode); 3094 3095 if (ret > 0) 3096 ret = generic_write_sync(iocb, ret); 3097 return ret; 3098 } 3099 3100 #ifdef CONFIG_COMPAT 3101 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3102 { 3103 switch (cmd) { 3104 case F2FS_IOC32_GETFLAGS: 3105 cmd = F2FS_IOC_GETFLAGS; 3106 break; 3107 case F2FS_IOC32_SETFLAGS: 3108 cmd = F2FS_IOC_SETFLAGS; 3109 break; 3110 case F2FS_IOC32_GETVERSION: 3111 cmd = F2FS_IOC_GETVERSION; 3112 break; 3113 case F2FS_IOC_START_ATOMIC_WRITE: 3114 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3115 case F2FS_IOC_START_VOLATILE_WRITE: 3116 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3117 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3118 case F2FS_IOC_SHUTDOWN: 3119 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3120 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3121 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3122 case F2FS_IOC_GARBAGE_COLLECT: 3123 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3124 case F2FS_IOC_WRITE_CHECKPOINT: 3125 case F2FS_IOC_DEFRAGMENT: 3126 case F2FS_IOC_MOVE_RANGE: 3127 case F2FS_IOC_FLUSH_DEVICE: 3128 case F2FS_IOC_GET_FEATURES: 3129 case F2FS_IOC_FSGETXATTR: 3130 case F2FS_IOC_FSSETXATTR: 3131 case F2FS_IOC_GET_PIN_FILE: 3132 case F2FS_IOC_SET_PIN_FILE: 3133 case F2FS_IOC_PRECACHE_EXTENTS: 3134 break; 3135 default: 3136 return -ENOIOCTLCMD; 3137 } 3138 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 3139 } 3140 #endif 3141 3142 const struct file_operations f2fs_file_operations = { 3143 .llseek = f2fs_llseek, 3144 .read_iter = generic_file_read_iter, 3145 .write_iter = f2fs_file_write_iter, 3146 .open = f2fs_file_open, 3147 .release = f2fs_release_file, 3148 .mmap = f2fs_file_mmap, 3149 .flush = f2fs_file_flush, 3150 .fsync = f2fs_sync_file, 3151 .fallocate = f2fs_fallocate, 3152 .unlocked_ioctl = f2fs_ioctl, 3153 #ifdef CONFIG_COMPAT 3154 .compat_ioctl = f2fs_compat_ioctl, 3155 #endif 3156 .splice_read = generic_file_splice_read, 3157 .splice_write = iter_file_splice_write, 3158 }; 3159