xref: /openbmc/linux/fs/f2fs/file.c (revision f29119b301d598f245154edc797c69c712a8b7fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (ret & VM_FAULT_LOCKED)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		set_new_dnode(&dn, inode, NULL, NULL, 0);
117 		err = f2fs_get_block_locked(&dn, page->index);
118 	}
119 
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 	if (!need_alloc) {
122 		set_new_dnode(&dn, inode, NULL, NULL, 0);
123 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 		f2fs_put_dnode(&dn);
125 	}
126 #endif
127 	if (err) {
128 		unlock_page(page);
129 		goto out_sem;
130 	}
131 
132 	f2fs_wait_on_page_writeback(page, DATA, false, true);
133 
134 	/* wait for GCed page writeback via META_MAPPING */
135 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136 
137 	/*
138 	 * check to see if the page is mapped already (no holes)
139 	 */
140 	if (PageMappedToDisk(page))
141 		goto out_sem;
142 
143 	/* page is wholly or partially inside EOF */
144 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 						i_size_read(inode)) {
146 		loff_t offset;
147 
148 		offset = i_size_read(inode) & ~PAGE_MASK;
149 		zero_user_segment(page, offset, PAGE_SIZE);
150 	}
151 	set_page_dirty(page);
152 
153 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154 	f2fs_update_time(sbi, REQ_TIME);
155 
156 	trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158 	filemap_invalidate_unlock_shared(inode->i_mapping);
159 
160 	sb_end_pagefault(inode->i_sb);
161 err:
162 	return vmf_fs_error(err);
163 }
164 
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166 	.fault		= f2fs_filemap_fault,
167 	.map_pages	= filemap_map_pages,
168 	.page_mkwrite	= f2fs_vm_page_mkwrite,
169 };
170 
171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173 	struct dentry *dentry;
174 
175 	/*
176 	 * Make sure to get the non-deleted alias.  The alias associated with
177 	 * the open file descriptor being fsync()'ed may be deleted already.
178 	 */
179 	dentry = d_find_alias(inode);
180 	if (!dentry)
181 		return 0;
182 
183 	*pino = parent_ino(dentry);
184 	dput(dentry);
185 	return 1;
186 }
187 
188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
192 
193 	if (!S_ISREG(inode->i_mode))
194 		cp_reason = CP_NON_REGULAR;
195 	else if (f2fs_compressed_file(inode))
196 		cp_reason = CP_COMPRESSED;
197 	else if (inode->i_nlink != 1)
198 		cp_reason = CP_HARDLINK;
199 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200 		cp_reason = CP_SB_NEED_CP;
201 	else if (file_wrong_pino(inode))
202 		cp_reason = CP_WRONG_PINO;
203 	else if (!f2fs_space_for_roll_forward(sbi))
204 		cp_reason = CP_NO_SPC_ROLL;
205 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206 		cp_reason = CP_NODE_NEED_CP;
207 	else if (test_opt(sbi, FASTBOOT))
208 		cp_reason = CP_FASTBOOT_MODE;
209 	else if (F2FS_OPTION(sbi).active_logs == 2)
210 		cp_reason = CP_SPEC_LOG_NUM;
211 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214 							TRANS_DIR_INO))
215 		cp_reason = CP_RECOVER_DIR;
216 
217 	return cp_reason;
218 }
219 
220 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
221 {
222 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
223 	bool ret = false;
224 	/* But we need to avoid that there are some inode updates */
225 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
226 		ret = true;
227 	f2fs_put_page(i, 0);
228 	return ret;
229 }
230 
231 static void try_to_fix_pino(struct inode *inode)
232 {
233 	struct f2fs_inode_info *fi = F2FS_I(inode);
234 	nid_t pino;
235 
236 	f2fs_down_write(&fi->i_sem);
237 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
238 			get_parent_ino(inode, &pino)) {
239 		f2fs_i_pino_write(inode, pino);
240 		file_got_pino(inode);
241 	}
242 	f2fs_up_write(&fi->i_sem);
243 }
244 
245 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
246 						int datasync, bool atomic)
247 {
248 	struct inode *inode = file->f_mapping->host;
249 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
250 	nid_t ino = inode->i_ino;
251 	int ret = 0;
252 	enum cp_reason_type cp_reason = 0;
253 	struct writeback_control wbc = {
254 		.sync_mode = WB_SYNC_ALL,
255 		.nr_to_write = LONG_MAX,
256 		.for_reclaim = 0,
257 	};
258 	unsigned int seq_id = 0;
259 
260 	if (unlikely(f2fs_readonly(inode->i_sb)))
261 		return 0;
262 
263 	trace_f2fs_sync_file_enter(inode);
264 
265 	if (S_ISDIR(inode->i_mode))
266 		goto go_write;
267 
268 	/* if fdatasync is triggered, let's do in-place-update */
269 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
270 		set_inode_flag(inode, FI_NEED_IPU);
271 	ret = file_write_and_wait_range(file, start, end);
272 	clear_inode_flag(inode, FI_NEED_IPU);
273 
274 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
275 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
276 		return ret;
277 	}
278 
279 	/* if the inode is dirty, let's recover all the time */
280 	if (!f2fs_skip_inode_update(inode, datasync)) {
281 		f2fs_write_inode(inode, NULL);
282 		goto go_write;
283 	}
284 
285 	/*
286 	 * if there is no written data, don't waste time to write recovery info.
287 	 */
288 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
289 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
290 
291 		/* it may call write_inode just prior to fsync */
292 		if (need_inode_page_update(sbi, ino))
293 			goto go_write;
294 
295 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
296 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
297 			goto flush_out;
298 		goto out;
299 	} else {
300 		/*
301 		 * for OPU case, during fsync(), node can be persisted before
302 		 * data when lower device doesn't support write barrier, result
303 		 * in data corruption after SPO.
304 		 * So for strict fsync mode, force to use atomic write semantics
305 		 * to keep write order in between data/node and last node to
306 		 * avoid potential data corruption.
307 		 */
308 		if (F2FS_OPTION(sbi).fsync_mode ==
309 				FSYNC_MODE_STRICT && !atomic)
310 			atomic = true;
311 	}
312 go_write:
313 	/*
314 	 * Both of fdatasync() and fsync() are able to be recovered from
315 	 * sudden-power-off.
316 	 */
317 	f2fs_down_read(&F2FS_I(inode)->i_sem);
318 	cp_reason = need_do_checkpoint(inode);
319 	f2fs_up_read(&F2FS_I(inode)->i_sem);
320 
321 	if (cp_reason) {
322 		/* all the dirty node pages should be flushed for POR */
323 		ret = f2fs_sync_fs(inode->i_sb, 1);
324 
325 		/*
326 		 * We've secured consistency through sync_fs. Following pino
327 		 * will be used only for fsynced inodes after checkpoint.
328 		 */
329 		try_to_fix_pino(inode);
330 		clear_inode_flag(inode, FI_APPEND_WRITE);
331 		clear_inode_flag(inode, FI_UPDATE_WRITE);
332 		goto out;
333 	}
334 sync_nodes:
335 	atomic_inc(&sbi->wb_sync_req[NODE]);
336 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
337 	atomic_dec(&sbi->wb_sync_req[NODE]);
338 	if (ret)
339 		goto out;
340 
341 	/* if cp_error was enabled, we should avoid infinite loop */
342 	if (unlikely(f2fs_cp_error(sbi))) {
343 		ret = -EIO;
344 		goto out;
345 	}
346 
347 	if (f2fs_need_inode_block_update(sbi, ino)) {
348 		f2fs_mark_inode_dirty_sync(inode, true);
349 		f2fs_write_inode(inode, NULL);
350 		goto sync_nodes;
351 	}
352 
353 	/*
354 	 * If it's atomic_write, it's just fine to keep write ordering. So
355 	 * here we don't need to wait for node write completion, since we use
356 	 * node chain which serializes node blocks. If one of node writes are
357 	 * reordered, we can see simply broken chain, resulting in stopping
358 	 * roll-forward recovery. It means we'll recover all or none node blocks
359 	 * given fsync mark.
360 	 */
361 	if (!atomic) {
362 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
363 		if (ret)
364 			goto out;
365 	}
366 
367 	/* once recovery info is written, don't need to tack this */
368 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
369 	clear_inode_flag(inode, FI_APPEND_WRITE);
370 flush_out:
371 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
372 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
373 		ret = f2fs_issue_flush(sbi, inode->i_ino);
374 	if (!ret) {
375 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
376 		clear_inode_flag(inode, FI_UPDATE_WRITE);
377 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
378 	}
379 	f2fs_update_time(sbi, REQ_TIME);
380 out:
381 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
382 	return ret;
383 }
384 
385 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
386 {
387 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
388 		return -EIO;
389 	return f2fs_do_sync_file(file, start, end, datasync, false);
390 }
391 
392 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
393 				pgoff_t index, int whence)
394 {
395 	switch (whence) {
396 	case SEEK_DATA:
397 		if (__is_valid_data_blkaddr(blkaddr))
398 			return true;
399 		if (blkaddr == NEW_ADDR &&
400 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
401 			return true;
402 		break;
403 	case SEEK_HOLE:
404 		if (blkaddr == NULL_ADDR)
405 			return true;
406 		break;
407 	}
408 	return false;
409 }
410 
411 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
412 {
413 	struct inode *inode = file->f_mapping->host;
414 	loff_t maxbytes = inode->i_sb->s_maxbytes;
415 	struct dnode_of_data dn;
416 	pgoff_t pgofs, end_offset;
417 	loff_t data_ofs = offset;
418 	loff_t isize;
419 	int err = 0;
420 
421 	inode_lock(inode);
422 
423 	isize = i_size_read(inode);
424 	if (offset >= isize)
425 		goto fail;
426 
427 	/* handle inline data case */
428 	if (f2fs_has_inline_data(inode)) {
429 		if (whence == SEEK_HOLE) {
430 			data_ofs = isize;
431 			goto found;
432 		} else if (whence == SEEK_DATA) {
433 			data_ofs = offset;
434 			goto found;
435 		}
436 	}
437 
438 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
439 
440 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
441 		set_new_dnode(&dn, inode, NULL, NULL, 0);
442 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
443 		if (err && err != -ENOENT) {
444 			goto fail;
445 		} else if (err == -ENOENT) {
446 			/* direct node does not exists */
447 			if (whence == SEEK_DATA) {
448 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
449 				continue;
450 			} else {
451 				goto found;
452 			}
453 		}
454 
455 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
456 
457 		/* find data/hole in dnode block */
458 		for (; dn.ofs_in_node < end_offset;
459 				dn.ofs_in_node++, pgofs++,
460 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461 			block_t blkaddr;
462 
463 			blkaddr = f2fs_data_blkaddr(&dn);
464 
465 			if (__is_valid_data_blkaddr(blkaddr) &&
466 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
467 					blkaddr, DATA_GENERIC_ENHANCE)) {
468 				f2fs_put_dnode(&dn);
469 				goto fail;
470 			}
471 
472 			if (__found_offset(file->f_mapping, blkaddr,
473 							pgofs, whence)) {
474 				f2fs_put_dnode(&dn);
475 				goto found;
476 			}
477 		}
478 		f2fs_put_dnode(&dn);
479 	}
480 
481 	if (whence == SEEK_DATA)
482 		goto fail;
483 found:
484 	if (whence == SEEK_HOLE && data_ofs > isize)
485 		data_ofs = isize;
486 	inode_unlock(inode);
487 	return vfs_setpos(file, data_ofs, maxbytes);
488 fail:
489 	inode_unlock(inode);
490 	return -ENXIO;
491 }
492 
493 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
494 {
495 	struct inode *inode = file->f_mapping->host;
496 	loff_t maxbytes = inode->i_sb->s_maxbytes;
497 
498 	if (f2fs_compressed_file(inode))
499 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
500 
501 	switch (whence) {
502 	case SEEK_SET:
503 	case SEEK_CUR:
504 	case SEEK_END:
505 		return generic_file_llseek_size(file, offset, whence,
506 						maxbytes, i_size_read(inode));
507 	case SEEK_DATA:
508 	case SEEK_HOLE:
509 		if (offset < 0)
510 			return -ENXIO;
511 		return f2fs_seek_block(file, offset, whence);
512 	}
513 
514 	return -EINVAL;
515 }
516 
517 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
518 {
519 	struct inode *inode = file_inode(file);
520 
521 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
522 		return -EIO;
523 
524 	if (!f2fs_is_compress_backend_ready(inode))
525 		return -EOPNOTSUPP;
526 
527 	file_accessed(file);
528 	vma->vm_ops = &f2fs_file_vm_ops;
529 
530 	f2fs_down_read(&F2FS_I(inode)->i_sem);
531 	set_inode_flag(inode, FI_MMAP_FILE);
532 	f2fs_up_read(&F2FS_I(inode)->i_sem);
533 
534 	return 0;
535 }
536 
537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539 	int err = fscrypt_file_open(inode, filp);
540 
541 	if (err)
542 		return err;
543 
544 	if (!f2fs_is_compress_backend_ready(inode))
545 		return -EOPNOTSUPP;
546 
547 	err = fsverity_file_open(inode, filp);
548 	if (err)
549 		return err;
550 
551 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
552 	filp->f_mode |= FMODE_CAN_ODIRECT;
553 
554 	return dquot_file_open(inode, filp);
555 }
556 
557 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
558 {
559 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
560 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
561 	__le32 *addr;
562 	bool compressed_cluster = false;
563 	int cluster_index = 0, valid_blocks = 0;
564 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
565 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
566 
567 	addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
568 
569 	/* Assumption: truncation starts with cluster */
570 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
571 		block_t blkaddr = le32_to_cpu(*addr);
572 
573 		if (f2fs_compressed_file(dn->inode) &&
574 					!(cluster_index & (cluster_size - 1))) {
575 			if (compressed_cluster)
576 				f2fs_i_compr_blocks_update(dn->inode,
577 							valid_blocks, false);
578 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
579 			valid_blocks = 0;
580 		}
581 
582 		if (blkaddr == NULL_ADDR)
583 			continue;
584 
585 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
586 
587 		if (__is_valid_data_blkaddr(blkaddr)) {
588 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
589 					DATA_GENERIC_ENHANCE))
590 				continue;
591 			if (compressed_cluster)
592 				valid_blocks++;
593 		}
594 
595 		f2fs_invalidate_blocks(sbi, blkaddr);
596 
597 		if (!released || blkaddr != COMPRESS_ADDR)
598 			nr_free++;
599 	}
600 
601 	if (compressed_cluster)
602 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
603 
604 	if (nr_free) {
605 		pgoff_t fofs;
606 		/*
607 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
608 		 * we will invalidate all blkaddr in the whole range.
609 		 */
610 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
611 							dn->inode) + ofs;
612 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
613 		f2fs_update_age_extent_cache_range(dn, fofs, len);
614 		dec_valid_block_count(sbi, dn->inode, nr_free);
615 	}
616 	dn->ofs_in_node = ofs;
617 
618 	f2fs_update_time(sbi, REQ_TIME);
619 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
620 					 dn->ofs_in_node, nr_free);
621 }
622 
623 static int truncate_partial_data_page(struct inode *inode, u64 from,
624 								bool cache_only)
625 {
626 	loff_t offset = from & (PAGE_SIZE - 1);
627 	pgoff_t index = from >> PAGE_SHIFT;
628 	struct address_space *mapping = inode->i_mapping;
629 	struct page *page;
630 
631 	if (!offset && !cache_only)
632 		return 0;
633 
634 	if (cache_only) {
635 		page = find_lock_page(mapping, index);
636 		if (page && PageUptodate(page))
637 			goto truncate_out;
638 		f2fs_put_page(page, 1);
639 		return 0;
640 	}
641 
642 	page = f2fs_get_lock_data_page(inode, index, true);
643 	if (IS_ERR(page))
644 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
645 truncate_out:
646 	f2fs_wait_on_page_writeback(page, DATA, true, true);
647 	zero_user(page, offset, PAGE_SIZE - offset);
648 
649 	/* An encrypted inode should have a key and truncate the last page. */
650 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
651 	if (!cache_only)
652 		set_page_dirty(page);
653 	f2fs_put_page(page, 1);
654 	return 0;
655 }
656 
657 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
658 {
659 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
660 	struct dnode_of_data dn;
661 	pgoff_t free_from;
662 	int count = 0, err = 0;
663 	struct page *ipage;
664 	bool truncate_page = false;
665 
666 	trace_f2fs_truncate_blocks_enter(inode, from);
667 
668 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
669 
670 	if (free_from >= max_file_blocks(inode))
671 		goto free_partial;
672 
673 	if (lock)
674 		f2fs_lock_op(sbi);
675 
676 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
677 	if (IS_ERR(ipage)) {
678 		err = PTR_ERR(ipage);
679 		goto out;
680 	}
681 
682 	if (f2fs_has_inline_data(inode)) {
683 		f2fs_truncate_inline_inode(inode, ipage, from);
684 		f2fs_put_page(ipage, 1);
685 		truncate_page = true;
686 		goto out;
687 	}
688 
689 	set_new_dnode(&dn, inode, ipage, NULL, 0);
690 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
691 	if (err) {
692 		if (err == -ENOENT)
693 			goto free_next;
694 		goto out;
695 	}
696 
697 	count = ADDRS_PER_PAGE(dn.node_page, inode);
698 
699 	count -= dn.ofs_in_node;
700 	f2fs_bug_on(sbi, count < 0);
701 
702 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
703 		f2fs_truncate_data_blocks_range(&dn, count);
704 		free_from += count;
705 	}
706 
707 	f2fs_put_dnode(&dn);
708 free_next:
709 	err = f2fs_truncate_inode_blocks(inode, free_from);
710 out:
711 	if (lock)
712 		f2fs_unlock_op(sbi);
713 free_partial:
714 	/* lastly zero out the first data page */
715 	if (!err)
716 		err = truncate_partial_data_page(inode, from, truncate_page);
717 
718 	trace_f2fs_truncate_blocks_exit(inode, err);
719 	return err;
720 }
721 
722 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
723 {
724 	u64 free_from = from;
725 	int err;
726 
727 #ifdef CONFIG_F2FS_FS_COMPRESSION
728 	/*
729 	 * for compressed file, only support cluster size
730 	 * aligned truncation.
731 	 */
732 	if (f2fs_compressed_file(inode))
733 		free_from = round_up(from,
734 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
735 #endif
736 
737 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
738 	if (err)
739 		return err;
740 
741 #ifdef CONFIG_F2FS_FS_COMPRESSION
742 	/*
743 	 * For compressed file, after release compress blocks, don't allow write
744 	 * direct, but we should allow write direct after truncate to zero.
745 	 */
746 	if (f2fs_compressed_file(inode) && !free_from
747 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
748 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
749 
750 	if (from != free_from) {
751 		err = f2fs_truncate_partial_cluster(inode, from, lock);
752 		if (err)
753 			return err;
754 	}
755 #endif
756 
757 	return 0;
758 }
759 
760 int f2fs_truncate(struct inode *inode)
761 {
762 	int err;
763 
764 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
765 		return -EIO;
766 
767 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
768 				S_ISLNK(inode->i_mode)))
769 		return 0;
770 
771 	trace_f2fs_truncate(inode);
772 
773 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
774 		return -EIO;
775 
776 	err = f2fs_dquot_initialize(inode);
777 	if (err)
778 		return err;
779 
780 	/* we should check inline_data size */
781 	if (!f2fs_may_inline_data(inode)) {
782 		err = f2fs_convert_inline_inode(inode);
783 		if (err)
784 			return err;
785 	}
786 
787 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
788 	if (err)
789 		return err;
790 
791 	inode->i_mtime = inode_set_ctime_current(inode);
792 	f2fs_mark_inode_dirty_sync(inode, false);
793 	return 0;
794 }
795 
796 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
797 {
798 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
799 
800 	if (!fscrypt_dio_supported(inode))
801 		return true;
802 	if (fsverity_active(inode))
803 		return true;
804 	if (f2fs_compressed_file(inode))
805 		return true;
806 	if (f2fs_has_inline_data(inode))
807 		return true;
808 
809 	/* disallow direct IO if any of devices has unaligned blksize */
810 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
811 		return true;
812 	/*
813 	 * for blkzoned device, fallback direct IO to buffered IO, so
814 	 * all IOs can be serialized by log-structured write.
815 	 */
816 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
817 		return true;
818 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
819 		return true;
820 
821 	return false;
822 }
823 
824 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
825 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
826 {
827 	struct inode *inode = d_inode(path->dentry);
828 	struct f2fs_inode_info *fi = F2FS_I(inode);
829 	struct f2fs_inode *ri = NULL;
830 	unsigned int flags;
831 
832 	if (f2fs_has_extra_attr(inode) &&
833 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
834 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
835 		stat->result_mask |= STATX_BTIME;
836 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
837 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
838 	}
839 
840 	/*
841 	 * Return the DIO alignment restrictions if requested.  We only return
842 	 * this information when requested, since on encrypted files it might
843 	 * take a fair bit of work to get if the file wasn't opened recently.
844 	 *
845 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
846 	 * cannot represent that, so in that case we report no DIO support.
847 	 */
848 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
849 		unsigned int bsize = i_blocksize(inode);
850 
851 		stat->result_mask |= STATX_DIOALIGN;
852 		if (!f2fs_force_buffered_io(inode, WRITE)) {
853 			stat->dio_mem_align = bsize;
854 			stat->dio_offset_align = bsize;
855 		}
856 	}
857 
858 	flags = fi->i_flags;
859 	if (flags & F2FS_COMPR_FL)
860 		stat->attributes |= STATX_ATTR_COMPRESSED;
861 	if (flags & F2FS_APPEND_FL)
862 		stat->attributes |= STATX_ATTR_APPEND;
863 	if (IS_ENCRYPTED(inode))
864 		stat->attributes |= STATX_ATTR_ENCRYPTED;
865 	if (flags & F2FS_IMMUTABLE_FL)
866 		stat->attributes |= STATX_ATTR_IMMUTABLE;
867 	if (flags & F2FS_NODUMP_FL)
868 		stat->attributes |= STATX_ATTR_NODUMP;
869 	if (IS_VERITY(inode))
870 		stat->attributes |= STATX_ATTR_VERITY;
871 
872 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
873 				  STATX_ATTR_APPEND |
874 				  STATX_ATTR_ENCRYPTED |
875 				  STATX_ATTR_IMMUTABLE |
876 				  STATX_ATTR_NODUMP |
877 				  STATX_ATTR_VERITY);
878 
879 	generic_fillattr(idmap, request_mask, inode, stat);
880 
881 	/* we need to show initial sectors used for inline_data/dentries */
882 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
883 					f2fs_has_inline_dentry(inode))
884 		stat->blocks += (stat->size + 511) >> 9;
885 
886 	return 0;
887 }
888 
889 #ifdef CONFIG_F2FS_FS_POSIX_ACL
890 static void __setattr_copy(struct mnt_idmap *idmap,
891 			   struct inode *inode, const struct iattr *attr)
892 {
893 	unsigned int ia_valid = attr->ia_valid;
894 
895 	i_uid_update(idmap, attr, inode);
896 	i_gid_update(idmap, attr, inode);
897 	if (ia_valid & ATTR_ATIME)
898 		inode->i_atime = attr->ia_atime;
899 	if (ia_valid & ATTR_MTIME)
900 		inode->i_mtime = attr->ia_mtime;
901 	if (ia_valid & ATTR_CTIME)
902 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
903 	if (ia_valid & ATTR_MODE) {
904 		umode_t mode = attr->ia_mode;
905 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
906 
907 		if (!vfsgid_in_group_p(vfsgid) &&
908 		    !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
909 			mode &= ~S_ISGID;
910 		set_acl_inode(inode, mode);
911 	}
912 }
913 #else
914 #define __setattr_copy setattr_copy
915 #endif
916 
917 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
918 		 struct iattr *attr)
919 {
920 	struct inode *inode = d_inode(dentry);
921 	int err;
922 
923 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
924 		return -EIO;
925 
926 	if (unlikely(IS_IMMUTABLE(inode)))
927 		return -EPERM;
928 
929 	if (unlikely(IS_APPEND(inode) &&
930 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
931 				  ATTR_GID | ATTR_TIMES_SET))))
932 		return -EPERM;
933 
934 	if ((attr->ia_valid & ATTR_SIZE)) {
935 		if (!f2fs_is_compress_backend_ready(inode))
936 			return -EOPNOTSUPP;
937 		if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
938 			!IS_ALIGNED(attr->ia_size,
939 			F2FS_BLK_TO_BYTES(F2FS_I(inode)->i_cluster_size)))
940 			return -EINVAL;
941 	}
942 
943 	err = setattr_prepare(idmap, dentry, attr);
944 	if (err)
945 		return err;
946 
947 	err = fscrypt_prepare_setattr(dentry, attr);
948 	if (err)
949 		return err;
950 
951 	err = fsverity_prepare_setattr(dentry, attr);
952 	if (err)
953 		return err;
954 
955 	if (is_quota_modification(idmap, inode, attr)) {
956 		err = f2fs_dquot_initialize(inode);
957 		if (err)
958 			return err;
959 	}
960 	if (i_uid_needs_update(idmap, attr, inode) ||
961 	    i_gid_needs_update(idmap, attr, inode)) {
962 		f2fs_lock_op(F2FS_I_SB(inode));
963 		err = dquot_transfer(idmap, inode, attr);
964 		if (err) {
965 			set_sbi_flag(F2FS_I_SB(inode),
966 					SBI_QUOTA_NEED_REPAIR);
967 			f2fs_unlock_op(F2FS_I_SB(inode));
968 			return err;
969 		}
970 		/*
971 		 * update uid/gid under lock_op(), so that dquot and inode can
972 		 * be updated atomically.
973 		 */
974 		i_uid_update(idmap, attr, inode);
975 		i_gid_update(idmap, attr, inode);
976 		f2fs_mark_inode_dirty_sync(inode, true);
977 		f2fs_unlock_op(F2FS_I_SB(inode));
978 	}
979 
980 	if (attr->ia_valid & ATTR_SIZE) {
981 		loff_t old_size = i_size_read(inode);
982 
983 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
984 			/*
985 			 * should convert inline inode before i_size_write to
986 			 * keep smaller than inline_data size with inline flag.
987 			 */
988 			err = f2fs_convert_inline_inode(inode);
989 			if (err)
990 				return err;
991 		}
992 
993 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
994 		filemap_invalidate_lock(inode->i_mapping);
995 
996 		truncate_setsize(inode, attr->ia_size);
997 
998 		if (attr->ia_size <= old_size)
999 			err = f2fs_truncate(inode);
1000 		/*
1001 		 * do not trim all blocks after i_size if target size is
1002 		 * larger than i_size.
1003 		 */
1004 		filemap_invalidate_unlock(inode->i_mapping);
1005 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1006 		if (err)
1007 			return err;
1008 
1009 		spin_lock(&F2FS_I(inode)->i_size_lock);
1010 		inode->i_mtime = inode_set_ctime_current(inode);
1011 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1012 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1013 	}
1014 
1015 	__setattr_copy(idmap, inode, attr);
1016 
1017 	if (attr->ia_valid & ATTR_MODE) {
1018 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1019 
1020 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1021 			if (!err)
1022 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1023 			clear_inode_flag(inode, FI_ACL_MODE);
1024 		}
1025 	}
1026 
1027 	/* file size may changed here */
1028 	f2fs_mark_inode_dirty_sync(inode, true);
1029 
1030 	/* inode change will produce dirty node pages flushed by checkpoint */
1031 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1032 
1033 	return err;
1034 }
1035 
1036 const struct inode_operations f2fs_file_inode_operations = {
1037 	.getattr	= f2fs_getattr,
1038 	.setattr	= f2fs_setattr,
1039 	.get_inode_acl	= f2fs_get_acl,
1040 	.set_acl	= f2fs_set_acl,
1041 	.listxattr	= f2fs_listxattr,
1042 	.fiemap		= f2fs_fiemap,
1043 	.fileattr_get	= f2fs_fileattr_get,
1044 	.fileattr_set	= f2fs_fileattr_set,
1045 };
1046 
1047 static int fill_zero(struct inode *inode, pgoff_t index,
1048 					loff_t start, loff_t len)
1049 {
1050 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1051 	struct page *page;
1052 
1053 	if (!len)
1054 		return 0;
1055 
1056 	f2fs_balance_fs(sbi, true);
1057 
1058 	f2fs_lock_op(sbi);
1059 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1060 	f2fs_unlock_op(sbi);
1061 
1062 	if (IS_ERR(page))
1063 		return PTR_ERR(page);
1064 
1065 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1066 	zero_user(page, start, len);
1067 	set_page_dirty(page);
1068 	f2fs_put_page(page, 1);
1069 	return 0;
1070 }
1071 
1072 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1073 {
1074 	int err;
1075 
1076 	while (pg_start < pg_end) {
1077 		struct dnode_of_data dn;
1078 		pgoff_t end_offset, count;
1079 
1080 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1081 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1082 		if (err) {
1083 			if (err == -ENOENT) {
1084 				pg_start = f2fs_get_next_page_offset(&dn,
1085 								pg_start);
1086 				continue;
1087 			}
1088 			return err;
1089 		}
1090 
1091 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1092 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1093 
1094 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1095 
1096 		f2fs_truncate_data_blocks_range(&dn, count);
1097 		f2fs_put_dnode(&dn);
1098 
1099 		pg_start += count;
1100 	}
1101 	return 0;
1102 }
1103 
1104 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1105 {
1106 	pgoff_t pg_start, pg_end;
1107 	loff_t off_start, off_end;
1108 	int ret;
1109 
1110 	ret = f2fs_convert_inline_inode(inode);
1111 	if (ret)
1112 		return ret;
1113 
1114 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1115 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1116 
1117 	off_start = offset & (PAGE_SIZE - 1);
1118 	off_end = (offset + len) & (PAGE_SIZE - 1);
1119 
1120 	if (pg_start == pg_end) {
1121 		ret = fill_zero(inode, pg_start, off_start,
1122 						off_end - off_start);
1123 		if (ret)
1124 			return ret;
1125 	} else {
1126 		if (off_start) {
1127 			ret = fill_zero(inode, pg_start++, off_start,
1128 						PAGE_SIZE - off_start);
1129 			if (ret)
1130 				return ret;
1131 		}
1132 		if (off_end) {
1133 			ret = fill_zero(inode, pg_end, 0, off_end);
1134 			if (ret)
1135 				return ret;
1136 		}
1137 
1138 		if (pg_start < pg_end) {
1139 			loff_t blk_start, blk_end;
1140 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1141 
1142 			f2fs_balance_fs(sbi, true);
1143 
1144 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1145 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1146 
1147 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1148 			filemap_invalidate_lock(inode->i_mapping);
1149 
1150 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1151 
1152 			f2fs_lock_op(sbi);
1153 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1154 			f2fs_unlock_op(sbi);
1155 
1156 			filemap_invalidate_unlock(inode->i_mapping);
1157 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1158 		}
1159 	}
1160 
1161 	return ret;
1162 }
1163 
1164 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1165 				int *do_replace, pgoff_t off, pgoff_t len)
1166 {
1167 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1168 	struct dnode_of_data dn;
1169 	int ret, done, i;
1170 
1171 next_dnode:
1172 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1173 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1174 	if (ret && ret != -ENOENT) {
1175 		return ret;
1176 	} else if (ret == -ENOENT) {
1177 		if (dn.max_level == 0)
1178 			return -ENOENT;
1179 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1180 						dn.ofs_in_node, len);
1181 		blkaddr += done;
1182 		do_replace += done;
1183 		goto next;
1184 	}
1185 
1186 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1187 							dn.ofs_in_node, len);
1188 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1189 		*blkaddr = f2fs_data_blkaddr(&dn);
1190 
1191 		if (__is_valid_data_blkaddr(*blkaddr) &&
1192 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1193 					DATA_GENERIC_ENHANCE)) {
1194 			f2fs_put_dnode(&dn);
1195 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1196 			return -EFSCORRUPTED;
1197 		}
1198 
1199 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1200 
1201 			if (f2fs_lfs_mode(sbi)) {
1202 				f2fs_put_dnode(&dn);
1203 				return -EOPNOTSUPP;
1204 			}
1205 
1206 			/* do not invalidate this block address */
1207 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1208 			*do_replace = 1;
1209 		}
1210 	}
1211 	f2fs_put_dnode(&dn);
1212 next:
1213 	len -= done;
1214 	off += done;
1215 	if (len)
1216 		goto next_dnode;
1217 	return 0;
1218 }
1219 
1220 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1221 				int *do_replace, pgoff_t off, int len)
1222 {
1223 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1224 	struct dnode_of_data dn;
1225 	int ret, i;
1226 
1227 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1228 		if (*do_replace == 0)
1229 			continue;
1230 
1231 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1232 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1233 		if (ret) {
1234 			dec_valid_block_count(sbi, inode, 1);
1235 			f2fs_invalidate_blocks(sbi, *blkaddr);
1236 		} else {
1237 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1238 		}
1239 		f2fs_put_dnode(&dn);
1240 	}
1241 	return 0;
1242 }
1243 
1244 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1245 			block_t *blkaddr, int *do_replace,
1246 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1247 {
1248 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1249 	pgoff_t i = 0;
1250 	int ret;
1251 
1252 	while (i < len) {
1253 		if (blkaddr[i] == NULL_ADDR && !full) {
1254 			i++;
1255 			continue;
1256 		}
1257 
1258 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1259 			struct dnode_of_data dn;
1260 			struct node_info ni;
1261 			size_t new_size;
1262 			pgoff_t ilen;
1263 
1264 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1265 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1266 			if (ret)
1267 				return ret;
1268 
1269 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1270 			if (ret) {
1271 				f2fs_put_dnode(&dn);
1272 				return ret;
1273 			}
1274 
1275 			ilen = min((pgoff_t)
1276 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1277 						dn.ofs_in_node, len - i);
1278 			do {
1279 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1280 				f2fs_truncate_data_blocks_range(&dn, 1);
1281 
1282 				if (do_replace[i]) {
1283 					f2fs_i_blocks_write(src_inode,
1284 							1, false, false);
1285 					f2fs_i_blocks_write(dst_inode,
1286 							1, true, false);
1287 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1288 					blkaddr[i], ni.version, true, false);
1289 
1290 					do_replace[i] = 0;
1291 				}
1292 				dn.ofs_in_node++;
1293 				i++;
1294 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1295 				if (dst_inode->i_size < new_size)
1296 					f2fs_i_size_write(dst_inode, new_size);
1297 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1298 
1299 			f2fs_put_dnode(&dn);
1300 		} else {
1301 			struct page *psrc, *pdst;
1302 
1303 			psrc = f2fs_get_lock_data_page(src_inode,
1304 							src + i, true);
1305 			if (IS_ERR(psrc))
1306 				return PTR_ERR(psrc);
1307 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1308 								true);
1309 			if (IS_ERR(pdst)) {
1310 				f2fs_put_page(psrc, 1);
1311 				return PTR_ERR(pdst);
1312 			}
1313 
1314 			f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1315 
1316 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1317 			set_page_dirty(pdst);
1318 			set_page_private_gcing(pdst);
1319 			f2fs_put_page(pdst, 1);
1320 			f2fs_put_page(psrc, 1);
1321 
1322 			ret = f2fs_truncate_hole(src_inode,
1323 						src + i, src + i + 1);
1324 			if (ret)
1325 				return ret;
1326 			i++;
1327 		}
1328 	}
1329 	return 0;
1330 }
1331 
1332 static int __exchange_data_block(struct inode *src_inode,
1333 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1334 			pgoff_t len, bool full)
1335 {
1336 	block_t *src_blkaddr;
1337 	int *do_replace;
1338 	pgoff_t olen;
1339 	int ret;
1340 
1341 	while (len) {
1342 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1343 
1344 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1345 					array_size(olen, sizeof(block_t)),
1346 					GFP_NOFS);
1347 		if (!src_blkaddr)
1348 			return -ENOMEM;
1349 
1350 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1351 					array_size(olen, sizeof(int)),
1352 					GFP_NOFS);
1353 		if (!do_replace) {
1354 			kvfree(src_blkaddr);
1355 			return -ENOMEM;
1356 		}
1357 
1358 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1359 					do_replace, src, olen);
1360 		if (ret)
1361 			goto roll_back;
1362 
1363 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1364 					do_replace, src, dst, olen, full);
1365 		if (ret)
1366 			goto roll_back;
1367 
1368 		src += olen;
1369 		dst += olen;
1370 		len -= olen;
1371 
1372 		kvfree(src_blkaddr);
1373 		kvfree(do_replace);
1374 	}
1375 	return 0;
1376 
1377 roll_back:
1378 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1379 	kvfree(src_blkaddr);
1380 	kvfree(do_replace);
1381 	return ret;
1382 }
1383 
1384 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1385 {
1386 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1387 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1388 	pgoff_t start = offset >> PAGE_SHIFT;
1389 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1390 	int ret;
1391 
1392 	f2fs_balance_fs(sbi, true);
1393 
1394 	/* avoid gc operation during block exchange */
1395 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1396 	filemap_invalidate_lock(inode->i_mapping);
1397 
1398 	f2fs_lock_op(sbi);
1399 	f2fs_drop_extent_tree(inode);
1400 	truncate_pagecache(inode, offset);
1401 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1402 	f2fs_unlock_op(sbi);
1403 
1404 	filemap_invalidate_unlock(inode->i_mapping);
1405 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1406 	return ret;
1407 }
1408 
1409 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1410 {
1411 	loff_t new_size;
1412 	int ret;
1413 
1414 	if (offset + len >= i_size_read(inode))
1415 		return -EINVAL;
1416 
1417 	/* collapse range should be aligned to block size of f2fs. */
1418 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1419 		return -EINVAL;
1420 
1421 	ret = f2fs_convert_inline_inode(inode);
1422 	if (ret)
1423 		return ret;
1424 
1425 	/* write out all dirty pages from offset */
1426 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1427 	if (ret)
1428 		return ret;
1429 
1430 	ret = f2fs_do_collapse(inode, offset, len);
1431 	if (ret)
1432 		return ret;
1433 
1434 	/* write out all moved pages, if possible */
1435 	filemap_invalidate_lock(inode->i_mapping);
1436 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1437 	truncate_pagecache(inode, offset);
1438 
1439 	new_size = i_size_read(inode) - len;
1440 	ret = f2fs_truncate_blocks(inode, new_size, true);
1441 	filemap_invalidate_unlock(inode->i_mapping);
1442 	if (!ret)
1443 		f2fs_i_size_write(inode, new_size);
1444 	return ret;
1445 }
1446 
1447 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1448 								pgoff_t end)
1449 {
1450 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1451 	pgoff_t index = start;
1452 	unsigned int ofs_in_node = dn->ofs_in_node;
1453 	blkcnt_t count = 0;
1454 	int ret;
1455 
1456 	for (; index < end; index++, dn->ofs_in_node++) {
1457 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1458 			count++;
1459 	}
1460 
1461 	dn->ofs_in_node = ofs_in_node;
1462 	ret = f2fs_reserve_new_blocks(dn, count);
1463 	if (ret)
1464 		return ret;
1465 
1466 	dn->ofs_in_node = ofs_in_node;
1467 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1468 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1469 		/*
1470 		 * f2fs_reserve_new_blocks will not guarantee entire block
1471 		 * allocation.
1472 		 */
1473 		if (dn->data_blkaddr == NULL_ADDR) {
1474 			ret = -ENOSPC;
1475 			break;
1476 		}
1477 
1478 		if (dn->data_blkaddr == NEW_ADDR)
1479 			continue;
1480 
1481 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1482 					DATA_GENERIC_ENHANCE)) {
1483 			ret = -EFSCORRUPTED;
1484 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1485 			break;
1486 		}
1487 
1488 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1489 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1490 	}
1491 
1492 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1493 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1494 
1495 	return ret;
1496 }
1497 
1498 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1499 								int mode)
1500 {
1501 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1502 	struct address_space *mapping = inode->i_mapping;
1503 	pgoff_t index, pg_start, pg_end;
1504 	loff_t new_size = i_size_read(inode);
1505 	loff_t off_start, off_end;
1506 	int ret = 0;
1507 
1508 	ret = inode_newsize_ok(inode, (len + offset));
1509 	if (ret)
1510 		return ret;
1511 
1512 	ret = f2fs_convert_inline_inode(inode);
1513 	if (ret)
1514 		return ret;
1515 
1516 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1517 	if (ret)
1518 		return ret;
1519 
1520 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1521 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1522 
1523 	off_start = offset & (PAGE_SIZE - 1);
1524 	off_end = (offset + len) & (PAGE_SIZE - 1);
1525 
1526 	if (pg_start == pg_end) {
1527 		ret = fill_zero(inode, pg_start, off_start,
1528 						off_end - off_start);
1529 		if (ret)
1530 			return ret;
1531 
1532 		new_size = max_t(loff_t, new_size, offset + len);
1533 	} else {
1534 		if (off_start) {
1535 			ret = fill_zero(inode, pg_start++, off_start,
1536 						PAGE_SIZE - off_start);
1537 			if (ret)
1538 				return ret;
1539 
1540 			new_size = max_t(loff_t, new_size,
1541 					(loff_t)pg_start << PAGE_SHIFT);
1542 		}
1543 
1544 		for (index = pg_start; index < pg_end;) {
1545 			struct dnode_of_data dn;
1546 			unsigned int end_offset;
1547 			pgoff_t end;
1548 
1549 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1550 			filemap_invalidate_lock(mapping);
1551 
1552 			truncate_pagecache_range(inode,
1553 				(loff_t)index << PAGE_SHIFT,
1554 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1555 
1556 			f2fs_lock_op(sbi);
1557 
1558 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1559 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1560 			if (ret) {
1561 				f2fs_unlock_op(sbi);
1562 				filemap_invalidate_unlock(mapping);
1563 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1564 				goto out;
1565 			}
1566 
1567 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1568 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1569 
1570 			ret = f2fs_do_zero_range(&dn, index, end);
1571 			f2fs_put_dnode(&dn);
1572 
1573 			f2fs_unlock_op(sbi);
1574 			filemap_invalidate_unlock(mapping);
1575 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1576 
1577 			f2fs_balance_fs(sbi, dn.node_changed);
1578 
1579 			if (ret)
1580 				goto out;
1581 
1582 			index = end;
1583 			new_size = max_t(loff_t, new_size,
1584 					(loff_t)index << PAGE_SHIFT);
1585 		}
1586 
1587 		if (off_end) {
1588 			ret = fill_zero(inode, pg_end, 0, off_end);
1589 			if (ret)
1590 				goto out;
1591 
1592 			new_size = max_t(loff_t, new_size, offset + len);
1593 		}
1594 	}
1595 
1596 out:
1597 	if (new_size > i_size_read(inode)) {
1598 		if (mode & FALLOC_FL_KEEP_SIZE)
1599 			file_set_keep_isize(inode);
1600 		else
1601 			f2fs_i_size_write(inode, new_size);
1602 	}
1603 	return ret;
1604 }
1605 
1606 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1607 {
1608 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1609 	struct address_space *mapping = inode->i_mapping;
1610 	pgoff_t nr, pg_start, pg_end, delta, idx;
1611 	loff_t new_size;
1612 	int ret = 0;
1613 
1614 	new_size = i_size_read(inode) + len;
1615 	ret = inode_newsize_ok(inode, new_size);
1616 	if (ret)
1617 		return ret;
1618 
1619 	if (offset >= i_size_read(inode))
1620 		return -EINVAL;
1621 
1622 	/* insert range should be aligned to block size of f2fs. */
1623 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1624 		return -EINVAL;
1625 
1626 	ret = f2fs_convert_inline_inode(inode);
1627 	if (ret)
1628 		return ret;
1629 
1630 	f2fs_balance_fs(sbi, true);
1631 
1632 	filemap_invalidate_lock(mapping);
1633 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1634 	filemap_invalidate_unlock(mapping);
1635 	if (ret)
1636 		return ret;
1637 
1638 	/* write out all dirty pages from offset */
1639 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1640 	if (ret)
1641 		return ret;
1642 
1643 	pg_start = offset >> PAGE_SHIFT;
1644 	pg_end = (offset + len) >> PAGE_SHIFT;
1645 	delta = pg_end - pg_start;
1646 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1647 
1648 	/* avoid gc operation during block exchange */
1649 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1650 	filemap_invalidate_lock(mapping);
1651 	truncate_pagecache(inode, offset);
1652 
1653 	while (!ret && idx > pg_start) {
1654 		nr = idx - pg_start;
1655 		if (nr > delta)
1656 			nr = delta;
1657 		idx -= nr;
1658 
1659 		f2fs_lock_op(sbi);
1660 		f2fs_drop_extent_tree(inode);
1661 
1662 		ret = __exchange_data_block(inode, inode, idx,
1663 					idx + delta, nr, false);
1664 		f2fs_unlock_op(sbi);
1665 	}
1666 	filemap_invalidate_unlock(mapping);
1667 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1668 
1669 	/* write out all moved pages, if possible */
1670 	filemap_invalidate_lock(mapping);
1671 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1672 	truncate_pagecache(inode, offset);
1673 	filemap_invalidate_unlock(mapping);
1674 
1675 	if (!ret)
1676 		f2fs_i_size_write(inode, new_size);
1677 	return ret;
1678 }
1679 
1680 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1681 					loff_t len, int mode)
1682 {
1683 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1684 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1685 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1686 			.m_may_create = true };
1687 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1688 			.init_gc_type = FG_GC,
1689 			.should_migrate_blocks = false,
1690 			.err_gc_skipped = true,
1691 			.nr_free_secs = 0 };
1692 	pgoff_t pg_start, pg_end;
1693 	loff_t new_size;
1694 	loff_t off_end;
1695 	block_t expanded = 0;
1696 	int err;
1697 
1698 	err = inode_newsize_ok(inode, (len + offset));
1699 	if (err)
1700 		return err;
1701 
1702 	err = f2fs_convert_inline_inode(inode);
1703 	if (err)
1704 		return err;
1705 
1706 	f2fs_balance_fs(sbi, true);
1707 
1708 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1709 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1710 	off_end = (offset + len) & (PAGE_SIZE - 1);
1711 
1712 	map.m_lblk = pg_start;
1713 	map.m_len = pg_end - pg_start;
1714 	if (off_end)
1715 		map.m_len++;
1716 
1717 	if (!map.m_len)
1718 		return 0;
1719 
1720 	if (f2fs_is_pinned_file(inode)) {
1721 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1722 		block_t sec_len = roundup(map.m_len, sec_blks);
1723 
1724 		map.m_len = sec_blks;
1725 next_alloc:
1726 		if (has_not_enough_free_secs(sbi, 0,
1727 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1728 			f2fs_down_write(&sbi->gc_lock);
1729 			stat_inc_gc_call_count(sbi, FOREGROUND);
1730 			err = f2fs_gc(sbi, &gc_control);
1731 			if (err && err != -ENODATA)
1732 				goto out_err;
1733 		}
1734 
1735 		f2fs_down_write(&sbi->pin_sem);
1736 
1737 		err = f2fs_allocate_pinning_section(sbi);
1738 		if (err) {
1739 			f2fs_up_write(&sbi->pin_sem);
1740 			goto out_err;
1741 		}
1742 
1743 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1744 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1745 		file_dont_truncate(inode);
1746 
1747 		f2fs_up_write(&sbi->pin_sem);
1748 
1749 		expanded += map.m_len;
1750 		sec_len -= map.m_len;
1751 		map.m_lblk += map.m_len;
1752 		if (!err && sec_len)
1753 			goto next_alloc;
1754 
1755 		map.m_len = expanded;
1756 	} else {
1757 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1758 		expanded = map.m_len;
1759 	}
1760 out_err:
1761 	if (err) {
1762 		pgoff_t last_off;
1763 
1764 		if (!expanded)
1765 			return err;
1766 
1767 		last_off = pg_start + expanded - 1;
1768 
1769 		/* update new size to the failed position */
1770 		new_size = (last_off == pg_end) ? offset + len :
1771 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1772 	} else {
1773 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1774 	}
1775 
1776 	if (new_size > i_size_read(inode)) {
1777 		if (mode & FALLOC_FL_KEEP_SIZE)
1778 			file_set_keep_isize(inode);
1779 		else
1780 			f2fs_i_size_write(inode, new_size);
1781 	}
1782 
1783 	return err;
1784 }
1785 
1786 static long f2fs_fallocate(struct file *file, int mode,
1787 				loff_t offset, loff_t len)
1788 {
1789 	struct inode *inode = file_inode(file);
1790 	long ret = 0;
1791 
1792 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1793 		return -EIO;
1794 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1795 		return -ENOSPC;
1796 	if (!f2fs_is_compress_backend_ready(inode))
1797 		return -EOPNOTSUPP;
1798 
1799 	/* f2fs only support ->fallocate for regular file */
1800 	if (!S_ISREG(inode->i_mode))
1801 		return -EINVAL;
1802 
1803 	if (IS_ENCRYPTED(inode) &&
1804 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1805 		return -EOPNOTSUPP;
1806 
1807 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1808 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1809 			FALLOC_FL_INSERT_RANGE))
1810 		return -EOPNOTSUPP;
1811 
1812 	inode_lock(inode);
1813 
1814 	/*
1815 	 * Pinned file should not support partial truncation since the block
1816 	 * can be used by applications.
1817 	 */
1818 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1819 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1820 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1821 		ret = -EOPNOTSUPP;
1822 		goto out;
1823 	}
1824 
1825 	ret = file_modified(file);
1826 	if (ret)
1827 		goto out;
1828 
1829 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1830 		if (offset >= inode->i_size)
1831 			goto out;
1832 
1833 		ret = f2fs_punch_hole(inode, offset, len);
1834 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1835 		ret = f2fs_collapse_range(inode, offset, len);
1836 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1837 		ret = f2fs_zero_range(inode, offset, len, mode);
1838 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1839 		ret = f2fs_insert_range(inode, offset, len);
1840 	} else {
1841 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1842 	}
1843 
1844 	if (!ret) {
1845 		inode->i_mtime = inode_set_ctime_current(inode);
1846 		f2fs_mark_inode_dirty_sync(inode, false);
1847 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1848 	}
1849 
1850 out:
1851 	inode_unlock(inode);
1852 
1853 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1854 	return ret;
1855 }
1856 
1857 static int f2fs_release_file(struct inode *inode, struct file *filp)
1858 {
1859 	/*
1860 	 * f2fs_release_file is called at every close calls. So we should
1861 	 * not drop any inmemory pages by close called by other process.
1862 	 */
1863 	if (!(filp->f_mode & FMODE_WRITE) ||
1864 			atomic_read(&inode->i_writecount) != 1)
1865 		return 0;
1866 
1867 	inode_lock(inode);
1868 	f2fs_abort_atomic_write(inode, true);
1869 	inode_unlock(inode);
1870 
1871 	return 0;
1872 }
1873 
1874 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1875 {
1876 	struct inode *inode = file_inode(file);
1877 
1878 	/*
1879 	 * If the process doing a transaction is crashed, we should do
1880 	 * roll-back. Otherwise, other reader/write can see corrupted database
1881 	 * until all the writers close its file. Since this should be done
1882 	 * before dropping file lock, it needs to do in ->flush.
1883 	 */
1884 	if (F2FS_I(inode)->atomic_write_task == current &&
1885 				(current->flags & PF_EXITING)) {
1886 		inode_lock(inode);
1887 		f2fs_abort_atomic_write(inode, true);
1888 		inode_unlock(inode);
1889 	}
1890 
1891 	return 0;
1892 }
1893 
1894 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1895 {
1896 	struct f2fs_inode_info *fi = F2FS_I(inode);
1897 	u32 masked_flags = fi->i_flags & mask;
1898 
1899 	/* mask can be shrunk by flags_valid selector */
1900 	iflags &= mask;
1901 
1902 	/* Is it quota file? Do not allow user to mess with it */
1903 	if (IS_NOQUOTA(inode))
1904 		return -EPERM;
1905 
1906 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1907 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1908 			return -EOPNOTSUPP;
1909 		if (!f2fs_empty_dir(inode))
1910 			return -ENOTEMPTY;
1911 	}
1912 
1913 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1914 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1915 			return -EOPNOTSUPP;
1916 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1917 			return -EINVAL;
1918 	}
1919 
1920 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1921 		if (masked_flags & F2FS_COMPR_FL) {
1922 			if (!f2fs_disable_compressed_file(inode))
1923 				return -EINVAL;
1924 		} else {
1925 			/* try to convert inline_data to support compression */
1926 			int err = f2fs_convert_inline_inode(inode);
1927 			if (err)
1928 				return err;
1929 
1930 			f2fs_down_write(&F2FS_I(inode)->i_sem);
1931 			if (!f2fs_may_compress(inode) ||
1932 					(S_ISREG(inode->i_mode) &&
1933 					F2FS_HAS_BLOCKS(inode))) {
1934 				f2fs_up_write(&F2FS_I(inode)->i_sem);
1935 				return -EINVAL;
1936 			}
1937 			err = set_compress_context(inode);
1938 			f2fs_up_write(&F2FS_I(inode)->i_sem);
1939 
1940 			if (err)
1941 				return err;
1942 		}
1943 	}
1944 
1945 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1946 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1947 					(fi->i_flags & F2FS_NOCOMP_FL));
1948 
1949 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1950 		set_inode_flag(inode, FI_PROJ_INHERIT);
1951 	else
1952 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1953 
1954 	inode_set_ctime_current(inode);
1955 	f2fs_set_inode_flags(inode);
1956 	f2fs_mark_inode_dirty_sync(inode, true);
1957 	return 0;
1958 }
1959 
1960 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1961 
1962 /*
1963  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1964  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1965  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1966  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1967  *
1968  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1969  * FS_IOC_FSSETXATTR is done by the VFS.
1970  */
1971 
1972 static const struct {
1973 	u32 iflag;
1974 	u32 fsflag;
1975 } f2fs_fsflags_map[] = {
1976 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1977 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1978 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1979 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1980 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1981 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1982 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1983 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1984 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1985 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1986 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1987 };
1988 
1989 #define F2FS_GETTABLE_FS_FL (		\
1990 		FS_COMPR_FL |		\
1991 		FS_SYNC_FL |		\
1992 		FS_IMMUTABLE_FL |	\
1993 		FS_APPEND_FL |		\
1994 		FS_NODUMP_FL |		\
1995 		FS_NOATIME_FL |		\
1996 		FS_NOCOMP_FL |		\
1997 		FS_INDEX_FL |		\
1998 		FS_DIRSYNC_FL |		\
1999 		FS_PROJINHERIT_FL |	\
2000 		FS_ENCRYPT_FL |		\
2001 		FS_INLINE_DATA_FL |	\
2002 		FS_NOCOW_FL |		\
2003 		FS_VERITY_FL |		\
2004 		FS_CASEFOLD_FL)
2005 
2006 #define F2FS_SETTABLE_FS_FL (		\
2007 		FS_COMPR_FL |		\
2008 		FS_SYNC_FL |		\
2009 		FS_IMMUTABLE_FL |	\
2010 		FS_APPEND_FL |		\
2011 		FS_NODUMP_FL |		\
2012 		FS_NOATIME_FL |		\
2013 		FS_NOCOMP_FL |		\
2014 		FS_DIRSYNC_FL |		\
2015 		FS_PROJINHERIT_FL |	\
2016 		FS_CASEFOLD_FL)
2017 
2018 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2019 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2020 {
2021 	u32 fsflags = 0;
2022 	int i;
2023 
2024 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2025 		if (iflags & f2fs_fsflags_map[i].iflag)
2026 			fsflags |= f2fs_fsflags_map[i].fsflag;
2027 
2028 	return fsflags;
2029 }
2030 
2031 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2032 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2033 {
2034 	u32 iflags = 0;
2035 	int i;
2036 
2037 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2038 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2039 			iflags |= f2fs_fsflags_map[i].iflag;
2040 
2041 	return iflags;
2042 }
2043 
2044 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2045 {
2046 	struct inode *inode = file_inode(filp);
2047 
2048 	return put_user(inode->i_generation, (int __user *)arg);
2049 }
2050 
2051 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2052 {
2053 	struct inode *inode = file_inode(filp);
2054 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2055 	struct f2fs_inode_info *fi = F2FS_I(inode);
2056 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2057 	struct inode *pinode;
2058 	loff_t isize;
2059 	int ret;
2060 
2061 	if (!inode_owner_or_capable(idmap, inode))
2062 		return -EACCES;
2063 
2064 	if (!S_ISREG(inode->i_mode))
2065 		return -EINVAL;
2066 
2067 	if (filp->f_flags & O_DIRECT)
2068 		return -EINVAL;
2069 
2070 	ret = mnt_want_write_file(filp);
2071 	if (ret)
2072 		return ret;
2073 
2074 	inode_lock(inode);
2075 
2076 	if (!f2fs_disable_compressed_file(inode)) {
2077 		ret = -EINVAL;
2078 		goto out;
2079 	}
2080 
2081 	if (f2fs_is_atomic_file(inode))
2082 		goto out;
2083 
2084 	ret = f2fs_convert_inline_inode(inode);
2085 	if (ret)
2086 		goto out;
2087 
2088 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2089 
2090 	/*
2091 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2092 	 * f2fs_is_atomic_file.
2093 	 */
2094 	if (get_dirty_pages(inode))
2095 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2096 			  inode->i_ino, get_dirty_pages(inode));
2097 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2098 	if (ret) {
2099 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2100 		goto out;
2101 	}
2102 
2103 	/* Check if the inode already has a COW inode */
2104 	if (fi->cow_inode == NULL) {
2105 		/* Create a COW inode for atomic write */
2106 		pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2107 		if (IS_ERR(pinode)) {
2108 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2109 			ret = PTR_ERR(pinode);
2110 			goto out;
2111 		}
2112 
2113 		ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2114 		iput(pinode);
2115 		if (ret) {
2116 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2117 			goto out;
2118 		}
2119 
2120 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2121 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2122 
2123 		/* Set the COW inode's atomic_inode to the atomic inode */
2124 		F2FS_I(fi->cow_inode)->atomic_inode = inode;
2125 	} else {
2126 		/* Reuse the already created COW inode */
2127 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2128 		if (ret) {
2129 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2130 			goto out;
2131 		}
2132 	}
2133 
2134 	f2fs_write_inode(inode, NULL);
2135 
2136 	stat_inc_atomic_inode(inode);
2137 
2138 	set_inode_flag(inode, FI_ATOMIC_FILE);
2139 
2140 	isize = i_size_read(inode);
2141 	fi->original_i_size = isize;
2142 	if (truncate) {
2143 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2144 		truncate_inode_pages_final(inode->i_mapping);
2145 		f2fs_i_size_write(inode, 0);
2146 		isize = 0;
2147 	}
2148 	f2fs_i_size_write(fi->cow_inode, isize);
2149 
2150 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2151 
2152 	f2fs_update_time(sbi, REQ_TIME);
2153 	fi->atomic_write_task = current;
2154 	stat_update_max_atomic_write(inode);
2155 	fi->atomic_write_cnt = 0;
2156 out:
2157 	inode_unlock(inode);
2158 	mnt_drop_write_file(filp);
2159 	return ret;
2160 }
2161 
2162 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2163 {
2164 	struct inode *inode = file_inode(filp);
2165 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2166 	int ret;
2167 
2168 	if (!inode_owner_or_capable(idmap, inode))
2169 		return -EACCES;
2170 
2171 	ret = mnt_want_write_file(filp);
2172 	if (ret)
2173 		return ret;
2174 
2175 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2176 
2177 	inode_lock(inode);
2178 
2179 	if (f2fs_is_atomic_file(inode)) {
2180 		ret = f2fs_commit_atomic_write(inode);
2181 		if (!ret)
2182 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2183 
2184 		f2fs_abort_atomic_write(inode, ret);
2185 	} else {
2186 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2187 	}
2188 
2189 	inode_unlock(inode);
2190 	mnt_drop_write_file(filp);
2191 	return ret;
2192 }
2193 
2194 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2195 {
2196 	struct inode *inode = file_inode(filp);
2197 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2198 	int ret;
2199 
2200 	if (!inode_owner_or_capable(idmap, inode))
2201 		return -EACCES;
2202 
2203 	ret = mnt_want_write_file(filp);
2204 	if (ret)
2205 		return ret;
2206 
2207 	inode_lock(inode);
2208 
2209 	f2fs_abort_atomic_write(inode, true);
2210 
2211 	inode_unlock(inode);
2212 
2213 	mnt_drop_write_file(filp);
2214 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2215 	return ret;
2216 }
2217 
2218 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2219 {
2220 	struct inode *inode = file_inode(filp);
2221 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2222 	struct super_block *sb = sbi->sb;
2223 	__u32 in;
2224 	int ret = 0;
2225 
2226 	if (!capable(CAP_SYS_ADMIN))
2227 		return -EPERM;
2228 
2229 	if (get_user(in, (__u32 __user *)arg))
2230 		return -EFAULT;
2231 
2232 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2233 		ret = mnt_want_write_file(filp);
2234 		if (ret) {
2235 			if (ret == -EROFS) {
2236 				ret = 0;
2237 				f2fs_stop_checkpoint(sbi, false,
2238 						STOP_CP_REASON_SHUTDOWN);
2239 				trace_f2fs_shutdown(sbi, in, ret);
2240 			}
2241 			return ret;
2242 		}
2243 	}
2244 
2245 	switch (in) {
2246 	case F2FS_GOING_DOWN_FULLSYNC:
2247 		ret = freeze_bdev(sb->s_bdev);
2248 		if (ret)
2249 			goto out;
2250 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2251 		thaw_bdev(sb->s_bdev);
2252 		break;
2253 	case F2FS_GOING_DOWN_METASYNC:
2254 		/* do checkpoint only */
2255 		ret = f2fs_sync_fs(sb, 1);
2256 		if (ret)
2257 			goto out;
2258 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2259 		break;
2260 	case F2FS_GOING_DOWN_NOSYNC:
2261 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2262 		break;
2263 	case F2FS_GOING_DOWN_METAFLUSH:
2264 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2265 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2266 		break;
2267 	case F2FS_GOING_DOWN_NEED_FSCK:
2268 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2269 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2270 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2271 		/* do checkpoint only */
2272 		ret = f2fs_sync_fs(sb, 1);
2273 		goto out;
2274 	default:
2275 		ret = -EINVAL;
2276 		goto out;
2277 	}
2278 
2279 	f2fs_stop_gc_thread(sbi);
2280 	f2fs_stop_discard_thread(sbi);
2281 
2282 	f2fs_drop_discard_cmd(sbi);
2283 	clear_opt(sbi, DISCARD);
2284 
2285 	f2fs_update_time(sbi, REQ_TIME);
2286 out:
2287 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2288 		mnt_drop_write_file(filp);
2289 
2290 	trace_f2fs_shutdown(sbi, in, ret);
2291 
2292 	return ret;
2293 }
2294 
2295 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2296 {
2297 	struct inode *inode = file_inode(filp);
2298 	struct super_block *sb = inode->i_sb;
2299 	struct fstrim_range range;
2300 	int ret;
2301 
2302 	if (!capable(CAP_SYS_ADMIN))
2303 		return -EPERM;
2304 
2305 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2306 		return -EOPNOTSUPP;
2307 
2308 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2309 				sizeof(range)))
2310 		return -EFAULT;
2311 
2312 	ret = mnt_want_write_file(filp);
2313 	if (ret)
2314 		return ret;
2315 
2316 	range.minlen = max((unsigned int)range.minlen,
2317 			   bdev_discard_granularity(sb->s_bdev));
2318 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2319 	mnt_drop_write_file(filp);
2320 	if (ret < 0)
2321 		return ret;
2322 
2323 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2324 				sizeof(range)))
2325 		return -EFAULT;
2326 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2327 	return 0;
2328 }
2329 
2330 static bool uuid_is_nonzero(__u8 u[16])
2331 {
2332 	int i;
2333 
2334 	for (i = 0; i < 16; i++)
2335 		if (u[i])
2336 			return true;
2337 	return false;
2338 }
2339 
2340 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2341 {
2342 	struct inode *inode = file_inode(filp);
2343 
2344 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2345 		return -EOPNOTSUPP;
2346 
2347 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2348 
2349 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2350 }
2351 
2352 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2353 {
2354 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2355 		return -EOPNOTSUPP;
2356 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2357 }
2358 
2359 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2360 {
2361 	struct inode *inode = file_inode(filp);
2362 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2363 	u8 encrypt_pw_salt[16];
2364 	int err;
2365 
2366 	if (!f2fs_sb_has_encrypt(sbi))
2367 		return -EOPNOTSUPP;
2368 
2369 	err = mnt_want_write_file(filp);
2370 	if (err)
2371 		return err;
2372 
2373 	f2fs_down_write(&sbi->sb_lock);
2374 
2375 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2376 		goto got_it;
2377 
2378 	/* update superblock with uuid */
2379 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2380 
2381 	err = f2fs_commit_super(sbi, false);
2382 	if (err) {
2383 		/* undo new data */
2384 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2385 		goto out_err;
2386 	}
2387 got_it:
2388 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2389 out_err:
2390 	f2fs_up_write(&sbi->sb_lock);
2391 	mnt_drop_write_file(filp);
2392 
2393 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2394 		err = -EFAULT;
2395 
2396 	return err;
2397 }
2398 
2399 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2400 					     unsigned long arg)
2401 {
2402 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2403 		return -EOPNOTSUPP;
2404 
2405 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2406 }
2407 
2408 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2409 {
2410 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2411 		return -EOPNOTSUPP;
2412 
2413 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2414 }
2415 
2416 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2417 {
2418 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2419 		return -EOPNOTSUPP;
2420 
2421 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2422 }
2423 
2424 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2425 						    unsigned long arg)
2426 {
2427 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2428 		return -EOPNOTSUPP;
2429 
2430 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2431 }
2432 
2433 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2434 					      unsigned long arg)
2435 {
2436 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2437 		return -EOPNOTSUPP;
2438 
2439 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2440 }
2441 
2442 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2443 {
2444 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2445 		return -EOPNOTSUPP;
2446 
2447 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2448 }
2449 
2450 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2451 {
2452 	struct inode *inode = file_inode(filp);
2453 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2454 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2455 			.no_bg_gc = false,
2456 			.should_migrate_blocks = false,
2457 			.nr_free_secs = 0 };
2458 	__u32 sync;
2459 	int ret;
2460 
2461 	if (!capable(CAP_SYS_ADMIN))
2462 		return -EPERM;
2463 
2464 	if (get_user(sync, (__u32 __user *)arg))
2465 		return -EFAULT;
2466 
2467 	if (f2fs_readonly(sbi->sb))
2468 		return -EROFS;
2469 
2470 	ret = mnt_want_write_file(filp);
2471 	if (ret)
2472 		return ret;
2473 
2474 	if (!sync) {
2475 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2476 			ret = -EBUSY;
2477 			goto out;
2478 		}
2479 	} else {
2480 		f2fs_down_write(&sbi->gc_lock);
2481 	}
2482 
2483 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2484 	gc_control.err_gc_skipped = sync;
2485 	stat_inc_gc_call_count(sbi, FOREGROUND);
2486 	ret = f2fs_gc(sbi, &gc_control);
2487 out:
2488 	mnt_drop_write_file(filp);
2489 	return ret;
2490 }
2491 
2492 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2493 {
2494 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2495 	struct f2fs_gc_control gc_control = {
2496 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2497 			.no_bg_gc = false,
2498 			.should_migrate_blocks = false,
2499 			.err_gc_skipped = range->sync,
2500 			.nr_free_secs = 0 };
2501 	u64 end;
2502 	int ret;
2503 
2504 	if (!capable(CAP_SYS_ADMIN))
2505 		return -EPERM;
2506 	if (f2fs_readonly(sbi->sb))
2507 		return -EROFS;
2508 
2509 	end = range->start + range->len;
2510 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2511 					end >= MAX_BLKADDR(sbi))
2512 		return -EINVAL;
2513 
2514 	ret = mnt_want_write_file(filp);
2515 	if (ret)
2516 		return ret;
2517 
2518 do_more:
2519 	if (!range->sync) {
2520 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2521 			ret = -EBUSY;
2522 			goto out;
2523 		}
2524 	} else {
2525 		f2fs_down_write(&sbi->gc_lock);
2526 	}
2527 
2528 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2529 	stat_inc_gc_call_count(sbi, FOREGROUND);
2530 	ret = f2fs_gc(sbi, &gc_control);
2531 	if (ret) {
2532 		if (ret == -EBUSY)
2533 			ret = -EAGAIN;
2534 		goto out;
2535 	}
2536 	range->start += CAP_BLKS_PER_SEC(sbi);
2537 	if (range->start <= end)
2538 		goto do_more;
2539 out:
2540 	mnt_drop_write_file(filp);
2541 	return ret;
2542 }
2543 
2544 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2545 {
2546 	struct f2fs_gc_range range;
2547 
2548 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2549 							sizeof(range)))
2550 		return -EFAULT;
2551 	return __f2fs_ioc_gc_range(filp, &range);
2552 }
2553 
2554 static int f2fs_ioc_write_checkpoint(struct file *filp)
2555 {
2556 	struct inode *inode = file_inode(filp);
2557 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2558 	int ret;
2559 
2560 	if (!capable(CAP_SYS_ADMIN))
2561 		return -EPERM;
2562 
2563 	if (f2fs_readonly(sbi->sb))
2564 		return -EROFS;
2565 
2566 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2567 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2568 		return -EINVAL;
2569 	}
2570 
2571 	ret = mnt_want_write_file(filp);
2572 	if (ret)
2573 		return ret;
2574 
2575 	ret = f2fs_sync_fs(sbi->sb, 1);
2576 
2577 	mnt_drop_write_file(filp);
2578 	return ret;
2579 }
2580 
2581 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2582 					struct file *filp,
2583 					struct f2fs_defragment *range)
2584 {
2585 	struct inode *inode = file_inode(filp);
2586 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2587 					.m_seg_type = NO_CHECK_TYPE,
2588 					.m_may_create = false };
2589 	struct extent_info ei = {};
2590 	pgoff_t pg_start, pg_end, next_pgofs;
2591 	unsigned int total = 0, sec_num;
2592 	block_t blk_end = 0;
2593 	bool fragmented = false;
2594 	int err;
2595 
2596 	pg_start = range->start >> PAGE_SHIFT;
2597 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2598 
2599 	f2fs_balance_fs(sbi, true);
2600 
2601 	inode_lock(inode);
2602 
2603 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2604 		err = -EINVAL;
2605 		goto unlock_out;
2606 	}
2607 
2608 	/* if in-place-update policy is enabled, don't waste time here */
2609 	set_inode_flag(inode, FI_OPU_WRITE);
2610 	if (f2fs_should_update_inplace(inode, NULL)) {
2611 		err = -EINVAL;
2612 		goto out;
2613 	}
2614 
2615 	/* writeback all dirty pages in the range */
2616 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2617 						range->start + range->len - 1);
2618 	if (err)
2619 		goto out;
2620 
2621 	/*
2622 	 * lookup mapping info in extent cache, skip defragmenting if physical
2623 	 * block addresses are continuous.
2624 	 */
2625 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2626 		if (ei.fofs + ei.len >= pg_end)
2627 			goto out;
2628 	}
2629 
2630 	map.m_lblk = pg_start;
2631 	map.m_next_pgofs = &next_pgofs;
2632 
2633 	/*
2634 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2635 	 * physical block addresses are continuous even if there are hole(s)
2636 	 * in logical blocks.
2637 	 */
2638 	while (map.m_lblk < pg_end) {
2639 		map.m_len = pg_end - map.m_lblk;
2640 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2641 		if (err)
2642 			goto out;
2643 
2644 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2645 			map.m_lblk = next_pgofs;
2646 			continue;
2647 		}
2648 
2649 		if (blk_end && blk_end != map.m_pblk)
2650 			fragmented = true;
2651 
2652 		/* record total count of block that we're going to move */
2653 		total += map.m_len;
2654 
2655 		blk_end = map.m_pblk + map.m_len;
2656 
2657 		map.m_lblk += map.m_len;
2658 	}
2659 
2660 	if (!fragmented) {
2661 		total = 0;
2662 		goto out;
2663 	}
2664 
2665 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2666 
2667 	/*
2668 	 * make sure there are enough free section for LFS allocation, this can
2669 	 * avoid defragment running in SSR mode when free section are allocated
2670 	 * intensively
2671 	 */
2672 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2673 		err = -EAGAIN;
2674 		goto out;
2675 	}
2676 
2677 	map.m_lblk = pg_start;
2678 	map.m_len = pg_end - pg_start;
2679 	total = 0;
2680 
2681 	while (map.m_lblk < pg_end) {
2682 		pgoff_t idx;
2683 		int cnt = 0;
2684 
2685 do_map:
2686 		map.m_len = pg_end - map.m_lblk;
2687 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2688 		if (err)
2689 			goto clear_out;
2690 
2691 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2692 			map.m_lblk = next_pgofs;
2693 			goto check;
2694 		}
2695 
2696 		set_inode_flag(inode, FI_SKIP_WRITES);
2697 
2698 		idx = map.m_lblk;
2699 		while (idx < map.m_lblk + map.m_len &&
2700 						cnt < BLKS_PER_SEG(sbi)) {
2701 			struct page *page;
2702 
2703 			page = f2fs_get_lock_data_page(inode, idx, true);
2704 			if (IS_ERR(page)) {
2705 				err = PTR_ERR(page);
2706 				goto clear_out;
2707 			}
2708 
2709 			set_page_dirty(page);
2710 			set_page_private_gcing(page);
2711 			f2fs_put_page(page, 1);
2712 
2713 			idx++;
2714 			cnt++;
2715 			total++;
2716 		}
2717 
2718 		map.m_lblk = idx;
2719 check:
2720 		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2721 			goto do_map;
2722 
2723 		clear_inode_flag(inode, FI_SKIP_WRITES);
2724 
2725 		err = filemap_fdatawrite(inode->i_mapping);
2726 		if (err)
2727 			goto out;
2728 	}
2729 clear_out:
2730 	clear_inode_flag(inode, FI_SKIP_WRITES);
2731 out:
2732 	clear_inode_flag(inode, FI_OPU_WRITE);
2733 unlock_out:
2734 	inode_unlock(inode);
2735 	if (!err)
2736 		range->len = (u64)total << PAGE_SHIFT;
2737 	return err;
2738 }
2739 
2740 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2741 {
2742 	struct inode *inode = file_inode(filp);
2743 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2744 	struct f2fs_defragment range;
2745 	int err;
2746 
2747 	if (!capable(CAP_SYS_ADMIN))
2748 		return -EPERM;
2749 
2750 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2751 		return -EINVAL;
2752 
2753 	if (f2fs_readonly(sbi->sb))
2754 		return -EROFS;
2755 
2756 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2757 							sizeof(range)))
2758 		return -EFAULT;
2759 
2760 	/* verify alignment of offset & size */
2761 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2762 		return -EINVAL;
2763 
2764 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2765 					max_file_blocks(inode)))
2766 		return -EINVAL;
2767 
2768 	err = mnt_want_write_file(filp);
2769 	if (err)
2770 		return err;
2771 
2772 	err = f2fs_defragment_range(sbi, filp, &range);
2773 	mnt_drop_write_file(filp);
2774 
2775 	f2fs_update_time(sbi, REQ_TIME);
2776 	if (err < 0)
2777 		return err;
2778 
2779 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2780 							sizeof(range)))
2781 		return -EFAULT;
2782 
2783 	return 0;
2784 }
2785 
2786 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2787 			struct file *file_out, loff_t pos_out, size_t len)
2788 {
2789 	struct inode *src = file_inode(file_in);
2790 	struct inode *dst = file_inode(file_out);
2791 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2792 	size_t olen = len, dst_max_i_size = 0;
2793 	size_t dst_osize;
2794 	int ret;
2795 
2796 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2797 				src->i_sb != dst->i_sb)
2798 		return -EXDEV;
2799 
2800 	if (unlikely(f2fs_readonly(src->i_sb)))
2801 		return -EROFS;
2802 
2803 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2804 		return -EINVAL;
2805 
2806 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2807 		return -EOPNOTSUPP;
2808 
2809 	if (pos_out < 0 || pos_in < 0)
2810 		return -EINVAL;
2811 
2812 	if (src == dst) {
2813 		if (pos_in == pos_out)
2814 			return 0;
2815 		if (pos_out > pos_in && pos_out < pos_in + len)
2816 			return -EINVAL;
2817 	}
2818 
2819 	inode_lock(src);
2820 	if (src != dst) {
2821 		ret = -EBUSY;
2822 		if (!inode_trylock(dst))
2823 			goto out;
2824 	}
2825 
2826 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2827 		f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2828 		ret = -EOPNOTSUPP;
2829 		goto out_unlock;
2830 	}
2831 
2832 	ret = -EINVAL;
2833 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2834 		goto out_unlock;
2835 	if (len == 0)
2836 		olen = len = src->i_size - pos_in;
2837 	if (pos_in + len == src->i_size)
2838 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2839 	if (len == 0) {
2840 		ret = 0;
2841 		goto out_unlock;
2842 	}
2843 
2844 	dst_osize = dst->i_size;
2845 	if (pos_out + olen > dst->i_size)
2846 		dst_max_i_size = pos_out + olen;
2847 
2848 	/* verify the end result is block aligned */
2849 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2850 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2851 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2852 		goto out_unlock;
2853 
2854 	ret = f2fs_convert_inline_inode(src);
2855 	if (ret)
2856 		goto out_unlock;
2857 
2858 	ret = f2fs_convert_inline_inode(dst);
2859 	if (ret)
2860 		goto out_unlock;
2861 
2862 	/* write out all dirty pages from offset */
2863 	ret = filemap_write_and_wait_range(src->i_mapping,
2864 					pos_in, pos_in + len);
2865 	if (ret)
2866 		goto out_unlock;
2867 
2868 	ret = filemap_write_and_wait_range(dst->i_mapping,
2869 					pos_out, pos_out + len);
2870 	if (ret)
2871 		goto out_unlock;
2872 
2873 	f2fs_balance_fs(sbi, true);
2874 
2875 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2876 	if (src != dst) {
2877 		ret = -EBUSY;
2878 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2879 			goto out_src;
2880 	}
2881 
2882 	f2fs_lock_op(sbi);
2883 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2884 				pos_out >> F2FS_BLKSIZE_BITS,
2885 				len >> F2FS_BLKSIZE_BITS, false);
2886 
2887 	if (!ret) {
2888 		if (dst_max_i_size)
2889 			f2fs_i_size_write(dst, dst_max_i_size);
2890 		else if (dst_osize != dst->i_size)
2891 			f2fs_i_size_write(dst, dst_osize);
2892 	}
2893 	f2fs_unlock_op(sbi);
2894 
2895 	if (src != dst)
2896 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2897 out_src:
2898 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2899 	if (ret)
2900 		goto out_unlock;
2901 
2902 	src->i_mtime = inode_set_ctime_current(src);
2903 	f2fs_mark_inode_dirty_sync(src, false);
2904 	if (src != dst) {
2905 		dst->i_mtime = inode_set_ctime_current(dst);
2906 		f2fs_mark_inode_dirty_sync(dst, false);
2907 	}
2908 	f2fs_update_time(sbi, REQ_TIME);
2909 
2910 out_unlock:
2911 	if (src != dst)
2912 		inode_unlock(dst);
2913 out:
2914 	inode_unlock(src);
2915 	return ret;
2916 }
2917 
2918 static int __f2fs_ioc_move_range(struct file *filp,
2919 				struct f2fs_move_range *range)
2920 {
2921 	struct fd dst;
2922 	int err;
2923 
2924 	if (!(filp->f_mode & FMODE_READ) ||
2925 			!(filp->f_mode & FMODE_WRITE))
2926 		return -EBADF;
2927 
2928 	dst = fdget(range->dst_fd);
2929 	if (!dst.file)
2930 		return -EBADF;
2931 
2932 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2933 		err = -EBADF;
2934 		goto err_out;
2935 	}
2936 
2937 	err = mnt_want_write_file(filp);
2938 	if (err)
2939 		goto err_out;
2940 
2941 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2942 					range->pos_out, range->len);
2943 
2944 	mnt_drop_write_file(filp);
2945 err_out:
2946 	fdput(dst);
2947 	return err;
2948 }
2949 
2950 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2951 {
2952 	struct f2fs_move_range range;
2953 
2954 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2955 							sizeof(range)))
2956 		return -EFAULT;
2957 	return __f2fs_ioc_move_range(filp, &range);
2958 }
2959 
2960 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2961 {
2962 	struct inode *inode = file_inode(filp);
2963 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2964 	struct sit_info *sm = SIT_I(sbi);
2965 	unsigned int start_segno = 0, end_segno = 0;
2966 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2967 	struct f2fs_flush_device range;
2968 	struct f2fs_gc_control gc_control = {
2969 			.init_gc_type = FG_GC,
2970 			.should_migrate_blocks = true,
2971 			.err_gc_skipped = true,
2972 			.nr_free_secs = 0 };
2973 	int ret;
2974 
2975 	if (!capable(CAP_SYS_ADMIN))
2976 		return -EPERM;
2977 
2978 	if (f2fs_readonly(sbi->sb))
2979 		return -EROFS;
2980 
2981 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2982 		return -EINVAL;
2983 
2984 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2985 							sizeof(range)))
2986 		return -EFAULT;
2987 
2988 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2989 			__is_large_section(sbi)) {
2990 		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
2991 			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
2992 		return -EINVAL;
2993 	}
2994 
2995 	ret = mnt_want_write_file(filp);
2996 	if (ret)
2997 		return ret;
2998 
2999 	if (range.dev_num != 0)
3000 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3001 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3002 
3003 	start_segno = sm->last_victim[FLUSH_DEVICE];
3004 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3005 		start_segno = dev_start_segno;
3006 	end_segno = min(start_segno + range.segments, dev_end_segno);
3007 
3008 	while (start_segno < end_segno) {
3009 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3010 			ret = -EBUSY;
3011 			goto out;
3012 		}
3013 		sm->last_victim[GC_CB] = end_segno + 1;
3014 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3015 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3016 
3017 		gc_control.victim_segno = start_segno;
3018 		stat_inc_gc_call_count(sbi, FOREGROUND);
3019 		ret = f2fs_gc(sbi, &gc_control);
3020 		if (ret == -EAGAIN)
3021 			ret = 0;
3022 		else if (ret < 0)
3023 			break;
3024 		start_segno++;
3025 	}
3026 out:
3027 	mnt_drop_write_file(filp);
3028 	return ret;
3029 }
3030 
3031 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3032 {
3033 	struct inode *inode = file_inode(filp);
3034 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3035 
3036 	/* Must validate to set it with SQLite behavior in Android. */
3037 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3038 
3039 	return put_user(sb_feature, (u32 __user *)arg);
3040 }
3041 
3042 #ifdef CONFIG_QUOTA
3043 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3044 {
3045 	struct dquot *transfer_to[MAXQUOTAS] = {};
3046 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3047 	struct super_block *sb = sbi->sb;
3048 	int err;
3049 
3050 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3051 	if (IS_ERR(transfer_to[PRJQUOTA]))
3052 		return PTR_ERR(transfer_to[PRJQUOTA]);
3053 
3054 	err = __dquot_transfer(inode, transfer_to);
3055 	if (err)
3056 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3057 	dqput(transfer_to[PRJQUOTA]);
3058 	return err;
3059 }
3060 
3061 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3062 {
3063 	struct f2fs_inode_info *fi = F2FS_I(inode);
3064 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3065 	struct f2fs_inode *ri = NULL;
3066 	kprojid_t kprojid;
3067 	int err;
3068 
3069 	if (!f2fs_sb_has_project_quota(sbi)) {
3070 		if (projid != F2FS_DEF_PROJID)
3071 			return -EOPNOTSUPP;
3072 		else
3073 			return 0;
3074 	}
3075 
3076 	if (!f2fs_has_extra_attr(inode))
3077 		return -EOPNOTSUPP;
3078 
3079 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3080 
3081 	if (projid_eq(kprojid, fi->i_projid))
3082 		return 0;
3083 
3084 	err = -EPERM;
3085 	/* Is it quota file? Do not allow user to mess with it */
3086 	if (IS_NOQUOTA(inode))
3087 		return err;
3088 
3089 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3090 		return -EOVERFLOW;
3091 
3092 	err = f2fs_dquot_initialize(inode);
3093 	if (err)
3094 		return err;
3095 
3096 	f2fs_lock_op(sbi);
3097 	err = f2fs_transfer_project_quota(inode, kprojid);
3098 	if (err)
3099 		goto out_unlock;
3100 
3101 	fi->i_projid = kprojid;
3102 	inode_set_ctime_current(inode);
3103 	f2fs_mark_inode_dirty_sync(inode, true);
3104 out_unlock:
3105 	f2fs_unlock_op(sbi);
3106 	return err;
3107 }
3108 #else
3109 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3110 {
3111 	return 0;
3112 }
3113 
3114 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3115 {
3116 	if (projid != F2FS_DEF_PROJID)
3117 		return -EOPNOTSUPP;
3118 	return 0;
3119 }
3120 #endif
3121 
3122 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3123 {
3124 	struct inode *inode = d_inode(dentry);
3125 	struct f2fs_inode_info *fi = F2FS_I(inode);
3126 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3127 
3128 	if (IS_ENCRYPTED(inode))
3129 		fsflags |= FS_ENCRYPT_FL;
3130 	if (IS_VERITY(inode))
3131 		fsflags |= FS_VERITY_FL;
3132 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3133 		fsflags |= FS_INLINE_DATA_FL;
3134 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3135 		fsflags |= FS_NOCOW_FL;
3136 
3137 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3138 
3139 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3140 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3141 
3142 	return 0;
3143 }
3144 
3145 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3146 		      struct dentry *dentry, struct fileattr *fa)
3147 {
3148 	struct inode *inode = d_inode(dentry);
3149 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3150 	u32 iflags;
3151 	int err;
3152 
3153 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3154 		return -EIO;
3155 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3156 		return -ENOSPC;
3157 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3158 		return -EOPNOTSUPP;
3159 	fsflags &= F2FS_SETTABLE_FS_FL;
3160 	if (!fa->flags_valid)
3161 		mask &= FS_COMMON_FL;
3162 
3163 	iflags = f2fs_fsflags_to_iflags(fsflags);
3164 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3165 		return -EOPNOTSUPP;
3166 
3167 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3168 	if (!err)
3169 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3170 
3171 	return err;
3172 }
3173 
3174 int f2fs_pin_file_control(struct inode *inode, bool inc)
3175 {
3176 	struct f2fs_inode_info *fi = F2FS_I(inode);
3177 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3178 
3179 	/* Use i_gc_failures for normal file as a risk signal. */
3180 	if (inc)
3181 		f2fs_i_gc_failures_write(inode,
3182 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3183 
3184 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3185 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3186 			  __func__, inode->i_ino,
3187 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3188 		clear_inode_flag(inode, FI_PIN_FILE);
3189 		return -EAGAIN;
3190 	}
3191 	return 0;
3192 }
3193 
3194 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3195 {
3196 	struct inode *inode = file_inode(filp);
3197 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3198 	__u32 pin;
3199 	int ret = 0;
3200 
3201 	if (get_user(pin, (__u32 __user *)arg))
3202 		return -EFAULT;
3203 
3204 	if (!S_ISREG(inode->i_mode))
3205 		return -EINVAL;
3206 
3207 	if (f2fs_readonly(sbi->sb))
3208 		return -EROFS;
3209 
3210 	ret = mnt_want_write_file(filp);
3211 	if (ret)
3212 		return ret;
3213 
3214 	inode_lock(inode);
3215 
3216 	if (!pin) {
3217 		clear_inode_flag(inode, FI_PIN_FILE);
3218 		f2fs_i_gc_failures_write(inode, 0);
3219 		goto done;
3220 	} else if (f2fs_is_pinned_file(inode)) {
3221 		goto done;
3222 	}
3223 
3224 	if (f2fs_sb_has_blkzoned(sbi) && F2FS_HAS_BLOCKS(inode)) {
3225 		ret = -EFBIG;
3226 		goto out;
3227 	}
3228 
3229 	/* Let's allow file pinning on zoned device. */
3230 	if (!f2fs_sb_has_blkzoned(sbi) &&
3231 	    f2fs_should_update_outplace(inode, NULL)) {
3232 		ret = -EINVAL;
3233 		goto out;
3234 	}
3235 
3236 	if (f2fs_pin_file_control(inode, false)) {
3237 		ret = -EAGAIN;
3238 		goto out;
3239 	}
3240 
3241 	ret = f2fs_convert_inline_inode(inode);
3242 	if (ret)
3243 		goto out;
3244 
3245 	if (!f2fs_disable_compressed_file(inode)) {
3246 		ret = -EOPNOTSUPP;
3247 		goto out;
3248 	}
3249 
3250 	set_inode_flag(inode, FI_PIN_FILE);
3251 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3252 done:
3253 	f2fs_update_time(sbi, REQ_TIME);
3254 out:
3255 	inode_unlock(inode);
3256 	mnt_drop_write_file(filp);
3257 	return ret;
3258 }
3259 
3260 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3261 {
3262 	struct inode *inode = file_inode(filp);
3263 	__u32 pin = 0;
3264 
3265 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3266 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3267 	return put_user(pin, (u32 __user *)arg);
3268 }
3269 
3270 int f2fs_precache_extents(struct inode *inode)
3271 {
3272 	struct f2fs_inode_info *fi = F2FS_I(inode);
3273 	struct f2fs_map_blocks map;
3274 	pgoff_t m_next_extent;
3275 	loff_t end;
3276 	int err;
3277 
3278 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3279 		return -EOPNOTSUPP;
3280 
3281 	map.m_lblk = 0;
3282 	map.m_pblk = 0;
3283 	map.m_next_pgofs = NULL;
3284 	map.m_next_extent = &m_next_extent;
3285 	map.m_seg_type = NO_CHECK_TYPE;
3286 	map.m_may_create = false;
3287 	end = max_file_blocks(inode);
3288 
3289 	while (map.m_lblk < end) {
3290 		map.m_len = end - map.m_lblk;
3291 
3292 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3293 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3294 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3295 		if (err)
3296 			return err;
3297 
3298 		map.m_lblk = m_next_extent;
3299 	}
3300 
3301 	return 0;
3302 }
3303 
3304 static int f2fs_ioc_precache_extents(struct file *filp)
3305 {
3306 	return f2fs_precache_extents(file_inode(filp));
3307 }
3308 
3309 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3310 {
3311 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3312 	__u64 block_count;
3313 
3314 	if (!capable(CAP_SYS_ADMIN))
3315 		return -EPERM;
3316 
3317 	if (f2fs_readonly(sbi->sb))
3318 		return -EROFS;
3319 
3320 	if (copy_from_user(&block_count, (void __user *)arg,
3321 			   sizeof(block_count)))
3322 		return -EFAULT;
3323 
3324 	return f2fs_resize_fs(filp, block_count);
3325 }
3326 
3327 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3328 {
3329 	struct inode *inode = file_inode(filp);
3330 
3331 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3332 
3333 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3334 		f2fs_warn(F2FS_I_SB(inode),
3335 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3336 			  inode->i_ino);
3337 		return -EOPNOTSUPP;
3338 	}
3339 
3340 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3341 }
3342 
3343 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3344 {
3345 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3346 		return -EOPNOTSUPP;
3347 
3348 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3349 }
3350 
3351 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3352 {
3353 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3354 		return -EOPNOTSUPP;
3355 
3356 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3357 }
3358 
3359 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3360 {
3361 	struct inode *inode = file_inode(filp);
3362 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3363 	char *vbuf;
3364 	int count;
3365 	int err = 0;
3366 
3367 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3368 	if (!vbuf)
3369 		return -ENOMEM;
3370 
3371 	f2fs_down_read(&sbi->sb_lock);
3372 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3373 			ARRAY_SIZE(sbi->raw_super->volume_name),
3374 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3375 	f2fs_up_read(&sbi->sb_lock);
3376 
3377 	if (copy_to_user((char __user *)arg, vbuf,
3378 				min(FSLABEL_MAX, count)))
3379 		err = -EFAULT;
3380 
3381 	kfree(vbuf);
3382 	return err;
3383 }
3384 
3385 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3386 {
3387 	struct inode *inode = file_inode(filp);
3388 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3389 	char *vbuf;
3390 	int err = 0;
3391 
3392 	if (!capable(CAP_SYS_ADMIN))
3393 		return -EPERM;
3394 
3395 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3396 	if (IS_ERR(vbuf))
3397 		return PTR_ERR(vbuf);
3398 
3399 	err = mnt_want_write_file(filp);
3400 	if (err)
3401 		goto out;
3402 
3403 	f2fs_down_write(&sbi->sb_lock);
3404 
3405 	memset(sbi->raw_super->volume_name, 0,
3406 			sizeof(sbi->raw_super->volume_name));
3407 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3408 			sbi->raw_super->volume_name,
3409 			ARRAY_SIZE(sbi->raw_super->volume_name));
3410 
3411 	err = f2fs_commit_super(sbi, false);
3412 
3413 	f2fs_up_write(&sbi->sb_lock);
3414 
3415 	mnt_drop_write_file(filp);
3416 out:
3417 	kfree(vbuf);
3418 	return err;
3419 }
3420 
3421 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3422 {
3423 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3424 		return -EOPNOTSUPP;
3425 
3426 	if (!f2fs_compressed_file(inode))
3427 		return -EINVAL;
3428 
3429 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3430 
3431 	return 0;
3432 }
3433 
3434 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3435 {
3436 	struct inode *inode = file_inode(filp);
3437 	__u64 blocks;
3438 	int ret;
3439 
3440 	ret = f2fs_get_compress_blocks(inode, &blocks);
3441 	if (ret < 0)
3442 		return ret;
3443 
3444 	return put_user(blocks, (u64 __user *)arg);
3445 }
3446 
3447 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3448 {
3449 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3450 	unsigned int released_blocks = 0;
3451 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3452 	block_t blkaddr;
3453 	int i;
3454 
3455 	for (i = 0; i < count; i++) {
3456 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3457 						dn->ofs_in_node + i);
3458 
3459 		if (!__is_valid_data_blkaddr(blkaddr))
3460 			continue;
3461 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3462 					DATA_GENERIC_ENHANCE))) {
3463 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3464 			return -EFSCORRUPTED;
3465 		}
3466 	}
3467 
3468 	while (count) {
3469 		int compr_blocks = 0;
3470 
3471 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3472 			blkaddr = f2fs_data_blkaddr(dn);
3473 
3474 			if (i == 0) {
3475 				if (blkaddr == COMPRESS_ADDR)
3476 					continue;
3477 				dn->ofs_in_node += cluster_size;
3478 				goto next;
3479 			}
3480 
3481 			if (__is_valid_data_blkaddr(blkaddr))
3482 				compr_blocks++;
3483 
3484 			if (blkaddr != NEW_ADDR)
3485 				continue;
3486 
3487 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3488 		}
3489 
3490 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3491 		dec_valid_block_count(sbi, dn->inode,
3492 					cluster_size - compr_blocks);
3493 
3494 		released_blocks += cluster_size - compr_blocks;
3495 next:
3496 		count -= cluster_size;
3497 	}
3498 
3499 	return released_blocks;
3500 }
3501 
3502 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3503 {
3504 	struct inode *inode = file_inode(filp);
3505 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3506 	pgoff_t page_idx = 0, last_idx;
3507 	unsigned int released_blocks = 0;
3508 	int ret;
3509 	int writecount;
3510 
3511 	if (!f2fs_sb_has_compression(sbi))
3512 		return -EOPNOTSUPP;
3513 
3514 	if (f2fs_readonly(sbi->sb))
3515 		return -EROFS;
3516 
3517 	ret = mnt_want_write_file(filp);
3518 	if (ret)
3519 		return ret;
3520 
3521 	f2fs_balance_fs(sbi, true);
3522 
3523 	inode_lock(inode);
3524 
3525 	writecount = atomic_read(&inode->i_writecount);
3526 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3527 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3528 		ret = -EBUSY;
3529 		goto out;
3530 	}
3531 
3532 	if (!f2fs_compressed_file(inode) ||
3533 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3534 		ret = -EINVAL;
3535 		goto out;
3536 	}
3537 
3538 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3539 	if (ret)
3540 		goto out;
3541 
3542 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3543 		ret = -EPERM;
3544 		goto out;
3545 	}
3546 
3547 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3548 	inode_set_ctime_current(inode);
3549 	f2fs_mark_inode_dirty_sync(inode, true);
3550 
3551 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3552 	filemap_invalidate_lock(inode->i_mapping);
3553 
3554 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3555 
3556 	while (page_idx < last_idx) {
3557 		struct dnode_of_data dn;
3558 		pgoff_t end_offset, count;
3559 
3560 		f2fs_lock_op(sbi);
3561 
3562 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3563 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3564 		if (ret) {
3565 			f2fs_unlock_op(sbi);
3566 			if (ret == -ENOENT) {
3567 				page_idx = f2fs_get_next_page_offset(&dn,
3568 								page_idx);
3569 				ret = 0;
3570 				continue;
3571 			}
3572 			break;
3573 		}
3574 
3575 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3576 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3577 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3578 
3579 		ret = release_compress_blocks(&dn, count);
3580 
3581 		f2fs_put_dnode(&dn);
3582 
3583 		f2fs_unlock_op(sbi);
3584 
3585 		if (ret < 0)
3586 			break;
3587 
3588 		page_idx += count;
3589 		released_blocks += ret;
3590 	}
3591 
3592 	filemap_invalidate_unlock(inode->i_mapping);
3593 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3594 out:
3595 	inode_unlock(inode);
3596 
3597 	mnt_drop_write_file(filp);
3598 
3599 	if (ret >= 0) {
3600 		ret = put_user(released_blocks, (u64 __user *)arg);
3601 	} else if (released_blocks &&
3602 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3603 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3604 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3605 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3606 			"run fsck to fix.",
3607 			__func__, inode->i_ino, inode->i_blocks,
3608 			released_blocks,
3609 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3610 	}
3611 
3612 	return ret;
3613 }
3614 
3615 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3616 		unsigned int *reserved_blocks)
3617 {
3618 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3619 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3620 	block_t blkaddr;
3621 	int i;
3622 
3623 	for (i = 0; i < count; i++) {
3624 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3625 						dn->ofs_in_node + i);
3626 
3627 		if (!__is_valid_data_blkaddr(blkaddr))
3628 			continue;
3629 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3630 					DATA_GENERIC_ENHANCE))) {
3631 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3632 			return -EFSCORRUPTED;
3633 		}
3634 	}
3635 
3636 	while (count) {
3637 		int compr_blocks = 0;
3638 		blkcnt_t reserved = 0;
3639 		blkcnt_t to_reserved;
3640 		int ret;
3641 
3642 		for (i = 0; i < cluster_size; i++) {
3643 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
3644 						dn->ofs_in_node + i);
3645 
3646 			if (i == 0) {
3647 				if (blkaddr != COMPRESS_ADDR) {
3648 					dn->ofs_in_node += cluster_size;
3649 					goto next;
3650 				}
3651 				continue;
3652 			}
3653 
3654 			/*
3655 			 * compressed cluster was not released due to it
3656 			 * fails in release_compress_blocks(), so NEW_ADDR
3657 			 * is a possible case.
3658 			 */
3659 			if (blkaddr == NEW_ADDR) {
3660 				reserved++;
3661 				continue;
3662 			}
3663 			if (__is_valid_data_blkaddr(blkaddr)) {
3664 				compr_blocks++;
3665 				continue;
3666 			}
3667 		}
3668 
3669 		to_reserved = cluster_size - compr_blocks - reserved;
3670 
3671 		/* for the case all blocks in cluster were reserved */
3672 		if (to_reserved == 1) {
3673 			dn->ofs_in_node += cluster_size;
3674 			goto next;
3675 		}
3676 
3677 		ret = inc_valid_block_count(sbi, dn->inode,
3678 						&to_reserved, false);
3679 		if (unlikely(ret))
3680 			return ret;
3681 
3682 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3683 			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3684 				f2fs_set_data_blkaddr(dn, NEW_ADDR);
3685 		}
3686 
3687 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3688 
3689 		*reserved_blocks += to_reserved;
3690 next:
3691 		count -= cluster_size;
3692 	}
3693 
3694 	return 0;
3695 }
3696 
3697 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3698 {
3699 	struct inode *inode = file_inode(filp);
3700 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3701 	pgoff_t page_idx = 0, last_idx;
3702 	unsigned int reserved_blocks = 0;
3703 	int ret;
3704 
3705 	if (!f2fs_sb_has_compression(sbi))
3706 		return -EOPNOTSUPP;
3707 
3708 	if (f2fs_readonly(sbi->sb))
3709 		return -EROFS;
3710 
3711 	ret = mnt_want_write_file(filp);
3712 	if (ret)
3713 		return ret;
3714 
3715 	f2fs_balance_fs(sbi, true);
3716 
3717 	inode_lock(inode);
3718 
3719 	if (!f2fs_compressed_file(inode) ||
3720 		!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3721 		ret = -EINVAL;
3722 		goto unlock_inode;
3723 	}
3724 
3725 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3726 		goto unlock_inode;
3727 
3728 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3729 	filemap_invalidate_lock(inode->i_mapping);
3730 
3731 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3732 
3733 	while (page_idx < last_idx) {
3734 		struct dnode_of_data dn;
3735 		pgoff_t end_offset, count;
3736 
3737 		f2fs_lock_op(sbi);
3738 
3739 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3740 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3741 		if (ret) {
3742 			f2fs_unlock_op(sbi);
3743 			if (ret == -ENOENT) {
3744 				page_idx = f2fs_get_next_page_offset(&dn,
3745 								page_idx);
3746 				ret = 0;
3747 				continue;
3748 			}
3749 			break;
3750 		}
3751 
3752 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3753 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3754 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3755 
3756 		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3757 
3758 		f2fs_put_dnode(&dn);
3759 
3760 		f2fs_unlock_op(sbi);
3761 
3762 		if (ret < 0)
3763 			break;
3764 
3765 		page_idx += count;
3766 	}
3767 
3768 	filemap_invalidate_unlock(inode->i_mapping);
3769 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3770 
3771 	if (!ret) {
3772 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3773 		inode_set_ctime_current(inode);
3774 		f2fs_mark_inode_dirty_sync(inode, true);
3775 	}
3776 unlock_inode:
3777 	inode_unlock(inode);
3778 	mnt_drop_write_file(filp);
3779 
3780 	if (!ret) {
3781 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3782 	} else if (reserved_blocks &&
3783 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3784 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3785 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3786 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3787 			"run fsck to fix.",
3788 			__func__, inode->i_ino, inode->i_blocks,
3789 			reserved_blocks,
3790 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3791 	}
3792 
3793 	return ret;
3794 }
3795 
3796 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3797 		pgoff_t off, block_t block, block_t len, u32 flags)
3798 {
3799 	sector_t sector = SECTOR_FROM_BLOCK(block);
3800 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3801 	int ret = 0;
3802 
3803 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3804 		if (bdev_max_secure_erase_sectors(bdev))
3805 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3806 					GFP_NOFS);
3807 		else
3808 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3809 					GFP_NOFS);
3810 	}
3811 
3812 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3813 		if (IS_ENCRYPTED(inode))
3814 			ret = fscrypt_zeroout_range(inode, off, block, len);
3815 		else
3816 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3817 					GFP_NOFS, 0);
3818 	}
3819 
3820 	return ret;
3821 }
3822 
3823 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3824 {
3825 	struct inode *inode = file_inode(filp);
3826 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3827 	struct address_space *mapping = inode->i_mapping;
3828 	struct block_device *prev_bdev = NULL;
3829 	struct f2fs_sectrim_range range;
3830 	pgoff_t index, pg_end, prev_index = 0;
3831 	block_t prev_block = 0, len = 0;
3832 	loff_t end_addr;
3833 	bool to_end = false;
3834 	int ret = 0;
3835 
3836 	if (!(filp->f_mode & FMODE_WRITE))
3837 		return -EBADF;
3838 
3839 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3840 				sizeof(range)))
3841 		return -EFAULT;
3842 
3843 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3844 			!S_ISREG(inode->i_mode))
3845 		return -EINVAL;
3846 
3847 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3848 			!f2fs_hw_support_discard(sbi)) ||
3849 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3850 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3851 		return -EOPNOTSUPP;
3852 
3853 	file_start_write(filp);
3854 	inode_lock(inode);
3855 
3856 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3857 			range.start >= inode->i_size) {
3858 		ret = -EINVAL;
3859 		goto err;
3860 	}
3861 
3862 	if (range.len == 0)
3863 		goto err;
3864 
3865 	if (inode->i_size - range.start > range.len) {
3866 		end_addr = range.start + range.len;
3867 	} else {
3868 		end_addr = range.len == (u64)-1 ?
3869 			sbi->sb->s_maxbytes : inode->i_size;
3870 		to_end = true;
3871 	}
3872 
3873 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3874 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3875 		ret = -EINVAL;
3876 		goto err;
3877 	}
3878 
3879 	index = F2FS_BYTES_TO_BLK(range.start);
3880 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3881 
3882 	ret = f2fs_convert_inline_inode(inode);
3883 	if (ret)
3884 		goto err;
3885 
3886 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3887 	filemap_invalidate_lock(mapping);
3888 
3889 	ret = filemap_write_and_wait_range(mapping, range.start,
3890 			to_end ? LLONG_MAX : end_addr - 1);
3891 	if (ret)
3892 		goto out;
3893 
3894 	truncate_inode_pages_range(mapping, range.start,
3895 			to_end ? -1 : end_addr - 1);
3896 
3897 	while (index < pg_end) {
3898 		struct dnode_of_data dn;
3899 		pgoff_t end_offset, count;
3900 		int i;
3901 
3902 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3903 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3904 		if (ret) {
3905 			if (ret == -ENOENT) {
3906 				index = f2fs_get_next_page_offset(&dn, index);
3907 				continue;
3908 			}
3909 			goto out;
3910 		}
3911 
3912 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3913 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3914 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3915 			struct block_device *cur_bdev;
3916 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3917 
3918 			if (!__is_valid_data_blkaddr(blkaddr))
3919 				continue;
3920 
3921 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3922 						DATA_GENERIC_ENHANCE)) {
3923 				ret = -EFSCORRUPTED;
3924 				f2fs_put_dnode(&dn);
3925 				f2fs_handle_error(sbi,
3926 						ERROR_INVALID_BLKADDR);
3927 				goto out;
3928 			}
3929 
3930 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3931 			if (f2fs_is_multi_device(sbi)) {
3932 				int di = f2fs_target_device_index(sbi, blkaddr);
3933 
3934 				blkaddr -= FDEV(di).start_blk;
3935 			}
3936 
3937 			if (len) {
3938 				if (prev_bdev == cur_bdev &&
3939 						index == prev_index + len &&
3940 						blkaddr == prev_block + len) {
3941 					len++;
3942 				} else {
3943 					ret = f2fs_secure_erase(prev_bdev,
3944 						inode, prev_index, prev_block,
3945 						len, range.flags);
3946 					if (ret) {
3947 						f2fs_put_dnode(&dn);
3948 						goto out;
3949 					}
3950 
3951 					len = 0;
3952 				}
3953 			}
3954 
3955 			if (!len) {
3956 				prev_bdev = cur_bdev;
3957 				prev_index = index;
3958 				prev_block = blkaddr;
3959 				len = 1;
3960 			}
3961 		}
3962 
3963 		f2fs_put_dnode(&dn);
3964 
3965 		if (fatal_signal_pending(current)) {
3966 			ret = -EINTR;
3967 			goto out;
3968 		}
3969 		cond_resched();
3970 	}
3971 
3972 	if (len)
3973 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3974 				prev_block, len, range.flags);
3975 out:
3976 	filemap_invalidate_unlock(mapping);
3977 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3978 err:
3979 	inode_unlock(inode);
3980 	file_end_write(filp);
3981 
3982 	return ret;
3983 }
3984 
3985 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3986 {
3987 	struct inode *inode = file_inode(filp);
3988 	struct f2fs_comp_option option;
3989 
3990 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3991 		return -EOPNOTSUPP;
3992 
3993 	inode_lock_shared(inode);
3994 
3995 	if (!f2fs_compressed_file(inode)) {
3996 		inode_unlock_shared(inode);
3997 		return -ENODATA;
3998 	}
3999 
4000 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4001 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4002 
4003 	inode_unlock_shared(inode);
4004 
4005 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4006 				sizeof(option)))
4007 		return -EFAULT;
4008 
4009 	return 0;
4010 }
4011 
4012 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4013 {
4014 	struct inode *inode = file_inode(filp);
4015 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4016 	struct f2fs_comp_option option;
4017 	int ret = 0;
4018 
4019 	if (!f2fs_sb_has_compression(sbi))
4020 		return -EOPNOTSUPP;
4021 
4022 	if (!(filp->f_mode & FMODE_WRITE))
4023 		return -EBADF;
4024 
4025 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4026 				sizeof(option)))
4027 		return -EFAULT;
4028 
4029 	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4030 		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4031 		option.algorithm >= COMPRESS_MAX)
4032 		return -EINVAL;
4033 
4034 	file_start_write(filp);
4035 	inode_lock(inode);
4036 
4037 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4038 	if (!f2fs_compressed_file(inode)) {
4039 		ret = -EINVAL;
4040 		goto out;
4041 	}
4042 
4043 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4044 		ret = -EBUSY;
4045 		goto out;
4046 	}
4047 
4048 	if (F2FS_HAS_BLOCKS(inode)) {
4049 		ret = -EFBIG;
4050 		goto out;
4051 	}
4052 
4053 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4054 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4055 	F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4056 	/* Set default level */
4057 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4058 		F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4059 	else
4060 		F2FS_I(inode)->i_compress_level = 0;
4061 	/* Adjust mount option level */
4062 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4063 	    F2FS_OPTION(sbi).compress_level)
4064 		F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4065 	f2fs_mark_inode_dirty_sync(inode, true);
4066 
4067 	if (!f2fs_is_compress_backend_ready(inode))
4068 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4069 			"but current kernel doesn't support this algorithm.");
4070 out:
4071 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4072 	inode_unlock(inode);
4073 	file_end_write(filp);
4074 
4075 	return ret;
4076 }
4077 
4078 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4079 {
4080 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4081 	struct address_space *mapping = inode->i_mapping;
4082 	struct page *page;
4083 	pgoff_t redirty_idx = page_idx;
4084 	int i, page_len = 0, ret = 0;
4085 
4086 	page_cache_ra_unbounded(&ractl, len, 0);
4087 
4088 	for (i = 0; i < len; i++, page_idx++) {
4089 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4090 		if (IS_ERR(page)) {
4091 			ret = PTR_ERR(page);
4092 			break;
4093 		}
4094 		page_len++;
4095 	}
4096 
4097 	for (i = 0; i < page_len; i++, redirty_idx++) {
4098 		page = find_lock_page(mapping, redirty_idx);
4099 
4100 		/* It will never fail, when page has pinned above */
4101 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4102 
4103 		set_page_dirty(page);
4104 		set_page_private_gcing(page);
4105 		f2fs_put_page(page, 1);
4106 		f2fs_put_page(page, 0);
4107 	}
4108 
4109 	return ret;
4110 }
4111 
4112 static int f2fs_ioc_decompress_file(struct file *filp)
4113 {
4114 	struct inode *inode = file_inode(filp);
4115 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4116 	struct f2fs_inode_info *fi = F2FS_I(inode);
4117 	pgoff_t page_idx = 0, last_idx;
4118 	int cluster_size = fi->i_cluster_size;
4119 	int count, ret;
4120 
4121 	if (!f2fs_sb_has_compression(sbi) ||
4122 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4123 		return -EOPNOTSUPP;
4124 
4125 	if (!(filp->f_mode & FMODE_WRITE))
4126 		return -EBADF;
4127 
4128 	f2fs_balance_fs(sbi, true);
4129 
4130 	file_start_write(filp);
4131 	inode_lock(inode);
4132 
4133 	if (!f2fs_is_compress_backend_ready(inode)) {
4134 		ret = -EOPNOTSUPP;
4135 		goto out;
4136 	}
4137 
4138 	if (!f2fs_compressed_file(inode) ||
4139 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4140 		ret = -EINVAL;
4141 		goto out;
4142 	}
4143 
4144 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4145 	if (ret)
4146 		goto out;
4147 
4148 	if (!atomic_read(&fi->i_compr_blocks))
4149 		goto out;
4150 
4151 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4152 
4153 	count = last_idx - page_idx;
4154 	while (count && count >= cluster_size) {
4155 		ret = redirty_blocks(inode, page_idx, cluster_size);
4156 		if (ret < 0)
4157 			break;
4158 
4159 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4160 			ret = filemap_fdatawrite(inode->i_mapping);
4161 			if (ret < 0)
4162 				break;
4163 		}
4164 
4165 		count -= cluster_size;
4166 		page_idx += cluster_size;
4167 
4168 		cond_resched();
4169 		if (fatal_signal_pending(current)) {
4170 			ret = -EINTR;
4171 			break;
4172 		}
4173 	}
4174 
4175 	if (!ret)
4176 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4177 							LLONG_MAX);
4178 
4179 	if (ret)
4180 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4181 			  __func__, ret);
4182 out:
4183 	inode_unlock(inode);
4184 	file_end_write(filp);
4185 
4186 	return ret;
4187 }
4188 
4189 static int f2fs_ioc_compress_file(struct file *filp)
4190 {
4191 	struct inode *inode = file_inode(filp);
4192 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4193 	pgoff_t page_idx = 0, last_idx;
4194 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4195 	int count, ret;
4196 
4197 	if (!f2fs_sb_has_compression(sbi) ||
4198 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4199 		return -EOPNOTSUPP;
4200 
4201 	if (!(filp->f_mode & FMODE_WRITE))
4202 		return -EBADF;
4203 
4204 	f2fs_balance_fs(sbi, true);
4205 
4206 	file_start_write(filp);
4207 	inode_lock(inode);
4208 
4209 	if (!f2fs_is_compress_backend_ready(inode)) {
4210 		ret = -EOPNOTSUPP;
4211 		goto out;
4212 	}
4213 
4214 	if (!f2fs_compressed_file(inode) ||
4215 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4216 		ret = -EINVAL;
4217 		goto out;
4218 	}
4219 
4220 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4221 	if (ret)
4222 		goto out;
4223 
4224 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4225 
4226 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4227 
4228 	count = last_idx - page_idx;
4229 	while (count && count >= cluster_size) {
4230 		ret = redirty_blocks(inode, page_idx, cluster_size);
4231 		if (ret < 0)
4232 			break;
4233 
4234 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4235 			ret = filemap_fdatawrite(inode->i_mapping);
4236 			if (ret < 0)
4237 				break;
4238 		}
4239 
4240 		count -= cluster_size;
4241 		page_idx += cluster_size;
4242 
4243 		cond_resched();
4244 		if (fatal_signal_pending(current)) {
4245 			ret = -EINTR;
4246 			break;
4247 		}
4248 	}
4249 
4250 	if (!ret)
4251 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4252 							LLONG_MAX);
4253 
4254 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4255 
4256 	if (ret)
4257 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4258 			  __func__, ret);
4259 out:
4260 	inode_unlock(inode);
4261 	file_end_write(filp);
4262 
4263 	return ret;
4264 }
4265 
4266 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4267 {
4268 	switch (cmd) {
4269 	case FS_IOC_GETVERSION:
4270 		return f2fs_ioc_getversion(filp, arg);
4271 	case F2FS_IOC_START_ATOMIC_WRITE:
4272 		return f2fs_ioc_start_atomic_write(filp, false);
4273 	case F2FS_IOC_START_ATOMIC_REPLACE:
4274 		return f2fs_ioc_start_atomic_write(filp, true);
4275 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4276 		return f2fs_ioc_commit_atomic_write(filp);
4277 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4278 		return f2fs_ioc_abort_atomic_write(filp);
4279 	case F2FS_IOC_START_VOLATILE_WRITE:
4280 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4281 		return -EOPNOTSUPP;
4282 	case F2FS_IOC_SHUTDOWN:
4283 		return f2fs_ioc_shutdown(filp, arg);
4284 	case FITRIM:
4285 		return f2fs_ioc_fitrim(filp, arg);
4286 	case FS_IOC_SET_ENCRYPTION_POLICY:
4287 		return f2fs_ioc_set_encryption_policy(filp, arg);
4288 	case FS_IOC_GET_ENCRYPTION_POLICY:
4289 		return f2fs_ioc_get_encryption_policy(filp, arg);
4290 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4291 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4292 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4293 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4294 	case FS_IOC_ADD_ENCRYPTION_KEY:
4295 		return f2fs_ioc_add_encryption_key(filp, arg);
4296 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4297 		return f2fs_ioc_remove_encryption_key(filp, arg);
4298 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4299 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4300 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4301 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4302 	case FS_IOC_GET_ENCRYPTION_NONCE:
4303 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4304 	case F2FS_IOC_GARBAGE_COLLECT:
4305 		return f2fs_ioc_gc(filp, arg);
4306 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4307 		return f2fs_ioc_gc_range(filp, arg);
4308 	case F2FS_IOC_WRITE_CHECKPOINT:
4309 		return f2fs_ioc_write_checkpoint(filp);
4310 	case F2FS_IOC_DEFRAGMENT:
4311 		return f2fs_ioc_defragment(filp, arg);
4312 	case F2FS_IOC_MOVE_RANGE:
4313 		return f2fs_ioc_move_range(filp, arg);
4314 	case F2FS_IOC_FLUSH_DEVICE:
4315 		return f2fs_ioc_flush_device(filp, arg);
4316 	case F2FS_IOC_GET_FEATURES:
4317 		return f2fs_ioc_get_features(filp, arg);
4318 	case F2FS_IOC_GET_PIN_FILE:
4319 		return f2fs_ioc_get_pin_file(filp, arg);
4320 	case F2FS_IOC_SET_PIN_FILE:
4321 		return f2fs_ioc_set_pin_file(filp, arg);
4322 	case F2FS_IOC_PRECACHE_EXTENTS:
4323 		return f2fs_ioc_precache_extents(filp);
4324 	case F2FS_IOC_RESIZE_FS:
4325 		return f2fs_ioc_resize_fs(filp, arg);
4326 	case FS_IOC_ENABLE_VERITY:
4327 		return f2fs_ioc_enable_verity(filp, arg);
4328 	case FS_IOC_MEASURE_VERITY:
4329 		return f2fs_ioc_measure_verity(filp, arg);
4330 	case FS_IOC_READ_VERITY_METADATA:
4331 		return f2fs_ioc_read_verity_metadata(filp, arg);
4332 	case FS_IOC_GETFSLABEL:
4333 		return f2fs_ioc_getfslabel(filp, arg);
4334 	case FS_IOC_SETFSLABEL:
4335 		return f2fs_ioc_setfslabel(filp, arg);
4336 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4337 		return f2fs_ioc_get_compress_blocks(filp, arg);
4338 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4339 		return f2fs_release_compress_blocks(filp, arg);
4340 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4341 		return f2fs_reserve_compress_blocks(filp, arg);
4342 	case F2FS_IOC_SEC_TRIM_FILE:
4343 		return f2fs_sec_trim_file(filp, arg);
4344 	case F2FS_IOC_GET_COMPRESS_OPTION:
4345 		return f2fs_ioc_get_compress_option(filp, arg);
4346 	case F2FS_IOC_SET_COMPRESS_OPTION:
4347 		return f2fs_ioc_set_compress_option(filp, arg);
4348 	case F2FS_IOC_DECOMPRESS_FILE:
4349 		return f2fs_ioc_decompress_file(filp);
4350 	case F2FS_IOC_COMPRESS_FILE:
4351 		return f2fs_ioc_compress_file(filp);
4352 	default:
4353 		return -ENOTTY;
4354 	}
4355 }
4356 
4357 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4358 {
4359 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4360 		return -EIO;
4361 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4362 		return -ENOSPC;
4363 
4364 	return __f2fs_ioctl(filp, cmd, arg);
4365 }
4366 
4367 /*
4368  * Return %true if the given read or write request should use direct I/O, or
4369  * %false if it should use buffered I/O.
4370  */
4371 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4372 				struct iov_iter *iter)
4373 {
4374 	unsigned int align;
4375 
4376 	if (!(iocb->ki_flags & IOCB_DIRECT))
4377 		return false;
4378 
4379 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4380 		return false;
4381 
4382 	/*
4383 	 * Direct I/O not aligned to the disk's logical_block_size will be
4384 	 * attempted, but will fail with -EINVAL.
4385 	 *
4386 	 * f2fs additionally requires that direct I/O be aligned to the
4387 	 * filesystem block size, which is often a stricter requirement.
4388 	 * However, f2fs traditionally falls back to buffered I/O on requests
4389 	 * that are logical_block_size-aligned but not fs-block aligned.
4390 	 *
4391 	 * The below logic implements this behavior.
4392 	 */
4393 	align = iocb->ki_pos | iov_iter_alignment(iter);
4394 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4395 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4396 		return false;
4397 
4398 	return true;
4399 }
4400 
4401 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4402 				unsigned int flags)
4403 {
4404 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4405 
4406 	dec_page_count(sbi, F2FS_DIO_READ);
4407 	if (error)
4408 		return error;
4409 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4410 	return 0;
4411 }
4412 
4413 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4414 	.end_io = f2fs_dio_read_end_io,
4415 };
4416 
4417 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4418 {
4419 	struct file *file = iocb->ki_filp;
4420 	struct inode *inode = file_inode(file);
4421 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4422 	struct f2fs_inode_info *fi = F2FS_I(inode);
4423 	const loff_t pos = iocb->ki_pos;
4424 	const size_t count = iov_iter_count(to);
4425 	struct iomap_dio *dio;
4426 	ssize_t ret;
4427 
4428 	if (count == 0)
4429 		return 0; /* skip atime update */
4430 
4431 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4432 
4433 	if (iocb->ki_flags & IOCB_NOWAIT) {
4434 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4435 			ret = -EAGAIN;
4436 			goto out;
4437 		}
4438 	} else {
4439 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4440 	}
4441 
4442 	/*
4443 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4444 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4445 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4446 	 */
4447 	inc_page_count(sbi, F2FS_DIO_READ);
4448 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4449 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4450 	if (IS_ERR_OR_NULL(dio)) {
4451 		ret = PTR_ERR_OR_ZERO(dio);
4452 		if (ret != -EIOCBQUEUED)
4453 			dec_page_count(sbi, F2FS_DIO_READ);
4454 	} else {
4455 		ret = iomap_dio_complete(dio);
4456 	}
4457 
4458 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4459 
4460 	file_accessed(file);
4461 out:
4462 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4463 	return ret;
4464 }
4465 
4466 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4467 				    int rw)
4468 {
4469 	struct inode *inode = file_inode(file);
4470 	char *buf, *path;
4471 
4472 	buf = f2fs_getname(F2FS_I_SB(inode));
4473 	if (!buf)
4474 		return;
4475 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4476 	if (IS_ERR(path))
4477 		goto free_buf;
4478 	if (rw == WRITE)
4479 		trace_f2fs_datawrite_start(inode, pos, count,
4480 				current->pid, path, current->comm);
4481 	else
4482 		trace_f2fs_dataread_start(inode, pos, count,
4483 				current->pid, path, current->comm);
4484 free_buf:
4485 	f2fs_putname(buf);
4486 }
4487 
4488 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4489 {
4490 	struct inode *inode = file_inode(iocb->ki_filp);
4491 	const loff_t pos = iocb->ki_pos;
4492 	ssize_t ret;
4493 
4494 	if (!f2fs_is_compress_backend_ready(inode))
4495 		return -EOPNOTSUPP;
4496 
4497 	if (trace_f2fs_dataread_start_enabled())
4498 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4499 					iov_iter_count(to), READ);
4500 
4501 	if (f2fs_should_use_dio(inode, iocb, to)) {
4502 		ret = f2fs_dio_read_iter(iocb, to);
4503 	} else {
4504 		ret = filemap_read(iocb, to, 0);
4505 		if (ret > 0)
4506 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4507 						APP_BUFFERED_READ_IO, ret);
4508 	}
4509 	if (trace_f2fs_dataread_end_enabled())
4510 		trace_f2fs_dataread_end(inode, pos, ret);
4511 	return ret;
4512 }
4513 
4514 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4515 				     struct pipe_inode_info *pipe,
4516 				     size_t len, unsigned int flags)
4517 {
4518 	struct inode *inode = file_inode(in);
4519 	const loff_t pos = *ppos;
4520 	ssize_t ret;
4521 
4522 	if (!f2fs_is_compress_backend_ready(inode))
4523 		return -EOPNOTSUPP;
4524 
4525 	if (trace_f2fs_dataread_start_enabled())
4526 		f2fs_trace_rw_file_path(in, pos, len, READ);
4527 
4528 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4529 	if (ret > 0)
4530 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4531 				   APP_BUFFERED_READ_IO, ret);
4532 
4533 	if (trace_f2fs_dataread_end_enabled())
4534 		trace_f2fs_dataread_end(inode, pos, ret);
4535 	return ret;
4536 }
4537 
4538 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4539 {
4540 	struct file *file = iocb->ki_filp;
4541 	struct inode *inode = file_inode(file);
4542 	ssize_t count;
4543 	int err;
4544 
4545 	if (IS_IMMUTABLE(inode))
4546 		return -EPERM;
4547 
4548 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4549 		return -EPERM;
4550 
4551 	count = generic_write_checks(iocb, from);
4552 	if (count <= 0)
4553 		return count;
4554 
4555 	err = file_modified(file);
4556 	if (err)
4557 		return err;
4558 	return count;
4559 }
4560 
4561 /*
4562  * Preallocate blocks for a write request, if it is possible and helpful to do
4563  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4564  * blocks were preallocated, or a negative errno value if something went
4565  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4566  * requested blocks (not just some of them) have been allocated.
4567  */
4568 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4569 				   bool dio)
4570 {
4571 	struct inode *inode = file_inode(iocb->ki_filp);
4572 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4573 	const loff_t pos = iocb->ki_pos;
4574 	const size_t count = iov_iter_count(iter);
4575 	struct f2fs_map_blocks map = {};
4576 	int flag;
4577 	int ret;
4578 
4579 	/* If it will be an out-of-place direct write, don't bother. */
4580 	if (dio && f2fs_lfs_mode(sbi))
4581 		return 0;
4582 	/*
4583 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4584 	 * buffered IO, if DIO meets any holes.
4585 	 */
4586 	if (dio && i_size_read(inode) &&
4587 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4588 		return 0;
4589 
4590 	/* No-wait I/O can't allocate blocks. */
4591 	if (iocb->ki_flags & IOCB_NOWAIT)
4592 		return 0;
4593 
4594 	/* If it will be a short write, don't bother. */
4595 	if (fault_in_iov_iter_readable(iter, count))
4596 		return 0;
4597 
4598 	if (f2fs_has_inline_data(inode)) {
4599 		/* If the data will fit inline, don't bother. */
4600 		if (pos + count <= MAX_INLINE_DATA(inode))
4601 			return 0;
4602 		ret = f2fs_convert_inline_inode(inode);
4603 		if (ret)
4604 			return ret;
4605 	}
4606 
4607 	/* Do not preallocate blocks that will be written partially in 4KB. */
4608 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4609 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4610 	if (map.m_len > map.m_lblk)
4611 		map.m_len -= map.m_lblk;
4612 	else
4613 		map.m_len = 0;
4614 	map.m_may_create = true;
4615 	if (dio) {
4616 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4617 		flag = F2FS_GET_BLOCK_PRE_DIO;
4618 	} else {
4619 		map.m_seg_type = NO_CHECK_TYPE;
4620 		flag = F2FS_GET_BLOCK_PRE_AIO;
4621 	}
4622 
4623 	ret = f2fs_map_blocks(inode, &map, flag);
4624 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4625 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4626 		return ret;
4627 	if (ret == 0)
4628 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4629 	return map.m_len;
4630 }
4631 
4632 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4633 					struct iov_iter *from)
4634 {
4635 	struct file *file = iocb->ki_filp;
4636 	struct inode *inode = file_inode(file);
4637 	ssize_t ret;
4638 
4639 	if (iocb->ki_flags & IOCB_NOWAIT)
4640 		return -EOPNOTSUPP;
4641 
4642 	ret = generic_perform_write(iocb, from);
4643 
4644 	if (ret > 0) {
4645 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4646 						APP_BUFFERED_IO, ret);
4647 	}
4648 	return ret;
4649 }
4650 
4651 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4652 				 unsigned int flags)
4653 {
4654 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4655 
4656 	dec_page_count(sbi, F2FS_DIO_WRITE);
4657 	if (error)
4658 		return error;
4659 	f2fs_update_time(sbi, REQ_TIME);
4660 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4661 	return 0;
4662 }
4663 
4664 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4665 	.end_io = f2fs_dio_write_end_io,
4666 };
4667 
4668 static void f2fs_flush_buffered_write(struct address_space *mapping,
4669 				      loff_t start_pos, loff_t end_pos)
4670 {
4671 	int ret;
4672 
4673 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4674 	if (ret < 0)
4675 		return;
4676 	invalidate_mapping_pages(mapping,
4677 				 start_pos >> PAGE_SHIFT,
4678 				 end_pos >> PAGE_SHIFT);
4679 }
4680 
4681 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4682 				   bool *may_need_sync)
4683 {
4684 	struct file *file = iocb->ki_filp;
4685 	struct inode *inode = file_inode(file);
4686 	struct f2fs_inode_info *fi = F2FS_I(inode);
4687 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4688 	const bool do_opu = f2fs_lfs_mode(sbi);
4689 	const loff_t pos = iocb->ki_pos;
4690 	const ssize_t count = iov_iter_count(from);
4691 	unsigned int dio_flags;
4692 	struct iomap_dio *dio;
4693 	ssize_t ret;
4694 
4695 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4696 
4697 	if (iocb->ki_flags & IOCB_NOWAIT) {
4698 		/* f2fs_convert_inline_inode() and block allocation can block */
4699 		if (f2fs_has_inline_data(inode) ||
4700 		    !f2fs_overwrite_io(inode, pos, count)) {
4701 			ret = -EAGAIN;
4702 			goto out;
4703 		}
4704 
4705 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4706 			ret = -EAGAIN;
4707 			goto out;
4708 		}
4709 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4710 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4711 			ret = -EAGAIN;
4712 			goto out;
4713 		}
4714 	} else {
4715 		ret = f2fs_convert_inline_inode(inode);
4716 		if (ret)
4717 			goto out;
4718 
4719 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4720 		if (do_opu)
4721 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4722 	}
4723 
4724 	/*
4725 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4726 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4727 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4728 	 */
4729 	inc_page_count(sbi, F2FS_DIO_WRITE);
4730 	dio_flags = 0;
4731 	if (pos + count > inode->i_size)
4732 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4733 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4734 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4735 	if (IS_ERR_OR_NULL(dio)) {
4736 		ret = PTR_ERR_OR_ZERO(dio);
4737 		if (ret == -ENOTBLK)
4738 			ret = 0;
4739 		if (ret != -EIOCBQUEUED)
4740 			dec_page_count(sbi, F2FS_DIO_WRITE);
4741 	} else {
4742 		ret = iomap_dio_complete(dio);
4743 	}
4744 
4745 	if (do_opu)
4746 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4747 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4748 
4749 	if (ret < 0)
4750 		goto out;
4751 	if (pos + ret > inode->i_size)
4752 		f2fs_i_size_write(inode, pos + ret);
4753 	if (!do_opu)
4754 		set_inode_flag(inode, FI_UPDATE_WRITE);
4755 
4756 	if (iov_iter_count(from)) {
4757 		ssize_t ret2;
4758 		loff_t bufio_start_pos = iocb->ki_pos;
4759 
4760 		/*
4761 		 * The direct write was partial, so we need to fall back to a
4762 		 * buffered write for the remainder.
4763 		 */
4764 
4765 		ret2 = f2fs_buffered_write_iter(iocb, from);
4766 		if (iov_iter_count(from))
4767 			f2fs_write_failed(inode, iocb->ki_pos);
4768 		if (ret2 < 0)
4769 			goto out;
4770 
4771 		/*
4772 		 * Ensure that the pagecache pages are written to disk and
4773 		 * invalidated to preserve the expected O_DIRECT semantics.
4774 		 */
4775 		if (ret2 > 0) {
4776 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4777 
4778 			ret += ret2;
4779 
4780 			f2fs_flush_buffered_write(file->f_mapping,
4781 						  bufio_start_pos,
4782 						  bufio_end_pos);
4783 		}
4784 	} else {
4785 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4786 		*may_need_sync = false;
4787 	}
4788 out:
4789 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4790 	return ret;
4791 }
4792 
4793 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4794 {
4795 	struct inode *inode = file_inode(iocb->ki_filp);
4796 	const loff_t orig_pos = iocb->ki_pos;
4797 	const size_t orig_count = iov_iter_count(from);
4798 	loff_t target_size;
4799 	bool dio;
4800 	bool may_need_sync = true;
4801 	int preallocated;
4802 	ssize_t ret;
4803 
4804 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4805 		ret = -EIO;
4806 		goto out;
4807 	}
4808 
4809 	if (!f2fs_is_compress_backend_ready(inode)) {
4810 		ret = -EOPNOTSUPP;
4811 		goto out;
4812 	}
4813 
4814 	if (iocb->ki_flags & IOCB_NOWAIT) {
4815 		if (!inode_trylock(inode)) {
4816 			ret = -EAGAIN;
4817 			goto out;
4818 		}
4819 	} else {
4820 		inode_lock(inode);
4821 	}
4822 
4823 	ret = f2fs_write_checks(iocb, from);
4824 	if (ret <= 0)
4825 		goto out_unlock;
4826 
4827 	/* Determine whether we will do a direct write or a buffered write. */
4828 	dio = f2fs_should_use_dio(inode, iocb, from);
4829 
4830 	/* Possibly preallocate the blocks for the write. */
4831 	target_size = iocb->ki_pos + iov_iter_count(from);
4832 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4833 	if (preallocated < 0) {
4834 		ret = preallocated;
4835 	} else {
4836 		if (trace_f2fs_datawrite_start_enabled())
4837 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4838 						orig_count, WRITE);
4839 
4840 		/* Do the actual write. */
4841 		ret = dio ?
4842 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4843 			f2fs_buffered_write_iter(iocb, from);
4844 
4845 		if (trace_f2fs_datawrite_end_enabled())
4846 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4847 	}
4848 
4849 	/* Don't leave any preallocated blocks around past i_size. */
4850 	if (preallocated && i_size_read(inode) < target_size) {
4851 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4852 		filemap_invalidate_lock(inode->i_mapping);
4853 		if (!f2fs_truncate(inode))
4854 			file_dont_truncate(inode);
4855 		filemap_invalidate_unlock(inode->i_mapping);
4856 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4857 	} else {
4858 		file_dont_truncate(inode);
4859 	}
4860 
4861 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4862 out_unlock:
4863 	inode_unlock(inode);
4864 out:
4865 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4866 
4867 	if (ret > 0 && may_need_sync)
4868 		ret = generic_write_sync(iocb, ret);
4869 
4870 	/* If buffered IO was forced, flush and drop the data from
4871 	 * the page cache to preserve O_DIRECT semantics
4872 	 */
4873 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4874 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4875 					  orig_pos,
4876 					  orig_pos + ret - 1);
4877 
4878 	return ret;
4879 }
4880 
4881 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4882 		int advice)
4883 {
4884 	struct address_space *mapping;
4885 	struct backing_dev_info *bdi;
4886 	struct inode *inode = file_inode(filp);
4887 	int err;
4888 
4889 	if (advice == POSIX_FADV_SEQUENTIAL) {
4890 		if (S_ISFIFO(inode->i_mode))
4891 			return -ESPIPE;
4892 
4893 		mapping = filp->f_mapping;
4894 		if (!mapping || len < 0)
4895 			return -EINVAL;
4896 
4897 		bdi = inode_to_bdi(mapping->host);
4898 		filp->f_ra.ra_pages = bdi->ra_pages *
4899 			F2FS_I_SB(inode)->seq_file_ra_mul;
4900 		spin_lock(&filp->f_lock);
4901 		filp->f_mode &= ~FMODE_RANDOM;
4902 		spin_unlock(&filp->f_lock);
4903 		return 0;
4904 	}
4905 
4906 	err = generic_fadvise(filp, offset, len, advice);
4907 	if (!err && advice == POSIX_FADV_DONTNEED &&
4908 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4909 		f2fs_compressed_file(inode))
4910 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4911 
4912 	return err;
4913 }
4914 
4915 #ifdef CONFIG_COMPAT
4916 struct compat_f2fs_gc_range {
4917 	u32 sync;
4918 	compat_u64 start;
4919 	compat_u64 len;
4920 };
4921 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4922 						struct compat_f2fs_gc_range)
4923 
4924 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4925 {
4926 	struct compat_f2fs_gc_range __user *urange;
4927 	struct f2fs_gc_range range;
4928 	int err;
4929 
4930 	urange = compat_ptr(arg);
4931 	err = get_user(range.sync, &urange->sync);
4932 	err |= get_user(range.start, &urange->start);
4933 	err |= get_user(range.len, &urange->len);
4934 	if (err)
4935 		return -EFAULT;
4936 
4937 	return __f2fs_ioc_gc_range(file, &range);
4938 }
4939 
4940 struct compat_f2fs_move_range {
4941 	u32 dst_fd;
4942 	compat_u64 pos_in;
4943 	compat_u64 pos_out;
4944 	compat_u64 len;
4945 };
4946 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4947 					struct compat_f2fs_move_range)
4948 
4949 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4950 {
4951 	struct compat_f2fs_move_range __user *urange;
4952 	struct f2fs_move_range range;
4953 	int err;
4954 
4955 	urange = compat_ptr(arg);
4956 	err = get_user(range.dst_fd, &urange->dst_fd);
4957 	err |= get_user(range.pos_in, &urange->pos_in);
4958 	err |= get_user(range.pos_out, &urange->pos_out);
4959 	err |= get_user(range.len, &urange->len);
4960 	if (err)
4961 		return -EFAULT;
4962 
4963 	return __f2fs_ioc_move_range(file, &range);
4964 }
4965 
4966 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4967 {
4968 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4969 		return -EIO;
4970 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4971 		return -ENOSPC;
4972 
4973 	switch (cmd) {
4974 	case FS_IOC32_GETVERSION:
4975 		cmd = FS_IOC_GETVERSION;
4976 		break;
4977 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4978 		return f2fs_compat_ioc_gc_range(file, arg);
4979 	case F2FS_IOC32_MOVE_RANGE:
4980 		return f2fs_compat_ioc_move_range(file, arg);
4981 	case F2FS_IOC_START_ATOMIC_WRITE:
4982 	case F2FS_IOC_START_ATOMIC_REPLACE:
4983 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4984 	case F2FS_IOC_START_VOLATILE_WRITE:
4985 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4986 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4987 	case F2FS_IOC_SHUTDOWN:
4988 	case FITRIM:
4989 	case FS_IOC_SET_ENCRYPTION_POLICY:
4990 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4991 	case FS_IOC_GET_ENCRYPTION_POLICY:
4992 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4993 	case FS_IOC_ADD_ENCRYPTION_KEY:
4994 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4995 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4996 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4997 	case FS_IOC_GET_ENCRYPTION_NONCE:
4998 	case F2FS_IOC_GARBAGE_COLLECT:
4999 	case F2FS_IOC_WRITE_CHECKPOINT:
5000 	case F2FS_IOC_DEFRAGMENT:
5001 	case F2FS_IOC_FLUSH_DEVICE:
5002 	case F2FS_IOC_GET_FEATURES:
5003 	case F2FS_IOC_GET_PIN_FILE:
5004 	case F2FS_IOC_SET_PIN_FILE:
5005 	case F2FS_IOC_PRECACHE_EXTENTS:
5006 	case F2FS_IOC_RESIZE_FS:
5007 	case FS_IOC_ENABLE_VERITY:
5008 	case FS_IOC_MEASURE_VERITY:
5009 	case FS_IOC_READ_VERITY_METADATA:
5010 	case FS_IOC_GETFSLABEL:
5011 	case FS_IOC_SETFSLABEL:
5012 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5013 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5014 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5015 	case F2FS_IOC_SEC_TRIM_FILE:
5016 	case F2FS_IOC_GET_COMPRESS_OPTION:
5017 	case F2FS_IOC_SET_COMPRESS_OPTION:
5018 	case F2FS_IOC_DECOMPRESS_FILE:
5019 	case F2FS_IOC_COMPRESS_FILE:
5020 		break;
5021 	default:
5022 		return -ENOIOCTLCMD;
5023 	}
5024 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5025 }
5026 #endif
5027 
5028 const struct file_operations f2fs_file_operations = {
5029 	.llseek		= f2fs_llseek,
5030 	.read_iter	= f2fs_file_read_iter,
5031 	.write_iter	= f2fs_file_write_iter,
5032 	.iopoll		= iocb_bio_iopoll,
5033 	.open		= f2fs_file_open,
5034 	.release	= f2fs_release_file,
5035 	.mmap		= f2fs_file_mmap,
5036 	.flush		= f2fs_file_flush,
5037 	.fsync		= f2fs_sync_file,
5038 	.fallocate	= f2fs_fallocate,
5039 	.unlocked_ioctl	= f2fs_ioctl,
5040 #ifdef CONFIG_COMPAT
5041 	.compat_ioctl	= f2fs_compat_ioctl,
5042 #endif
5043 	.splice_read	= f2fs_file_splice_read,
5044 	.splice_write	= iter_file_splice_write,
5045 	.fadvise	= f2fs_file_fadvise,
5046 };
5047