xref: /openbmc/linux/fs/f2fs/file.c (revision f0009360)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (!ret)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
117 		set_new_dnode(&dn, inode, NULL, NULL, 0);
118 		err = f2fs_get_block(&dn, page->index);
119 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
120 	}
121 
122 #ifdef CONFIG_F2FS_FS_COMPRESSION
123 	if (!need_alloc) {
124 		set_new_dnode(&dn, inode, NULL, NULL, 0);
125 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
126 		f2fs_put_dnode(&dn);
127 	}
128 #endif
129 	if (err) {
130 		unlock_page(page);
131 		goto out_sem;
132 	}
133 
134 	f2fs_wait_on_page_writeback(page, DATA, false, true);
135 
136 	/* wait for GCed page writeback via META_MAPPING */
137 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
138 
139 	/*
140 	 * check to see if the page is mapped already (no holes)
141 	 */
142 	if (PageMappedToDisk(page))
143 		goto out_sem;
144 
145 	/* page is wholly or partially inside EOF */
146 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
147 						i_size_read(inode)) {
148 		loff_t offset;
149 
150 		offset = i_size_read(inode) & ~PAGE_MASK;
151 		zero_user_segment(page, offset, PAGE_SIZE);
152 	}
153 	set_page_dirty(page);
154 	if (!PageUptodate(page))
155 		SetPageUptodate(page);
156 
157 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
158 	f2fs_update_time(sbi, REQ_TIME);
159 
160 	trace_f2fs_vm_page_mkwrite(page, DATA);
161 out_sem:
162 	filemap_invalidate_unlock_shared(inode->i_mapping);
163 
164 	sb_end_pagefault(inode->i_sb);
165 err:
166 	return block_page_mkwrite_return(err);
167 }
168 
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170 	.fault		= f2fs_filemap_fault,
171 	.map_pages	= filemap_map_pages,
172 	.page_mkwrite	= f2fs_vm_page_mkwrite,
173 };
174 
175 static int get_parent_ino(struct inode *inode, nid_t *pino)
176 {
177 	struct dentry *dentry;
178 
179 	/*
180 	 * Make sure to get the non-deleted alias.  The alias associated with
181 	 * the open file descriptor being fsync()'ed may be deleted already.
182 	 */
183 	dentry = d_find_alias(inode);
184 	if (!dentry)
185 		return 0;
186 
187 	*pino = parent_ino(dentry);
188 	dput(dentry);
189 	return 1;
190 }
191 
192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
193 {
194 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
196 
197 	if (!S_ISREG(inode->i_mode))
198 		cp_reason = CP_NON_REGULAR;
199 	else if (f2fs_compressed_file(inode))
200 		cp_reason = CP_COMPRESSED;
201 	else if (inode->i_nlink != 1)
202 		cp_reason = CP_HARDLINK;
203 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204 		cp_reason = CP_SB_NEED_CP;
205 	else if (file_wrong_pino(inode))
206 		cp_reason = CP_WRONG_PINO;
207 	else if (!f2fs_space_for_roll_forward(sbi))
208 		cp_reason = CP_NO_SPC_ROLL;
209 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210 		cp_reason = CP_NODE_NEED_CP;
211 	else if (test_opt(sbi, FASTBOOT))
212 		cp_reason = CP_FASTBOOT_MODE;
213 	else if (F2FS_OPTION(sbi).active_logs == 2)
214 		cp_reason = CP_SPEC_LOG_NUM;
215 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
218 							TRANS_DIR_INO))
219 		cp_reason = CP_RECOVER_DIR;
220 
221 	return cp_reason;
222 }
223 
224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
225 {
226 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
227 	bool ret = false;
228 	/* But we need to avoid that there are some inode updates */
229 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
230 		ret = true;
231 	f2fs_put_page(i, 0);
232 	return ret;
233 }
234 
235 static void try_to_fix_pino(struct inode *inode)
236 {
237 	struct f2fs_inode_info *fi = F2FS_I(inode);
238 	nid_t pino;
239 
240 	f2fs_down_write(&fi->i_sem);
241 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
242 			get_parent_ino(inode, &pino)) {
243 		f2fs_i_pino_write(inode, pino);
244 		file_got_pino(inode);
245 	}
246 	f2fs_up_write(&fi->i_sem);
247 }
248 
249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
250 						int datasync, bool atomic)
251 {
252 	struct inode *inode = file->f_mapping->host;
253 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
254 	nid_t ino = inode->i_ino;
255 	int ret = 0;
256 	enum cp_reason_type cp_reason = 0;
257 	struct writeback_control wbc = {
258 		.sync_mode = WB_SYNC_ALL,
259 		.nr_to_write = LONG_MAX,
260 		.for_reclaim = 0,
261 	};
262 	unsigned int seq_id = 0;
263 
264 	if (unlikely(f2fs_readonly(inode->i_sb)))
265 		return 0;
266 
267 	trace_f2fs_sync_file_enter(inode);
268 
269 	if (S_ISDIR(inode->i_mode))
270 		goto go_write;
271 
272 	/* if fdatasync is triggered, let's do in-place-update */
273 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
274 		set_inode_flag(inode, FI_NEED_IPU);
275 	ret = file_write_and_wait_range(file, start, end);
276 	clear_inode_flag(inode, FI_NEED_IPU);
277 
278 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
279 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
280 		return ret;
281 	}
282 
283 	/* if the inode is dirty, let's recover all the time */
284 	if (!f2fs_skip_inode_update(inode, datasync)) {
285 		f2fs_write_inode(inode, NULL);
286 		goto go_write;
287 	}
288 
289 	/*
290 	 * if there is no written data, don't waste time to write recovery info.
291 	 */
292 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
293 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
294 
295 		/* it may call write_inode just prior to fsync */
296 		if (need_inode_page_update(sbi, ino))
297 			goto go_write;
298 
299 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
300 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
301 			goto flush_out;
302 		goto out;
303 	} else {
304 		/*
305 		 * for OPU case, during fsync(), node can be persisted before
306 		 * data when lower device doesn't support write barrier, result
307 		 * in data corruption after SPO.
308 		 * So for strict fsync mode, force to use atomic write sematics
309 		 * to keep write order in between data/node and last node to
310 		 * avoid potential data corruption.
311 		 */
312 		if (F2FS_OPTION(sbi).fsync_mode ==
313 				FSYNC_MODE_STRICT && !atomic)
314 			atomic = true;
315 	}
316 go_write:
317 	/*
318 	 * Both of fdatasync() and fsync() are able to be recovered from
319 	 * sudden-power-off.
320 	 */
321 	f2fs_down_read(&F2FS_I(inode)->i_sem);
322 	cp_reason = need_do_checkpoint(inode);
323 	f2fs_up_read(&F2FS_I(inode)->i_sem);
324 
325 	if (cp_reason) {
326 		/* all the dirty node pages should be flushed for POR */
327 		ret = f2fs_sync_fs(inode->i_sb, 1);
328 
329 		/*
330 		 * We've secured consistency through sync_fs. Following pino
331 		 * will be used only for fsynced inodes after checkpoint.
332 		 */
333 		try_to_fix_pino(inode);
334 		clear_inode_flag(inode, FI_APPEND_WRITE);
335 		clear_inode_flag(inode, FI_UPDATE_WRITE);
336 		goto out;
337 	}
338 sync_nodes:
339 	atomic_inc(&sbi->wb_sync_req[NODE]);
340 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
341 	atomic_dec(&sbi->wb_sync_req[NODE]);
342 	if (ret)
343 		goto out;
344 
345 	/* if cp_error was enabled, we should avoid infinite loop */
346 	if (unlikely(f2fs_cp_error(sbi))) {
347 		ret = -EIO;
348 		goto out;
349 	}
350 
351 	if (f2fs_need_inode_block_update(sbi, ino)) {
352 		f2fs_mark_inode_dirty_sync(inode, true);
353 		f2fs_write_inode(inode, NULL);
354 		goto sync_nodes;
355 	}
356 
357 	/*
358 	 * If it's atomic_write, it's just fine to keep write ordering. So
359 	 * here we don't need to wait for node write completion, since we use
360 	 * node chain which serializes node blocks. If one of node writes are
361 	 * reordered, we can see simply broken chain, resulting in stopping
362 	 * roll-forward recovery. It means we'll recover all or none node blocks
363 	 * given fsync mark.
364 	 */
365 	if (!atomic) {
366 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
367 		if (ret)
368 			goto out;
369 	}
370 
371 	/* once recovery info is written, don't need to tack this */
372 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
373 	clear_inode_flag(inode, FI_APPEND_WRITE);
374 flush_out:
375 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
376 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
377 		ret = f2fs_issue_flush(sbi, inode->i_ino);
378 	if (!ret) {
379 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
380 		clear_inode_flag(inode, FI_UPDATE_WRITE);
381 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
382 	}
383 	f2fs_update_time(sbi, REQ_TIME);
384 out:
385 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
386 	return ret;
387 }
388 
389 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
390 {
391 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
392 		return -EIO;
393 	return f2fs_do_sync_file(file, start, end, datasync, false);
394 }
395 
396 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
397 				pgoff_t index, int whence)
398 {
399 	switch (whence) {
400 	case SEEK_DATA:
401 		if (__is_valid_data_blkaddr(blkaddr))
402 			return true;
403 		if (blkaddr == NEW_ADDR &&
404 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
405 			return true;
406 		break;
407 	case SEEK_HOLE:
408 		if (blkaddr == NULL_ADDR)
409 			return true;
410 		break;
411 	}
412 	return false;
413 }
414 
415 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
416 {
417 	struct inode *inode = file->f_mapping->host;
418 	loff_t maxbytes = inode->i_sb->s_maxbytes;
419 	struct dnode_of_data dn;
420 	pgoff_t pgofs, end_offset;
421 	loff_t data_ofs = offset;
422 	loff_t isize;
423 	int err = 0;
424 
425 	inode_lock(inode);
426 
427 	isize = i_size_read(inode);
428 	if (offset >= isize)
429 		goto fail;
430 
431 	/* handle inline data case */
432 	if (f2fs_has_inline_data(inode)) {
433 		if (whence == SEEK_HOLE) {
434 			data_ofs = isize;
435 			goto found;
436 		} else if (whence == SEEK_DATA) {
437 			data_ofs = offset;
438 			goto found;
439 		}
440 	}
441 
442 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
443 
444 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
445 		set_new_dnode(&dn, inode, NULL, NULL, 0);
446 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
447 		if (err && err != -ENOENT) {
448 			goto fail;
449 		} else if (err == -ENOENT) {
450 			/* direct node does not exists */
451 			if (whence == SEEK_DATA) {
452 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
453 				continue;
454 			} else {
455 				goto found;
456 			}
457 		}
458 
459 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
460 
461 		/* find data/hole in dnode block */
462 		for (; dn.ofs_in_node < end_offset;
463 				dn.ofs_in_node++, pgofs++,
464 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
465 			block_t blkaddr;
466 
467 			blkaddr = f2fs_data_blkaddr(&dn);
468 
469 			if (__is_valid_data_blkaddr(blkaddr) &&
470 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
471 					blkaddr, DATA_GENERIC_ENHANCE)) {
472 				f2fs_put_dnode(&dn);
473 				goto fail;
474 			}
475 
476 			if (__found_offset(file->f_mapping, blkaddr,
477 							pgofs, whence)) {
478 				f2fs_put_dnode(&dn);
479 				goto found;
480 			}
481 		}
482 		f2fs_put_dnode(&dn);
483 	}
484 
485 	if (whence == SEEK_DATA)
486 		goto fail;
487 found:
488 	if (whence == SEEK_HOLE && data_ofs > isize)
489 		data_ofs = isize;
490 	inode_unlock(inode);
491 	return vfs_setpos(file, data_ofs, maxbytes);
492 fail:
493 	inode_unlock(inode);
494 	return -ENXIO;
495 }
496 
497 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
498 {
499 	struct inode *inode = file->f_mapping->host;
500 	loff_t maxbytes = inode->i_sb->s_maxbytes;
501 
502 	if (f2fs_compressed_file(inode))
503 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
504 
505 	switch (whence) {
506 	case SEEK_SET:
507 	case SEEK_CUR:
508 	case SEEK_END:
509 		return generic_file_llseek_size(file, offset, whence,
510 						maxbytes, i_size_read(inode));
511 	case SEEK_DATA:
512 	case SEEK_HOLE:
513 		if (offset < 0)
514 			return -ENXIO;
515 		return f2fs_seek_block(file, offset, whence);
516 	}
517 
518 	return -EINVAL;
519 }
520 
521 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
522 {
523 	struct inode *inode = file_inode(file);
524 
525 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
526 		return -EIO;
527 
528 	if (!f2fs_is_compress_backend_ready(inode))
529 		return -EOPNOTSUPP;
530 
531 	file_accessed(file);
532 	vma->vm_ops = &f2fs_file_vm_ops;
533 	set_inode_flag(inode, FI_MMAP_FILE);
534 	return 0;
535 }
536 
537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539 	int err = fscrypt_file_open(inode, filp);
540 
541 	if (err)
542 		return err;
543 
544 	if (!f2fs_is_compress_backend_ready(inode))
545 		return -EOPNOTSUPP;
546 
547 	err = fsverity_file_open(inode, filp);
548 	if (err)
549 		return err;
550 
551 	filp->f_mode |= FMODE_NOWAIT;
552 
553 	return dquot_file_open(inode, filp);
554 }
555 
556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
557 {
558 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
559 	struct f2fs_node *raw_node;
560 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
561 	__le32 *addr;
562 	int base = 0;
563 	bool compressed_cluster = false;
564 	int cluster_index = 0, valid_blocks = 0;
565 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
566 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
567 
568 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
569 		base = get_extra_isize(dn->inode);
570 
571 	raw_node = F2FS_NODE(dn->node_page);
572 	addr = blkaddr_in_node(raw_node) + base + ofs;
573 
574 	/* Assumption: truncation starts with cluster */
575 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
576 		block_t blkaddr = le32_to_cpu(*addr);
577 
578 		if (f2fs_compressed_file(dn->inode) &&
579 					!(cluster_index & (cluster_size - 1))) {
580 			if (compressed_cluster)
581 				f2fs_i_compr_blocks_update(dn->inode,
582 							valid_blocks, false);
583 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
584 			valid_blocks = 0;
585 		}
586 
587 		if (blkaddr == NULL_ADDR)
588 			continue;
589 
590 		dn->data_blkaddr = NULL_ADDR;
591 		f2fs_set_data_blkaddr(dn);
592 
593 		if (__is_valid_data_blkaddr(blkaddr)) {
594 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
595 					DATA_GENERIC_ENHANCE))
596 				continue;
597 			if (compressed_cluster)
598 				valid_blocks++;
599 		}
600 
601 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
602 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
603 
604 		f2fs_invalidate_blocks(sbi, blkaddr);
605 
606 		if (!released || blkaddr != COMPRESS_ADDR)
607 			nr_free++;
608 	}
609 
610 	if (compressed_cluster)
611 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
612 
613 	if (nr_free) {
614 		pgoff_t fofs;
615 		/*
616 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
617 		 * we will invalidate all blkaddr in the whole range.
618 		 */
619 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
620 							dn->inode) + ofs;
621 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
622 		f2fs_update_age_extent_cache_range(dn, fofs, nr_free);
623 		dec_valid_block_count(sbi, dn->inode, nr_free);
624 	}
625 	dn->ofs_in_node = ofs;
626 
627 	f2fs_update_time(sbi, REQ_TIME);
628 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
629 					 dn->ofs_in_node, nr_free);
630 }
631 
632 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
633 {
634 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
635 }
636 
637 static int truncate_partial_data_page(struct inode *inode, u64 from,
638 								bool cache_only)
639 {
640 	loff_t offset = from & (PAGE_SIZE - 1);
641 	pgoff_t index = from >> PAGE_SHIFT;
642 	struct address_space *mapping = inode->i_mapping;
643 	struct page *page;
644 
645 	if (!offset && !cache_only)
646 		return 0;
647 
648 	if (cache_only) {
649 		page = find_lock_page(mapping, index);
650 		if (page && PageUptodate(page))
651 			goto truncate_out;
652 		f2fs_put_page(page, 1);
653 		return 0;
654 	}
655 
656 	page = f2fs_get_lock_data_page(inode, index, true);
657 	if (IS_ERR(page))
658 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
659 truncate_out:
660 	f2fs_wait_on_page_writeback(page, DATA, true, true);
661 	zero_user(page, offset, PAGE_SIZE - offset);
662 
663 	/* An encrypted inode should have a key and truncate the last page. */
664 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
665 	if (!cache_only)
666 		set_page_dirty(page);
667 	f2fs_put_page(page, 1);
668 	return 0;
669 }
670 
671 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
672 {
673 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
674 	struct dnode_of_data dn;
675 	pgoff_t free_from;
676 	int count = 0, err = 0;
677 	struct page *ipage;
678 	bool truncate_page = false;
679 
680 	trace_f2fs_truncate_blocks_enter(inode, from);
681 
682 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
683 
684 	if (free_from >= max_file_blocks(inode))
685 		goto free_partial;
686 
687 	if (lock)
688 		f2fs_lock_op(sbi);
689 
690 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
691 	if (IS_ERR(ipage)) {
692 		err = PTR_ERR(ipage);
693 		goto out;
694 	}
695 
696 	if (f2fs_has_inline_data(inode)) {
697 		f2fs_truncate_inline_inode(inode, ipage, from);
698 		f2fs_put_page(ipage, 1);
699 		truncate_page = true;
700 		goto out;
701 	}
702 
703 	set_new_dnode(&dn, inode, ipage, NULL, 0);
704 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
705 	if (err) {
706 		if (err == -ENOENT)
707 			goto free_next;
708 		goto out;
709 	}
710 
711 	count = ADDRS_PER_PAGE(dn.node_page, inode);
712 
713 	count -= dn.ofs_in_node;
714 	f2fs_bug_on(sbi, count < 0);
715 
716 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
717 		f2fs_truncate_data_blocks_range(&dn, count);
718 		free_from += count;
719 	}
720 
721 	f2fs_put_dnode(&dn);
722 free_next:
723 	err = f2fs_truncate_inode_blocks(inode, free_from);
724 out:
725 	if (lock)
726 		f2fs_unlock_op(sbi);
727 free_partial:
728 	/* lastly zero out the first data page */
729 	if (!err)
730 		err = truncate_partial_data_page(inode, from, truncate_page);
731 
732 	trace_f2fs_truncate_blocks_exit(inode, err);
733 	return err;
734 }
735 
736 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
737 {
738 	u64 free_from = from;
739 	int err;
740 
741 #ifdef CONFIG_F2FS_FS_COMPRESSION
742 	/*
743 	 * for compressed file, only support cluster size
744 	 * aligned truncation.
745 	 */
746 	if (f2fs_compressed_file(inode))
747 		free_from = round_up(from,
748 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
749 #endif
750 
751 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
752 	if (err)
753 		return err;
754 
755 #ifdef CONFIG_F2FS_FS_COMPRESSION
756 	/*
757 	 * For compressed file, after release compress blocks, don't allow write
758 	 * direct, but we should allow write direct after truncate to zero.
759 	 */
760 	if (f2fs_compressed_file(inode) && !free_from
761 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
762 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
763 
764 	if (from != free_from) {
765 		err = f2fs_truncate_partial_cluster(inode, from, lock);
766 		if (err)
767 			return err;
768 	}
769 #endif
770 
771 	return 0;
772 }
773 
774 int f2fs_truncate(struct inode *inode)
775 {
776 	int err;
777 
778 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
779 		return -EIO;
780 
781 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
782 				S_ISLNK(inode->i_mode)))
783 		return 0;
784 
785 	trace_f2fs_truncate(inode);
786 
787 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
788 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
789 		return -EIO;
790 	}
791 
792 	err = f2fs_dquot_initialize(inode);
793 	if (err)
794 		return err;
795 
796 	/* we should check inline_data size */
797 	if (!f2fs_may_inline_data(inode)) {
798 		err = f2fs_convert_inline_inode(inode);
799 		if (err)
800 			return err;
801 	}
802 
803 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
804 	if (err)
805 		return err;
806 
807 	inode->i_mtime = inode->i_ctime = current_time(inode);
808 	f2fs_mark_inode_dirty_sync(inode, false);
809 	return 0;
810 }
811 
812 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
813 {
814 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
815 
816 	if (!fscrypt_dio_supported(inode))
817 		return true;
818 	if (fsverity_active(inode))
819 		return true;
820 	if (f2fs_compressed_file(inode))
821 		return true;
822 
823 	/* disallow direct IO if any of devices has unaligned blksize */
824 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
825 		return true;
826 	/*
827 	 * for blkzoned device, fallback direct IO to buffered IO, so
828 	 * all IOs can be serialized by log-structured write.
829 	 */
830 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
831 		return true;
832 	if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
833 		return true;
834 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
835 		return true;
836 
837 	return false;
838 }
839 
840 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
841 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
842 {
843 	struct inode *inode = d_inode(path->dentry);
844 	struct f2fs_inode_info *fi = F2FS_I(inode);
845 	struct f2fs_inode *ri = NULL;
846 	unsigned int flags;
847 
848 	if (f2fs_has_extra_attr(inode) &&
849 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
850 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
851 		stat->result_mask |= STATX_BTIME;
852 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
853 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
854 	}
855 
856 	/*
857 	 * Return the DIO alignment restrictions if requested.  We only return
858 	 * this information when requested, since on encrypted files it might
859 	 * take a fair bit of work to get if the file wasn't opened recently.
860 	 *
861 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
862 	 * cannot represent that, so in that case we report no DIO support.
863 	 */
864 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
865 		unsigned int bsize = i_blocksize(inode);
866 
867 		stat->result_mask |= STATX_DIOALIGN;
868 		if (!f2fs_force_buffered_io(inode, WRITE)) {
869 			stat->dio_mem_align = bsize;
870 			stat->dio_offset_align = bsize;
871 		}
872 	}
873 
874 	flags = fi->i_flags;
875 	if (flags & F2FS_COMPR_FL)
876 		stat->attributes |= STATX_ATTR_COMPRESSED;
877 	if (flags & F2FS_APPEND_FL)
878 		stat->attributes |= STATX_ATTR_APPEND;
879 	if (IS_ENCRYPTED(inode))
880 		stat->attributes |= STATX_ATTR_ENCRYPTED;
881 	if (flags & F2FS_IMMUTABLE_FL)
882 		stat->attributes |= STATX_ATTR_IMMUTABLE;
883 	if (flags & F2FS_NODUMP_FL)
884 		stat->attributes |= STATX_ATTR_NODUMP;
885 	if (IS_VERITY(inode))
886 		stat->attributes |= STATX_ATTR_VERITY;
887 
888 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
889 				  STATX_ATTR_APPEND |
890 				  STATX_ATTR_ENCRYPTED |
891 				  STATX_ATTR_IMMUTABLE |
892 				  STATX_ATTR_NODUMP |
893 				  STATX_ATTR_VERITY);
894 
895 	generic_fillattr(mnt_userns, inode, stat);
896 
897 	/* we need to show initial sectors used for inline_data/dentries */
898 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
899 					f2fs_has_inline_dentry(inode))
900 		stat->blocks += (stat->size + 511) >> 9;
901 
902 	return 0;
903 }
904 
905 #ifdef CONFIG_F2FS_FS_POSIX_ACL
906 static void __setattr_copy(struct user_namespace *mnt_userns,
907 			   struct inode *inode, const struct iattr *attr)
908 {
909 	unsigned int ia_valid = attr->ia_valid;
910 
911 	i_uid_update(mnt_userns, attr, inode);
912 	i_gid_update(mnt_userns, attr, inode);
913 	if (ia_valid & ATTR_ATIME)
914 		inode->i_atime = attr->ia_atime;
915 	if (ia_valid & ATTR_MTIME)
916 		inode->i_mtime = attr->ia_mtime;
917 	if (ia_valid & ATTR_CTIME)
918 		inode->i_ctime = attr->ia_ctime;
919 	if (ia_valid & ATTR_MODE) {
920 		umode_t mode = attr->ia_mode;
921 		vfsgid_t vfsgid = i_gid_into_vfsgid(mnt_userns, inode);
922 
923 		if (!vfsgid_in_group_p(vfsgid) &&
924 		    !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
925 			mode &= ~S_ISGID;
926 		set_acl_inode(inode, mode);
927 	}
928 }
929 #else
930 #define __setattr_copy setattr_copy
931 #endif
932 
933 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
934 		 struct iattr *attr)
935 {
936 	struct inode *inode = d_inode(dentry);
937 	int err;
938 
939 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
940 		return -EIO;
941 
942 	if (unlikely(IS_IMMUTABLE(inode)))
943 		return -EPERM;
944 
945 	if (unlikely(IS_APPEND(inode) &&
946 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
947 				  ATTR_GID | ATTR_TIMES_SET))))
948 		return -EPERM;
949 
950 	if ((attr->ia_valid & ATTR_SIZE) &&
951 		!f2fs_is_compress_backend_ready(inode))
952 		return -EOPNOTSUPP;
953 
954 	err = setattr_prepare(mnt_userns, dentry, attr);
955 	if (err)
956 		return err;
957 
958 	err = fscrypt_prepare_setattr(dentry, attr);
959 	if (err)
960 		return err;
961 
962 	err = fsverity_prepare_setattr(dentry, attr);
963 	if (err)
964 		return err;
965 
966 	if (is_quota_modification(mnt_userns, inode, attr)) {
967 		err = f2fs_dquot_initialize(inode);
968 		if (err)
969 			return err;
970 	}
971 	if (i_uid_needs_update(mnt_userns, attr, inode) ||
972 	    i_gid_needs_update(mnt_userns, attr, inode)) {
973 		f2fs_lock_op(F2FS_I_SB(inode));
974 		err = dquot_transfer(mnt_userns, inode, attr);
975 		if (err) {
976 			set_sbi_flag(F2FS_I_SB(inode),
977 					SBI_QUOTA_NEED_REPAIR);
978 			f2fs_unlock_op(F2FS_I_SB(inode));
979 			return err;
980 		}
981 		/*
982 		 * update uid/gid under lock_op(), so that dquot and inode can
983 		 * be updated atomically.
984 		 */
985 		i_uid_update(mnt_userns, attr, inode);
986 		i_gid_update(mnt_userns, attr, inode);
987 		f2fs_mark_inode_dirty_sync(inode, true);
988 		f2fs_unlock_op(F2FS_I_SB(inode));
989 	}
990 
991 	if (attr->ia_valid & ATTR_SIZE) {
992 		loff_t old_size = i_size_read(inode);
993 
994 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
995 			/*
996 			 * should convert inline inode before i_size_write to
997 			 * keep smaller than inline_data size with inline flag.
998 			 */
999 			err = f2fs_convert_inline_inode(inode);
1000 			if (err)
1001 				return err;
1002 		}
1003 
1004 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1005 		filemap_invalidate_lock(inode->i_mapping);
1006 
1007 		truncate_setsize(inode, attr->ia_size);
1008 
1009 		if (attr->ia_size <= old_size)
1010 			err = f2fs_truncate(inode);
1011 		/*
1012 		 * do not trim all blocks after i_size if target size is
1013 		 * larger than i_size.
1014 		 */
1015 		filemap_invalidate_unlock(inode->i_mapping);
1016 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1017 		if (err)
1018 			return err;
1019 
1020 		spin_lock(&F2FS_I(inode)->i_size_lock);
1021 		inode->i_mtime = inode->i_ctime = current_time(inode);
1022 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1023 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1024 	}
1025 
1026 	__setattr_copy(mnt_userns, inode, attr);
1027 
1028 	if (attr->ia_valid & ATTR_MODE) {
1029 		err = posix_acl_chmod(mnt_userns, dentry, f2fs_get_inode_mode(inode));
1030 
1031 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1032 			if (!err)
1033 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1034 			clear_inode_flag(inode, FI_ACL_MODE);
1035 		}
1036 	}
1037 
1038 	/* file size may changed here */
1039 	f2fs_mark_inode_dirty_sync(inode, true);
1040 
1041 	/* inode change will produce dirty node pages flushed by checkpoint */
1042 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1043 
1044 	return err;
1045 }
1046 
1047 const struct inode_operations f2fs_file_inode_operations = {
1048 	.getattr	= f2fs_getattr,
1049 	.setattr	= f2fs_setattr,
1050 	.get_inode_acl	= f2fs_get_acl,
1051 	.set_acl	= f2fs_set_acl,
1052 	.listxattr	= f2fs_listxattr,
1053 	.fiemap		= f2fs_fiemap,
1054 	.fileattr_get	= f2fs_fileattr_get,
1055 	.fileattr_set	= f2fs_fileattr_set,
1056 };
1057 
1058 static int fill_zero(struct inode *inode, pgoff_t index,
1059 					loff_t start, loff_t len)
1060 {
1061 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1062 	struct page *page;
1063 
1064 	if (!len)
1065 		return 0;
1066 
1067 	f2fs_balance_fs(sbi, true);
1068 
1069 	f2fs_lock_op(sbi);
1070 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1071 	f2fs_unlock_op(sbi);
1072 
1073 	if (IS_ERR(page))
1074 		return PTR_ERR(page);
1075 
1076 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1077 	zero_user(page, start, len);
1078 	set_page_dirty(page);
1079 	f2fs_put_page(page, 1);
1080 	return 0;
1081 }
1082 
1083 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1084 {
1085 	int err;
1086 
1087 	while (pg_start < pg_end) {
1088 		struct dnode_of_data dn;
1089 		pgoff_t end_offset, count;
1090 
1091 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1092 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1093 		if (err) {
1094 			if (err == -ENOENT) {
1095 				pg_start = f2fs_get_next_page_offset(&dn,
1096 								pg_start);
1097 				continue;
1098 			}
1099 			return err;
1100 		}
1101 
1102 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1103 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1104 
1105 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1106 
1107 		f2fs_truncate_data_blocks_range(&dn, count);
1108 		f2fs_put_dnode(&dn);
1109 
1110 		pg_start += count;
1111 	}
1112 	return 0;
1113 }
1114 
1115 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1116 {
1117 	pgoff_t pg_start, pg_end;
1118 	loff_t off_start, off_end;
1119 	int ret;
1120 
1121 	ret = f2fs_convert_inline_inode(inode);
1122 	if (ret)
1123 		return ret;
1124 
1125 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1126 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1127 
1128 	off_start = offset & (PAGE_SIZE - 1);
1129 	off_end = (offset + len) & (PAGE_SIZE - 1);
1130 
1131 	if (pg_start == pg_end) {
1132 		ret = fill_zero(inode, pg_start, off_start,
1133 						off_end - off_start);
1134 		if (ret)
1135 			return ret;
1136 	} else {
1137 		if (off_start) {
1138 			ret = fill_zero(inode, pg_start++, off_start,
1139 						PAGE_SIZE - off_start);
1140 			if (ret)
1141 				return ret;
1142 		}
1143 		if (off_end) {
1144 			ret = fill_zero(inode, pg_end, 0, off_end);
1145 			if (ret)
1146 				return ret;
1147 		}
1148 
1149 		if (pg_start < pg_end) {
1150 			loff_t blk_start, blk_end;
1151 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1152 
1153 			f2fs_balance_fs(sbi, true);
1154 
1155 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1156 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1157 
1158 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1159 			filemap_invalidate_lock(inode->i_mapping);
1160 
1161 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1162 
1163 			f2fs_lock_op(sbi);
1164 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1165 			f2fs_unlock_op(sbi);
1166 
1167 			filemap_invalidate_unlock(inode->i_mapping);
1168 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1169 		}
1170 	}
1171 
1172 	return ret;
1173 }
1174 
1175 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1176 				int *do_replace, pgoff_t off, pgoff_t len)
1177 {
1178 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1179 	struct dnode_of_data dn;
1180 	int ret, done, i;
1181 
1182 next_dnode:
1183 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1184 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1185 	if (ret && ret != -ENOENT) {
1186 		return ret;
1187 	} else if (ret == -ENOENT) {
1188 		if (dn.max_level == 0)
1189 			return -ENOENT;
1190 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1191 						dn.ofs_in_node, len);
1192 		blkaddr += done;
1193 		do_replace += done;
1194 		goto next;
1195 	}
1196 
1197 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1198 							dn.ofs_in_node, len);
1199 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1200 		*blkaddr = f2fs_data_blkaddr(&dn);
1201 
1202 		if (__is_valid_data_blkaddr(*blkaddr) &&
1203 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1204 					DATA_GENERIC_ENHANCE)) {
1205 			f2fs_put_dnode(&dn);
1206 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1207 			return -EFSCORRUPTED;
1208 		}
1209 
1210 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1211 
1212 			if (f2fs_lfs_mode(sbi)) {
1213 				f2fs_put_dnode(&dn);
1214 				return -EOPNOTSUPP;
1215 			}
1216 
1217 			/* do not invalidate this block address */
1218 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1219 			*do_replace = 1;
1220 		}
1221 	}
1222 	f2fs_put_dnode(&dn);
1223 next:
1224 	len -= done;
1225 	off += done;
1226 	if (len)
1227 		goto next_dnode;
1228 	return 0;
1229 }
1230 
1231 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1232 				int *do_replace, pgoff_t off, int len)
1233 {
1234 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1235 	struct dnode_of_data dn;
1236 	int ret, i;
1237 
1238 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1239 		if (*do_replace == 0)
1240 			continue;
1241 
1242 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1243 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1244 		if (ret) {
1245 			dec_valid_block_count(sbi, inode, 1);
1246 			f2fs_invalidate_blocks(sbi, *blkaddr);
1247 		} else {
1248 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1249 		}
1250 		f2fs_put_dnode(&dn);
1251 	}
1252 	return 0;
1253 }
1254 
1255 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1256 			block_t *blkaddr, int *do_replace,
1257 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1258 {
1259 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1260 	pgoff_t i = 0;
1261 	int ret;
1262 
1263 	while (i < len) {
1264 		if (blkaddr[i] == NULL_ADDR && !full) {
1265 			i++;
1266 			continue;
1267 		}
1268 
1269 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1270 			struct dnode_of_data dn;
1271 			struct node_info ni;
1272 			size_t new_size;
1273 			pgoff_t ilen;
1274 
1275 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1276 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1277 			if (ret)
1278 				return ret;
1279 
1280 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1281 			if (ret) {
1282 				f2fs_put_dnode(&dn);
1283 				return ret;
1284 			}
1285 
1286 			ilen = min((pgoff_t)
1287 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1288 						dn.ofs_in_node, len - i);
1289 			do {
1290 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1291 				f2fs_truncate_data_blocks_range(&dn, 1);
1292 
1293 				if (do_replace[i]) {
1294 					f2fs_i_blocks_write(src_inode,
1295 							1, false, false);
1296 					f2fs_i_blocks_write(dst_inode,
1297 							1, true, false);
1298 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1299 					blkaddr[i], ni.version, true, false);
1300 
1301 					do_replace[i] = 0;
1302 				}
1303 				dn.ofs_in_node++;
1304 				i++;
1305 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1306 				if (dst_inode->i_size < new_size)
1307 					f2fs_i_size_write(dst_inode, new_size);
1308 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1309 
1310 			f2fs_put_dnode(&dn);
1311 		} else {
1312 			struct page *psrc, *pdst;
1313 
1314 			psrc = f2fs_get_lock_data_page(src_inode,
1315 							src + i, true);
1316 			if (IS_ERR(psrc))
1317 				return PTR_ERR(psrc);
1318 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1319 								true);
1320 			if (IS_ERR(pdst)) {
1321 				f2fs_put_page(psrc, 1);
1322 				return PTR_ERR(pdst);
1323 			}
1324 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1325 			set_page_dirty(pdst);
1326 			f2fs_put_page(pdst, 1);
1327 			f2fs_put_page(psrc, 1);
1328 
1329 			ret = f2fs_truncate_hole(src_inode,
1330 						src + i, src + i + 1);
1331 			if (ret)
1332 				return ret;
1333 			i++;
1334 		}
1335 	}
1336 	return 0;
1337 }
1338 
1339 static int __exchange_data_block(struct inode *src_inode,
1340 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1341 			pgoff_t len, bool full)
1342 {
1343 	block_t *src_blkaddr;
1344 	int *do_replace;
1345 	pgoff_t olen;
1346 	int ret;
1347 
1348 	while (len) {
1349 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1350 
1351 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1352 					array_size(olen, sizeof(block_t)),
1353 					GFP_NOFS);
1354 		if (!src_blkaddr)
1355 			return -ENOMEM;
1356 
1357 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1358 					array_size(olen, sizeof(int)),
1359 					GFP_NOFS);
1360 		if (!do_replace) {
1361 			kvfree(src_blkaddr);
1362 			return -ENOMEM;
1363 		}
1364 
1365 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1366 					do_replace, src, olen);
1367 		if (ret)
1368 			goto roll_back;
1369 
1370 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1371 					do_replace, src, dst, olen, full);
1372 		if (ret)
1373 			goto roll_back;
1374 
1375 		src += olen;
1376 		dst += olen;
1377 		len -= olen;
1378 
1379 		kvfree(src_blkaddr);
1380 		kvfree(do_replace);
1381 	}
1382 	return 0;
1383 
1384 roll_back:
1385 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1386 	kvfree(src_blkaddr);
1387 	kvfree(do_replace);
1388 	return ret;
1389 }
1390 
1391 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1392 {
1393 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1394 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1395 	pgoff_t start = offset >> PAGE_SHIFT;
1396 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1397 	int ret;
1398 
1399 	f2fs_balance_fs(sbi, true);
1400 
1401 	/* avoid gc operation during block exchange */
1402 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1403 	filemap_invalidate_lock(inode->i_mapping);
1404 
1405 	f2fs_lock_op(sbi);
1406 	f2fs_drop_extent_tree(inode);
1407 	truncate_pagecache(inode, offset);
1408 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1409 	f2fs_unlock_op(sbi);
1410 
1411 	filemap_invalidate_unlock(inode->i_mapping);
1412 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1413 	return ret;
1414 }
1415 
1416 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1417 {
1418 	loff_t new_size;
1419 	int ret;
1420 
1421 	if (offset + len >= i_size_read(inode))
1422 		return -EINVAL;
1423 
1424 	/* collapse range should be aligned to block size of f2fs. */
1425 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1426 		return -EINVAL;
1427 
1428 	ret = f2fs_convert_inline_inode(inode);
1429 	if (ret)
1430 		return ret;
1431 
1432 	/* write out all dirty pages from offset */
1433 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1434 	if (ret)
1435 		return ret;
1436 
1437 	ret = f2fs_do_collapse(inode, offset, len);
1438 	if (ret)
1439 		return ret;
1440 
1441 	/* write out all moved pages, if possible */
1442 	filemap_invalidate_lock(inode->i_mapping);
1443 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1444 	truncate_pagecache(inode, offset);
1445 
1446 	new_size = i_size_read(inode) - len;
1447 	ret = f2fs_truncate_blocks(inode, new_size, true);
1448 	filemap_invalidate_unlock(inode->i_mapping);
1449 	if (!ret)
1450 		f2fs_i_size_write(inode, new_size);
1451 	return ret;
1452 }
1453 
1454 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1455 								pgoff_t end)
1456 {
1457 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1458 	pgoff_t index = start;
1459 	unsigned int ofs_in_node = dn->ofs_in_node;
1460 	blkcnt_t count = 0;
1461 	int ret;
1462 
1463 	for (; index < end; index++, dn->ofs_in_node++) {
1464 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1465 			count++;
1466 	}
1467 
1468 	dn->ofs_in_node = ofs_in_node;
1469 	ret = f2fs_reserve_new_blocks(dn, count);
1470 	if (ret)
1471 		return ret;
1472 
1473 	dn->ofs_in_node = ofs_in_node;
1474 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1475 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1476 		/*
1477 		 * f2fs_reserve_new_blocks will not guarantee entire block
1478 		 * allocation.
1479 		 */
1480 		if (dn->data_blkaddr == NULL_ADDR) {
1481 			ret = -ENOSPC;
1482 			break;
1483 		}
1484 
1485 		if (dn->data_blkaddr == NEW_ADDR)
1486 			continue;
1487 
1488 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1489 					DATA_GENERIC_ENHANCE)) {
1490 			ret = -EFSCORRUPTED;
1491 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1492 			break;
1493 		}
1494 
1495 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1496 		dn->data_blkaddr = NEW_ADDR;
1497 		f2fs_set_data_blkaddr(dn);
1498 	}
1499 
1500 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1501 
1502 	return ret;
1503 }
1504 
1505 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1506 								int mode)
1507 {
1508 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1509 	struct address_space *mapping = inode->i_mapping;
1510 	pgoff_t index, pg_start, pg_end;
1511 	loff_t new_size = i_size_read(inode);
1512 	loff_t off_start, off_end;
1513 	int ret = 0;
1514 
1515 	ret = inode_newsize_ok(inode, (len + offset));
1516 	if (ret)
1517 		return ret;
1518 
1519 	ret = f2fs_convert_inline_inode(inode);
1520 	if (ret)
1521 		return ret;
1522 
1523 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1524 	if (ret)
1525 		return ret;
1526 
1527 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1528 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1529 
1530 	off_start = offset & (PAGE_SIZE - 1);
1531 	off_end = (offset + len) & (PAGE_SIZE - 1);
1532 
1533 	if (pg_start == pg_end) {
1534 		ret = fill_zero(inode, pg_start, off_start,
1535 						off_end - off_start);
1536 		if (ret)
1537 			return ret;
1538 
1539 		new_size = max_t(loff_t, new_size, offset + len);
1540 	} else {
1541 		if (off_start) {
1542 			ret = fill_zero(inode, pg_start++, off_start,
1543 						PAGE_SIZE - off_start);
1544 			if (ret)
1545 				return ret;
1546 
1547 			new_size = max_t(loff_t, new_size,
1548 					(loff_t)pg_start << PAGE_SHIFT);
1549 		}
1550 
1551 		for (index = pg_start; index < pg_end;) {
1552 			struct dnode_of_data dn;
1553 			unsigned int end_offset;
1554 			pgoff_t end;
1555 
1556 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1557 			filemap_invalidate_lock(mapping);
1558 
1559 			truncate_pagecache_range(inode,
1560 				(loff_t)index << PAGE_SHIFT,
1561 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1562 
1563 			f2fs_lock_op(sbi);
1564 
1565 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1566 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1567 			if (ret) {
1568 				f2fs_unlock_op(sbi);
1569 				filemap_invalidate_unlock(mapping);
1570 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1571 				goto out;
1572 			}
1573 
1574 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1575 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1576 
1577 			ret = f2fs_do_zero_range(&dn, index, end);
1578 			f2fs_put_dnode(&dn);
1579 
1580 			f2fs_unlock_op(sbi);
1581 			filemap_invalidate_unlock(mapping);
1582 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1583 
1584 			f2fs_balance_fs(sbi, dn.node_changed);
1585 
1586 			if (ret)
1587 				goto out;
1588 
1589 			index = end;
1590 			new_size = max_t(loff_t, new_size,
1591 					(loff_t)index << PAGE_SHIFT);
1592 		}
1593 
1594 		if (off_end) {
1595 			ret = fill_zero(inode, pg_end, 0, off_end);
1596 			if (ret)
1597 				goto out;
1598 
1599 			new_size = max_t(loff_t, new_size, offset + len);
1600 		}
1601 	}
1602 
1603 out:
1604 	if (new_size > i_size_read(inode)) {
1605 		if (mode & FALLOC_FL_KEEP_SIZE)
1606 			file_set_keep_isize(inode);
1607 		else
1608 			f2fs_i_size_write(inode, new_size);
1609 	}
1610 	return ret;
1611 }
1612 
1613 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1614 {
1615 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1616 	struct address_space *mapping = inode->i_mapping;
1617 	pgoff_t nr, pg_start, pg_end, delta, idx;
1618 	loff_t new_size;
1619 	int ret = 0;
1620 
1621 	new_size = i_size_read(inode) + len;
1622 	ret = inode_newsize_ok(inode, new_size);
1623 	if (ret)
1624 		return ret;
1625 
1626 	if (offset >= i_size_read(inode))
1627 		return -EINVAL;
1628 
1629 	/* insert range should be aligned to block size of f2fs. */
1630 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1631 		return -EINVAL;
1632 
1633 	ret = f2fs_convert_inline_inode(inode);
1634 	if (ret)
1635 		return ret;
1636 
1637 	f2fs_balance_fs(sbi, true);
1638 
1639 	filemap_invalidate_lock(mapping);
1640 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1641 	filemap_invalidate_unlock(mapping);
1642 	if (ret)
1643 		return ret;
1644 
1645 	/* write out all dirty pages from offset */
1646 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1647 	if (ret)
1648 		return ret;
1649 
1650 	pg_start = offset >> PAGE_SHIFT;
1651 	pg_end = (offset + len) >> PAGE_SHIFT;
1652 	delta = pg_end - pg_start;
1653 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1654 
1655 	/* avoid gc operation during block exchange */
1656 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1657 	filemap_invalidate_lock(mapping);
1658 	truncate_pagecache(inode, offset);
1659 
1660 	while (!ret && idx > pg_start) {
1661 		nr = idx - pg_start;
1662 		if (nr > delta)
1663 			nr = delta;
1664 		idx -= nr;
1665 
1666 		f2fs_lock_op(sbi);
1667 		f2fs_drop_extent_tree(inode);
1668 
1669 		ret = __exchange_data_block(inode, inode, idx,
1670 					idx + delta, nr, false);
1671 		f2fs_unlock_op(sbi);
1672 	}
1673 	filemap_invalidate_unlock(mapping);
1674 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1675 
1676 	/* write out all moved pages, if possible */
1677 	filemap_invalidate_lock(mapping);
1678 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1679 	truncate_pagecache(inode, offset);
1680 	filemap_invalidate_unlock(mapping);
1681 
1682 	if (!ret)
1683 		f2fs_i_size_write(inode, new_size);
1684 	return ret;
1685 }
1686 
1687 static int expand_inode_data(struct inode *inode, loff_t offset,
1688 					loff_t len, int mode)
1689 {
1690 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1691 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1692 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1693 			.m_may_create = true };
1694 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1695 			.init_gc_type = FG_GC,
1696 			.should_migrate_blocks = false,
1697 			.err_gc_skipped = true,
1698 			.nr_free_secs = 0 };
1699 	pgoff_t pg_start, pg_end;
1700 	loff_t new_size = i_size_read(inode);
1701 	loff_t off_end;
1702 	block_t expanded = 0;
1703 	int err;
1704 
1705 	err = inode_newsize_ok(inode, (len + offset));
1706 	if (err)
1707 		return err;
1708 
1709 	err = f2fs_convert_inline_inode(inode);
1710 	if (err)
1711 		return err;
1712 
1713 	f2fs_balance_fs(sbi, true);
1714 
1715 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1716 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1717 	off_end = (offset + len) & (PAGE_SIZE - 1);
1718 
1719 	map.m_lblk = pg_start;
1720 	map.m_len = pg_end - pg_start;
1721 	if (off_end)
1722 		map.m_len++;
1723 
1724 	if (!map.m_len)
1725 		return 0;
1726 
1727 	if (f2fs_is_pinned_file(inode)) {
1728 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1729 		block_t sec_len = roundup(map.m_len, sec_blks);
1730 
1731 		map.m_len = sec_blks;
1732 next_alloc:
1733 		if (has_not_enough_free_secs(sbi, 0,
1734 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1735 			f2fs_down_write(&sbi->gc_lock);
1736 			err = f2fs_gc(sbi, &gc_control);
1737 			if (err && err != -ENODATA)
1738 				goto out_err;
1739 		}
1740 
1741 		f2fs_down_write(&sbi->pin_sem);
1742 
1743 		f2fs_lock_op(sbi);
1744 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1745 		f2fs_unlock_op(sbi);
1746 
1747 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1748 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1749 		file_dont_truncate(inode);
1750 
1751 		f2fs_up_write(&sbi->pin_sem);
1752 
1753 		expanded += map.m_len;
1754 		sec_len -= map.m_len;
1755 		map.m_lblk += map.m_len;
1756 		if (!err && sec_len)
1757 			goto next_alloc;
1758 
1759 		map.m_len = expanded;
1760 	} else {
1761 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1762 		expanded = map.m_len;
1763 	}
1764 out_err:
1765 	if (err) {
1766 		pgoff_t last_off;
1767 
1768 		if (!expanded)
1769 			return err;
1770 
1771 		last_off = pg_start + expanded - 1;
1772 
1773 		/* update new size to the failed position */
1774 		new_size = (last_off == pg_end) ? offset + len :
1775 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1776 	} else {
1777 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1778 	}
1779 
1780 	if (new_size > i_size_read(inode)) {
1781 		if (mode & FALLOC_FL_KEEP_SIZE)
1782 			file_set_keep_isize(inode);
1783 		else
1784 			f2fs_i_size_write(inode, new_size);
1785 	}
1786 
1787 	return err;
1788 }
1789 
1790 static long f2fs_fallocate(struct file *file, int mode,
1791 				loff_t offset, loff_t len)
1792 {
1793 	struct inode *inode = file_inode(file);
1794 	long ret = 0;
1795 
1796 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1797 		return -EIO;
1798 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1799 		return -ENOSPC;
1800 	if (!f2fs_is_compress_backend_ready(inode))
1801 		return -EOPNOTSUPP;
1802 
1803 	/* f2fs only support ->fallocate for regular file */
1804 	if (!S_ISREG(inode->i_mode))
1805 		return -EINVAL;
1806 
1807 	if (IS_ENCRYPTED(inode) &&
1808 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1809 		return -EOPNOTSUPP;
1810 
1811 	/*
1812 	 * Pinned file should not support partial trucation since the block
1813 	 * can be used by applications.
1814 	 */
1815 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1816 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1817 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1818 		return -EOPNOTSUPP;
1819 
1820 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1821 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1822 			FALLOC_FL_INSERT_RANGE))
1823 		return -EOPNOTSUPP;
1824 
1825 	inode_lock(inode);
1826 
1827 	ret = file_modified(file);
1828 	if (ret)
1829 		goto out;
1830 
1831 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1832 		if (offset >= inode->i_size)
1833 			goto out;
1834 
1835 		ret = punch_hole(inode, offset, len);
1836 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1837 		ret = f2fs_collapse_range(inode, offset, len);
1838 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1839 		ret = f2fs_zero_range(inode, offset, len, mode);
1840 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1841 		ret = f2fs_insert_range(inode, offset, len);
1842 	} else {
1843 		ret = expand_inode_data(inode, offset, len, mode);
1844 	}
1845 
1846 	if (!ret) {
1847 		inode->i_mtime = inode->i_ctime = current_time(inode);
1848 		f2fs_mark_inode_dirty_sync(inode, false);
1849 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1850 	}
1851 
1852 out:
1853 	inode_unlock(inode);
1854 
1855 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1856 	return ret;
1857 }
1858 
1859 static int f2fs_release_file(struct inode *inode, struct file *filp)
1860 {
1861 	/*
1862 	 * f2fs_relase_file is called at every close calls. So we should
1863 	 * not drop any inmemory pages by close called by other process.
1864 	 */
1865 	if (!(filp->f_mode & FMODE_WRITE) ||
1866 			atomic_read(&inode->i_writecount) != 1)
1867 		return 0;
1868 
1869 	f2fs_abort_atomic_write(inode, true);
1870 	return 0;
1871 }
1872 
1873 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1874 {
1875 	struct inode *inode = file_inode(file);
1876 
1877 	/*
1878 	 * If the process doing a transaction is crashed, we should do
1879 	 * roll-back. Otherwise, other reader/write can see corrupted database
1880 	 * until all the writers close its file. Since this should be done
1881 	 * before dropping file lock, it needs to do in ->flush.
1882 	 */
1883 	if (F2FS_I(inode)->atomic_write_task == current)
1884 		f2fs_abort_atomic_write(inode, true);
1885 	return 0;
1886 }
1887 
1888 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1889 {
1890 	struct f2fs_inode_info *fi = F2FS_I(inode);
1891 	u32 masked_flags = fi->i_flags & mask;
1892 
1893 	/* mask can be shrunk by flags_valid selector */
1894 	iflags &= mask;
1895 
1896 	/* Is it quota file? Do not allow user to mess with it */
1897 	if (IS_NOQUOTA(inode))
1898 		return -EPERM;
1899 
1900 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1901 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1902 			return -EOPNOTSUPP;
1903 		if (!f2fs_empty_dir(inode))
1904 			return -ENOTEMPTY;
1905 	}
1906 
1907 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1908 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1909 			return -EOPNOTSUPP;
1910 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1911 			return -EINVAL;
1912 	}
1913 
1914 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1915 		if (masked_flags & F2FS_COMPR_FL) {
1916 			if (!f2fs_disable_compressed_file(inode))
1917 				return -EINVAL;
1918 		} else {
1919 			/* try to convert inline_data to support compression */
1920 			int err = f2fs_convert_inline_inode(inode);
1921 			if (err)
1922 				return err;
1923 			if (!f2fs_may_compress(inode))
1924 				return -EINVAL;
1925 			if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
1926 				return -EINVAL;
1927 			if (set_compress_context(inode))
1928 				return -EOPNOTSUPP;
1929 		}
1930 	}
1931 
1932 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1933 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1934 					(fi->i_flags & F2FS_NOCOMP_FL));
1935 
1936 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1937 		set_inode_flag(inode, FI_PROJ_INHERIT);
1938 	else
1939 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1940 
1941 	inode->i_ctime = current_time(inode);
1942 	f2fs_set_inode_flags(inode);
1943 	f2fs_mark_inode_dirty_sync(inode, true);
1944 	return 0;
1945 }
1946 
1947 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1948 
1949 /*
1950  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1951  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1952  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1953  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1954  *
1955  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1956  * FS_IOC_FSSETXATTR is done by the VFS.
1957  */
1958 
1959 static const struct {
1960 	u32 iflag;
1961 	u32 fsflag;
1962 } f2fs_fsflags_map[] = {
1963 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1964 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1965 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1966 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1967 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1968 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1969 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1970 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1971 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1972 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1973 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1974 };
1975 
1976 #define F2FS_GETTABLE_FS_FL (		\
1977 		FS_COMPR_FL |		\
1978 		FS_SYNC_FL |		\
1979 		FS_IMMUTABLE_FL |	\
1980 		FS_APPEND_FL |		\
1981 		FS_NODUMP_FL |		\
1982 		FS_NOATIME_FL |		\
1983 		FS_NOCOMP_FL |		\
1984 		FS_INDEX_FL |		\
1985 		FS_DIRSYNC_FL |		\
1986 		FS_PROJINHERIT_FL |	\
1987 		FS_ENCRYPT_FL |		\
1988 		FS_INLINE_DATA_FL |	\
1989 		FS_NOCOW_FL |		\
1990 		FS_VERITY_FL |		\
1991 		FS_CASEFOLD_FL)
1992 
1993 #define F2FS_SETTABLE_FS_FL (		\
1994 		FS_COMPR_FL |		\
1995 		FS_SYNC_FL |		\
1996 		FS_IMMUTABLE_FL |	\
1997 		FS_APPEND_FL |		\
1998 		FS_NODUMP_FL |		\
1999 		FS_NOATIME_FL |		\
2000 		FS_NOCOMP_FL |		\
2001 		FS_DIRSYNC_FL |		\
2002 		FS_PROJINHERIT_FL |	\
2003 		FS_CASEFOLD_FL)
2004 
2005 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2006 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2007 {
2008 	u32 fsflags = 0;
2009 	int i;
2010 
2011 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2012 		if (iflags & f2fs_fsflags_map[i].iflag)
2013 			fsflags |= f2fs_fsflags_map[i].fsflag;
2014 
2015 	return fsflags;
2016 }
2017 
2018 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2019 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2020 {
2021 	u32 iflags = 0;
2022 	int i;
2023 
2024 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2025 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2026 			iflags |= f2fs_fsflags_map[i].iflag;
2027 
2028 	return iflags;
2029 }
2030 
2031 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2032 {
2033 	struct inode *inode = file_inode(filp);
2034 
2035 	return put_user(inode->i_generation, (int __user *)arg);
2036 }
2037 
2038 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2039 {
2040 	struct inode *inode = file_inode(filp);
2041 	struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2042 	struct f2fs_inode_info *fi = F2FS_I(inode);
2043 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2044 	struct inode *pinode;
2045 	loff_t isize;
2046 	int ret;
2047 
2048 	if (!inode_owner_or_capable(mnt_userns, inode))
2049 		return -EACCES;
2050 
2051 	if (!S_ISREG(inode->i_mode))
2052 		return -EINVAL;
2053 
2054 	if (filp->f_flags & O_DIRECT)
2055 		return -EINVAL;
2056 
2057 	ret = mnt_want_write_file(filp);
2058 	if (ret)
2059 		return ret;
2060 
2061 	inode_lock(inode);
2062 
2063 	if (!f2fs_disable_compressed_file(inode)) {
2064 		ret = -EINVAL;
2065 		goto out;
2066 	}
2067 
2068 	if (f2fs_is_atomic_file(inode))
2069 		goto out;
2070 
2071 	ret = f2fs_convert_inline_inode(inode);
2072 	if (ret)
2073 		goto out;
2074 
2075 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2076 
2077 	/*
2078 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2079 	 * f2fs_is_atomic_file.
2080 	 */
2081 	if (get_dirty_pages(inode))
2082 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2083 			  inode->i_ino, get_dirty_pages(inode));
2084 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2085 	if (ret) {
2086 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2087 		goto out;
2088 	}
2089 
2090 	/* Create a COW inode for atomic write */
2091 	pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2092 	if (IS_ERR(pinode)) {
2093 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2094 		ret = PTR_ERR(pinode);
2095 		goto out;
2096 	}
2097 
2098 	ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode);
2099 	iput(pinode);
2100 	if (ret) {
2101 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2102 		goto out;
2103 	}
2104 
2105 	f2fs_write_inode(inode, NULL);
2106 
2107 	stat_inc_atomic_inode(inode);
2108 
2109 	set_inode_flag(inode, FI_ATOMIC_FILE);
2110 	set_inode_flag(fi->cow_inode, FI_COW_FILE);
2111 	clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2112 
2113 	isize = i_size_read(inode);
2114 	fi->original_i_size = isize;
2115 	if (truncate) {
2116 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2117 		truncate_inode_pages_final(inode->i_mapping);
2118 		f2fs_i_size_write(inode, 0);
2119 		isize = 0;
2120 	}
2121 	f2fs_i_size_write(fi->cow_inode, isize);
2122 
2123 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2124 
2125 	f2fs_update_time(sbi, REQ_TIME);
2126 	fi->atomic_write_task = current;
2127 	stat_update_max_atomic_write(inode);
2128 	fi->atomic_write_cnt = 0;
2129 out:
2130 	inode_unlock(inode);
2131 	mnt_drop_write_file(filp);
2132 	return ret;
2133 }
2134 
2135 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2136 {
2137 	struct inode *inode = file_inode(filp);
2138 	struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2139 	int ret;
2140 
2141 	if (!inode_owner_or_capable(mnt_userns, inode))
2142 		return -EACCES;
2143 
2144 	ret = mnt_want_write_file(filp);
2145 	if (ret)
2146 		return ret;
2147 
2148 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2149 
2150 	inode_lock(inode);
2151 
2152 	if (f2fs_is_atomic_file(inode)) {
2153 		ret = f2fs_commit_atomic_write(inode);
2154 		if (!ret)
2155 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2156 
2157 		f2fs_abort_atomic_write(inode, ret);
2158 	} else {
2159 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2160 	}
2161 
2162 	inode_unlock(inode);
2163 	mnt_drop_write_file(filp);
2164 	return ret;
2165 }
2166 
2167 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2168 {
2169 	struct inode *inode = file_inode(filp);
2170 	struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2171 	int ret;
2172 
2173 	if (!inode_owner_or_capable(mnt_userns, inode))
2174 		return -EACCES;
2175 
2176 	ret = mnt_want_write_file(filp);
2177 	if (ret)
2178 		return ret;
2179 
2180 	inode_lock(inode);
2181 
2182 	f2fs_abort_atomic_write(inode, true);
2183 
2184 	inode_unlock(inode);
2185 
2186 	mnt_drop_write_file(filp);
2187 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2188 	return ret;
2189 }
2190 
2191 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2192 {
2193 	struct inode *inode = file_inode(filp);
2194 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2195 	struct super_block *sb = sbi->sb;
2196 	__u32 in;
2197 	int ret = 0;
2198 
2199 	if (!capable(CAP_SYS_ADMIN))
2200 		return -EPERM;
2201 
2202 	if (get_user(in, (__u32 __user *)arg))
2203 		return -EFAULT;
2204 
2205 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2206 		ret = mnt_want_write_file(filp);
2207 		if (ret) {
2208 			if (ret == -EROFS) {
2209 				ret = 0;
2210 				f2fs_stop_checkpoint(sbi, false,
2211 						STOP_CP_REASON_SHUTDOWN);
2212 				set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2213 				trace_f2fs_shutdown(sbi, in, ret);
2214 			}
2215 			return ret;
2216 		}
2217 	}
2218 
2219 	switch (in) {
2220 	case F2FS_GOING_DOWN_FULLSYNC:
2221 		ret = freeze_bdev(sb->s_bdev);
2222 		if (ret)
2223 			goto out;
2224 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2225 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2226 		thaw_bdev(sb->s_bdev);
2227 		break;
2228 	case F2FS_GOING_DOWN_METASYNC:
2229 		/* do checkpoint only */
2230 		ret = f2fs_sync_fs(sb, 1);
2231 		if (ret)
2232 			goto out;
2233 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2234 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2235 		break;
2236 	case F2FS_GOING_DOWN_NOSYNC:
2237 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2238 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2239 		break;
2240 	case F2FS_GOING_DOWN_METAFLUSH:
2241 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2242 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2243 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2244 		break;
2245 	case F2FS_GOING_DOWN_NEED_FSCK:
2246 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2247 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2248 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2249 		/* do checkpoint only */
2250 		ret = f2fs_sync_fs(sb, 1);
2251 		goto out;
2252 	default:
2253 		ret = -EINVAL;
2254 		goto out;
2255 	}
2256 
2257 	f2fs_stop_gc_thread(sbi);
2258 	f2fs_stop_discard_thread(sbi);
2259 
2260 	f2fs_drop_discard_cmd(sbi);
2261 	clear_opt(sbi, DISCARD);
2262 
2263 	f2fs_update_time(sbi, REQ_TIME);
2264 out:
2265 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2266 		mnt_drop_write_file(filp);
2267 
2268 	trace_f2fs_shutdown(sbi, in, ret);
2269 
2270 	return ret;
2271 }
2272 
2273 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2274 {
2275 	struct inode *inode = file_inode(filp);
2276 	struct super_block *sb = inode->i_sb;
2277 	struct fstrim_range range;
2278 	int ret;
2279 
2280 	if (!capable(CAP_SYS_ADMIN))
2281 		return -EPERM;
2282 
2283 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2284 		return -EOPNOTSUPP;
2285 
2286 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2287 				sizeof(range)))
2288 		return -EFAULT;
2289 
2290 	ret = mnt_want_write_file(filp);
2291 	if (ret)
2292 		return ret;
2293 
2294 	range.minlen = max((unsigned int)range.minlen,
2295 			   bdev_discard_granularity(sb->s_bdev));
2296 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2297 	mnt_drop_write_file(filp);
2298 	if (ret < 0)
2299 		return ret;
2300 
2301 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2302 				sizeof(range)))
2303 		return -EFAULT;
2304 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2305 	return 0;
2306 }
2307 
2308 static bool uuid_is_nonzero(__u8 u[16])
2309 {
2310 	int i;
2311 
2312 	for (i = 0; i < 16; i++)
2313 		if (u[i])
2314 			return true;
2315 	return false;
2316 }
2317 
2318 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2319 {
2320 	struct inode *inode = file_inode(filp);
2321 
2322 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2323 		return -EOPNOTSUPP;
2324 
2325 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2326 
2327 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2328 }
2329 
2330 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2331 {
2332 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2333 		return -EOPNOTSUPP;
2334 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2335 }
2336 
2337 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2338 {
2339 	struct inode *inode = file_inode(filp);
2340 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2341 	int err;
2342 
2343 	if (!f2fs_sb_has_encrypt(sbi))
2344 		return -EOPNOTSUPP;
2345 
2346 	err = mnt_want_write_file(filp);
2347 	if (err)
2348 		return err;
2349 
2350 	f2fs_down_write(&sbi->sb_lock);
2351 
2352 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2353 		goto got_it;
2354 
2355 	/* update superblock with uuid */
2356 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2357 
2358 	err = f2fs_commit_super(sbi, false);
2359 	if (err) {
2360 		/* undo new data */
2361 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2362 		goto out_err;
2363 	}
2364 got_it:
2365 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2366 									16))
2367 		err = -EFAULT;
2368 out_err:
2369 	f2fs_up_write(&sbi->sb_lock);
2370 	mnt_drop_write_file(filp);
2371 	return err;
2372 }
2373 
2374 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2375 					     unsigned long arg)
2376 {
2377 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2378 		return -EOPNOTSUPP;
2379 
2380 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2381 }
2382 
2383 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2384 {
2385 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2386 		return -EOPNOTSUPP;
2387 
2388 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2389 }
2390 
2391 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2392 {
2393 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2394 		return -EOPNOTSUPP;
2395 
2396 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2397 }
2398 
2399 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2400 						    unsigned long arg)
2401 {
2402 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2403 		return -EOPNOTSUPP;
2404 
2405 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2406 }
2407 
2408 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2409 					      unsigned long arg)
2410 {
2411 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2412 		return -EOPNOTSUPP;
2413 
2414 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2415 }
2416 
2417 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2418 {
2419 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2420 		return -EOPNOTSUPP;
2421 
2422 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2423 }
2424 
2425 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2426 {
2427 	struct inode *inode = file_inode(filp);
2428 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2429 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2430 			.no_bg_gc = false,
2431 			.should_migrate_blocks = false,
2432 			.nr_free_secs = 0 };
2433 	__u32 sync;
2434 	int ret;
2435 
2436 	if (!capable(CAP_SYS_ADMIN))
2437 		return -EPERM;
2438 
2439 	if (get_user(sync, (__u32 __user *)arg))
2440 		return -EFAULT;
2441 
2442 	if (f2fs_readonly(sbi->sb))
2443 		return -EROFS;
2444 
2445 	ret = mnt_want_write_file(filp);
2446 	if (ret)
2447 		return ret;
2448 
2449 	if (!sync) {
2450 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2451 			ret = -EBUSY;
2452 			goto out;
2453 		}
2454 	} else {
2455 		f2fs_down_write(&sbi->gc_lock);
2456 	}
2457 
2458 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2459 	gc_control.err_gc_skipped = sync;
2460 	ret = f2fs_gc(sbi, &gc_control);
2461 out:
2462 	mnt_drop_write_file(filp);
2463 	return ret;
2464 }
2465 
2466 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2467 {
2468 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2469 	struct f2fs_gc_control gc_control = {
2470 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2471 			.no_bg_gc = false,
2472 			.should_migrate_blocks = false,
2473 			.err_gc_skipped = range->sync,
2474 			.nr_free_secs = 0 };
2475 	u64 end;
2476 	int ret;
2477 
2478 	if (!capable(CAP_SYS_ADMIN))
2479 		return -EPERM;
2480 	if (f2fs_readonly(sbi->sb))
2481 		return -EROFS;
2482 
2483 	end = range->start + range->len;
2484 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2485 					end >= MAX_BLKADDR(sbi))
2486 		return -EINVAL;
2487 
2488 	ret = mnt_want_write_file(filp);
2489 	if (ret)
2490 		return ret;
2491 
2492 do_more:
2493 	if (!range->sync) {
2494 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2495 			ret = -EBUSY;
2496 			goto out;
2497 		}
2498 	} else {
2499 		f2fs_down_write(&sbi->gc_lock);
2500 	}
2501 
2502 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2503 	ret = f2fs_gc(sbi, &gc_control);
2504 	if (ret) {
2505 		if (ret == -EBUSY)
2506 			ret = -EAGAIN;
2507 		goto out;
2508 	}
2509 	range->start += CAP_BLKS_PER_SEC(sbi);
2510 	if (range->start <= end)
2511 		goto do_more;
2512 out:
2513 	mnt_drop_write_file(filp);
2514 	return ret;
2515 }
2516 
2517 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2518 {
2519 	struct f2fs_gc_range range;
2520 
2521 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2522 							sizeof(range)))
2523 		return -EFAULT;
2524 	return __f2fs_ioc_gc_range(filp, &range);
2525 }
2526 
2527 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2528 {
2529 	struct inode *inode = file_inode(filp);
2530 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2531 	int ret;
2532 
2533 	if (!capable(CAP_SYS_ADMIN))
2534 		return -EPERM;
2535 
2536 	if (f2fs_readonly(sbi->sb))
2537 		return -EROFS;
2538 
2539 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2540 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2541 		return -EINVAL;
2542 	}
2543 
2544 	ret = mnt_want_write_file(filp);
2545 	if (ret)
2546 		return ret;
2547 
2548 	ret = f2fs_sync_fs(sbi->sb, 1);
2549 
2550 	mnt_drop_write_file(filp);
2551 	return ret;
2552 }
2553 
2554 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2555 					struct file *filp,
2556 					struct f2fs_defragment *range)
2557 {
2558 	struct inode *inode = file_inode(filp);
2559 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2560 					.m_seg_type = NO_CHECK_TYPE,
2561 					.m_may_create = false };
2562 	struct extent_info ei = {0, };
2563 	pgoff_t pg_start, pg_end, next_pgofs;
2564 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2565 	unsigned int total = 0, sec_num;
2566 	block_t blk_end = 0;
2567 	bool fragmented = false;
2568 	int err;
2569 
2570 	pg_start = range->start >> PAGE_SHIFT;
2571 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2572 
2573 	f2fs_balance_fs(sbi, true);
2574 
2575 	inode_lock(inode);
2576 
2577 	/* if in-place-update policy is enabled, don't waste time here */
2578 	set_inode_flag(inode, FI_OPU_WRITE);
2579 	if (f2fs_should_update_inplace(inode, NULL)) {
2580 		err = -EINVAL;
2581 		goto out;
2582 	}
2583 
2584 	/* writeback all dirty pages in the range */
2585 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2586 						range->start + range->len - 1);
2587 	if (err)
2588 		goto out;
2589 
2590 	/*
2591 	 * lookup mapping info in extent cache, skip defragmenting if physical
2592 	 * block addresses are continuous.
2593 	 */
2594 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2595 		if (ei.fofs + ei.len >= pg_end)
2596 			goto out;
2597 	}
2598 
2599 	map.m_lblk = pg_start;
2600 	map.m_next_pgofs = &next_pgofs;
2601 
2602 	/*
2603 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2604 	 * physical block addresses are continuous even if there are hole(s)
2605 	 * in logical blocks.
2606 	 */
2607 	while (map.m_lblk < pg_end) {
2608 		map.m_len = pg_end - map.m_lblk;
2609 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2610 		if (err)
2611 			goto out;
2612 
2613 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2614 			map.m_lblk = next_pgofs;
2615 			continue;
2616 		}
2617 
2618 		if (blk_end && blk_end != map.m_pblk)
2619 			fragmented = true;
2620 
2621 		/* record total count of block that we're going to move */
2622 		total += map.m_len;
2623 
2624 		blk_end = map.m_pblk + map.m_len;
2625 
2626 		map.m_lblk += map.m_len;
2627 	}
2628 
2629 	if (!fragmented) {
2630 		total = 0;
2631 		goto out;
2632 	}
2633 
2634 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2635 
2636 	/*
2637 	 * make sure there are enough free section for LFS allocation, this can
2638 	 * avoid defragment running in SSR mode when free section are allocated
2639 	 * intensively
2640 	 */
2641 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2642 		err = -EAGAIN;
2643 		goto out;
2644 	}
2645 
2646 	map.m_lblk = pg_start;
2647 	map.m_len = pg_end - pg_start;
2648 	total = 0;
2649 
2650 	while (map.m_lblk < pg_end) {
2651 		pgoff_t idx;
2652 		int cnt = 0;
2653 
2654 do_map:
2655 		map.m_len = pg_end - map.m_lblk;
2656 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2657 		if (err)
2658 			goto clear_out;
2659 
2660 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2661 			map.m_lblk = next_pgofs;
2662 			goto check;
2663 		}
2664 
2665 		set_inode_flag(inode, FI_SKIP_WRITES);
2666 
2667 		idx = map.m_lblk;
2668 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2669 			struct page *page;
2670 
2671 			page = f2fs_get_lock_data_page(inode, idx, true);
2672 			if (IS_ERR(page)) {
2673 				err = PTR_ERR(page);
2674 				goto clear_out;
2675 			}
2676 
2677 			set_page_dirty(page);
2678 			set_page_private_gcing(page);
2679 			f2fs_put_page(page, 1);
2680 
2681 			idx++;
2682 			cnt++;
2683 			total++;
2684 		}
2685 
2686 		map.m_lblk = idx;
2687 check:
2688 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2689 			goto do_map;
2690 
2691 		clear_inode_flag(inode, FI_SKIP_WRITES);
2692 
2693 		err = filemap_fdatawrite(inode->i_mapping);
2694 		if (err)
2695 			goto out;
2696 	}
2697 clear_out:
2698 	clear_inode_flag(inode, FI_SKIP_WRITES);
2699 out:
2700 	clear_inode_flag(inode, FI_OPU_WRITE);
2701 	inode_unlock(inode);
2702 	if (!err)
2703 		range->len = (u64)total << PAGE_SHIFT;
2704 	return err;
2705 }
2706 
2707 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2708 {
2709 	struct inode *inode = file_inode(filp);
2710 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2711 	struct f2fs_defragment range;
2712 	int err;
2713 
2714 	if (!capable(CAP_SYS_ADMIN))
2715 		return -EPERM;
2716 
2717 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2718 		return -EINVAL;
2719 
2720 	if (f2fs_readonly(sbi->sb))
2721 		return -EROFS;
2722 
2723 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2724 							sizeof(range)))
2725 		return -EFAULT;
2726 
2727 	/* verify alignment of offset & size */
2728 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2729 		return -EINVAL;
2730 
2731 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2732 					max_file_blocks(inode)))
2733 		return -EINVAL;
2734 
2735 	err = mnt_want_write_file(filp);
2736 	if (err)
2737 		return err;
2738 
2739 	err = f2fs_defragment_range(sbi, filp, &range);
2740 	mnt_drop_write_file(filp);
2741 
2742 	f2fs_update_time(sbi, REQ_TIME);
2743 	if (err < 0)
2744 		return err;
2745 
2746 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2747 							sizeof(range)))
2748 		return -EFAULT;
2749 
2750 	return 0;
2751 }
2752 
2753 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2754 			struct file *file_out, loff_t pos_out, size_t len)
2755 {
2756 	struct inode *src = file_inode(file_in);
2757 	struct inode *dst = file_inode(file_out);
2758 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2759 	size_t olen = len, dst_max_i_size = 0;
2760 	size_t dst_osize;
2761 	int ret;
2762 
2763 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2764 				src->i_sb != dst->i_sb)
2765 		return -EXDEV;
2766 
2767 	if (unlikely(f2fs_readonly(src->i_sb)))
2768 		return -EROFS;
2769 
2770 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2771 		return -EINVAL;
2772 
2773 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2774 		return -EOPNOTSUPP;
2775 
2776 	if (pos_out < 0 || pos_in < 0)
2777 		return -EINVAL;
2778 
2779 	if (src == dst) {
2780 		if (pos_in == pos_out)
2781 			return 0;
2782 		if (pos_out > pos_in && pos_out < pos_in + len)
2783 			return -EINVAL;
2784 	}
2785 
2786 	inode_lock(src);
2787 	if (src != dst) {
2788 		ret = -EBUSY;
2789 		if (!inode_trylock(dst))
2790 			goto out;
2791 	}
2792 
2793 	ret = -EINVAL;
2794 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2795 		goto out_unlock;
2796 	if (len == 0)
2797 		olen = len = src->i_size - pos_in;
2798 	if (pos_in + len == src->i_size)
2799 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2800 	if (len == 0) {
2801 		ret = 0;
2802 		goto out_unlock;
2803 	}
2804 
2805 	dst_osize = dst->i_size;
2806 	if (pos_out + olen > dst->i_size)
2807 		dst_max_i_size = pos_out + olen;
2808 
2809 	/* verify the end result is block aligned */
2810 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2811 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2812 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2813 		goto out_unlock;
2814 
2815 	ret = f2fs_convert_inline_inode(src);
2816 	if (ret)
2817 		goto out_unlock;
2818 
2819 	ret = f2fs_convert_inline_inode(dst);
2820 	if (ret)
2821 		goto out_unlock;
2822 
2823 	/* write out all dirty pages from offset */
2824 	ret = filemap_write_and_wait_range(src->i_mapping,
2825 					pos_in, pos_in + len);
2826 	if (ret)
2827 		goto out_unlock;
2828 
2829 	ret = filemap_write_and_wait_range(dst->i_mapping,
2830 					pos_out, pos_out + len);
2831 	if (ret)
2832 		goto out_unlock;
2833 
2834 	f2fs_balance_fs(sbi, true);
2835 
2836 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2837 	if (src != dst) {
2838 		ret = -EBUSY;
2839 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2840 			goto out_src;
2841 	}
2842 
2843 	f2fs_lock_op(sbi);
2844 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2845 				pos_out >> F2FS_BLKSIZE_BITS,
2846 				len >> F2FS_BLKSIZE_BITS, false);
2847 
2848 	if (!ret) {
2849 		if (dst_max_i_size)
2850 			f2fs_i_size_write(dst, dst_max_i_size);
2851 		else if (dst_osize != dst->i_size)
2852 			f2fs_i_size_write(dst, dst_osize);
2853 	}
2854 	f2fs_unlock_op(sbi);
2855 
2856 	if (src != dst)
2857 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2858 out_src:
2859 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2860 out_unlock:
2861 	if (src != dst)
2862 		inode_unlock(dst);
2863 out:
2864 	inode_unlock(src);
2865 	return ret;
2866 }
2867 
2868 static int __f2fs_ioc_move_range(struct file *filp,
2869 				struct f2fs_move_range *range)
2870 {
2871 	struct fd dst;
2872 	int err;
2873 
2874 	if (!(filp->f_mode & FMODE_READ) ||
2875 			!(filp->f_mode & FMODE_WRITE))
2876 		return -EBADF;
2877 
2878 	dst = fdget(range->dst_fd);
2879 	if (!dst.file)
2880 		return -EBADF;
2881 
2882 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2883 		err = -EBADF;
2884 		goto err_out;
2885 	}
2886 
2887 	err = mnt_want_write_file(filp);
2888 	if (err)
2889 		goto err_out;
2890 
2891 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2892 					range->pos_out, range->len);
2893 
2894 	mnt_drop_write_file(filp);
2895 err_out:
2896 	fdput(dst);
2897 	return err;
2898 }
2899 
2900 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2901 {
2902 	struct f2fs_move_range range;
2903 
2904 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2905 							sizeof(range)))
2906 		return -EFAULT;
2907 	return __f2fs_ioc_move_range(filp, &range);
2908 }
2909 
2910 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2911 {
2912 	struct inode *inode = file_inode(filp);
2913 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2914 	struct sit_info *sm = SIT_I(sbi);
2915 	unsigned int start_segno = 0, end_segno = 0;
2916 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2917 	struct f2fs_flush_device range;
2918 	struct f2fs_gc_control gc_control = {
2919 			.init_gc_type = FG_GC,
2920 			.should_migrate_blocks = true,
2921 			.err_gc_skipped = true,
2922 			.nr_free_secs = 0 };
2923 	int ret;
2924 
2925 	if (!capable(CAP_SYS_ADMIN))
2926 		return -EPERM;
2927 
2928 	if (f2fs_readonly(sbi->sb))
2929 		return -EROFS;
2930 
2931 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2932 		return -EINVAL;
2933 
2934 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2935 							sizeof(range)))
2936 		return -EFAULT;
2937 
2938 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2939 			__is_large_section(sbi)) {
2940 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2941 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2942 		return -EINVAL;
2943 	}
2944 
2945 	ret = mnt_want_write_file(filp);
2946 	if (ret)
2947 		return ret;
2948 
2949 	if (range.dev_num != 0)
2950 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2951 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2952 
2953 	start_segno = sm->last_victim[FLUSH_DEVICE];
2954 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2955 		start_segno = dev_start_segno;
2956 	end_segno = min(start_segno + range.segments, dev_end_segno);
2957 
2958 	while (start_segno < end_segno) {
2959 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2960 			ret = -EBUSY;
2961 			goto out;
2962 		}
2963 		sm->last_victim[GC_CB] = end_segno + 1;
2964 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2965 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2966 
2967 		gc_control.victim_segno = start_segno;
2968 		ret = f2fs_gc(sbi, &gc_control);
2969 		if (ret == -EAGAIN)
2970 			ret = 0;
2971 		else if (ret < 0)
2972 			break;
2973 		start_segno++;
2974 	}
2975 out:
2976 	mnt_drop_write_file(filp);
2977 	return ret;
2978 }
2979 
2980 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2981 {
2982 	struct inode *inode = file_inode(filp);
2983 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2984 
2985 	/* Must validate to set it with SQLite behavior in Android. */
2986 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2987 
2988 	return put_user(sb_feature, (u32 __user *)arg);
2989 }
2990 
2991 #ifdef CONFIG_QUOTA
2992 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2993 {
2994 	struct dquot *transfer_to[MAXQUOTAS] = {};
2995 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2996 	struct super_block *sb = sbi->sb;
2997 	int err = 0;
2998 
2999 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3000 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
3001 		err = __dquot_transfer(inode, transfer_to);
3002 		if (err)
3003 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3004 		dqput(transfer_to[PRJQUOTA]);
3005 	}
3006 	return err;
3007 }
3008 
3009 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3010 {
3011 	struct f2fs_inode_info *fi = F2FS_I(inode);
3012 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3013 	struct f2fs_inode *ri = NULL;
3014 	kprojid_t kprojid;
3015 	int err;
3016 
3017 	if (!f2fs_sb_has_project_quota(sbi)) {
3018 		if (projid != F2FS_DEF_PROJID)
3019 			return -EOPNOTSUPP;
3020 		else
3021 			return 0;
3022 	}
3023 
3024 	if (!f2fs_has_extra_attr(inode))
3025 		return -EOPNOTSUPP;
3026 
3027 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3028 
3029 	if (projid_eq(kprojid, fi->i_projid))
3030 		return 0;
3031 
3032 	err = -EPERM;
3033 	/* Is it quota file? Do not allow user to mess with it */
3034 	if (IS_NOQUOTA(inode))
3035 		return err;
3036 
3037 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3038 		return -EOVERFLOW;
3039 
3040 	err = f2fs_dquot_initialize(inode);
3041 	if (err)
3042 		return err;
3043 
3044 	f2fs_lock_op(sbi);
3045 	err = f2fs_transfer_project_quota(inode, kprojid);
3046 	if (err)
3047 		goto out_unlock;
3048 
3049 	fi->i_projid = kprojid;
3050 	inode->i_ctime = current_time(inode);
3051 	f2fs_mark_inode_dirty_sync(inode, true);
3052 out_unlock:
3053 	f2fs_unlock_op(sbi);
3054 	return err;
3055 }
3056 #else
3057 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3058 {
3059 	return 0;
3060 }
3061 
3062 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3063 {
3064 	if (projid != F2FS_DEF_PROJID)
3065 		return -EOPNOTSUPP;
3066 	return 0;
3067 }
3068 #endif
3069 
3070 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3071 {
3072 	struct inode *inode = d_inode(dentry);
3073 	struct f2fs_inode_info *fi = F2FS_I(inode);
3074 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3075 
3076 	if (IS_ENCRYPTED(inode))
3077 		fsflags |= FS_ENCRYPT_FL;
3078 	if (IS_VERITY(inode))
3079 		fsflags |= FS_VERITY_FL;
3080 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3081 		fsflags |= FS_INLINE_DATA_FL;
3082 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3083 		fsflags |= FS_NOCOW_FL;
3084 
3085 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3086 
3087 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3088 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3089 
3090 	return 0;
3091 }
3092 
3093 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3094 		      struct dentry *dentry, struct fileattr *fa)
3095 {
3096 	struct inode *inode = d_inode(dentry);
3097 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3098 	u32 iflags;
3099 	int err;
3100 
3101 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3102 		return -EIO;
3103 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3104 		return -ENOSPC;
3105 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3106 		return -EOPNOTSUPP;
3107 	fsflags &= F2FS_SETTABLE_FS_FL;
3108 	if (!fa->flags_valid)
3109 		mask &= FS_COMMON_FL;
3110 
3111 	iflags = f2fs_fsflags_to_iflags(fsflags);
3112 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3113 		return -EOPNOTSUPP;
3114 
3115 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3116 	if (!err)
3117 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3118 
3119 	return err;
3120 }
3121 
3122 int f2fs_pin_file_control(struct inode *inode, bool inc)
3123 {
3124 	struct f2fs_inode_info *fi = F2FS_I(inode);
3125 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3126 
3127 	/* Use i_gc_failures for normal file as a risk signal. */
3128 	if (inc)
3129 		f2fs_i_gc_failures_write(inode,
3130 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3131 
3132 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3133 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3134 			  __func__, inode->i_ino,
3135 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3136 		clear_inode_flag(inode, FI_PIN_FILE);
3137 		return -EAGAIN;
3138 	}
3139 	return 0;
3140 }
3141 
3142 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3143 {
3144 	struct inode *inode = file_inode(filp);
3145 	__u32 pin;
3146 	int ret = 0;
3147 
3148 	if (get_user(pin, (__u32 __user *)arg))
3149 		return -EFAULT;
3150 
3151 	if (!S_ISREG(inode->i_mode))
3152 		return -EINVAL;
3153 
3154 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3155 		return -EROFS;
3156 
3157 	ret = mnt_want_write_file(filp);
3158 	if (ret)
3159 		return ret;
3160 
3161 	inode_lock(inode);
3162 
3163 	if (!pin) {
3164 		clear_inode_flag(inode, FI_PIN_FILE);
3165 		f2fs_i_gc_failures_write(inode, 0);
3166 		goto done;
3167 	}
3168 
3169 	if (f2fs_should_update_outplace(inode, NULL)) {
3170 		ret = -EINVAL;
3171 		goto out;
3172 	}
3173 
3174 	if (f2fs_pin_file_control(inode, false)) {
3175 		ret = -EAGAIN;
3176 		goto out;
3177 	}
3178 
3179 	ret = f2fs_convert_inline_inode(inode);
3180 	if (ret)
3181 		goto out;
3182 
3183 	if (!f2fs_disable_compressed_file(inode)) {
3184 		ret = -EOPNOTSUPP;
3185 		goto out;
3186 	}
3187 
3188 	set_inode_flag(inode, FI_PIN_FILE);
3189 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3190 done:
3191 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3192 out:
3193 	inode_unlock(inode);
3194 	mnt_drop_write_file(filp);
3195 	return ret;
3196 }
3197 
3198 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3199 {
3200 	struct inode *inode = file_inode(filp);
3201 	__u32 pin = 0;
3202 
3203 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3204 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3205 	return put_user(pin, (u32 __user *)arg);
3206 }
3207 
3208 int f2fs_precache_extents(struct inode *inode)
3209 {
3210 	struct f2fs_inode_info *fi = F2FS_I(inode);
3211 	struct f2fs_map_blocks map;
3212 	pgoff_t m_next_extent;
3213 	loff_t end;
3214 	int err;
3215 
3216 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3217 		return -EOPNOTSUPP;
3218 
3219 	map.m_lblk = 0;
3220 	map.m_next_pgofs = NULL;
3221 	map.m_next_extent = &m_next_extent;
3222 	map.m_seg_type = NO_CHECK_TYPE;
3223 	map.m_may_create = false;
3224 	end = max_file_blocks(inode);
3225 
3226 	while (map.m_lblk < end) {
3227 		map.m_len = end - map.m_lblk;
3228 
3229 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3230 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3231 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3232 		if (err)
3233 			return err;
3234 
3235 		map.m_lblk = m_next_extent;
3236 	}
3237 
3238 	return 0;
3239 }
3240 
3241 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3242 {
3243 	return f2fs_precache_extents(file_inode(filp));
3244 }
3245 
3246 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3247 {
3248 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3249 	__u64 block_count;
3250 
3251 	if (!capable(CAP_SYS_ADMIN))
3252 		return -EPERM;
3253 
3254 	if (f2fs_readonly(sbi->sb))
3255 		return -EROFS;
3256 
3257 	if (copy_from_user(&block_count, (void __user *)arg,
3258 			   sizeof(block_count)))
3259 		return -EFAULT;
3260 
3261 	return f2fs_resize_fs(sbi, block_count);
3262 }
3263 
3264 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3265 {
3266 	struct inode *inode = file_inode(filp);
3267 
3268 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3269 
3270 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3271 		f2fs_warn(F2FS_I_SB(inode),
3272 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3273 			  inode->i_ino);
3274 		return -EOPNOTSUPP;
3275 	}
3276 
3277 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3278 }
3279 
3280 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3281 {
3282 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3283 		return -EOPNOTSUPP;
3284 
3285 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3286 }
3287 
3288 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3289 {
3290 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3291 		return -EOPNOTSUPP;
3292 
3293 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3294 }
3295 
3296 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3297 {
3298 	struct inode *inode = file_inode(filp);
3299 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3300 	char *vbuf;
3301 	int count;
3302 	int err = 0;
3303 
3304 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3305 	if (!vbuf)
3306 		return -ENOMEM;
3307 
3308 	f2fs_down_read(&sbi->sb_lock);
3309 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3310 			ARRAY_SIZE(sbi->raw_super->volume_name),
3311 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3312 	f2fs_up_read(&sbi->sb_lock);
3313 
3314 	if (copy_to_user((char __user *)arg, vbuf,
3315 				min(FSLABEL_MAX, count)))
3316 		err = -EFAULT;
3317 
3318 	kfree(vbuf);
3319 	return err;
3320 }
3321 
3322 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3323 {
3324 	struct inode *inode = file_inode(filp);
3325 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3326 	char *vbuf;
3327 	int err = 0;
3328 
3329 	if (!capable(CAP_SYS_ADMIN))
3330 		return -EPERM;
3331 
3332 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3333 	if (IS_ERR(vbuf))
3334 		return PTR_ERR(vbuf);
3335 
3336 	err = mnt_want_write_file(filp);
3337 	if (err)
3338 		goto out;
3339 
3340 	f2fs_down_write(&sbi->sb_lock);
3341 
3342 	memset(sbi->raw_super->volume_name, 0,
3343 			sizeof(sbi->raw_super->volume_name));
3344 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3345 			sbi->raw_super->volume_name,
3346 			ARRAY_SIZE(sbi->raw_super->volume_name));
3347 
3348 	err = f2fs_commit_super(sbi, false);
3349 
3350 	f2fs_up_write(&sbi->sb_lock);
3351 
3352 	mnt_drop_write_file(filp);
3353 out:
3354 	kfree(vbuf);
3355 	return err;
3356 }
3357 
3358 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3359 {
3360 	struct inode *inode = file_inode(filp);
3361 	__u64 blocks;
3362 
3363 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3364 		return -EOPNOTSUPP;
3365 
3366 	if (!f2fs_compressed_file(inode))
3367 		return -EINVAL;
3368 
3369 	blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3370 	return put_user(blocks, (u64 __user *)arg);
3371 }
3372 
3373 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3374 {
3375 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3376 	unsigned int released_blocks = 0;
3377 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3378 	block_t blkaddr;
3379 	int i;
3380 
3381 	for (i = 0; i < count; i++) {
3382 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3383 						dn->ofs_in_node + i);
3384 
3385 		if (!__is_valid_data_blkaddr(blkaddr))
3386 			continue;
3387 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3388 					DATA_GENERIC_ENHANCE))) {
3389 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3390 			return -EFSCORRUPTED;
3391 		}
3392 	}
3393 
3394 	while (count) {
3395 		int compr_blocks = 0;
3396 
3397 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3398 			blkaddr = f2fs_data_blkaddr(dn);
3399 
3400 			if (i == 0) {
3401 				if (blkaddr == COMPRESS_ADDR)
3402 					continue;
3403 				dn->ofs_in_node += cluster_size;
3404 				goto next;
3405 			}
3406 
3407 			if (__is_valid_data_blkaddr(blkaddr))
3408 				compr_blocks++;
3409 
3410 			if (blkaddr != NEW_ADDR)
3411 				continue;
3412 
3413 			dn->data_blkaddr = NULL_ADDR;
3414 			f2fs_set_data_blkaddr(dn);
3415 		}
3416 
3417 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3418 		dec_valid_block_count(sbi, dn->inode,
3419 					cluster_size - compr_blocks);
3420 
3421 		released_blocks += cluster_size - compr_blocks;
3422 next:
3423 		count -= cluster_size;
3424 	}
3425 
3426 	return released_blocks;
3427 }
3428 
3429 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3430 {
3431 	struct inode *inode = file_inode(filp);
3432 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3433 	pgoff_t page_idx = 0, last_idx;
3434 	unsigned int released_blocks = 0;
3435 	int ret;
3436 	int writecount;
3437 
3438 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3439 		return -EOPNOTSUPP;
3440 
3441 	if (!f2fs_compressed_file(inode))
3442 		return -EINVAL;
3443 
3444 	if (f2fs_readonly(sbi->sb))
3445 		return -EROFS;
3446 
3447 	ret = mnt_want_write_file(filp);
3448 	if (ret)
3449 		return ret;
3450 
3451 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3452 
3453 	inode_lock(inode);
3454 
3455 	writecount = atomic_read(&inode->i_writecount);
3456 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3457 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3458 		ret = -EBUSY;
3459 		goto out;
3460 	}
3461 
3462 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3463 		ret = -EINVAL;
3464 		goto out;
3465 	}
3466 
3467 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3468 	if (ret)
3469 		goto out;
3470 
3471 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3472 	inode->i_ctime = current_time(inode);
3473 	f2fs_mark_inode_dirty_sync(inode, true);
3474 
3475 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3476 		goto out;
3477 
3478 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3479 	filemap_invalidate_lock(inode->i_mapping);
3480 
3481 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3482 
3483 	while (page_idx < last_idx) {
3484 		struct dnode_of_data dn;
3485 		pgoff_t end_offset, count;
3486 
3487 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3488 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3489 		if (ret) {
3490 			if (ret == -ENOENT) {
3491 				page_idx = f2fs_get_next_page_offset(&dn,
3492 								page_idx);
3493 				ret = 0;
3494 				continue;
3495 			}
3496 			break;
3497 		}
3498 
3499 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3500 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3501 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3502 
3503 		ret = release_compress_blocks(&dn, count);
3504 
3505 		f2fs_put_dnode(&dn);
3506 
3507 		if (ret < 0)
3508 			break;
3509 
3510 		page_idx += count;
3511 		released_blocks += ret;
3512 	}
3513 
3514 	filemap_invalidate_unlock(inode->i_mapping);
3515 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3516 out:
3517 	inode_unlock(inode);
3518 
3519 	mnt_drop_write_file(filp);
3520 
3521 	if (ret >= 0) {
3522 		ret = put_user(released_blocks, (u64 __user *)arg);
3523 	} else if (released_blocks &&
3524 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3525 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3526 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3527 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3528 			"run fsck to fix.",
3529 			__func__, inode->i_ino, inode->i_blocks,
3530 			released_blocks,
3531 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3532 	}
3533 
3534 	return ret;
3535 }
3536 
3537 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3538 {
3539 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3540 	unsigned int reserved_blocks = 0;
3541 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3542 	block_t blkaddr;
3543 	int i;
3544 
3545 	for (i = 0; i < count; i++) {
3546 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3547 						dn->ofs_in_node + i);
3548 
3549 		if (!__is_valid_data_blkaddr(blkaddr))
3550 			continue;
3551 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3552 					DATA_GENERIC_ENHANCE))) {
3553 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3554 			return -EFSCORRUPTED;
3555 		}
3556 	}
3557 
3558 	while (count) {
3559 		int compr_blocks = 0;
3560 		blkcnt_t reserved;
3561 		int ret;
3562 
3563 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3564 			blkaddr = f2fs_data_blkaddr(dn);
3565 
3566 			if (i == 0) {
3567 				if (blkaddr == COMPRESS_ADDR)
3568 					continue;
3569 				dn->ofs_in_node += cluster_size;
3570 				goto next;
3571 			}
3572 
3573 			if (__is_valid_data_blkaddr(blkaddr)) {
3574 				compr_blocks++;
3575 				continue;
3576 			}
3577 
3578 			dn->data_blkaddr = NEW_ADDR;
3579 			f2fs_set_data_blkaddr(dn);
3580 		}
3581 
3582 		reserved = cluster_size - compr_blocks;
3583 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3584 		if (ret)
3585 			return ret;
3586 
3587 		if (reserved != cluster_size - compr_blocks)
3588 			return -ENOSPC;
3589 
3590 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3591 
3592 		reserved_blocks += reserved;
3593 next:
3594 		count -= cluster_size;
3595 	}
3596 
3597 	return reserved_blocks;
3598 }
3599 
3600 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3601 {
3602 	struct inode *inode = file_inode(filp);
3603 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3604 	pgoff_t page_idx = 0, last_idx;
3605 	unsigned int reserved_blocks = 0;
3606 	int ret;
3607 
3608 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3609 		return -EOPNOTSUPP;
3610 
3611 	if (!f2fs_compressed_file(inode))
3612 		return -EINVAL;
3613 
3614 	if (f2fs_readonly(sbi->sb))
3615 		return -EROFS;
3616 
3617 	ret = mnt_want_write_file(filp);
3618 	if (ret)
3619 		return ret;
3620 
3621 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3622 		goto out;
3623 
3624 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3625 
3626 	inode_lock(inode);
3627 
3628 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3629 		ret = -EINVAL;
3630 		goto unlock_inode;
3631 	}
3632 
3633 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3634 	filemap_invalidate_lock(inode->i_mapping);
3635 
3636 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3637 
3638 	while (page_idx < last_idx) {
3639 		struct dnode_of_data dn;
3640 		pgoff_t end_offset, count;
3641 
3642 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3643 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3644 		if (ret) {
3645 			if (ret == -ENOENT) {
3646 				page_idx = f2fs_get_next_page_offset(&dn,
3647 								page_idx);
3648 				ret = 0;
3649 				continue;
3650 			}
3651 			break;
3652 		}
3653 
3654 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3655 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3656 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3657 
3658 		ret = reserve_compress_blocks(&dn, count);
3659 
3660 		f2fs_put_dnode(&dn);
3661 
3662 		if (ret < 0)
3663 			break;
3664 
3665 		page_idx += count;
3666 		reserved_blocks += ret;
3667 	}
3668 
3669 	filemap_invalidate_unlock(inode->i_mapping);
3670 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3671 
3672 	if (ret >= 0) {
3673 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3674 		inode->i_ctime = current_time(inode);
3675 		f2fs_mark_inode_dirty_sync(inode, true);
3676 	}
3677 unlock_inode:
3678 	inode_unlock(inode);
3679 out:
3680 	mnt_drop_write_file(filp);
3681 
3682 	if (ret >= 0) {
3683 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3684 	} else if (reserved_blocks &&
3685 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3686 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3687 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3688 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3689 			"run fsck to fix.",
3690 			__func__, inode->i_ino, inode->i_blocks,
3691 			reserved_blocks,
3692 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3693 	}
3694 
3695 	return ret;
3696 }
3697 
3698 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3699 		pgoff_t off, block_t block, block_t len, u32 flags)
3700 {
3701 	sector_t sector = SECTOR_FROM_BLOCK(block);
3702 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3703 	int ret = 0;
3704 
3705 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3706 		if (bdev_max_secure_erase_sectors(bdev))
3707 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3708 					GFP_NOFS);
3709 		else
3710 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3711 					GFP_NOFS);
3712 	}
3713 
3714 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3715 		if (IS_ENCRYPTED(inode))
3716 			ret = fscrypt_zeroout_range(inode, off, block, len);
3717 		else
3718 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3719 					GFP_NOFS, 0);
3720 	}
3721 
3722 	return ret;
3723 }
3724 
3725 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3726 {
3727 	struct inode *inode = file_inode(filp);
3728 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3729 	struct address_space *mapping = inode->i_mapping;
3730 	struct block_device *prev_bdev = NULL;
3731 	struct f2fs_sectrim_range range;
3732 	pgoff_t index, pg_end, prev_index = 0;
3733 	block_t prev_block = 0, len = 0;
3734 	loff_t end_addr;
3735 	bool to_end = false;
3736 	int ret = 0;
3737 
3738 	if (!(filp->f_mode & FMODE_WRITE))
3739 		return -EBADF;
3740 
3741 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3742 				sizeof(range)))
3743 		return -EFAULT;
3744 
3745 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3746 			!S_ISREG(inode->i_mode))
3747 		return -EINVAL;
3748 
3749 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3750 			!f2fs_hw_support_discard(sbi)) ||
3751 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3752 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3753 		return -EOPNOTSUPP;
3754 
3755 	file_start_write(filp);
3756 	inode_lock(inode);
3757 
3758 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3759 			range.start >= inode->i_size) {
3760 		ret = -EINVAL;
3761 		goto err;
3762 	}
3763 
3764 	if (range.len == 0)
3765 		goto err;
3766 
3767 	if (inode->i_size - range.start > range.len) {
3768 		end_addr = range.start + range.len;
3769 	} else {
3770 		end_addr = range.len == (u64)-1 ?
3771 			sbi->sb->s_maxbytes : inode->i_size;
3772 		to_end = true;
3773 	}
3774 
3775 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3776 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3777 		ret = -EINVAL;
3778 		goto err;
3779 	}
3780 
3781 	index = F2FS_BYTES_TO_BLK(range.start);
3782 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3783 
3784 	ret = f2fs_convert_inline_inode(inode);
3785 	if (ret)
3786 		goto err;
3787 
3788 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3789 	filemap_invalidate_lock(mapping);
3790 
3791 	ret = filemap_write_and_wait_range(mapping, range.start,
3792 			to_end ? LLONG_MAX : end_addr - 1);
3793 	if (ret)
3794 		goto out;
3795 
3796 	truncate_inode_pages_range(mapping, range.start,
3797 			to_end ? -1 : end_addr - 1);
3798 
3799 	while (index < pg_end) {
3800 		struct dnode_of_data dn;
3801 		pgoff_t end_offset, count;
3802 		int i;
3803 
3804 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3805 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3806 		if (ret) {
3807 			if (ret == -ENOENT) {
3808 				index = f2fs_get_next_page_offset(&dn, index);
3809 				continue;
3810 			}
3811 			goto out;
3812 		}
3813 
3814 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3815 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3816 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3817 			struct block_device *cur_bdev;
3818 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3819 
3820 			if (!__is_valid_data_blkaddr(blkaddr))
3821 				continue;
3822 
3823 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3824 						DATA_GENERIC_ENHANCE)) {
3825 				ret = -EFSCORRUPTED;
3826 				f2fs_put_dnode(&dn);
3827 				f2fs_handle_error(sbi,
3828 						ERROR_INVALID_BLKADDR);
3829 				goto out;
3830 			}
3831 
3832 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3833 			if (f2fs_is_multi_device(sbi)) {
3834 				int di = f2fs_target_device_index(sbi, blkaddr);
3835 
3836 				blkaddr -= FDEV(di).start_blk;
3837 			}
3838 
3839 			if (len) {
3840 				if (prev_bdev == cur_bdev &&
3841 						index == prev_index + len &&
3842 						blkaddr == prev_block + len) {
3843 					len++;
3844 				} else {
3845 					ret = f2fs_secure_erase(prev_bdev,
3846 						inode, prev_index, prev_block,
3847 						len, range.flags);
3848 					if (ret) {
3849 						f2fs_put_dnode(&dn);
3850 						goto out;
3851 					}
3852 
3853 					len = 0;
3854 				}
3855 			}
3856 
3857 			if (!len) {
3858 				prev_bdev = cur_bdev;
3859 				prev_index = index;
3860 				prev_block = blkaddr;
3861 				len = 1;
3862 			}
3863 		}
3864 
3865 		f2fs_put_dnode(&dn);
3866 
3867 		if (fatal_signal_pending(current)) {
3868 			ret = -EINTR;
3869 			goto out;
3870 		}
3871 		cond_resched();
3872 	}
3873 
3874 	if (len)
3875 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3876 				prev_block, len, range.flags);
3877 out:
3878 	filemap_invalidate_unlock(mapping);
3879 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3880 err:
3881 	inode_unlock(inode);
3882 	file_end_write(filp);
3883 
3884 	return ret;
3885 }
3886 
3887 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3888 {
3889 	struct inode *inode = file_inode(filp);
3890 	struct f2fs_comp_option option;
3891 
3892 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3893 		return -EOPNOTSUPP;
3894 
3895 	inode_lock_shared(inode);
3896 
3897 	if (!f2fs_compressed_file(inode)) {
3898 		inode_unlock_shared(inode);
3899 		return -ENODATA;
3900 	}
3901 
3902 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3903 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3904 
3905 	inode_unlock_shared(inode);
3906 
3907 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3908 				sizeof(option)))
3909 		return -EFAULT;
3910 
3911 	return 0;
3912 }
3913 
3914 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3915 {
3916 	struct inode *inode = file_inode(filp);
3917 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3918 	struct f2fs_comp_option option;
3919 	int ret = 0;
3920 
3921 	if (!f2fs_sb_has_compression(sbi))
3922 		return -EOPNOTSUPP;
3923 
3924 	if (!(filp->f_mode & FMODE_WRITE))
3925 		return -EBADF;
3926 
3927 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3928 				sizeof(option)))
3929 		return -EFAULT;
3930 
3931 	if (!f2fs_compressed_file(inode) ||
3932 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3933 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3934 			option.algorithm >= COMPRESS_MAX)
3935 		return -EINVAL;
3936 
3937 	file_start_write(filp);
3938 	inode_lock(inode);
3939 
3940 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3941 		ret = -EBUSY;
3942 		goto out;
3943 	}
3944 
3945 	if (inode->i_size != 0) {
3946 		ret = -EFBIG;
3947 		goto out;
3948 	}
3949 
3950 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3951 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3952 	F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3953 	f2fs_mark_inode_dirty_sync(inode, true);
3954 
3955 	if (!f2fs_is_compress_backend_ready(inode))
3956 		f2fs_warn(sbi, "compression algorithm is successfully set, "
3957 			"but current kernel doesn't support this algorithm.");
3958 out:
3959 	inode_unlock(inode);
3960 	file_end_write(filp);
3961 
3962 	return ret;
3963 }
3964 
3965 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3966 {
3967 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3968 	struct address_space *mapping = inode->i_mapping;
3969 	struct page *page;
3970 	pgoff_t redirty_idx = page_idx;
3971 	int i, page_len = 0, ret = 0;
3972 
3973 	page_cache_ra_unbounded(&ractl, len, 0);
3974 
3975 	for (i = 0; i < len; i++, page_idx++) {
3976 		page = read_cache_page(mapping, page_idx, NULL, NULL);
3977 		if (IS_ERR(page)) {
3978 			ret = PTR_ERR(page);
3979 			break;
3980 		}
3981 		page_len++;
3982 	}
3983 
3984 	for (i = 0; i < page_len; i++, redirty_idx++) {
3985 		page = find_lock_page(mapping, redirty_idx);
3986 
3987 		/* It will never fail, when page has pinned above */
3988 		f2fs_bug_on(F2FS_I_SB(inode), !page);
3989 
3990 		set_page_dirty(page);
3991 		f2fs_put_page(page, 1);
3992 		f2fs_put_page(page, 0);
3993 	}
3994 
3995 	return ret;
3996 }
3997 
3998 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3999 {
4000 	struct inode *inode = file_inode(filp);
4001 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4002 	struct f2fs_inode_info *fi = F2FS_I(inode);
4003 	pgoff_t page_idx = 0, last_idx;
4004 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4005 	int cluster_size = fi->i_cluster_size;
4006 	int count, ret;
4007 
4008 	if (!f2fs_sb_has_compression(sbi) ||
4009 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4010 		return -EOPNOTSUPP;
4011 
4012 	if (!(filp->f_mode & FMODE_WRITE))
4013 		return -EBADF;
4014 
4015 	if (!f2fs_compressed_file(inode))
4016 		return -EINVAL;
4017 
4018 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4019 
4020 	file_start_write(filp);
4021 	inode_lock(inode);
4022 
4023 	if (!f2fs_is_compress_backend_ready(inode)) {
4024 		ret = -EOPNOTSUPP;
4025 		goto out;
4026 	}
4027 
4028 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4029 		ret = -EINVAL;
4030 		goto out;
4031 	}
4032 
4033 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4034 	if (ret)
4035 		goto out;
4036 
4037 	if (!atomic_read(&fi->i_compr_blocks))
4038 		goto out;
4039 
4040 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4041 
4042 	count = last_idx - page_idx;
4043 	while (count) {
4044 		int len = min(cluster_size, count);
4045 
4046 		ret = redirty_blocks(inode, page_idx, len);
4047 		if (ret < 0)
4048 			break;
4049 
4050 		if (get_dirty_pages(inode) >= blk_per_seg)
4051 			filemap_fdatawrite(inode->i_mapping);
4052 
4053 		count -= len;
4054 		page_idx += len;
4055 	}
4056 
4057 	if (!ret)
4058 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4059 							LLONG_MAX);
4060 
4061 	if (ret)
4062 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4063 			  __func__, ret);
4064 out:
4065 	inode_unlock(inode);
4066 	file_end_write(filp);
4067 
4068 	return ret;
4069 }
4070 
4071 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4072 {
4073 	struct inode *inode = file_inode(filp);
4074 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4075 	pgoff_t page_idx = 0, last_idx;
4076 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4077 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4078 	int count, ret;
4079 
4080 	if (!f2fs_sb_has_compression(sbi) ||
4081 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4082 		return -EOPNOTSUPP;
4083 
4084 	if (!(filp->f_mode & FMODE_WRITE))
4085 		return -EBADF;
4086 
4087 	if (!f2fs_compressed_file(inode))
4088 		return -EINVAL;
4089 
4090 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4091 
4092 	file_start_write(filp);
4093 	inode_lock(inode);
4094 
4095 	if (!f2fs_is_compress_backend_ready(inode)) {
4096 		ret = -EOPNOTSUPP;
4097 		goto out;
4098 	}
4099 
4100 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4101 		ret = -EINVAL;
4102 		goto out;
4103 	}
4104 
4105 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4106 	if (ret)
4107 		goto out;
4108 
4109 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4110 
4111 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4112 
4113 	count = last_idx - page_idx;
4114 	while (count) {
4115 		int len = min(cluster_size, count);
4116 
4117 		ret = redirty_blocks(inode, page_idx, len);
4118 		if (ret < 0)
4119 			break;
4120 
4121 		if (get_dirty_pages(inode) >= blk_per_seg)
4122 			filemap_fdatawrite(inode->i_mapping);
4123 
4124 		count -= len;
4125 		page_idx += len;
4126 	}
4127 
4128 	if (!ret)
4129 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4130 							LLONG_MAX);
4131 
4132 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4133 
4134 	if (ret)
4135 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4136 			  __func__, ret);
4137 out:
4138 	inode_unlock(inode);
4139 	file_end_write(filp);
4140 
4141 	return ret;
4142 }
4143 
4144 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4145 {
4146 	switch (cmd) {
4147 	case FS_IOC_GETVERSION:
4148 		return f2fs_ioc_getversion(filp, arg);
4149 	case F2FS_IOC_START_ATOMIC_WRITE:
4150 		return f2fs_ioc_start_atomic_write(filp, false);
4151 	case F2FS_IOC_START_ATOMIC_REPLACE:
4152 		return f2fs_ioc_start_atomic_write(filp, true);
4153 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4154 		return f2fs_ioc_commit_atomic_write(filp);
4155 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4156 		return f2fs_ioc_abort_atomic_write(filp);
4157 	case F2FS_IOC_START_VOLATILE_WRITE:
4158 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4159 		return -EOPNOTSUPP;
4160 	case F2FS_IOC_SHUTDOWN:
4161 		return f2fs_ioc_shutdown(filp, arg);
4162 	case FITRIM:
4163 		return f2fs_ioc_fitrim(filp, arg);
4164 	case FS_IOC_SET_ENCRYPTION_POLICY:
4165 		return f2fs_ioc_set_encryption_policy(filp, arg);
4166 	case FS_IOC_GET_ENCRYPTION_POLICY:
4167 		return f2fs_ioc_get_encryption_policy(filp, arg);
4168 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4169 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4170 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4171 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4172 	case FS_IOC_ADD_ENCRYPTION_KEY:
4173 		return f2fs_ioc_add_encryption_key(filp, arg);
4174 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4175 		return f2fs_ioc_remove_encryption_key(filp, arg);
4176 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4177 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4178 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4179 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4180 	case FS_IOC_GET_ENCRYPTION_NONCE:
4181 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4182 	case F2FS_IOC_GARBAGE_COLLECT:
4183 		return f2fs_ioc_gc(filp, arg);
4184 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4185 		return f2fs_ioc_gc_range(filp, arg);
4186 	case F2FS_IOC_WRITE_CHECKPOINT:
4187 		return f2fs_ioc_write_checkpoint(filp, arg);
4188 	case F2FS_IOC_DEFRAGMENT:
4189 		return f2fs_ioc_defragment(filp, arg);
4190 	case F2FS_IOC_MOVE_RANGE:
4191 		return f2fs_ioc_move_range(filp, arg);
4192 	case F2FS_IOC_FLUSH_DEVICE:
4193 		return f2fs_ioc_flush_device(filp, arg);
4194 	case F2FS_IOC_GET_FEATURES:
4195 		return f2fs_ioc_get_features(filp, arg);
4196 	case F2FS_IOC_GET_PIN_FILE:
4197 		return f2fs_ioc_get_pin_file(filp, arg);
4198 	case F2FS_IOC_SET_PIN_FILE:
4199 		return f2fs_ioc_set_pin_file(filp, arg);
4200 	case F2FS_IOC_PRECACHE_EXTENTS:
4201 		return f2fs_ioc_precache_extents(filp, arg);
4202 	case F2FS_IOC_RESIZE_FS:
4203 		return f2fs_ioc_resize_fs(filp, arg);
4204 	case FS_IOC_ENABLE_VERITY:
4205 		return f2fs_ioc_enable_verity(filp, arg);
4206 	case FS_IOC_MEASURE_VERITY:
4207 		return f2fs_ioc_measure_verity(filp, arg);
4208 	case FS_IOC_READ_VERITY_METADATA:
4209 		return f2fs_ioc_read_verity_metadata(filp, arg);
4210 	case FS_IOC_GETFSLABEL:
4211 		return f2fs_ioc_getfslabel(filp, arg);
4212 	case FS_IOC_SETFSLABEL:
4213 		return f2fs_ioc_setfslabel(filp, arg);
4214 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4215 		return f2fs_get_compress_blocks(filp, arg);
4216 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4217 		return f2fs_release_compress_blocks(filp, arg);
4218 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4219 		return f2fs_reserve_compress_blocks(filp, arg);
4220 	case F2FS_IOC_SEC_TRIM_FILE:
4221 		return f2fs_sec_trim_file(filp, arg);
4222 	case F2FS_IOC_GET_COMPRESS_OPTION:
4223 		return f2fs_ioc_get_compress_option(filp, arg);
4224 	case F2FS_IOC_SET_COMPRESS_OPTION:
4225 		return f2fs_ioc_set_compress_option(filp, arg);
4226 	case F2FS_IOC_DECOMPRESS_FILE:
4227 		return f2fs_ioc_decompress_file(filp, arg);
4228 	case F2FS_IOC_COMPRESS_FILE:
4229 		return f2fs_ioc_compress_file(filp, arg);
4230 	default:
4231 		return -ENOTTY;
4232 	}
4233 }
4234 
4235 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4236 {
4237 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4238 		return -EIO;
4239 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4240 		return -ENOSPC;
4241 
4242 	return __f2fs_ioctl(filp, cmd, arg);
4243 }
4244 
4245 /*
4246  * Return %true if the given read or write request should use direct I/O, or
4247  * %false if it should use buffered I/O.
4248  */
4249 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4250 				struct iov_iter *iter)
4251 {
4252 	unsigned int align;
4253 
4254 	if (!(iocb->ki_flags & IOCB_DIRECT))
4255 		return false;
4256 
4257 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4258 		return false;
4259 
4260 	/*
4261 	 * Direct I/O not aligned to the disk's logical_block_size will be
4262 	 * attempted, but will fail with -EINVAL.
4263 	 *
4264 	 * f2fs additionally requires that direct I/O be aligned to the
4265 	 * filesystem block size, which is often a stricter requirement.
4266 	 * However, f2fs traditionally falls back to buffered I/O on requests
4267 	 * that are logical_block_size-aligned but not fs-block aligned.
4268 	 *
4269 	 * The below logic implements this behavior.
4270 	 */
4271 	align = iocb->ki_pos | iov_iter_alignment(iter);
4272 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4273 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4274 		return false;
4275 
4276 	return true;
4277 }
4278 
4279 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4280 				unsigned int flags)
4281 {
4282 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4283 
4284 	dec_page_count(sbi, F2FS_DIO_READ);
4285 	if (error)
4286 		return error;
4287 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4288 	return 0;
4289 }
4290 
4291 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4292 	.end_io = f2fs_dio_read_end_io,
4293 };
4294 
4295 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4296 {
4297 	struct file *file = iocb->ki_filp;
4298 	struct inode *inode = file_inode(file);
4299 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4300 	struct f2fs_inode_info *fi = F2FS_I(inode);
4301 	const loff_t pos = iocb->ki_pos;
4302 	const size_t count = iov_iter_count(to);
4303 	struct iomap_dio *dio;
4304 	ssize_t ret;
4305 
4306 	if (count == 0)
4307 		return 0; /* skip atime update */
4308 
4309 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4310 
4311 	if (iocb->ki_flags & IOCB_NOWAIT) {
4312 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4313 			ret = -EAGAIN;
4314 			goto out;
4315 		}
4316 	} else {
4317 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4318 	}
4319 
4320 	/*
4321 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4322 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4323 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4324 	 */
4325 	inc_page_count(sbi, F2FS_DIO_READ);
4326 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4327 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4328 	if (IS_ERR_OR_NULL(dio)) {
4329 		ret = PTR_ERR_OR_ZERO(dio);
4330 		if (ret != -EIOCBQUEUED)
4331 			dec_page_count(sbi, F2FS_DIO_READ);
4332 	} else {
4333 		ret = iomap_dio_complete(dio);
4334 	}
4335 
4336 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4337 
4338 	file_accessed(file);
4339 out:
4340 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4341 	return ret;
4342 }
4343 
4344 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4345 {
4346 	struct inode *inode = file_inode(iocb->ki_filp);
4347 	const loff_t pos = iocb->ki_pos;
4348 	ssize_t ret;
4349 
4350 	if (!f2fs_is_compress_backend_ready(inode))
4351 		return -EOPNOTSUPP;
4352 
4353 	if (trace_f2fs_dataread_start_enabled()) {
4354 		char *p = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL);
4355 		char *path;
4356 
4357 		if (!p)
4358 			goto skip_read_trace;
4359 
4360 		path = dentry_path_raw(file_dentry(iocb->ki_filp), p, PATH_MAX);
4361 		if (IS_ERR(path)) {
4362 			kfree(p);
4363 			goto skip_read_trace;
4364 		}
4365 
4366 		trace_f2fs_dataread_start(inode, pos, iov_iter_count(to),
4367 					current->pid, path, current->comm);
4368 		kfree(p);
4369 	}
4370 skip_read_trace:
4371 	if (f2fs_should_use_dio(inode, iocb, to)) {
4372 		ret = f2fs_dio_read_iter(iocb, to);
4373 	} else {
4374 		ret = filemap_read(iocb, to, 0);
4375 		if (ret > 0)
4376 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4377 						APP_BUFFERED_READ_IO, ret);
4378 	}
4379 	if (trace_f2fs_dataread_end_enabled())
4380 		trace_f2fs_dataread_end(inode, pos, ret);
4381 	return ret;
4382 }
4383 
4384 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4385 {
4386 	struct file *file = iocb->ki_filp;
4387 	struct inode *inode = file_inode(file);
4388 	ssize_t count;
4389 	int err;
4390 
4391 	if (IS_IMMUTABLE(inode))
4392 		return -EPERM;
4393 
4394 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4395 		return -EPERM;
4396 
4397 	count = generic_write_checks(iocb, from);
4398 	if (count <= 0)
4399 		return count;
4400 
4401 	err = file_modified(file);
4402 	if (err)
4403 		return err;
4404 	return count;
4405 }
4406 
4407 /*
4408  * Preallocate blocks for a write request, if it is possible and helpful to do
4409  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4410  * blocks were preallocated, or a negative errno value if something went
4411  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4412  * requested blocks (not just some of them) have been allocated.
4413  */
4414 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4415 				   bool dio)
4416 {
4417 	struct inode *inode = file_inode(iocb->ki_filp);
4418 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4419 	const loff_t pos = iocb->ki_pos;
4420 	const size_t count = iov_iter_count(iter);
4421 	struct f2fs_map_blocks map = {};
4422 	int flag;
4423 	int ret;
4424 
4425 	/* If it will be an out-of-place direct write, don't bother. */
4426 	if (dio && f2fs_lfs_mode(sbi))
4427 		return 0;
4428 	/*
4429 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4430 	 * buffered IO, if DIO meets any holes.
4431 	 */
4432 	if (dio && i_size_read(inode) &&
4433 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4434 		return 0;
4435 
4436 	/* No-wait I/O can't allocate blocks. */
4437 	if (iocb->ki_flags & IOCB_NOWAIT)
4438 		return 0;
4439 
4440 	/* If it will be a short write, don't bother. */
4441 	if (fault_in_iov_iter_readable(iter, count))
4442 		return 0;
4443 
4444 	if (f2fs_has_inline_data(inode)) {
4445 		/* If the data will fit inline, don't bother. */
4446 		if (pos + count <= MAX_INLINE_DATA(inode))
4447 			return 0;
4448 		ret = f2fs_convert_inline_inode(inode);
4449 		if (ret)
4450 			return ret;
4451 	}
4452 
4453 	/* Do not preallocate blocks that will be written partially in 4KB. */
4454 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4455 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4456 	if (map.m_len > map.m_lblk)
4457 		map.m_len -= map.m_lblk;
4458 	else
4459 		map.m_len = 0;
4460 	map.m_may_create = true;
4461 	if (dio) {
4462 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4463 		flag = F2FS_GET_BLOCK_PRE_DIO;
4464 	} else {
4465 		map.m_seg_type = NO_CHECK_TYPE;
4466 		flag = F2FS_GET_BLOCK_PRE_AIO;
4467 	}
4468 
4469 	ret = f2fs_map_blocks(inode, &map, 1, flag);
4470 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4471 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4472 		return ret;
4473 	if (ret == 0)
4474 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4475 	return map.m_len;
4476 }
4477 
4478 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4479 					struct iov_iter *from)
4480 {
4481 	struct file *file = iocb->ki_filp;
4482 	struct inode *inode = file_inode(file);
4483 	ssize_t ret;
4484 
4485 	if (iocb->ki_flags & IOCB_NOWAIT)
4486 		return -EOPNOTSUPP;
4487 
4488 	current->backing_dev_info = inode_to_bdi(inode);
4489 	ret = generic_perform_write(iocb, from);
4490 	current->backing_dev_info = NULL;
4491 
4492 	if (ret > 0) {
4493 		iocb->ki_pos += ret;
4494 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4495 						APP_BUFFERED_IO, ret);
4496 	}
4497 	return ret;
4498 }
4499 
4500 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4501 				 unsigned int flags)
4502 {
4503 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4504 
4505 	dec_page_count(sbi, F2FS_DIO_WRITE);
4506 	if (error)
4507 		return error;
4508 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4509 	return 0;
4510 }
4511 
4512 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4513 	.end_io = f2fs_dio_write_end_io,
4514 };
4515 
4516 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4517 				   bool *may_need_sync)
4518 {
4519 	struct file *file = iocb->ki_filp;
4520 	struct inode *inode = file_inode(file);
4521 	struct f2fs_inode_info *fi = F2FS_I(inode);
4522 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4523 	const bool do_opu = f2fs_lfs_mode(sbi);
4524 	const loff_t pos = iocb->ki_pos;
4525 	const ssize_t count = iov_iter_count(from);
4526 	unsigned int dio_flags;
4527 	struct iomap_dio *dio;
4528 	ssize_t ret;
4529 
4530 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4531 
4532 	if (iocb->ki_flags & IOCB_NOWAIT) {
4533 		/* f2fs_convert_inline_inode() and block allocation can block */
4534 		if (f2fs_has_inline_data(inode) ||
4535 		    !f2fs_overwrite_io(inode, pos, count)) {
4536 			ret = -EAGAIN;
4537 			goto out;
4538 		}
4539 
4540 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4541 			ret = -EAGAIN;
4542 			goto out;
4543 		}
4544 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4545 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4546 			ret = -EAGAIN;
4547 			goto out;
4548 		}
4549 	} else {
4550 		ret = f2fs_convert_inline_inode(inode);
4551 		if (ret)
4552 			goto out;
4553 
4554 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4555 		if (do_opu)
4556 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4557 	}
4558 
4559 	/*
4560 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4561 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4562 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4563 	 */
4564 	inc_page_count(sbi, F2FS_DIO_WRITE);
4565 	dio_flags = 0;
4566 	if (pos + count > inode->i_size)
4567 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4568 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4569 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4570 	if (IS_ERR_OR_NULL(dio)) {
4571 		ret = PTR_ERR_OR_ZERO(dio);
4572 		if (ret == -ENOTBLK)
4573 			ret = 0;
4574 		if (ret != -EIOCBQUEUED)
4575 			dec_page_count(sbi, F2FS_DIO_WRITE);
4576 	} else {
4577 		ret = iomap_dio_complete(dio);
4578 	}
4579 
4580 	if (do_opu)
4581 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4582 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4583 
4584 	if (ret < 0)
4585 		goto out;
4586 	if (pos + ret > inode->i_size)
4587 		f2fs_i_size_write(inode, pos + ret);
4588 	if (!do_opu)
4589 		set_inode_flag(inode, FI_UPDATE_WRITE);
4590 
4591 	if (iov_iter_count(from)) {
4592 		ssize_t ret2;
4593 		loff_t bufio_start_pos = iocb->ki_pos;
4594 
4595 		/*
4596 		 * The direct write was partial, so we need to fall back to a
4597 		 * buffered write for the remainder.
4598 		 */
4599 
4600 		ret2 = f2fs_buffered_write_iter(iocb, from);
4601 		if (iov_iter_count(from))
4602 			f2fs_write_failed(inode, iocb->ki_pos);
4603 		if (ret2 < 0)
4604 			goto out;
4605 
4606 		/*
4607 		 * Ensure that the pagecache pages are written to disk and
4608 		 * invalidated to preserve the expected O_DIRECT semantics.
4609 		 */
4610 		if (ret2 > 0) {
4611 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4612 
4613 			ret += ret2;
4614 
4615 			ret2 = filemap_write_and_wait_range(file->f_mapping,
4616 							    bufio_start_pos,
4617 							    bufio_end_pos);
4618 			if (ret2 < 0)
4619 				goto out;
4620 			invalidate_mapping_pages(file->f_mapping,
4621 						 bufio_start_pos >> PAGE_SHIFT,
4622 						 bufio_end_pos >> PAGE_SHIFT);
4623 		}
4624 	} else {
4625 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4626 		*may_need_sync = false;
4627 	}
4628 out:
4629 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4630 	return ret;
4631 }
4632 
4633 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4634 {
4635 	struct inode *inode = file_inode(iocb->ki_filp);
4636 	const loff_t orig_pos = iocb->ki_pos;
4637 	const size_t orig_count = iov_iter_count(from);
4638 	loff_t target_size;
4639 	bool dio;
4640 	bool may_need_sync = true;
4641 	int preallocated;
4642 	ssize_t ret;
4643 
4644 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4645 		ret = -EIO;
4646 		goto out;
4647 	}
4648 
4649 	if (!f2fs_is_compress_backend_ready(inode)) {
4650 		ret = -EOPNOTSUPP;
4651 		goto out;
4652 	}
4653 
4654 	if (iocb->ki_flags & IOCB_NOWAIT) {
4655 		if (!inode_trylock(inode)) {
4656 			ret = -EAGAIN;
4657 			goto out;
4658 		}
4659 	} else {
4660 		inode_lock(inode);
4661 	}
4662 
4663 	ret = f2fs_write_checks(iocb, from);
4664 	if (ret <= 0)
4665 		goto out_unlock;
4666 
4667 	/* Determine whether we will do a direct write or a buffered write. */
4668 	dio = f2fs_should_use_dio(inode, iocb, from);
4669 
4670 	/* Possibly preallocate the blocks for the write. */
4671 	target_size = iocb->ki_pos + iov_iter_count(from);
4672 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4673 	if (preallocated < 0) {
4674 		ret = preallocated;
4675 	} else {
4676 		if (trace_f2fs_datawrite_start_enabled()) {
4677 			char *p = f2fs_kmalloc(F2FS_I_SB(inode),
4678 						PATH_MAX, GFP_KERNEL);
4679 			char *path;
4680 
4681 			if (!p)
4682 				goto skip_write_trace;
4683 			path = dentry_path_raw(file_dentry(iocb->ki_filp),
4684 								p, PATH_MAX);
4685 			if (IS_ERR(path)) {
4686 				kfree(p);
4687 				goto skip_write_trace;
4688 			}
4689 			trace_f2fs_datawrite_start(inode, orig_pos, orig_count,
4690 					current->pid, path, current->comm);
4691 			kfree(p);
4692 		}
4693 skip_write_trace:
4694 		/* Do the actual write. */
4695 		ret = dio ?
4696 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4697 			f2fs_buffered_write_iter(iocb, from);
4698 
4699 		if (trace_f2fs_datawrite_end_enabled())
4700 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4701 	}
4702 
4703 	/* Don't leave any preallocated blocks around past i_size. */
4704 	if (preallocated && i_size_read(inode) < target_size) {
4705 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4706 		filemap_invalidate_lock(inode->i_mapping);
4707 		if (!f2fs_truncate(inode))
4708 			file_dont_truncate(inode);
4709 		filemap_invalidate_unlock(inode->i_mapping);
4710 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4711 	} else {
4712 		file_dont_truncate(inode);
4713 	}
4714 
4715 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4716 out_unlock:
4717 	inode_unlock(inode);
4718 out:
4719 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4720 	if (ret > 0 && may_need_sync)
4721 		ret = generic_write_sync(iocb, ret);
4722 	return ret;
4723 }
4724 
4725 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4726 		int advice)
4727 {
4728 	struct address_space *mapping;
4729 	struct backing_dev_info *bdi;
4730 	struct inode *inode = file_inode(filp);
4731 	int err;
4732 
4733 	if (advice == POSIX_FADV_SEQUENTIAL) {
4734 		if (S_ISFIFO(inode->i_mode))
4735 			return -ESPIPE;
4736 
4737 		mapping = filp->f_mapping;
4738 		if (!mapping || len < 0)
4739 			return -EINVAL;
4740 
4741 		bdi = inode_to_bdi(mapping->host);
4742 		filp->f_ra.ra_pages = bdi->ra_pages *
4743 			F2FS_I_SB(inode)->seq_file_ra_mul;
4744 		spin_lock(&filp->f_lock);
4745 		filp->f_mode &= ~FMODE_RANDOM;
4746 		spin_unlock(&filp->f_lock);
4747 		return 0;
4748 	}
4749 
4750 	err = generic_fadvise(filp, offset, len, advice);
4751 	if (!err && advice == POSIX_FADV_DONTNEED &&
4752 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4753 		f2fs_compressed_file(inode))
4754 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4755 
4756 	return err;
4757 }
4758 
4759 #ifdef CONFIG_COMPAT
4760 struct compat_f2fs_gc_range {
4761 	u32 sync;
4762 	compat_u64 start;
4763 	compat_u64 len;
4764 };
4765 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4766 						struct compat_f2fs_gc_range)
4767 
4768 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4769 {
4770 	struct compat_f2fs_gc_range __user *urange;
4771 	struct f2fs_gc_range range;
4772 	int err;
4773 
4774 	urange = compat_ptr(arg);
4775 	err = get_user(range.sync, &urange->sync);
4776 	err |= get_user(range.start, &urange->start);
4777 	err |= get_user(range.len, &urange->len);
4778 	if (err)
4779 		return -EFAULT;
4780 
4781 	return __f2fs_ioc_gc_range(file, &range);
4782 }
4783 
4784 struct compat_f2fs_move_range {
4785 	u32 dst_fd;
4786 	compat_u64 pos_in;
4787 	compat_u64 pos_out;
4788 	compat_u64 len;
4789 };
4790 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4791 					struct compat_f2fs_move_range)
4792 
4793 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4794 {
4795 	struct compat_f2fs_move_range __user *urange;
4796 	struct f2fs_move_range range;
4797 	int err;
4798 
4799 	urange = compat_ptr(arg);
4800 	err = get_user(range.dst_fd, &urange->dst_fd);
4801 	err |= get_user(range.pos_in, &urange->pos_in);
4802 	err |= get_user(range.pos_out, &urange->pos_out);
4803 	err |= get_user(range.len, &urange->len);
4804 	if (err)
4805 		return -EFAULT;
4806 
4807 	return __f2fs_ioc_move_range(file, &range);
4808 }
4809 
4810 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4811 {
4812 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4813 		return -EIO;
4814 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4815 		return -ENOSPC;
4816 
4817 	switch (cmd) {
4818 	case FS_IOC32_GETVERSION:
4819 		cmd = FS_IOC_GETVERSION;
4820 		break;
4821 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4822 		return f2fs_compat_ioc_gc_range(file, arg);
4823 	case F2FS_IOC32_MOVE_RANGE:
4824 		return f2fs_compat_ioc_move_range(file, arg);
4825 	case F2FS_IOC_START_ATOMIC_WRITE:
4826 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4827 	case F2FS_IOC_START_VOLATILE_WRITE:
4828 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4829 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4830 	case F2FS_IOC_SHUTDOWN:
4831 	case FITRIM:
4832 	case FS_IOC_SET_ENCRYPTION_POLICY:
4833 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4834 	case FS_IOC_GET_ENCRYPTION_POLICY:
4835 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4836 	case FS_IOC_ADD_ENCRYPTION_KEY:
4837 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4838 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4839 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4840 	case FS_IOC_GET_ENCRYPTION_NONCE:
4841 	case F2FS_IOC_GARBAGE_COLLECT:
4842 	case F2FS_IOC_WRITE_CHECKPOINT:
4843 	case F2FS_IOC_DEFRAGMENT:
4844 	case F2FS_IOC_FLUSH_DEVICE:
4845 	case F2FS_IOC_GET_FEATURES:
4846 	case F2FS_IOC_GET_PIN_FILE:
4847 	case F2FS_IOC_SET_PIN_FILE:
4848 	case F2FS_IOC_PRECACHE_EXTENTS:
4849 	case F2FS_IOC_RESIZE_FS:
4850 	case FS_IOC_ENABLE_VERITY:
4851 	case FS_IOC_MEASURE_VERITY:
4852 	case FS_IOC_READ_VERITY_METADATA:
4853 	case FS_IOC_GETFSLABEL:
4854 	case FS_IOC_SETFSLABEL:
4855 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4856 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4857 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4858 	case F2FS_IOC_SEC_TRIM_FILE:
4859 	case F2FS_IOC_GET_COMPRESS_OPTION:
4860 	case F2FS_IOC_SET_COMPRESS_OPTION:
4861 	case F2FS_IOC_DECOMPRESS_FILE:
4862 	case F2FS_IOC_COMPRESS_FILE:
4863 		break;
4864 	default:
4865 		return -ENOIOCTLCMD;
4866 	}
4867 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4868 }
4869 #endif
4870 
4871 const struct file_operations f2fs_file_operations = {
4872 	.llseek		= f2fs_llseek,
4873 	.read_iter	= f2fs_file_read_iter,
4874 	.write_iter	= f2fs_file_write_iter,
4875 	.open		= f2fs_file_open,
4876 	.release	= f2fs_release_file,
4877 	.mmap		= f2fs_file_mmap,
4878 	.flush		= f2fs_file_flush,
4879 	.fsync		= f2fs_sync_file,
4880 	.fallocate	= f2fs_fallocate,
4881 	.unlocked_ioctl	= f2fs_ioctl,
4882 #ifdef CONFIG_COMPAT
4883 	.compat_ioctl	= f2fs_compat_ioctl,
4884 #endif
4885 	.splice_read	= generic_file_splice_read,
4886 	.splice_write	= iter_file_splice_write,
4887 	.fadvise	= f2fs_file_fadvise,
4888 };
4889