xref: /openbmc/linux/fs/f2fs/file.c (revision efe4a1ac)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35 
36 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
37 {
38 	struct page *page = vmf->page;
39 	struct inode *inode = file_inode(vmf->vma->vm_file);
40 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
41 	struct dnode_of_data dn;
42 	int err;
43 
44 	sb_start_pagefault(inode->i_sb);
45 
46 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
47 
48 	/* block allocation */
49 	f2fs_lock_op(sbi);
50 	set_new_dnode(&dn, inode, NULL, NULL, 0);
51 	err = f2fs_reserve_block(&dn, page->index);
52 	if (err) {
53 		f2fs_unlock_op(sbi);
54 		goto out;
55 	}
56 	f2fs_put_dnode(&dn);
57 	f2fs_unlock_op(sbi);
58 
59 	f2fs_balance_fs(sbi, dn.node_changed);
60 
61 	file_update_time(vmf->vma->vm_file);
62 	lock_page(page);
63 	if (unlikely(page->mapping != inode->i_mapping ||
64 			page_offset(page) > i_size_read(inode) ||
65 			!PageUptodate(page))) {
66 		unlock_page(page);
67 		err = -EFAULT;
68 		goto out;
69 	}
70 
71 	/*
72 	 * check to see if the page is mapped already (no holes)
73 	 */
74 	if (PageMappedToDisk(page))
75 		goto mapped;
76 
77 	/* page is wholly or partially inside EOF */
78 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
79 						i_size_read(inode)) {
80 		unsigned offset;
81 		offset = i_size_read(inode) & ~PAGE_MASK;
82 		zero_user_segment(page, offset, PAGE_SIZE);
83 	}
84 	set_page_dirty(page);
85 	if (!PageUptodate(page))
86 		SetPageUptodate(page);
87 
88 	trace_f2fs_vm_page_mkwrite(page, DATA);
89 mapped:
90 	/* fill the page */
91 	f2fs_wait_on_page_writeback(page, DATA, false);
92 
93 	/* wait for GCed encrypted page writeback */
94 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
95 		f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
96 
97 out:
98 	sb_end_pagefault(inode->i_sb);
99 	f2fs_update_time(sbi, REQ_TIME);
100 	return block_page_mkwrite_return(err);
101 }
102 
103 static const struct vm_operations_struct f2fs_file_vm_ops = {
104 	.fault		= filemap_fault,
105 	.map_pages	= filemap_map_pages,
106 	.page_mkwrite	= f2fs_vm_page_mkwrite,
107 };
108 
109 static int get_parent_ino(struct inode *inode, nid_t *pino)
110 {
111 	struct dentry *dentry;
112 
113 	inode = igrab(inode);
114 	dentry = d_find_any_alias(inode);
115 	iput(inode);
116 	if (!dentry)
117 		return 0;
118 
119 	*pino = parent_ino(dentry);
120 	dput(dentry);
121 	return 1;
122 }
123 
124 static inline bool need_do_checkpoint(struct inode *inode)
125 {
126 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
127 	bool need_cp = false;
128 
129 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
130 		need_cp = true;
131 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
132 		need_cp = true;
133 	else if (file_wrong_pino(inode))
134 		need_cp = true;
135 	else if (!space_for_roll_forward(sbi))
136 		need_cp = true;
137 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
138 		need_cp = true;
139 	else if (test_opt(sbi, FASTBOOT))
140 		need_cp = true;
141 	else if (sbi->active_logs == 2)
142 		need_cp = true;
143 
144 	return need_cp;
145 }
146 
147 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
148 {
149 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
150 	bool ret = false;
151 	/* But we need to avoid that there are some inode updates */
152 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
153 		ret = true;
154 	f2fs_put_page(i, 0);
155 	return ret;
156 }
157 
158 static void try_to_fix_pino(struct inode *inode)
159 {
160 	struct f2fs_inode_info *fi = F2FS_I(inode);
161 	nid_t pino;
162 
163 	down_write(&fi->i_sem);
164 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
165 			get_parent_ino(inode, &pino)) {
166 		f2fs_i_pino_write(inode, pino);
167 		file_got_pino(inode);
168 	}
169 	up_write(&fi->i_sem);
170 }
171 
172 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
173 						int datasync, bool atomic)
174 {
175 	struct inode *inode = file->f_mapping->host;
176 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
177 	nid_t ino = inode->i_ino;
178 	int ret = 0;
179 	bool need_cp = false;
180 	struct writeback_control wbc = {
181 		.sync_mode = WB_SYNC_ALL,
182 		.nr_to_write = LONG_MAX,
183 		.for_reclaim = 0,
184 	};
185 
186 	if (unlikely(f2fs_readonly(inode->i_sb)))
187 		return 0;
188 
189 	trace_f2fs_sync_file_enter(inode);
190 
191 	/* if fdatasync is triggered, let's do in-place-update */
192 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
193 		set_inode_flag(inode, FI_NEED_IPU);
194 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
195 	clear_inode_flag(inode, FI_NEED_IPU);
196 
197 	if (ret) {
198 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
199 		return ret;
200 	}
201 
202 	/* if the inode is dirty, let's recover all the time */
203 	if (!f2fs_skip_inode_update(inode, datasync)) {
204 		f2fs_write_inode(inode, NULL);
205 		goto go_write;
206 	}
207 
208 	/*
209 	 * if there is no written data, don't waste time to write recovery info.
210 	 */
211 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
212 			!exist_written_data(sbi, ino, APPEND_INO)) {
213 
214 		/* it may call write_inode just prior to fsync */
215 		if (need_inode_page_update(sbi, ino))
216 			goto go_write;
217 
218 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
219 				exist_written_data(sbi, ino, UPDATE_INO))
220 			goto flush_out;
221 		goto out;
222 	}
223 go_write:
224 	/*
225 	 * Both of fdatasync() and fsync() are able to be recovered from
226 	 * sudden-power-off.
227 	 */
228 	down_read(&F2FS_I(inode)->i_sem);
229 	need_cp = need_do_checkpoint(inode);
230 	up_read(&F2FS_I(inode)->i_sem);
231 
232 	if (need_cp) {
233 		/* all the dirty node pages should be flushed for POR */
234 		ret = f2fs_sync_fs(inode->i_sb, 1);
235 
236 		/*
237 		 * We've secured consistency through sync_fs. Following pino
238 		 * will be used only for fsynced inodes after checkpoint.
239 		 */
240 		try_to_fix_pino(inode);
241 		clear_inode_flag(inode, FI_APPEND_WRITE);
242 		clear_inode_flag(inode, FI_UPDATE_WRITE);
243 		goto out;
244 	}
245 sync_nodes:
246 	ret = fsync_node_pages(sbi, inode, &wbc, atomic);
247 	if (ret)
248 		goto out;
249 
250 	/* if cp_error was enabled, we should avoid infinite loop */
251 	if (unlikely(f2fs_cp_error(sbi))) {
252 		ret = -EIO;
253 		goto out;
254 	}
255 
256 	if (need_inode_block_update(sbi, ino)) {
257 		f2fs_mark_inode_dirty_sync(inode, true);
258 		f2fs_write_inode(inode, NULL);
259 		goto sync_nodes;
260 	}
261 
262 	ret = wait_on_node_pages_writeback(sbi, ino);
263 	if (ret)
264 		goto out;
265 
266 	/* once recovery info is written, don't need to tack this */
267 	remove_ino_entry(sbi, ino, APPEND_INO);
268 	clear_inode_flag(inode, FI_APPEND_WRITE);
269 flush_out:
270 	remove_ino_entry(sbi, ino, UPDATE_INO);
271 	clear_inode_flag(inode, FI_UPDATE_WRITE);
272 	if (!atomic)
273 		ret = f2fs_issue_flush(sbi);
274 	f2fs_update_time(sbi, REQ_TIME);
275 out:
276 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
277 	f2fs_trace_ios(NULL, 1);
278 	return ret;
279 }
280 
281 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
282 {
283 	return f2fs_do_sync_file(file, start, end, datasync, false);
284 }
285 
286 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
287 						pgoff_t pgofs, int whence)
288 {
289 	struct pagevec pvec;
290 	int nr_pages;
291 
292 	if (whence != SEEK_DATA)
293 		return 0;
294 
295 	/* find first dirty page index */
296 	pagevec_init(&pvec, 0);
297 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
298 					PAGECACHE_TAG_DIRTY, 1);
299 	pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
300 	pagevec_release(&pvec);
301 	return pgofs;
302 }
303 
304 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
305 							int whence)
306 {
307 	switch (whence) {
308 	case SEEK_DATA:
309 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
310 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
311 			return true;
312 		break;
313 	case SEEK_HOLE:
314 		if (blkaddr == NULL_ADDR)
315 			return true;
316 		break;
317 	}
318 	return false;
319 }
320 
321 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
322 {
323 	struct inode *inode = file->f_mapping->host;
324 	loff_t maxbytes = inode->i_sb->s_maxbytes;
325 	struct dnode_of_data dn;
326 	pgoff_t pgofs, end_offset, dirty;
327 	loff_t data_ofs = offset;
328 	loff_t isize;
329 	int err = 0;
330 
331 	inode_lock(inode);
332 
333 	isize = i_size_read(inode);
334 	if (offset >= isize)
335 		goto fail;
336 
337 	/* handle inline data case */
338 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
339 		if (whence == SEEK_HOLE)
340 			data_ofs = isize;
341 		goto found;
342 	}
343 
344 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
345 
346 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
347 
348 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
349 		set_new_dnode(&dn, inode, NULL, NULL, 0);
350 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
351 		if (err && err != -ENOENT) {
352 			goto fail;
353 		} else if (err == -ENOENT) {
354 			/* direct node does not exists */
355 			if (whence == SEEK_DATA) {
356 				pgofs = get_next_page_offset(&dn, pgofs);
357 				continue;
358 			} else {
359 				goto found;
360 			}
361 		}
362 
363 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
364 
365 		/* find data/hole in dnode block */
366 		for (; dn.ofs_in_node < end_offset;
367 				dn.ofs_in_node++, pgofs++,
368 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
369 			block_t blkaddr;
370 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
371 
372 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
373 				f2fs_put_dnode(&dn);
374 				goto found;
375 			}
376 		}
377 		f2fs_put_dnode(&dn);
378 	}
379 
380 	if (whence == SEEK_DATA)
381 		goto fail;
382 found:
383 	if (whence == SEEK_HOLE && data_ofs > isize)
384 		data_ofs = isize;
385 	inode_unlock(inode);
386 	return vfs_setpos(file, data_ofs, maxbytes);
387 fail:
388 	inode_unlock(inode);
389 	return -ENXIO;
390 }
391 
392 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
393 {
394 	struct inode *inode = file->f_mapping->host;
395 	loff_t maxbytes = inode->i_sb->s_maxbytes;
396 
397 	switch (whence) {
398 	case SEEK_SET:
399 	case SEEK_CUR:
400 	case SEEK_END:
401 		return generic_file_llseek_size(file, offset, whence,
402 						maxbytes, i_size_read(inode));
403 	case SEEK_DATA:
404 	case SEEK_HOLE:
405 		if (offset < 0)
406 			return -ENXIO;
407 		return f2fs_seek_block(file, offset, whence);
408 	}
409 
410 	return -EINVAL;
411 }
412 
413 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
414 {
415 	struct inode *inode = file_inode(file);
416 	int err;
417 
418 	if (f2fs_encrypted_inode(inode)) {
419 		err = fscrypt_get_encryption_info(inode);
420 		if (err)
421 			return 0;
422 		if (!f2fs_encrypted_inode(inode))
423 			return -ENOKEY;
424 	}
425 
426 	/* we don't need to use inline_data strictly */
427 	err = f2fs_convert_inline_inode(inode);
428 	if (err)
429 		return err;
430 
431 	file_accessed(file);
432 	vma->vm_ops = &f2fs_file_vm_ops;
433 	return 0;
434 }
435 
436 static int f2fs_file_open(struct inode *inode, struct file *filp)
437 {
438 	int ret = generic_file_open(inode, filp);
439 	struct dentry *dir;
440 
441 	if (!ret && f2fs_encrypted_inode(inode)) {
442 		ret = fscrypt_get_encryption_info(inode);
443 		if (ret)
444 			return -EACCES;
445 		if (!fscrypt_has_encryption_key(inode))
446 			return -ENOKEY;
447 	}
448 	dir = dget_parent(file_dentry(filp));
449 	if (f2fs_encrypted_inode(d_inode(dir)) &&
450 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
451 		dput(dir);
452 		return -EPERM;
453 	}
454 	dput(dir);
455 	return ret;
456 }
457 
458 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
459 {
460 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
461 	struct f2fs_node *raw_node;
462 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
463 	__le32 *addr;
464 
465 	raw_node = F2FS_NODE(dn->node_page);
466 	addr = blkaddr_in_node(raw_node) + ofs;
467 
468 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
469 		block_t blkaddr = le32_to_cpu(*addr);
470 		if (blkaddr == NULL_ADDR)
471 			continue;
472 
473 		dn->data_blkaddr = NULL_ADDR;
474 		set_data_blkaddr(dn);
475 		invalidate_blocks(sbi, blkaddr);
476 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
477 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
478 		nr_free++;
479 	}
480 
481 	if (nr_free) {
482 		pgoff_t fofs;
483 		/*
484 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
485 		 * we will invalidate all blkaddr in the whole range.
486 		 */
487 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
488 							dn->inode) + ofs;
489 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
490 		dec_valid_block_count(sbi, dn->inode, nr_free);
491 	}
492 	dn->ofs_in_node = ofs;
493 
494 	f2fs_update_time(sbi, REQ_TIME);
495 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
496 					 dn->ofs_in_node, nr_free);
497 	return nr_free;
498 }
499 
500 void truncate_data_blocks(struct dnode_of_data *dn)
501 {
502 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
503 }
504 
505 static int truncate_partial_data_page(struct inode *inode, u64 from,
506 								bool cache_only)
507 {
508 	unsigned offset = from & (PAGE_SIZE - 1);
509 	pgoff_t index = from >> PAGE_SHIFT;
510 	struct address_space *mapping = inode->i_mapping;
511 	struct page *page;
512 
513 	if (!offset && !cache_only)
514 		return 0;
515 
516 	if (cache_only) {
517 		page = find_lock_page(mapping, index);
518 		if (page && PageUptodate(page))
519 			goto truncate_out;
520 		f2fs_put_page(page, 1);
521 		return 0;
522 	}
523 
524 	page = get_lock_data_page(inode, index, true);
525 	if (IS_ERR(page))
526 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
527 truncate_out:
528 	f2fs_wait_on_page_writeback(page, DATA, true);
529 	zero_user(page, offset, PAGE_SIZE - offset);
530 	if (!cache_only || !f2fs_encrypted_inode(inode) ||
531 					!S_ISREG(inode->i_mode))
532 		set_page_dirty(page);
533 	f2fs_put_page(page, 1);
534 	return 0;
535 }
536 
537 int truncate_blocks(struct inode *inode, u64 from, bool lock)
538 {
539 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
540 	unsigned int blocksize = inode->i_sb->s_blocksize;
541 	struct dnode_of_data dn;
542 	pgoff_t free_from;
543 	int count = 0, err = 0;
544 	struct page *ipage;
545 	bool truncate_page = false;
546 
547 	trace_f2fs_truncate_blocks_enter(inode, from);
548 
549 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
550 
551 	if (free_from >= sbi->max_file_blocks)
552 		goto free_partial;
553 
554 	if (lock)
555 		f2fs_lock_op(sbi);
556 
557 	ipage = get_node_page(sbi, inode->i_ino);
558 	if (IS_ERR(ipage)) {
559 		err = PTR_ERR(ipage);
560 		goto out;
561 	}
562 
563 	if (f2fs_has_inline_data(inode)) {
564 		truncate_inline_inode(inode, ipage, from);
565 		f2fs_put_page(ipage, 1);
566 		truncate_page = true;
567 		goto out;
568 	}
569 
570 	set_new_dnode(&dn, inode, ipage, NULL, 0);
571 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
572 	if (err) {
573 		if (err == -ENOENT)
574 			goto free_next;
575 		goto out;
576 	}
577 
578 	count = ADDRS_PER_PAGE(dn.node_page, inode);
579 
580 	count -= dn.ofs_in_node;
581 	f2fs_bug_on(sbi, count < 0);
582 
583 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
584 		truncate_data_blocks_range(&dn, count);
585 		free_from += count;
586 	}
587 
588 	f2fs_put_dnode(&dn);
589 free_next:
590 	err = truncate_inode_blocks(inode, free_from);
591 out:
592 	if (lock)
593 		f2fs_unlock_op(sbi);
594 free_partial:
595 	/* lastly zero out the first data page */
596 	if (!err)
597 		err = truncate_partial_data_page(inode, from, truncate_page);
598 
599 	trace_f2fs_truncate_blocks_exit(inode, err);
600 	return err;
601 }
602 
603 int f2fs_truncate(struct inode *inode)
604 {
605 	int err;
606 
607 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
608 				S_ISLNK(inode->i_mode)))
609 		return 0;
610 
611 	trace_f2fs_truncate(inode);
612 
613 #ifdef CONFIG_F2FS_FAULT_INJECTION
614 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
615 		f2fs_show_injection_info(FAULT_TRUNCATE);
616 		return -EIO;
617 	}
618 #endif
619 	/* we should check inline_data size */
620 	if (!f2fs_may_inline_data(inode)) {
621 		err = f2fs_convert_inline_inode(inode);
622 		if (err)
623 			return err;
624 	}
625 
626 	err = truncate_blocks(inode, i_size_read(inode), true);
627 	if (err)
628 		return err;
629 
630 	inode->i_mtime = inode->i_ctime = current_time(inode);
631 	f2fs_mark_inode_dirty_sync(inode, false);
632 	return 0;
633 }
634 
635 int f2fs_getattr(const struct path *path, struct kstat *stat,
636 		 u32 request_mask, unsigned int flags)
637 {
638 	struct inode *inode = d_inode(path->dentry);
639 	generic_fillattr(inode, stat);
640 	stat->blocks <<= 3;
641 	return 0;
642 }
643 
644 #ifdef CONFIG_F2FS_FS_POSIX_ACL
645 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
646 {
647 	unsigned int ia_valid = attr->ia_valid;
648 
649 	if (ia_valid & ATTR_UID)
650 		inode->i_uid = attr->ia_uid;
651 	if (ia_valid & ATTR_GID)
652 		inode->i_gid = attr->ia_gid;
653 	if (ia_valid & ATTR_ATIME)
654 		inode->i_atime = timespec_trunc(attr->ia_atime,
655 						inode->i_sb->s_time_gran);
656 	if (ia_valid & ATTR_MTIME)
657 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
658 						inode->i_sb->s_time_gran);
659 	if (ia_valid & ATTR_CTIME)
660 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
661 						inode->i_sb->s_time_gran);
662 	if (ia_valid & ATTR_MODE) {
663 		umode_t mode = attr->ia_mode;
664 
665 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
666 			mode &= ~S_ISGID;
667 		set_acl_inode(inode, mode);
668 	}
669 }
670 #else
671 #define __setattr_copy setattr_copy
672 #endif
673 
674 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
675 {
676 	struct inode *inode = d_inode(dentry);
677 	int err;
678 	bool size_changed = false;
679 
680 	err = setattr_prepare(dentry, attr);
681 	if (err)
682 		return err;
683 
684 	if (attr->ia_valid & ATTR_SIZE) {
685 		if (f2fs_encrypted_inode(inode) &&
686 				fscrypt_get_encryption_info(inode))
687 			return -EACCES;
688 
689 		if (attr->ia_size <= i_size_read(inode)) {
690 			truncate_setsize(inode, attr->ia_size);
691 			err = f2fs_truncate(inode);
692 			if (err)
693 				return err;
694 		} else {
695 			/*
696 			 * do not trim all blocks after i_size if target size is
697 			 * larger than i_size.
698 			 */
699 			truncate_setsize(inode, attr->ia_size);
700 
701 			/* should convert inline inode here */
702 			if (!f2fs_may_inline_data(inode)) {
703 				err = f2fs_convert_inline_inode(inode);
704 				if (err)
705 					return err;
706 			}
707 			inode->i_mtime = inode->i_ctime = current_time(inode);
708 		}
709 
710 		size_changed = true;
711 	}
712 
713 	__setattr_copy(inode, attr);
714 
715 	if (attr->ia_valid & ATTR_MODE) {
716 		err = posix_acl_chmod(inode, get_inode_mode(inode));
717 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
718 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
719 			clear_inode_flag(inode, FI_ACL_MODE);
720 		}
721 	}
722 
723 	/* file size may changed here */
724 	f2fs_mark_inode_dirty_sync(inode, size_changed);
725 
726 	/* inode change will produce dirty node pages flushed by checkpoint */
727 	f2fs_balance_fs(F2FS_I_SB(inode), true);
728 
729 	return err;
730 }
731 
732 const struct inode_operations f2fs_file_inode_operations = {
733 	.getattr	= f2fs_getattr,
734 	.setattr	= f2fs_setattr,
735 	.get_acl	= f2fs_get_acl,
736 	.set_acl	= f2fs_set_acl,
737 #ifdef CONFIG_F2FS_FS_XATTR
738 	.listxattr	= f2fs_listxattr,
739 #endif
740 	.fiemap		= f2fs_fiemap,
741 };
742 
743 static int fill_zero(struct inode *inode, pgoff_t index,
744 					loff_t start, loff_t len)
745 {
746 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
747 	struct page *page;
748 
749 	if (!len)
750 		return 0;
751 
752 	f2fs_balance_fs(sbi, true);
753 
754 	f2fs_lock_op(sbi);
755 	page = get_new_data_page(inode, NULL, index, false);
756 	f2fs_unlock_op(sbi);
757 
758 	if (IS_ERR(page))
759 		return PTR_ERR(page);
760 
761 	f2fs_wait_on_page_writeback(page, DATA, true);
762 	zero_user(page, start, len);
763 	set_page_dirty(page);
764 	f2fs_put_page(page, 1);
765 	return 0;
766 }
767 
768 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
769 {
770 	int err;
771 
772 	while (pg_start < pg_end) {
773 		struct dnode_of_data dn;
774 		pgoff_t end_offset, count;
775 
776 		set_new_dnode(&dn, inode, NULL, NULL, 0);
777 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
778 		if (err) {
779 			if (err == -ENOENT) {
780 				pg_start++;
781 				continue;
782 			}
783 			return err;
784 		}
785 
786 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
787 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
788 
789 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
790 
791 		truncate_data_blocks_range(&dn, count);
792 		f2fs_put_dnode(&dn);
793 
794 		pg_start += count;
795 	}
796 	return 0;
797 }
798 
799 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
800 {
801 	pgoff_t pg_start, pg_end;
802 	loff_t off_start, off_end;
803 	int ret;
804 
805 	ret = f2fs_convert_inline_inode(inode);
806 	if (ret)
807 		return ret;
808 
809 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
810 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
811 
812 	off_start = offset & (PAGE_SIZE - 1);
813 	off_end = (offset + len) & (PAGE_SIZE - 1);
814 
815 	if (pg_start == pg_end) {
816 		ret = fill_zero(inode, pg_start, off_start,
817 						off_end - off_start);
818 		if (ret)
819 			return ret;
820 	} else {
821 		if (off_start) {
822 			ret = fill_zero(inode, pg_start++, off_start,
823 						PAGE_SIZE - off_start);
824 			if (ret)
825 				return ret;
826 		}
827 		if (off_end) {
828 			ret = fill_zero(inode, pg_end, 0, off_end);
829 			if (ret)
830 				return ret;
831 		}
832 
833 		if (pg_start < pg_end) {
834 			struct address_space *mapping = inode->i_mapping;
835 			loff_t blk_start, blk_end;
836 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
837 
838 			f2fs_balance_fs(sbi, true);
839 
840 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
841 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
842 			truncate_inode_pages_range(mapping, blk_start,
843 					blk_end - 1);
844 
845 			f2fs_lock_op(sbi);
846 			ret = truncate_hole(inode, pg_start, pg_end);
847 			f2fs_unlock_op(sbi);
848 		}
849 	}
850 
851 	return ret;
852 }
853 
854 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
855 				int *do_replace, pgoff_t off, pgoff_t len)
856 {
857 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
858 	struct dnode_of_data dn;
859 	int ret, done, i;
860 
861 next_dnode:
862 	set_new_dnode(&dn, inode, NULL, NULL, 0);
863 	ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
864 	if (ret && ret != -ENOENT) {
865 		return ret;
866 	} else if (ret == -ENOENT) {
867 		if (dn.max_level == 0)
868 			return -ENOENT;
869 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
870 		blkaddr += done;
871 		do_replace += done;
872 		goto next;
873 	}
874 
875 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
876 							dn.ofs_in_node, len);
877 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
878 		*blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
879 		if (!is_checkpointed_data(sbi, *blkaddr)) {
880 
881 			if (test_opt(sbi, LFS)) {
882 				f2fs_put_dnode(&dn);
883 				return -ENOTSUPP;
884 			}
885 
886 			/* do not invalidate this block address */
887 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
888 			*do_replace = 1;
889 		}
890 	}
891 	f2fs_put_dnode(&dn);
892 next:
893 	len -= done;
894 	off += done;
895 	if (len)
896 		goto next_dnode;
897 	return 0;
898 }
899 
900 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
901 				int *do_replace, pgoff_t off, int len)
902 {
903 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
904 	struct dnode_of_data dn;
905 	int ret, i;
906 
907 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
908 		if (*do_replace == 0)
909 			continue;
910 
911 		set_new_dnode(&dn, inode, NULL, NULL, 0);
912 		ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
913 		if (ret) {
914 			dec_valid_block_count(sbi, inode, 1);
915 			invalidate_blocks(sbi, *blkaddr);
916 		} else {
917 			f2fs_update_data_blkaddr(&dn, *blkaddr);
918 		}
919 		f2fs_put_dnode(&dn);
920 	}
921 	return 0;
922 }
923 
924 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
925 			block_t *blkaddr, int *do_replace,
926 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
927 {
928 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
929 	pgoff_t i = 0;
930 	int ret;
931 
932 	while (i < len) {
933 		if (blkaddr[i] == NULL_ADDR && !full) {
934 			i++;
935 			continue;
936 		}
937 
938 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
939 			struct dnode_of_data dn;
940 			struct node_info ni;
941 			size_t new_size;
942 			pgoff_t ilen;
943 
944 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
945 			ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
946 			if (ret)
947 				return ret;
948 
949 			get_node_info(sbi, dn.nid, &ni);
950 			ilen = min((pgoff_t)
951 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
952 						dn.ofs_in_node, len - i);
953 			do {
954 				dn.data_blkaddr = datablock_addr(dn.node_page,
955 								dn.ofs_in_node);
956 				truncate_data_blocks_range(&dn, 1);
957 
958 				if (do_replace[i]) {
959 					f2fs_i_blocks_write(src_inode,
960 								1, false);
961 					f2fs_i_blocks_write(dst_inode,
962 								1, true);
963 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
964 					blkaddr[i], ni.version, true, false);
965 
966 					do_replace[i] = 0;
967 				}
968 				dn.ofs_in_node++;
969 				i++;
970 				new_size = (dst + i) << PAGE_SHIFT;
971 				if (dst_inode->i_size < new_size)
972 					f2fs_i_size_write(dst_inode, new_size);
973 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
974 
975 			f2fs_put_dnode(&dn);
976 		} else {
977 			struct page *psrc, *pdst;
978 
979 			psrc = get_lock_data_page(src_inode, src + i, true);
980 			if (IS_ERR(psrc))
981 				return PTR_ERR(psrc);
982 			pdst = get_new_data_page(dst_inode, NULL, dst + i,
983 								true);
984 			if (IS_ERR(pdst)) {
985 				f2fs_put_page(psrc, 1);
986 				return PTR_ERR(pdst);
987 			}
988 			f2fs_copy_page(psrc, pdst);
989 			set_page_dirty(pdst);
990 			f2fs_put_page(pdst, 1);
991 			f2fs_put_page(psrc, 1);
992 
993 			ret = truncate_hole(src_inode, src + i, src + i + 1);
994 			if (ret)
995 				return ret;
996 			i++;
997 		}
998 	}
999 	return 0;
1000 }
1001 
1002 static int __exchange_data_block(struct inode *src_inode,
1003 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1004 			pgoff_t len, bool full)
1005 {
1006 	block_t *src_blkaddr;
1007 	int *do_replace;
1008 	pgoff_t olen;
1009 	int ret;
1010 
1011 	while (len) {
1012 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1013 
1014 		src_blkaddr = kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1015 		if (!src_blkaddr)
1016 			return -ENOMEM;
1017 
1018 		do_replace = kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1019 		if (!do_replace) {
1020 			kvfree(src_blkaddr);
1021 			return -ENOMEM;
1022 		}
1023 
1024 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1025 					do_replace, src, olen);
1026 		if (ret)
1027 			goto roll_back;
1028 
1029 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1030 					do_replace, src, dst, olen, full);
1031 		if (ret)
1032 			goto roll_back;
1033 
1034 		src += olen;
1035 		dst += olen;
1036 		len -= olen;
1037 
1038 		kvfree(src_blkaddr);
1039 		kvfree(do_replace);
1040 	}
1041 	return 0;
1042 
1043 roll_back:
1044 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1045 	kvfree(src_blkaddr);
1046 	kvfree(do_replace);
1047 	return ret;
1048 }
1049 
1050 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1051 {
1052 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1053 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1054 	int ret;
1055 
1056 	f2fs_balance_fs(sbi, true);
1057 	f2fs_lock_op(sbi);
1058 
1059 	f2fs_drop_extent_tree(inode);
1060 
1061 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1062 	f2fs_unlock_op(sbi);
1063 	return ret;
1064 }
1065 
1066 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1067 {
1068 	pgoff_t pg_start, pg_end;
1069 	loff_t new_size;
1070 	int ret;
1071 
1072 	if (offset + len >= i_size_read(inode))
1073 		return -EINVAL;
1074 
1075 	/* collapse range should be aligned to block size of f2fs. */
1076 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1077 		return -EINVAL;
1078 
1079 	ret = f2fs_convert_inline_inode(inode);
1080 	if (ret)
1081 		return ret;
1082 
1083 	pg_start = offset >> PAGE_SHIFT;
1084 	pg_end = (offset + len) >> PAGE_SHIFT;
1085 
1086 	/* write out all dirty pages from offset */
1087 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1088 	if (ret)
1089 		return ret;
1090 
1091 	truncate_pagecache(inode, offset);
1092 
1093 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1094 	if (ret)
1095 		return ret;
1096 
1097 	/* write out all moved pages, if possible */
1098 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1099 	truncate_pagecache(inode, offset);
1100 
1101 	new_size = i_size_read(inode) - len;
1102 	truncate_pagecache(inode, new_size);
1103 
1104 	ret = truncate_blocks(inode, new_size, true);
1105 	if (!ret)
1106 		f2fs_i_size_write(inode, new_size);
1107 
1108 	return ret;
1109 }
1110 
1111 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1112 								pgoff_t end)
1113 {
1114 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1115 	pgoff_t index = start;
1116 	unsigned int ofs_in_node = dn->ofs_in_node;
1117 	blkcnt_t count = 0;
1118 	int ret;
1119 
1120 	for (; index < end; index++, dn->ofs_in_node++) {
1121 		if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1122 			count++;
1123 	}
1124 
1125 	dn->ofs_in_node = ofs_in_node;
1126 	ret = reserve_new_blocks(dn, count);
1127 	if (ret)
1128 		return ret;
1129 
1130 	dn->ofs_in_node = ofs_in_node;
1131 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1132 		dn->data_blkaddr =
1133 				datablock_addr(dn->node_page, dn->ofs_in_node);
1134 		/*
1135 		 * reserve_new_blocks will not guarantee entire block
1136 		 * allocation.
1137 		 */
1138 		if (dn->data_blkaddr == NULL_ADDR) {
1139 			ret = -ENOSPC;
1140 			break;
1141 		}
1142 		if (dn->data_blkaddr != NEW_ADDR) {
1143 			invalidate_blocks(sbi, dn->data_blkaddr);
1144 			dn->data_blkaddr = NEW_ADDR;
1145 			set_data_blkaddr(dn);
1146 		}
1147 	}
1148 
1149 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1150 
1151 	return ret;
1152 }
1153 
1154 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1155 								int mode)
1156 {
1157 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1158 	struct address_space *mapping = inode->i_mapping;
1159 	pgoff_t index, pg_start, pg_end;
1160 	loff_t new_size = i_size_read(inode);
1161 	loff_t off_start, off_end;
1162 	int ret = 0;
1163 
1164 	ret = inode_newsize_ok(inode, (len + offset));
1165 	if (ret)
1166 		return ret;
1167 
1168 	ret = f2fs_convert_inline_inode(inode);
1169 	if (ret)
1170 		return ret;
1171 
1172 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1173 	if (ret)
1174 		return ret;
1175 
1176 	truncate_pagecache_range(inode, offset, offset + len - 1);
1177 
1178 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1179 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1180 
1181 	off_start = offset & (PAGE_SIZE - 1);
1182 	off_end = (offset + len) & (PAGE_SIZE - 1);
1183 
1184 	if (pg_start == pg_end) {
1185 		ret = fill_zero(inode, pg_start, off_start,
1186 						off_end - off_start);
1187 		if (ret)
1188 			return ret;
1189 
1190 		new_size = max_t(loff_t, new_size, offset + len);
1191 	} else {
1192 		if (off_start) {
1193 			ret = fill_zero(inode, pg_start++, off_start,
1194 						PAGE_SIZE - off_start);
1195 			if (ret)
1196 				return ret;
1197 
1198 			new_size = max_t(loff_t, new_size,
1199 					(loff_t)pg_start << PAGE_SHIFT);
1200 		}
1201 
1202 		for (index = pg_start; index < pg_end;) {
1203 			struct dnode_of_data dn;
1204 			unsigned int end_offset;
1205 			pgoff_t end;
1206 
1207 			f2fs_lock_op(sbi);
1208 
1209 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1210 			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1211 			if (ret) {
1212 				f2fs_unlock_op(sbi);
1213 				goto out;
1214 			}
1215 
1216 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1217 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1218 
1219 			ret = f2fs_do_zero_range(&dn, index, end);
1220 			f2fs_put_dnode(&dn);
1221 			f2fs_unlock_op(sbi);
1222 
1223 			f2fs_balance_fs(sbi, dn.node_changed);
1224 
1225 			if (ret)
1226 				goto out;
1227 
1228 			index = end;
1229 			new_size = max_t(loff_t, new_size,
1230 					(loff_t)index << PAGE_SHIFT);
1231 		}
1232 
1233 		if (off_end) {
1234 			ret = fill_zero(inode, pg_end, 0, off_end);
1235 			if (ret)
1236 				goto out;
1237 
1238 			new_size = max_t(loff_t, new_size, offset + len);
1239 		}
1240 	}
1241 
1242 out:
1243 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1244 		f2fs_i_size_write(inode, new_size);
1245 
1246 	return ret;
1247 }
1248 
1249 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1250 {
1251 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1252 	pgoff_t nr, pg_start, pg_end, delta, idx;
1253 	loff_t new_size;
1254 	int ret = 0;
1255 
1256 	new_size = i_size_read(inode) + len;
1257 	ret = inode_newsize_ok(inode, new_size);
1258 	if (ret)
1259 		return ret;
1260 
1261 	if (offset >= i_size_read(inode))
1262 		return -EINVAL;
1263 
1264 	/* insert range should be aligned to block size of f2fs. */
1265 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1266 		return -EINVAL;
1267 
1268 	ret = f2fs_convert_inline_inode(inode);
1269 	if (ret)
1270 		return ret;
1271 
1272 	f2fs_balance_fs(sbi, true);
1273 
1274 	ret = truncate_blocks(inode, i_size_read(inode), true);
1275 	if (ret)
1276 		return ret;
1277 
1278 	/* write out all dirty pages from offset */
1279 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1280 	if (ret)
1281 		return ret;
1282 
1283 	truncate_pagecache(inode, offset);
1284 
1285 	pg_start = offset >> PAGE_SHIFT;
1286 	pg_end = (offset + len) >> PAGE_SHIFT;
1287 	delta = pg_end - pg_start;
1288 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1289 
1290 	while (!ret && idx > pg_start) {
1291 		nr = idx - pg_start;
1292 		if (nr > delta)
1293 			nr = delta;
1294 		idx -= nr;
1295 
1296 		f2fs_lock_op(sbi);
1297 		f2fs_drop_extent_tree(inode);
1298 
1299 		ret = __exchange_data_block(inode, inode, idx,
1300 					idx + delta, nr, false);
1301 		f2fs_unlock_op(sbi);
1302 	}
1303 
1304 	/* write out all moved pages, if possible */
1305 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1306 	truncate_pagecache(inode, offset);
1307 
1308 	if (!ret)
1309 		f2fs_i_size_write(inode, new_size);
1310 	return ret;
1311 }
1312 
1313 static int expand_inode_data(struct inode *inode, loff_t offset,
1314 					loff_t len, int mode)
1315 {
1316 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1317 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1318 	pgoff_t pg_end;
1319 	loff_t new_size = i_size_read(inode);
1320 	loff_t off_end;
1321 	int err;
1322 
1323 	err = inode_newsize_ok(inode, (len + offset));
1324 	if (err)
1325 		return err;
1326 
1327 	err = f2fs_convert_inline_inode(inode);
1328 	if (err)
1329 		return err;
1330 
1331 	f2fs_balance_fs(sbi, true);
1332 
1333 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1334 	off_end = (offset + len) & (PAGE_SIZE - 1);
1335 
1336 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1337 	map.m_len = pg_end - map.m_lblk;
1338 	if (off_end)
1339 		map.m_len++;
1340 
1341 	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1342 	if (err) {
1343 		pgoff_t last_off;
1344 
1345 		if (!map.m_len)
1346 			return err;
1347 
1348 		last_off = map.m_lblk + map.m_len - 1;
1349 
1350 		/* update new size to the failed position */
1351 		new_size = (last_off == pg_end) ? offset + len:
1352 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1353 	} else {
1354 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1355 	}
1356 
1357 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1358 		f2fs_i_size_write(inode, new_size);
1359 
1360 	return err;
1361 }
1362 
1363 static long f2fs_fallocate(struct file *file, int mode,
1364 				loff_t offset, loff_t len)
1365 {
1366 	struct inode *inode = file_inode(file);
1367 	long ret = 0;
1368 
1369 	/* f2fs only support ->fallocate for regular file */
1370 	if (!S_ISREG(inode->i_mode))
1371 		return -EINVAL;
1372 
1373 	if (f2fs_encrypted_inode(inode) &&
1374 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1375 		return -EOPNOTSUPP;
1376 
1377 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1378 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1379 			FALLOC_FL_INSERT_RANGE))
1380 		return -EOPNOTSUPP;
1381 
1382 	inode_lock(inode);
1383 
1384 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1385 		if (offset >= inode->i_size)
1386 			goto out;
1387 
1388 		ret = punch_hole(inode, offset, len);
1389 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1390 		ret = f2fs_collapse_range(inode, offset, len);
1391 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1392 		ret = f2fs_zero_range(inode, offset, len, mode);
1393 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1394 		ret = f2fs_insert_range(inode, offset, len);
1395 	} else {
1396 		ret = expand_inode_data(inode, offset, len, mode);
1397 	}
1398 
1399 	if (!ret) {
1400 		inode->i_mtime = inode->i_ctime = current_time(inode);
1401 		f2fs_mark_inode_dirty_sync(inode, false);
1402 		if (mode & FALLOC_FL_KEEP_SIZE)
1403 			file_set_keep_isize(inode);
1404 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1405 	}
1406 
1407 out:
1408 	inode_unlock(inode);
1409 
1410 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1411 	return ret;
1412 }
1413 
1414 static int f2fs_release_file(struct inode *inode, struct file *filp)
1415 {
1416 	/*
1417 	 * f2fs_relase_file is called at every close calls. So we should
1418 	 * not drop any inmemory pages by close called by other process.
1419 	 */
1420 	if (!(filp->f_mode & FMODE_WRITE) ||
1421 			atomic_read(&inode->i_writecount) != 1)
1422 		return 0;
1423 
1424 	/* some remained atomic pages should discarded */
1425 	if (f2fs_is_atomic_file(inode))
1426 		drop_inmem_pages(inode);
1427 	if (f2fs_is_volatile_file(inode)) {
1428 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1429 		stat_dec_volatile_write(inode);
1430 		set_inode_flag(inode, FI_DROP_CACHE);
1431 		filemap_fdatawrite(inode->i_mapping);
1432 		clear_inode_flag(inode, FI_DROP_CACHE);
1433 	}
1434 	return 0;
1435 }
1436 
1437 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1438 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1439 
1440 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1441 {
1442 	if (S_ISDIR(mode))
1443 		return flags;
1444 	else if (S_ISREG(mode))
1445 		return flags & F2FS_REG_FLMASK;
1446 	else
1447 		return flags & F2FS_OTHER_FLMASK;
1448 }
1449 
1450 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1451 {
1452 	struct inode *inode = file_inode(filp);
1453 	struct f2fs_inode_info *fi = F2FS_I(inode);
1454 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1455 	return put_user(flags, (int __user *)arg);
1456 }
1457 
1458 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1459 {
1460 	struct inode *inode = file_inode(filp);
1461 	struct f2fs_inode_info *fi = F2FS_I(inode);
1462 	unsigned int flags;
1463 	unsigned int oldflags;
1464 	int ret;
1465 
1466 	if (!inode_owner_or_capable(inode))
1467 		return -EACCES;
1468 
1469 	if (get_user(flags, (int __user *)arg))
1470 		return -EFAULT;
1471 
1472 	ret = mnt_want_write_file(filp);
1473 	if (ret)
1474 		return ret;
1475 
1476 	inode_lock(inode);
1477 
1478 	flags = f2fs_mask_flags(inode->i_mode, flags);
1479 
1480 	oldflags = fi->i_flags;
1481 
1482 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1483 		if (!capable(CAP_LINUX_IMMUTABLE)) {
1484 			inode_unlock(inode);
1485 			ret = -EPERM;
1486 			goto out;
1487 		}
1488 	}
1489 
1490 	flags = flags & FS_FL_USER_MODIFIABLE;
1491 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1492 	fi->i_flags = flags;
1493 
1494 	inode->i_ctime = current_time(inode);
1495 	f2fs_set_inode_flags(inode);
1496 
1497 	inode_unlock(inode);
1498 out:
1499 	mnt_drop_write_file(filp);
1500 	return ret;
1501 }
1502 
1503 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1504 {
1505 	struct inode *inode = file_inode(filp);
1506 
1507 	return put_user(inode->i_generation, (int __user *)arg);
1508 }
1509 
1510 static int f2fs_ioc_start_atomic_write(struct file *filp)
1511 {
1512 	struct inode *inode = file_inode(filp);
1513 	int ret;
1514 
1515 	if (!inode_owner_or_capable(inode))
1516 		return -EACCES;
1517 
1518 	if (!S_ISREG(inode->i_mode))
1519 		return -EINVAL;
1520 
1521 	ret = mnt_want_write_file(filp);
1522 	if (ret)
1523 		return ret;
1524 
1525 	inode_lock(inode);
1526 
1527 	if (f2fs_is_atomic_file(inode))
1528 		goto out;
1529 
1530 	ret = f2fs_convert_inline_inode(inode);
1531 	if (ret)
1532 		goto out;
1533 
1534 	set_inode_flag(inode, FI_ATOMIC_FILE);
1535 	set_inode_flag(inode, FI_HOT_DATA);
1536 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1537 
1538 	if (!get_dirty_pages(inode))
1539 		goto inc_stat;
1540 
1541 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1542 		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1543 					inode->i_ino, get_dirty_pages(inode));
1544 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1545 	if (ret) {
1546 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1547 		goto out;
1548 	}
1549 
1550 inc_stat:
1551 	stat_inc_atomic_write(inode);
1552 	stat_update_max_atomic_write(inode);
1553 out:
1554 	inode_unlock(inode);
1555 	mnt_drop_write_file(filp);
1556 	return ret;
1557 }
1558 
1559 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1560 {
1561 	struct inode *inode = file_inode(filp);
1562 	int ret;
1563 
1564 	if (!inode_owner_or_capable(inode))
1565 		return -EACCES;
1566 
1567 	ret = mnt_want_write_file(filp);
1568 	if (ret)
1569 		return ret;
1570 
1571 	inode_lock(inode);
1572 
1573 	if (f2fs_is_volatile_file(inode))
1574 		goto err_out;
1575 
1576 	if (f2fs_is_atomic_file(inode)) {
1577 		ret = commit_inmem_pages(inode);
1578 		if (ret)
1579 			goto err_out;
1580 
1581 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1582 		if (!ret) {
1583 			clear_inode_flag(inode, FI_ATOMIC_FILE);
1584 			stat_dec_atomic_write(inode);
1585 		}
1586 	} else {
1587 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1588 	}
1589 err_out:
1590 	inode_unlock(inode);
1591 	mnt_drop_write_file(filp);
1592 	return ret;
1593 }
1594 
1595 static int f2fs_ioc_start_volatile_write(struct file *filp)
1596 {
1597 	struct inode *inode = file_inode(filp);
1598 	int ret;
1599 
1600 	if (!inode_owner_or_capable(inode))
1601 		return -EACCES;
1602 
1603 	if (!S_ISREG(inode->i_mode))
1604 		return -EINVAL;
1605 
1606 	ret = mnt_want_write_file(filp);
1607 	if (ret)
1608 		return ret;
1609 
1610 	inode_lock(inode);
1611 
1612 	if (f2fs_is_volatile_file(inode))
1613 		goto out;
1614 
1615 	ret = f2fs_convert_inline_inode(inode);
1616 	if (ret)
1617 		goto out;
1618 
1619 	stat_inc_volatile_write(inode);
1620 	stat_update_max_volatile_write(inode);
1621 
1622 	set_inode_flag(inode, FI_VOLATILE_FILE);
1623 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1624 out:
1625 	inode_unlock(inode);
1626 	mnt_drop_write_file(filp);
1627 	return ret;
1628 }
1629 
1630 static int f2fs_ioc_release_volatile_write(struct file *filp)
1631 {
1632 	struct inode *inode = file_inode(filp);
1633 	int ret;
1634 
1635 	if (!inode_owner_or_capable(inode))
1636 		return -EACCES;
1637 
1638 	ret = mnt_want_write_file(filp);
1639 	if (ret)
1640 		return ret;
1641 
1642 	inode_lock(inode);
1643 
1644 	if (!f2fs_is_volatile_file(inode))
1645 		goto out;
1646 
1647 	if (!f2fs_is_first_block_written(inode)) {
1648 		ret = truncate_partial_data_page(inode, 0, true);
1649 		goto out;
1650 	}
1651 
1652 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1653 out:
1654 	inode_unlock(inode);
1655 	mnt_drop_write_file(filp);
1656 	return ret;
1657 }
1658 
1659 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1660 {
1661 	struct inode *inode = file_inode(filp);
1662 	int ret;
1663 
1664 	if (!inode_owner_or_capable(inode))
1665 		return -EACCES;
1666 
1667 	ret = mnt_want_write_file(filp);
1668 	if (ret)
1669 		return ret;
1670 
1671 	inode_lock(inode);
1672 
1673 	if (f2fs_is_atomic_file(inode))
1674 		drop_inmem_pages(inode);
1675 	if (f2fs_is_volatile_file(inode)) {
1676 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1677 		stat_dec_volatile_write(inode);
1678 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1679 	}
1680 
1681 	inode_unlock(inode);
1682 
1683 	mnt_drop_write_file(filp);
1684 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1685 	return ret;
1686 }
1687 
1688 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1689 {
1690 	struct inode *inode = file_inode(filp);
1691 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1692 	struct super_block *sb = sbi->sb;
1693 	__u32 in;
1694 	int ret;
1695 
1696 	if (!capable(CAP_SYS_ADMIN))
1697 		return -EPERM;
1698 
1699 	if (get_user(in, (__u32 __user *)arg))
1700 		return -EFAULT;
1701 
1702 	ret = mnt_want_write_file(filp);
1703 	if (ret)
1704 		return ret;
1705 
1706 	switch (in) {
1707 	case F2FS_GOING_DOWN_FULLSYNC:
1708 		sb = freeze_bdev(sb->s_bdev);
1709 		if (sb && !IS_ERR(sb)) {
1710 			f2fs_stop_checkpoint(sbi, false);
1711 			thaw_bdev(sb->s_bdev, sb);
1712 		}
1713 		break;
1714 	case F2FS_GOING_DOWN_METASYNC:
1715 		/* do checkpoint only */
1716 		f2fs_sync_fs(sb, 1);
1717 		f2fs_stop_checkpoint(sbi, false);
1718 		break;
1719 	case F2FS_GOING_DOWN_NOSYNC:
1720 		f2fs_stop_checkpoint(sbi, false);
1721 		break;
1722 	case F2FS_GOING_DOWN_METAFLUSH:
1723 		sync_meta_pages(sbi, META, LONG_MAX);
1724 		f2fs_stop_checkpoint(sbi, false);
1725 		break;
1726 	default:
1727 		ret = -EINVAL;
1728 		goto out;
1729 	}
1730 	f2fs_update_time(sbi, REQ_TIME);
1731 out:
1732 	mnt_drop_write_file(filp);
1733 	return ret;
1734 }
1735 
1736 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1737 {
1738 	struct inode *inode = file_inode(filp);
1739 	struct super_block *sb = inode->i_sb;
1740 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1741 	struct fstrim_range range;
1742 	int ret;
1743 
1744 	if (!capable(CAP_SYS_ADMIN))
1745 		return -EPERM;
1746 
1747 	if (!blk_queue_discard(q))
1748 		return -EOPNOTSUPP;
1749 
1750 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1751 				sizeof(range)))
1752 		return -EFAULT;
1753 
1754 	ret = mnt_want_write_file(filp);
1755 	if (ret)
1756 		return ret;
1757 
1758 	range.minlen = max((unsigned int)range.minlen,
1759 				q->limits.discard_granularity);
1760 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1761 	mnt_drop_write_file(filp);
1762 	if (ret < 0)
1763 		return ret;
1764 
1765 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1766 				sizeof(range)))
1767 		return -EFAULT;
1768 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1769 	return 0;
1770 }
1771 
1772 static bool uuid_is_nonzero(__u8 u[16])
1773 {
1774 	int i;
1775 
1776 	for (i = 0; i < 16; i++)
1777 		if (u[i])
1778 			return true;
1779 	return false;
1780 }
1781 
1782 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1783 {
1784 	struct inode *inode = file_inode(filp);
1785 
1786 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1787 
1788 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1789 }
1790 
1791 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1792 {
1793 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1794 }
1795 
1796 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1797 {
1798 	struct inode *inode = file_inode(filp);
1799 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1800 	int err;
1801 
1802 	if (!f2fs_sb_has_crypto(inode->i_sb))
1803 		return -EOPNOTSUPP;
1804 
1805 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1806 		goto got_it;
1807 
1808 	err = mnt_want_write_file(filp);
1809 	if (err)
1810 		return err;
1811 
1812 	/* update superblock with uuid */
1813 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1814 
1815 	err = f2fs_commit_super(sbi, false);
1816 	if (err) {
1817 		/* undo new data */
1818 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1819 		mnt_drop_write_file(filp);
1820 		return err;
1821 	}
1822 	mnt_drop_write_file(filp);
1823 got_it:
1824 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1825 									16))
1826 		return -EFAULT;
1827 	return 0;
1828 }
1829 
1830 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1831 {
1832 	struct inode *inode = file_inode(filp);
1833 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1834 	__u32 sync;
1835 	int ret;
1836 
1837 	if (!capable(CAP_SYS_ADMIN))
1838 		return -EPERM;
1839 
1840 	if (get_user(sync, (__u32 __user *)arg))
1841 		return -EFAULT;
1842 
1843 	if (f2fs_readonly(sbi->sb))
1844 		return -EROFS;
1845 
1846 	ret = mnt_want_write_file(filp);
1847 	if (ret)
1848 		return ret;
1849 
1850 	if (!sync) {
1851 		if (!mutex_trylock(&sbi->gc_mutex)) {
1852 			ret = -EBUSY;
1853 			goto out;
1854 		}
1855 	} else {
1856 		mutex_lock(&sbi->gc_mutex);
1857 	}
1858 
1859 	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
1860 out:
1861 	mnt_drop_write_file(filp);
1862 	return ret;
1863 }
1864 
1865 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1866 {
1867 	struct inode *inode = file_inode(filp);
1868 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1869 	int ret;
1870 
1871 	if (!capable(CAP_SYS_ADMIN))
1872 		return -EPERM;
1873 
1874 	if (f2fs_readonly(sbi->sb))
1875 		return -EROFS;
1876 
1877 	ret = mnt_want_write_file(filp);
1878 	if (ret)
1879 		return ret;
1880 
1881 	ret = f2fs_sync_fs(sbi->sb, 1);
1882 
1883 	mnt_drop_write_file(filp);
1884 	return ret;
1885 }
1886 
1887 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1888 					struct file *filp,
1889 					struct f2fs_defragment *range)
1890 {
1891 	struct inode *inode = file_inode(filp);
1892 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1893 	struct extent_info ei = {0,0,0};
1894 	pgoff_t pg_start, pg_end;
1895 	unsigned int blk_per_seg = sbi->blocks_per_seg;
1896 	unsigned int total = 0, sec_num;
1897 	block_t blk_end = 0;
1898 	bool fragmented = false;
1899 	int err;
1900 
1901 	/* if in-place-update policy is enabled, don't waste time here */
1902 	if (need_inplace_update_policy(inode, NULL))
1903 		return -EINVAL;
1904 
1905 	pg_start = range->start >> PAGE_SHIFT;
1906 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
1907 
1908 	f2fs_balance_fs(sbi, true);
1909 
1910 	inode_lock(inode);
1911 
1912 	/* writeback all dirty pages in the range */
1913 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1914 						range->start + range->len - 1);
1915 	if (err)
1916 		goto out;
1917 
1918 	/*
1919 	 * lookup mapping info in extent cache, skip defragmenting if physical
1920 	 * block addresses are continuous.
1921 	 */
1922 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1923 		if (ei.fofs + ei.len >= pg_end)
1924 			goto out;
1925 	}
1926 
1927 	map.m_lblk = pg_start;
1928 
1929 	/*
1930 	 * lookup mapping info in dnode page cache, skip defragmenting if all
1931 	 * physical block addresses are continuous even if there are hole(s)
1932 	 * in logical blocks.
1933 	 */
1934 	while (map.m_lblk < pg_end) {
1935 		map.m_len = pg_end - map.m_lblk;
1936 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1937 		if (err)
1938 			goto out;
1939 
1940 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1941 			map.m_lblk++;
1942 			continue;
1943 		}
1944 
1945 		if (blk_end && blk_end != map.m_pblk) {
1946 			fragmented = true;
1947 			break;
1948 		}
1949 		blk_end = map.m_pblk + map.m_len;
1950 
1951 		map.m_lblk += map.m_len;
1952 	}
1953 
1954 	if (!fragmented)
1955 		goto out;
1956 
1957 	map.m_lblk = pg_start;
1958 	map.m_len = pg_end - pg_start;
1959 
1960 	sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
1961 
1962 	/*
1963 	 * make sure there are enough free section for LFS allocation, this can
1964 	 * avoid defragment running in SSR mode when free section are allocated
1965 	 * intensively
1966 	 */
1967 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
1968 		err = -EAGAIN;
1969 		goto out;
1970 	}
1971 
1972 	while (map.m_lblk < pg_end) {
1973 		pgoff_t idx;
1974 		int cnt = 0;
1975 
1976 do_map:
1977 		map.m_len = pg_end - map.m_lblk;
1978 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1979 		if (err)
1980 			goto clear_out;
1981 
1982 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1983 			map.m_lblk++;
1984 			continue;
1985 		}
1986 
1987 		set_inode_flag(inode, FI_DO_DEFRAG);
1988 
1989 		idx = map.m_lblk;
1990 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1991 			struct page *page;
1992 
1993 			page = get_lock_data_page(inode, idx, true);
1994 			if (IS_ERR(page)) {
1995 				err = PTR_ERR(page);
1996 				goto clear_out;
1997 			}
1998 
1999 			set_page_dirty(page);
2000 			f2fs_put_page(page, 1);
2001 
2002 			idx++;
2003 			cnt++;
2004 			total++;
2005 		}
2006 
2007 		map.m_lblk = idx;
2008 
2009 		if (idx < pg_end && cnt < blk_per_seg)
2010 			goto do_map;
2011 
2012 		clear_inode_flag(inode, FI_DO_DEFRAG);
2013 
2014 		err = filemap_fdatawrite(inode->i_mapping);
2015 		if (err)
2016 			goto out;
2017 	}
2018 clear_out:
2019 	clear_inode_flag(inode, FI_DO_DEFRAG);
2020 out:
2021 	inode_unlock(inode);
2022 	if (!err)
2023 		range->len = (u64)total << PAGE_SHIFT;
2024 	return err;
2025 }
2026 
2027 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2028 {
2029 	struct inode *inode = file_inode(filp);
2030 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2031 	struct f2fs_defragment range;
2032 	int err;
2033 
2034 	if (!capable(CAP_SYS_ADMIN))
2035 		return -EPERM;
2036 
2037 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2038 		return -EINVAL;
2039 
2040 	if (f2fs_readonly(sbi->sb))
2041 		return -EROFS;
2042 
2043 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2044 							sizeof(range)))
2045 		return -EFAULT;
2046 
2047 	/* verify alignment of offset & size */
2048 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2049 		return -EINVAL;
2050 
2051 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2052 					sbi->max_file_blocks))
2053 		return -EINVAL;
2054 
2055 	err = mnt_want_write_file(filp);
2056 	if (err)
2057 		return err;
2058 
2059 	err = f2fs_defragment_range(sbi, filp, &range);
2060 	mnt_drop_write_file(filp);
2061 
2062 	f2fs_update_time(sbi, REQ_TIME);
2063 	if (err < 0)
2064 		return err;
2065 
2066 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2067 							sizeof(range)))
2068 		return -EFAULT;
2069 
2070 	return 0;
2071 }
2072 
2073 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2074 			struct file *file_out, loff_t pos_out, size_t len)
2075 {
2076 	struct inode *src = file_inode(file_in);
2077 	struct inode *dst = file_inode(file_out);
2078 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2079 	size_t olen = len, dst_max_i_size = 0;
2080 	size_t dst_osize;
2081 	int ret;
2082 
2083 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2084 				src->i_sb != dst->i_sb)
2085 		return -EXDEV;
2086 
2087 	if (unlikely(f2fs_readonly(src->i_sb)))
2088 		return -EROFS;
2089 
2090 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2091 		return -EINVAL;
2092 
2093 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2094 		return -EOPNOTSUPP;
2095 
2096 	if (src == dst) {
2097 		if (pos_in == pos_out)
2098 			return 0;
2099 		if (pos_out > pos_in && pos_out < pos_in + len)
2100 			return -EINVAL;
2101 	}
2102 
2103 	inode_lock(src);
2104 	if (src != dst) {
2105 		if (!inode_trylock(dst)) {
2106 			ret = -EBUSY;
2107 			goto out;
2108 		}
2109 	}
2110 
2111 	ret = -EINVAL;
2112 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2113 		goto out_unlock;
2114 	if (len == 0)
2115 		olen = len = src->i_size - pos_in;
2116 	if (pos_in + len == src->i_size)
2117 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2118 	if (len == 0) {
2119 		ret = 0;
2120 		goto out_unlock;
2121 	}
2122 
2123 	dst_osize = dst->i_size;
2124 	if (pos_out + olen > dst->i_size)
2125 		dst_max_i_size = pos_out + olen;
2126 
2127 	/* verify the end result is block aligned */
2128 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2129 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2130 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2131 		goto out_unlock;
2132 
2133 	ret = f2fs_convert_inline_inode(src);
2134 	if (ret)
2135 		goto out_unlock;
2136 
2137 	ret = f2fs_convert_inline_inode(dst);
2138 	if (ret)
2139 		goto out_unlock;
2140 
2141 	/* write out all dirty pages from offset */
2142 	ret = filemap_write_and_wait_range(src->i_mapping,
2143 					pos_in, pos_in + len);
2144 	if (ret)
2145 		goto out_unlock;
2146 
2147 	ret = filemap_write_and_wait_range(dst->i_mapping,
2148 					pos_out, pos_out + len);
2149 	if (ret)
2150 		goto out_unlock;
2151 
2152 	f2fs_balance_fs(sbi, true);
2153 	f2fs_lock_op(sbi);
2154 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2155 				pos_out >> F2FS_BLKSIZE_BITS,
2156 				len >> F2FS_BLKSIZE_BITS, false);
2157 
2158 	if (!ret) {
2159 		if (dst_max_i_size)
2160 			f2fs_i_size_write(dst, dst_max_i_size);
2161 		else if (dst_osize != dst->i_size)
2162 			f2fs_i_size_write(dst, dst_osize);
2163 	}
2164 	f2fs_unlock_op(sbi);
2165 out_unlock:
2166 	if (src != dst)
2167 		inode_unlock(dst);
2168 out:
2169 	inode_unlock(src);
2170 	return ret;
2171 }
2172 
2173 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2174 {
2175 	struct f2fs_move_range range;
2176 	struct fd dst;
2177 	int err;
2178 
2179 	if (!(filp->f_mode & FMODE_READ) ||
2180 			!(filp->f_mode & FMODE_WRITE))
2181 		return -EBADF;
2182 
2183 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2184 							sizeof(range)))
2185 		return -EFAULT;
2186 
2187 	dst = fdget(range.dst_fd);
2188 	if (!dst.file)
2189 		return -EBADF;
2190 
2191 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2192 		err = -EBADF;
2193 		goto err_out;
2194 	}
2195 
2196 	err = mnt_want_write_file(filp);
2197 	if (err)
2198 		goto err_out;
2199 
2200 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2201 					range.pos_out, range.len);
2202 
2203 	mnt_drop_write_file(filp);
2204 	if (err)
2205 		goto err_out;
2206 
2207 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2208 						&range, sizeof(range)))
2209 		err = -EFAULT;
2210 err_out:
2211 	fdput(dst);
2212 	return err;
2213 }
2214 
2215 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2216 {
2217 	struct inode *inode = file_inode(filp);
2218 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2219 	struct sit_info *sm = SIT_I(sbi);
2220 	unsigned int start_segno = 0, end_segno = 0;
2221 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2222 	struct f2fs_flush_device range;
2223 	int ret;
2224 
2225 	if (!capable(CAP_SYS_ADMIN))
2226 		return -EPERM;
2227 
2228 	if (f2fs_readonly(sbi->sb))
2229 		return -EROFS;
2230 
2231 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2232 							sizeof(range)))
2233 		return -EFAULT;
2234 
2235 	if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2236 			sbi->segs_per_sec != 1) {
2237 		f2fs_msg(sbi->sb, KERN_WARNING,
2238 			"Can't flush %u in %d for segs_per_sec %u != 1\n",
2239 				range.dev_num, sbi->s_ndevs,
2240 				sbi->segs_per_sec);
2241 		return -EINVAL;
2242 	}
2243 
2244 	ret = mnt_want_write_file(filp);
2245 	if (ret)
2246 		return ret;
2247 
2248 	if (range.dev_num != 0)
2249 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2250 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2251 
2252 	start_segno = sm->last_victim[FLUSH_DEVICE];
2253 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2254 		start_segno = dev_start_segno;
2255 	end_segno = min(start_segno + range.segments, dev_end_segno);
2256 
2257 	while (start_segno < end_segno) {
2258 		if (!mutex_trylock(&sbi->gc_mutex)) {
2259 			ret = -EBUSY;
2260 			goto out;
2261 		}
2262 		sm->last_victim[GC_CB] = end_segno + 1;
2263 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2264 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2265 		ret = f2fs_gc(sbi, true, true, start_segno);
2266 		if (ret == -EAGAIN)
2267 			ret = 0;
2268 		else if (ret < 0)
2269 			break;
2270 		start_segno++;
2271 	}
2272 out:
2273 	mnt_drop_write_file(filp);
2274 	return ret;
2275 }
2276 
2277 
2278 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2279 {
2280 	switch (cmd) {
2281 	case F2FS_IOC_GETFLAGS:
2282 		return f2fs_ioc_getflags(filp, arg);
2283 	case F2FS_IOC_SETFLAGS:
2284 		return f2fs_ioc_setflags(filp, arg);
2285 	case F2FS_IOC_GETVERSION:
2286 		return f2fs_ioc_getversion(filp, arg);
2287 	case F2FS_IOC_START_ATOMIC_WRITE:
2288 		return f2fs_ioc_start_atomic_write(filp);
2289 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2290 		return f2fs_ioc_commit_atomic_write(filp);
2291 	case F2FS_IOC_START_VOLATILE_WRITE:
2292 		return f2fs_ioc_start_volatile_write(filp);
2293 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2294 		return f2fs_ioc_release_volatile_write(filp);
2295 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2296 		return f2fs_ioc_abort_volatile_write(filp);
2297 	case F2FS_IOC_SHUTDOWN:
2298 		return f2fs_ioc_shutdown(filp, arg);
2299 	case FITRIM:
2300 		return f2fs_ioc_fitrim(filp, arg);
2301 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2302 		return f2fs_ioc_set_encryption_policy(filp, arg);
2303 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2304 		return f2fs_ioc_get_encryption_policy(filp, arg);
2305 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2306 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2307 	case F2FS_IOC_GARBAGE_COLLECT:
2308 		return f2fs_ioc_gc(filp, arg);
2309 	case F2FS_IOC_WRITE_CHECKPOINT:
2310 		return f2fs_ioc_write_checkpoint(filp, arg);
2311 	case F2FS_IOC_DEFRAGMENT:
2312 		return f2fs_ioc_defragment(filp, arg);
2313 	case F2FS_IOC_MOVE_RANGE:
2314 		return f2fs_ioc_move_range(filp, arg);
2315 	case F2FS_IOC_FLUSH_DEVICE:
2316 		return f2fs_ioc_flush_device(filp, arg);
2317 	default:
2318 		return -ENOTTY;
2319 	}
2320 }
2321 
2322 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2323 {
2324 	struct file *file = iocb->ki_filp;
2325 	struct inode *inode = file_inode(file);
2326 	struct blk_plug plug;
2327 	ssize_t ret;
2328 
2329 	if (f2fs_encrypted_inode(inode) &&
2330 				!fscrypt_has_encryption_key(inode) &&
2331 				fscrypt_get_encryption_info(inode))
2332 		return -EACCES;
2333 
2334 	inode_lock(inode);
2335 	ret = generic_write_checks(iocb, from);
2336 	if (ret > 0) {
2337 		int err;
2338 
2339 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2340 			set_inode_flag(inode, FI_NO_PREALLOC);
2341 
2342 		err = f2fs_preallocate_blocks(iocb, from);
2343 		if (err) {
2344 			inode_unlock(inode);
2345 			return err;
2346 		}
2347 		blk_start_plug(&plug);
2348 		ret = __generic_file_write_iter(iocb, from);
2349 		blk_finish_plug(&plug);
2350 		clear_inode_flag(inode, FI_NO_PREALLOC);
2351 	}
2352 	inode_unlock(inode);
2353 
2354 	if (ret > 0)
2355 		ret = generic_write_sync(iocb, ret);
2356 	return ret;
2357 }
2358 
2359 #ifdef CONFIG_COMPAT
2360 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2361 {
2362 	switch (cmd) {
2363 	case F2FS_IOC32_GETFLAGS:
2364 		cmd = F2FS_IOC_GETFLAGS;
2365 		break;
2366 	case F2FS_IOC32_SETFLAGS:
2367 		cmd = F2FS_IOC_SETFLAGS;
2368 		break;
2369 	case F2FS_IOC32_GETVERSION:
2370 		cmd = F2FS_IOC_GETVERSION;
2371 		break;
2372 	case F2FS_IOC_START_ATOMIC_WRITE:
2373 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2374 	case F2FS_IOC_START_VOLATILE_WRITE:
2375 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2376 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2377 	case F2FS_IOC_SHUTDOWN:
2378 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2379 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2380 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2381 	case F2FS_IOC_GARBAGE_COLLECT:
2382 	case F2FS_IOC_WRITE_CHECKPOINT:
2383 	case F2FS_IOC_DEFRAGMENT:
2384 	case F2FS_IOC_MOVE_RANGE:
2385 	case F2FS_IOC_FLUSH_DEVICE:
2386 		break;
2387 	default:
2388 		return -ENOIOCTLCMD;
2389 	}
2390 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2391 }
2392 #endif
2393 
2394 const struct file_operations f2fs_file_operations = {
2395 	.llseek		= f2fs_llseek,
2396 	.read_iter	= generic_file_read_iter,
2397 	.write_iter	= f2fs_file_write_iter,
2398 	.open		= f2fs_file_open,
2399 	.release	= f2fs_release_file,
2400 	.mmap		= f2fs_file_mmap,
2401 	.fsync		= f2fs_sync_file,
2402 	.fallocate	= f2fs_fallocate,
2403 	.unlocked_ioctl	= f2fs_ioctl,
2404 #ifdef CONFIG_COMPAT
2405 	.compat_ioctl	= f2fs_compat_ioctl,
2406 #endif
2407 	.splice_read	= generic_file_splice_read,
2408 	.splice_write	= iter_file_splice_write,
2409 };
2410