xref: /openbmc/linux/fs/f2fs/file.c (revision e6c81cce)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "xattr.h"
28 #include "acl.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
31 
32 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
33 						struct vm_fault *vmf)
34 {
35 	struct page *page = vmf->page;
36 	struct inode *inode = file_inode(vma->vm_file);
37 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
38 	struct dnode_of_data dn;
39 	int err;
40 
41 	f2fs_balance_fs(sbi);
42 
43 	sb_start_pagefault(inode->i_sb);
44 
45 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
46 
47 	/* block allocation */
48 	f2fs_lock_op(sbi);
49 	set_new_dnode(&dn, inode, NULL, NULL, 0);
50 	err = f2fs_reserve_block(&dn, page->index);
51 	if (err) {
52 		f2fs_unlock_op(sbi);
53 		goto out;
54 	}
55 	f2fs_put_dnode(&dn);
56 	f2fs_unlock_op(sbi);
57 
58 	file_update_time(vma->vm_file);
59 	lock_page(page);
60 	if (unlikely(page->mapping != inode->i_mapping ||
61 			page_offset(page) > i_size_read(inode) ||
62 			!PageUptodate(page))) {
63 		unlock_page(page);
64 		err = -EFAULT;
65 		goto out;
66 	}
67 
68 	/*
69 	 * check to see if the page is mapped already (no holes)
70 	 */
71 	if (PageMappedToDisk(page))
72 		goto mapped;
73 
74 	/* page is wholly or partially inside EOF */
75 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
76 		unsigned offset;
77 		offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
78 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
79 	}
80 	set_page_dirty(page);
81 	SetPageUptodate(page);
82 
83 	trace_f2fs_vm_page_mkwrite(page, DATA);
84 mapped:
85 	/* fill the page */
86 	f2fs_wait_on_page_writeback(page, DATA);
87 out:
88 	sb_end_pagefault(inode->i_sb);
89 	return block_page_mkwrite_return(err);
90 }
91 
92 static const struct vm_operations_struct f2fs_file_vm_ops = {
93 	.fault		= filemap_fault,
94 	.map_pages	= filemap_map_pages,
95 	.page_mkwrite	= f2fs_vm_page_mkwrite,
96 };
97 
98 static int get_parent_ino(struct inode *inode, nid_t *pino)
99 {
100 	struct dentry *dentry;
101 
102 	inode = igrab(inode);
103 	dentry = d_find_any_alias(inode);
104 	iput(inode);
105 	if (!dentry)
106 		return 0;
107 
108 	if (update_dent_inode(inode, &dentry->d_name)) {
109 		dput(dentry);
110 		return 0;
111 	}
112 
113 	*pino = parent_ino(dentry);
114 	dput(dentry);
115 	return 1;
116 }
117 
118 static inline bool need_do_checkpoint(struct inode *inode)
119 {
120 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
121 	bool need_cp = false;
122 
123 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
124 		need_cp = true;
125 	else if (file_wrong_pino(inode))
126 		need_cp = true;
127 	else if (!space_for_roll_forward(sbi))
128 		need_cp = true;
129 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
130 		need_cp = true;
131 	else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
132 		need_cp = true;
133 	else if (test_opt(sbi, FASTBOOT))
134 		need_cp = true;
135 	else if (sbi->active_logs == 2)
136 		need_cp = true;
137 
138 	return need_cp;
139 }
140 
141 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
142 {
143 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
144 	bool ret = false;
145 	/* But we need to avoid that there are some inode updates */
146 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
147 		ret = true;
148 	f2fs_put_page(i, 0);
149 	return ret;
150 }
151 
152 static void try_to_fix_pino(struct inode *inode)
153 {
154 	struct f2fs_inode_info *fi = F2FS_I(inode);
155 	nid_t pino;
156 
157 	down_write(&fi->i_sem);
158 	fi->xattr_ver = 0;
159 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
160 			get_parent_ino(inode, &pino)) {
161 		fi->i_pino = pino;
162 		file_got_pino(inode);
163 		up_write(&fi->i_sem);
164 
165 		mark_inode_dirty_sync(inode);
166 		f2fs_write_inode(inode, NULL);
167 	} else {
168 		up_write(&fi->i_sem);
169 	}
170 }
171 
172 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
173 {
174 	struct inode *inode = file->f_mapping->host;
175 	struct f2fs_inode_info *fi = F2FS_I(inode);
176 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
177 	nid_t ino = inode->i_ino;
178 	int ret = 0;
179 	bool need_cp = false;
180 	struct writeback_control wbc = {
181 		.sync_mode = WB_SYNC_ALL,
182 		.nr_to_write = LONG_MAX,
183 		.for_reclaim = 0,
184 	};
185 
186 	if (unlikely(f2fs_readonly(inode->i_sb)))
187 		return 0;
188 
189 	trace_f2fs_sync_file_enter(inode);
190 
191 	/* if fdatasync is triggered, let's do in-place-update */
192 	if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
193 		set_inode_flag(fi, FI_NEED_IPU);
194 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
195 	clear_inode_flag(fi, FI_NEED_IPU);
196 
197 	if (ret) {
198 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
199 		return ret;
200 	}
201 
202 	/* if the inode is dirty, let's recover all the time */
203 	if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) {
204 		update_inode_page(inode);
205 		goto go_write;
206 	}
207 
208 	/*
209 	 * if there is no written data, don't waste time to write recovery info.
210 	 */
211 	if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
212 			!exist_written_data(sbi, ino, APPEND_INO)) {
213 
214 		/* it may call write_inode just prior to fsync */
215 		if (need_inode_page_update(sbi, ino))
216 			goto go_write;
217 
218 		if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
219 				exist_written_data(sbi, ino, UPDATE_INO))
220 			goto flush_out;
221 		goto out;
222 	}
223 go_write:
224 	/* guarantee free sections for fsync */
225 	f2fs_balance_fs(sbi);
226 
227 	/*
228 	 * Both of fdatasync() and fsync() are able to be recovered from
229 	 * sudden-power-off.
230 	 */
231 	down_read(&fi->i_sem);
232 	need_cp = need_do_checkpoint(inode);
233 	up_read(&fi->i_sem);
234 
235 	if (need_cp) {
236 		/* all the dirty node pages should be flushed for POR */
237 		ret = f2fs_sync_fs(inode->i_sb, 1);
238 
239 		/*
240 		 * We've secured consistency through sync_fs. Following pino
241 		 * will be used only for fsynced inodes after checkpoint.
242 		 */
243 		try_to_fix_pino(inode);
244 		clear_inode_flag(fi, FI_APPEND_WRITE);
245 		clear_inode_flag(fi, FI_UPDATE_WRITE);
246 		goto out;
247 	}
248 sync_nodes:
249 	sync_node_pages(sbi, ino, &wbc);
250 
251 	/* if cp_error was enabled, we should avoid infinite loop */
252 	if (unlikely(f2fs_cp_error(sbi)))
253 		goto out;
254 
255 	if (need_inode_block_update(sbi, ino)) {
256 		mark_inode_dirty_sync(inode);
257 		f2fs_write_inode(inode, NULL);
258 		goto sync_nodes;
259 	}
260 
261 	ret = wait_on_node_pages_writeback(sbi, ino);
262 	if (ret)
263 		goto out;
264 
265 	/* once recovery info is written, don't need to tack this */
266 	remove_dirty_inode(sbi, ino, APPEND_INO);
267 	clear_inode_flag(fi, FI_APPEND_WRITE);
268 flush_out:
269 	remove_dirty_inode(sbi, ino, UPDATE_INO);
270 	clear_inode_flag(fi, FI_UPDATE_WRITE);
271 	ret = f2fs_issue_flush(sbi);
272 out:
273 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
274 	f2fs_trace_ios(NULL, NULL, 1);
275 	return ret;
276 }
277 
278 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
279 						pgoff_t pgofs, int whence)
280 {
281 	struct pagevec pvec;
282 	int nr_pages;
283 
284 	if (whence != SEEK_DATA)
285 		return 0;
286 
287 	/* find first dirty page index */
288 	pagevec_init(&pvec, 0);
289 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
290 					PAGECACHE_TAG_DIRTY, 1);
291 	pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
292 	pagevec_release(&pvec);
293 	return pgofs;
294 }
295 
296 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
297 							int whence)
298 {
299 	switch (whence) {
300 	case SEEK_DATA:
301 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
302 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
303 			return true;
304 		break;
305 	case SEEK_HOLE:
306 		if (blkaddr == NULL_ADDR)
307 			return true;
308 		break;
309 	}
310 	return false;
311 }
312 
313 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
314 {
315 	struct inode *inode = file->f_mapping->host;
316 	loff_t maxbytes = inode->i_sb->s_maxbytes;
317 	struct dnode_of_data dn;
318 	pgoff_t pgofs, end_offset, dirty;
319 	loff_t data_ofs = offset;
320 	loff_t isize;
321 	int err = 0;
322 
323 	mutex_lock(&inode->i_mutex);
324 
325 	isize = i_size_read(inode);
326 	if (offset >= isize)
327 		goto fail;
328 
329 	/* handle inline data case */
330 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
331 		if (whence == SEEK_HOLE)
332 			data_ofs = isize;
333 		goto found;
334 	}
335 
336 	pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
337 
338 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
339 
340 	for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
341 		set_new_dnode(&dn, inode, NULL, NULL, 0);
342 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
343 		if (err && err != -ENOENT) {
344 			goto fail;
345 		} else if (err == -ENOENT) {
346 			/* direct node does not exists */
347 			if (whence == SEEK_DATA) {
348 				pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
349 							F2FS_I(inode));
350 				continue;
351 			} else {
352 				goto found;
353 			}
354 		}
355 
356 		end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
357 
358 		/* find data/hole in dnode block */
359 		for (; dn.ofs_in_node < end_offset;
360 				dn.ofs_in_node++, pgofs++,
361 				data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
362 			block_t blkaddr;
363 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
364 
365 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
366 				f2fs_put_dnode(&dn);
367 				goto found;
368 			}
369 		}
370 		f2fs_put_dnode(&dn);
371 	}
372 
373 	if (whence == SEEK_DATA)
374 		goto fail;
375 found:
376 	if (whence == SEEK_HOLE && data_ofs > isize)
377 		data_ofs = isize;
378 	mutex_unlock(&inode->i_mutex);
379 	return vfs_setpos(file, data_ofs, maxbytes);
380 fail:
381 	mutex_unlock(&inode->i_mutex);
382 	return -ENXIO;
383 }
384 
385 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
386 {
387 	struct inode *inode = file->f_mapping->host;
388 	loff_t maxbytes = inode->i_sb->s_maxbytes;
389 
390 	switch (whence) {
391 	case SEEK_SET:
392 	case SEEK_CUR:
393 	case SEEK_END:
394 		return generic_file_llseek_size(file, offset, whence,
395 						maxbytes, i_size_read(inode));
396 	case SEEK_DATA:
397 	case SEEK_HOLE:
398 		if (offset < 0)
399 			return -ENXIO;
400 		return f2fs_seek_block(file, offset, whence);
401 	}
402 
403 	return -EINVAL;
404 }
405 
406 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
407 {
408 	struct inode *inode = file_inode(file);
409 
410 	/* we don't need to use inline_data strictly */
411 	if (f2fs_has_inline_data(inode)) {
412 		int err = f2fs_convert_inline_inode(inode);
413 		if (err)
414 			return err;
415 	}
416 
417 	file_accessed(file);
418 	vma->vm_ops = &f2fs_file_vm_ops;
419 	return 0;
420 }
421 
422 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
423 {
424 	int nr_free = 0, ofs = dn->ofs_in_node;
425 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
426 	struct f2fs_node *raw_node;
427 	__le32 *addr;
428 
429 	raw_node = F2FS_NODE(dn->node_page);
430 	addr = blkaddr_in_node(raw_node) + ofs;
431 
432 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
433 		block_t blkaddr = le32_to_cpu(*addr);
434 		if (blkaddr == NULL_ADDR)
435 			continue;
436 
437 		dn->data_blkaddr = NULL_ADDR;
438 		set_data_blkaddr(dn);
439 		f2fs_update_extent_cache(dn);
440 		invalidate_blocks(sbi, blkaddr);
441 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
442 			clear_inode_flag(F2FS_I(dn->inode),
443 						FI_FIRST_BLOCK_WRITTEN);
444 		nr_free++;
445 	}
446 	if (nr_free) {
447 		dec_valid_block_count(sbi, dn->inode, nr_free);
448 		set_page_dirty(dn->node_page);
449 		sync_inode_page(dn);
450 	}
451 	dn->ofs_in_node = ofs;
452 
453 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
454 					 dn->ofs_in_node, nr_free);
455 	return nr_free;
456 }
457 
458 void truncate_data_blocks(struct dnode_of_data *dn)
459 {
460 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
461 }
462 
463 static int truncate_partial_data_page(struct inode *inode, u64 from,
464 								bool force)
465 {
466 	unsigned offset = from & (PAGE_CACHE_SIZE - 1);
467 	struct page *page;
468 
469 	if (!offset && !force)
470 		return 0;
471 
472 	page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, force);
473 	if (IS_ERR(page))
474 		return 0;
475 
476 	lock_page(page);
477 	if (unlikely(!PageUptodate(page) ||
478 			page->mapping != inode->i_mapping))
479 		goto out;
480 
481 	f2fs_wait_on_page_writeback(page, DATA);
482 	zero_user(page, offset, PAGE_CACHE_SIZE - offset);
483 	if (!force)
484 		set_page_dirty(page);
485 out:
486 	f2fs_put_page(page, 1);
487 	return 0;
488 }
489 
490 int truncate_blocks(struct inode *inode, u64 from, bool lock)
491 {
492 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
493 	unsigned int blocksize = inode->i_sb->s_blocksize;
494 	struct dnode_of_data dn;
495 	pgoff_t free_from;
496 	int count = 0, err = 0;
497 	struct page *ipage;
498 	bool truncate_page = false;
499 
500 	trace_f2fs_truncate_blocks_enter(inode, from);
501 
502 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
503 
504 	if (lock)
505 		f2fs_lock_op(sbi);
506 
507 	ipage = get_node_page(sbi, inode->i_ino);
508 	if (IS_ERR(ipage)) {
509 		err = PTR_ERR(ipage);
510 		goto out;
511 	}
512 
513 	if (f2fs_has_inline_data(inode)) {
514 		if (truncate_inline_inode(ipage, from))
515 			set_page_dirty(ipage);
516 		f2fs_put_page(ipage, 1);
517 		truncate_page = true;
518 		goto out;
519 	}
520 
521 	set_new_dnode(&dn, inode, ipage, NULL, 0);
522 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
523 	if (err) {
524 		if (err == -ENOENT)
525 			goto free_next;
526 		goto out;
527 	}
528 
529 	count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
530 
531 	count -= dn.ofs_in_node;
532 	f2fs_bug_on(sbi, count < 0);
533 
534 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
535 		truncate_data_blocks_range(&dn, count);
536 		free_from += count;
537 	}
538 
539 	f2fs_put_dnode(&dn);
540 free_next:
541 	err = truncate_inode_blocks(inode, free_from);
542 out:
543 	if (lock)
544 		f2fs_unlock_op(sbi);
545 
546 	/* lastly zero out the first data page */
547 	if (!err)
548 		err = truncate_partial_data_page(inode, from, truncate_page);
549 
550 	trace_f2fs_truncate_blocks_exit(inode, err);
551 	return err;
552 }
553 
554 void f2fs_truncate(struct inode *inode)
555 {
556 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
557 				S_ISLNK(inode->i_mode)))
558 		return;
559 
560 	trace_f2fs_truncate(inode);
561 
562 	/* we should check inline_data size */
563 	if (f2fs_has_inline_data(inode) && !f2fs_may_inline(inode)) {
564 		if (f2fs_convert_inline_inode(inode))
565 			return;
566 	}
567 
568 	if (!truncate_blocks(inode, i_size_read(inode), true)) {
569 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
570 		mark_inode_dirty(inode);
571 	}
572 }
573 
574 int f2fs_getattr(struct vfsmount *mnt,
575 			 struct dentry *dentry, struct kstat *stat)
576 {
577 	struct inode *inode = dentry->d_inode;
578 	generic_fillattr(inode, stat);
579 	stat->blocks <<= 3;
580 	return 0;
581 }
582 
583 #ifdef CONFIG_F2FS_FS_POSIX_ACL
584 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
585 {
586 	struct f2fs_inode_info *fi = F2FS_I(inode);
587 	unsigned int ia_valid = attr->ia_valid;
588 
589 	if (ia_valid & ATTR_UID)
590 		inode->i_uid = attr->ia_uid;
591 	if (ia_valid & ATTR_GID)
592 		inode->i_gid = attr->ia_gid;
593 	if (ia_valid & ATTR_ATIME)
594 		inode->i_atime = timespec_trunc(attr->ia_atime,
595 						inode->i_sb->s_time_gran);
596 	if (ia_valid & ATTR_MTIME)
597 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
598 						inode->i_sb->s_time_gran);
599 	if (ia_valid & ATTR_CTIME)
600 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
601 						inode->i_sb->s_time_gran);
602 	if (ia_valid & ATTR_MODE) {
603 		umode_t mode = attr->ia_mode;
604 
605 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
606 			mode &= ~S_ISGID;
607 		set_acl_inode(fi, mode);
608 	}
609 }
610 #else
611 #define __setattr_copy setattr_copy
612 #endif
613 
614 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
615 {
616 	struct inode *inode = dentry->d_inode;
617 	struct f2fs_inode_info *fi = F2FS_I(inode);
618 	int err;
619 
620 	err = inode_change_ok(inode, attr);
621 	if (err)
622 		return err;
623 
624 	if (attr->ia_valid & ATTR_SIZE) {
625 		if (attr->ia_size != i_size_read(inode)) {
626 			truncate_setsize(inode, attr->ia_size);
627 			f2fs_truncate(inode);
628 			f2fs_balance_fs(F2FS_I_SB(inode));
629 		} else {
630 			/*
631 			 * giving a chance to truncate blocks past EOF which
632 			 * are fallocated with FALLOC_FL_KEEP_SIZE.
633 			 */
634 			f2fs_truncate(inode);
635 		}
636 	}
637 
638 	__setattr_copy(inode, attr);
639 
640 	if (attr->ia_valid & ATTR_MODE) {
641 		err = posix_acl_chmod(inode, get_inode_mode(inode));
642 		if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
643 			inode->i_mode = fi->i_acl_mode;
644 			clear_inode_flag(fi, FI_ACL_MODE);
645 		}
646 	}
647 
648 	mark_inode_dirty(inode);
649 	return err;
650 }
651 
652 const struct inode_operations f2fs_file_inode_operations = {
653 	.getattr	= f2fs_getattr,
654 	.setattr	= f2fs_setattr,
655 	.get_acl	= f2fs_get_acl,
656 	.set_acl	= f2fs_set_acl,
657 #ifdef CONFIG_F2FS_FS_XATTR
658 	.setxattr	= generic_setxattr,
659 	.getxattr	= generic_getxattr,
660 	.listxattr	= f2fs_listxattr,
661 	.removexattr	= generic_removexattr,
662 #endif
663 	.fiemap		= f2fs_fiemap,
664 };
665 
666 static void fill_zero(struct inode *inode, pgoff_t index,
667 					loff_t start, loff_t len)
668 {
669 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
670 	struct page *page;
671 
672 	if (!len)
673 		return;
674 
675 	f2fs_balance_fs(sbi);
676 
677 	f2fs_lock_op(sbi);
678 	page = get_new_data_page(inode, NULL, index, false);
679 	f2fs_unlock_op(sbi);
680 
681 	if (!IS_ERR(page)) {
682 		f2fs_wait_on_page_writeback(page, DATA);
683 		zero_user(page, start, len);
684 		set_page_dirty(page);
685 		f2fs_put_page(page, 1);
686 	}
687 }
688 
689 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
690 {
691 	pgoff_t index;
692 	int err;
693 
694 	for (index = pg_start; index < pg_end; index++) {
695 		struct dnode_of_data dn;
696 
697 		set_new_dnode(&dn, inode, NULL, NULL, 0);
698 		err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
699 		if (err) {
700 			if (err == -ENOENT)
701 				continue;
702 			return err;
703 		}
704 
705 		if (dn.data_blkaddr != NULL_ADDR)
706 			truncate_data_blocks_range(&dn, 1);
707 		f2fs_put_dnode(&dn);
708 	}
709 	return 0;
710 }
711 
712 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
713 {
714 	pgoff_t pg_start, pg_end;
715 	loff_t off_start, off_end;
716 	int ret = 0;
717 
718 	if (!S_ISREG(inode->i_mode))
719 		return -EOPNOTSUPP;
720 
721 	/* skip punching hole beyond i_size */
722 	if (offset >= inode->i_size)
723 		return ret;
724 
725 	if (f2fs_has_inline_data(inode)) {
726 		ret = f2fs_convert_inline_inode(inode);
727 		if (ret)
728 			return ret;
729 	}
730 
731 	pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
732 	pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
733 
734 	off_start = offset & (PAGE_CACHE_SIZE - 1);
735 	off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
736 
737 	if (pg_start == pg_end) {
738 		fill_zero(inode, pg_start, off_start,
739 						off_end - off_start);
740 	} else {
741 		if (off_start)
742 			fill_zero(inode, pg_start++, off_start,
743 					PAGE_CACHE_SIZE - off_start);
744 		if (off_end)
745 			fill_zero(inode, pg_end, 0, off_end);
746 
747 		if (pg_start < pg_end) {
748 			struct address_space *mapping = inode->i_mapping;
749 			loff_t blk_start, blk_end;
750 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
751 
752 			f2fs_balance_fs(sbi);
753 
754 			blk_start = pg_start << PAGE_CACHE_SHIFT;
755 			blk_end = pg_end << PAGE_CACHE_SHIFT;
756 			truncate_inode_pages_range(mapping, blk_start,
757 					blk_end - 1);
758 
759 			f2fs_lock_op(sbi);
760 			ret = truncate_hole(inode, pg_start, pg_end);
761 			f2fs_unlock_op(sbi);
762 		}
763 	}
764 
765 	return ret;
766 }
767 
768 static int expand_inode_data(struct inode *inode, loff_t offset,
769 					loff_t len, int mode)
770 {
771 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
772 	pgoff_t index, pg_start, pg_end;
773 	loff_t new_size = i_size_read(inode);
774 	loff_t off_start, off_end;
775 	int ret = 0;
776 
777 	f2fs_balance_fs(sbi);
778 
779 	ret = inode_newsize_ok(inode, (len + offset));
780 	if (ret)
781 		return ret;
782 
783 	if (f2fs_has_inline_data(inode)) {
784 		ret = f2fs_convert_inline_inode(inode);
785 		if (ret)
786 			return ret;
787 	}
788 
789 	pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
790 	pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
791 
792 	off_start = offset & (PAGE_CACHE_SIZE - 1);
793 	off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
794 
795 	f2fs_lock_op(sbi);
796 
797 	for (index = pg_start; index <= pg_end; index++) {
798 		struct dnode_of_data dn;
799 
800 		if (index == pg_end && !off_end)
801 			goto noalloc;
802 
803 		set_new_dnode(&dn, inode, NULL, NULL, 0);
804 		ret = f2fs_reserve_block(&dn, index);
805 		if (ret)
806 			break;
807 noalloc:
808 		if (pg_start == pg_end)
809 			new_size = offset + len;
810 		else if (index == pg_start && off_start)
811 			new_size = (index + 1) << PAGE_CACHE_SHIFT;
812 		else if (index == pg_end)
813 			new_size = (index << PAGE_CACHE_SHIFT) + off_end;
814 		else
815 			new_size += PAGE_CACHE_SIZE;
816 	}
817 
818 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
819 		i_size_read(inode) < new_size) {
820 		i_size_write(inode, new_size);
821 		mark_inode_dirty(inode);
822 		update_inode_page(inode);
823 	}
824 	f2fs_unlock_op(sbi);
825 
826 	return ret;
827 }
828 
829 static long f2fs_fallocate(struct file *file, int mode,
830 				loff_t offset, loff_t len)
831 {
832 	struct inode *inode = file_inode(file);
833 	long ret;
834 
835 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
836 		return -EOPNOTSUPP;
837 
838 	mutex_lock(&inode->i_mutex);
839 
840 	if (mode & FALLOC_FL_PUNCH_HOLE)
841 		ret = punch_hole(inode, offset, len);
842 	else
843 		ret = expand_inode_data(inode, offset, len, mode);
844 
845 	if (!ret) {
846 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
847 		mark_inode_dirty(inode);
848 	}
849 
850 	mutex_unlock(&inode->i_mutex);
851 
852 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
853 	return ret;
854 }
855 
856 static int f2fs_release_file(struct inode *inode, struct file *filp)
857 {
858 	/* some remained atomic pages should discarded */
859 	if (f2fs_is_atomic_file(inode))
860 		commit_inmem_pages(inode, true);
861 	if (f2fs_is_volatile_file(inode)) {
862 		set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
863 		filemap_fdatawrite(inode->i_mapping);
864 		clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
865 	}
866 	return 0;
867 }
868 
869 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
870 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
871 
872 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
873 {
874 	if (S_ISDIR(mode))
875 		return flags;
876 	else if (S_ISREG(mode))
877 		return flags & F2FS_REG_FLMASK;
878 	else
879 		return flags & F2FS_OTHER_FLMASK;
880 }
881 
882 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
883 {
884 	struct inode *inode = file_inode(filp);
885 	struct f2fs_inode_info *fi = F2FS_I(inode);
886 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
887 	return put_user(flags, (int __user *)arg);
888 }
889 
890 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
891 {
892 	struct inode *inode = file_inode(filp);
893 	struct f2fs_inode_info *fi = F2FS_I(inode);
894 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
895 	unsigned int oldflags;
896 	int ret;
897 
898 	ret = mnt_want_write_file(filp);
899 	if (ret)
900 		return ret;
901 
902 	if (!inode_owner_or_capable(inode)) {
903 		ret = -EACCES;
904 		goto out;
905 	}
906 
907 	if (get_user(flags, (int __user *)arg)) {
908 		ret = -EFAULT;
909 		goto out;
910 	}
911 
912 	flags = f2fs_mask_flags(inode->i_mode, flags);
913 
914 	mutex_lock(&inode->i_mutex);
915 
916 	oldflags = fi->i_flags;
917 
918 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
919 		if (!capable(CAP_LINUX_IMMUTABLE)) {
920 			mutex_unlock(&inode->i_mutex);
921 			ret = -EPERM;
922 			goto out;
923 		}
924 	}
925 
926 	flags = flags & FS_FL_USER_MODIFIABLE;
927 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
928 	fi->i_flags = flags;
929 	mutex_unlock(&inode->i_mutex);
930 
931 	f2fs_set_inode_flags(inode);
932 	inode->i_ctime = CURRENT_TIME;
933 	mark_inode_dirty(inode);
934 out:
935 	mnt_drop_write_file(filp);
936 	return ret;
937 }
938 
939 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
940 {
941 	struct inode *inode = file_inode(filp);
942 
943 	return put_user(inode->i_generation, (int __user *)arg);
944 }
945 
946 static int f2fs_ioc_start_atomic_write(struct file *filp)
947 {
948 	struct inode *inode = file_inode(filp);
949 
950 	if (!inode_owner_or_capable(inode))
951 		return -EACCES;
952 
953 	f2fs_balance_fs(F2FS_I_SB(inode));
954 
955 	if (f2fs_is_atomic_file(inode))
956 		return 0;
957 
958 	set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
959 
960 	return f2fs_convert_inline_inode(inode);
961 }
962 
963 static int f2fs_ioc_commit_atomic_write(struct file *filp)
964 {
965 	struct inode *inode = file_inode(filp);
966 	int ret;
967 
968 	if (!inode_owner_or_capable(inode))
969 		return -EACCES;
970 
971 	if (f2fs_is_volatile_file(inode))
972 		return 0;
973 
974 	ret = mnt_want_write_file(filp);
975 	if (ret)
976 		return ret;
977 
978 	if (f2fs_is_atomic_file(inode))
979 		commit_inmem_pages(inode, false);
980 
981 	ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
982 	mnt_drop_write_file(filp);
983 	clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
984 	return ret;
985 }
986 
987 static int f2fs_ioc_start_volatile_write(struct file *filp)
988 {
989 	struct inode *inode = file_inode(filp);
990 
991 	if (!inode_owner_or_capable(inode))
992 		return -EACCES;
993 
994 	if (f2fs_is_volatile_file(inode))
995 		return 0;
996 
997 	set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
998 
999 	return f2fs_convert_inline_inode(inode);
1000 }
1001 
1002 static int f2fs_ioc_release_volatile_write(struct file *filp)
1003 {
1004 	struct inode *inode = file_inode(filp);
1005 
1006 	if (!inode_owner_or_capable(inode))
1007 		return -EACCES;
1008 
1009 	if (!f2fs_is_volatile_file(inode))
1010 		return 0;
1011 
1012 	if (!f2fs_is_first_block_written(inode))
1013 		return truncate_partial_data_page(inode, 0, true);
1014 
1015 	punch_hole(inode, 0, F2FS_BLKSIZE);
1016 	return 0;
1017 }
1018 
1019 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1020 {
1021 	struct inode *inode = file_inode(filp);
1022 	int ret;
1023 
1024 	if (!inode_owner_or_capable(inode))
1025 		return -EACCES;
1026 
1027 	ret = mnt_want_write_file(filp);
1028 	if (ret)
1029 		return ret;
1030 
1031 	f2fs_balance_fs(F2FS_I_SB(inode));
1032 
1033 	if (f2fs_is_atomic_file(inode)) {
1034 		commit_inmem_pages(inode, false);
1035 		clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1036 	}
1037 
1038 	if (f2fs_is_volatile_file(inode)) {
1039 		clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1040 		filemap_fdatawrite(inode->i_mapping);
1041 		set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1042 	}
1043 	mnt_drop_write_file(filp);
1044 	return ret;
1045 }
1046 
1047 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1048 {
1049 	struct inode *inode = file_inode(filp);
1050 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1051 	struct super_block *sb = sbi->sb;
1052 	__u32 in;
1053 
1054 	if (!capable(CAP_SYS_ADMIN))
1055 		return -EPERM;
1056 
1057 	if (get_user(in, (__u32 __user *)arg))
1058 		return -EFAULT;
1059 
1060 	switch (in) {
1061 	case F2FS_GOING_DOWN_FULLSYNC:
1062 		sb = freeze_bdev(sb->s_bdev);
1063 		if (sb && !IS_ERR(sb)) {
1064 			f2fs_stop_checkpoint(sbi);
1065 			thaw_bdev(sb->s_bdev, sb);
1066 		}
1067 		break;
1068 	case F2FS_GOING_DOWN_METASYNC:
1069 		/* do checkpoint only */
1070 		f2fs_sync_fs(sb, 1);
1071 		f2fs_stop_checkpoint(sbi);
1072 		break;
1073 	case F2FS_GOING_DOWN_NOSYNC:
1074 		f2fs_stop_checkpoint(sbi);
1075 		break;
1076 	default:
1077 		return -EINVAL;
1078 	}
1079 	return 0;
1080 }
1081 
1082 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1083 {
1084 	struct inode *inode = file_inode(filp);
1085 	struct super_block *sb = inode->i_sb;
1086 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1087 	struct fstrim_range range;
1088 	int ret;
1089 
1090 	if (!capable(CAP_SYS_ADMIN))
1091 		return -EPERM;
1092 
1093 	if (!blk_queue_discard(q))
1094 		return -EOPNOTSUPP;
1095 
1096 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1097 				sizeof(range)))
1098 		return -EFAULT;
1099 
1100 	range.minlen = max((unsigned int)range.minlen,
1101 				q->limits.discard_granularity);
1102 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1103 	if (ret < 0)
1104 		return ret;
1105 
1106 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1107 				sizeof(range)))
1108 		return -EFAULT;
1109 	return 0;
1110 }
1111 
1112 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1113 {
1114 	switch (cmd) {
1115 	case F2FS_IOC_GETFLAGS:
1116 		return f2fs_ioc_getflags(filp, arg);
1117 	case F2FS_IOC_SETFLAGS:
1118 		return f2fs_ioc_setflags(filp, arg);
1119 	case F2FS_IOC_GETVERSION:
1120 		return f2fs_ioc_getversion(filp, arg);
1121 	case F2FS_IOC_START_ATOMIC_WRITE:
1122 		return f2fs_ioc_start_atomic_write(filp);
1123 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1124 		return f2fs_ioc_commit_atomic_write(filp);
1125 	case F2FS_IOC_START_VOLATILE_WRITE:
1126 		return f2fs_ioc_start_volatile_write(filp);
1127 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1128 		return f2fs_ioc_release_volatile_write(filp);
1129 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
1130 		return f2fs_ioc_abort_volatile_write(filp);
1131 	case F2FS_IOC_SHUTDOWN:
1132 		return f2fs_ioc_shutdown(filp, arg);
1133 	case FITRIM:
1134 		return f2fs_ioc_fitrim(filp, arg);
1135 	default:
1136 		return -ENOTTY;
1137 	}
1138 }
1139 
1140 #ifdef CONFIG_COMPAT
1141 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1142 {
1143 	switch (cmd) {
1144 	case F2FS_IOC32_GETFLAGS:
1145 		cmd = F2FS_IOC_GETFLAGS;
1146 		break;
1147 	case F2FS_IOC32_SETFLAGS:
1148 		cmd = F2FS_IOC_SETFLAGS;
1149 		break;
1150 	default:
1151 		return -ENOIOCTLCMD;
1152 	}
1153 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1154 }
1155 #endif
1156 
1157 const struct file_operations f2fs_file_operations = {
1158 	.llseek		= f2fs_llseek,
1159 	.read_iter	= generic_file_read_iter,
1160 	.write_iter	= generic_file_write_iter,
1161 	.open		= generic_file_open,
1162 	.release	= f2fs_release_file,
1163 	.mmap		= f2fs_file_mmap,
1164 	.fsync		= f2fs_sync_file,
1165 	.fallocate	= f2fs_fallocate,
1166 	.unlocked_ioctl	= f2fs_ioctl,
1167 #ifdef CONFIG_COMPAT
1168 	.compat_ioctl	= f2fs_compat_ioctl,
1169 #endif
1170 	.splice_read	= generic_file_splice_read,
1171 	.splice_write	= iter_file_splice_write,
1172 };
1173