1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "xattr.h" 31 #include "acl.h" 32 #include "gc.h" 33 #include <trace/events/f2fs.h> 34 #include <uapi/linux/f2fs.h> 35 36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 37 { 38 struct inode *inode = file_inode(vmf->vma->vm_file); 39 vm_fault_t ret; 40 41 ret = filemap_fault(vmf); 42 if (!ret) 43 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO, 44 F2FS_BLKSIZE); 45 46 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 47 48 return ret; 49 } 50 51 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 52 { 53 struct page *page = vmf->page; 54 struct inode *inode = file_inode(vmf->vma->vm_file); 55 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 56 struct dnode_of_data dn; 57 bool need_alloc = true; 58 int err = 0; 59 60 if (unlikely(IS_IMMUTABLE(inode))) 61 return VM_FAULT_SIGBUS; 62 63 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 64 return VM_FAULT_SIGBUS; 65 66 if (unlikely(f2fs_cp_error(sbi))) { 67 err = -EIO; 68 goto err; 69 } 70 71 if (!f2fs_is_checkpoint_ready(sbi)) { 72 err = -ENOSPC; 73 goto err; 74 } 75 76 err = f2fs_convert_inline_inode(inode); 77 if (err) 78 goto err; 79 80 #ifdef CONFIG_F2FS_FS_COMPRESSION 81 if (f2fs_compressed_file(inode)) { 82 int ret = f2fs_is_compressed_cluster(inode, page->index); 83 84 if (ret < 0) { 85 err = ret; 86 goto err; 87 } else if (ret) { 88 need_alloc = false; 89 } 90 } 91 #endif 92 /* should do out of any locked page */ 93 if (need_alloc) 94 f2fs_balance_fs(sbi, true); 95 96 sb_start_pagefault(inode->i_sb); 97 98 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 99 100 file_update_time(vmf->vma->vm_file); 101 filemap_invalidate_lock_shared(inode->i_mapping); 102 lock_page(page); 103 if (unlikely(page->mapping != inode->i_mapping || 104 page_offset(page) > i_size_read(inode) || 105 !PageUptodate(page))) { 106 unlock_page(page); 107 err = -EFAULT; 108 goto out_sem; 109 } 110 111 if (need_alloc) { 112 /* block allocation */ 113 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 114 set_new_dnode(&dn, inode, NULL, NULL, 0); 115 err = f2fs_get_block(&dn, page->index); 116 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 117 } 118 119 #ifdef CONFIG_F2FS_FS_COMPRESSION 120 if (!need_alloc) { 121 set_new_dnode(&dn, inode, NULL, NULL, 0); 122 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 123 f2fs_put_dnode(&dn); 124 } 125 #endif 126 if (err) { 127 unlock_page(page); 128 goto out_sem; 129 } 130 131 f2fs_wait_on_page_writeback(page, DATA, false, true); 132 133 /* wait for GCed page writeback via META_MAPPING */ 134 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 135 136 /* 137 * check to see if the page is mapped already (no holes) 138 */ 139 if (PageMappedToDisk(page)) 140 goto out_sem; 141 142 /* page is wholly or partially inside EOF */ 143 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 144 i_size_read(inode)) { 145 loff_t offset; 146 147 offset = i_size_read(inode) & ~PAGE_MASK; 148 zero_user_segment(page, offset, PAGE_SIZE); 149 } 150 set_page_dirty(page); 151 if (!PageUptodate(page)) 152 SetPageUptodate(page); 153 154 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 155 f2fs_update_time(sbi, REQ_TIME); 156 157 trace_f2fs_vm_page_mkwrite(page, DATA); 158 out_sem: 159 filemap_invalidate_unlock_shared(inode->i_mapping); 160 161 sb_end_pagefault(inode->i_sb); 162 err: 163 return block_page_mkwrite_return(err); 164 } 165 166 static const struct vm_operations_struct f2fs_file_vm_ops = { 167 .fault = f2fs_filemap_fault, 168 .map_pages = filemap_map_pages, 169 .page_mkwrite = f2fs_vm_page_mkwrite, 170 }; 171 172 static int get_parent_ino(struct inode *inode, nid_t *pino) 173 { 174 struct dentry *dentry; 175 176 /* 177 * Make sure to get the non-deleted alias. The alias associated with 178 * the open file descriptor being fsync()'ed may be deleted already. 179 */ 180 dentry = d_find_alias(inode); 181 if (!dentry) 182 return 0; 183 184 *pino = parent_ino(dentry); 185 dput(dentry); 186 return 1; 187 } 188 189 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 190 { 191 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 192 enum cp_reason_type cp_reason = CP_NO_NEEDED; 193 194 if (!S_ISREG(inode->i_mode)) 195 cp_reason = CP_NON_REGULAR; 196 else if (f2fs_compressed_file(inode)) 197 cp_reason = CP_COMPRESSED; 198 else if (inode->i_nlink != 1) 199 cp_reason = CP_HARDLINK; 200 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 201 cp_reason = CP_SB_NEED_CP; 202 else if (file_wrong_pino(inode)) 203 cp_reason = CP_WRONG_PINO; 204 else if (!f2fs_space_for_roll_forward(sbi)) 205 cp_reason = CP_NO_SPC_ROLL; 206 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 207 cp_reason = CP_NODE_NEED_CP; 208 else if (test_opt(sbi, FASTBOOT)) 209 cp_reason = CP_FASTBOOT_MODE; 210 else if (F2FS_OPTION(sbi).active_logs == 2) 211 cp_reason = CP_SPEC_LOG_NUM; 212 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 213 f2fs_need_dentry_mark(sbi, inode->i_ino) && 214 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 215 TRANS_DIR_INO)) 216 cp_reason = CP_RECOVER_DIR; 217 218 return cp_reason; 219 } 220 221 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 222 { 223 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 224 bool ret = false; 225 /* But we need to avoid that there are some inode updates */ 226 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 227 ret = true; 228 f2fs_put_page(i, 0); 229 return ret; 230 } 231 232 static void try_to_fix_pino(struct inode *inode) 233 { 234 struct f2fs_inode_info *fi = F2FS_I(inode); 235 nid_t pino; 236 237 down_write(&fi->i_sem); 238 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 239 get_parent_ino(inode, &pino)) { 240 f2fs_i_pino_write(inode, pino); 241 file_got_pino(inode); 242 } 243 up_write(&fi->i_sem); 244 } 245 246 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 247 int datasync, bool atomic) 248 { 249 struct inode *inode = file->f_mapping->host; 250 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 251 nid_t ino = inode->i_ino; 252 int ret = 0; 253 enum cp_reason_type cp_reason = 0; 254 struct writeback_control wbc = { 255 .sync_mode = WB_SYNC_ALL, 256 .nr_to_write = LONG_MAX, 257 .for_reclaim = 0, 258 }; 259 unsigned int seq_id = 0; 260 261 if (unlikely(f2fs_readonly(inode->i_sb) || 262 is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 263 return 0; 264 265 trace_f2fs_sync_file_enter(inode); 266 267 if (S_ISDIR(inode->i_mode)) 268 goto go_write; 269 270 /* if fdatasync is triggered, let's do in-place-update */ 271 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 272 set_inode_flag(inode, FI_NEED_IPU); 273 ret = file_write_and_wait_range(file, start, end); 274 clear_inode_flag(inode, FI_NEED_IPU); 275 276 if (ret) { 277 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 278 return ret; 279 } 280 281 /* if the inode is dirty, let's recover all the time */ 282 if (!f2fs_skip_inode_update(inode, datasync)) { 283 f2fs_write_inode(inode, NULL); 284 goto go_write; 285 } 286 287 /* 288 * if there is no written data, don't waste time to write recovery info. 289 */ 290 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 291 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 292 293 /* it may call write_inode just prior to fsync */ 294 if (need_inode_page_update(sbi, ino)) 295 goto go_write; 296 297 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 298 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 299 goto flush_out; 300 goto out; 301 } 302 go_write: 303 /* 304 * Both of fdatasync() and fsync() are able to be recovered from 305 * sudden-power-off. 306 */ 307 down_read(&F2FS_I(inode)->i_sem); 308 cp_reason = need_do_checkpoint(inode); 309 up_read(&F2FS_I(inode)->i_sem); 310 311 if (cp_reason) { 312 /* all the dirty node pages should be flushed for POR */ 313 ret = f2fs_sync_fs(inode->i_sb, 1); 314 315 /* 316 * We've secured consistency through sync_fs. Following pino 317 * will be used only for fsynced inodes after checkpoint. 318 */ 319 try_to_fix_pino(inode); 320 clear_inode_flag(inode, FI_APPEND_WRITE); 321 clear_inode_flag(inode, FI_UPDATE_WRITE); 322 goto out; 323 } 324 sync_nodes: 325 atomic_inc(&sbi->wb_sync_req[NODE]); 326 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 327 atomic_dec(&sbi->wb_sync_req[NODE]); 328 if (ret) 329 goto out; 330 331 /* if cp_error was enabled, we should avoid infinite loop */ 332 if (unlikely(f2fs_cp_error(sbi))) { 333 ret = -EIO; 334 goto out; 335 } 336 337 if (f2fs_need_inode_block_update(sbi, ino)) { 338 f2fs_mark_inode_dirty_sync(inode, true); 339 f2fs_write_inode(inode, NULL); 340 goto sync_nodes; 341 } 342 343 /* 344 * If it's atomic_write, it's just fine to keep write ordering. So 345 * here we don't need to wait for node write completion, since we use 346 * node chain which serializes node blocks. If one of node writes are 347 * reordered, we can see simply broken chain, resulting in stopping 348 * roll-forward recovery. It means we'll recover all or none node blocks 349 * given fsync mark. 350 */ 351 if (!atomic) { 352 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 353 if (ret) 354 goto out; 355 } 356 357 /* once recovery info is written, don't need to tack this */ 358 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 359 clear_inode_flag(inode, FI_APPEND_WRITE); 360 flush_out: 361 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 362 ret = f2fs_issue_flush(sbi, inode->i_ino); 363 if (!ret) { 364 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 365 clear_inode_flag(inode, FI_UPDATE_WRITE); 366 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 367 } 368 f2fs_update_time(sbi, REQ_TIME); 369 out: 370 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 371 return ret; 372 } 373 374 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 375 { 376 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 377 return -EIO; 378 return f2fs_do_sync_file(file, start, end, datasync, false); 379 } 380 381 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 382 pgoff_t index, int whence) 383 { 384 switch (whence) { 385 case SEEK_DATA: 386 if (__is_valid_data_blkaddr(blkaddr)) 387 return true; 388 if (blkaddr == NEW_ADDR && 389 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 390 return true; 391 break; 392 case SEEK_HOLE: 393 if (blkaddr == NULL_ADDR) 394 return true; 395 break; 396 } 397 return false; 398 } 399 400 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 401 { 402 struct inode *inode = file->f_mapping->host; 403 loff_t maxbytes = inode->i_sb->s_maxbytes; 404 struct dnode_of_data dn; 405 pgoff_t pgofs, end_offset; 406 loff_t data_ofs = offset; 407 loff_t isize; 408 int err = 0; 409 410 inode_lock(inode); 411 412 isize = i_size_read(inode); 413 if (offset >= isize) 414 goto fail; 415 416 /* handle inline data case */ 417 if (f2fs_has_inline_data(inode)) { 418 if (whence == SEEK_HOLE) { 419 data_ofs = isize; 420 goto found; 421 } else if (whence == SEEK_DATA) { 422 data_ofs = offset; 423 goto found; 424 } 425 } 426 427 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 428 429 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 430 set_new_dnode(&dn, inode, NULL, NULL, 0); 431 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 432 if (err && err != -ENOENT) { 433 goto fail; 434 } else if (err == -ENOENT) { 435 /* direct node does not exists */ 436 if (whence == SEEK_DATA) { 437 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 438 continue; 439 } else { 440 goto found; 441 } 442 } 443 444 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 445 446 /* find data/hole in dnode block */ 447 for (; dn.ofs_in_node < end_offset; 448 dn.ofs_in_node++, pgofs++, 449 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 450 block_t blkaddr; 451 452 blkaddr = f2fs_data_blkaddr(&dn); 453 454 if (__is_valid_data_blkaddr(blkaddr) && 455 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 456 blkaddr, DATA_GENERIC_ENHANCE)) { 457 f2fs_put_dnode(&dn); 458 goto fail; 459 } 460 461 if (__found_offset(file->f_mapping, blkaddr, 462 pgofs, whence)) { 463 f2fs_put_dnode(&dn); 464 goto found; 465 } 466 } 467 f2fs_put_dnode(&dn); 468 } 469 470 if (whence == SEEK_DATA) 471 goto fail; 472 found: 473 if (whence == SEEK_HOLE && data_ofs > isize) 474 data_ofs = isize; 475 inode_unlock(inode); 476 return vfs_setpos(file, data_ofs, maxbytes); 477 fail: 478 inode_unlock(inode); 479 return -ENXIO; 480 } 481 482 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 483 { 484 struct inode *inode = file->f_mapping->host; 485 loff_t maxbytes = inode->i_sb->s_maxbytes; 486 487 if (f2fs_compressed_file(inode)) 488 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 489 490 switch (whence) { 491 case SEEK_SET: 492 case SEEK_CUR: 493 case SEEK_END: 494 return generic_file_llseek_size(file, offset, whence, 495 maxbytes, i_size_read(inode)); 496 case SEEK_DATA: 497 case SEEK_HOLE: 498 if (offset < 0) 499 return -ENXIO; 500 return f2fs_seek_block(file, offset, whence); 501 } 502 503 return -EINVAL; 504 } 505 506 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 507 { 508 struct inode *inode = file_inode(file); 509 510 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 511 return -EIO; 512 513 if (!f2fs_is_compress_backend_ready(inode)) 514 return -EOPNOTSUPP; 515 516 file_accessed(file); 517 vma->vm_ops = &f2fs_file_vm_ops; 518 set_inode_flag(inode, FI_MMAP_FILE); 519 return 0; 520 } 521 522 static int f2fs_file_open(struct inode *inode, struct file *filp) 523 { 524 int err = fscrypt_file_open(inode, filp); 525 526 if (err) 527 return err; 528 529 if (!f2fs_is_compress_backend_ready(inode)) 530 return -EOPNOTSUPP; 531 532 err = fsverity_file_open(inode, filp); 533 if (err) 534 return err; 535 536 filp->f_mode |= FMODE_NOWAIT; 537 538 return dquot_file_open(inode, filp); 539 } 540 541 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 542 { 543 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 544 struct f2fs_node *raw_node; 545 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 546 __le32 *addr; 547 int base = 0; 548 bool compressed_cluster = false; 549 int cluster_index = 0, valid_blocks = 0; 550 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 551 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 552 553 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 554 base = get_extra_isize(dn->inode); 555 556 raw_node = F2FS_NODE(dn->node_page); 557 addr = blkaddr_in_node(raw_node) + base + ofs; 558 559 /* Assumption: truncateion starts with cluster */ 560 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 561 block_t blkaddr = le32_to_cpu(*addr); 562 563 if (f2fs_compressed_file(dn->inode) && 564 !(cluster_index & (cluster_size - 1))) { 565 if (compressed_cluster) 566 f2fs_i_compr_blocks_update(dn->inode, 567 valid_blocks, false); 568 compressed_cluster = (blkaddr == COMPRESS_ADDR); 569 valid_blocks = 0; 570 } 571 572 if (blkaddr == NULL_ADDR) 573 continue; 574 575 dn->data_blkaddr = NULL_ADDR; 576 f2fs_set_data_blkaddr(dn); 577 578 if (__is_valid_data_blkaddr(blkaddr)) { 579 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 580 DATA_GENERIC_ENHANCE)) 581 continue; 582 if (compressed_cluster) 583 valid_blocks++; 584 } 585 586 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 587 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 588 589 f2fs_invalidate_blocks(sbi, blkaddr); 590 591 if (!released || blkaddr != COMPRESS_ADDR) 592 nr_free++; 593 } 594 595 if (compressed_cluster) 596 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 597 598 if (nr_free) { 599 pgoff_t fofs; 600 /* 601 * once we invalidate valid blkaddr in range [ofs, ofs + count], 602 * we will invalidate all blkaddr in the whole range. 603 */ 604 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 605 dn->inode) + ofs; 606 f2fs_update_extent_cache_range(dn, fofs, 0, len); 607 dec_valid_block_count(sbi, dn->inode, nr_free); 608 } 609 dn->ofs_in_node = ofs; 610 611 f2fs_update_time(sbi, REQ_TIME); 612 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 613 dn->ofs_in_node, nr_free); 614 } 615 616 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 617 { 618 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 619 } 620 621 static int truncate_partial_data_page(struct inode *inode, u64 from, 622 bool cache_only) 623 { 624 loff_t offset = from & (PAGE_SIZE - 1); 625 pgoff_t index = from >> PAGE_SHIFT; 626 struct address_space *mapping = inode->i_mapping; 627 struct page *page; 628 629 if (!offset && !cache_only) 630 return 0; 631 632 if (cache_only) { 633 page = find_lock_page(mapping, index); 634 if (page && PageUptodate(page)) 635 goto truncate_out; 636 f2fs_put_page(page, 1); 637 return 0; 638 } 639 640 page = f2fs_get_lock_data_page(inode, index, true); 641 if (IS_ERR(page)) 642 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 643 truncate_out: 644 f2fs_wait_on_page_writeback(page, DATA, true, true); 645 zero_user(page, offset, PAGE_SIZE - offset); 646 647 /* An encrypted inode should have a key and truncate the last page. */ 648 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 649 if (!cache_only) 650 set_page_dirty(page); 651 f2fs_put_page(page, 1); 652 return 0; 653 } 654 655 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 656 { 657 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 658 struct dnode_of_data dn; 659 pgoff_t free_from; 660 int count = 0, err = 0; 661 struct page *ipage; 662 bool truncate_page = false; 663 664 trace_f2fs_truncate_blocks_enter(inode, from); 665 666 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 667 668 if (free_from >= max_file_blocks(inode)) 669 goto free_partial; 670 671 if (lock) 672 f2fs_lock_op(sbi); 673 674 ipage = f2fs_get_node_page(sbi, inode->i_ino); 675 if (IS_ERR(ipage)) { 676 err = PTR_ERR(ipage); 677 goto out; 678 } 679 680 if (f2fs_has_inline_data(inode)) { 681 f2fs_truncate_inline_inode(inode, ipage, from); 682 f2fs_put_page(ipage, 1); 683 truncate_page = true; 684 goto out; 685 } 686 687 set_new_dnode(&dn, inode, ipage, NULL, 0); 688 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 689 if (err) { 690 if (err == -ENOENT) 691 goto free_next; 692 goto out; 693 } 694 695 count = ADDRS_PER_PAGE(dn.node_page, inode); 696 697 count -= dn.ofs_in_node; 698 f2fs_bug_on(sbi, count < 0); 699 700 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 701 f2fs_truncate_data_blocks_range(&dn, count); 702 free_from += count; 703 } 704 705 f2fs_put_dnode(&dn); 706 free_next: 707 err = f2fs_truncate_inode_blocks(inode, free_from); 708 out: 709 if (lock) 710 f2fs_unlock_op(sbi); 711 free_partial: 712 /* lastly zero out the first data page */ 713 if (!err) 714 err = truncate_partial_data_page(inode, from, truncate_page); 715 716 trace_f2fs_truncate_blocks_exit(inode, err); 717 return err; 718 } 719 720 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 721 { 722 u64 free_from = from; 723 int err; 724 725 #ifdef CONFIG_F2FS_FS_COMPRESSION 726 /* 727 * for compressed file, only support cluster size 728 * aligned truncation. 729 */ 730 if (f2fs_compressed_file(inode)) 731 free_from = round_up(from, 732 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 733 #endif 734 735 err = f2fs_do_truncate_blocks(inode, free_from, lock); 736 if (err) 737 return err; 738 739 #ifdef CONFIG_F2FS_FS_COMPRESSION 740 if (from != free_from) { 741 err = f2fs_truncate_partial_cluster(inode, from, lock); 742 if (err) 743 return err; 744 } 745 #endif 746 747 return 0; 748 } 749 750 int f2fs_truncate(struct inode *inode) 751 { 752 int err; 753 754 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 755 return -EIO; 756 757 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 758 S_ISLNK(inode->i_mode))) 759 return 0; 760 761 trace_f2fs_truncate(inode); 762 763 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 764 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 765 return -EIO; 766 } 767 768 err = dquot_initialize(inode); 769 if (err) 770 return err; 771 772 /* we should check inline_data size */ 773 if (!f2fs_may_inline_data(inode)) { 774 err = f2fs_convert_inline_inode(inode); 775 if (err) 776 return err; 777 } 778 779 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 780 if (err) 781 return err; 782 783 inode->i_mtime = inode->i_ctime = current_time(inode); 784 f2fs_mark_inode_dirty_sync(inode, false); 785 return 0; 786 } 787 788 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 789 struct kstat *stat, u32 request_mask, unsigned int query_flags) 790 { 791 struct inode *inode = d_inode(path->dentry); 792 struct f2fs_inode_info *fi = F2FS_I(inode); 793 struct f2fs_inode *ri; 794 unsigned int flags; 795 796 if (f2fs_has_extra_attr(inode) && 797 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 798 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 799 stat->result_mask |= STATX_BTIME; 800 stat->btime.tv_sec = fi->i_crtime.tv_sec; 801 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 802 } 803 804 flags = fi->i_flags; 805 if (flags & F2FS_COMPR_FL) 806 stat->attributes |= STATX_ATTR_COMPRESSED; 807 if (flags & F2FS_APPEND_FL) 808 stat->attributes |= STATX_ATTR_APPEND; 809 if (IS_ENCRYPTED(inode)) 810 stat->attributes |= STATX_ATTR_ENCRYPTED; 811 if (flags & F2FS_IMMUTABLE_FL) 812 stat->attributes |= STATX_ATTR_IMMUTABLE; 813 if (flags & F2FS_NODUMP_FL) 814 stat->attributes |= STATX_ATTR_NODUMP; 815 if (IS_VERITY(inode)) 816 stat->attributes |= STATX_ATTR_VERITY; 817 818 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 819 STATX_ATTR_APPEND | 820 STATX_ATTR_ENCRYPTED | 821 STATX_ATTR_IMMUTABLE | 822 STATX_ATTR_NODUMP | 823 STATX_ATTR_VERITY); 824 825 generic_fillattr(&init_user_ns, inode, stat); 826 827 /* we need to show initial sectors used for inline_data/dentries */ 828 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 829 f2fs_has_inline_dentry(inode)) 830 stat->blocks += (stat->size + 511) >> 9; 831 832 return 0; 833 } 834 835 #ifdef CONFIG_F2FS_FS_POSIX_ACL 836 static void __setattr_copy(struct user_namespace *mnt_userns, 837 struct inode *inode, const struct iattr *attr) 838 { 839 unsigned int ia_valid = attr->ia_valid; 840 841 if (ia_valid & ATTR_UID) 842 inode->i_uid = attr->ia_uid; 843 if (ia_valid & ATTR_GID) 844 inode->i_gid = attr->ia_gid; 845 if (ia_valid & ATTR_ATIME) 846 inode->i_atime = attr->ia_atime; 847 if (ia_valid & ATTR_MTIME) 848 inode->i_mtime = attr->ia_mtime; 849 if (ia_valid & ATTR_CTIME) 850 inode->i_ctime = attr->ia_ctime; 851 if (ia_valid & ATTR_MODE) { 852 umode_t mode = attr->ia_mode; 853 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 854 855 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID)) 856 mode &= ~S_ISGID; 857 set_acl_inode(inode, mode); 858 } 859 } 860 #else 861 #define __setattr_copy setattr_copy 862 #endif 863 864 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 865 struct iattr *attr) 866 { 867 struct inode *inode = d_inode(dentry); 868 int err; 869 870 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 871 return -EIO; 872 873 if (unlikely(IS_IMMUTABLE(inode))) 874 return -EPERM; 875 876 if (unlikely(IS_APPEND(inode) && 877 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 878 ATTR_GID | ATTR_TIMES_SET)))) 879 return -EPERM; 880 881 if ((attr->ia_valid & ATTR_SIZE) && 882 !f2fs_is_compress_backend_ready(inode)) 883 return -EOPNOTSUPP; 884 885 err = setattr_prepare(&init_user_ns, dentry, attr); 886 if (err) 887 return err; 888 889 err = fscrypt_prepare_setattr(dentry, attr); 890 if (err) 891 return err; 892 893 err = fsverity_prepare_setattr(dentry, attr); 894 if (err) 895 return err; 896 897 if (is_quota_modification(inode, attr)) { 898 err = dquot_initialize(inode); 899 if (err) 900 return err; 901 } 902 if ((attr->ia_valid & ATTR_UID && 903 !uid_eq(attr->ia_uid, inode->i_uid)) || 904 (attr->ia_valid & ATTR_GID && 905 !gid_eq(attr->ia_gid, inode->i_gid))) { 906 f2fs_lock_op(F2FS_I_SB(inode)); 907 err = dquot_transfer(inode, attr); 908 if (err) { 909 set_sbi_flag(F2FS_I_SB(inode), 910 SBI_QUOTA_NEED_REPAIR); 911 f2fs_unlock_op(F2FS_I_SB(inode)); 912 return err; 913 } 914 /* 915 * update uid/gid under lock_op(), so that dquot and inode can 916 * be updated atomically. 917 */ 918 if (attr->ia_valid & ATTR_UID) 919 inode->i_uid = attr->ia_uid; 920 if (attr->ia_valid & ATTR_GID) 921 inode->i_gid = attr->ia_gid; 922 f2fs_mark_inode_dirty_sync(inode, true); 923 f2fs_unlock_op(F2FS_I_SB(inode)); 924 } 925 926 if (attr->ia_valid & ATTR_SIZE) { 927 loff_t old_size = i_size_read(inode); 928 929 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 930 /* 931 * should convert inline inode before i_size_write to 932 * keep smaller than inline_data size with inline flag. 933 */ 934 err = f2fs_convert_inline_inode(inode); 935 if (err) 936 return err; 937 } 938 939 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 940 filemap_invalidate_lock(inode->i_mapping); 941 942 truncate_setsize(inode, attr->ia_size); 943 944 if (attr->ia_size <= old_size) 945 err = f2fs_truncate(inode); 946 /* 947 * do not trim all blocks after i_size if target size is 948 * larger than i_size. 949 */ 950 filemap_invalidate_unlock(inode->i_mapping); 951 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 952 if (err) 953 return err; 954 955 spin_lock(&F2FS_I(inode)->i_size_lock); 956 inode->i_mtime = inode->i_ctime = current_time(inode); 957 F2FS_I(inode)->last_disk_size = i_size_read(inode); 958 spin_unlock(&F2FS_I(inode)->i_size_lock); 959 } 960 961 __setattr_copy(&init_user_ns, inode, attr); 962 963 if (attr->ia_valid & ATTR_MODE) { 964 err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode)); 965 966 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 967 if (!err) 968 inode->i_mode = F2FS_I(inode)->i_acl_mode; 969 clear_inode_flag(inode, FI_ACL_MODE); 970 } 971 } 972 973 /* file size may changed here */ 974 f2fs_mark_inode_dirty_sync(inode, true); 975 976 /* inode change will produce dirty node pages flushed by checkpoint */ 977 f2fs_balance_fs(F2FS_I_SB(inode), true); 978 979 return err; 980 } 981 982 const struct inode_operations f2fs_file_inode_operations = { 983 .getattr = f2fs_getattr, 984 .setattr = f2fs_setattr, 985 .get_acl = f2fs_get_acl, 986 .set_acl = f2fs_set_acl, 987 .listxattr = f2fs_listxattr, 988 .fiemap = f2fs_fiemap, 989 .fileattr_get = f2fs_fileattr_get, 990 .fileattr_set = f2fs_fileattr_set, 991 }; 992 993 static int fill_zero(struct inode *inode, pgoff_t index, 994 loff_t start, loff_t len) 995 { 996 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 997 struct page *page; 998 999 if (!len) 1000 return 0; 1001 1002 f2fs_balance_fs(sbi, true); 1003 1004 f2fs_lock_op(sbi); 1005 page = f2fs_get_new_data_page(inode, NULL, index, false); 1006 f2fs_unlock_op(sbi); 1007 1008 if (IS_ERR(page)) 1009 return PTR_ERR(page); 1010 1011 f2fs_wait_on_page_writeback(page, DATA, true, true); 1012 zero_user(page, start, len); 1013 set_page_dirty(page); 1014 f2fs_put_page(page, 1); 1015 return 0; 1016 } 1017 1018 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1019 { 1020 int err; 1021 1022 while (pg_start < pg_end) { 1023 struct dnode_of_data dn; 1024 pgoff_t end_offset, count; 1025 1026 set_new_dnode(&dn, inode, NULL, NULL, 0); 1027 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1028 if (err) { 1029 if (err == -ENOENT) { 1030 pg_start = f2fs_get_next_page_offset(&dn, 1031 pg_start); 1032 continue; 1033 } 1034 return err; 1035 } 1036 1037 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1038 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1039 1040 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1041 1042 f2fs_truncate_data_blocks_range(&dn, count); 1043 f2fs_put_dnode(&dn); 1044 1045 pg_start += count; 1046 } 1047 return 0; 1048 } 1049 1050 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1051 { 1052 pgoff_t pg_start, pg_end; 1053 loff_t off_start, off_end; 1054 int ret; 1055 1056 ret = f2fs_convert_inline_inode(inode); 1057 if (ret) 1058 return ret; 1059 1060 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1061 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1062 1063 off_start = offset & (PAGE_SIZE - 1); 1064 off_end = (offset + len) & (PAGE_SIZE - 1); 1065 1066 if (pg_start == pg_end) { 1067 ret = fill_zero(inode, pg_start, off_start, 1068 off_end - off_start); 1069 if (ret) 1070 return ret; 1071 } else { 1072 if (off_start) { 1073 ret = fill_zero(inode, pg_start++, off_start, 1074 PAGE_SIZE - off_start); 1075 if (ret) 1076 return ret; 1077 } 1078 if (off_end) { 1079 ret = fill_zero(inode, pg_end, 0, off_end); 1080 if (ret) 1081 return ret; 1082 } 1083 1084 if (pg_start < pg_end) { 1085 struct address_space *mapping = inode->i_mapping; 1086 loff_t blk_start, blk_end; 1087 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1088 1089 f2fs_balance_fs(sbi, true); 1090 1091 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1092 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1093 1094 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1095 filemap_invalidate_lock(mapping); 1096 1097 truncate_inode_pages_range(mapping, blk_start, 1098 blk_end - 1); 1099 1100 f2fs_lock_op(sbi); 1101 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1102 f2fs_unlock_op(sbi); 1103 1104 filemap_invalidate_unlock(mapping); 1105 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1106 } 1107 } 1108 1109 return ret; 1110 } 1111 1112 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1113 int *do_replace, pgoff_t off, pgoff_t len) 1114 { 1115 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1116 struct dnode_of_data dn; 1117 int ret, done, i; 1118 1119 next_dnode: 1120 set_new_dnode(&dn, inode, NULL, NULL, 0); 1121 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1122 if (ret && ret != -ENOENT) { 1123 return ret; 1124 } else if (ret == -ENOENT) { 1125 if (dn.max_level == 0) 1126 return -ENOENT; 1127 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1128 dn.ofs_in_node, len); 1129 blkaddr += done; 1130 do_replace += done; 1131 goto next; 1132 } 1133 1134 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1135 dn.ofs_in_node, len); 1136 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1137 *blkaddr = f2fs_data_blkaddr(&dn); 1138 1139 if (__is_valid_data_blkaddr(*blkaddr) && 1140 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1141 DATA_GENERIC_ENHANCE)) { 1142 f2fs_put_dnode(&dn); 1143 return -EFSCORRUPTED; 1144 } 1145 1146 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1147 1148 if (f2fs_lfs_mode(sbi)) { 1149 f2fs_put_dnode(&dn); 1150 return -EOPNOTSUPP; 1151 } 1152 1153 /* do not invalidate this block address */ 1154 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1155 *do_replace = 1; 1156 } 1157 } 1158 f2fs_put_dnode(&dn); 1159 next: 1160 len -= done; 1161 off += done; 1162 if (len) 1163 goto next_dnode; 1164 return 0; 1165 } 1166 1167 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1168 int *do_replace, pgoff_t off, int len) 1169 { 1170 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1171 struct dnode_of_data dn; 1172 int ret, i; 1173 1174 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1175 if (*do_replace == 0) 1176 continue; 1177 1178 set_new_dnode(&dn, inode, NULL, NULL, 0); 1179 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1180 if (ret) { 1181 dec_valid_block_count(sbi, inode, 1); 1182 f2fs_invalidate_blocks(sbi, *blkaddr); 1183 } else { 1184 f2fs_update_data_blkaddr(&dn, *blkaddr); 1185 } 1186 f2fs_put_dnode(&dn); 1187 } 1188 return 0; 1189 } 1190 1191 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1192 block_t *blkaddr, int *do_replace, 1193 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1194 { 1195 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1196 pgoff_t i = 0; 1197 int ret; 1198 1199 while (i < len) { 1200 if (blkaddr[i] == NULL_ADDR && !full) { 1201 i++; 1202 continue; 1203 } 1204 1205 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1206 struct dnode_of_data dn; 1207 struct node_info ni; 1208 size_t new_size; 1209 pgoff_t ilen; 1210 1211 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1212 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1213 if (ret) 1214 return ret; 1215 1216 ret = f2fs_get_node_info(sbi, dn.nid, &ni); 1217 if (ret) { 1218 f2fs_put_dnode(&dn); 1219 return ret; 1220 } 1221 1222 ilen = min((pgoff_t) 1223 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1224 dn.ofs_in_node, len - i); 1225 do { 1226 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1227 f2fs_truncate_data_blocks_range(&dn, 1); 1228 1229 if (do_replace[i]) { 1230 f2fs_i_blocks_write(src_inode, 1231 1, false, false); 1232 f2fs_i_blocks_write(dst_inode, 1233 1, true, false); 1234 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1235 blkaddr[i], ni.version, true, false); 1236 1237 do_replace[i] = 0; 1238 } 1239 dn.ofs_in_node++; 1240 i++; 1241 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1242 if (dst_inode->i_size < new_size) 1243 f2fs_i_size_write(dst_inode, new_size); 1244 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1245 1246 f2fs_put_dnode(&dn); 1247 } else { 1248 struct page *psrc, *pdst; 1249 1250 psrc = f2fs_get_lock_data_page(src_inode, 1251 src + i, true); 1252 if (IS_ERR(psrc)) 1253 return PTR_ERR(psrc); 1254 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1255 true); 1256 if (IS_ERR(pdst)) { 1257 f2fs_put_page(psrc, 1); 1258 return PTR_ERR(pdst); 1259 } 1260 f2fs_copy_page(psrc, pdst); 1261 set_page_dirty(pdst); 1262 f2fs_put_page(pdst, 1); 1263 f2fs_put_page(psrc, 1); 1264 1265 ret = f2fs_truncate_hole(src_inode, 1266 src + i, src + i + 1); 1267 if (ret) 1268 return ret; 1269 i++; 1270 } 1271 } 1272 return 0; 1273 } 1274 1275 static int __exchange_data_block(struct inode *src_inode, 1276 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1277 pgoff_t len, bool full) 1278 { 1279 block_t *src_blkaddr; 1280 int *do_replace; 1281 pgoff_t olen; 1282 int ret; 1283 1284 while (len) { 1285 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1286 1287 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1288 array_size(olen, sizeof(block_t)), 1289 GFP_NOFS); 1290 if (!src_blkaddr) 1291 return -ENOMEM; 1292 1293 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1294 array_size(olen, sizeof(int)), 1295 GFP_NOFS); 1296 if (!do_replace) { 1297 kvfree(src_blkaddr); 1298 return -ENOMEM; 1299 } 1300 1301 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1302 do_replace, src, olen); 1303 if (ret) 1304 goto roll_back; 1305 1306 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1307 do_replace, src, dst, olen, full); 1308 if (ret) 1309 goto roll_back; 1310 1311 src += olen; 1312 dst += olen; 1313 len -= olen; 1314 1315 kvfree(src_blkaddr); 1316 kvfree(do_replace); 1317 } 1318 return 0; 1319 1320 roll_back: 1321 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1322 kvfree(src_blkaddr); 1323 kvfree(do_replace); 1324 return ret; 1325 } 1326 1327 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1328 { 1329 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1330 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1331 pgoff_t start = offset >> PAGE_SHIFT; 1332 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1333 int ret; 1334 1335 f2fs_balance_fs(sbi, true); 1336 1337 /* avoid gc operation during block exchange */ 1338 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1339 filemap_invalidate_lock(inode->i_mapping); 1340 1341 f2fs_lock_op(sbi); 1342 f2fs_drop_extent_tree(inode); 1343 truncate_pagecache(inode, offset); 1344 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1345 f2fs_unlock_op(sbi); 1346 1347 filemap_invalidate_unlock(inode->i_mapping); 1348 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1349 return ret; 1350 } 1351 1352 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1353 { 1354 loff_t new_size; 1355 int ret; 1356 1357 if (offset + len >= i_size_read(inode)) 1358 return -EINVAL; 1359 1360 /* collapse range should be aligned to block size of f2fs. */ 1361 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1362 return -EINVAL; 1363 1364 ret = f2fs_convert_inline_inode(inode); 1365 if (ret) 1366 return ret; 1367 1368 /* write out all dirty pages from offset */ 1369 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1370 if (ret) 1371 return ret; 1372 1373 ret = f2fs_do_collapse(inode, offset, len); 1374 if (ret) 1375 return ret; 1376 1377 /* write out all moved pages, if possible */ 1378 filemap_invalidate_lock(inode->i_mapping); 1379 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1380 truncate_pagecache(inode, offset); 1381 1382 new_size = i_size_read(inode) - len; 1383 ret = f2fs_truncate_blocks(inode, new_size, true); 1384 filemap_invalidate_unlock(inode->i_mapping); 1385 if (!ret) 1386 f2fs_i_size_write(inode, new_size); 1387 return ret; 1388 } 1389 1390 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1391 pgoff_t end) 1392 { 1393 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1394 pgoff_t index = start; 1395 unsigned int ofs_in_node = dn->ofs_in_node; 1396 blkcnt_t count = 0; 1397 int ret; 1398 1399 for (; index < end; index++, dn->ofs_in_node++) { 1400 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1401 count++; 1402 } 1403 1404 dn->ofs_in_node = ofs_in_node; 1405 ret = f2fs_reserve_new_blocks(dn, count); 1406 if (ret) 1407 return ret; 1408 1409 dn->ofs_in_node = ofs_in_node; 1410 for (index = start; index < end; index++, dn->ofs_in_node++) { 1411 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1412 /* 1413 * f2fs_reserve_new_blocks will not guarantee entire block 1414 * allocation. 1415 */ 1416 if (dn->data_blkaddr == NULL_ADDR) { 1417 ret = -ENOSPC; 1418 break; 1419 } 1420 if (dn->data_blkaddr != NEW_ADDR) { 1421 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1422 dn->data_blkaddr = NEW_ADDR; 1423 f2fs_set_data_blkaddr(dn); 1424 } 1425 } 1426 1427 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1428 1429 return ret; 1430 } 1431 1432 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1433 int mode) 1434 { 1435 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1436 struct address_space *mapping = inode->i_mapping; 1437 pgoff_t index, pg_start, pg_end; 1438 loff_t new_size = i_size_read(inode); 1439 loff_t off_start, off_end; 1440 int ret = 0; 1441 1442 ret = inode_newsize_ok(inode, (len + offset)); 1443 if (ret) 1444 return ret; 1445 1446 ret = f2fs_convert_inline_inode(inode); 1447 if (ret) 1448 return ret; 1449 1450 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1451 if (ret) 1452 return ret; 1453 1454 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1455 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1456 1457 off_start = offset & (PAGE_SIZE - 1); 1458 off_end = (offset + len) & (PAGE_SIZE - 1); 1459 1460 if (pg_start == pg_end) { 1461 ret = fill_zero(inode, pg_start, off_start, 1462 off_end - off_start); 1463 if (ret) 1464 return ret; 1465 1466 new_size = max_t(loff_t, new_size, offset + len); 1467 } else { 1468 if (off_start) { 1469 ret = fill_zero(inode, pg_start++, off_start, 1470 PAGE_SIZE - off_start); 1471 if (ret) 1472 return ret; 1473 1474 new_size = max_t(loff_t, new_size, 1475 (loff_t)pg_start << PAGE_SHIFT); 1476 } 1477 1478 for (index = pg_start; index < pg_end;) { 1479 struct dnode_of_data dn; 1480 unsigned int end_offset; 1481 pgoff_t end; 1482 1483 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1484 filemap_invalidate_lock(mapping); 1485 1486 truncate_pagecache_range(inode, 1487 (loff_t)index << PAGE_SHIFT, 1488 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1489 1490 f2fs_lock_op(sbi); 1491 1492 set_new_dnode(&dn, inode, NULL, NULL, 0); 1493 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1494 if (ret) { 1495 f2fs_unlock_op(sbi); 1496 filemap_invalidate_unlock(mapping); 1497 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1498 goto out; 1499 } 1500 1501 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1502 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1503 1504 ret = f2fs_do_zero_range(&dn, index, end); 1505 f2fs_put_dnode(&dn); 1506 1507 f2fs_unlock_op(sbi); 1508 filemap_invalidate_unlock(mapping); 1509 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1510 1511 f2fs_balance_fs(sbi, dn.node_changed); 1512 1513 if (ret) 1514 goto out; 1515 1516 index = end; 1517 new_size = max_t(loff_t, new_size, 1518 (loff_t)index << PAGE_SHIFT); 1519 } 1520 1521 if (off_end) { 1522 ret = fill_zero(inode, pg_end, 0, off_end); 1523 if (ret) 1524 goto out; 1525 1526 new_size = max_t(loff_t, new_size, offset + len); 1527 } 1528 } 1529 1530 out: 1531 if (new_size > i_size_read(inode)) { 1532 if (mode & FALLOC_FL_KEEP_SIZE) 1533 file_set_keep_isize(inode); 1534 else 1535 f2fs_i_size_write(inode, new_size); 1536 } 1537 return ret; 1538 } 1539 1540 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1541 { 1542 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1543 struct address_space *mapping = inode->i_mapping; 1544 pgoff_t nr, pg_start, pg_end, delta, idx; 1545 loff_t new_size; 1546 int ret = 0; 1547 1548 new_size = i_size_read(inode) + len; 1549 ret = inode_newsize_ok(inode, new_size); 1550 if (ret) 1551 return ret; 1552 1553 if (offset >= i_size_read(inode)) 1554 return -EINVAL; 1555 1556 /* insert range should be aligned to block size of f2fs. */ 1557 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1558 return -EINVAL; 1559 1560 ret = f2fs_convert_inline_inode(inode); 1561 if (ret) 1562 return ret; 1563 1564 f2fs_balance_fs(sbi, true); 1565 1566 filemap_invalidate_lock(mapping); 1567 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1568 filemap_invalidate_unlock(mapping); 1569 if (ret) 1570 return ret; 1571 1572 /* write out all dirty pages from offset */ 1573 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1574 if (ret) 1575 return ret; 1576 1577 pg_start = offset >> PAGE_SHIFT; 1578 pg_end = (offset + len) >> PAGE_SHIFT; 1579 delta = pg_end - pg_start; 1580 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1581 1582 /* avoid gc operation during block exchange */ 1583 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1584 filemap_invalidate_lock(mapping); 1585 truncate_pagecache(inode, offset); 1586 1587 while (!ret && idx > pg_start) { 1588 nr = idx - pg_start; 1589 if (nr > delta) 1590 nr = delta; 1591 idx -= nr; 1592 1593 f2fs_lock_op(sbi); 1594 f2fs_drop_extent_tree(inode); 1595 1596 ret = __exchange_data_block(inode, inode, idx, 1597 idx + delta, nr, false); 1598 f2fs_unlock_op(sbi); 1599 } 1600 filemap_invalidate_unlock(mapping); 1601 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1602 1603 /* write out all moved pages, if possible */ 1604 filemap_invalidate_lock(mapping); 1605 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1606 truncate_pagecache(inode, offset); 1607 filemap_invalidate_unlock(mapping); 1608 1609 if (!ret) 1610 f2fs_i_size_write(inode, new_size); 1611 return ret; 1612 } 1613 1614 static int expand_inode_data(struct inode *inode, loff_t offset, 1615 loff_t len, int mode) 1616 { 1617 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1618 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1619 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1620 .m_may_create = true }; 1621 pgoff_t pg_start, pg_end; 1622 loff_t new_size = i_size_read(inode); 1623 loff_t off_end; 1624 block_t expanded = 0; 1625 int err; 1626 1627 err = inode_newsize_ok(inode, (len + offset)); 1628 if (err) 1629 return err; 1630 1631 err = f2fs_convert_inline_inode(inode); 1632 if (err) 1633 return err; 1634 1635 f2fs_balance_fs(sbi, true); 1636 1637 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1638 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1639 off_end = (offset + len) & (PAGE_SIZE - 1); 1640 1641 map.m_lblk = pg_start; 1642 map.m_len = pg_end - pg_start; 1643 if (off_end) 1644 map.m_len++; 1645 1646 if (!map.m_len) 1647 return 0; 1648 1649 if (f2fs_is_pinned_file(inode)) { 1650 block_t sec_blks = BLKS_PER_SEC(sbi); 1651 block_t sec_len = roundup(map.m_len, sec_blks); 1652 1653 map.m_len = sec_blks; 1654 next_alloc: 1655 if (has_not_enough_free_secs(sbi, 0, 1656 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1657 down_write(&sbi->gc_lock); 1658 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO); 1659 if (err && err != -ENODATA && err != -EAGAIN) 1660 goto out_err; 1661 } 1662 1663 down_write(&sbi->pin_sem); 1664 1665 f2fs_lock_op(sbi); 1666 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 1667 f2fs_unlock_op(sbi); 1668 1669 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1670 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1671 1672 up_write(&sbi->pin_sem); 1673 1674 expanded += map.m_len; 1675 sec_len -= map.m_len; 1676 map.m_lblk += map.m_len; 1677 if (!err && sec_len) 1678 goto next_alloc; 1679 1680 map.m_len = expanded; 1681 } else { 1682 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1683 expanded = map.m_len; 1684 } 1685 out_err: 1686 if (err) { 1687 pgoff_t last_off; 1688 1689 if (!expanded) 1690 return err; 1691 1692 last_off = pg_start + expanded - 1; 1693 1694 /* update new size to the failed position */ 1695 new_size = (last_off == pg_end) ? offset + len : 1696 (loff_t)(last_off + 1) << PAGE_SHIFT; 1697 } else { 1698 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1699 } 1700 1701 if (new_size > i_size_read(inode)) { 1702 if (mode & FALLOC_FL_KEEP_SIZE) 1703 file_set_keep_isize(inode); 1704 else 1705 f2fs_i_size_write(inode, new_size); 1706 } 1707 1708 return err; 1709 } 1710 1711 static long f2fs_fallocate(struct file *file, int mode, 1712 loff_t offset, loff_t len) 1713 { 1714 struct inode *inode = file_inode(file); 1715 long ret = 0; 1716 1717 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1718 return -EIO; 1719 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1720 return -ENOSPC; 1721 if (!f2fs_is_compress_backend_ready(inode)) 1722 return -EOPNOTSUPP; 1723 1724 /* f2fs only support ->fallocate for regular file */ 1725 if (!S_ISREG(inode->i_mode)) 1726 return -EINVAL; 1727 1728 if (IS_ENCRYPTED(inode) && 1729 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1730 return -EOPNOTSUPP; 1731 1732 if (f2fs_compressed_file(inode) && 1733 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1734 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1735 return -EOPNOTSUPP; 1736 1737 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1738 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1739 FALLOC_FL_INSERT_RANGE)) 1740 return -EOPNOTSUPP; 1741 1742 inode_lock(inode); 1743 1744 if (mode & FALLOC_FL_PUNCH_HOLE) { 1745 if (offset >= inode->i_size) 1746 goto out; 1747 1748 ret = punch_hole(inode, offset, len); 1749 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1750 ret = f2fs_collapse_range(inode, offset, len); 1751 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1752 ret = f2fs_zero_range(inode, offset, len, mode); 1753 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1754 ret = f2fs_insert_range(inode, offset, len); 1755 } else { 1756 ret = expand_inode_data(inode, offset, len, mode); 1757 } 1758 1759 if (!ret) { 1760 inode->i_mtime = inode->i_ctime = current_time(inode); 1761 f2fs_mark_inode_dirty_sync(inode, false); 1762 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1763 } 1764 1765 out: 1766 inode_unlock(inode); 1767 1768 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1769 return ret; 1770 } 1771 1772 static int f2fs_release_file(struct inode *inode, struct file *filp) 1773 { 1774 /* 1775 * f2fs_relase_file is called at every close calls. So we should 1776 * not drop any inmemory pages by close called by other process. 1777 */ 1778 if (!(filp->f_mode & FMODE_WRITE) || 1779 atomic_read(&inode->i_writecount) != 1) 1780 return 0; 1781 1782 /* some remained atomic pages should discarded */ 1783 if (f2fs_is_atomic_file(inode)) 1784 f2fs_drop_inmem_pages(inode); 1785 if (f2fs_is_volatile_file(inode)) { 1786 set_inode_flag(inode, FI_DROP_CACHE); 1787 filemap_fdatawrite(inode->i_mapping); 1788 clear_inode_flag(inode, FI_DROP_CACHE); 1789 clear_inode_flag(inode, FI_VOLATILE_FILE); 1790 stat_dec_volatile_write(inode); 1791 } 1792 return 0; 1793 } 1794 1795 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1796 { 1797 struct inode *inode = file_inode(file); 1798 1799 /* 1800 * If the process doing a transaction is crashed, we should do 1801 * roll-back. Otherwise, other reader/write can see corrupted database 1802 * until all the writers close its file. Since this should be done 1803 * before dropping file lock, it needs to do in ->flush. 1804 */ 1805 if (f2fs_is_atomic_file(inode) && 1806 F2FS_I(inode)->inmem_task == current) 1807 f2fs_drop_inmem_pages(inode); 1808 return 0; 1809 } 1810 1811 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1812 { 1813 struct f2fs_inode_info *fi = F2FS_I(inode); 1814 u32 masked_flags = fi->i_flags & mask; 1815 1816 /* mask can be shrunk by flags_valid selector */ 1817 iflags &= mask; 1818 1819 /* Is it quota file? Do not allow user to mess with it */ 1820 if (IS_NOQUOTA(inode)) 1821 return -EPERM; 1822 1823 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1824 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1825 return -EOPNOTSUPP; 1826 if (!f2fs_empty_dir(inode)) 1827 return -ENOTEMPTY; 1828 } 1829 1830 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1831 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1832 return -EOPNOTSUPP; 1833 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1834 return -EINVAL; 1835 } 1836 1837 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1838 if (masked_flags & F2FS_COMPR_FL) { 1839 if (!f2fs_disable_compressed_file(inode)) 1840 return -EINVAL; 1841 } 1842 if (iflags & F2FS_NOCOMP_FL) 1843 return -EINVAL; 1844 if (iflags & F2FS_COMPR_FL) { 1845 if (!f2fs_may_compress(inode)) 1846 return -EINVAL; 1847 if (S_ISREG(inode->i_mode) && inode->i_size) 1848 return -EINVAL; 1849 1850 set_compress_context(inode); 1851 } 1852 } 1853 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) { 1854 if (masked_flags & F2FS_COMPR_FL) 1855 return -EINVAL; 1856 } 1857 1858 fi->i_flags = iflags | (fi->i_flags & ~mask); 1859 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1860 (fi->i_flags & F2FS_NOCOMP_FL)); 1861 1862 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1863 set_inode_flag(inode, FI_PROJ_INHERIT); 1864 else 1865 clear_inode_flag(inode, FI_PROJ_INHERIT); 1866 1867 inode->i_ctime = current_time(inode); 1868 f2fs_set_inode_flags(inode); 1869 f2fs_mark_inode_dirty_sync(inode, true); 1870 return 0; 1871 } 1872 1873 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 1874 1875 /* 1876 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1877 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1878 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1879 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1880 * 1881 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 1882 * FS_IOC_FSSETXATTR is done by the VFS. 1883 */ 1884 1885 static const struct { 1886 u32 iflag; 1887 u32 fsflag; 1888 } f2fs_fsflags_map[] = { 1889 { F2FS_COMPR_FL, FS_COMPR_FL }, 1890 { F2FS_SYNC_FL, FS_SYNC_FL }, 1891 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1892 { F2FS_APPEND_FL, FS_APPEND_FL }, 1893 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1894 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1895 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1896 { F2FS_INDEX_FL, FS_INDEX_FL }, 1897 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1898 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1899 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1900 }; 1901 1902 #define F2FS_GETTABLE_FS_FL ( \ 1903 FS_COMPR_FL | \ 1904 FS_SYNC_FL | \ 1905 FS_IMMUTABLE_FL | \ 1906 FS_APPEND_FL | \ 1907 FS_NODUMP_FL | \ 1908 FS_NOATIME_FL | \ 1909 FS_NOCOMP_FL | \ 1910 FS_INDEX_FL | \ 1911 FS_DIRSYNC_FL | \ 1912 FS_PROJINHERIT_FL | \ 1913 FS_ENCRYPT_FL | \ 1914 FS_INLINE_DATA_FL | \ 1915 FS_NOCOW_FL | \ 1916 FS_VERITY_FL | \ 1917 FS_CASEFOLD_FL) 1918 1919 #define F2FS_SETTABLE_FS_FL ( \ 1920 FS_COMPR_FL | \ 1921 FS_SYNC_FL | \ 1922 FS_IMMUTABLE_FL | \ 1923 FS_APPEND_FL | \ 1924 FS_NODUMP_FL | \ 1925 FS_NOATIME_FL | \ 1926 FS_NOCOMP_FL | \ 1927 FS_DIRSYNC_FL | \ 1928 FS_PROJINHERIT_FL | \ 1929 FS_CASEFOLD_FL) 1930 1931 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1932 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1933 { 1934 u32 fsflags = 0; 1935 int i; 1936 1937 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1938 if (iflags & f2fs_fsflags_map[i].iflag) 1939 fsflags |= f2fs_fsflags_map[i].fsflag; 1940 1941 return fsflags; 1942 } 1943 1944 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1945 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1946 { 1947 u32 iflags = 0; 1948 int i; 1949 1950 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1951 if (fsflags & f2fs_fsflags_map[i].fsflag) 1952 iflags |= f2fs_fsflags_map[i].iflag; 1953 1954 return iflags; 1955 } 1956 1957 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1958 { 1959 struct inode *inode = file_inode(filp); 1960 1961 return put_user(inode->i_generation, (int __user *)arg); 1962 } 1963 1964 static int f2fs_ioc_start_atomic_write(struct file *filp) 1965 { 1966 struct inode *inode = file_inode(filp); 1967 struct f2fs_inode_info *fi = F2FS_I(inode); 1968 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1969 int ret; 1970 1971 if (!inode_owner_or_capable(&init_user_ns, inode)) 1972 return -EACCES; 1973 1974 if (!S_ISREG(inode->i_mode)) 1975 return -EINVAL; 1976 1977 if (filp->f_flags & O_DIRECT) 1978 return -EINVAL; 1979 1980 ret = mnt_want_write_file(filp); 1981 if (ret) 1982 return ret; 1983 1984 inode_lock(inode); 1985 1986 f2fs_disable_compressed_file(inode); 1987 1988 if (f2fs_is_atomic_file(inode)) { 1989 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) 1990 ret = -EINVAL; 1991 goto out; 1992 } 1993 1994 ret = f2fs_convert_inline_inode(inode); 1995 if (ret) 1996 goto out; 1997 1998 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1999 2000 /* 2001 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2002 * f2fs_is_atomic_file. 2003 */ 2004 if (get_dirty_pages(inode)) 2005 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2006 inode->i_ino, get_dirty_pages(inode)); 2007 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2008 if (ret) { 2009 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2010 goto out; 2011 } 2012 2013 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 2014 if (list_empty(&fi->inmem_ilist)) 2015 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 2016 sbi->atomic_files++; 2017 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 2018 2019 /* add inode in inmem_list first and set atomic_file */ 2020 set_inode_flag(inode, FI_ATOMIC_FILE); 2021 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2022 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2023 2024 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2025 F2FS_I(inode)->inmem_task = current; 2026 stat_update_max_atomic_write(inode); 2027 out: 2028 inode_unlock(inode); 2029 mnt_drop_write_file(filp); 2030 return ret; 2031 } 2032 2033 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2034 { 2035 struct inode *inode = file_inode(filp); 2036 int ret; 2037 2038 if (!inode_owner_or_capable(&init_user_ns, inode)) 2039 return -EACCES; 2040 2041 ret = mnt_want_write_file(filp); 2042 if (ret) 2043 return ret; 2044 2045 f2fs_balance_fs(F2FS_I_SB(inode), true); 2046 2047 inode_lock(inode); 2048 2049 if (f2fs_is_volatile_file(inode)) { 2050 ret = -EINVAL; 2051 goto err_out; 2052 } 2053 2054 if (f2fs_is_atomic_file(inode)) { 2055 ret = f2fs_commit_inmem_pages(inode); 2056 if (ret) 2057 goto err_out; 2058 2059 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2060 if (!ret) 2061 f2fs_drop_inmem_pages(inode); 2062 } else { 2063 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2064 } 2065 err_out: 2066 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2067 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2068 ret = -EINVAL; 2069 } 2070 inode_unlock(inode); 2071 mnt_drop_write_file(filp); 2072 return ret; 2073 } 2074 2075 static int f2fs_ioc_start_volatile_write(struct file *filp) 2076 { 2077 struct inode *inode = file_inode(filp); 2078 int ret; 2079 2080 if (!inode_owner_or_capable(&init_user_ns, inode)) 2081 return -EACCES; 2082 2083 if (!S_ISREG(inode->i_mode)) 2084 return -EINVAL; 2085 2086 ret = mnt_want_write_file(filp); 2087 if (ret) 2088 return ret; 2089 2090 inode_lock(inode); 2091 2092 if (f2fs_is_volatile_file(inode)) 2093 goto out; 2094 2095 ret = f2fs_convert_inline_inode(inode); 2096 if (ret) 2097 goto out; 2098 2099 stat_inc_volatile_write(inode); 2100 stat_update_max_volatile_write(inode); 2101 2102 set_inode_flag(inode, FI_VOLATILE_FILE); 2103 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2104 out: 2105 inode_unlock(inode); 2106 mnt_drop_write_file(filp); 2107 return ret; 2108 } 2109 2110 static int f2fs_ioc_release_volatile_write(struct file *filp) 2111 { 2112 struct inode *inode = file_inode(filp); 2113 int ret; 2114 2115 if (!inode_owner_or_capable(&init_user_ns, inode)) 2116 return -EACCES; 2117 2118 ret = mnt_want_write_file(filp); 2119 if (ret) 2120 return ret; 2121 2122 inode_lock(inode); 2123 2124 if (!f2fs_is_volatile_file(inode)) 2125 goto out; 2126 2127 if (!f2fs_is_first_block_written(inode)) { 2128 ret = truncate_partial_data_page(inode, 0, true); 2129 goto out; 2130 } 2131 2132 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 2133 out: 2134 inode_unlock(inode); 2135 mnt_drop_write_file(filp); 2136 return ret; 2137 } 2138 2139 static int f2fs_ioc_abort_volatile_write(struct file *filp) 2140 { 2141 struct inode *inode = file_inode(filp); 2142 int ret; 2143 2144 if (!inode_owner_or_capable(&init_user_ns, inode)) 2145 return -EACCES; 2146 2147 ret = mnt_want_write_file(filp); 2148 if (ret) 2149 return ret; 2150 2151 inode_lock(inode); 2152 2153 if (f2fs_is_atomic_file(inode)) 2154 f2fs_drop_inmem_pages(inode); 2155 if (f2fs_is_volatile_file(inode)) { 2156 clear_inode_flag(inode, FI_VOLATILE_FILE); 2157 stat_dec_volatile_write(inode); 2158 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2159 } 2160 2161 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2162 2163 inode_unlock(inode); 2164 2165 mnt_drop_write_file(filp); 2166 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2167 return ret; 2168 } 2169 2170 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2171 { 2172 struct inode *inode = file_inode(filp); 2173 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2174 struct super_block *sb = sbi->sb; 2175 __u32 in; 2176 int ret = 0; 2177 2178 if (!capable(CAP_SYS_ADMIN)) 2179 return -EPERM; 2180 2181 if (get_user(in, (__u32 __user *)arg)) 2182 return -EFAULT; 2183 2184 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2185 ret = mnt_want_write_file(filp); 2186 if (ret) { 2187 if (ret == -EROFS) { 2188 ret = 0; 2189 f2fs_stop_checkpoint(sbi, false); 2190 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2191 trace_f2fs_shutdown(sbi, in, ret); 2192 } 2193 return ret; 2194 } 2195 } 2196 2197 switch (in) { 2198 case F2FS_GOING_DOWN_FULLSYNC: 2199 ret = freeze_bdev(sb->s_bdev); 2200 if (ret) 2201 goto out; 2202 f2fs_stop_checkpoint(sbi, false); 2203 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2204 thaw_bdev(sb->s_bdev); 2205 break; 2206 case F2FS_GOING_DOWN_METASYNC: 2207 /* do checkpoint only */ 2208 ret = f2fs_sync_fs(sb, 1); 2209 if (ret) 2210 goto out; 2211 f2fs_stop_checkpoint(sbi, false); 2212 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2213 break; 2214 case F2FS_GOING_DOWN_NOSYNC: 2215 f2fs_stop_checkpoint(sbi, false); 2216 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2217 break; 2218 case F2FS_GOING_DOWN_METAFLUSH: 2219 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2220 f2fs_stop_checkpoint(sbi, false); 2221 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2222 break; 2223 case F2FS_GOING_DOWN_NEED_FSCK: 2224 set_sbi_flag(sbi, SBI_NEED_FSCK); 2225 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2226 set_sbi_flag(sbi, SBI_IS_DIRTY); 2227 /* do checkpoint only */ 2228 ret = f2fs_sync_fs(sb, 1); 2229 goto out; 2230 default: 2231 ret = -EINVAL; 2232 goto out; 2233 } 2234 2235 f2fs_stop_gc_thread(sbi); 2236 f2fs_stop_discard_thread(sbi); 2237 2238 f2fs_drop_discard_cmd(sbi); 2239 clear_opt(sbi, DISCARD); 2240 2241 f2fs_update_time(sbi, REQ_TIME); 2242 out: 2243 if (in != F2FS_GOING_DOWN_FULLSYNC) 2244 mnt_drop_write_file(filp); 2245 2246 trace_f2fs_shutdown(sbi, in, ret); 2247 2248 return ret; 2249 } 2250 2251 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2252 { 2253 struct inode *inode = file_inode(filp); 2254 struct super_block *sb = inode->i_sb; 2255 struct request_queue *q = bdev_get_queue(sb->s_bdev); 2256 struct fstrim_range range; 2257 int ret; 2258 2259 if (!capable(CAP_SYS_ADMIN)) 2260 return -EPERM; 2261 2262 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2263 return -EOPNOTSUPP; 2264 2265 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2266 sizeof(range))) 2267 return -EFAULT; 2268 2269 ret = mnt_want_write_file(filp); 2270 if (ret) 2271 return ret; 2272 2273 range.minlen = max((unsigned int)range.minlen, 2274 q->limits.discard_granularity); 2275 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2276 mnt_drop_write_file(filp); 2277 if (ret < 0) 2278 return ret; 2279 2280 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2281 sizeof(range))) 2282 return -EFAULT; 2283 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2284 return 0; 2285 } 2286 2287 static bool uuid_is_nonzero(__u8 u[16]) 2288 { 2289 int i; 2290 2291 for (i = 0; i < 16; i++) 2292 if (u[i]) 2293 return true; 2294 return false; 2295 } 2296 2297 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2298 { 2299 struct inode *inode = file_inode(filp); 2300 2301 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2302 return -EOPNOTSUPP; 2303 2304 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2305 2306 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2307 } 2308 2309 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2310 { 2311 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2312 return -EOPNOTSUPP; 2313 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2314 } 2315 2316 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2317 { 2318 struct inode *inode = file_inode(filp); 2319 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2320 int err; 2321 2322 if (!f2fs_sb_has_encrypt(sbi)) 2323 return -EOPNOTSUPP; 2324 2325 err = mnt_want_write_file(filp); 2326 if (err) 2327 return err; 2328 2329 down_write(&sbi->sb_lock); 2330 2331 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2332 goto got_it; 2333 2334 /* update superblock with uuid */ 2335 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2336 2337 err = f2fs_commit_super(sbi, false); 2338 if (err) { 2339 /* undo new data */ 2340 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2341 goto out_err; 2342 } 2343 got_it: 2344 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2345 16)) 2346 err = -EFAULT; 2347 out_err: 2348 up_write(&sbi->sb_lock); 2349 mnt_drop_write_file(filp); 2350 return err; 2351 } 2352 2353 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2354 unsigned long arg) 2355 { 2356 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2357 return -EOPNOTSUPP; 2358 2359 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2360 } 2361 2362 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2363 { 2364 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2365 return -EOPNOTSUPP; 2366 2367 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2368 } 2369 2370 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2371 { 2372 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2373 return -EOPNOTSUPP; 2374 2375 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2376 } 2377 2378 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2379 unsigned long arg) 2380 { 2381 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2382 return -EOPNOTSUPP; 2383 2384 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2385 } 2386 2387 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2388 unsigned long arg) 2389 { 2390 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2391 return -EOPNOTSUPP; 2392 2393 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2394 } 2395 2396 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2397 { 2398 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2399 return -EOPNOTSUPP; 2400 2401 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2402 } 2403 2404 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2405 { 2406 struct inode *inode = file_inode(filp); 2407 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2408 __u32 sync; 2409 int ret; 2410 2411 if (!capable(CAP_SYS_ADMIN)) 2412 return -EPERM; 2413 2414 if (get_user(sync, (__u32 __user *)arg)) 2415 return -EFAULT; 2416 2417 if (f2fs_readonly(sbi->sb)) 2418 return -EROFS; 2419 2420 ret = mnt_want_write_file(filp); 2421 if (ret) 2422 return ret; 2423 2424 if (!sync) { 2425 if (!down_write_trylock(&sbi->gc_lock)) { 2426 ret = -EBUSY; 2427 goto out; 2428 } 2429 } else { 2430 down_write(&sbi->gc_lock); 2431 } 2432 2433 ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO); 2434 out: 2435 mnt_drop_write_file(filp); 2436 return ret; 2437 } 2438 2439 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2440 { 2441 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2442 u64 end; 2443 int ret; 2444 2445 if (!capable(CAP_SYS_ADMIN)) 2446 return -EPERM; 2447 if (f2fs_readonly(sbi->sb)) 2448 return -EROFS; 2449 2450 end = range->start + range->len; 2451 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2452 end >= MAX_BLKADDR(sbi)) 2453 return -EINVAL; 2454 2455 ret = mnt_want_write_file(filp); 2456 if (ret) 2457 return ret; 2458 2459 do_more: 2460 if (!range->sync) { 2461 if (!down_write_trylock(&sbi->gc_lock)) { 2462 ret = -EBUSY; 2463 goto out; 2464 } 2465 } else { 2466 down_write(&sbi->gc_lock); 2467 } 2468 2469 ret = f2fs_gc(sbi, range->sync, true, false, 2470 GET_SEGNO(sbi, range->start)); 2471 if (ret) { 2472 if (ret == -EBUSY) 2473 ret = -EAGAIN; 2474 goto out; 2475 } 2476 range->start += BLKS_PER_SEC(sbi); 2477 if (range->start <= end) 2478 goto do_more; 2479 out: 2480 mnt_drop_write_file(filp); 2481 return ret; 2482 } 2483 2484 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2485 { 2486 struct f2fs_gc_range range; 2487 2488 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2489 sizeof(range))) 2490 return -EFAULT; 2491 return __f2fs_ioc_gc_range(filp, &range); 2492 } 2493 2494 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2495 { 2496 struct inode *inode = file_inode(filp); 2497 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2498 int ret; 2499 2500 if (!capable(CAP_SYS_ADMIN)) 2501 return -EPERM; 2502 2503 if (f2fs_readonly(sbi->sb)) 2504 return -EROFS; 2505 2506 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2507 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2508 return -EINVAL; 2509 } 2510 2511 ret = mnt_want_write_file(filp); 2512 if (ret) 2513 return ret; 2514 2515 ret = f2fs_sync_fs(sbi->sb, 1); 2516 2517 mnt_drop_write_file(filp); 2518 return ret; 2519 } 2520 2521 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2522 struct file *filp, 2523 struct f2fs_defragment *range) 2524 { 2525 struct inode *inode = file_inode(filp); 2526 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2527 .m_seg_type = NO_CHECK_TYPE, 2528 .m_may_create = false }; 2529 struct extent_info ei = {0, 0, 0}; 2530 pgoff_t pg_start, pg_end, next_pgofs; 2531 unsigned int blk_per_seg = sbi->blocks_per_seg; 2532 unsigned int total = 0, sec_num; 2533 block_t blk_end = 0; 2534 bool fragmented = false; 2535 int err; 2536 2537 /* if in-place-update policy is enabled, don't waste time here */ 2538 if (f2fs_should_update_inplace(inode, NULL)) 2539 return -EINVAL; 2540 2541 pg_start = range->start >> PAGE_SHIFT; 2542 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2543 2544 f2fs_balance_fs(sbi, true); 2545 2546 inode_lock(inode); 2547 2548 /* writeback all dirty pages in the range */ 2549 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2550 range->start + range->len - 1); 2551 if (err) 2552 goto out; 2553 2554 /* 2555 * lookup mapping info in extent cache, skip defragmenting if physical 2556 * block addresses are continuous. 2557 */ 2558 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2559 if (ei.fofs + ei.len >= pg_end) 2560 goto out; 2561 } 2562 2563 map.m_lblk = pg_start; 2564 map.m_next_pgofs = &next_pgofs; 2565 2566 /* 2567 * lookup mapping info in dnode page cache, skip defragmenting if all 2568 * physical block addresses are continuous even if there are hole(s) 2569 * in logical blocks. 2570 */ 2571 while (map.m_lblk < pg_end) { 2572 map.m_len = pg_end - map.m_lblk; 2573 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2574 if (err) 2575 goto out; 2576 2577 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2578 map.m_lblk = next_pgofs; 2579 continue; 2580 } 2581 2582 if (blk_end && blk_end != map.m_pblk) 2583 fragmented = true; 2584 2585 /* record total count of block that we're going to move */ 2586 total += map.m_len; 2587 2588 blk_end = map.m_pblk + map.m_len; 2589 2590 map.m_lblk += map.m_len; 2591 } 2592 2593 if (!fragmented) { 2594 total = 0; 2595 goto out; 2596 } 2597 2598 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi)); 2599 2600 /* 2601 * make sure there are enough free section for LFS allocation, this can 2602 * avoid defragment running in SSR mode when free section are allocated 2603 * intensively 2604 */ 2605 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2606 err = -EAGAIN; 2607 goto out; 2608 } 2609 2610 map.m_lblk = pg_start; 2611 map.m_len = pg_end - pg_start; 2612 total = 0; 2613 2614 while (map.m_lblk < pg_end) { 2615 pgoff_t idx; 2616 int cnt = 0; 2617 2618 do_map: 2619 map.m_len = pg_end - map.m_lblk; 2620 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2621 if (err) 2622 goto clear_out; 2623 2624 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2625 map.m_lblk = next_pgofs; 2626 goto check; 2627 } 2628 2629 set_inode_flag(inode, FI_DO_DEFRAG); 2630 2631 idx = map.m_lblk; 2632 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2633 struct page *page; 2634 2635 page = f2fs_get_lock_data_page(inode, idx, true); 2636 if (IS_ERR(page)) { 2637 err = PTR_ERR(page); 2638 goto clear_out; 2639 } 2640 2641 set_page_dirty(page); 2642 f2fs_put_page(page, 1); 2643 2644 idx++; 2645 cnt++; 2646 total++; 2647 } 2648 2649 map.m_lblk = idx; 2650 check: 2651 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2652 goto do_map; 2653 2654 clear_inode_flag(inode, FI_DO_DEFRAG); 2655 2656 err = filemap_fdatawrite(inode->i_mapping); 2657 if (err) 2658 goto out; 2659 } 2660 clear_out: 2661 clear_inode_flag(inode, FI_DO_DEFRAG); 2662 out: 2663 inode_unlock(inode); 2664 if (!err) 2665 range->len = (u64)total << PAGE_SHIFT; 2666 return err; 2667 } 2668 2669 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2670 { 2671 struct inode *inode = file_inode(filp); 2672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2673 struct f2fs_defragment range; 2674 int err; 2675 2676 if (!capable(CAP_SYS_ADMIN)) 2677 return -EPERM; 2678 2679 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2680 return -EINVAL; 2681 2682 if (f2fs_readonly(sbi->sb)) 2683 return -EROFS; 2684 2685 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2686 sizeof(range))) 2687 return -EFAULT; 2688 2689 /* verify alignment of offset & size */ 2690 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2691 return -EINVAL; 2692 2693 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2694 max_file_blocks(inode))) 2695 return -EINVAL; 2696 2697 err = mnt_want_write_file(filp); 2698 if (err) 2699 return err; 2700 2701 err = f2fs_defragment_range(sbi, filp, &range); 2702 mnt_drop_write_file(filp); 2703 2704 f2fs_update_time(sbi, REQ_TIME); 2705 if (err < 0) 2706 return err; 2707 2708 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2709 sizeof(range))) 2710 return -EFAULT; 2711 2712 return 0; 2713 } 2714 2715 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2716 struct file *file_out, loff_t pos_out, size_t len) 2717 { 2718 struct inode *src = file_inode(file_in); 2719 struct inode *dst = file_inode(file_out); 2720 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2721 size_t olen = len, dst_max_i_size = 0; 2722 size_t dst_osize; 2723 int ret; 2724 2725 if (file_in->f_path.mnt != file_out->f_path.mnt || 2726 src->i_sb != dst->i_sb) 2727 return -EXDEV; 2728 2729 if (unlikely(f2fs_readonly(src->i_sb))) 2730 return -EROFS; 2731 2732 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2733 return -EINVAL; 2734 2735 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2736 return -EOPNOTSUPP; 2737 2738 if (pos_out < 0 || pos_in < 0) 2739 return -EINVAL; 2740 2741 if (src == dst) { 2742 if (pos_in == pos_out) 2743 return 0; 2744 if (pos_out > pos_in && pos_out < pos_in + len) 2745 return -EINVAL; 2746 } 2747 2748 inode_lock(src); 2749 if (src != dst) { 2750 ret = -EBUSY; 2751 if (!inode_trylock(dst)) 2752 goto out; 2753 } 2754 2755 ret = -EINVAL; 2756 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2757 goto out_unlock; 2758 if (len == 0) 2759 olen = len = src->i_size - pos_in; 2760 if (pos_in + len == src->i_size) 2761 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2762 if (len == 0) { 2763 ret = 0; 2764 goto out_unlock; 2765 } 2766 2767 dst_osize = dst->i_size; 2768 if (pos_out + olen > dst->i_size) 2769 dst_max_i_size = pos_out + olen; 2770 2771 /* verify the end result is block aligned */ 2772 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2773 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2774 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2775 goto out_unlock; 2776 2777 ret = f2fs_convert_inline_inode(src); 2778 if (ret) 2779 goto out_unlock; 2780 2781 ret = f2fs_convert_inline_inode(dst); 2782 if (ret) 2783 goto out_unlock; 2784 2785 /* write out all dirty pages from offset */ 2786 ret = filemap_write_and_wait_range(src->i_mapping, 2787 pos_in, pos_in + len); 2788 if (ret) 2789 goto out_unlock; 2790 2791 ret = filemap_write_and_wait_range(dst->i_mapping, 2792 pos_out, pos_out + len); 2793 if (ret) 2794 goto out_unlock; 2795 2796 f2fs_balance_fs(sbi, true); 2797 2798 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2799 if (src != dst) { 2800 ret = -EBUSY; 2801 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2802 goto out_src; 2803 } 2804 2805 f2fs_lock_op(sbi); 2806 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2807 pos_out >> F2FS_BLKSIZE_BITS, 2808 len >> F2FS_BLKSIZE_BITS, false); 2809 2810 if (!ret) { 2811 if (dst_max_i_size) 2812 f2fs_i_size_write(dst, dst_max_i_size); 2813 else if (dst_osize != dst->i_size) 2814 f2fs_i_size_write(dst, dst_osize); 2815 } 2816 f2fs_unlock_op(sbi); 2817 2818 if (src != dst) 2819 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2820 out_src: 2821 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2822 out_unlock: 2823 if (src != dst) 2824 inode_unlock(dst); 2825 out: 2826 inode_unlock(src); 2827 return ret; 2828 } 2829 2830 static int __f2fs_ioc_move_range(struct file *filp, 2831 struct f2fs_move_range *range) 2832 { 2833 struct fd dst; 2834 int err; 2835 2836 if (!(filp->f_mode & FMODE_READ) || 2837 !(filp->f_mode & FMODE_WRITE)) 2838 return -EBADF; 2839 2840 dst = fdget(range->dst_fd); 2841 if (!dst.file) 2842 return -EBADF; 2843 2844 if (!(dst.file->f_mode & FMODE_WRITE)) { 2845 err = -EBADF; 2846 goto err_out; 2847 } 2848 2849 err = mnt_want_write_file(filp); 2850 if (err) 2851 goto err_out; 2852 2853 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2854 range->pos_out, range->len); 2855 2856 mnt_drop_write_file(filp); 2857 err_out: 2858 fdput(dst); 2859 return err; 2860 } 2861 2862 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2863 { 2864 struct f2fs_move_range range; 2865 2866 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2867 sizeof(range))) 2868 return -EFAULT; 2869 return __f2fs_ioc_move_range(filp, &range); 2870 } 2871 2872 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2873 { 2874 struct inode *inode = file_inode(filp); 2875 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2876 struct sit_info *sm = SIT_I(sbi); 2877 unsigned int start_segno = 0, end_segno = 0; 2878 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2879 struct f2fs_flush_device range; 2880 int ret; 2881 2882 if (!capable(CAP_SYS_ADMIN)) 2883 return -EPERM; 2884 2885 if (f2fs_readonly(sbi->sb)) 2886 return -EROFS; 2887 2888 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2889 return -EINVAL; 2890 2891 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2892 sizeof(range))) 2893 return -EFAULT; 2894 2895 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2896 __is_large_section(sbi)) { 2897 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2898 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2899 return -EINVAL; 2900 } 2901 2902 ret = mnt_want_write_file(filp); 2903 if (ret) 2904 return ret; 2905 2906 if (range.dev_num != 0) 2907 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2908 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2909 2910 start_segno = sm->last_victim[FLUSH_DEVICE]; 2911 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2912 start_segno = dev_start_segno; 2913 end_segno = min(start_segno + range.segments, dev_end_segno); 2914 2915 while (start_segno < end_segno) { 2916 if (!down_write_trylock(&sbi->gc_lock)) { 2917 ret = -EBUSY; 2918 goto out; 2919 } 2920 sm->last_victim[GC_CB] = end_segno + 1; 2921 sm->last_victim[GC_GREEDY] = end_segno + 1; 2922 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2923 ret = f2fs_gc(sbi, true, true, true, start_segno); 2924 if (ret == -EAGAIN) 2925 ret = 0; 2926 else if (ret < 0) 2927 break; 2928 start_segno++; 2929 } 2930 out: 2931 mnt_drop_write_file(filp); 2932 return ret; 2933 } 2934 2935 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2936 { 2937 struct inode *inode = file_inode(filp); 2938 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2939 2940 /* Must validate to set it with SQLite behavior in Android. */ 2941 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2942 2943 return put_user(sb_feature, (u32 __user *)arg); 2944 } 2945 2946 #ifdef CONFIG_QUOTA 2947 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2948 { 2949 struct dquot *transfer_to[MAXQUOTAS] = {}; 2950 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2951 struct super_block *sb = sbi->sb; 2952 int err = 0; 2953 2954 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2955 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2956 err = __dquot_transfer(inode, transfer_to); 2957 if (err) 2958 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2959 dqput(transfer_to[PRJQUOTA]); 2960 } 2961 return err; 2962 } 2963 2964 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 2965 { 2966 struct f2fs_inode_info *fi = F2FS_I(inode); 2967 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2968 struct page *ipage; 2969 kprojid_t kprojid; 2970 int err; 2971 2972 if (!f2fs_sb_has_project_quota(sbi)) { 2973 if (projid != F2FS_DEF_PROJID) 2974 return -EOPNOTSUPP; 2975 else 2976 return 0; 2977 } 2978 2979 if (!f2fs_has_extra_attr(inode)) 2980 return -EOPNOTSUPP; 2981 2982 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 2983 2984 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 2985 return 0; 2986 2987 err = -EPERM; 2988 /* Is it quota file? Do not allow user to mess with it */ 2989 if (IS_NOQUOTA(inode)) 2990 return err; 2991 2992 ipage = f2fs_get_node_page(sbi, inode->i_ino); 2993 if (IS_ERR(ipage)) 2994 return PTR_ERR(ipage); 2995 2996 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 2997 i_projid)) { 2998 err = -EOVERFLOW; 2999 f2fs_put_page(ipage, 1); 3000 return err; 3001 } 3002 f2fs_put_page(ipage, 1); 3003 3004 err = dquot_initialize(inode); 3005 if (err) 3006 return err; 3007 3008 f2fs_lock_op(sbi); 3009 err = f2fs_transfer_project_quota(inode, kprojid); 3010 if (err) 3011 goto out_unlock; 3012 3013 F2FS_I(inode)->i_projid = kprojid; 3014 inode->i_ctime = current_time(inode); 3015 f2fs_mark_inode_dirty_sync(inode, true); 3016 out_unlock: 3017 f2fs_unlock_op(sbi); 3018 return err; 3019 } 3020 #else 3021 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3022 { 3023 return 0; 3024 } 3025 3026 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3027 { 3028 if (projid != F2FS_DEF_PROJID) 3029 return -EOPNOTSUPP; 3030 return 0; 3031 } 3032 #endif 3033 3034 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3035 { 3036 struct inode *inode = d_inode(dentry); 3037 struct f2fs_inode_info *fi = F2FS_I(inode); 3038 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3039 3040 if (IS_ENCRYPTED(inode)) 3041 fsflags |= FS_ENCRYPT_FL; 3042 if (IS_VERITY(inode)) 3043 fsflags |= FS_VERITY_FL; 3044 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3045 fsflags |= FS_INLINE_DATA_FL; 3046 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3047 fsflags |= FS_NOCOW_FL; 3048 3049 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3050 3051 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3052 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3053 3054 return 0; 3055 } 3056 3057 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3058 struct dentry *dentry, struct fileattr *fa) 3059 { 3060 struct inode *inode = d_inode(dentry); 3061 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3062 u32 iflags; 3063 int err; 3064 3065 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3066 return -EIO; 3067 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3068 return -ENOSPC; 3069 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3070 return -EOPNOTSUPP; 3071 fsflags &= F2FS_SETTABLE_FS_FL; 3072 if (!fa->flags_valid) 3073 mask &= FS_COMMON_FL; 3074 3075 iflags = f2fs_fsflags_to_iflags(fsflags); 3076 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3077 return -EOPNOTSUPP; 3078 3079 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3080 if (!err) 3081 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3082 3083 return err; 3084 } 3085 3086 int f2fs_pin_file_control(struct inode *inode, bool inc) 3087 { 3088 struct f2fs_inode_info *fi = F2FS_I(inode); 3089 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3090 3091 /* Use i_gc_failures for normal file as a risk signal. */ 3092 if (inc) 3093 f2fs_i_gc_failures_write(inode, 3094 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3095 3096 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3097 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3098 __func__, inode->i_ino, 3099 fi->i_gc_failures[GC_FAILURE_PIN]); 3100 clear_inode_flag(inode, FI_PIN_FILE); 3101 return -EAGAIN; 3102 } 3103 return 0; 3104 } 3105 3106 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3107 { 3108 struct inode *inode = file_inode(filp); 3109 __u32 pin; 3110 int ret = 0; 3111 3112 if (get_user(pin, (__u32 __user *)arg)) 3113 return -EFAULT; 3114 3115 if (!S_ISREG(inode->i_mode)) 3116 return -EINVAL; 3117 3118 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3119 return -EROFS; 3120 3121 ret = mnt_want_write_file(filp); 3122 if (ret) 3123 return ret; 3124 3125 inode_lock(inode); 3126 3127 if (f2fs_should_update_outplace(inode, NULL)) { 3128 ret = -EINVAL; 3129 goto out; 3130 } 3131 3132 if (!pin) { 3133 clear_inode_flag(inode, FI_PIN_FILE); 3134 f2fs_i_gc_failures_write(inode, 0); 3135 goto done; 3136 } 3137 3138 if (f2fs_pin_file_control(inode, false)) { 3139 ret = -EAGAIN; 3140 goto out; 3141 } 3142 3143 ret = f2fs_convert_inline_inode(inode); 3144 if (ret) 3145 goto out; 3146 3147 if (!f2fs_disable_compressed_file(inode)) { 3148 ret = -EOPNOTSUPP; 3149 goto out; 3150 } 3151 3152 set_inode_flag(inode, FI_PIN_FILE); 3153 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3154 done: 3155 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3156 out: 3157 inode_unlock(inode); 3158 mnt_drop_write_file(filp); 3159 return ret; 3160 } 3161 3162 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3163 { 3164 struct inode *inode = file_inode(filp); 3165 __u32 pin = 0; 3166 3167 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3168 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3169 return put_user(pin, (u32 __user *)arg); 3170 } 3171 3172 int f2fs_precache_extents(struct inode *inode) 3173 { 3174 struct f2fs_inode_info *fi = F2FS_I(inode); 3175 struct f2fs_map_blocks map; 3176 pgoff_t m_next_extent; 3177 loff_t end; 3178 int err; 3179 3180 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3181 return -EOPNOTSUPP; 3182 3183 map.m_lblk = 0; 3184 map.m_next_pgofs = NULL; 3185 map.m_next_extent = &m_next_extent; 3186 map.m_seg_type = NO_CHECK_TYPE; 3187 map.m_may_create = false; 3188 end = max_file_blocks(inode); 3189 3190 while (map.m_lblk < end) { 3191 map.m_len = end - map.m_lblk; 3192 3193 down_write(&fi->i_gc_rwsem[WRITE]); 3194 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3195 up_write(&fi->i_gc_rwsem[WRITE]); 3196 if (err) 3197 return err; 3198 3199 map.m_lblk = m_next_extent; 3200 } 3201 3202 return 0; 3203 } 3204 3205 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3206 { 3207 return f2fs_precache_extents(file_inode(filp)); 3208 } 3209 3210 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3211 { 3212 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3213 __u64 block_count; 3214 3215 if (!capable(CAP_SYS_ADMIN)) 3216 return -EPERM; 3217 3218 if (f2fs_readonly(sbi->sb)) 3219 return -EROFS; 3220 3221 if (copy_from_user(&block_count, (void __user *)arg, 3222 sizeof(block_count))) 3223 return -EFAULT; 3224 3225 return f2fs_resize_fs(sbi, block_count); 3226 } 3227 3228 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3229 { 3230 struct inode *inode = file_inode(filp); 3231 3232 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3233 3234 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3235 f2fs_warn(F2FS_I_SB(inode), 3236 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3237 inode->i_ino); 3238 return -EOPNOTSUPP; 3239 } 3240 3241 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3242 } 3243 3244 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3245 { 3246 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3247 return -EOPNOTSUPP; 3248 3249 return fsverity_ioctl_measure(filp, (void __user *)arg); 3250 } 3251 3252 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3253 { 3254 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3255 return -EOPNOTSUPP; 3256 3257 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3258 } 3259 3260 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3261 { 3262 struct inode *inode = file_inode(filp); 3263 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3264 char *vbuf; 3265 int count; 3266 int err = 0; 3267 3268 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3269 if (!vbuf) 3270 return -ENOMEM; 3271 3272 down_read(&sbi->sb_lock); 3273 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3274 ARRAY_SIZE(sbi->raw_super->volume_name), 3275 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3276 up_read(&sbi->sb_lock); 3277 3278 if (copy_to_user((char __user *)arg, vbuf, 3279 min(FSLABEL_MAX, count))) 3280 err = -EFAULT; 3281 3282 kfree(vbuf); 3283 return err; 3284 } 3285 3286 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3287 { 3288 struct inode *inode = file_inode(filp); 3289 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3290 char *vbuf; 3291 int err = 0; 3292 3293 if (!capable(CAP_SYS_ADMIN)) 3294 return -EPERM; 3295 3296 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3297 if (IS_ERR(vbuf)) 3298 return PTR_ERR(vbuf); 3299 3300 err = mnt_want_write_file(filp); 3301 if (err) 3302 goto out; 3303 3304 down_write(&sbi->sb_lock); 3305 3306 memset(sbi->raw_super->volume_name, 0, 3307 sizeof(sbi->raw_super->volume_name)); 3308 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3309 sbi->raw_super->volume_name, 3310 ARRAY_SIZE(sbi->raw_super->volume_name)); 3311 3312 err = f2fs_commit_super(sbi, false); 3313 3314 up_write(&sbi->sb_lock); 3315 3316 mnt_drop_write_file(filp); 3317 out: 3318 kfree(vbuf); 3319 return err; 3320 } 3321 3322 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3323 { 3324 struct inode *inode = file_inode(filp); 3325 __u64 blocks; 3326 3327 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3328 return -EOPNOTSUPP; 3329 3330 if (!f2fs_compressed_file(inode)) 3331 return -EINVAL; 3332 3333 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3334 return put_user(blocks, (u64 __user *)arg); 3335 } 3336 3337 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3338 { 3339 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3340 unsigned int released_blocks = 0; 3341 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3342 block_t blkaddr; 3343 int i; 3344 3345 for (i = 0; i < count; i++) { 3346 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3347 dn->ofs_in_node + i); 3348 3349 if (!__is_valid_data_blkaddr(blkaddr)) 3350 continue; 3351 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3352 DATA_GENERIC_ENHANCE))) 3353 return -EFSCORRUPTED; 3354 } 3355 3356 while (count) { 3357 int compr_blocks = 0; 3358 3359 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3360 blkaddr = f2fs_data_blkaddr(dn); 3361 3362 if (i == 0) { 3363 if (blkaddr == COMPRESS_ADDR) 3364 continue; 3365 dn->ofs_in_node += cluster_size; 3366 goto next; 3367 } 3368 3369 if (__is_valid_data_blkaddr(blkaddr)) 3370 compr_blocks++; 3371 3372 if (blkaddr != NEW_ADDR) 3373 continue; 3374 3375 dn->data_blkaddr = NULL_ADDR; 3376 f2fs_set_data_blkaddr(dn); 3377 } 3378 3379 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3380 dec_valid_block_count(sbi, dn->inode, 3381 cluster_size - compr_blocks); 3382 3383 released_blocks += cluster_size - compr_blocks; 3384 next: 3385 count -= cluster_size; 3386 } 3387 3388 return released_blocks; 3389 } 3390 3391 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3392 { 3393 struct inode *inode = file_inode(filp); 3394 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3395 pgoff_t page_idx = 0, last_idx; 3396 unsigned int released_blocks = 0; 3397 int ret; 3398 int writecount; 3399 3400 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3401 return -EOPNOTSUPP; 3402 3403 if (!f2fs_compressed_file(inode)) 3404 return -EINVAL; 3405 3406 if (f2fs_readonly(sbi->sb)) 3407 return -EROFS; 3408 3409 ret = mnt_want_write_file(filp); 3410 if (ret) 3411 return ret; 3412 3413 f2fs_balance_fs(F2FS_I_SB(inode), true); 3414 3415 inode_lock(inode); 3416 3417 writecount = atomic_read(&inode->i_writecount); 3418 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3419 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3420 ret = -EBUSY; 3421 goto out; 3422 } 3423 3424 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3425 ret = -EINVAL; 3426 goto out; 3427 } 3428 3429 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3430 if (ret) 3431 goto out; 3432 3433 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3434 inode->i_ctime = current_time(inode); 3435 f2fs_mark_inode_dirty_sync(inode, true); 3436 3437 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3438 goto out; 3439 3440 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3441 filemap_invalidate_lock(inode->i_mapping); 3442 3443 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3444 3445 while (page_idx < last_idx) { 3446 struct dnode_of_data dn; 3447 pgoff_t end_offset, count; 3448 3449 set_new_dnode(&dn, inode, NULL, NULL, 0); 3450 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3451 if (ret) { 3452 if (ret == -ENOENT) { 3453 page_idx = f2fs_get_next_page_offset(&dn, 3454 page_idx); 3455 ret = 0; 3456 continue; 3457 } 3458 break; 3459 } 3460 3461 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3462 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3463 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3464 3465 ret = release_compress_blocks(&dn, count); 3466 3467 f2fs_put_dnode(&dn); 3468 3469 if (ret < 0) 3470 break; 3471 3472 page_idx += count; 3473 released_blocks += ret; 3474 } 3475 3476 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3477 filemap_invalidate_unlock(inode->i_mapping); 3478 out: 3479 inode_unlock(inode); 3480 3481 mnt_drop_write_file(filp); 3482 3483 if (ret >= 0) { 3484 ret = put_user(released_blocks, (u64 __user *)arg); 3485 } else if (released_blocks && 3486 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3487 set_sbi_flag(sbi, SBI_NEED_FSCK); 3488 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3489 "iblocks=%llu, released=%u, compr_blocks=%u, " 3490 "run fsck to fix.", 3491 __func__, inode->i_ino, inode->i_blocks, 3492 released_blocks, 3493 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3494 } 3495 3496 return ret; 3497 } 3498 3499 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3500 { 3501 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3502 unsigned int reserved_blocks = 0; 3503 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3504 block_t blkaddr; 3505 int i; 3506 3507 for (i = 0; i < count; i++) { 3508 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3509 dn->ofs_in_node + i); 3510 3511 if (!__is_valid_data_blkaddr(blkaddr)) 3512 continue; 3513 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3514 DATA_GENERIC_ENHANCE))) 3515 return -EFSCORRUPTED; 3516 } 3517 3518 while (count) { 3519 int compr_blocks = 0; 3520 blkcnt_t reserved; 3521 int ret; 3522 3523 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3524 blkaddr = f2fs_data_blkaddr(dn); 3525 3526 if (i == 0) { 3527 if (blkaddr == COMPRESS_ADDR) 3528 continue; 3529 dn->ofs_in_node += cluster_size; 3530 goto next; 3531 } 3532 3533 if (__is_valid_data_blkaddr(blkaddr)) { 3534 compr_blocks++; 3535 continue; 3536 } 3537 3538 dn->data_blkaddr = NEW_ADDR; 3539 f2fs_set_data_blkaddr(dn); 3540 } 3541 3542 reserved = cluster_size - compr_blocks; 3543 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3544 if (ret) 3545 return ret; 3546 3547 if (reserved != cluster_size - compr_blocks) 3548 return -ENOSPC; 3549 3550 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3551 3552 reserved_blocks += reserved; 3553 next: 3554 count -= cluster_size; 3555 } 3556 3557 return reserved_blocks; 3558 } 3559 3560 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3561 { 3562 struct inode *inode = file_inode(filp); 3563 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3564 pgoff_t page_idx = 0, last_idx; 3565 unsigned int reserved_blocks = 0; 3566 int ret; 3567 3568 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3569 return -EOPNOTSUPP; 3570 3571 if (!f2fs_compressed_file(inode)) 3572 return -EINVAL; 3573 3574 if (f2fs_readonly(sbi->sb)) 3575 return -EROFS; 3576 3577 ret = mnt_want_write_file(filp); 3578 if (ret) 3579 return ret; 3580 3581 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3582 goto out; 3583 3584 f2fs_balance_fs(F2FS_I_SB(inode), true); 3585 3586 inode_lock(inode); 3587 3588 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3589 ret = -EINVAL; 3590 goto unlock_inode; 3591 } 3592 3593 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3594 filemap_invalidate_lock(inode->i_mapping); 3595 3596 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3597 3598 while (page_idx < last_idx) { 3599 struct dnode_of_data dn; 3600 pgoff_t end_offset, count; 3601 3602 set_new_dnode(&dn, inode, NULL, NULL, 0); 3603 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3604 if (ret) { 3605 if (ret == -ENOENT) { 3606 page_idx = f2fs_get_next_page_offset(&dn, 3607 page_idx); 3608 ret = 0; 3609 continue; 3610 } 3611 break; 3612 } 3613 3614 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3615 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3616 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3617 3618 ret = reserve_compress_blocks(&dn, count); 3619 3620 f2fs_put_dnode(&dn); 3621 3622 if (ret < 0) 3623 break; 3624 3625 page_idx += count; 3626 reserved_blocks += ret; 3627 } 3628 3629 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3630 filemap_invalidate_unlock(inode->i_mapping); 3631 3632 if (ret >= 0) { 3633 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3634 inode->i_ctime = current_time(inode); 3635 f2fs_mark_inode_dirty_sync(inode, true); 3636 } 3637 unlock_inode: 3638 inode_unlock(inode); 3639 out: 3640 mnt_drop_write_file(filp); 3641 3642 if (ret >= 0) { 3643 ret = put_user(reserved_blocks, (u64 __user *)arg); 3644 } else if (reserved_blocks && 3645 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3646 set_sbi_flag(sbi, SBI_NEED_FSCK); 3647 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3648 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3649 "run fsck to fix.", 3650 __func__, inode->i_ino, inode->i_blocks, 3651 reserved_blocks, 3652 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3653 } 3654 3655 return ret; 3656 } 3657 3658 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3659 pgoff_t off, block_t block, block_t len, u32 flags) 3660 { 3661 struct request_queue *q = bdev_get_queue(bdev); 3662 sector_t sector = SECTOR_FROM_BLOCK(block); 3663 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3664 int ret = 0; 3665 3666 if (!q) 3667 return -ENXIO; 3668 3669 if (flags & F2FS_TRIM_FILE_DISCARD) 3670 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS, 3671 blk_queue_secure_erase(q) ? 3672 BLKDEV_DISCARD_SECURE : 0); 3673 3674 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3675 if (IS_ENCRYPTED(inode)) 3676 ret = fscrypt_zeroout_range(inode, off, block, len); 3677 else 3678 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3679 GFP_NOFS, 0); 3680 } 3681 3682 return ret; 3683 } 3684 3685 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3686 { 3687 struct inode *inode = file_inode(filp); 3688 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3689 struct address_space *mapping = inode->i_mapping; 3690 struct block_device *prev_bdev = NULL; 3691 struct f2fs_sectrim_range range; 3692 pgoff_t index, pg_end, prev_index = 0; 3693 block_t prev_block = 0, len = 0; 3694 loff_t end_addr; 3695 bool to_end = false; 3696 int ret = 0; 3697 3698 if (!(filp->f_mode & FMODE_WRITE)) 3699 return -EBADF; 3700 3701 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3702 sizeof(range))) 3703 return -EFAULT; 3704 3705 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3706 !S_ISREG(inode->i_mode)) 3707 return -EINVAL; 3708 3709 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3710 !f2fs_hw_support_discard(sbi)) || 3711 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3712 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3713 return -EOPNOTSUPP; 3714 3715 file_start_write(filp); 3716 inode_lock(inode); 3717 3718 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3719 range.start >= inode->i_size) { 3720 ret = -EINVAL; 3721 goto err; 3722 } 3723 3724 if (range.len == 0) 3725 goto err; 3726 3727 if (inode->i_size - range.start > range.len) { 3728 end_addr = range.start + range.len; 3729 } else { 3730 end_addr = range.len == (u64)-1 ? 3731 sbi->sb->s_maxbytes : inode->i_size; 3732 to_end = true; 3733 } 3734 3735 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3736 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3737 ret = -EINVAL; 3738 goto err; 3739 } 3740 3741 index = F2FS_BYTES_TO_BLK(range.start); 3742 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3743 3744 ret = f2fs_convert_inline_inode(inode); 3745 if (ret) 3746 goto err; 3747 3748 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3749 filemap_invalidate_lock(mapping); 3750 3751 ret = filemap_write_and_wait_range(mapping, range.start, 3752 to_end ? LLONG_MAX : end_addr - 1); 3753 if (ret) 3754 goto out; 3755 3756 truncate_inode_pages_range(mapping, range.start, 3757 to_end ? -1 : end_addr - 1); 3758 3759 while (index < pg_end) { 3760 struct dnode_of_data dn; 3761 pgoff_t end_offset, count; 3762 int i; 3763 3764 set_new_dnode(&dn, inode, NULL, NULL, 0); 3765 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3766 if (ret) { 3767 if (ret == -ENOENT) { 3768 index = f2fs_get_next_page_offset(&dn, index); 3769 continue; 3770 } 3771 goto out; 3772 } 3773 3774 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3775 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3776 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3777 struct block_device *cur_bdev; 3778 block_t blkaddr = f2fs_data_blkaddr(&dn); 3779 3780 if (!__is_valid_data_blkaddr(blkaddr)) 3781 continue; 3782 3783 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3784 DATA_GENERIC_ENHANCE)) { 3785 ret = -EFSCORRUPTED; 3786 f2fs_put_dnode(&dn); 3787 goto out; 3788 } 3789 3790 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3791 if (f2fs_is_multi_device(sbi)) { 3792 int di = f2fs_target_device_index(sbi, blkaddr); 3793 3794 blkaddr -= FDEV(di).start_blk; 3795 } 3796 3797 if (len) { 3798 if (prev_bdev == cur_bdev && 3799 index == prev_index + len && 3800 blkaddr == prev_block + len) { 3801 len++; 3802 } else { 3803 ret = f2fs_secure_erase(prev_bdev, 3804 inode, prev_index, prev_block, 3805 len, range.flags); 3806 if (ret) { 3807 f2fs_put_dnode(&dn); 3808 goto out; 3809 } 3810 3811 len = 0; 3812 } 3813 } 3814 3815 if (!len) { 3816 prev_bdev = cur_bdev; 3817 prev_index = index; 3818 prev_block = blkaddr; 3819 len = 1; 3820 } 3821 } 3822 3823 f2fs_put_dnode(&dn); 3824 3825 if (fatal_signal_pending(current)) { 3826 ret = -EINTR; 3827 goto out; 3828 } 3829 cond_resched(); 3830 } 3831 3832 if (len) 3833 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3834 prev_block, len, range.flags); 3835 out: 3836 filemap_invalidate_unlock(mapping); 3837 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3838 err: 3839 inode_unlock(inode); 3840 file_end_write(filp); 3841 3842 return ret; 3843 } 3844 3845 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3846 { 3847 struct inode *inode = file_inode(filp); 3848 struct f2fs_comp_option option; 3849 3850 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3851 return -EOPNOTSUPP; 3852 3853 inode_lock_shared(inode); 3854 3855 if (!f2fs_compressed_file(inode)) { 3856 inode_unlock_shared(inode); 3857 return -ENODATA; 3858 } 3859 3860 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3861 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3862 3863 inode_unlock_shared(inode); 3864 3865 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3866 sizeof(option))) 3867 return -EFAULT; 3868 3869 return 0; 3870 } 3871 3872 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 3873 { 3874 struct inode *inode = file_inode(filp); 3875 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3876 struct f2fs_comp_option option; 3877 int ret = 0; 3878 3879 if (!f2fs_sb_has_compression(sbi)) 3880 return -EOPNOTSUPP; 3881 3882 if (!(filp->f_mode & FMODE_WRITE)) 3883 return -EBADF; 3884 3885 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 3886 sizeof(option))) 3887 return -EFAULT; 3888 3889 if (!f2fs_compressed_file(inode) || 3890 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 3891 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 3892 option.algorithm >= COMPRESS_MAX) 3893 return -EINVAL; 3894 3895 file_start_write(filp); 3896 inode_lock(inode); 3897 3898 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 3899 ret = -EBUSY; 3900 goto out; 3901 } 3902 3903 if (inode->i_size != 0) { 3904 ret = -EFBIG; 3905 goto out; 3906 } 3907 3908 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 3909 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 3910 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size; 3911 f2fs_mark_inode_dirty_sync(inode, true); 3912 3913 if (!f2fs_is_compress_backend_ready(inode)) 3914 f2fs_warn(sbi, "compression algorithm is successfully set, " 3915 "but current kernel doesn't support this algorithm."); 3916 out: 3917 inode_unlock(inode); 3918 file_end_write(filp); 3919 3920 return ret; 3921 } 3922 3923 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 3924 { 3925 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 3926 struct address_space *mapping = inode->i_mapping; 3927 struct page *page; 3928 pgoff_t redirty_idx = page_idx; 3929 int i, page_len = 0, ret = 0; 3930 3931 page_cache_ra_unbounded(&ractl, len, 0); 3932 3933 for (i = 0; i < len; i++, page_idx++) { 3934 page = read_cache_page(mapping, page_idx, NULL, NULL); 3935 if (IS_ERR(page)) { 3936 ret = PTR_ERR(page); 3937 break; 3938 } 3939 page_len++; 3940 } 3941 3942 for (i = 0; i < page_len; i++, redirty_idx++) { 3943 page = find_lock_page(mapping, redirty_idx); 3944 if (!page) { 3945 ret = -ENOMEM; 3946 break; 3947 } 3948 set_page_dirty(page); 3949 f2fs_put_page(page, 1); 3950 f2fs_put_page(page, 0); 3951 } 3952 3953 return ret; 3954 } 3955 3956 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg) 3957 { 3958 struct inode *inode = file_inode(filp); 3959 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3960 struct f2fs_inode_info *fi = F2FS_I(inode); 3961 pgoff_t page_idx = 0, last_idx; 3962 unsigned int blk_per_seg = sbi->blocks_per_seg; 3963 int cluster_size = F2FS_I(inode)->i_cluster_size; 3964 int count, ret; 3965 3966 if (!f2fs_sb_has_compression(sbi) || 3967 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 3968 return -EOPNOTSUPP; 3969 3970 if (!(filp->f_mode & FMODE_WRITE)) 3971 return -EBADF; 3972 3973 if (!f2fs_compressed_file(inode)) 3974 return -EINVAL; 3975 3976 f2fs_balance_fs(F2FS_I_SB(inode), true); 3977 3978 file_start_write(filp); 3979 inode_lock(inode); 3980 3981 if (!f2fs_is_compress_backend_ready(inode)) { 3982 ret = -EOPNOTSUPP; 3983 goto out; 3984 } 3985 3986 if (f2fs_is_mmap_file(inode)) { 3987 ret = -EBUSY; 3988 goto out; 3989 } 3990 3991 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3992 if (ret) 3993 goto out; 3994 3995 if (!atomic_read(&fi->i_compr_blocks)) 3996 goto out; 3997 3998 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3999 4000 count = last_idx - page_idx; 4001 while (count) { 4002 int len = min(cluster_size, count); 4003 4004 ret = redirty_blocks(inode, page_idx, len); 4005 if (ret < 0) 4006 break; 4007 4008 if (get_dirty_pages(inode) >= blk_per_seg) 4009 filemap_fdatawrite(inode->i_mapping); 4010 4011 count -= len; 4012 page_idx += len; 4013 } 4014 4015 if (!ret) 4016 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4017 LLONG_MAX); 4018 4019 if (ret) 4020 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4021 __func__, ret); 4022 out: 4023 inode_unlock(inode); 4024 file_end_write(filp); 4025 4026 return ret; 4027 } 4028 4029 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg) 4030 { 4031 struct inode *inode = file_inode(filp); 4032 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4033 pgoff_t page_idx = 0, last_idx; 4034 unsigned int blk_per_seg = sbi->blocks_per_seg; 4035 int cluster_size = F2FS_I(inode)->i_cluster_size; 4036 int count, ret; 4037 4038 if (!f2fs_sb_has_compression(sbi) || 4039 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4040 return -EOPNOTSUPP; 4041 4042 if (!(filp->f_mode & FMODE_WRITE)) 4043 return -EBADF; 4044 4045 if (!f2fs_compressed_file(inode)) 4046 return -EINVAL; 4047 4048 f2fs_balance_fs(F2FS_I_SB(inode), true); 4049 4050 file_start_write(filp); 4051 inode_lock(inode); 4052 4053 if (!f2fs_is_compress_backend_ready(inode)) { 4054 ret = -EOPNOTSUPP; 4055 goto out; 4056 } 4057 4058 if (f2fs_is_mmap_file(inode)) { 4059 ret = -EBUSY; 4060 goto out; 4061 } 4062 4063 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4064 if (ret) 4065 goto out; 4066 4067 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4068 4069 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4070 4071 count = last_idx - page_idx; 4072 while (count) { 4073 int len = min(cluster_size, count); 4074 4075 ret = redirty_blocks(inode, page_idx, len); 4076 if (ret < 0) 4077 break; 4078 4079 if (get_dirty_pages(inode) >= blk_per_seg) 4080 filemap_fdatawrite(inode->i_mapping); 4081 4082 count -= len; 4083 page_idx += len; 4084 } 4085 4086 if (!ret) 4087 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4088 LLONG_MAX); 4089 4090 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4091 4092 if (ret) 4093 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4094 __func__, ret); 4095 out: 4096 inode_unlock(inode); 4097 file_end_write(filp); 4098 4099 return ret; 4100 } 4101 4102 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4103 { 4104 switch (cmd) { 4105 case FS_IOC_GETVERSION: 4106 return f2fs_ioc_getversion(filp, arg); 4107 case F2FS_IOC_START_ATOMIC_WRITE: 4108 return f2fs_ioc_start_atomic_write(filp); 4109 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4110 return f2fs_ioc_commit_atomic_write(filp); 4111 case F2FS_IOC_START_VOLATILE_WRITE: 4112 return f2fs_ioc_start_volatile_write(filp); 4113 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4114 return f2fs_ioc_release_volatile_write(filp); 4115 case F2FS_IOC_ABORT_VOLATILE_WRITE: 4116 return f2fs_ioc_abort_volatile_write(filp); 4117 case F2FS_IOC_SHUTDOWN: 4118 return f2fs_ioc_shutdown(filp, arg); 4119 case FITRIM: 4120 return f2fs_ioc_fitrim(filp, arg); 4121 case FS_IOC_SET_ENCRYPTION_POLICY: 4122 return f2fs_ioc_set_encryption_policy(filp, arg); 4123 case FS_IOC_GET_ENCRYPTION_POLICY: 4124 return f2fs_ioc_get_encryption_policy(filp, arg); 4125 case FS_IOC_GET_ENCRYPTION_PWSALT: 4126 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4127 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4128 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4129 case FS_IOC_ADD_ENCRYPTION_KEY: 4130 return f2fs_ioc_add_encryption_key(filp, arg); 4131 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4132 return f2fs_ioc_remove_encryption_key(filp, arg); 4133 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4134 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4135 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4136 return f2fs_ioc_get_encryption_key_status(filp, arg); 4137 case FS_IOC_GET_ENCRYPTION_NONCE: 4138 return f2fs_ioc_get_encryption_nonce(filp, arg); 4139 case F2FS_IOC_GARBAGE_COLLECT: 4140 return f2fs_ioc_gc(filp, arg); 4141 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4142 return f2fs_ioc_gc_range(filp, arg); 4143 case F2FS_IOC_WRITE_CHECKPOINT: 4144 return f2fs_ioc_write_checkpoint(filp, arg); 4145 case F2FS_IOC_DEFRAGMENT: 4146 return f2fs_ioc_defragment(filp, arg); 4147 case F2FS_IOC_MOVE_RANGE: 4148 return f2fs_ioc_move_range(filp, arg); 4149 case F2FS_IOC_FLUSH_DEVICE: 4150 return f2fs_ioc_flush_device(filp, arg); 4151 case F2FS_IOC_GET_FEATURES: 4152 return f2fs_ioc_get_features(filp, arg); 4153 case F2FS_IOC_GET_PIN_FILE: 4154 return f2fs_ioc_get_pin_file(filp, arg); 4155 case F2FS_IOC_SET_PIN_FILE: 4156 return f2fs_ioc_set_pin_file(filp, arg); 4157 case F2FS_IOC_PRECACHE_EXTENTS: 4158 return f2fs_ioc_precache_extents(filp, arg); 4159 case F2FS_IOC_RESIZE_FS: 4160 return f2fs_ioc_resize_fs(filp, arg); 4161 case FS_IOC_ENABLE_VERITY: 4162 return f2fs_ioc_enable_verity(filp, arg); 4163 case FS_IOC_MEASURE_VERITY: 4164 return f2fs_ioc_measure_verity(filp, arg); 4165 case FS_IOC_READ_VERITY_METADATA: 4166 return f2fs_ioc_read_verity_metadata(filp, arg); 4167 case FS_IOC_GETFSLABEL: 4168 return f2fs_ioc_getfslabel(filp, arg); 4169 case FS_IOC_SETFSLABEL: 4170 return f2fs_ioc_setfslabel(filp, arg); 4171 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4172 return f2fs_get_compress_blocks(filp, arg); 4173 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4174 return f2fs_release_compress_blocks(filp, arg); 4175 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4176 return f2fs_reserve_compress_blocks(filp, arg); 4177 case F2FS_IOC_SEC_TRIM_FILE: 4178 return f2fs_sec_trim_file(filp, arg); 4179 case F2FS_IOC_GET_COMPRESS_OPTION: 4180 return f2fs_ioc_get_compress_option(filp, arg); 4181 case F2FS_IOC_SET_COMPRESS_OPTION: 4182 return f2fs_ioc_set_compress_option(filp, arg); 4183 case F2FS_IOC_DECOMPRESS_FILE: 4184 return f2fs_ioc_decompress_file(filp, arg); 4185 case F2FS_IOC_COMPRESS_FILE: 4186 return f2fs_ioc_compress_file(filp, arg); 4187 default: 4188 return -ENOTTY; 4189 } 4190 } 4191 4192 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4193 { 4194 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4195 return -EIO; 4196 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4197 return -ENOSPC; 4198 4199 return __f2fs_ioctl(filp, cmd, arg); 4200 } 4201 4202 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 4203 { 4204 struct file *file = iocb->ki_filp; 4205 struct inode *inode = file_inode(file); 4206 int ret; 4207 4208 if (!f2fs_is_compress_backend_ready(inode)) 4209 return -EOPNOTSUPP; 4210 4211 ret = generic_file_read_iter(iocb, iter); 4212 4213 if (ret > 0) 4214 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret); 4215 4216 return ret; 4217 } 4218 4219 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4220 { 4221 struct file *file = iocb->ki_filp; 4222 struct inode *inode = file_inode(file); 4223 ssize_t ret; 4224 4225 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4226 ret = -EIO; 4227 goto out; 4228 } 4229 4230 if (!f2fs_is_compress_backend_ready(inode)) { 4231 ret = -EOPNOTSUPP; 4232 goto out; 4233 } 4234 4235 if (iocb->ki_flags & IOCB_NOWAIT) { 4236 if (!inode_trylock(inode)) { 4237 ret = -EAGAIN; 4238 goto out; 4239 } 4240 } else { 4241 inode_lock(inode); 4242 } 4243 4244 if (unlikely(IS_IMMUTABLE(inode))) { 4245 ret = -EPERM; 4246 goto unlock; 4247 } 4248 4249 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4250 ret = -EPERM; 4251 goto unlock; 4252 } 4253 4254 ret = generic_write_checks(iocb, from); 4255 if (ret > 0) { 4256 bool preallocated = false; 4257 size_t target_size = 0; 4258 int err; 4259 4260 if (iov_iter_fault_in_readable(from, iov_iter_count(from))) 4261 set_inode_flag(inode, FI_NO_PREALLOC); 4262 4263 if ((iocb->ki_flags & IOCB_NOWAIT)) { 4264 if (!f2fs_overwrite_io(inode, iocb->ki_pos, 4265 iov_iter_count(from)) || 4266 f2fs_has_inline_data(inode) || 4267 f2fs_force_buffered_io(inode, iocb, from)) { 4268 clear_inode_flag(inode, FI_NO_PREALLOC); 4269 inode_unlock(inode); 4270 ret = -EAGAIN; 4271 goto out; 4272 } 4273 goto write; 4274 } 4275 4276 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 4277 goto write; 4278 4279 if (iocb->ki_flags & IOCB_DIRECT) { 4280 /* 4281 * Convert inline data for Direct I/O before entering 4282 * f2fs_direct_IO(). 4283 */ 4284 err = f2fs_convert_inline_inode(inode); 4285 if (err) 4286 goto out_err; 4287 /* 4288 * If force_buffere_io() is true, we have to allocate 4289 * blocks all the time, since f2fs_direct_IO will fall 4290 * back to buffered IO. 4291 */ 4292 if (!f2fs_force_buffered_io(inode, iocb, from) && 4293 allow_outplace_dio(inode, iocb, from)) 4294 goto write; 4295 } 4296 preallocated = true; 4297 target_size = iocb->ki_pos + iov_iter_count(from); 4298 4299 err = f2fs_preallocate_blocks(iocb, from); 4300 if (err) { 4301 out_err: 4302 clear_inode_flag(inode, FI_NO_PREALLOC); 4303 inode_unlock(inode); 4304 ret = err; 4305 goto out; 4306 } 4307 write: 4308 ret = __generic_file_write_iter(iocb, from); 4309 clear_inode_flag(inode, FI_NO_PREALLOC); 4310 4311 /* if we couldn't write data, we should deallocate blocks. */ 4312 if (preallocated && i_size_read(inode) < target_size) { 4313 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4314 filemap_invalidate_lock(inode->i_mapping); 4315 f2fs_truncate(inode); 4316 filemap_invalidate_unlock(inode->i_mapping); 4317 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4318 } 4319 4320 if (ret > 0) 4321 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); 4322 } 4323 unlock: 4324 inode_unlock(inode); 4325 out: 4326 trace_f2fs_file_write_iter(inode, iocb->ki_pos, 4327 iov_iter_count(from), ret); 4328 if (ret > 0) 4329 ret = generic_write_sync(iocb, ret); 4330 return ret; 4331 } 4332 4333 #ifdef CONFIG_COMPAT 4334 struct compat_f2fs_gc_range { 4335 u32 sync; 4336 compat_u64 start; 4337 compat_u64 len; 4338 }; 4339 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4340 struct compat_f2fs_gc_range) 4341 4342 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4343 { 4344 struct compat_f2fs_gc_range __user *urange; 4345 struct f2fs_gc_range range; 4346 int err; 4347 4348 urange = compat_ptr(arg); 4349 err = get_user(range.sync, &urange->sync); 4350 err |= get_user(range.start, &urange->start); 4351 err |= get_user(range.len, &urange->len); 4352 if (err) 4353 return -EFAULT; 4354 4355 return __f2fs_ioc_gc_range(file, &range); 4356 } 4357 4358 struct compat_f2fs_move_range { 4359 u32 dst_fd; 4360 compat_u64 pos_in; 4361 compat_u64 pos_out; 4362 compat_u64 len; 4363 }; 4364 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4365 struct compat_f2fs_move_range) 4366 4367 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4368 { 4369 struct compat_f2fs_move_range __user *urange; 4370 struct f2fs_move_range range; 4371 int err; 4372 4373 urange = compat_ptr(arg); 4374 err = get_user(range.dst_fd, &urange->dst_fd); 4375 err |= get_user(range.pos_in, &urange->pos_in); 4376 err |= get_user(range.pos_out, &urange->pos_out); 4377 err |= get_user(range.len, &urange->len); 4378 if (err) 4379 return -EFAULT; 4380 4381 return __f2fs_ioc_move_range(file, &range); 4382 } 4383 4384 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4385 { 4386 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4387 return -EIO; 4388 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4389 return -ENOSPC; 4390 4391 switch (cmd) { 4392 case FS_IOC32_GETVERSION: 4393 cmd = FS_IOC_GETVERSION; 4394 break; 4395 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4396 return f2fs_compat_ioc_gc_range(file, arg); 4397 case F2FS_IOC32_MOVE_RANGE: 4398 return f2fs_compat_ioc_move_range(file, arg); 4399 case F2FS_IOC_START_ATOMIC_WRITE: 4400 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4401 case F2FS_IOC_START_VOLATILE_WRITE: 4402 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4403 case F2FS_IOC_ABORT_VOLATILE_WRITE: 4404 case F2FS_IOC_SHUTDOWN: 4405 case FITRIM: 4406 case FS_IOC_SET_ENCRYPTION_POLICY: 4407 case FS_IOC_GET_ENCRYPTION_PWSALT: 4408 case FS_IOC_GET_ENCRYPTION_POLICY: 4409 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4410 case FS_IOC_ADD_ENCRYPTION_KEY: 4411 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4412 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4413 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4414 case FS_IOC_GET_ENCRYPTION_NONCE: 4415 case F2FS_IOC_GARBAGE_COLLECT: 4416 case F2FS_IOC_WRITE_CHECKPOINT: 4417 case F2FS_IOC_DEFRAGMENT: 4418 case F2FS_IOC_FLUSH_DEVICE: 4419 case F2FS_IOC_GET_FEATURES: 4420 case F2FS_IOC_GET_PIN_FILE: 4421 case F2FS_IOC_SET_PIN_FILE: 4422 case F2FS_IOC_PRECACHE_EXTENTS: 4423 case F2FS_IOC_RESIZE_FS: 4424 case FS_IOC_ENABLE_VERITY: 4425 case FS_IOC_MEASURE_VERITY: 4426 case FS_IOC_READ_VERITY_METADATA: 4427 case FS_IOC_GETFSLABEL: 4428 case FS_IOC_SETFSLABEL: 4429 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4430 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4431 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4432 case F2FS_IOC_SEC_TRIM_FILE: 4433 case F2FS_IOC_GET_COMPRESS_OPTION: 4434 case F2FS_IOC_SET_COMPRESS_OPTION: 4435 case F2FS_IOC_DECOMPRESS_FILE: 4436 case F2FS_IOC_COMPRESS_FILE: 4437 break; 4438 default: 4439 return -ENOIOCTLCMD; 4440 } 4441 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4442 } 4443 #endif 4444 4445 const struct file_operations f2fs_file_operations = { 4446 .llseek = f2fs_llseek, 4447 .read_iter = f2fs_file_read_iter, 4448 .write_iter = f2fs_file_write_iter, 4449 .open = f2fs_file_open, 4450 .release = f2fs_release_file, 4451 .mmap = f2fs_file_mmap, 4452 .flush = f2fs_file_flush, 4453 .fsync = f2fs_sync_file, 4454 .fallocate = f2fs_fallocate, 4455 .unlocked_ioctl = f2fs_ioctl, 4456 #ifdef CONFIG_COMPAT 4457 .compat_ioctl = f2fs_compat_ioctl, 4458 #endif 4459 .splice_read = generic_file_splice_read, 4460 .splice_write = iter_file_splice_write, 4461 }; 4462