xref: /openbmc/linux/fs/f2fs/file.c (revision e368cd72)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include <trace/events/f2fs.h>
34 #include <uapi/linux/f2fs.h>
35 
36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 	struct inode *inode = file_inode(vmf->vma->vm_file);
39 	vm_fault_t ret;
40 
41 	ret = filemap_fault(vmf);
42 	if (!ret)
43 		f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
44 							F2FS_BLKSIZE);
45 
46 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
47 
48 	return ret;
49 }
50 
51 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
52 {
53 	struct page *page = vmf->page;
54 	struct inode *inode = file_inode(vmf->vma->vm_file);
55 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
56 	struct dnode_of_data dn;
57 	bool need_alloc = true;
58 	int err = 0;
59 
60 	if (unlikely(IS_IMMUTABLE(inode)))
61 		return VM_FAULT_SIGBUS;
62 
63 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (unlikely(f2fs_cp_error(sbi))) {
67 		err = -EIO;
68 		goto err;
69 	}
70 
71 	if (!f2fs_is_checkpoint_ready(sbi)) {
72 		err = -ENOSPC;
73 		goto err;
74 	}
75 
76 	err = f2fs_convert_inline_inode(inode);
77 	if (err)
78 		goto err;
79 
80 #ifdef CONFIG_F2FS_FS_COMPRESSION
81 	if (f2fs_compressed_file(inode)) {
82 		int ret = f2fs_is_compressed_cluster(inode, page->index);
83 
84 		if (ret < 0) {
85 			err = ret;
86 			goto err;
87 		} else if (ret) {
88 			need_alloc = false;
89 		}
90 	}
91 #endif
92 	/* should do out of any locked page */
93 	if (need_alloc)
94 		f2fs_balance_fs(sbi, true);
95 
96 	sb_start_pagefault(inode->i_sb);
97 
98 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
99 
100 	file_update_time(vmf->vma->vm_file);
101 	filemap_invalidate_lock_shared(inode->i_mapping);
102 	lock_page(page);
103 	if (unlikely(page->mapping != inode->i_mapping ||
104 			page_offset(page) > i_size_read(inode) ||
105 			!PageUptodate(page))) {
106 		unlock_page(page);
107 		err = -EFAULT;
108 		goto out_sem;
109 	}
110 
111 	if (need_alloc) {
112 		/* block allocation */
113 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
114 		set_new_dnode(&dn, inode, NULL, NULL, 0);
115 		err = f2fs_get_block(&dn, page->index);
116 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
117 	}
118 
119 #ifdef CONFIG_F2FS_FS_COMPRESSION
120 	if (!need_alloc) {
121 		set_new_dnode(&dn, inode, NULL, NULL, 0);
122 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
123 		f2fs_put_dnode(&dn);
124 	}
125 #endif
126 	if (err) {
127 		unlock_page(page);
128 		goto out_sem;
129 	}
130 
131 	f2fs_wait_on_page_writeback(page, DATA, false, true);
132 
133 	/* wait for GCed page writeback via META_MAPPING */
134 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
135 
136 	/*
137 	 * check to see if the page is mapped already (no holes)
138 	 */
139 	if (PageMappedToDisk(page))
140 		goto out_sem;
141 
142 	/* page is wholly or partially inside EOF */
143 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
144 						i_size_read(inode)) {
145 		loff_t offset;
146 
147 		offset = i_size_read(inode) & ~PAGE_MASK;
148 		zero_user_segment(page, offset, PAGE_SIZE);
149 	}
150 	set_page_dirty(page);
151 	if (!PageUptodate(page))
152 		SetPageUptodate(page);
153 
154 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
155 	f2fs_update_time(sbi, REQ_TIME);
156 
157 	trace_f2fs_vm_page_mkwrite(page, DATA);
158 out_sem:
159 	filemap_invalidate_unlock_shared(inode->i_mapping);
160 
161 	sb_end_pagefault(inode->i_sb);
162 err:
163 	return block_page_mkwrite_return(err);
164 }
165 
166 static const struct vm_operations_struct f2fs_file_vm_ops = {
167 	.fault		= f2fs_filemap_fault,
168 	.map_pages	= filemap_map_pages,
169 	.page_mkwrite	= f2fs_vm_page_mkwrite,
170 };
171 
172 static int get_parent_ino(struct inode *inode, nid_t *pino)
173 {
174 	struct dentry *dentry;
175 
176 	/*
177 	 * Make sure to get the non-deleted alias.  The alias associated with
178 	 * the open file descriptor being fsync()'ed may be deleted already.
179 	 */
180 	dentry = d_find_alias(inode);
181 	if (!dentry)
182 		return 0;
183 
184 	*pino = parent_ino(dentry);
185 	dput(dentry);
186 	return 1;
187 }
188 
189 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
190 {
191 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
192 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
193 
194 	if (!S_ISREG(inode->i_mode))
195 		cp_reason = CP_NON_REGULAR;
196 	else if (f2fs_compressed_file(inode))
197 		cp_reason = CP_COMPRESSED;
198 	else if (inode->i_nlink != 1)
199 		cp_reason = CP_HARDLINK;
200 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
201 		cp_reason = CP_SB_NEED_CP;
202 	else if (file_wrong_pino(inode))
203 		cp_reason = CP_WRONG_PINO;
204 	else if (!f2fs_space_for_roll_forward(sbi))
205 		cp_reason = CP_NO_SPC_ROLL;
206 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
207 		cp_reason = CP_NODE_NEED_CP;
208 	else if (test_opt(sbi, FASTBOOT))
209 		cp_reason = CP_FASTBOOT_MODE;
210 	else if (F2FS_OPTION(sbi).active_logs == 2)
211 		cp_reason = CP_SPEC_LOG_NUM;
212 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
213 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
214 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
215 							TRANS_DIR_INO))
216 		cp_reason = CP_RECOVER_DIR;
217 
218 	return cp_reason;
219 }
220 
221 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
222 {
223 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
224 	bool ret = false;
225 	/* But we need to avoid that there are some inode updates */
226 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
227 		ret = true;
228 	f2fs_put_page(i, 0);
229 	return ret;
230 }
231 
232 static void try_to_fix_pino(struct inode *inode)
233 {
234 	struct f2fs_inode_info *fi = F2FS_I(inode);
235 	nid_t pino;
236 
237 	down_write(&fi->i_sem);
238 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
239 			get_parent_ino(inode, &pino)) {
240 		f2fs_i_pino_write(inode, pino);
241 		file_got_pino(inode);
242 	}
243 	up_write(&fi->i_sem);
244 }
245 
246 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
247 						int datasync, bool atomic)
248 {
249 	struct inode *inode = file->f_mapping->host;
250 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
251 	nid_t ino = inode->i_ino;
252 	int ret = 0;
253 	enum cp_reason_type cp_reason = 0;
254 	struct writeback_control wbc = {
255 		.sync_mode = WB_SYNC_ALL,
256 		.nr_to_write = LONG_MAX,
257 		.for_reclaim = 0,
258 	};
259 	unsigned int seq_id = 0;
260 
261 	if (unlikely(f2fs_readonly(inode->i_sb) ||
262 				is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
263 		return 0;
264 
265 	trace_f2fs_sync_file_enter(inode);
266 
267 	if (S_ISDIR(inode->i_mode))
268 		goto go_write;
269 
270 	/* if fdatasync is triggered, let's do in-place-update */
271 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
272 		set_inode_flag(inode, FI_NEED_IPU);
273 	ret = file_write_and_wait_range(file, start, end);
274 	clear_inode_flag(inode, FI_NEED_IPU);
275 
276 	if (ret) {
277 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
278 		return ret;
279 	}
280 
281 	/* if the inode is dirty, let's recover all the time */
282 	if (!f2fs_skip_inode_update(inode, datasync)) {
283 		f2fs_write_inode(inode, NULL);
284 		goto go_write;
285 	}
286 
287 	/*
288 	 * if there is no written data, don't waste time to write recovery info.
289 	 */
290 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
291 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
292 
293 		/* it may call write_inode just prior to fsync */
294 		if (need_inode_page_update(sbi, ino))
295 			goto go_write;
296 
297 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
298 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
299 			goto flush_out;
300 		goto out;
301 	}
302 go_write:
303 	/*
304 	 * Both of fdatasync() and fsync() are able to be recovered from
305 	 * sudden-power-off.
306 	 */
307 	down_read(&F2FS_I(inode)->i_sem);
308 	cp_reason = need_do_checkpoint(inode);
309 	up_read(&F2FS_I(inode)->i_sem);
310 
311 	if (cp_reason) {
312 		/* all the dirty node pages should be flushed for POR */
313 		ret = f2fs_sync_fs(inode->i_sb, 1);
314 
315 		/*
316 		 * We've secured consistency through sync_fs. Following pino
317 		 * will be used only for fsynced inodes after checkpoint.
318 		 */
319 		try_to_fix_pino(inode);
320 		clear_inode_flag(inode, FI_APPEND_WRITE);
321 		clear_inode_flag(inode, FI_UPDATE_WRITE);
322 		goto out;
323 	}
324 sync_nodes:
325 	atomic_inc(&sbi->wb_sync_req[NODE]);
326 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
327 	atomic_dec(&sbi->wb_sync_req[NODE]);
328 	if (ret)
329 		goto out;
330 
331 	/* if cp_error was enabled, we should avoid infinite loop */
332 	if (unlikely(f2fs_cp_error(sbi))) {
333 		ret = -EIO;
334 		goto out;
335 	}
336 
337 	if (f2fs_need_inode_block_update(sbi, ino)) {
338 		f2fs_mark_inode_dirty_sync(inode, true);
339 		f2fs_write_inode(inode, NULL);
340 		goto sync_nodes;
341 	}
342 
343 	/*
344 	 * If it's atomic_write, it's just fine to keep write ordering. So
345 	 * here we don't need to wait for node write completion, since we use
346 	 * node chain which serializes node blocks. If one of node writes are
347 	 * reordered, we can see simply broken chain, resulting in stopping
348 	 * roll-forward recovery. It means we'll recover all or none node blocks
349 	 * given fsync mark.
350 	 */
351 	if (!atomic) {
352 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
353 		if (ret)
354 			goto out;
355 	}
356 
357 	/* once recovery info is written, don't need to tack this */
358 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
359 	clear_inode_flag(inode, FI_APPEND_WRITE);
360 flush_out:
361 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
362 		ret = f2fs_issue_flush(sbi, inode->i_ino);
363 	if (!ret) {
364 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
365 		clear_inode_flag(inode, FI_UPDATE_WRITE);
366 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
367 	}
368 	f2fs_update_time(sbi, REQ_TIME);
369 out:
370 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
371 	return ret;
372 }
373 
374 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
375 {
376 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
377 		return -EIO;
378 	return f2fs_do_sync_file(file, start, end, datasync, false);
379 }
380 
381 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
382 				pgoff_t index, int whence)
383 {
384 	switch (whence) {
385 	case SEEK_DATA:
386 		if (__is_valid_data_blkaddr(blkaddr))
387 			return true;
388 		if (blkaddr == NEW_ADDR &&
389 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
390 			return true;
391 		break;
392 	case SEEK_HOLE:
393 		if (blkaddr == NULL_ADDR)
394 			return true;
395 		break;
396 	}
397 	return false;
398 }
399 
400 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
401 {
402 	struct inode *inode = file->f_mapping->host;
403 	loff_t maxbytes = inode->i_sb->s_maxbytes;
404 	struct dnode_of_data dn;
405 	pgoff_t pgofs, end_offset;
406 	loff_t data_ofs = offset;
407 	loff_t isize;
408 	int err = 0;
409 
410 	inode_lock(inode);
411 
412 	isize = i_size_read(inode);
413 	if (offset >= isize)
414 		goto fail;
415 
416 	/* handle inline data case */
417 	if (f2fs_has_inline_data(inode)) {
418 		if (whence == SEEK_HOLE) {
419 			data_ofs = isize;
420 			goto found;
421 		} else if (whence == SEEK_DATA) {
422 			data_ofs = offset;
423 			goto found;
424 		}
425 	}
426 
427 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
428 
429 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
430 		set_new_dnode(&dn, inode, NULL, NULL, 0);
431 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
432 		if (err && err != -ENOENT) {
433 			goto fail;
434 		} else if (err == -ENOENT) {
435 			/* direct node does not exists */
436 			if (whence == SEEK_DATA) {
437 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
438 				continue;
439 			} else {
440 				goto found;
441 			}
442 		}
443 
444 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
445 
446 		/* find data/hole in dnode block */
447 		for (; dn.ofs_in_node < end_offset;
448 				dn.ofs_in_node++, pgofs++,
449 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
450 			block_t blkaddr;
451 
452 			blkaddr = f2fs_data_blkaddr(&dn);
453 
454 			if (__is_valid_data_blkaddr(blkaddr) &&
455 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
456 					blkaddr, DATA_GENERIC_ENHANCE)) {
457 				f2fs_put_dnode(&dn);
458 				goto fail;
459 			}
460 
461 			if (__found_offset(file->f_mapping, blkaddr,
462 							pgofs, whence)) {
463 				f2fs_put_dnode(&dn);
464 				goto found;
465 			}
466 		}
467 		f2fs_put_dnode(&dn);
468 	}
469 
470 	if (whence == SEEK_DATA)
471 		goto fail;
472 found:
473 	if (whence == SEEK_HOLE && data_ofs > isize)
474 		data_ofs = isize;
475 	inode_unlock(inode);
476 	return vfs_setpos(file, data_ofs, maxbytes);
477 fail:
478 	inode_unlock(inode);
479 	return -ENXIO;
480 }
481 
482 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
483 {
484 	struct inode *inode = file->f_mapping->host;
485 	loff_t maxbytes = inode->i_sb->s_maxbytes;
486 
487 	if (f2fs_compressed_file(inode))
488 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
489 
490 	switch (whence) {
491 	case SEEK_SET:
492 	case SEEK_CUR:
493 	case SEEK_END:
494 		return generic_file_llseek_size(file, offset, whence,
495 						maxbytes, i_size_read(inode));
496 	case SEEK_DATA:
497 	case SEEK_HOLE:
498 		if (offset < 0)
499 			return -ENXIO;
500 		return f2fs_seek_block(file, offset, whence);
501 	}
502 
503 	return -EINVAL;
504 }
505 
506 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
507 {
508 	struct inode *inode = file_inode(file);
509 
510 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
511 		return -EIO;
512 
513 	if (!f2fs_is_compress_backend_ready(inode))
514 		return -EOPNOTSUPP;
515 
516 	file_accessed(file);
517 	vma->vm_ops = &f2fs_file_vm_ops;
518 	set_inode_flag(inode, FI_MMAP_FILE);
519 	return 0;
520 }
521 
522 static int f2fs_file_open(struct inode *inode, struct file *filp)
523 {
524 	int err = fscrypt_file_open(inode, filp);
525 
526 	if (err)
527 		return err;
528 
529 	if (!f2fs_is_compress_backend_ready(inode))
530 		return -EOPNOTSUPP;
531 
532 	err = fsverity_file_open(inode, filp);
533 	if (err)
534 		return err;
535 
536 	filp->f_mode |= FMODE_NOWAIT;
537 
538 	return dquot_file_open(inode, filp);
539 }
540 
541 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
542 {
543 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
544 	struct f2fs_node *raw_node;
545 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
546 	__le32 *addr;
547 	int base = 0;
548 	bool compressed_cluster = false;
549 	int cluster_index = 0, valid_blocks = 0;
550 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
551 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
552 
553 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
554 		base = get_extra_isize(dn->inode);
555 
556 	raw_node = F2FS_NODE(dn->node_page);
557 	addr = blkaddr_in_node(raw_node) + base + ofs;
558 
559 	/* Assumption: truncateion starts with cluster */
560 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
561 		block_t blkaddr = le32_to_cpu(*addr);
562 
563 		if (f2fs_compressed_file(dn->inode) &&
564 					!(cluster_index & (cluster_size - 1))) {
565 			if (compressed_cluster)
566 				f2fs_i_compr_blocks_update(dn->inode,
567 							valid_blocks, false);
568 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
569 			valid_blocks = 0;
570 		}
571 
572 		if (blkaddr == NULL_ADDR)
573 			continue;
574 
575 		dn->data_blkaddr = NULL_ADDR;
576 		f2fs_set_data_blkaddr(dn);
577 
578 		if (__is_valid_data_blkaddr(blkaddr)) {
579 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
580 					DATA_GENERIC_ENHANCE))
581 				continue;
582 			if (compressed_cluster)
583 				valid_blocks++;
584 		}
585 
586 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
587 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
588 
589 		f2fs_invalidate_blocks(sbi, blkaddr);
590 
591 		if (!released || blkaddr != COMPRESS_ADDR)
592 			nr_free++;
593 	}
594 
595 	if (compressed_cluster)
596 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
597 
598 	if (nr_free) {
599 		pgoff_t fofs;
600 		/*
601 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
602 		 * we will invalidate all blkaddr in the whole range.
603 		 */
604 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
605 							dn->inode) + ofs;
606 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
607 		dec_valid_block_count(sbi, dn->inode, nr_free);
608 	}
609 	dn->ofs_in_node = ofs;
610 
611 	f2fs_update_time(sbi, REQ_TIME);
612 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
613 					 dn->ofs_in_node, nr_free);
614 }
615 
616 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
617 {
618 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
619 }
620 
621 static int truncate_partial_data_page(struct inode *inode, u64 from,
622 								bool cache_only)
623 {
624 	loff_t offset = from & (PAGE_SIZE - 1);
625 	pgoff_t index = from >> PAGE_SHIFT;
626 	struct address_space *mapping = inode->i_mapping;
627 	struct page *page;
628 
629 	if (!offset && !cache_only)
630 		return 0;
631 
632 	if (cache_only) {
633 		page = find_lock_page(mapping, index);
634 		if (page && PageUptodate(page))
635 			goto truncate_out;
636 		f2fs_put_page(page, 1);
637 		return 0;
638 	}
639 
640 	page = f2fs_get_lock_data_page(inode, index, true);
641 	if (IS_ERR(page))
642 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
643 truncate_out:
644 	f2fs_wait_on_page_writeback(page, DATA, true, true);
645 	zero_user(page, offset, PAGE_SIZE - offset);
646 
647 	/* An encrypted inode should have a key and truncate the last page. */
648 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
649 	if (!cache_only)
650 		set_page_dirty(page);
651 	f2fs_put_page(page, 1);
652 	return 0;
653 }
654 
655 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
656 {
657 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
658 	struct dnode_of_data dn;
659 	pgoff_t free_from;
660 	int count = 0, err = 0;
661 	struct page *ipage;
662 	bool truncate_page = false;
663 
664 	trace_f2fs_truncate_blocks_enter(inode, from);
665 
666 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
667 
668 	if (free_from >= max_file_blocks(inode))
669 		goto free_partial;
670 
671 	if (lock)
672 		f2fs_lock_op(sbi);
673 
674 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
675 	if (IS_ERR(ipage)) {
676 		err = PTR_ERR(ipage);
677 		goto out;
678 	}
679 
680 	if (f2fs_has_inline_data(inode)) {
681 		f2fs_truncate_inline_inode(inode, ipage, from);
682 		f2fs_put_page(ipage, 1);
683 		truncate_page = true;
684 		goto out;
685 	}
686 
687 	set_new_dnode(&dn, inode, ipage, NULL, 0);
688 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
689 	if (err) {
690 		if (err == -ENOENT)
691 			goto free_next;
692 		goto out;
693 	}
694 
695 	count = ADDRS_PER_PAGE(dn.node_page, inode);
696 
697 	count -= dn.ofs_in_node;
698 	f2fs_bug_on(sbi, count < 0);
699 
700 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
701 		f2fs_truncate_data_blocks_range(&dn, count);
702 		free_from += count;
703 	}
704 
705 	f2fs_put_dnode(&dn);
706 free_next:
707 	err = f2fs_truncate_inode_blocks(inode, free_from);
708 out:
709 	if (lock)
710 		f2fs_unlock_op(sbi);
711 free_partial:
712 	/* lastly zero out the first data page */
713 	if (!err)
714 		err = truncate_partial_data_page(inode, from, truncate_page);
715 
716 	trace_f2fs_truncate_blocks_exit(inode, err);
717 	return err;
718 }
719 
720 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
721 {
722 	u64 free_from = from;
723 	int err;
724 
725 #ifdef CONFIG_F2FS_FS_COMPRESSION
726 	/*
727 	 * for compressed file, only support cluster size
728 	 * aligned truncation.
729 	 */
730 	if (f2fs_compressed_file(inode))
731 		free_from = round_up(from,
732 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
733 #endif
734 
735 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
736 	if (err)
737 		return err;
738 
739 #ifdef CONFIG_F2FS_FS_COMPRESSION
740 	if (from != free_from) {
741 		err = f2fs_truncate_partial_cluster(inode, from, lock);
742 		if (err)
743 			return err;
744 	}
745 #endif
746 
747 	return 0;
748 }
749 
750 int f2fs_truncate(struct inode *inode)
751 {
752 	int err;
753 
754 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
755 		return -EIO;
756 
757 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
758 				S_ISLNK(inode->i_mode)))
759 		return 0;
760 
761 	trace_f2fs_truncate(inode);
762 
763 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
764 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
765 		return -EIO;
766 	}
767 
768 	err = dquot_initialize(inode);
769 	if (err)
770 		return err;
771 
772 	/* we should check inline_data size */
773 	if (!f2fs_may_inline_data(inode)) {
774 		err = f2fs_convert_inline_inode(inode);
775 		if (err)
776 			return err;
777 	}
778 
779 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
780 	if (err)
781 		return err;
782 
783 	inode->i_mtime = inode->i_ctime = current_time(inode);
784 	f2fs_mark_inode_dirty_sync(inode, false);
785 	return 0;
786 }
787 
788 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
789 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
790 {
791 	struct inode *inode = d_inode(path->dentry);
792 	struct f2fs_inode_info *fi = F2FS_I(inode);
793 	struct f2fs_inode *ri;
794 	unsigned int flags;
795 
796 	if (f2fs_has_extra_attr(inode) &&
797 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
798 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
799 		stat->result_mask |= STATX_BTIME;
800 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
801 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
802 	}
803 
804 	flags = fi->i_flags;
805 	if (flags & F2FS_COMPR_FL)
806 		stat->attributes |= STATX_ATTR_COMPRESSED;
807 	if (flags & F2FS_APPEND_FL)
808 		stat->attributes |= STATX_ATTR_APPEND;
809 	if (IS_ENCRYPTED(inode))
810 		stat->attributes |= STATX_ATTR_ENCRYPTED;
811 	if (flags & F2FS_IMMUTABLE_FL)
812 		stat->attributes |= STATX_ATTR_IMMUTABLE;
813 	if (flags & F2FS_NODUMP_FL)
814 		stat->attributes |= STATX_ATTR_NODUMP;
815 	if (IS_VERITY(inode))
816 		stat->attributes |= STATX_ATTR_VERITY;
817 
818 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
819 				  STATX_ATTR_APPEND |
820 				  STATX_ATTR_ENCRYPTED |
821 				  STATX_ATTR_IMMUTABLE |
822 				  STATX_ATTR_NODUMP |
823 				  STATX_ATTR_VERITY);
824 
825 	generic_fillattr(&init_user_ns, inode, stat);
826 
827 	/* we need to show initial sectors used for inline_data/dentries */
828 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
829 					f2fs_has_inline_dentry(inode))
830 		stat->blocks += (stat->size + 511) >> 9;
831 
832 	return 0;
833 }
834 
835 #ifdef CONFIG_F2FS_FS_POSIX_ACL
836 static void __setattr_copy(struct user_namespace *mnt_userns,
837 			   struct inode *inode, const struct iattr *attr)
838 {
839 	unsigned int ia_valid = attr->ia_valid;
840 
841 	if (ia_valid & ATTR_UID)
842 		inode->i_uid = attr->ia_uid;
843 	if (ia_valid & ATTR_GID)
844 		inode->i_gid = attr->ia_gid;
845 	if (ia_valid & ATTR_ATIME)
846 		inode->i_atime = attr->ia_atime;
847 	if (ia_valid & ATTR_MTIME)
848 		inode->i_mtime = attr->ia_mtime;
849 	if (ia_valid & ATTR_CTIME)
850 		inode->i_ctime = attr->ia_ctime;
851 	if (ia_valid & ATTR_MODE) {
852 		umode_t mode = attr->ia_mode;
853 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
854 
855 		if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
856 			mode &= ~S_ISGID;
857 		set_acl_inode(inode, mode);
858 	}
859 }
860 #else
861 #define __setattr_copy setattr_copy
862 #endif
863 
864 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
865 		 struct iattr *attr)
866 {
867 	struct inode *inode = d_inode(dentry);
868 	int err;
869 
870 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
871 		return -EIO;
872 
873 	if (unlikely(IS_IMMUTABLE(inode)))
874 		return -EPERM;
875 
876 	if (unlikely(IS_APPEND(inode) &&
877 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
878 				  ATTR_GID | ATTR_TIMES_SET))))
879 		return -EPERM;
880 
881 	if ((attr->ia_valid & ATTR_SIZE) &&
882 		!f2fs_is_compress_backend_ready(inode))
883 		return -EOPNOTSUPP;
884 
885 	err = setattr_prepare(&init_user_ns, dentry, attr);
886 	if (err)
887 		return err;
888 
889 	err = fscrypt_prepare_setattr(dentry, attr);
890 	if (err)
891 		return err;
892 
893 	err = fsverity_prepare_setattr(dentry, attr);
894 	if (err)
895 		return err;
896 
897 	if (is_quota_modification(inode, attr)) {
898 		err = dquot_initialize(inode);
899 		if (err)
900 			return err;
901 	}
902 	if ((attr->ia_valid & ATTR_UID &&
903 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
904 		(attr->ia_valid & ATTR_GID &&
905 		!gid_eq(attr->ia_gid, inode->i_gid))) {
906 		f2fs_lock_op(F2FS_I_SB(inode));
907 		err = dquot_transfer(inode, attr);
908 		if (err) {
909 			set_sbi_flag(F2FS_I_SB(inode),
910 					SBI_QUOTA_NEED_REPAIR);
911 			f2fs_unlock_op(F2FS_I_SB(inode));
912 			return err;
913 		}
914 		/*
915 		 * update uid/gid under lock_op(), so that dquot and inode can
916 		 * be updated atomically.
917 		 */
918 		if (attr->ia_valid & ATTR_UID)
919 			inode->i_uid = attr->ia_uid;
920 		if (attr->ia_valid & ATTR_GID)
921 			inode->i_gid = attr->ia_gid;
922 		f2fs_mark_inode_dirty_sync(inode, true);
923 		f2fs_unlock_op(F2FS_I_SB(inode));
924 	}
925 
926 	if (attr->ia_valid & ATTR_SIZE) {
927 		loff_t old_size = i_size_read(inode);
928 
929 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
930 			/*
931 			 * should convert inline inode before i_size_write to
932 			 * keep smaller than inline_data size with inline flag.
933 			 */
934 			err = f2fs_convert_inline_inode(inode);
935 			if (err)
936 				return err;
937 		}
938 
939 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
940 		filemap_invalidate_lock(inode->i_mapping);
941 
942 		truncate_setsize(inode, attr->ia_size);
943 
944 		if (attr->ia_size <= old_size)
945 			err = f2fs_truncate(inode);
946 		/*
947 		 * do not trim all blocks after i_size if target size is
948 		 * larger than i_size.
949 		 */
950 		filemap_invalidate_unlock(inode->i_mapping);
951 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
952 		if (err)
953 			return err;
954 
955 		spin_lock(&F2FS_I(inode)->i_size_lock);
956 		inode->i_mtime = inode->i_ctime = current_time(inode);
957 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
958 		spin_unlock(&F2FS_I(inode)->i_size_lock);
959 	}
960 
961 	__setattr_copy(&init_user_ns, inode, attr);
962 
963 	if (attr->ia_valid & ATTR_MODE) {
964 		err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode));
965 
966 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
967 			if (!err)
968 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
969 			clear_inode_flag(inode, FI_ACL_MODE);
970 		}
971 	}
972 
973 	/* file size may changed here */
974 	f2fs_mark_inode_dirty_sync(inode, true);
975 
976 	/* inode change will produce dirty node pages flushed by checkpoint */
977 	f2fs_balance_fs(F2FS_I_SB(inode), true);
978 
979 	return err;
980 }
981 
982 const struct inode_operations f2fs_file_inode_operations = {
983 	.getattr	= f2fs_getattr,
984 	.setattr	= f2fs_setattr,
985 	.get_acl	= f2fs_get_acl,
986 	.set_acl	= f2fs_set_acl,
987 	.listxattr	= f2fs_listxattr,
988 	.fiemap		= f2fs_fiemap,
989 	.fileattr_get	= f2fs_fileattr_get,
990 	.fileattr_set	= f2fs_fileattr_set,
991 };
992 
993 static int fill_zero(struct inode *inode, pgoff_t index,
994 					loff_t start, loff_t len)
995 {
996 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
997 	struct page *page;
998 
999 	if (!len)
1000 		return 0;
1001 
1002 	f2fs_balance_fs(sbi, true);
1003 
1004 	f2fs_lock_op(sbi);
1005 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1006 	f2fs_unlock_op(sbi);
1007 
1008 	if (IS_ERR(page))
1009 		return PTR_ERR(page);
1010 
1011 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1012 	zero_user(page, start, len);
1013 	set_page_dirty(page);
1014 	f2fs_put_page(page, 1);
1015 	return 0;
1016 }
1017 
1018 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1019 {
1020 	int err;
1021 
1022 	while (pg_start < pg_end) {
1023 		struct dnode_of_data dn;
1024 		pgoff_t end_offset, count;
1025 
1026 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1027 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1028 		if (err) {
1029 			if (err == -ENOENT) {
1030 				pg_start = f2fs_get_next_page_offset(&dn,
1031 								pg_start);
1032 				continue;
1033 			}
1034 			return err;
1035 		}
1036 
1037 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1038 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1039 
1040 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1041 
1042 		f2fs_truncate_data_blocks_range(&dn, count);
1043 		f2fs_put_dnode(&dn);
1044 
1045 		pg_start += count;
1046 	}
1047 	return 0;
1048 }
1049 
1050 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1051 {
1052 	pgoff_t pg_start, pg_end;
1053 	loff_t off_start, off_end;
1054 	int ret;
1055 
1056 	ret = f2fs_convert_inline_inode(inode);
1057 	if (ret)
1058 		return ret;
1059 
1060 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1061 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1062 
1063 	off_start = offset & (PAGE_SIZE - 1);
1064 	off_end = (offset + len) & (PAGE_SIZE - 1);
1065 
1066 	if (pg_start == pg_end) {
1067 		ret = fill_zero(inode, pg_start, off_start,
1068 						off_end - off_start);
1069 		if (ret)
1070 			return ret;
1071 	} else {
1072 		if (off_start) {
1073 			ret = fill_zero(inode, pg_start++, off_start,
1074 						PAGE_SIZE - off_start);
1075 			if (ret)
1076 				return ret;
1077 		}
1078 		if (off_end) {
1079 			ret = fill_zero(inode, pg_end, 0, off_end);
1080 			if (ret)
1081 				return ret;
1082 		}
1083 
1084 		if (pg_start < pg_end) {
1085 			struct address_space *mapping = inode->i_mapping;
1086 			loff_t blk_start, blk_end;
1087 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1088 
1089 			f2fs_balance_fs(sbi, true);
1090 
1091 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1092 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1093 
1094 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1095 			filemap_invalidate_lock(mapping);
1096 
1097 			truncate_inode_pages_range(mapping, blk_start,
1098 					blk_end - 1);
1099 
1100 			f2fs_lock_op(sbi);
1101 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1102 			f2fs_unlock_op(sbi);
1103 
1104 			filemap_invalidate_unlock(mapping);
1105 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1106 		}
1107 	}
1108 
1109 	return ret;
1110 }
1111 
1112 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1113 				int *do_replace, pgoff_t off, pgoff_t len)
1114 {
1115 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1116 	struct dnode_of_data dn;
1117 	int ret, done, i;
1118 
1119 next_dnode:
1120 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1121 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1122 	if (ret && ret != -ENOENT) {
1123 		return ret;
1124 	} else if (ret == -ENOENT) {
1125 		if (dn.max_level == 0)
1126 			return -ENOENT;
1127 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1128 						dn.ofs_in_node, len);
1129 		blkaddr += done;
1130 		do_replace += done;
1131 		goto next;
1132 	}
1133 
1134 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1135 							dn.ofs_in_node, len);
1136 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1137 		*blkaddr = f2fs_data_blkaddr(&dn);
1138 
1139 		if (__is_valid_data_blkaddr(*blkaddr) &&
1140 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1141 					DATA_GENERIC_ENHANCE)) {
1142 			f2fs_put_dnode(&dn);
1143 			return -EFSCORRUPTED;
1144 		}
1145 
1146 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1147 
1148 			if (f2fs_lfs_mode(sbi)) {
1149 				f2fs_put_dnode(&dn);
1150 				return -EOPNOTSUPP;
1151 			}
1152 
1153 			/* do not invalidate this block address */
1154 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1155 			*do_replace = 1;
1156 		}
1157 	}
1158 	f2fs_put_dnode(&dn);
1159 next:
1160 	len -= done;
1161 	off += done;
1162 	if (len)
1163 		goto next_dnode;
1164 	return 0;
1165 }
1166 
1167 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1168 				int *do_replace, pgoff_t off, int len)
1169 {
1170 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1171 	struct dnode_of_data dn;
1172 	int ret, i;
1173 
1174 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1175 		if (*do_replace == 0)
1176 			continue;
1177 
1178 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1179 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1180 		if (ret) {
1181 			dec_valid_block_count(sbi, inode, 1);
1182 			f2fs_invalidate_blocks(sbi, *blkaddr);
1183 		} else {
1184 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1185 		}
1186 		f2fs_put_dnode(&dn);
1187 	}
1188 	return 0;
1189 }
1190 
1191 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1192 			block_t *blkaddr, int *do_replace,
1193 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1194 {
1195 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1196 	pgoff_t i = 0;
1197 	int ret;
1198 
1199 	while (i < len) {
1200 		if (blkaddr[i] == NULL_ADDR && !full) {
1201 			i++;
1202 			continue;
1203 		}
1204 
1205 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1206 			struct dnode_of_data dn;
1207 			struct node_info ni;
1208 			size_t new_size;
1209 			pgoff_t ilen;
1210 
1211 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1212 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1213 			if (ret)
1214 				return ret;
1215 
1216 			ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1217 			if (ret) {
1218 				f2fs_put_dnode(&dn);
1219 				return ret;
1220 			}
1221 
1222 			ilen = min((pgoff_t)
1223 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1224 						dn.ofs_in_node, len - i);
1225 			do {
1226 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1227 				f2fs_truncate_data_blocks_range(&dn, 1);
1228 
1229 				if (do_replace[i]) {
1230 					f2fs_i_blocks_write(src_inode,
1231 							1, false, false);
1232 					f2fs_i_blocks_write(dst_inode,
1233 							1, true, false);
1234 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1235 					blkaddr[i], ni.version, true, false);
1236 
1237 					do_replace[i] = 0;
1238 				}
1239 				dn.ofs_in_node++;
1240 				i++;
1241 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1242 				if (dst_inode->i_size < new_size)
1243 					f2fs_i_size_write(dst_inode, new_size);
1244 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1245 
1246 			f2fs_put_dnode(&dn);
1247 		} else {
1248 			struct page *psrc, *pdst;
1249 
1250 			psrc = f2fs_get_lock_data_page(src_inode,
1251 							src + i, true);
1252 			if (IS_ERR(psrc))
1253 				return PTR_ERR(psrc);
1254 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1255 								true);
1256 			if (IS_ERR(pdst)) {
1257 				f2fs_put_page(psrc, 1);
1258 				return PTR_ERR(pdst);
1259 			}
1260 			f2fs_copy_page(psrc, pdst);
1261 			set_page_dirty(pdst);
1262 			f2fs_put_page(pdst, 1);
1263 			f2fs_put_page(psrc, 1);
1264 
1265 			ret = f2fs_truncate_hole(src_inode,
1266 						src + i, src + i + 1);
1267 			if (ret)
1268 				return ret;
1269 			i++;
1270 		}
1271 	}
1272 	return 0;
1273 }
1274 
1275 static int __exchange_data_block(struct inode *src_inode,
1276 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1277 			pgoff_t len, bool full)
1278 {
1279 	block_t *src_blkaddr;
1280 	int *do_replace;
1281 	pgoff_t olen;
1282 	int ret;
1283 
1284 	while (len) {
1285 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1286 
1287 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1288 					array_size(olen, sizeof(block_t)),
1289 					GFP_NOFS);
1290 		if (!src_blkaddr)
1291 			return -ENOMEM;
1292 
1293 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1294 					array_size(olen, sizeof(int)),
1295 					GFP_NOFS);
1296 		if (!do_replace) {
1297 			kvfree(src_blkaddr);
1298 			return -ENOMEM;
1299 		}
1300 
1301 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1302 					do_replace, src, olen);
1303 		if (ret)
1304 			goto roll_back;
1305 
1306 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1307 					do_replace, src, dst, olen, full);
1308 		if (ret)
1309 			goto roll_back;
1310 
1311 		src += olen;
1312 		dst += olen;
1313 		len -= olen;
1314 
1315 		kvfree(src_blkaddr);
1316 		kvfree(do_replace);
1317 	}
1318 	return 0;
1319 
1320 roll_back:
1321 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1322 	kvfree(src_blkaddr);
1323 	kvfree(do_replace);
1324 	return ret;
1325 }
1326 
1327 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1328 {
1329 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1330 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1331 	pgoff_t start = offset >> PAGE_SHIFT;
1332 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1333 	int ret;
1334 
1335 	f2fs_balance_fs(sbi, true);
1336 
1337 	/* avoid gc operation during block exchange */
1338 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1339 	filemap_invalidate_lock(inode->i_mapping);
1340 
1341 	f2fs_lock_op(sbi);
1342 	f2fs_drop_extent_tree(inode);
1343 	truncate_pagecache(inode, offset);
1344 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1345 	f2fs_unlock_op(sbi);
1346 
1347 	filemap_invalidate_unlock(inode->i_mapping);
1348 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1349 	return ret;
1350 }
1351 
1352 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1353 {
1354 	loff_t new_size;
1355 	int ret;
1356 
1357 	if (offset + len >= i_size_read(inode))
1358 		return -EINVAL;
1359 
1360 	/* collapse range should be aligned to block size of f2fs. */
1361 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1362 		return -EINVAL;
1363 
1364 	ret = f2fs_convert_inline_inode(inode);
1365 	if (ret)
1366 		return ret;
1367 
1368 	/* write out all dirty pages from offset */
1369 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1370 	if (ret)
1371 		return ret;
1372 
1373 	ret = f2fs_do_collapse(inode, offset, len);
1374 	if (ret)
1375 		return ret;
1376 
1377 	/* write out all moved pages, if possible */
1378 	filemap_invalidate_lock(inode->i_mapping);
1379 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1380 	truncate_pagecache(inode, offset);
1381 
1382 	new_size = i_size_read(inode) - len;
1383 	ret = f2fs_truncate_blocks(inode, new_size, true);
1384 	filemap_invalidate_unlock(inode->i_mapping);
1385 	if (!ret)
1386 		f2fs_i_size_write(inode, new_size);
1387 	return ret;
1388 }
1389 
1390 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1391 								pgoff_t end)
1392 {
1393 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1394 	pgoff_t index = start;
1395 	unsigned int ofs_in_node = dn->ofs_in_node;
1396 	blkcnt_t count = 0;
1397 	int ret;
1398 
1399 	for (; index < end; index++, dn->ofs_in_node++) {
1400 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1401 			count++;
1402 	}
1403 
1404 	dn->ofs_in_node = ofs_in_node;
1405 	ret = f2fs_reserve_new_blocks(dn, count);
1406 	if (ret)
1407 		return ret;
1408 
1409 	dn->ofs_in_node = ofs_in_node;
1410 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1411 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1412 		/*
1413 		 * f2fs_reserve_new_blocks will not guarantee entire block
1414 		 * allocation.
1415 		 */
1416 		if (dn->data_blkaddr == NULL_ADDR) {
1417 			ret = -ENOSPC;
1418 			break;
1419 		}
1420 		if (dn->data_blkaddr != NEW_ADDR) {
1421 			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1422 			dn->data_blkaddr = NEW_ADDR;
1423 			f2fs_set_data_blkaddr(dn);
1424 		}
1425 	}
1426 
1427 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1428 
1429 	return ret;
1430 }
1431 
1432 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1433 								int mode)
1434 {
1435 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1436 	struct address_space *mapping = inode->i_mapping;
1437 	pgoff_t index, pg_start, pg_end;
1438 	loff_t new_size = i_size_read(inode);
1439 	loff_t off_start, off_end;
1440 	int ret = 0;
1441 
1442 	ret = inode_newsize_ok(inode, (len + offset));
1443 	if (ret)
1444 		return ret;
1445 
1446 	ret = f2fs_convert_inline_inode(inode);
1447 	if (ret)
1448 		return ret;
1449 
1450 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1451 	if (ret)
1452 		return ret;
1453 
1454 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1455 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1456 
1457 	off_start = offset & (PAGE_SIZE - 1);
1458 	off_end = (offset + len) & (PAGE_SIZE - 1);
1459 
1460 	if (pg_start == pg_end) {
1461 		ret = fill_zero(inode, pg_start, off_start,
1462 						off_end - off_start);
1463 		if (ret)
1464 			return ret;
1465 
1466 		new_size = max_t(loff_t, new_size, offset + len);
1467 	} else {
1468 		if (off_start) {
1469 			ret = fill_zero(inode, pg_start++, off_start,
1470 						PAGE_SIZE - off_start);
1471 			if (ret)
1472 				return ret;
1473 
1474 			new_size = max_t(loff_t, new_size,
1475 					(loff_t)pg_start << PAGE_SHIFT);
1476 		}
1477 
1478 		for (index = pg_start; index < pg_end;) {
1479 			struct dnode_of_data dn;
1480 			unsigned int end_offset;
1481 			pgoff_t end;
1482 
1483 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1484 			filemap_invalidate_lock(mapping);
1485 
1486 			truncate_pagecache_range(inode,
1487 				(loff_t)index << PAGE_SHIFT,
1488 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1489 
1490 			f2fs_lock_op(sbi);
1491 
1492 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1493 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1494 			if (ret) {
1495 				f2fs_unlock_op(sbi);
1496 				filemap_invalidate_unlock(mapping);
1497 				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1498 				goto out;
1499 			}
1500 
1501 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1502 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1503 
1504 			ret = f2fs_do_zero_range(&dn, index, end);
1505 			f2fs_put_dnode(&dn);
1506 
1507 			f2fs_unlock_op(sbi);
1508 			filemap_invalidate_unlock(mapping);
1509 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1510 
1511 			f2fs_balance_fs(sbi, dn.node_changed);
1512 
1513 			if (ret)
1514 				goto out;
1515 
1516 			index = end;
1517 			new_size = max_t(loff_t, new_size,
1518 					(loff_t)index << PAGE_SHIFT);
1519 		}
1520 
1521 		if (off_end) {
1522 			ret = fill_zero(inode, pg_end, 0, off_end);
1523 			if (ret)
1524 				goto out;
1525 
1526 			new_size = max_t(loff_t, new_size, offset + len);
1527 		}
1528 	}
1529 
1530 out:
1531 	if (new_size > i_size_read(inode)) {
1532 		if (mode & FALLOC_FL_KEEP_SIZE)
1533 			file_set_keep_isize(inode);
1534 		else
1535 			f2fs_i_size_write(inode, new_size);
1536 	}
1537 	return ret;
1538 }
1539 
1540 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1541 {
1542 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1543 	struct address_space *mapping = inode->i_mapping;
1544 	pgoff_t nr, pg_start, pg_end, delta, idx;
1545 	loff_t new_size;
1546 	int ret = 0;
1547 
1548 	new_size = i_size_read(inode) + len;
1549 	ret = inode_newsize_ok(inode, new_size);
1550 	if (ret)
1551 		return ret;
1552 
1553 	if (offset >= i_size_read(inode))
1554 		return -EINVAL;
1555 
1556 	/* insert range should be aligned to block size of f2fs. */
1557 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1558 		return -EINVAL;
1559 
1560 	ret = f2fs_convert_inline_inode(inode);
1561 	if (ret)
1562 		return ret;
1563 
1564 	f2fs_balance_fs(sbi, true);
1565 
1566 	filemap_invalidate_lock(mapping);
1567 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1568 	filemap_invalidate_unlock(mapping);
1569 	if (ret)
1570 		return ret;
1571 
1572 	/* write out all dirty pages from offset */
1573 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1574 	if (ret)
1575 		return ret;
1576 
1577 	pg_start = offset >> PAGE_SHIFT;
1578 	pg_end = (offset + len) >> PAGE_SHIFT;
1579 	delta = pg_end - pg_start;
1580 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1581 
1582 	/* avoid gc operation during block exchange */
1583 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1584 	filemap_invalidate_lock(mapping);
1585 	truncate_pagecache(inode, offset);
1586 
1587 	while (!ret && idx > pg_start) {
1588 		nr = idx - pg_start;
1589 		if (nr > delta)
1590 			nr = delta;
1591 		idx -= nr;
1592 
1593 		f2fs_lock_op(sbi);
1594 		f2fs_drop_extent_tree(inode);
1595 
1596 		ret = __exchange_data_block(inode, inode, idx,
1597 					idx + delta, nr, false);
1598 		f2fs_unlock_op(sbi);
1599 	}
1600 	filemap_invalidate_unlock(mapping);
1601 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1602 
1603 	/* write out all moved pages, if possible */
1604 	filemap_invalidate_lock(mapping);
1605 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1606 	truncate_pagecache(inode, offset);
1607 	filemap_invalidate_unlock(mapping);
1608 
1609 	if (!ret)
1610 		f2fs_i_size_write(inode, new_size);
1611 	return ret;
1612 }
1613 
1614 static int expand_inode_data(struct inode *inode, loff_t offset,
1615 					loff_t len, int mode)
1616 {
1617 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1618 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1619 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1620 			.m_may_create = true };
1621 	pgoff_t pg_start, pg_end;
1622 	loff_t new_size = i_size_read(inode);
1623 	loff_t off_end;
1624 	block_t expanded = 0;
1625 	int err;
1626 
1627 	err = inode_newsize_ok(inode, (len + offset));
1628 	if (err)
1629 		return err;
1630 
1631 	err = f2fs_convert_inline_inode(inode);
1632 	if (err)
1633 		return err;
1634 
1635 	f2fs_balance_fs(sbi, true);
1636 
1637 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1638 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1639 	off_end = (offset + len) & (PAGE_SIZE - 1);
1640 
1641 	map.m_lblk = pg_start;
1642 	map.m_len = pg_end - pg_start;
1643 	if (off_end)
1644 		map.m_len++;
1645 
1646 	if (!map.m_len)
1647 		return 0;
1648 
1649 	if (f2fs_is_pinned_file(inode)) {
1650 		block_t sec_blks = BLKS_PER_SEC(sbi);
1651 		block_t sec_len = roundup(map.m_len, sec_blks);
1652 
1653 		map.m_len = sec_blks;
1654 next_alloc:
1655 		if (has_not_enough_free_secs(sbi, 0,
1656 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1657 			down_write(&sbi->gc_lock);
1658 			err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1659 			if (err && err != -ENODATA && err != -EAGAIN)
1660 				goto out_err;
1661 		}
1662 
1663 		down_write(&sbi->pin_sem);
1664 
1665 		f2fs_lock_op(sbi);
1666 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1667 		f2fs_unlock_op(sbi);
1668 
1669 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1670 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1671 
1672 		up_write(&sbi->pin_sem);
1673 
1674 		expanded += map.m_len;
1675 		sec_len -= map.m_len;
1676 		map.m_lblk += map.m_len;
1677 		if (!err && sec_len)
1678 			goto next_alloc;
1679 
1680 		map.m_len = expanded;
1681 	} else {
1682 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1683 		expanded = map.m_len;
1684 	}
1685 out_err:
1686 	if (err) {
1687 		pgoff_t last_off;
1688 
1689 		if (!expanded)
1690 			return err;
1691 
1692 		last_off = pg_start + expanded - 1;
1693 
1694 		/* update new size to the failed position */
1695 		new_size = (last_off == pg_end) ? offset + len :
1696 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1697 	} else {
1698 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1699 	}
1700 
1701 	if (new_size > i_size_read(inode)) {
1702 		if (mode & FALLOC_FL_KEEP_SIZE)
1703 			file_set_keep_isize(inode);
1704 		else
1705 			f2fs_i_size_write(inode, new_size);
1706 	}
1707 
1708 	return err;
1709 }
1710 
1711 static long f2fs_fallocate(struct file *file, int mode,
1712 				loff_t offset, loff_t len)
1713 {
1714 	struct inode *inode = file_inode(file);
1715 	long ret = 0;
1716 
1717 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1718 		return -EIO;
1719 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1720 		return -ENOSPC;
1721 	if (!f2fs_is_compress_backend_ready(inode))
1722 		return -EOPNOTSUPP;
1723 
1724 	/* f2fs only support ->fallocate for regular file */
1725 	if (!S_ISREG(inode->i_mode))
1726 		return -EINVAL;
1727 
1728 	if (IS_ENCRYPTED(inode) &&
1729 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1730 		return -EOPNOTSUPP;
1731 
1732 	if (f2fs_compressed_file(inode) &&
1733 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1734 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1735 		return -EOPNOTSUPP;
1736 
1737 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1738 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1739 			FALLOC_FL_INSERT_RANGE))
1740 		return -EOPNOTSUPP;
1741 
1742 	inode_lock(inode);
1743 
1744 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1745 		if (offset >= inode->i_size)
1746 			goto out;
1747 
1748 		ret = punch_hole(inode, offset, len);
1749 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1750 		ret = f2fs_collapse_range(inode, offset, len);
1751 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1752 		ret = f2fs_zero_range(inode, offset, len, mode);
1753 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1754 		ret = f2fs_insert_range(inode, offset, len);
1755 	} else {
1756 		ret = expand_inode_data(inode, offset, len, mode);
1757 	}
1758 
1759 	if (!ret) {
1760 		inode->i_mtime = inode->i_ctime = current_time(inode);
1761 		f2fs_mark_inode_dirty_sync(inode, false);
1762 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1763 	}
1764 
1765 out:
1766 	inode_unlock(inode);
1767 
1768 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1769 	return ret;
1770 }
1771 
1772 static int f2fs_release_file(struct inode *inode, struct file *filp)
1773 {
1774 	/*
1775 	 * f2fs_relase_file is called at every close calls. So we should
1776 	 * not drop any inmemory pages by close called by other process.
1777 	 */
1778 	if (!(filp->f_mode & FMODE_WRITE) ||
1779 			atomic_read(&inode->i_writecount) != 1)
1780 		return 0;
1781 
1782 	/* some remained atomic pages should discarded */
1783 	if (f2fs_is_atomic_file(inode))
1784 		f2fs_drop_inmem_pages(inode);
1785 	if (f2fs_is_volatile_file(inode)) {
1786 		set_inode_flag(inode, FI_DROP_CACHE);
1787 		filemap_fdatawrite(inode->i_mapping);
1788 		clear_inode_flag(inode, FI_DROP_CACHE);
1789 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1790 		stat_dec_volatile_write(inode);
1791 	}
1792 	return 0;
1793 }
1794 
1795 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1796 {
1797 	struct inode *inode = file_inode(file);
1798 
1799 	/*
1800 	 * If the process doing a transaction is crashed, we should do
1801 	 * roll-back. Otherwise, other reader/write can see corrupted database
1802 	 * until all the writers close its file. Since this should be done
1803 	 * before dropping file lock, it needs to do in ->flush.
1804 	 */
1805 	if (f2fs_is_atomic_file(inode) &&
1806 			F2FS_I(inode)->inmem_task == current)
1807 		f2fs_drop_inmem_pages(inode);
1808 	return 0;
1809 }
1810 
1811 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1812 {
1813 	struct f2fs_inode_info *fi = F2FS_I(inode);
1814 	u32 masked_flags = fi->i_flags & mask;
1815 
1816 	/* mask can be shrunk by flags_valid selector */
1817 	iflags &= mask;
1818 
1819 	/* Is it quota file? Do not allow user to mess with it */
1820 	if (IS_NOQUOTA(inode))
1821 		return -EPERM;
1822 
1823 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1824 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1825 			return -EOPNOTSUPP;
1826 		if (!f2fs_empty_dir(inode))
1827 			return -ENOTEMPTY;
1828 	}
1829 
1830 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1831 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1832 			return -EOPNOTSUPP;
1833 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1834 			return -EINVAL;
1835 	}
1836 
1837 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1838 		if (masked_flags & F2FS_COMPR_FL) {
1839 			if (!f2fs_disable_compressed_file(inode))
1840 				return -EINVAL;
1841 		}
1842 		if (iflags & F2FS_NOCOMP_FL)
1843 			return -EINVAL;
1844 		if (iflags & F2FS_COMPR_FL) {
1845 			if (!f2fs_may_compress(inode))
1846 				return -EINVAL;
1847 			if (S_ISREG(inode->i_mode) && inode->i_size)
1848 				return -EINVAL;
1849 
1850 			set_compress_context(inode);
1851 		}
1852 	}
1853 	if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1854 		if (masked_flags & F2FS_COMPR_FL)
1855 			return -EINVAL;
1856 	}
1857 
1858 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1859 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1860 					(fi->i_flags & F2FS_NOCOMP_FL));
1861 
1862 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1863 		set_inode_flag(inode, FI_PROJ_INHERIT);
1864 	else
1865 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1866 
1867 	inode->i_ctime = current_time(inode);
1868 	f2fs_set_inode_flags(inode);
1869 	f2fs_mark_inode_dirty_sync(inode, true);
1870 	return 0;
1871 }
1872 
1873 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1874 
1875 /*
1876  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1877  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1878  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1879  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1880  *
1881  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1882  * FS_IOC_FSSETXATTR is done by the VFS.
1883  */
1884 
1885 static const struct {
1886 	u32 iflag;
1887 	u32 fsflag;
1888 } f2fs_fsflags_map[] = {
1889 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1890 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1891 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1892 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1893 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1894 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1895 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1896 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1897 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1898 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1899 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1900 };
1901 
1902 #define F2FS_GETTABLE_FS_FL (		\
1903 		FS_COMPR_FL |		\
1904 		FS_SYNC_FL |		\
1905 		FS_IMMUTABLE_FL |	\
1906 		FS_APPEND_FL |		\
1907 		FS_NODUMP_FL |		\
1908 		FS_NOATIME_FL |		\
1909 		FS_NOCOMP_FL |		\
1910 		FS_INDEX_FL |		\
1911 		FS_DIRSYNC_FL |		\
1912 		FS_PROJINHERIT_FL |	\
1913 		FS_ENCRYPT_FL |		\
1914 		FS_INLINE_DATA_FL |	\
1915 		FS_NOCOW_FL |		\
1916 		FS_VERITY_FL |		\
1917 		FS_CASEFOLD_FL)
1918 
1919 #define F2FS_SETTABLE_FS_FL (		\
1920 		FS_COMPR_FL |		\
1921 		FS_SYNC_FL |		\
1922 		FS_IMMUTABLE_FL |	\
1923 		FS_APPEND_FL |		\
1924 		FS_NODUMP_FL |		\
1925 		FS_NOATIME_FL |		\
1926 		FS_NOCOMP_FL |		\
1927 		FS_DIRSYNC_FL |		\
1928 		FS_PROJINHERIT_FL |	\
1929 		FS_CASEFOLD_FL)
1930 
1931 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1932 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1933 {
1934 	u32 fsflags = 0;
1935 	int i;
1936 
1937 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1938 		if (iflags & f2fs_fsflags_map[i].iflag)
1939 			fsflags |= f2fs_fsflags_map[i].fsflag;
1940 
1941 	return fsflags;
1942 }
1943 
1944 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1945 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1946 {
1947 	u32 iflags = 0;
1948 	int i;
1949 
1950 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1951 		if (fsflags & f2fs_fsflags_map[i].fsflag)
1952 			iflags |= f2fs_fsflags_map[i].iflag;
1953 
1954 	return iflags;
1955 }
1956 
1957 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1958 {
1959 	struct inode *inode = file_inode(filp);
1960 
1961 	return put_user(inode->i_generation, (int __user *)arg);
1962 }
1963 
1964 static int f2fs_ioc_start_atomic_write(struct file *filp)
1965 {
1966 	struct inode *inode = file_inode(filp);
1967 	struct f2fs_inode_info *fi = F2FS_I(inode);
1968 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1969 	int ret;
1970 
1971 	if (!inode_owner_or_capable(&init_user_ns, inode))
1972 		return -EACCES;
1973 
1974 	if (!S_ISREG(inode->i_mode))
1975 		return -EINVAL;
1976 
1977 	if (filp->f_flags & O_DIRECT)
1978 		return -EINVAL;
1979 
1980 	ret = mnt_want_write_file(filp);
1981 	if (ret)
1982 		return ret;
1983 
1984 	inode_lock(inode);
1985 
1986 	f2fs_disable_compressed_file(inode);
1987 
1988 	if (f2fs_is_atomic_file(inode)) {
1989 		if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
1990 			ret = -EINVAL;
1991 		goto out;
1992 	}
1993 
1994 	ret = f2fs_convert_inline_inode(inode);
1995 	if (ret)
1996 		goto out;
1997 
1998 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1999 
2000 	/*
2001 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2002 	 * f2fs_is_atomic_file.
2003 	 */
2004 	if (get_dirty_pages(inode))
2005 		f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2006 			  inode->i_ino, get_dirty_pages(inode));
2007 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2008 	if (ret) {
2009 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2010 		goto out;
2011 	}
2012 
2013 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2014 	if (list_empty(&fi->inmem_ilist))
2015 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2016 	sbi->atomic_files++;
2017 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2018 
2019 	/* add inode in inmem_list first and set atomic_file */
2020 	set_inode_flag(inode, FI_ATOMIC_FILE);
2021 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2022 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2023 
2024 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2025 	F2FS_I(inode)->inmem_task = current;
2026 	stat_update_max_atomic_write(inode);
2027 out:
2028 	inode_unlock(inode);
2029 	mnt_drop_write_file(filp);
2030 	return ret;
2031 }
2032 
2033 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2034 {
2035 	struct inode *inode = file_inode(filp);
2036 	int ret;
2037 
2038 	if (!inode_owner_or_capable(&init_user_ns, inode))
2039 		return -EACCES;
2040 
2041 	ret = mnt_want_write_file(filp);
2042 	if (ret)
2043 		return ret;
2044 
2045 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2046 
2047 	inode_lock(inode);
2048 
2049 	if (f2fs_is_volatile_file(inode)) {
2050 		ret = -EINVAL;
2051 		goto err_out;
2052 	}
2053 
2054 	if (f2fs_is_atomic_file(inode)) {
2055 		ret = f2fs_commit_inmem_pages(inode);
2056 		if (ret)
2057 			goto err_out;
2058 
2059 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2060 		if (!ret)
2061 			f2fs_drop_inmem_pages(inode);
2062 	} else {
2063 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2064 	}
2065 err_out:
2066 	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2067 		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2068 		ret = -EINVAL;
2069 	}
2070 	inode_unlock(inode);
2071 	mnt_drop_write_file(filp);
2072 	return ret;
2073 }
2074 
2075 static int f2fs_ioc_start_volatile_write(struct file *filp)
2076 {
2077 	struct inode *inode = file_inode(filp);
2078 	int ret;
2079 
2080 	if (!inode_owner_or_capable(&init_user_ns, inode))
2081 		return -EACCES;
2082 
2083 	if (!S_ISREG(inode->i_mode))
2084 		return -EINVAL;
2085 
2086 	ret = mnt_want_write_file(filp);
2087 	if (ret)
2088 		return ret;
2089 
2090 	inode_lock(inode);
2091 
2092 	if (f2fs_is_volatile_file(inode))
2093 		goto out;
2094 
2095 	ret = f2fs_convert_inline_inode(inode);
2096 	if (ret)
2097 		goto out;
2098 
2099 	stat_inc_volatile_write(inode);
2100 	stat_update_max_volatile_write(inode);
2101 
2102 	set_inode_flag(inode, FI_VOLATILE_FILE);
2103 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2104 out:
2105 	inode_unlock(inode);
2106 	mnt_drop_write_file(filp);
2107 	return ret;
2108 }
2109 
2110 static int f2fs_ioc_release_volatile_write(struct file *filp)
2111 {
2112 	struct inode *inode = file_inode(filp);
2113 	int ret;
2114 
2115 	if (!inode_owner_or_capable(&init_user_ns, inode))
2116 		return -EACCES;
2117 
2118 	ret = mnt_want_write_file(filp);
2119 	if (ret)
2120 		return ret;
2121 
2122 	inode_lock(inode);
2123 
2124 	if (!f2fs_is_volatile_file(inode))
2125 		goto out;
2126 
2127 	if (!f2fs_is_first_block_written(inode)) {
2128 		ret = truncate_partial_data_page(inode, 0, true);
2129 		goto out;
2130 	}
2131 
2132 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2133 out:
2134 	inode_unlock(inode);
2135 	mnt_drop_write_file(filp);
2136 	return ret;
2137 }
2138 
2139 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2140 {
2141 	struct inode *inode = file_inode(filp);
2142 	int ret;
2143 
2144 	if (!inode_owner_or_capable(&init_user_ns, inode))
2145 		return -EACCES;
2146 
2147 	ret = mnt_want_write_file(filp);
2148 	if (ret)
2149 		return ret;
2150 
2151 	inode_lock(inode);
2152 
2153 	if (f2fs_is_atomic_file(inode))
2154 		f2fs_drop_inmem_pages(inode);
2155 	if (f2fs_is_volatile_file(inode)) {
2156 		clear_inode_flag(inode, FI_VOLATILE_FILE);
2157 		stat_dec_volatile_write(inode);
2158 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2159 	}
2160 
2161 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2162 
2163 	inode_unlock(inode);
2164 
2165 	mnt_drop_write_file(filp);
2166 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2167 	return ret;
2168 }
2169 
2170 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2171 {
2172 	struct inode *inode = file_inode(filp);
2173 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2174 	struct super_block *sb = sbi->sb;
2175 	__u32 in;
2176 	int ret = 0;
2177 
2178 	if (!capable(CAP_SYS_ADMIN))
2179 		return -EPERM;
2180 
2181 	if (get_user(in, (__u32 __user *)arg))
2182 		return -EFAULT;
2183 
2184 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2185 		ret = mnt_want_write_file(filp);
2186 		if (ret) {
2187 			if (ret == -EROFS) {
2188 				ret = 0;
2189 				f2fs_stop_checkpoint(sbi, false);
2190 				set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2191 				trace_f2fs_shutdown(sbi, in, ret);
2192 			}
2193 			return ret;
2194 		}
2195 	}
2196 
2197 	switch (in) {
2198 	case F2FS_GOING_DOWN_FULLSYNC:
2199 		ret = freeze_bdev(sb->s_bdev);
2200 		if (ret)
2201 			goto out;
2202 		f2fs_stop_checkpoint(sbi, false);
2203 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2204 		thaw_bdev(sb->s_bdev);
2205 		break;
2206 	case F2FS_GOING_DOWN_METASYNC:
2207 		/* do checkpoint only */
2208 		ret = f2fs_sync_fs(sb, 1);
2209 		if (ret)
2210 			goto out;
2211 		f2fs_stop_checkpoint(sbi, false);
2212 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2213 		break;
2214 	case F2FS_GOING_DOWN_NOSYNC:
2215 		f2fs_stop_checkpoint(sbi, false);
2216 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2217 		break;
2218 	case F2FS_GOING_DOWN_METAFLUSH:
2219 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2220 		f2fs_stop_checkpoint(sbi, false);
2221 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2222 		break;
2223 	case F2FS_GOING_DOWN_NEED_FSCK:
2224 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2225 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2226 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2227 		/* do checkpoint only */
2228 		ret = f2fs_sync_fs(sb, 1);
2229 		goto out;
2230 	default:
2231 		ret = -EINVAL;
2232 		goto out;
2233 	}
2234 
2235 	f2fs_stop_gc_thread(sbi);
2236 	f2fs_stop_discard_thread(sbi);
2237 
2238 	f2fs_drop_discard_cmd(sbi);
2239 	clear_opt(sbi, DISCARD);
2240 
2241 	f2fs_update_time(sbi, REQ_TIME);
2242 out:
2243 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2244 		mnt_drop_write_file(filp);
2245 
2246 	trace_f2fs_shutdown(sbi, in, ret);
2247 
2248 	return ret;
2249 }
2250 
2251 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2252 {
2253 	struct inode *inode = file_inode(filp);
2254 	struct super_block *sb = inode->i_sb;
2255 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
2256 	struct fstrim_range range;
2257 	int ret;
2258 
2259 	if (!capable(CAP_SYS_ADMIN))
2260 		return -EPERM;
2261 
2262 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2263 		return -EOPNOTSUPP;
2264 
2265 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2266 				sizeof(range)))
2267 		return -EFAULT;
2268 
2269 	ret = mnt_want_write_file(filp);
2270 	if (ret)
2271 		return ret;
2272 
2273 	range.minlen = max((unsigned int)range.minlen,
2274 				q->limits.discard_granularity);
2275 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2276 	mnt_drop_write_file(filp);
2277 	if (ret < 0)
2278 		return ret;
2279 
2280 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2281 				sizeof(range)))
2282 		return -EFAULT;
2283 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2284 	return 0;
2285 }
2286 
2287 static bool uuid_is_nonzero(__u8 u[16])
2288 {
2289 	int i;
2290 
2291 	for (i = 0; i < 16; i++)
2292 		if (u[i])
2293 			return true;
2294 	return false;
2295 }
2296 
2297 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2298 {
2299 	struct inode *inode = file_inode(filp);
2300 
2301 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2302 		return -EOPNOTSUPP;
2303 
2304 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2305 
2306 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2307 }
2308 
2309 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2310 {
2311 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2312 		return -EOPNOTSUPP;
2313 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2314 }
2315 
2316 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2317 {
2318 	struct inode *inode = file_inode(filp);
2319 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2320 	int err;
2321 
2322 	if (!f2fs_sb_has_encrypt(sbi))
2323 		return -EOPNOTSUPP;
2324 
2325 	err = mnt_want_write_file(filp);
2326 	if (err)
2327 		return err;
2328 
2329 	down_write(&sbi->sb_lock);
2330 
2331 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2332 		goto got_it;
2333 
2334 	/* update superblock with uuid */
2335 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2336 
2337 	err = f2fs_commit_super(sbi, false);
2338 	if (err) {
2339 		/* undo new data */
2340 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2341 		goto out_err;
2342 	}
2343 got_it:
2344 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2345 									16))
2346 		err = -EFAULT;
2347 out_err:
2348 	up_write(&sbi->sb_lock);
2349 	mnt_drop_write_file(filp);
2350 	return err;
2351 }
2352 
2353 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2354 					     unsigned long arg)
2355 {
2356 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2357 		return -EOPNOTSUPP;
2358 
2359 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2360 }
2361 
2362 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2363 {
2364 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2365 		return -EOPNOTSUPP;
2366 
2367 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2368 }
2369 
2370 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2371 {
2372 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2373 		return -EOPNOTSUPP;
2374 
2375 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2376 }
2377 
2378 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2379 						    unsigned long arg)
2380 {
2381 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2382 		return -EOPNOTSUPP;
2383 
2384 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2385 }
2386 
2387 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2388 					      unsigned long arg)
2389 {
2390 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2391 		return -EOPNOTSUPP;
2392 
2393 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2394 }
2395 
2396 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2397 {
2398 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2399 		return -EOPNOTSUPP;
2400 
2401 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2402 }
2403 
2404 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2405 {
2406 	struct inode *inode = file_inode(filp);
2407 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2408 	__u32 sync;
2409 	int ret;
2410 
2411 	if (!capable(CAP_SYS_ADMIN))
2412 		return -EPERM;
2413 
2414 	if (get_user(sync, (__u32 __user *)arg))
2415 		return -EFAULT;
2416 
2417 	if (f2fs_readonly(sbi->sb))
2418 		return -EROFS;
2419 
2420 	ret = mnt_want_write_file(filp);
2421 	if (ret)
2422 		return ret;
2423 
2424 	if (!sync) {
2425 		if (!down_write_trylock(&sbi->gc_lock)) {
2426 			ret = -EBUSY;
2427 			goto out;
2428 		}
2429 	} else {
2430 		down_write(&sbi->gc_lock);
2431 	}
2432 
2433 	ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2434 out:
2435 	mnt_drop_write_file(filp);
2436 	return ret;
2437 }
2438 
2439 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2440 {
2441 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2442 	u64 end;
2443 	int ret;
2444 
2445 	if (!capable(CAP_SYS_ADMIN))
2446 		return -EPERM;
2447 	if (f2fs_readonly(sbi->sb))
2448 		return -EROFS;
2449 
2450 	end = range->start + range->len;
2451 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2452 					end >= MAX_BLKADDR(sbi))
2453 		return -EINVAL;
2454 
2455 	ret = mnt_want_write_file(filp);
2456 	if (ret)
2457 		return ret;
2458 
2459 do_more:
2460 	if (!range->sync) {
2461 		if (!down_write_trylock(&sbi->gc_lock)) {
2462 			ret = -EBUSY;
2463 			goto out;
2464 		}
2465 	} else {
2466 		down_write(&sbi->gc_lock);
2467 	}
2468 
2469 	ret = f2fs_gc(sbi, range->sync, true, false,
2470 				GET_SEGNO(sbi, range->start));
2471 	if (ret) {
2472 		if (ret == -EBUSY)
2473 			ret = -EAGAIN;
2474 		goto out;
2475 	}
2476 	range->start += BLKS_PER_SEC(sbi);
2477 	if (range->start <= end)
2478 		goto do_more;
2479 out:
2480 	mnt_drop_write_file(filp);
2481 	return ret;
2482 }
2483 
2484 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2485 {
2486 	struct f2fs_gc_range range;
2487 
2488 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2489 							sizeof(range)))
2490 		return -EFAULT;
2491 	return __f2fs_ioc_gc_range(filp, &range);
2492 }
2493 
2494 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2495 {
2496 	struct inode *inode = file_inode(filp);
2497 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2498 	int ret;
2499 
2500 	if (!capable(CAP_SYS_ADMIN))
2501 		return -EPERM;
2502 
2503 	if (f2fs_readonly(sbi->sb))
2504 		return -EROFS;
2505 
2506 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2507 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2508 		return -EINVAL;
2509 	}
2510 
2511 	ret = mnt_want_write_file(filp);
2512 	if (ret)
2513 		return ret;
2514 
2515 	ret = f2fs_sync_fs(sbi->sb, 1);
2516 
2517 	mnt_drop_write_file(filp);
2518 	return ret;
2519 }
2520 
2521 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2522 					struct file *filp,
2523 					struct f2fs_defragment *range)
2524 {
2525 	struct inode *inode = file_inode(filp);
2526 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2527 					.m_seg_type = NO_CHECK_TYPE,
2528 					.m_may_create = false };
2529 	struct extent_info ei = {0, 0, 0};
2530 	pgoff_t pg_start, pg_end, next_pgofs;
2531 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2532 	unsigned int total = 0, sec_num;
2533 	block_t blk_end = 0;
2534 	bool fragmented = false;
2535 	int err;
2536 
2537 	/* if in-place-update policy is enabled, don't waste time here */
2538 	if (f2fs_should_update_inplace(inode, NULL))
2539 		return -EINVAL;
2540 
2541 	pg_start = range->start >> PAGE_SHIFT;
2542 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2543 
2544 	f2fs_balance_fs(sbi, true);
2545 
2546 	inode_lock(inode);
2547 
2548 	/* writeback all dirty pages in the range */
2549 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2550 						range->start + range->len - 1);
2551 	if (err)
2552 		goto out;
2553 
2554 	/*
2555 	 * lookup mapping info in extent cache, skip defragmenting if physical
2556 	 * block addresses are continuous.
2557 	 */
2558 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2559 		if (ei.fofs + ei.len >= pg_end)
2560 			goto out;
2561 	}
2562 
2563 	map.m_lblk = pg_start;
2564 	map.m_next_pgofs = &next_pgofs;
2565 
2566 	/*
2567 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2568 	 * physical block addresses are continuous even if there are hole(s)
2569 	 * in logical blocks.
2570 	 */
2571 	while (map.m_lblk < pg_end) {
2572 		map.m_len = pg_end - map.m_lblk;
2573 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2574 		if (err)
2575 			goto out;
2576 
2577 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2578 			map.m_lblk = next_pgofs;
2579 			continue;
2580 		}
2581 
2582 		if (blk_end && blk_end != map.m_pblk)
2583 			fragmented = true;
2584 
2585 		/* record total count of block that we're going to move */
2586 		total += map.m_len;
2587 
2588 		blk_end = map.m_pblk + map.m_len;
2589 
2590 		map.m_lblk += map.m_len;
2591 	}
2592 
2593 	if (!fragmented) {
2594 		total = 0;
2595 		goto out;
2596 	}
2597 
2598 	sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2599 
2600 	/*
2601 	 * make sure there are enough free section for LFS allocation, this can
2602 	 * avoid defragment running in SSR mode when free section are allocated
2603 	 * intensively
2604 	 */
2605 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2606 		err = -EAGAIN;
2607 		goto out;
2608 	}
2609 
2610 	map.m_lblk = pg_start;
2611 	map.m_len = pg_end - pg_start;
2612 	total = 0;
2613 
2614 	while (map.m_lblk < pg_end) {
2615 		pgoff_t idx;
2616 		int cnt = 0;
2617 
2618 do_map:
2619 		map.m_len = pg_end - map.m_lblk;
2620 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2621 		if (err)
2622 			goto clear_out;
2623 
2624 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2625 			map.m_lblk = next_pgofs;
2626 			goto check;
2627 		}
2628 
2629 		set_inode_flag(inode, FI_DO_DEFRAG);
2630 
2631 		idx = map.m_lblk;
2632 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2633 			struct page *page;
2634 
2635 			page = f2fs_get_lock_data_page(inode, idx, true);
2636 			if (IS_ERR(page)) {
2637 				err = PTR_ERR(page);
2638 				goto clear_out;
2639 			}
2640 
2641 			set_page_dirty(page);
2642 			f2fs_put_page(page, 1);
2643 
2644 			idx++;
2645 			cnt++;
2646 			total++;
2647 		}
2648 
2649 		map.m_lblk = idx;
2650 check:
2651 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2652 			goto do_map;
2653 
2654 		clear_inode_flag(inode, FI_DO_DEFRAG);
2655 
2656 		err = filemap_fdatawrite(inode->i_mapping);
2657 		if (err)
2658 			goto out;
2659 	}
2660 clear_out:
2661 	clear_inode_flag(inode, FI_DO_DEFRAG);
2662 out:
2663 	inode_unlock(inode);
2664 	if (!err)
2665 		range->len = (u64)total << PAGE_SHIFT;
2666 	return err;
2667 }
2668 
2669 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2670 {
2671 	struct inode *inode = file_inode(filp);
2672 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2673 	struct f2fs_defragment range;
2674 	int err;
2675 
2676 	if (!capable(CAP_SYS_ADMIN))
2677 		return -EPERM;
2678 
2679 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2680 		return -EINVAL;
2681 
2682 	if (f2fs_readonly(sbi->sb))
2683 		return -EROFS;
2684 
2685 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2686 							sizeof(range)))
2687 		return -EFAULT;
2688 
2689 	/* verify alignment of offset & size */
2690 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2691 		return -EINVAL;
2692 
2693 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2694 					max_file_blocks(inode)))
2695 		return -EINVAL;
2696 
2697 	err = mnt_want_write_file(filp);
2698 	if (err)
2699 		return err;
2700 
2701 	err = f2fs_defragment_range(sbi, filp, &range);
2702 	mnt_drop_write_file(filp);
2703 
2704 	f2fs_update_time(sbi, REQ_TIME);
2705 	if (err < 0)
2706 		return err;
2707 
2708 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2709 							sizeof(range)))
2710 		return -EFAULT;
2711 
2712 	return 0;
2713 }
2714 
2715 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2716 			struct file *file_out, loff_t pos_out, size_t len)
2717 {
2718 	struct inode *src = file_inode(file_in);
2719 	struct inode *dst = file_inode(file_out);
2720 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2721 	size_t olen = len, dst_max_i_size = 0;
2722 	size_t dst_osize;
2723 	int ret;
2724 
2725 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2726 				src->i_sb != dst->i_sb)
2727 		return -EXDEV;
2728 
2729 	if (unlikely(f2fs_readonly(src->i_sb)))
2730 		return -EROFS;
2731 
2732 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2733 		return -EINVAL;
2734 
2735 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2736 		return -EOPNOTSUPP;
2737 
2738 	if (pos_out < 0 || pos_in < 0)
2739 		return -EINVAL;
2740 
2741 	if (src == dst) {
2742 		if (pos_in == pos_out)
2743 			return 0;
2744 		if (pos_out > pos_in && pos_out < pos_in + len)
2745 			return -EINVAL;
2746 	}
2747 
2748 	inode_lock(src);
2749 	if (src != dst) {
2750 		ret = -EBUSY;
2751 		if (!inode_trylock(dst))
2752 			goto out;
2753 	}
2754 
2755 	ret = -EINVAL;
2756 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2757 		goto out_unlock;
2758 	if (len == 0)
2759 		olen = len = src->i_size - pos_in;
2760 	if (pos_in + len == src->i_size)
2761 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2762 	if (len == 0) {
2763 		ret = 0;
2764 		goto out_unlock;
2765 	}
2766 
2767 	dst_osize = dst->i_size;
2768 	if (pos_out + olen > dst->i_size)
2769 		dst_max_i_size = pos_out + olen;
2770 
2771 	/* verify the end result is block aligned */
2772 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2773 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2774 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2775 		goto out_unlock;
2776 
2777 	ret = f2fs_convert_inline_inode(src);
2778 	if (ret)
2779 		goto out_unlock;
2780 
2781 	ret = f2fs_convert_inline_inode(dst);
2782 	if (ret)
2783 		goto out_unlock;
2784 
2785 	/* write out all dirty pages from offset */
2786 	ret = filemap_write_and_wait_range(src->i_mapping,
2787 					pos_in, pos_in + len);
2788 	if (ret)
2789 		goto out_unlock;
2790 
2791 	ret = filemap_write_and_wait_range(dst->i_mapping,
2792 					pos_out, pos_out + len);
2793 	if (ret)
2794 		goto out_unlock;
2795 
2796 	f2fs_balance_fs(sbi, true);
2797 
2798 	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2799 	if (src != dst) {
2800 		ret = -EBUSY;
2801 		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2802 			goto out_src;
2803 	}
2804 
2805 	f2fs_lock_op(sbi);
2806 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2807 				pos_out >> F2FS_BLKSIZE_BITS,
2808 				len >> F2FS_BLKSIZE_BITS, false);
2809 
2810 	if (!ret) {
2811 		if (dst_max_i_size)
2812 			f2fs_i_size_write(dst, dst_max_i_size);
2813 		else if (dst_osize != dst->i_size)
2814 			f2fs_i_size_write(dst, dst_osize);
2815 	}
2816 	f2fs_unlock_op(sbi);
2817 
2818 	if (src != dst)
2819 		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2820 out_src:
2821 	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2822 out_unlock:
2823 	if (src != dst)
2824 		inode_unlock(dst);
2825 out:
2826 	inode_unlock(src);
2827 	return ret;
2828 }
2829 
2830 static int __f2fs_ioc_move_range(struct file *filp,
2831 				struct f2fs_move_range *range)
2832 {
2833 	struct fd dst;
2834 	int err;
2835 
2836 	if (!(filp->f_mode & FMODE_READ) ||
2837 			!(filp->f_mode & FMODE_WRITE))
2838 		return -EBADF;
2839 
2840 	dst = fdget(range->dst_fd);
2841 	if (!dst.file)
2842 		return -EBADF;
2843 
2844 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2845 		err = -EBADF;
2846 		goto err_out;
2847 	}
2848 
2849 	err = mnt_want_write_file(filp);
2850 	if (err)
2851 		goto err_out;
2852 
2853 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2854 					range->pos_out, range->len);
2855 
2856 	mnt_drop_write_file(filp);
2857 err_out:
2858 	fdput(dst);
2859 	return err;
2860 }
2861 
2862 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2863 {
2864 	struct f2fs_move_range range;
2865 
2866 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2867 							sizeof(range)))
2868 		return -EFAULT;
2869 	return __f2fs_ioc_move_range(filp, &range);
2870 }
2871 
2872 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2873 {
2874 	struct inode *inode = file_inode(filp);
2875 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2876 	struct sit_info *sm = SIT_I(sbi);
2877 	unsigned int start_segno = 0, end_segno = 0;
2878 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2879 	struct f2fs_flush_device range;
2880 	int ret;
2881 
2882 	if (!capable(CAP_SYS_ADMIN))
2883 		return -EPERM;
2884 
2885 	if (f2fs_readonly(sbi->sb))
2886 		return -EROFS;
2887 
2888 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2889 		return -EINVAL;
2890 
2891 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2892 							sizeof(range)))
2893 		return -EFAULT;
2894 
2895 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2896 			__is_large_section(sbi)) {
2897 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2898 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2899 		return -EINVAL;
2900 	}
2901 
2902 	ret = mnt_want_write_file(filp);
2903 	if (ret)
2904 		return ret;
2905 
2906 	if (range.dev_num != 0)
2907 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2908 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2909 
2910 	start_segno = sm->last_victim[FLUSH_DEVICE];
2911 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2912 		start_segno = dev_start_segno;
2913 	end_segno = min(start_segno + range.segments, dev_end_segno);
2914 
2915 	while (start_segno < end_segno) {
2916 		if (!down_write_trylock(&sbi->gc_lock)) {
2917 			ret = -EBUSY;
2918 			goto out;
2919 		}
2920 		sm->last_victim[GC_CB] = end_segno + 1;
2921 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2922 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2923 		ret = f2fs_gc(sbi, true, true, true, start_segno);
2924 		if (ret == -EAGAIN)
2925 			ret = 0;
2926 		else if (ret < 0)
2927 			break;
2928 		start_segno++;
2929 	}
2930 out:
2931 	mnt_drop_write_file(filp);
2932 	return ret;
2933 }
2934 
2935 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2936 {
2937 	struct inode *inode = file_inode(filp);
2938 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2939 
2940 	/* Must validate to set it with SQLite behavior in Android. */
2941 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2942 
2943 	return put_user(sb_feature, (u32 __user *)arg);
2944 }
2945 
2946 #ifdef CONFIG_QUOTA
2947 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2948 {
2949 	struct dquot *transfer_to[MAXQUOTAS] = {};
2950 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2951 	struct super_block *sb = sbi->sb;
2952 	int err = 0;
2953 
2954 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2955 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2956 		err = __dquot_transfer(inode, transfer_to);
2957 		if (err)
2958 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2959 		dqput(transfer_to[PRJQUOTA]);
2960 	}
2961 	return err;
2962 }
2963 
2964 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2965 {
2966 	struct f2fs_inode_info *fi = F2FS_I(inode);
2967 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2968 	struct page *ipage;
2969 	kprojid_t kprojid;
2970 	int err;
2971 
2972 	if (!f2fs_sb_has_project_quota(sbi)) {
2973 		if (projid != F2FS_DEF_PROJID)
2974 			return -EOPNOTSUPP;
2975 		else
2976 			return 0;
2977 	}
2978 
2979 	if (!f2fs_has_extra_attr(inode))
2980 		return -EOPNOTSUPP;
2981 
2982 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2983 
2984 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2985 		return 0;
2986 
2987 	err = -EPERM;
2988 	/* Is it quota file? Do not allow user to mess with it */
2989 	if (IS_NOQUOTA(inode))
2990 		return err;
2991 
2992 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2993 	if (IS_ERR(ipage))
2994 		return PTR_ERR(ipage);
2995 
2996 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2997 								i_projid)) {
2998 		err = -EOVERFLOW;
2999 		f2fs_put_page(ipage, 1);
3000 		return err;
3001 	}
3002 	f2fs_put_page(ipage, 1);
3003 
3004 	err = dquot_initialize(inode);
3005 	if (err)
3006 		return err;
3007 
3008 	f2fs_lock_op(sbi);
3009 	err = f2fs_transfer_project_quota(inode, kprojid);
3010 	if (err)
3011 		goto out_unlock;
3012 
3013 	F2FS_I(inode)->i_projid = kprojid;
3014 	inode->i_ctime = current_time(inode);
3015 	f2fs_mark_inode_dirty_sync(inode, true);
3016 out_unlock:
3017 	f2fs_unlock_op(sbi);
3018 	return err;
3019 }
3020 #else
3021 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3022 {
3023 	return 0;
3024 }
3025 
3026 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3027 {
3028 	if (projid != F2FS_DEF_PROJID)
3029 		return -EOPNOTSUPP;
3030 	return 0;
3031 }
3032 #endif
3033 
3034 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3035 {
3036 	struct inode *inode = d_inode(dentry);
3037 	struct f2fs_inode_info *fi = F2FS_I(inode);
3038 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3039 
3040 	if (IS_ENCRYPTED(inode))
3041 		fsflags |= FS_ENCRYPT_FL;
3042 	if (IS_VERITY(inode))
3043 		fsflags |= FS_VERITY_FL;
3044 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3045 		fsflags |= FS_INLINE_DATA_FL;
3046 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3047 		fsflags |= FS_NOCOW_FL;
3048 
3049 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3050 
3051 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3052 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3053 
3054 	return 0;
3055 }
3056 
3057 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3058 		      struct dentry *dentry, struct fileattr *fa)
3059 {
3060 	struct inode *inode = d_inode(dentry);
3061 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3062 	u32 iflags;
3063 	int err;
3064 
3065 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3066 		return -EIO;
3067 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3068 		return -ENOSPC;
3069 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3070 		return -EOPNOTSUPP;
3071 	fsflags &= F2FS_SETTABLE_FS_FL;
3072 	if (!fa->flags_valid)
3073 		mask &= FS_COMMON_FL;
3074 
3075 	iflags = f2fs_fsflags_to_iflags(fsflags);
3076 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3077 		return -EOPNOTSUPP;
3078 
3079 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3080 	if (!err)
3081 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3082 
3083 	return err;
3084 }
3085 
3086 int f2fs_pin_file_control(struct inode *inode, bool inc)
3087 {
3088 	struct f2fs_inode_info *fi = F2FS_I(inode);
3089 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3090 
3091 	/* Use i_gc_failures for normal file as a risk signal. */
3092 	if (inc)
3093 		f2fs_i_gc_failures_write(inode,
3094 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3095 
3096 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3097 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3098 			  __func__, inode->i_ino,
3099 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3100 		clear_inode_flag(inode, FI_PIN_FILE);
3101 		return -EAGAIN;
3102 	}
3103 	return 0;
3104 }
3105 
3106 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3107 {
3108 	struct inode *inode = file_inode(filp);
3109 	__u32 pin;
3110 	int ret = 0;
3111 
3112 	if (get_user(pin, (__u32 __user *)arg))
3113 		return -EFAULT;
3114 
3115 	if (!S_ISREG(inode->i_mode))
3116 		return -EINVAL;
3117 
3118 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3119 		return -EROFS;
3120 
3121 	ret = mnt_want_write_file(filp);
3122 	if (ret)
3123 		return ret;
3124 
3125 	inode_lock(inode);
3126 
3127 	if (f2fs_should_update_outplace(inode, NULL)) {
3128 		ret = -EINVAL;
3129 		goto out;
3130 	}
3131 
3132 	if (!pin) {
3133 		clear_inode_flag(inode, FI_PIN_FILE);
3134 		f2fs_i_gc_failures_write(inode, 0);
3135 		goto done;
3136 	}
3137 
3138 	if (f2fs_pin_file_control(inode, false)) {
3139 		ret = -EAGAIN;
3140 		goto out;
3141 	}
3142 
3143 	ret = f2fs_convert_inline_inode(inode);
3144 	if (ret)
3145 		goto out;
3146 
3147 	if (!f2fs_disable_compressed_file(inode)) {
3148 		ret = -EOPNOTSUPP;
3149 		goto out;
3150 	}
3151 
3152 	set_inode_flag(inode, FI_PIN_FILE);
3153 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3154 done:
3155 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3156 out:
3157 	inode_unlock(inode);
3158 	mnt_drop_write_file(filp);
3159 	return ret;
3160 }
3161 
3162 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3163 {
3164 	struct inode *inode = file_inode(filp);
3165 	__u32 pin = 0;
3166 
3167 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3168 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3169 	return put_user(pin, (u32 __user *)arg);
3170 }
3171 
3172 int f2fs_precache_extents(struct inode *inode)
3173 {
3174 	struct f2fs_inode_info *fi = F2FS_I(inode);
3175 	struct f2fs_map_blocks map;
3176 	pgoff_t m_next_extent;
3177 	loff_t end;
3178 	int err;
3179 
3180 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3181 		return -EOPNOTSUPP;
3182 
3183 	map.m_lblk = 0;
3184 	map.m_next_pgofs = NULL;
3185 	map.m_next_extent = &m_next_extent;
3186 	map.m_seg_type = NO_CHECK_TYPE;
3187 	map.m_may_create = false;
3188 	end = max_file_blocks(inode);
3189 
3190 	while (map.m_lblk < end) {
3191 		map.m_len = end - map.m_lblk;
3192 
3193 		down_write(&fi->i_gc_rwsem[WRITE]);
3194 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3195 		up_write(&fi->i_gc_rwsem[WRITE]);
3196 		if (err)
3197 			return err;
3198 
3199 		map.m_lblk = m_next_extent;
3200 	}
3201 
3202 	return 0;
3203 }
3204 
3205 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3206 {
3207 	return f2fs_precache_extents(file_inode(filp));
3208 }
3209 
3210 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3211 {
3212 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3213 	__u64 block_count;
3214 
3215 	if (!capable(CAP_SYS_ADMIN))
3216 		return -EPERM;
3217 
3218 	if (f2fs_readonly(sbi->sb))
3219 		return -EROFS;
3220 
3221 	if (copy_from_user(&block_count, (void __user *)arg,
3222 			   sizeof(block_count)))
3223 		return -EFAULT;
3224 
3225 	return f2fs_resize_fs(sbi, block_count);
3226 }
3227 
3228 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3229 {
3230 	struct inode *inode = file_inode(filp);
3231 
3232 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3233 
3234 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3235 		f2fs_warn(F2FS_I_SB(inode),
3236 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3237 			  inode->i_ino);
3238 		return -EOPNOTSUPP;
3239 	}
3240 
3241 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3242 }
3243 
3244 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3245 {
3246 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3247 		return -EOPNOTSUPP;
3248 
3249 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3250 }
3251 
3252 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3253 {
3254 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3255 		return -EOPNOTSUPP;
3256 
3257 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3258 }
3259 
3260 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3261 {
3262 	struct inode *inode = file_inode(filp);
3263 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3264 	char *vbuf;
3265 	int count;
3266 	int err = 0;
3267 
3268 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3269 	if (!vbuf)
3270 		return -ENOMEM;
3271 
3272 	down_read(&sbi->sb_lock);
3273 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3274 			ARRAY_SIZE(sbi->raw_super->volume_name),
3275 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3276 	up_read(&sbi->sb_lock);
3277 
3278 	if (copy_to_user((char __user *)arg, vbuf,
3279 				min(FSLABEL_MAX, count)))
3280 		err = -EFAULT;
3281 
3282 	kfree(vbuf);
3283 	return err;
3284 }
3285 
3286 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3287 {
3288 	struct inode *inode = file_inode(filp);
3289 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3290 	char *vbuf;
3291 	int err = 0;
3292 
3293 	if (!capable(CAP_SYS_ADMIN))
3294 		return -EPERM;
3295 
3296 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3297 	if (IS_ERR(vbuf))
3298 		return PTR_ERR(vbuf);
3299 
3300 	err = mnt_want_write_file(filp);
3301 	if (err)
3302 		goto out;
3303 
3304 	down_write(&sbi->sb_lock);
3305 
3306 	memset(sbi->raw_super->volume_name, 0,
3307 			sizeof(sbi->raw_super->volume_name));
3308 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3309 			sbi->raw_super->volume_name,
3310 			ARRAY_SIZE(sbi->raw_super->volume_name));
3311 
3312 	err = f2fs_commit_super(sbi, false);
3313 
3314 	up_write(&sbi->sb_lock);
3315 
3316 	mnt_drop_write_file(filp);
3317 out:
3318 	kfree(vbuf);
3319 	return err;
3320 }
3321 
3322 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3323 {
3324 	struct inode *inode = file_inode(filp);
3325 	__u64 blocks;
3326 
3327 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3328 		return -EOPNOTSUPP;
3329 
3330 	if (!f2fs_compressed_file(inode))
3331 		return -EINVAL;
3332 
3333 	blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3334 	return put_user(blocks, (u64 __user *)arg);
3335 }
3336 
3337 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3338 {
3339 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3340 	unsigned int released_blocks = 0;
3341 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3342 	block_t blkaddr;
3343 	int i;
3344 
3345 	for (i = 0; i < count; i++) {
3346 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3347 						dn->ofs_in_node + i);
3348 
3349 		if (!__is_valid_data_blkaddr(blkaddr))
3350 			continue;
3351 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3352 					DATA_GENERIC_ENHANCE)))
3353 			return -EFSCORRUPTED;
3354 	}
3355 
3356 	while (count) {
3357 		int compr_blocks = 0;
3358 
3359 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3360 			blkaddr = f2fs_data_blkaddr(dn);
3361 
3362 			if (i == 0) {
3363 				if (blkaddr == COMPRESS_ADDR)
3364 					continue;
3365 				dn->ofs_in_node += cluster_size;
3366 				goto next;
3367 			}
3368 
3369 			if (__is_valid_data_blkaddr(blkaddr))
3370 				compr_blocks++;
3371 
3372 			if (blkaddr != NEW_ADDR)
3373 				continue;
3374 
3375 			dn->data_blkaddr = NULL_ADDR;
3376 			f2fs_set_data_blkaddr(dn);
3377 		}
3378 
3379 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3380 		dec_valid_block_count(sbi, dn->inode,
3381 					cluster_size - compr_blocks);
3382 
3383 		released_blocks += cluster_size - compr_blocks;
3384 next:
3385 		count -= cluster_size;
3386 	}
3387 
3388 	return released_blocks;
3389 }
3390 
3391 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3392 {
3393 	struct inode *inode = file_inode(filp);
3394 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3395 	pgoff_t page_idx = 0, last_idx;
3396 	unsigned int released_blocks = 0;
3397 	int ret;
3398 	int writecount;
3399 
3400 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3401 		return -EOPNOTSUPP;
3402 
3403 	if (!f2fs_compressed_file(inode))
3404 		return -EINVAL;
3405 
3406 	if (f2fs_readonly(sbi->sb))
3407 		return -EROFS;
3408 
3409 	ret = mnt_want_write_file(filp);
3410 	if (ret)
3411 		return ret;
3412 
3413 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3414 
3415 	inode_lock(inode);
3416 
3417 	writecount = atomic_read(&inode->i_writecount);
3418 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3419 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3420 		ret = -EBUSY;
3421 		goto out;
3422 	}
3423 
3424 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3425 		ret = -EINVAL;
3426 		goto out;
3427 	}
3428 
3429 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3430 	if (ret)
3431 		goto out;
3432 
3433 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3434 	inode->i_ctime = current_time(inode);
3435 	f2fs_mark_inode_dirty_sync(inode, true);
3436 
3437 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3438 		goto out;
3439 
3440 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3441 	filemap_invalidate_lock(inode->i_mapping);
3442 
3443 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3444 
3445 	while (page_idx < last_idx) {
3446 		struct dnode_of_data dn;
3447 		pgoff_t end_offset, count;
3448 
3449 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3450 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3451 		if (ret) {
3452 			if (ret == -ENOENT) {
3453 				page_idx = f2fs_get_next_page_offset(&dn,
3454 								page_idx);
3455 				ret = 0;
3456 				continue;
3457 			}
3458 			break;
3459 		}
3460 
3461 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3462 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3463 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3464 
3465 		ret = release_compress_blocks(&dn, count);
3466 
3467 		f2fs_put_dnode(&dn);
3468 
3469 		if (ret < 0)
3470 			break;
3471 
3472 		page_idx += count;
3473 		released_blocks += ret;
3474 	}
3475 
3476 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3477 	filemap_invalidate_unlock(inode->i_mapping);
3478 out:
3479 	inode_unlock(inode);
3480 
3481 	mnt_drop_write_file(filp);
3482 
3483 	if (ret >= 0) {
3484 		ret = put_user(released_blocks, (u64 __user *)arg);
3485 	} else if (released_blocks &&
3486 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3487 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3488 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3489 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3490 			"run fsck to fix.",
3491 			__func__, inode->i_ino, inode->i_blocks,
3492 			released_blocks,
3493 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3494 	}
3495 
3496 	return ret;
3497 }
3498 
3499 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3500 {
3501 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3502 	unsigned int reserved_blocks = 0;
3503 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3504 	block_t blkaddr;
3505 	int i;
3506 
3507 	for (i = 0; i < count; i++) {
3508 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3509 						dn->ofs_in_node + i);
3510 
3511 		if (!__is_valid_data_blkaddr(blkaddr))
3512 			continue;
3513 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3514 					DATA_GENERIC_ENHANCE)))
3515 			return -EFSCORRUPTED;
3516 	}
3517 
3518 	while (count) {
3519 		int compr_blocks = 0;
3520 		blkcnt_t reserved;
3521 		int ret;
3522 
3523 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3524 			blkaddr = f2fs_data_blkaddr(dn);
3525 
3526 			if (i == 0) {
3527 				if (blkaddr == COMPRESS_ADDR)
3528 					continue;
3529 				dn->ofs_in_node += cluster_size;
3530 				goto next;
3531 			}
3532 
3533 			if (__is_valid_data_blkaddr(blkaddr)) {
3534 				compr_blocks++;
3535 				continue;
3536 			}
3537 
3538 			dn->data_blkaddr = NEW_ADDR;
3539 			f2fs_set_data_blkaddr(dn);
3540 		}
3541 
3542 		reserved = cluster_size - compr_blocks;
3543 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3544 		if (ret)
3545 			return ret;
3546 
3547 		if (reserved != cluster_size - compr_blocks)
3548 			return -ENOSPC;
3549 
3550 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3551 
3552 		reserved_blocks += reserved;
3553 next:
3554 		count -= cluster_size;
3555 	}
3556 
3557 	return reserved_blocks;
3558 }
3559 
3560 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3561 {
3562 	struct inode *inode = file_inode(filp);
3563 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3564 	pgoff_t page_idx = 0, last_idx;
3565 	unsigned int reserved_blocks = 0;
3566 	int ret;
3567 
3568 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3569 		return -EOPNOTSUPP;
3570 
3571 	if (!f2fs_compressed_file(inode))
3572 		return -EINVAL;
3573 
3574 	if (f2fs_readonly(sbi->sb))
3575 		return -EROFS;
3576 
3577 	ret = mnt_want_write_file(filp);
3578 	if (ret)
3579 		return ret;
3580 
3581 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3582 		goto out;
3583 
3584 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3585 
3586 	inode_lock(inode);
3587 
3588 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3589 		ret = -EINVAL;
3590 		goto unlock_inode;
3591 	}
3592 
3593 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3594 	filemap_invalidate_lock(inode->i_mapping);
3595 
3596 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3597 
3598 	while (page_idx < last_idx) {
3599 		struct dnode_of_data dn;
3600 		pgoff_t end_offset, count;
3601 
3602 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3603 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3604 		if (ret) {
3605 			if (ret == -ENOENT) {
3606 				page_idx = f2fs_get_next_page_offset(&dn,
3607 								page_idx);
3608 				ret = 0;
3609 				continue;
3610 			}
3611 			break;
3612 		}
3613 
3614 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3615 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3616 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3617 
3618 		ret = reserve_compress_blocks(&dn, count);
3619 
3620 		f2fs_put_dnode(&dn);
3621 
3622 		if (ret < 0)
3623 			break;
3624 
3625 		page_idx += count;
3626 		reserved_blocks += ret;
3627 	}
3628 
3629 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3630 	filemap_invalidate_unlock(inode->i_mapping);
3631 
3632 	if (ret >= 0) {
3633 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3634 		inode->i_ctime = current_time(inode);
3635 		f2fs_mark_inode_dirty_sync(inode, true);
3636 	}
3637 unlock_inode:
3638 	inode_unlock(inode);
3639 out:
3640 	mnt_drop_write_file(filp);
3641 
3642 	if (ret >= 0) {
3643 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3644 	} else if (reserved_blocks &&
3645 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3646 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3647 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3648 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3649 			"run fsck to fix.",
3650 			__func__, inode->i_ino, inode->i_blocks,
3651 			reserved_blocks,
3652 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3653 	}
3654 
3655 	return ret;
3656 }
3657 
3658 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3659 		pgoff_t off, block_t block, block_t len, u32 flags)
3660 {
3661 	struct request_queue *q = bdev_get_queue(bdev);
3662 	sector_t sector = SECTOR_FROM_BLOCK(block);
3663 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3664 	int ret = 0;
3665 
3666 	if (!q)
3667 		return -ENXIO;
3668 
3669 	if (flags & F2FS_TRIM_FILE_DISCARD)
3670 		ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3671 						blk_queue_secure_erase(q) ?
3672 						BLKDEV_DISCARD_SECURE : 0);
3673 
3674 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3675 		if (IS_ENCRYPTED(inode))
3676 			ret = fscrypt_zeroout_range(inode, off, block, len);
3677 		else
3678 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3679 					GFP_NOFS, 0);
3680 	}
3681 
3682 	return ret;
3683 }
3684 
3685 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3686 {
3687 	struct inode *inode = file_inode(filp);
3688 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3689 	struct address_space *mapping = inode->i_mapping;
3690 	struct block_device *prev_bdev = NULL;
3691 	struct f2fs_sectrim_range range;
3692 	pgoff_t index, pg_end, prev_index = 0;
3693 	block_t prev_block = 0, len = 0;
3694 	loff_t end_addr;
3695 	bool to_end = false;
3696 	int ret = 0;
3697 
3698 	if (!(filp->f_mode & FMODE_WRITE))
3699 		return -EBADF;
3700 
3701 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3702 				sizeof(range)))
3703 		return -EFAULT;
3704 
3705 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3706 			!S_ISREG(inode->i_mode))
3707 		return -EINVAL;
3708 
3709 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3710 			!f2fs_hw_support_discard(sbi)) ||
3711 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3712 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3713 		return -EOPNOTSUPP;
3714 
3715 	file_start_write(filp);
3716 	inode_lock(inode);
3717 
3718 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3719 			range.start >= inode->i_size) {
3720 		ret = -EINVAL;
3721 		goto err;
3722 	}
3723 
3724 	if (range.len == 0)
3725 		goto err;
3726 
3727 	if (inode->i_size - range.start > range.len) {
3728 		end_addr = range.start + range.len;
3729 	} else {
3730 		end_addr = range.len == (u64)-1 ?
3731 			sbi->sb->s_maxbytes : inode->i_size;
3732 		to_end = true;
3733 	}
3734 
3735 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3736 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3737 		ret = -EINVAL;
3738 		goto err;
3739 	}
3740 
3741 	index = F2FS_BYTES_TO_BLK(range.start);
3742 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3743 
3744 	ret = f2fs_convert_inline_inode(inode);
3745 	if (ret)
3746 		goto err;
3747 
3748 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3749 	filemap_invalidate_lock(mapping);
3750 
3751 	ret = filemap_write_and_wait_range(mapping, range.start,
3752 			to_end ? LLONG_MAX : end_addr - 1);
3753 	if (ret)
3754 		goto out;
3755 
3756 	truncate_inode_pages_range(mapping, range.start,
3757 			to_end ? -1 : end_addr - 1);
3758 
3759 	while (index < pg_end) {
3760 		struct dnode_of_data dn;
3761 		pgoff_t end_offset, count;
3762 		int i;
3763 
3764 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3765 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3766 		if (ret) {
3767 			if (ret == -ENOENT) {
3768 				index = f2fs_get_next_page_offset(&dn, index);
3769 				continue;
3770 			}
3771 			goto out;
3772 		}
3773 
3774 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3775 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3776 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3777 			struct block_device *cur_bdev;
3778 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3779 
3780 			if (!__is_valid_data_blkaddr(blkaddr))
3781 				continue;
3782 
3783 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3784 						DATA_GENERIC_ENHANCE)) {
3785 				ret = -EFSCORRUPTED;
3786 				f2fs_put_dnode(&dn);
3787 				goto out;
3788 			}
3789 
3790 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3791 			if (f2fs_is_multi_device(sbi)) {
3792 				int di = f2fs_target_device_index(sbi, blkaddr);
3793 
3794 				blkaddr -= FDEV(di).start_blk;
3795 			}
3796 
3797 			if (len) {
3798 				if (prev_bdev == cur_bdev &&
3799 						index == prev_index + len &&
3800 						blkaddr == prev_block + len) {
3801 					len++;
3802 				} else {
3803 					ret = f2fs_secure_erase(prev_bdev,
3804 						inode, prev_index, prev_block,
3805 						len, range.flags);
3806 					if (ret) {
3807 						f2fs_put_dnode(&dn);
3808 						goto out;
3809 					}
3810 
3811 					len = 0;
3812 				}
3813 			}
3814 
3815 			if (!len) {
3816 				prev_bdev = cur_bdev;
3817 				prev_index = index;
3818 				prev_block = blkaddr;
3819 				len = 1;
3820 			}
3821 		}
3822 
3823 		f2fs_put_dnode(&dn);
3824 
3825 		if (fatal_signal_pending(current)) {
3826 			ret = -EINTR;
3827 			goto out;
3828 		}
3829 		cond_resched();
3830 	}
3831 
3832 	if (len)
3833 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3834 				prev_block, len, range.flags);
3835 out:
3836 	filemap_invalidate_unlock(mapping);
3837 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3838 err:
3839 	inode_unlock(inode);
3840 	file_end_write(filp);
3841 
3842 	return ret;
3843 }
3844 
3845 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3846 {
3847 	struct inode *inode = file_inode(filp);
3848 	struct f2fs_comp_option option;
3849 
3850 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3851 		return -EOPNOTSUPP;
3852 
3853 	inode_lock_shared(inode);
3854 
3855 	if (!f2fs_compressed_file(inode)) {
3856 		inode_unlock_shared(inode);
3857 		return -ENODATA;
3858 	}
3859 
3860 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3861 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3862 
3863 	inode_unlock_shared(inode);
3864 
3865 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3866 				sizeof(option)))
3867 		return -EFAULT;
3868 
3869 	return 0;
3870 }
3871 
3872 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3873 {
3874 	struct inode *inode = file_inode(filp);
3875 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3876 	struct f2fs_comp_option option;
3877 	int ret = 0;
3878 
3879 	if (!f2fs_sb_has_compression(sbi))
3880 		return -EOPNOTSUPP;
3881 
3882 	if (!(filp->f_mode & FMODE_WRITE))
3883 		return -EBADF;
3884 
3885 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3886 				sizeof(option)))
3887 		return -EFAULT;
3888 
3889 	if (!f2fs_compressed_file(inode) ||
3890 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3891 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3892 			option.algorithm >= COMPRESS_MAX)
3893 		return -EINVAL;
3894 
3895 	file_start_write(filp);
3896 	inode_lock(inode);
3897 
3898 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3899 		ret = -EBUSY;
3900 		goto out;
3901 	}
3902 
3903 	if (inode->i_size != 0) {
3904 		ret = -EFBIG;
3905 		goto out;
3906 	}
3907 
3908 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3909 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3910 	F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3911 	f2fs_mark_inode_dirty_sync(inode, true);
3912 
3913 	if (!f2fs_is_compress_backend_ready(inode))
3914 		f2fs_warn(sbi, "compression algorithm is successfully set, "
3915 			"but current kernel doesn't support this algorithm.");
3916 out:
3917 	inode_unlock(inode);
3918 	file_end_write(filp);
3919 
3920 	return ret;
3921 }
3922 
3923 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3924 {
3925 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3926 	struct address_space *mapping = inode->i_mapping;
3927 	struct page *page;
3928 	pgoff_t redirty_idx = page_idx;
3929 	int i, page_len = 0, ret = 0;
3930 
3931 	page_cache_ra_unbounded(&ractl, len, 0);
3932 
3933 	for (i = 0; i < len; i++, page_idx++) {
3934 		page = read_cache_page(mapping, page_idx, NULL, NULL);
3935 		if (IS_ERR(page)) {
3936 			ret = PTR_ERR(page);
3937 			break;
3938 		}
3939 		page_len++;
3940 	}
3941 
3942 	for (i = 0; i < page_len; i++, redirty_idx++) {
3943 		page = find_lock_page(mapping, redirty_idx);
3944 		if (!page) {
3945 			ret = -ENOMEM;
3946 			break;
3947 		}
3948 		set_page_dirty(page);
3949 		f2fs_put_page(page, 1);
3950 		f2fs_put_page(page, 0);
3951 	}
3952 
3953 	return ret;
3954 }
3955 
3956 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3957 {
3958 	struct inode *inode = file_inode(filp);
3959 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3960 	struct f2fs_inode_info *fi = F2FS_I(inode);
3961 	pgoff_t page_idx = 0, last_idx;
3962 	unsigned int blk_per_seg = sbi->blocks_per_seg;
3963 	int cluster_size = F2FS_I(inode)->i_cluster_size;
3964 	int count, ret;
3965 
3966 	if (!f2fs_sb_has_compression(sbi) ||
3967 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3968 		return -EOPNOTSUPP;
3969 
3970 	if (!(filp->f_mode & FMODE_WRITE))
3971 		return -EBADF;
3972 
3973 	if (!f2fs_compressed_file(inode))
3974 		return -EINVAL;
3975 
3976 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3977 
3978 	file_start_write(filp);
3979 	inode_lock(inode);
3980 
3981 	if (!f2fs_is_compress_backend_ready(inode)) {
3982 		ret = -EOPNOTSUPP;
3983 		goto out;
3984 	}
3985 
3986 	if (f2fs_is_mmap_file(inode)) {
3987 		ret = -EBUSY;
3988 		goto out;
3989 	}
3990 
3991 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3992 	if (ret)
3993 		goto out;
3994 
3995 	if (!atomic_read(&fi->i_compr_blocks))
3996 		goto out;
3997 
3998 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3999 
4000 	count = last_idx - page_idx;
4001 	while (count) {
4002 		int len = min(cluster_size, count);
4003 
4004 		ret = redirty_blocks(inode, page_idx, len);
4005 		if (ret < 0)
4006 			break;
4007 
4008 		if (get_dirty_pages(inode) >= blk_per_seg)
4009 			filemap_fdatawrite(inode->i_mapping);
4010 
4011 		count -= len;
4012 		page_idx += len;
4013 	}
4014 
4015 	if (!ret)
4016 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4017 							LLONG_MAX);
4018 
4019 	if (ret)
4020 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4021 			  __func__, ret);
4022 out:
4023 	inode_unlock(inode);
4024 	file_end_write(filp);
4025 
4026 	return ret;
4027 }
4028 
4029 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4030 {
4031 	struct inode *inode = file_inode(filp);
4032 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4033 	pgoff_t page_idx = 0, last_idx;
4034 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4035 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4036 	int count, ret;
4037 
4038 	if (!f2fs_sb_has_compression(sbi) ||
4039 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4040 		return -EOPNOTSUPP;
4041 
4042 	if (!(filp->f_mode & FMODE_WRITE))
4043 		return -EBADF;
4044 
4045 	if (!f2fs_compressed_file(inode))
4046 		return -EINVAL;
4047 
4048 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4049 
4050 	file_start_write(filp);
4051 	inode_lock(inode);
4052 
4053 	if (!f2fs_is_compress_backend_ready(inode)) {
4054 		ret = -EOPNOTSUPP;
4055 		goto out;
4056 	}
4057 
4058 	if (f2fs_is_mmap_file(inode)) {
4059 		ret = -EBUSY;
4060 		goto out;
4061 	}
4062 
4063 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4064 	if (ret)
4065 		goto out;
4066 
4067 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4068 
4069 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4070 
4071 	count = last_idx - page_idx;
4072 	while (count) {
4073 		int len = min(cluster_size, count);
4074 
4075 		ret = redirty_blocks(inode, page_idx, len);
4076 		if (ret < 0)
4077 			break;
4078 
4079 		if (get_dirty_pages(inode) >= blk_per_seg)
4080 			filemap_fdatawrite(inode->i_mapping);
4081 
4082 		count -= len;
4083 		page_idx += len;
4084 	}
4085 
4086 	if (!ret)
4087 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4088 							LLONG_MAX);
4089 
4090 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4091 
4092 	if (ret)
4093 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4094 			  __func__, ret);
4095 out:
4096 	inode_unlock(inode);
4097 	file_end_write(filp);
4098 
4099 	return ret;
4100 }
4101 
4102 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4103 {
4104 	switch (cmd) {
4105 	case FS_IOC_GETVERSION:
4106 		return f2fs_ioc_getversion(filp, arg);
4107 	case F2FS_IOC_START_ATOMIC_WRITE:
4108 		return f2fs_ioc_start_atomic_write(filp);
4109 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4110 		return f2fs_ioc_commit_atomic_write(filp);
4111 	case F2FS_IOC_START_VOLATILE_WRITE:
4112 		return f2fs_ioc_start_volatile_write(filp);
4113 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4114 		return f2fs_ioc_release_volatile_write(filp);
4115 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
4116 		return f2fs_ioc_abort_volatile_write(filp);
4117 	case F2FS_IOC_SHUTDOWN:
4118 		return f2fs_ioc_shutdown(filp, arg);
4119 	case FITRIM:
4120 		return f2fs_ioc_fitrim(filp, arg);
4121 	case FS_IOC_SET_ENCRYPTION_POLICY:
4122 		return f2fs_ioc_set_encryption_policy(filp, arg);
4123 	case FS_IOC_GET_ENCRYPTION_POLICY:
4124 		return f2fs_ioc_get_encryption_policy(filp, arg);
4125 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4126 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4127 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4128 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4129 	case FS_IOC_ADD_ENCRYPTION_KEY:
4130 		return f2fs_ioc_add_encryption_key(filp, arg);
4131 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4132 		return f2fs_ioc_remove_encryption_key(filp, arg);
4133 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4134 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4135 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4136 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4137 	case FS_IOC_GET_ENCRYPTION_NONCE:
4138 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4139 	case F2FS_IOC_GARBAGE_COLLECT:
4140 		return f2fs_ioc_gc(filp, arg);
4141 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4142 		return f2fs_ioc_gc_range(filp, arg);
4143 	case F2FS_IOC_WRITE_CHECKPOINT:
4144 		return f2fs_ioc_write_checkpoint(filp, arg);
4145 	case F2FS_IOC_DEFRAGMENT:
4146 		return f2fs_ioc_defragment(filp, arg);
4147 	case F2FS_IOC_MOVE_RANGE:
4148 		return f2fs_ioc_move_range(filp, arg);
4149 	case F2FS_IOC_FLUSH_DEVICE:
4150 		return f2fs_ioc_flush_device(filp, arg);
4151 	case F2FS_IOC_GET_FEATURES:
4152 		return f2fs_ioc_get_features(filp, arg);
4153 	case F2FS_IOC_GET_PIN_FILE:
4154 		return f2fs_ioc_get_pin_file(filp, arg);
4155 	case F2FS_IOC_SET_PIN_FILE:
4156 		return f2fs_ioc_set_pin_file(filp, arg);
4157 	case F2FS_IOC_PRECACHE_EXTENTS:
4158 		return f2fs_ioc_precache_extents(filp, arg);
4159 	case F2FS_IOC_RESIZE_FS:
4160 		return f2fs_ioc_resize_fs(filp, arg);
4161 	case FS_IOC_ENABLE_VERITY:
4162 		return f2fs_ioc_enable_verity(filp, arg);
4163 	case FS_IOC_MEASURE_VERITY:
4164 		return f2fs_ioc_measure_verity(filp, arg);
4165 	case FS_IOC_READ_VERITY_METADATA:
4166 		return f2fs_ioc_read_verity_metadata(filp, arg);
4167 	case FS_IOC_GETFSLABEL:
4168 		return f2fs_ioc_getfslabel(filp, arg);
4169 	case FS_IOC_SETFSLABEL:
4170 		return f2fs_ioc_setfslabel(filp, arg);
4171 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4172 		return f2fs_get_compress_blocks(filp, arg);
4173 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4174 		return f2fs_release_compress_blocks(filp, arg);
4175 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4176 		return f2fs_reserve_compress_blocks(filp, arg);
4177 	case F2FS_IOC_SEC_TRIM_FILE:
4178 		return f2fs_sec_trim_file(filp, arg);
4179 	case F2FS_IOC_GET_COMPRESS_OPTION:
4180 		return f2fs_ioc_get_compress_option(filp, arg);
4181 	case F2FS_IOC_SET_COMPRESS_OPTION:
4182 		return f2fs_ioc_set_compress_option(filp, arg);
4183 	case F2FS_IOC_DECOMPRESS_FILE:
4184 		return f2fs_ioc_decompress_file(filp, arg);
4185 	case F2FS_IOC_COMPRESS_FILE:
4186 		return f2fs_ioc_compress_file(filp, arg);
4187 	default:
4188 		return -ENOTTY;
4189 	}
4190 }
4191 
4192 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4193 {
4194 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4195 		return -EIO;
4196 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4197 		return -ENOSPC;
4198 
4199 	return __f2fs_ioctl(filp, cmd, arg);
4200 }
4201 
4202 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4203 {
4204 	struct file *file = iocb->ki_filp;
4205 	struct inode *inode = file_inode(file);
4206 	int ret;
4207 
4208 	if (!f2fs_is_compress_backend_ready(inode))
4209 		return -EOPNOTSUPP;
4210 
4211 	ret = generic_file_read_iter(iocb, iter);
4212 
4213 	if (ret > 0)
4214 		f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4215 
4216 	return ret;
4217 }
4218 
4219 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4220 {
4221 	struct file *file = iocb->ki_filp;
4222 	struct inode *inode = file_inode(file);
4223 	ssize_t ret;
4224 
4225 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4226 		ret = -EIO;
4227 		goto out;
4228 	}
4229 
4230 	if (!f2fs_is_compress_backend_ready(inode)) {
4231 		ret = -EOPNOTSUPP;
4232 		goto out;
4233 	}
4234 
4235 	if (iocb->ki_flags & IOCB_NOWAIT) {
4236 		if (!inode_trylock(inode)) {
4237 			ret = -EAGAIN;
4238 			goto out;
4239 		}
4240 	} else {
4241 		inode_lock(inode);
4242 	}
4243 
4244 	if (unlikely(IS_IMMUTABLE(inode))) {
4245 		ret = -EPERM;
4246 		goto unlock;
4247 	}
4248 
4249 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4250 		ret = -EPERM;
4251 		goto unlock;
4252 	}
4253 
4254 	ret = generic_write_checks(iocb, from);
4255 	if (ret > 0) {
4256 		bool preallocated = false;
4257 		size_t target_size = 0;
4258 		int err;
4259 
4260 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
4261 			set_inode_flag(inode, FI_NO_PREALLOC);
4262 
4263 		if ((iocb->ki_flags & IOCB_NOWAIT)) {
4264 			if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4265 						iov_iter_count(from)) ||
4266 				f2fs_has_inline_data(inode) ||
4267 				f2fs_force_buffered_io(inode, iocb, from)) {
4268 				clear_inode_flag(inode, FI_NO_PREALLOC);
4269 				inode_unlock(inode);
4270 				ret = -EAGAIN;
4271 				goto out;
4272 			}
4273 			goto write;
4274 		}
4275 
4276 		if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4277 			goto write;
4278 
4279 		if (iocb->ki_flags & IOCB_DIRECT) {
4280 			/*
4281 			 * Convert inline data for Direct I/O before entering
4282 			 * f2fs_direct_IO().
4283 			 */
4284 			err = f2fs_convert_inline_inode(inode);
4285 			if (err)
4286 				goto out_err;
4287 			/*
4288 			 * If force_buffere_io() is true, we have to allocate
4289 			 * blocks all the time, since f2fs_direct_IO will fall
4290 			 * back to buffered IO.
4291 			 */
4292 			if (!f2fs_force_buffered_io(inode, iocb, from) &&
4293 					allow_outplace_dio(inode, iocb, from))
4294 				goto write;
4295 		}
4296 		preallocated = true;
4297 		target_size = iocb->ki_pos + iov_iter_count(from);
4298 
4299 		err = f2fs_preallocate_blocks(iocb, from);
4300 		if (err) {
4301 out_err:
4302 			clear_inode_flag(inode, FI_NO_PREALLOC);
4303 			inode_unlock(inode);
4304 			ret = err;
4305 			goto out;
4306 		}
4307 write:
4308 		ret = __generic_file_write_iter(iocb, from);
4309 		clear_inode_flag(inode, FI_NO_PREALLOC);
4310 
4311 		/* if we couldn't write data, we should deallocate blocks. */
4312 		if (preallocated && i_size_read(inode) < target_size) {
4313 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4314 			filemap_invalidate_lock(inode->i_mapping);
4315 			f2fs_truncate(inode);
4316 			filemap_invalidate_unlock(inode->i_mapping);
4317 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4318 		}
4319 
4320 		if (ret > 0)
4321 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4322 	}
4323 unlock:
4324 	inode_unlock(inode);
4325 out:
4326 	trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4327 					iov_iter_count(from), ret);
4328 	if (ret > 0)
4329 		ret = generic_write_sync(iocb, ret);
4330 	return ret;
4331 }
4332 
4333 #ifdef CONFIG_COMPAT
4334 struct compat_f2fs_gc_range {
4335 	u32 sync;
4336 	compat_u64 start;
4337 	compat_u64 len;
4338 };
4339 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4340 						struct compat_f2fs_gc_range)
4341 
4342 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4343 {
4344 	struct compat_f2fs_gc_range __user *urange;
4345 	struct f2fs_gc_range range;
4346 	int err;
4347 
4348 	urange = compat_ptr(arg);
4349 	err = get_user(range.sync, &urange->sync);
4350 	err |= get_user(range.start, &urange->start);
4351 	err |= get_user(range.len, &urange->len);
4352 	if (err)
4353 		return -EFAULT;
4354 
4355 	return __f2fs_ioc_gc_range(file, &range);
4356 }
4357 
4358 struct compat_f2fs_move_range {
4359 	u32 dst_fd;
4360 	compat_u64 pos_in;
4361 	compat_u64 pos_out;
4362 	compat_u64 len;
4363 };
4364 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4365 					struct compat_f2fs_move_range)
4366 
4367 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4368 {
4369 	struct compat_f2fs_move_range __user *urange;
4370 	struct f2fs_move_range range;
4371 	int err;
4372 
4373 	urange = compat_ptr(arg);
4374 	err = get_user(range.dst_fd, &urange->dst_fd);
4375 	err |= get_user(range.pos_in, &urange->pos_in);
4376 	err |= get_user(range.pos_out, &urange->pos_out);
4377 	err |= get_user(range.len, &urange->len);
4378 	if (err)
4379 		return -EFAULT;
4380 
4381 	return __f2fs_ioc_move_range(file, &range);
4382 }
4383 
4384 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4385 {
4386 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4387 		return -EIO;
4388 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4389 		return -ENOSPC;
4390 
4391 	switch (cmd) {
4392 	case FS_IOC32_GETVERSION:
4393 		cmd = FS_IOC_GETVERSION;
4394 		break;
4395 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4396 		return f2fs_compat_ioc_gc_range(file, arg);
4397 	case F2FS_IOC32_MOVE_RANGE:
4398 		return f2fs_compat_ioc_move_range(file, arg);
4399 	case F2FS_IOC_START_ATOMIC_WRITE:
4400 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4401 	case F2FS_IOC_START_VOLATILE_WRITE:
4402 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4403 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
4404 	case F2FS_IOC_SHUTDOWN:
4405 	case FITRIM:
4406 	case FS_IOC_SET_ENCRYPTION_POLICY:
4407 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4408 	case FS_IOC_GET_ENCRYPTION_POLICY:
4409 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4410 	case FS_IOC_ADD_ENCRYPTION_KEY:
4411 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4412 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4413 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4414 	case FS_IOC_GET_ENCRYPTION_NONCE:
4415 	case F2FS_IOC_GARBAGE_COLLECT:
4416 	case F2FS_IOC_WRITE_CHECKPOINT:
4417 	case F2FS_IOC_DEFRAGMENT:
4418 	case F2FS_IOC_FLUSH_DEVICE:
4419 	case F2FS_IOC_GET_FEATURES:
4420 	case F2FS_IOC_GET_PIN_FILE:
4421 	case F2FS_IOC_SET_PIN_FILE:
4422 	case F2FS_IOC_PRECACHE_EXTENTS:
4423 	case F2FS_IOC_RESIZE_FS:
4424 	case FS_IOC_ENABLE_VERITY:
4425 	case FS_IOC_MEASURE_VERITY:
4426 	case FS_IOC_READ_VERITY_METADATA:
4427 	case FS_IOC_GETFSLABEL:
4428 	case FS_IOC_SETFSLABEL:
4429 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4430 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4431 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4432 	case F2FS_IOC_SEC_TRIM_FILE:
4433 	case F2FS_IOC_GET_COMPRESS_OPTION:
4434 	case F2FS_IOC_SET_COMPRESS_OPTION:
4435 	case F2FS_IOC_DECOMPRESS_FILE:
4436 	case F2FS_IOC_COMPRESS_FILE:
4437 		break;
4438 	default:
4439 		return -ENOIOCTLCMD;
4440 	}
4441 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4442 }
4443 #endif
4444 
4445 const struct file_operations f2fs_file_operations = {
4446 	.llseek		= f2fs_llseek,
4447 	.read_iter	= f2fs_file_read_iter,
4448 	.write_iter	= f2fs_file_write_iter,
4449 	.open		= f2fs_file_open,
4450 	.release	= f2fs_release_file,
4451 	.mmap		= f2fs_file_mmap,
4452 	.flush		= f2fs_file_flush,
4453 	.fsync		= f2fs_sync_file,
4454 	.fallocate	= f2fs_fallocate,
4455 	.unlocked_ioctl	= f2fs_ioctl,
4456 #ifdef CONFIG_COMPAT
4457 	.compat_ioctl	= f2fs_compat_ioctl,
4458 #endif
4459 	.splice_read	= generic_file_splice_read,
4460 	.splice_write	= iter_file_splice_write,
4461 };
4462