xref: /openbmc/linux/fs/f2fs/file.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33 
34 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
35 {
36 	struct inode *inode = file_inode(vmf->vma->vm_file);
37 	vm_fault_t ret;
38 
39 	down_read(&F2FS_I(inode)->i_mmap_sem);
40 	ret = filemap_fault(vmf);
41 	up_read(&F2FS_I(inode)->i_mmap_sem);
42 
43 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
44 
45 	return ret;
46 }
47 
48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 	struct page *page = vmf->page;
51 	struct inode *inode = file_inode(vmf->vma->vm_file);
52 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 	struct dnode_of_data dn;
54 	bool need_alloc = true;
55 	int err = 0;
56 
57 	if (unlikely(f2fs_cp_error(sbi))) {
58 		err = -EIO;
59 		goto err;
60 	}
61 
62 	if (!f2fs_is_checkpoint_ready(sbi)) {
63 		err = -ENOSPC;
64 		goto err;
65 	}
66 
67 #ifdef CONFIG_F2FS_FS_COMPRESSION
68 	if (f2fs_compressed_file(inode)) {
69 		int ret = f2fs_is_compressed_cluster(inode, page->index);
70 
71 		if (ret < 0) {
72 			err = ret;
73 			goto err;
74 		} else if (ret) {
75 			if (ret < F2FS_I(inode)->i_cluster_size) {
76 				err = -EAGAIN;
77 				goto err;
78 			}
79 			need_alloc = false;
80 		}
81 	}
82 #endif
83 	/* should do out of any locked page */
84 	if (need_alloc)
85 		f2fs_balance_fs(sbi, true);
86 
87 	sb_start_pagefault(inode->i_sb);
88 
89 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
90 
91 	file_update_time(vmf->vma->vm_file);
92 	down_read(&F2FS_I(inode)->i_mmap_sem);
93 	lock_page(page);
94 	if (unlikely(page->mapping != inode->i_mapping ||
95 			page_offset(page) > i_size_read(inode) ||
96 			!PageUptodate(page))) {
97 		unlock_page(page);
98 		err = -EFAULT;
99 		goto out_sem;
100 	}
101 
102 	if (need_alloc) {
103 		/* block allocation */
104 		__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
105 		set_new_dnode(&dn, inode, NULL, NULL, 0);
106 		err = f2fs_get_block(&dn, page->index);
107 		f2fs_put_dnode(&dn);
108 		__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
109 	}
110 
111 #ifdef CONFIG_F2FS_FS_COMPRESSION
112 	if (!need_alloc) {
113 		set_new_dnode(&dn, inode, NULL, NULL, 0);
114 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
115 		f2fs_put_dnode(&dn);
116 	}
117 #endif
118 	if (err) {
119 		unlock_page(page);
120 		goto out_sem;
121 	}
122 
123 	f2fs_wait_on_page_writeback(page, DATA, false, true);
124 
125 	/* wait for GCed page writeback via META_MAPPING */
126 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
127 
128 	/*
129 	 * check to see if the page is mapped already (no holes)
130 	 */
131 	if (PageMappedToDisk(page))
132 		goto out_sem;
133 
134 	/* page is wholly or partially inside EOF */
135 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
136 						i_size_read(inode)) {
137 		loff_t offset;
138 
139 		offset = i_size_read(inode) & ~PAGE_MASK;
140 		zero_user_segment(page, offset, PAGE_SIZE);
141 	}
142 	set_page_dirty(page);
143 	if (!PageUptodate(page))
144 		SetPageUptodate(page);
145 
146 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
147 	f2fs_update_time(sbi, REQ_TIME);
148 
149 	trace_f2fs_vm_page_mkwrite(page, DATA);
150 out_sem:
151 	up_read(&F2FS_I(inode)->i_mmap_sem);
152 
153 	sb_end_pagefault(inode->i_sb);
154 err:
155 	return block_page_mkwrite_return(err);
156 }
157 
158 static const struct vm_operations_struct f2fs_file_vm_ops = {
159 	.fault		= f2fs_filemap_fault,
160 	.map_pages	= filemap_map_pages,
161 	.page_mkwrite	= f2fs_vm_page_mkwrite,
162 };
163 
164 static int get_parent_ino(struct inode *inode, nid_t *pino)
165 {
166 	struct dentry *dentry;
167 
168 	inode = igrab(inode);
169 	dentry = d_find_any_alias(inode);
170 	iput(inode);
171 	if (!dentry)
172 		return 0;
173 
174 	*pino = parent_ino(dentry);
175 	dput(dentry);
176 	return 1;
177 }
178 
179 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
180 {
181 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
182 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
183 
184 	if (!S_ISREG(inode->i_mode))
185 		cp_reason = CP_NON_REGULAR;
186 	else if (f2fs_compressed_file(inode))
187 		cp_reason = CP_COMPRESSED;
188 	else if (inode->i_nlink != 1)
189 		cp_reason = CP_HARDLINK;
190 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
191 		cp_reason = CP_SB_NEED_CP;
192 	else if (file_wrong_pino(inode))
193 		cp_reason = CP_WRONG_PINO;
194 	else if (!f2fs_space_for_roll_forward(sbi))
195 		cp_reason = CP_NO_SPC_ROLL;
196 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
197 		cp_reason = CP_NODE_NEED_CP;
198 	else if (test_opt(sbi, FASTBOOT))
199 		cp_reason = CP_FASTBOOT_MODE;
200 	else if (F2FS_OPTION(sbi).active_logs == 2)
201 		cp_reason = CP_SPEC_LOG_NUM;
202 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
203 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
204 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
205 							TRANS_DIR_INO))
206 		cp_reason = CP_RECOVER_DIR;
207 
208 	return cp_reason;
209 }
210 
211 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
212 {
213 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
214 	bool ret = false;
215 	/* But we need to avoid that there are some inode updates */
216 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
217 		ret = true;
218 	f2fs_put_page(i, 0);
219 	return ret;
220 }
221 
222 static void try_to_fix_pino(struct inode *inode)
223 {
224 	struct f2fs_inode_info *fi = F2FS_I(inode);
225 	nid_t pino;
226 
227 	down_write(&fi->i_sem);
228 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
229 			get_parent_ino(inode, &pino)) {
230 		f2fs_i_pino_write(inode, pino);
231 		file_got_pino(inode);
232 	}
233 	up_write(&fi->i_sem);
234 }
235 
236 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
237 						int datasync, bool atomic)
238 {
239 	struct inode *inode = file->f_mapping->host;
240 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
241 	nid_t ino = inode->i_ino;
242 	int ret = 0;
243 	enum cp_reason_type cp_reason = 0;
244 	struct writeback_control wbc = {
245 		.sync_mode = WB_SYNC_ALL,
246 		.nr_to_write = LONG_MAX,
247 		.for_reclaim = 0,
248 	};
249 	unsigned int seq_id = 0;
250 
251 	if (unlikely(f2fs_readonly(inode->i_sb) ||
252 				is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
253 		return 0;
254 
255 	trace_f2fs_sync_file_enter(inode);
256 
257 	if (S_ISDIR(inode->i_mode))
258 		goto go_write;
259 
260 	/* if fdatasync is triggered, let's do in-place-update */
261 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
262 		set_inode_flag(inode, FI_NEED_IPU);
263 	ret = file_write_and_wait_range(file, start, end);
264 	clear_inode_flag(inode, FI_NEED_IPU);
265 
266 	if (ret) {
267 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
268 		return ret;
269 	}
270 
271 	/* if the inode is dirty, let's recover all the time */
272 	if (!f2fs_skip_inode_update(inode, datasync)) {
273 		f2fs_write_inode(inode, NULL);
274 		goto go_write;
275 	}
276 
277 	/*
278 	 * if there is no written data, don't waste time to write recovery info.
279 	 */
280 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
281 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
282 
283 		/* it may call write_inode just prior to fsync */
284 		if (need_inode_page_update(sbi, ino))
285 			goto go_write;
286 
287 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
288 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
289 			goto flush_out;
290 		goto out;
291 	}
292 go_write:
293 	/*
294 	 * Both of fdatasync() and fsync() are able to be recovered from
295 	 * sudden-power-off.
296 	 */
297 	down_read(&F2FS_I(inode)->i_sem);
298 	cp_reason = need_do_checkpoint(inode);
299 	up_read(&F2FS_I(inode)->i_sem);
300 
301 	if (cp_reason) {
302 		/* all the dirty node pages should be flushed for POR */
303 		ret = f2fs_sync_fs(inode->i_sb, 1);
304 
305 		/*
306 		 * We've secured consistency through sync_fs. Following pino
307 		 * will be used only for fsynced inodes after checkpoint.
308 		 */
309 		try_to_fix_pino(inode);
310 		clear_inode_flag(inode, FI_APPEND_WRITE);
311 		clear_inode_flag(inode, FI_UPDATE_WRITE);
312 		goto out;
313 	}
314 sync_nodes:
315 	atomic_inc(&sbi->wb_sync_req[NODE]);
316 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
317 	atomic_dec(&sbi->wb_sync_req[NODE]);
318 	if (ret)
319 		goto out;
320 
321 	/* if cp_error was enabled, we should avoid infinite loop */
322 	if (unlikely(f2fs_cp_error(sbi))) {
323 		ret = -EIO;
324 		goto out;
325 	}
326 
327 	if (f2fs_need_inode_block_update(sbi, ino)) {
328 		f2fs_mark_inode_dirty_sync(inode, true);
329 		f2fs_write_inode(inode, NULL);
330 		goto sync_nodes;
331 	}
332 
333 	/*
334 	 * If it's atomic_write, it's just fine to keep write ordering. So
335 	 * here we don't need to wait for node write completion, since we use
336 	 * node chain which serializes node blocks. If one of node writes are
337 	 * reordered, we can see simply broken chain, resulting in stopping
338 	 * roll-forward recovery. It means we'll recover all or none node blocks
339 	 * given fsync mark.
340 	 */
341 	if (!atomic) {
342 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
343 		if (ret)
344 			goto out;
345 	}
346 
347 	/* once recovery info is written, don't need to tack this */
348 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
349 	clear_inode_flag(inode, FI_APPEND_WRITE);
350 flush_out:
351 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
352 		ret = f2fs_issue_flush(sbi, inode->i_ino);
353 	if (!ret) {
354 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
355 		clear_inode_flag(inode, FI_UPDATE_WRITE);
356 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
357 	}
358 	f2fs_update_time(sbi, REQ_TIME);
359 out:
360 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
361 	f2fs_trace_ios(NULL, 1);
362 	return ret;
363 }
364 
365 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
366 {
367 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
368 		return -EIO;
369 	return f2fs_do_sync_file(file, start, end, datasync, false);
370 }
371 
372 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
373 						pgoff_t pgofs, int whence)
374 {
375 	struct page *page;
376 	int nr_pages;
377 
378 	if (whence != SEEK_DATA)
379 		return 0;
380 
381 	/* find first dirty page index */
382 	nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
383 				      1, &page);
384 	if (!nr_pages)
385 		return ULONG_MAX;
386 	pgofs = page->index;
387 	put_page(page);
388 	return pgofs;
389 }
390 
391 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
392 				pgoff_t dirty, pgoff_t pgofs, int whence)
393 {
394 	switch (whence) {
395 	case SEEK_DATA:
396 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
397 			__is_valid_data_blkaddr(blkaddr))
398 			return true;
399 		break;
400 	case SEEK_HOLE:
401 		if (blkaddr == NULL_ADDR)
402 			return true;
403 		break;
404 	}
405 	return false;
406 }
407 
408 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
409 {
410 	struct inode *inode = file->f_mapping->host;
411 	loff_t maxbytes = inode->i_sb->s_maxbytes;
412 	struct dnode_of_data dn;
413 	pgoff_t pgofs, end_offset, dirty;
414 	loff_t data_ofs = offset;
415 	loff_t isize;
416 	int err = 0;
417 
418 	inode_lock(inode);
419 
420 	isize = i_size_read(inode);
421 	if (offset >= isize)
422 		goto fail;
423 
424 	/* handle inline data case */
425 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
426 		if (whence == SEEK_HOLE)
427 			data_ofs = isize;
428 		goto found;
429 	}
430 
431 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
432 
433 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
434 
435 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
436 		set_new_dnode(&dn, inode, NULL, NULL, 0);
437 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
438 		if (err && err != -ENOENT) {
439 			goto fail;
440 		} else if (err == -ENOENT) {
441 			/* direct node does not exists */
442 			if (whence == SEEK_DATA) {
443 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
444 				continue;
445 			} else {
446 				goto found;
447 			}
448 		}
449 
450 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
451 
452 		/* find data/hole in dnode block */
453 		for (; dn.ofs_in_node < end_offset;
454 				dn.ofs_in_node++, pgofs++,
455 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
456 			block_t blkaddr;
457 
458 			blkaddr = f2fs_data_blkaddr(&dn);
459 
460 			if (__is_valid_data_blkaddr(blkaddr) &&
461 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
462 					blkaddr, DATA_GENERIC_ENHANCE)) {
463 				f2fs_put_dnode(&dn);
464 				goto fail;
465 			}
466 
467 			if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
468 							pgofs, whence)) {
469 				f2fs_put_dnode(&dn);
470 				goto found;
471 			}
472 		}
473 		f2fs_put_dnode(&dn);
474 	}
475 
476 	if (whence == SEEK_DATA)
477 		goto fail;
478 found:
479 	if (whence == SEEK_HOLE && data_ofs > isize)
480 		data_ofs = isize;
481 	inode_unlock(inode);
482 	return vfs_setpos(file, data_ofs, maxbytes);
483 fail:
484 	inode_unlock(inode);
485 	return -ENXIO;
486 }
487 
488 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
489 {
490 	struct inode *inode = file->f_mapping->host;
491 	loff_t maxbytes = inode->i_sb->s_maxbytes;
492 
493 	switch (whence) {
494 	case SEEK_SET:
495 	case SEEK_CUR:
496 	case SEEK_END:
497 		return generic_file_llseek_size(file, offset, whence,
498 						maxbytes, i_size_read(inode));
499 	case SEEK_DATA:
500 	case SEEK_HOLE:
501 		if (offset < 0)
502 			return -ENXIO;
503 		return f2fs_seek_block(file, offset, whence);
504 	}
505 
506 	return -EINVAL;
507 }
508 
509 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
510 {
511 	struct inode *inode = file_inode(file);
512 	int err;
513 
514 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
515 		return -EIO;
516 
517 	if (!f2fs_is_compress_backend_ready(inode))
518 		return -EOPNOTSUPP;
519 
520 	/* we don't need to use inline_data strictly */
521 	err = f2fs_convert_inline_inode(inode);
522 	if (err)
523 		return err;
524 
525 	file_accessed(file);
526 	vma->vm_ops = &f2fs_file_vm_ops;
527 	set_inode_flag(inode, FI_MMAP_FILE);
528 	return 0;
529 }
530 
531 static int f2fs_file_open(struct inode *inode, struct file *filp)
532 {
533 	int err = fscrypt_file_open(inode, filp);
534 
535 	if (err)
536 		return err;
537 
538 	if (!f2fs_is_compress_backend_ready(inode))
539 		return -EOPNOTSUPP;
540 
541 	err = fsverity_file_open(inode, filp);
542 	if (err)
543 		return err;
544 
545 	filp->f_mode |= FMODE_NOWAIT;
546 
547 	return dquot_file_open(inode, filp);
548 }
549 
550 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
551 {
552 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
553 	struct f2fs_node *raw_node;
554 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
555 	__le32 *addr;
556 	int base = 0;
557 	bool compressed_cluster = false;
558 	int cluster_index = 0, valid_blocks = 0;
559 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
560 
561 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
562 		base = get_extra_isize(dn->inode);
563 
564 	raw_node = F2FS_NODE(dn->node_page);
565 	addr = blkaddr_in_node(raw_node) + base + ofs;
566 
567 	/* Assumption: truncateion starts with cluster */
568 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
569 		block_t blkaddr = le32_to_cpu(*addr);
570 
571 		if (f2fs_compressed_file(dn->inode) &&
572 					!(cluster_index & (cluster_size - 1))) {
573 			if (compressed_cluster)
574 				f2fs_i_compr_blocks_update(dn->inode,
575 							valid_blocks, false);
576 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
577 			valid_blocks = 0;
578 		}
579 
580 		if (blkaddr == NULL_ADDR)
581 			continue;
582 
583 		dn->data_blkaddr = NULL_ADDR;
584 		f2fs_set_data_blkaddr(dn);
585 
586 		if (__is_valid_data_blkaddr(blkaddr)) {
587 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
588 					DATA_GENERIC_ENHANCE))
589 				continue;
590 			if (compressed_cluster)
591 				valid_blocks++;
592 		}
593 
594 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
595 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
596 
597 		f2fs_invalidate_blocks(sbi, blkaddr);
598 		nr_free++;
599 	}
600 
601 	if (compressed_cluster)
602 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
603 
604 	if (nr_free) {
605 		pgoff_t fofs;
606 		/*
607 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
608 		 * we will invalidate all blkaddr in the whole range.
609 		 */
610 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
611 							dn->inode) + ofs;
612 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
613 		dec_valid_block_count(sbi, dn->inode, nr_free);
614 	}
615 	dn->ofs_in_node = ofs;
616 
617 	f2fs_update_time(sbi, REQ_TIME);
618 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
619 					 dn->ofs_in_node, nr_free);
620 }
621 
622 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
623 {
624 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
625 }
626 
627 static int truncate_partial_data_page(struct inode *inode, u64 from,
628 								bool cache_only)
629 {
630 	loff_t offset = from & (PAGE_SIZE - 1);
631 	pgoff_t index = from >> PAGE_SHIFT;
632 	struct address_space *mapping = inode->i_mapping;
633 	struct page *page;
634 
635 	if (!offset && !cache_only)
636 		return 0;
637 
638 	if (cache_only) {
639 		page = find_lock_page(mapping, index);
640 		if (page && PageUptodate(page))
641 			goto truncate_out;
642 		f2fs_put_page(page, 1);
643 		return 0;
644 	}
645 
646 	if (f2fs_compressed_file(inode))
647 		return 0;
648 
649 	page = f2fs_get_lock_data_page(inode, index, true);
650 	if (IS_ERR(page))
651 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
652 truncate_out:
653 	f2fs_wait_on_page_writeback(page, DATA, true, true);
654 	zero_user(page, offset, PAGE_SIZE - offset);
655 
656 	/* An encrypted inode should have a key and truncate the last page. */
657 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
658 	if (!cache_only)
659 		set_page_dirty(page);
660 	f2fs_put_page(page, 1);
661 	return 0;
662 }
663 
664 static int do_truncate_blocks(struct inode *inode, u64 from, bool lock)
665 {
666 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
667 	struct dnode_of_data dn;
668 	pgoff_t free_from;
669 	int count = 0, err = 0;
670 	struct page *ipage;
671 	bool truncate_page = false;
672 
673 	trace_f2fs_truncate_blocks_enter(inode, from);
674 
675 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
676 
677 	if (free_from >= sbi->max_file_blocks)
678 		goto free_partial;
679 
680 	if (lock)
681 		f2fs_lock_op(sbi);
682 
683 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
684 	if (IS_ERR(ipage)) {
685 		err = PTR_ERR(ipage);
686 		goto out;
687 	}
688 
689 	if (f2fs_has_inline_data(inode)) {
690 		f2fs_truncate_inline_inode(inode, ipage, from);
691 		f2fs_put_page(ipage, 1);
692 		truncate_page = true;
693 		goto out;
694 	}
695 
696 	set_new_dnode(&dn, inode, ipage, NULL, 0);
697 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
698 	if (err) {
699 		if (err == -ENOENT)
700 			goto free_next;
701 		goto out;
702 	}
703 
704 	count = ADDRS_PER_PAGE(dn.node_page, inode);
705 
706 	count -= dn.ofs_in_node;
707 	f2fs_bug_on(sbi, count < 0);
708 
709 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
710 		f2fs_truncate_data_blocks_range(&dn, count);
711 		free_from += count;
712 	}
713 
714 	f2fs_put_dnode(&dn);
715 free_next:
716 	err = f2fs_truncate_inode_blocks(inode, free_from);
717 out:
718 	if (lock)
719 		f2fs_unlock_op(sbi);
720 free_partial:
721 	/* lastly zero out the first data page */
722 	if (!err)
723 		err = truncate_partial_data_page(inode, from, truncate_page);
724 
725 	trace_f2fs_truncate_blocks_exit(inode, err);
726 	return err;
727 }
728 
729 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
730 {
731 	u64 free_from = from;
732 
733 	/*
734 	 * for compressed file, only support cluster size
735 	 * aligned truncation.
736 	 */
737 	if (f2fs_compressed_file(inode)) {
738 		size_t cluster_shift = PAGE_SHIFT +
739 					F2FS_I(inode)->i_log_cluster_size;
740 		size_t cluster_mask = (1 << cluster_shift) - 1;
741 
742 		free_from = from >> cluster_shift;
743 		if (from & cluster_mask)
744 			free_from++;
745 		free_from <<= cluster_shift;
746 	}
747 
748 	return do_truncate_blocks(inode, free_from, lock);
749 }
750 
751 int f2fs_truncate(struct inode *inode)
752 {
753 	int err;
754 
755 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
756 		return -EIO;
757 
758 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
759 				S_ISLNK(inode->i_mode)))
760 		return 0;
761 
762 	trace_f2fs_truncate(inode);
763 
764 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
765 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
766 		return -EIO;
767 	}
768 
769 	/* we should check inline_data size */
770 	if (!f2fs_may_inline_data(inode)) {
771 		err = f2fs_convert_inline_inode(inode);
772 		if (err)
773 			return err;
774 	}
775 
776 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
777 	if (err)
778 		return err;
779 
780 	inode->i_mtime = inode->i_ctime = current_time(inode);
781 	f2fs_mark_inode_dirty_sync(inode, false);
782 	return 0;
783 }
784 
785 int f2fs_getattr(const struct path *path, struct kstat *stat,
786 		 u32 request_mask, unsigned int query_flags)
787 {
788 	struct inode *inode = d_inode(path->dentry);
789 	struct f2fs_inode_info *fi = F2FS_I(inode);
790 	struct f2fs_inode *ri;
791 	unsigned int flags;
792 
793 	if (f2fs_has_extra_attr(inode) &&
794 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
795 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
796 		stat->result_mask |= STATX_BTIME;
797 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
798 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
799 	}
800 
801 	flags = fi->i_flags;
802 	if (flags & F2FS_COMPR_FL)
803 		stat->attributes |= STATX_ATTR_COMPRESSED;
804 	if (flags & F2FS_APPEND_FL)
805 		stat->attributes |= STATX_ATTR_APPEND;
806 	if (IS_ENCRYPTED(inode))
807 		stat->attributes |= STATX_ATTR_ENCRYPTED;
808 	if (flags & F2FS_IMMUTABLE_FL)
809 		stat->attributes |= STATX_ATTR_IMMUTABLE;
810 	if (flags & F2FS_NODUMP_FL)
811 		stat->attributes |= STATX_ATTR_NODUMP;
812 	if (IS_VERITY(inode))
813 		stat->attributes |= STATX_ATTR_VERITY;
814 
815 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
816 				  STATX_ATTR_APPEND |
817 				  STATX_ATTR_ENCRYPTED |
818 				  STATX_ATTR_IMMUTABLE |
819 				  STATX_ATTR_NODUMP |
820 				  STATX_ATTR_VERITY);
821 
822 	generic_fillattr(inode, stat);
823 
824 	/* we need to show initial sectors used for inline_data/dentries */
825 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
826 					f2fs_has_inline_dentry(inode))
827 		stat->blocks += (stat->size + 511) >> 9;
828 
829 	return 0;
830 }
831 
832 #ifdef CONFIG_F2FS_FS_POSIX_ACL
833 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
834 {
835 	unsigned int ia_valid = attr->ia_valid;
836 
837 	if (ia_valid & ATTR_UID)
838 		inode->i_uid = attr->ia_uid;
839 	if (ia_valid & ATTR_GID)
840 		inode->i_gid = attr->ia_gid;
841 	if (ia_valid & ATTR_ATIME)
842 		inode->i_atime = attr->ia_atime;
843 	if (ia_valid & ATTR_MTIME)
844 		inode->i_mtime = attr->ia_mtime;
845 	if (ia_valid & ATTR_CTIME)
846 		inode->i_ctime = attr->ia_ctime;
847 	if (ia_valid & ATTR_MODE) {
848 		umode_t mode = attr->ia_mode;
849 
850 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
851 			mode &= ~S_ISGID;
852 		set_acl_inode(inode, mode);
853 	}
854 }
855 #else
856 #define __setattr_copy setattr_copy
857 #endif
858 
859 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
860 {
861 	struct inode *inode = d_inode(dentry);
862 	int err;
863 
864 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
865 		return -EIO;
866 
867 	if ((attr->ia_valid & ATTR_SIZE) &&
868 		!f2fs_is_compress_backend_ready(inode))
869 		return -EOPNOTSUPP;
870 
871 	err = setattr_prepare(dentry, attr);
872 	if (err)
873 		return err;
874 
875 	err = fscrypt_prepare_setattr(dentry, attr);
876 	if (err)
877 		return err;
878 
879 	err = fsverity_prepare_setattr(dentry, attr);
880 	if (err)
881 		return err;
882 
883 	if (is_quota_modification(inode, attr)) {
884 		err = dquot_initialize(inode);
885 		if (err)
886 			return err;
887 	}
888 	if ((attr->ia_valid & ATTR_UID &&
889 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
890 		(attr->ia_valid & ATTR_GID &&
891 		!gid_eq(attr->ia_gid, inode->i_gid))) {
892 		f2fs_lock_op(F2FS_I_SB(inode));
893 		err = dquot_transfer(inode, attr);
894 		if (err) {
895 			set_sbi_flag(F2FS_I_SB(inode),
896 					SBI_QUOTA_NEED_REPAIR);
897 			f2fs_unlock_op(F2FS_I_SB(inode));
898 			return err;
899 		}
900 		/*
901 		 * update uid/gid under lock_op(), so that dquot and inode can
902 		 * be updated atomically.
903 		 */
904 		if (attr->ia_valid & ATTR_UID)
905 			inode->i_uid = attr->ia_uid;
906 		if (attr->ia_valid & ATTR_GID)
907 			inode->i_gid = attr->ia_gid;
908 		f2fs_mark_inode_dirty_sync(inode, true);
909 		f2fs_unlock_op(F2FS_I_SB(inode));
910 	}
911 
912 	if (attr->ia_valid & ATTR_SIZE) {
913 		loff_t old_size = i_size_read(inode);
914 
915 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
916 			/*
917 			 * should convert inline inode before i_size_write to
918 			 * keep smaller than inline_data size with inline flag.
919 			 */
920 			err = f2fs_convert_inline_inode(inode);
921 			if (err)
922 				return err;
923 		}
924 
925 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
926 		down_write(&F2FS_I(inode)->i_mmap_sem);
927 
928 		truncate_setsize(inode, attr->ia_size);
929 
930 		if (attr->ia_size <= old_size)
931 			err = f2fs_truncate(inode);
932 		/*
933 		 * do not trim all blocks after i_size if target size is
934 		 * larger than i_size.
935 		 */
936 		up_write(&F2FS_I(inode)->i_mmap_sem);
937 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
938 		if (err)
939 			return err;
940 
941 		spin_lock(&F2FS_I(inode)->i_size_lock);
942 		inode->i_mtime = inode->i_ctime = current_time(inode);
943 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
944 		spin_unlock(&F2FS_I(inode)->i_size_lock);
945 	}
946 
947 	__setattr_copy(inode, attr);
948 
949 	if (attr->ia_valid & ATTR_MODE) {
950 		err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
951 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
952 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
953 			clear_inode_flag(inode, FI_ACL_MODE);
954 		}
955 	}
956 
957 	/* file size may changed here */
958 	f2fs_mark_inode_dirty_sync(inode, true);
959 
960 	/* inode change will produce dirty node pages flushed by checkpoint */
961 	f2fs_balance_fs(F2FS_I_SB(inode), true);
962 
963 	return err;
964 }
965 
966 const struct inode_operations f2fs_file_inode_operations = {
967 	.getattr	= f2fs_getattr,
968 	.setattr	= f2fs_setattr,
969 	.get_acl	= f2fs_get_acl,
970 	.set_acl	= f2fs_set_acl,
971 #ifdef CONFIG_F2FS_FS_XATTR
972 	.listxattr	= f2fs_listxattr,
973 #endif
974 	.fiemap		= f2fs_fiemap,
975 };
976 
977 static int fill_zero(struct inode *inode, pgoff_t index,
978 					loff_t start, loff_t len)
979 {
980 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
981 	struct page *page;
982 
983 	if (!len)
984 		return 0;
985 
986 	f2fs_balance_fs(sbi, true);
987 
988 	f2fs_lock_op(sbi);
989 	page = f2fs_get_new_data_page(inode, NULL, index, false);
990 	f2fs_unlock_op(sbi);
991 
992 	if (IS_ERR(page))
993 		return PTR_ERR(page);
994 
995 	f2fs_wait_on_page_writeback(page, DATA, true, true);
996 	zero_user(page, start, len);
997 	set_page_dirty(page);
998 	f2fs_put_page(page, 1);
999 	return 0;
1000 }
1001 
1002 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1003 {
1004 	int err;
1005 
1006 	while (pg_start < pg_end) {
1007 		struct dnode_of_data dn;
1008 		pgoff_t end_offset, count;
1009 
1010 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1011 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1012 		if (err) {
1013 			if (err == -ENOENT) {
1014 				pg_start = f2fs_get_next_page_offset(&dn,
1015 								pg_start);
1016 				continue;
1017 			}
1018 			return err;
1019 		}
1020 
1021 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1022 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1023 
1024 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1025 
1026 		f2fs_truncate_data_blocks_range(&dn, count);
1027 		f2fs_put_dnode(&dn);
1028 
1029 		pg_start += count;
1030 	}
1031 	return 0;
1032 }
1033 
1034 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1035 {
1036 	pgoff_t pg_start, pg_end;
1037 	loff_t off_start, off_end;
1038 	int ret;
1039 
1040 	ret = f2fs_convert_inline_inode(inode);
1041 	if (ret)
1042 		return ret;
1043 
1044 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1045 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1046 
1047 	off_start = offset & (PAGE_SIZE - 1);
1048 	off_end = (offset + len) & (PAGE_SIZE - 1);
1049 
1050 	if (pg_start == pg_end) {
1051 		ret = fill_zero(inode, pg_start, off_start,
1052 						off_end - off_start);
1053 		if (ret)
1054 			return ret;
1055 	} else {
1056 		if (off_start) {
1057 			ret = fill_zero(inode, pg_start++, off_start,
1058 						PAGE_SIZE - off_start);
1059 			if (ret)
1060 				return ret;
1061 		}
1062 		if (off_end) {
1063 			ret = fill_zero(inode, pg_end, 0, off_end);
1064 			if (ret)
1065 				return ret;
1066 		}
1067 
1068 		if (pg_start < pg_end) {
1069 			struct address_space *mapping = inode->i_mapping;
1070 			loff_t blk_start, blk_end;
1071 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1072 
1073 			f2fs_balance_fs(sbi, true);
1074 
1075 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1076 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1077 
1078 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1079 			down_write(&F2FS_I(inode)->i_mmap_sem);
1080 
1081 			truncate_inode_pages_range(mapping, blk_start,
1082 					blk_end - 1);
1083 
1084 			f2fs_lock_op(sbi);
1085 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1086 			f2fs_unlock_op(sbi);
1087 
1088 			up_write(&F2FS_I(inode)->i_mmap_sem);
1089 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1090 		}
1091 	}
1092 
1093 	return ret;
1094 }
1095 
1096 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1097 				int *do_replace, pgoff_t off, pgoff_t len)
1098 {
1099 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1100 	struct dnode_of_data dn;
1101 	int ret, done, i;
1102 
1103 next_dnode:
1104 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1105 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1106 	if (ret && ret != -ENOENT) {
1107 		return ret;
1108 	} else if (ret == -ENOENT) {
1109 		if (dn.max_level == 0)
1110 			return -ENOENT;
1111 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1112 						dn.ofs_in_node, len);
1113 		blkaddr += done;
1114 		do_replace += done;
1115 		goto next;
1116 	}
1117 
1118 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1119 							dn.ofs_in_node, len);
1120 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1121 		*blkaddr = f2fs_data_blkaddr(&dn);
1122 
1123 		if (__is_valid_data_blkaddr(*blkaddr) &&
1124 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1125 					DATA_GENERIC_ENHANCE)) {
1126 			f2fs_put_dnode(&dn);
1127 			return -EFSCORRUPTED;
1128 		}
1129 
1130 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1131 
1132 			if (f2fs_lfs_mode(sbi)) {
1133 				f2fs_put_dnode(&dn);
1134 				return -EOPNOTSUPP;
1135 			}
1136 
1137 			/* do not invalidate this block address */
1138 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1139 			*do_replace = 1;
1140 		}
1141 	}
1142 	f2fs_put_dnode(&dn);
1143 next:
1144 	len -= done;
1145 	off += done;
1146 	if (len)
1147 		goto next_dnode;
1148 	return 0;
1149 }
1150 
1151 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1152 				int *do_replace, pgoff_t off, int len)
1153 {
1154 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1155 	struct dnode_of_data dn;
1156 	int ret, i;
1157 
1158 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1159 		if (*do_replace == 0)
1160 			continue;
1161 
1162 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1163 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1164 		if (ret) {
1165 			dec_valid_block_count(sbi, inode, 1);
1166 			f2fs_invalidate_blocks(sbi, *blkaddr);
1167 		} else {
1168 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1169 		}
1170 		f2fs_put_dnode(&dn);
1171 	}
1172 	return 0;
1173 }
1174 
1175 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1176 			block_t *blkaddr, int *do_replace,
1177 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1178 {
1179 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1180 	pgoff_t i = 0;
1181 	int ret;
1182 
1183 	while (i < len) {
1184 		if (blkaddr[i] == NULL_ADDR && !full) {
1185 			i++;
1186 			continue;
1187 		}
1188 
1189 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1190 			struct dnode_of_data dn;
1191 			struct node_info ni;
1192 			size_t new_size;
1193 			pgoff_t ilen;
1194 
1195 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1196 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1197 			if (ret)
1198 				return ret;
1199 
1200 			ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1201 			if (ret) {
1202 				f2fs_put_dnode(&dn);
1203 				return ret;
1204 			}
1205 
1206 			ilen = min((pgoff_t)
1207 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1208 						dn.ofs_in_node, len - i);
1209 			do {
1210 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1211 				f2fs_truncate_data_blocks_range(&dn, 1);
1212 
1213 				if (do_replace[i]) {
1214 					f2fs_i_blocks_write(src_inode,
1215 							1, false, false);
1216 					f2fs_i_blocks_write(dst_inode,
1217 							1, true, false);
1218 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1219 					blkaddr[i], ni.version, true, false);
1220 
1221 					do_replace[i] = 0;
1222 				}
1223 				dn.ofs_in_node++;
1224 				i++;
1225 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1226 				if (dst_inode->i_size < new_size)
1227 					f2fs_i_size_write(dst_inode, new_size);
1228 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1229 
1230 			f2fs_put_dnode(&dn);
1231 		} else {
1232 			struct page *psrc, *pdst;
1233 
1234 			psrc = f2fs_get_lock_data_page(src_inode,
1235 							src + i, true);
1236 			if (IS_ERR(psrc))
1237 				return PTR_ERR(psrc);
1238 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1239 								true);
1240 			if (IS_ERR(pdst)) {
1241 				f2fs_put_page(psrc, 1);
1242 				return PTR_ERR(pdst);
1243 			}
1244 			f2fs_copy_page(psrc, pdst);
1245 			set_page_dirty(pdst);
1246 			f2fs_put_page(pdst, 1);
1247 			f2fs_put_page(psrc, 1);
1248 
1249 			ret = f2fs_truncate_hole(src_inode,
1250 						src + i, src + i + 1);
1251 			if (ret)
1252 				return ret;
1253 			i++;
1254 		}
1255 	}
1256 	return 0;
1257 }
1258 
1259 static int __exchange_data_block(struct inode *src_inode,
1260 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1261 			pgoff_t len, bool full)
1262 {
1263 	block_t *src_blkaddr;
1264 	int *do_replace;
1265 	pgoff_t olen;
1266 	int ret;
1267 
1268 	while (len) {
1269 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1270 
1271 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1272 					array_size(olen, sizeof(block_t)),
1273 					GFP_NOFS);
1274 		if (!src_blkaddr)
1275 			return -ENOMEM;
1276 
1277 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1278 					array_size(olen, sizeof(int)),
1279 					GFP_NOFS);
1280 		if (!do_replace) {
1281 			kvfree(src_blkaddr);
1282 			return -ENOMEM;
1283 		}
1284 
1285 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1286 					do_replace, src, olen);
1287 		if (ret)
1288 			goto roll_back;
1289 
1290 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1291 					do_replace, src, dst, olen, full);
1292 		if (ret)
1293 			goto roll_back;
1294 
1295 		src += olen;
1296 		dst += olen;
1297 		len -= olen;
1298 
1299 		kvfree(src_blkaddr);
1300 		kvfree(do_replace);
1301 	}
1302 	return 0;
1303 
1304 roll_back:
1305 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1306 	kvfree(src_blkaddr);
1307 	kvfree(do_replace);
1308 	return ret;
1309 }
1310 
1311 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1312 {
1313 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1314 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1315 	pgoff_t start = offset >> PAGE_SHIFT;
1316 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1317 	int ret;
1318 
1319 	f2fs_balance_fs(sbi, true);
1320 
1321 	/* avoid gc operation during block exchange */
1322 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1323 	down_write(&F2FS_I(inode)->i_mmap_sem);
1324 
1325 	f2fs_lock_op(sbi);
1326 	f2fs_drop_extent_tree(inode);
1327 	truncate_pagecache(inode, offset);
1328 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1329 	f2fs_unlock_op(sbi);
1330 
1331 	up_write(&F2FS_I(inode)->i_mmap_sem);
1332 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1333 	return ret;
1334 }
1335 
1336 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1337 {
1338 	loff_t new_size;
1339 	int ret;
1340 
1341 	if (offset + len >= i_size_read(inode))
1342 		return -EINVAL;
1343 
1344 	/* collapse range should be aligned to block size of f2fs. */
1345 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1346 		return -EINVAL;
1347 
1348 	ret = f2fs_convert_inline_inode(inode);
1349 	if (ret)
1350 		return ret;
1351 
1352 	/* write out all dirty pages from offset */
1353 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1354 	if (ret)
1355 		return ret;
1356 
1357 	ret = f2fs_do_collapse(inode, offset, len);
1358 	if (ret)
1359 		return ret;
1360 
1361 	/* write out all moved pages, if possible */
1362 	down_write(&F2FS_I(inode)->i_mmap_sem);
1363 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1364 	truncate_pagecache(inode, offset);
1365 
1366 	new_size = i_size_read(inode) - len;
1367 	truncate_pagecache(inode, new_size);
1368 
1369 	ret = f2fs_truncate_blocks(inode, new_size, true);
1370 	up_write(&F2FS_I(inode)->i_mmap_sem);
1371 	if (!ret)
1372 		f2fs_i_size_write(inode, new_size);
1373 	return ret;
1374 }
1375 
1376 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1377 								pgoff_t end)
1378 {
1379 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1380 	pgoff_t index = start;
1381 	unsigned int ofs_in_node = dn->ofs_in_node;
1382 	blkcnt_t count = 0;
1383 	int ret;
1384 
1385 	for (; index < end; index++, dn->ofs_in_node++) {
1386 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1387 			count++;
1388 	}
1389 
1390 	dn->ofs_in_node = ofs_in_node;
1391 	ret = f2fs_reserve_new_blocks(dn, count);
1392 	if (ret)
1393 		return ret;
1394 
1395 	dn->ofs_in_node = ofs_in_node;
1396 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1397 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1398 		/*
1399 		 * f2fs_reserve_new_blocks will not guarantee entire block
1400 		 * allocation.
1401 		 */
1402 		if (dn->data_blkaddr == NULL_ADDR) {
1403 			ret = -ENOSPC;
1404 			break;
1405 		}
1406 		if (dn->data_blkaddr != NEW_ADDR) {
1407 			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1408 			dn->data_blkaddr = NEW_ADDR;
1409 			f2fs_set_data_blkaddr(dn);
1410 		}
1411 	}
1412 
1413 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1414 
1415 	return ret;
1416 }
1417 
1418 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1419 								int mode)
1420 {
1421 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1422 	struct address_space *mapping = inode->i_mapping;
1423 	pgoff_t index, pg_start, pg_end;
1424 	loff_t new_size = i_size_read(inode);
1425 	loff_t off_start, off_end;
1426 	int ret = 0;
1427 
1428 	ret = inode_newsize_ok(inode, (len + offset));
1429 	if (ret)
1430 		return ret;
1431 
1432 	ret = f2fs_convert_inline_inode(inode);
1433 	if (ret)
1434 		return ret;
1435 
1436 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1437 	if (ret)
1438 		return ret;
1439 
1440 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1441 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1442 
1443 	off_start = offset & (PAGE_SIZE - 1);
1444 	off_end = (offset + len) & (PAGE_SIZE - 1);
1445 
1446 	if (pg_start == pg_end) {
1447 		ret = fill_zero(inode, pg_start, off_start,
1448 						off_end - off_start);
1449 		if (ret)
1450 			return ret;
1451 
1452 		new_size = max_t(loff_t, new_size, offset + len);
1453 	} else {
1454 		if (off_start) {
1455 			ret = fill_zero(inode, pg_start++, off_start,
1456 						PAGE_SIZE - off_start);
1457 			if (ret)
1458 				return ret;
1459 
1460 			new_size = max_t(loff_t, new_size,
1461 					(loff_t)pg_start << PAGE_SHIFT);
1462 		}
1463 
1464 		for (index = pg_start; index < pg_end;) {
1465 			struct dnode_of_data dn;
1466 			unsigned int end_offset;
1467 			pgoff_t end;
1468 
1469 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1470 			down_write(&F2FS_I(inode)->i_mmap_sem);
1471 
1472 			truncate_pagecache_range(inode,
1473 				(loff_t)index << PAGE_SHIFT,
1474 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1475 
1476 			f2fs_lock_op(sbi);
1477 
1478 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1479 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1480 			if (ret) {
1481 				f2fs_unlock_op(sbi);
1482 				up_write(&F2FS_I(inode)->i_mmap_sem);
1483 				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1484 				goto out;
1485 			}
1486 
1487 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1488 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1489 
1490 			ret = f2fs_do_zero_range(&dn, index, end);
1491 			f2fs_put_dnode(&dn);
1492 
1493 			f2fs_unlock_op(sbi);
1494 			up_write(&F2FS_I(inode)->i_mmap_sem);
1495 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1496 
1497 			f2fs_balance_fs(sbi, dn.node_changed);
1498 
1499 			if (ret)
1500 				goto out;
1501 
1502 			index = end;
1503 			new_size = max_t(loff_t, new_size,
1504 					(loff_t)index << PAGE_SHIFT);
1505 		}
1506 
1507 		if (off_end) {
1508 			ret = fill_zero(inode, pg_end, 0, off_end);
1509 			if (ret)
1510 				goto out;
1511 
1512 			new_size = max_t(loff_t, new_size, offset + len);
1513 		}
1514 	}
1515 
1516 out:
1517 	if (new_size > i_size_read(inode)) {
1518 		if (mode & FALLOC_FL_KEEP_SIZE)
1519 			file_set_keep_isize(inode);
1520 		else
1521 			f2fs_i_size_write(inode, new_size);
1522 	}
1523 	return ret;
1524 }
1525 
1526 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1527 {
1528 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1529 	pgoff_t nr, pg_start, pg_end, delta, idx;
1530 	loff_t new_size;
1531 	int ret = 0;
1532 
1533 	new_size = i_size_read(inode) + len;
1534 	ret = inode_newsize_ok(inode, new_size);
1535 	if (ret)
1536 		return ret;
1537 
1538 	if (offset >= i_size_read(inode))
1539 		return -EINVAL;
1540 
1541 	/* insert range should be aligned to block size of f2fs. */
1542 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1543 		return -EINVAL;
1544 
1545 	ret = f2fs_convert_inline_inode(inode);
1546 	if (ret)
1547 		return ret;
1548 
1549 	f2fs_balance_fs(sbi, true);
1550 
1551 	down_write(&F2FS_I(inode)->i_mmap_sem);
1552 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1553 	up_write(&F2FS_I(inode)->i_mmap_sem);
1554 	if (ret)
1555 		return ret;
1556 
1557 	/* write out all dirty pages from offset */
1558 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1559 	if (ret)
1560 		return ret;
1561 
1562 	pg_start = offset >> PAGE_SHIFT;
1563 	pg_end = (offset + len) >> PAGE_SHIFT;
1564 	delta = pg_end - pg_start;
1565 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1566 
1567 	/* avoid gc operation during block exchange */
1568 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1569 	down_write(&F2FS_I(inode)->i_mmap_sem);
1570 	truncate_pagecache(inode, offset);
1571 
1572 	while (!ret && idx > pg_start) {
1573 		nr = idx - pg_start;
1574 		if (nr > delta)
1575 			nr = delta;
1576 		idx -= nr;
1577 
1578 		f2fs_lock_op(sbi);
1579 		f2fs_drop_extent_tree(inode);
1580 
1581 		ret = __exchange_data_block(inode, inode, idx,
1582 					idx + delta, nr, false);
1583 		f2fs_unlock_op(sbi);
1584 	}
1585 	up_write(&F2FS_I(inode)->i_mmap_sem);
1586 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1587 
1588 	/* write out all moved pages, if possible */
1589 	down_write(&F2FS_I(inode)->i_mmap_sem);
1590 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1591 	truncate_pagecache(inode, offset);
1592 	up_write(&F2FS_I(inode)->i_mmap_sem);
1593 
1594 	if (!ret)
1595 		f2fs_i_size_write(inode, new_size);
1596 	return ret;
1597 }
1598 
1599 static int expand_inode_data(struct inode *inode, loff_t offset,
1600 					loff_t len, int mode)
1601 {
1602 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1603 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1604 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1605 			.m_may_create = true };
1606 	pgoff_t pg_end;
1607 	loff_t new_size = i_size_read(inode);
1608 	loff_t off_end;
1609 	int err;
1610 
1611 	err = inode_newsize_ok(inode, (len + offset));
1612 	if (err)
1613 		return err;
1614 
1615 	err = f2fs_convert_inline_inode(inode);
1616 	if (err)
1617 		return err;
1618 
1619 	f2fs_balance_fs(sbi, true);
1620 
1621 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1622 	off_end = (offset + len) & (PAGE_SIZE - 1);
1623 
1624 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1625 	map.m_len = pg_end - map.m_lblk;
1626 	if (off_end)
1627 		map.m_len++;
1628 
1629 	if (!map.m_len)
1630 		return 0;
1631 
1632 	if (f2fs_is_pinned_file(inode)) {
1633 		block_t len = (map.m_len >> sbi->log_blocks_per_seg) <<
1634 					sbi->log_blocks_per_seg;
1635 		block_t done = 0;
1636 
1637 		if (map.m_len % sbi->blocks_per_seg)
1638 			len += sbi->blocks_per_seg;
1639 
1640 		map.m_len = sbi->blocks_per_seg;
1641 next_alloc:
1642 		if (has_not_enough_free_secs(sbi, 0,
1643 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1644 			down_write(&sbi->gc_lock);
1645 			err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1646 			if (err && err != -ENODATA && err != -EAGAIN)
1647 				goto out_err;
1648 		}
1649 
1650 		down_write(&sbi->pin_sem);
1651 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1652 		f2fs_allocate_new_segments(sbi, CURSEG_COLD_DATA);
1653 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1654 		up_write(&sbi->pin_sem);
1655 
1656 		done += map.m_len;
1657 		len -= map.m_len;
1658 		map.m_lblk += map.m_len;
1659 		if (!err && len)
1660 			goto next_alloc;
1661 
1662 		map.m_len = done;
1663 	} else {
1664 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1665 	}
1666 out_err:
1667 	if (err) {
1668 		pgoff_t last_off;
1669 
1670 		if (!map.m_len)
1671 			return err;
1672 
1673 		last_off = map.m_lblk + map.m_len - 1;
1674 
1675 		/* update new size to the failed position */
1676 		new_size = (last_off == pg_end) ? offset + len :
1677 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1678 	} else {
1679 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1680 	}
1681 
1682 	if (new_size > i_size_read(inode)) {
1683 		if (mode & FALLOC_FL_KEEP_SIZE)
1684 			file_set_keep_isize(inode);
1685 		else
1686 			f2fs_i_size_write(inode, new_size);
1687 	}
1688 
1689 	return err;
1690 }
1691 
1692 static long f2fs_fallocate(struct file *file, int mode,
1693 				loff_t offset, loff_t len)
1694 {
1695 	struct inode *inode = file_inode(file);
1696 	long ret = 0;
1697 
1698 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1699 		return -EIO;
1700 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1701 		return -ENOSPC;
1702 	if (!f2fs_is_compress_backend_ready(inode))
1703 		return -EOPNOTSUPP;
1704 
1705 	/* f2fs only support ->fallocate for regular file */
1706 	if (!S_ISREG(inode->i_mode))
1707 		return -EINVAL;
1708 
1709 	if (IS_ENCRYPTED(inode) &&
1710 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1711 		return -EOPNOTSUPP;
1712 
1713 	if (f2fs_compressed_file(inode) &&
1714 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1715 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1716 		return -EOPNOTSUPP;
1717 
1718 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1719 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1720 			FALLOC_FL_INSERT_RANGE))
1721 		return -EOPNOTSUPP;
1722 
1723 	inode_lock(inode);
1724 
1725 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1726 		if (offset >= inode->i_size)
1727 			goto out;
1728 
1729 		ret = punch_hole(inode, offset, len);
1730 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1731 		ret = f2fs_collapse_range(inode, offset, len);
1732 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1733 		ret = f2fs_zero_range(inode, offset, len, mode);
1734 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1735 		ret = f2fs_insert_range(inode, offset, len);
1736 	} else {
1737 		ret = expand_inode_data(inode, offset, len, mode);
1738 	}
1739 
1740 	if (!ret) {
1741 		inode->i_mtime = inode->i_ctime = current_time(inode);
1742 		f2fs_mark_inode_dirty_sync(inode, false);
1743 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1744 	}
1745 
1746 out:
1747 	inode_unlock(inode);
1748 
1749 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1750 	return ret;
1751 }
1752 
1753 static int f2fs_release_file(struct inode *inode, struct file *filp)
1754 {
1755 	/*
1756 	 * f2fs_relase_file is called at every close calls. So we should
1757 	 * not drop any inmemory pages by close called by other process.
1758 	 */
1759 	if (!(filp->f_mode & FMODE_WRITE) ||
1760 			atomic_read(&inode->i_writecount) != 1)
1761 		return 0;
1762 
1763 	/* some remained atomic pages should discarded */
1764 	if (f2fs_is_atomic_file(inode))
1765 		f2fs_drop_inmem_pages(inode);
1766 	if (f2fs_is_volatile_file(inode)) {
1767 		set_inode_flag(inode, FI_DROP_CACHE);
1768 		filemap_fdatawrite(inode->i_mapping);
1769 		clear_inode_flag(inode, FI_DROP_CACHE);
1770 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1771 		stat_dec_volatile_write(inode);
1772 	}
1773 	return 0;
1774 }
1775 
1776 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1777 {
1778 	struct inode *inode = file_inode(file);
1779 
1780 	/*
1781 	 * If the process doing a transaction is crashed, we should do
1782 	 * roll-back. Otherwise, other reader/write can see corrupted database
1783 	 * until all the writers close its file. Since this should be done
1784 	 * before dropping file lock, it needs to do in ->flush.
1785 	 */
1786 	if (f2fs_is_atomic_file(inode) &&
1787 			F2FS_I(inode)->inmem_task == current)
1788 		f2fs_drop_inmem_pages(inode);
1789 	return 0;
1790 }
1791 
1792 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1793 {
1794 	struct f2fs_inode_info *fi = F2FS_I(inode);
1795 	u32 masked_flags = fi->i_flags & mask;
1796 
1797 	f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask));
1798 
1799 	/* Is it quota file? Do not allow user to mess with it */
1800 	if (IS_NOQUOTA(inode))
1801 		return -EPERM;
1802 
1803 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1804 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1805 			return -EOPNOTSUPP;
1806 		if (!f2fs_empty_dir(inode))
1807 			return -ENOTEMPTY;
1808 	}
1809 
1810 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1811 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1812 			return -EOPNOTSUPP;
1813 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1814 			return -EINVAL;
1815 	}
1816 
1817 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1818 		if (masked_flags & F2FS_COMPR_FL) {
1819 			if (f2fs_disable_compressed_file(inode))
1820 				return -EINVAL;
1821 		}
1822 		if (iflags & F2FS_NOCOMP_FL)
1823 			return -EINVAL;
1824 		if (iflags & F2FS_COMPR_FL) {
1825 			if (!f2fs_may_compress(inode))
1826 				return -EINVAL;
1827 
1828 			set_compress_context(inode);
1829 		}
1830 	}
1831 	if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1832 		if (masked_flags & F2FS_COMPR_FL)
1833 			return -EINVAL;
1834 	}
1835 
1836 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1837 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1838 					(fi->i_flags & F2FS_NOCOMP_FL));
1839 
1840 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1841 		set_inode_flag(inode, FI_PROJ_INHERIT);
1842 	else
1843 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1844 
1845 	inode->i_ctime = current_time(inode);
1846 	f2fs_set_inode_flags(inode);
1847 	f2fs_mark_inode_dirty_sync(inode, true);
1848 	return 0;
1849 }
1850 
1851 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1852 
1853 /*
1854  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1855  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1856  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1857  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1858  */
1859 
1860 static const struct {
1861 	u32 iflag;
1862 	u32 fsflag;
1863 } f2fs_fsflags_map[] = {
1864 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1865 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1866 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1867 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1868 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1869 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1870 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1871 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1872 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1873 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1874 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1875 };
1876 
1877 #define F2FS_GETTABLE_FS_FL (		\
1878 		FS_COMPR_FL |		\
1879 		FS_SYNC_FL |		\
1880 		FS_IMMUTABLE_FL |	\
1881 		FS_APPEND_FL |		\
1882 		FS_NODUMP_FL |		\
1883 		FS_NOATIME_FL |		\
1884 		FS_NOCOMP_FL |		\
1885 		FS_INDEX_FL |		\
1886 		FS_DIRSYNC_FL |		\
1887 		FS_PROJINHERIT_FL |	\
1888 		FS_ENCRYPT_FL |		\
1889 		FS_INLINE_DATA_FL |	\
1890 		FS_NOCOW_FL |		\
1891 		FS_VERITY_FL |		\
1892 		FS_CASEFOLD_FL)
1893 
1894 #define F2FS_SETTABLE_FS_FL (		\
1895 		FS_COMPR_FL |		\
1896 		FS_SYNC_FL |		\
1897 		FS_IMMUTABLE_FL |	\
1898 		FS_APPEND_FL |		\
1899 		FS_NODUMP_FL |		\
1900 		FS_NOATIME_FL |		\
1901 		FS_NOCOMP_FL |		\
1902 		FS_DIRSYNC_FL |		\
1903 		FS_PROJINHERIT_FL |	\
1904 		FS_CASEFOLD_FL)
1905 
1906 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1907 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1908 {
1909 	u32 fsflags = 0;
1910 	int i;
1911 
1912 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1913 		if (iflags & f2fs_fsflags_map[i].iflag)
1914 			fsflags |= f2fs_fsflags_map[i].fsflag;
1915 
1916 	return fsflags;
1917 }
1918 
1919 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1920 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1921 {
1922 	u32 iflags = 0;
1923 	int i;
1924 
1925 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1926 		if (fsflags & f2fs_fsflags_map[i].fsflag)
1927 			iflags |= f2fs_fsflags_map[i].iflag;
1928 
1929 	return iflags;
1930 }
1931 
1932 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1933 {
1934 	struct inode *inode = file_inode(filp);
1935 	struct f2fs_inode_info *fi = F2FS_I(inode);
1936 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1937 
1938 	if (IS_ENCRYPTED(inode))
1939 		fsflags |= FS_ENCRYPT_FL;
1940 	if (IS_VERITY(inode))
1941 		fsflags |= FS_VERITY_FL;
1942 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1943 		fsflags |= FS_INLINE_DATA_FL;
1944 	if (is_inode_flag_set(inode, FI_PIN_FILE))
1945 		fsflags |= FS_NOCOW_FL;
1946 
1947 	fsflags &= F2FS_GETTABLE_FS_FL;
1948 
1949 	return put_user(fsflags, (int __user *)arg);
1950 }
1951 
1952 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1953 {
1954 	struct inode *inode = file_inode(filp);
1955 	struct f2fs_inode_info *fi = F2FS_I(inode);
1956 	u32 fsflags, old_fsflags;
1957 	u32 iflags;
1958 	int ret;
1959 
1960 	if (!inode_owner_or_capable(inode))
1961 		return -EACCES;
1962 
1963 	if (get_user(fsflags, (int __user *)arg))
1964 		return -EFAULT;
1965 
1966 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
1967 		return -EOPNOTSUPP;
1968 	fsflags &= F2FS_SETTABLE_FS_FL;
1969 
1970 	iflags = f2fs_fsflags_to_iflags(fsflags);
1971 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
1972 		return -EOPNOTSUPP;
1973 
1974 	ret = mnt_want_write_file(filp);
1975 	if (ret)
1976 		return ret;
1977 
1978 	inode_lock(inode);
1979 
1980 	old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1981 	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
1982 	if (ret)
1983 		goto out;
1984 
1985 	ret = f2fs_setflags_common(inode, iflags,
1986 			f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
1987 out:
1988 	inode_unlock(inode);
1989 	mnt_drop_write_file(filp);
1990 	return ret;
1991 }
1992 
1993 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1994 {
1995 	struct inode *inode = file_inode(filp);
1996 
1997 	return put_user(inode->i_generation, (int __user *)arg);
1998 }
1999 
2000 static int f2fs_ioc_start_atomic_write(struct file *filp)
2001 {
2002 	struct inode *inode = file_inode(filp);
2003 	struct f2fs_inode_info *fi = F2FS_I(inode);
2004 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2005 	int ret;
2006 
2007 	if (!inode_owner_or_capable(inode))
2008 		return -EACCES;
2009 
2010 	if (!S_ISREG(inode->i_mode))
2011 		return -EINVAL;
2012 
2013 	if (filp->f_flags & O_DIRECT)
2014 		return -EINVAL;
2015 
2016 	ret = mnt_want_write_file(filp);
2017 	if (ret)
2018 		return ret;
2019 
2020 	inode_lock(inode);
2021 
2022 	f2fs_disable_compressed_file(inode);
2023 
2024 	if (f2fs_is_atomic_file(inode)) {
2025 		if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2026 			ret = -EINVAL;
2027 		goto out;
2028 	}
2029 
2030 	ret = f2fs_convert_inline_inode(inode);
2031 	if (ret)
2032 		goto out;
2033 
2034 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2035 
2036 	/*
2037 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2038 	 * f2fs_is_atomic_file.
2039 	 */
2040 	if (get_dirty_pages(inode))
2041 		f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2042 			  inode->i_ino, get_dirty_pages(inode));
2043 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2044 	if (ret) {
2045 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2046 		goto out;
2047 	}
2048 
2049 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2050 	if (list_empty(&fi->inmem_ilist))
2051 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2052 	sbi->atomic_files++;
2053 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2054 
2055 	/* add inode in inmem_list first and set atomic_file */
2056 	set_inode_flag(inode, FI_ATOMIC_FILE);
2057 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2058 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2059 
2060 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2061 	F2FS_I(inode)->inmem_task = current;
2062 	stat_update_max_atomic_write(inode);
2063 out:
2064 	inode_unlock(inode);
2065 	mnt_drop_write_file(filp);
2066 	return ret;
2067 }
2068 
2069 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2070 {
2071 	struct inode *inode = file_inode(filp);
2072 	int ret;
2073 
2074 	if (!inode_owner_or_capable(inode))
2075 		return -EACCES;
2076 
2077 	ret = mnt_want_write_file(filp);
2078 	if (ret)
2079 		return ret;
2080 
2081 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2082 
2083 	inode_lock(inode);
2084 
2085 	if (f2fs_is_volatile_file(inode)) {
2086 		ret = -EINVAL;
2087 		goto err_out;
2088 	}
2089 
2090 	if (f2fs_is_atomic_file(inode)) {
2091 		ret = f2fs_commit_inmem_pages(inode);
2092 		if (ret)
2093 			goto err_out;
2094 
2095 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2096 		if (!ret)
2097 			f2fs_drop_inmem_pages(inode);
2098 	} else {
2099 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2100 	}
2101 err_out:
2102 	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2103 		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2104 		ret = -EINVAL;
2105 	}
2106 	inode_unlock(inode);
2107 	mnt_drop_write_file(filp);
2108 	return ret;
2109 }
2110 
2111 static int f2fs_ioc_start_volatile_write(struct file *filp)
2112 {
2113 	struct inode *inode = file_inode(filp);
2114 	int ret;
2115 
2116 	if (!inode_owner_or_capable(inode))
2117 		return -EACCES;
2118 
2119 	if (!S_ISREG(inode->i_mode))
2120 		return -EINVAL;
2121 
2122 	ret = mnt_want_write_file(filp);
2123 	if (ret)
2124 		return ret;
2125 
2126 	inode_lock(inode);
2127 
2128 	if (f2fs_is_volatile_file(inode))
2129 		goto out;
2130 
2131 	ret = f2fs_convert_inline_inode(inode);
2132 	if (ret)
2133 		goto out;
2134 
2135 	stat_inc_volatile_write(inode);
2136 	stat_update_max_volatile_write(inode);
2137 
2138 	set_inode_flag(inode, FI_VOLATILE_FILE);
2139 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2140 out:
2141 	inode_unlock(inode);
2142 	mnt_drop_write_file(filp);
2143 	return ret;
2144 }
2145 
2146 static int f2fs_ioc_release_volatile_write(struct file *filp)
2147 {
2148 	struct inode *inode = file_inode(filp);
2149 	int ret;
2150 
2151 	if (!inode_owner_or_capable(inode))
2152 		return -EACCES;
2153 
2154 	ret = mnt_want_write_file(filp);
2155 	if (ret)
2156 		return ret;
2157 
2158 	inode_lock(inode);
2159 
2160 	if (!f2fs_is_volatile_file(inode))
2161 		goto out;
2162 
2163 	if (!f2fs_is_first_block_written(inode)) {
2164 		ret = truncate_partial_data_page(inode, 0, true);
2165 		goto out;
2166 	}
2167 
2168 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2169 out:
2170 	inode_unlock(inode);
2171 	mnt_drop_write_file(filp);
2172 	return ret;
2173 }
2174 
2175 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2176 {
2177 	struct inode *inode = file_inode(filp);
2178 	int ret;
2179 
2180 	if (!inode_owner_or_capable(inode))
2181 		return -EACCES;
2182 
2183 	ret = mnt_want_write_file(filp);
2184 	if (ret)
2185 		return ret;
2186 
2187 	inode_lock(inode);
2188 
2189 	if (f2fs_is_atomic_file(inode))
2190 		f2fs_drop_inmem_pages(inode);
2191 	if (f2fs_is_volatile_file(inode)) {
2192 		clear_inode_flag(inode, FI_VOLATILE_FILE);
2193 		stat_dec_volatile_write(inode);
2194 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2195 	}
2196 
2197 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2198 
2199 	inode_unlock(inode);
2200 
2201 	mnt_drop_write_file(filp);
2202 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2203 	return ret;
2204 }
2205 
2206 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2207 {
2208 	struct inode *inode = file_inode(filp);
2209 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2210 	struct super_block *sb = sbi->sb;
2211 	__u32 in;
2212 	int ret = 0;
2213 
2214 	if (!capable(CAP_SYS_ADMIN))
2215 		return -EPERM;
2216 
2217 	if (get_user(in, (__u32 __user *)arg))
2218 		return -EFAULT;
2219 
2220 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2221 		ret = mnt_want_write_file(filp);
2222 		if (ret)
2223 			return ret;
2224 	}
2225 
2226 	switch (in) {
2227 	case F2FS_GOING_DOWN_FULLSYNC:
2228 		sb = freeze_bdev(sb->s_bdev);
2229 		if (IS_ERR(sb)) {
2230 			ret = PTR_ERR(sb);
2231 			goto out;
2232 		}
2233 		if (sb) {
2234 			f2fs_stop_checkpoint(sbi, false);
2235 			set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2236 			thaw_bdev(sb->s_bdev, sb);
2237 		}
2238 		break;
2239 	case F2FS_GOING_DOWN_METASYNC:
2240 		/* do checkpoint only */
2241 		ret = f2fs_sync_fs(sb, 1);
2242 		if (ret)
2243 			goto out;
2244 		f2fs_stop_checkpoint(sbi, false);
2245 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2246 		break;
2247 	case F2FS_GOING_DOWN_NOSYNC:
2248 		f2fs_stop_checkpoint(sbi, false);
2249 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2250 		break;
2251 	case F2FS_GOING_DOWN_METAFLUSH:
2252 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2253 		f2fs_stop_checkpoint(sbi, false);
2254 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2255 		break;
2256 	case F2FS_GOING_DOWN_NEED_FSCK:
2257 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2258 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2259 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2260 		/* do checkpoint only */
2261 		ret = f2fs_sync_fs(sb, 1);
2262 		goto out;
2263 	default:
2264 		ret = -EINVAL;
2265 		goto out;
2266 	}
2267 
2268 	f2fs_stop_gc_thread(sbi);
2269 	f2fs_stop_discard_thread(sbi);
2270 
2271 	f2fs_drop_discard_cmd(sbi);
2272 	clear_opt(sbi, DISCARD);
2273 
2274 	f2fs_update_time(sbi, REQ_TIME);
2275 out:
2276 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2277 		mnt_drop_write_file(filp);
2278 
2279 	trace_f2fs_shutdown(sbi, in, ret);
2280 
2281 	return ret;
2282 }
2283 
2284 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2285 {
2286 	struct inode *inode = file_inode(filp);
2287 	struct super_block *sb = inode->i_sb;
2288 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
2289 	struct fstrim_range range;
2290 	int ret;
2291 
2292 	if (!capable(CAP_SYS_ADMIN))
2293 		return -EPERM;
2294 
2295 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2296 		return -EOPNOTSUPP;
2297 
2298 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2299 				sizeof(range)))
2300 		return -EFAULT;
2301 
2302 	ret = mnt_want_write_file(filp);
2303 	if (ret)
2304 		return ret;
2305 
2306 	range.minlen = max((unsigned int)range.minlen,
2307 				q->limits.discard_granularity);
2308 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2309 	mnt_drop_write_file(filp);
2310 	if (ret < 0)
2311 		return ret;
2312 
2313 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2314 				sizeof(range)))
2315 		return -EFAULT;
2316 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2317 	return 0;
2318 }
2319 
2320 static bool uuid_is_nonzero(__u8 u[16])
2321 {
2322 	int i;
2323 
2324 	for (i = 0; i < 16; i++)
2325 		if (u[i])
2326 			return true;
2327 	return false;
2328 }
2329 
2330 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2331 {
2332 	struct inode *inode = file_inode(filp);
2333 
2334 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2335 		return -EOPNOTSUPP;
2336 
2337 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2338 
2339 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2340 }
2341 
2342 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2343 {
2344 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2345 		return -EOPNOTSUPP;
2346 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2347 }
2348 
2349 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2350 {
2351 	struct inode *inode = file_inode(filp);
2352 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2353 	int err;
2354 
2355 	if (!f2fs_sb_has_encrypt(sbi))
2356 		return -EOPNOTSUPP;
2357 
2358 	err = mnt_want_write_file(filp);
2359 	if (err)
2360 		return err;
2361 
2362 	down_write(&sbi->sb_lock);
2363 
2364 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2365 		goto got_it;
2366 
2367 	/* update superblock with uuid */
2368 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2369 
2370 	err = f2fs_commit_super(sbi, false);
2371 	if (err) {
2372 		/* undo new data */
2373 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2374 		goto out_err;
2375 	}
2376 got_it:
2377 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2378 									16))
2379 		err = -EFAULT;
2380 out_err:
2381 	up_write(&sbi->sb_lock);
2382 	mnt_drop_write_file(filp);
2383 	return err;
2384 }
2385 
2386 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2387 					     unsigned long arg)
2388 {
2389 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2390 		return -EOPNOTSUPP;
2391 
2392 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2393 }
2394 
2395 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2396 {
2397 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2398 		return -EOPNOTSUPP;
2399 
2400 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2401 }
2402 
2403 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2404 {
2405 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2406 		return -EOPNOTSUPP;
2407 
2408 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2409 }
2410 
2411 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2412 						    unsigned long arg)
2413 {
2414 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2415 		return -EOPNOTSUPP;
2416 
2417 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2418 }
2419 
2420 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2421 					      unsigned long arg)
2422 {
2423 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2424 		return -EOPNOTSUPP;
2425 
2426 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2427 }
2428 
2429 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2430 {
2431 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2432 		return -EOPNOTSUPP;
2433 
2434 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2435 }
2436 
2437 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2438 {
2439 	struct inode *inode = file_inode(filp);
2440 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2441 	__u32 sync;
2442 	int ret;
2443 
2444 	if (!capable(CAP_SYS_ADMIN))
2445 		return -EPERM;
2446 
2447 	if (get_user(sync, (__u32 __user *)arg))
2448 		return -EFAULT;
2449 
2450 	if (f2fs_readonly(sbi->sb))
2451 		return -EROFS;
2452 
2453 	ret = mnt_want_write_file(filp);
2454 	if (ret)
2455 		return ret;
2456 
2457 	if (!sync) {
2458 		if (!down_write_trylock(&sbi->gc_lock)) {
2459 			ret = -EBUSY;
2460 			goto out;
2461 		}
2462 	} else {
2463 		down_write(&sbi->gc_lock);
2464 	}
2465 
2466 	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2467 out:
2468 	mnt_drop_write_file(filp);
2469 	return ret;
2470 }
2471 
2472 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2473 {
2474 	struct inode *inode = file_inode(filp);
2475 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2476 	struct f2fs_gc_range range;
2477 	u64 end;
2478 	int ret;
2479 
2480 	if (!capable(CAP_SYS_ADMIN))
2481 		return -EPERM;
2482 
2483 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2484 							sizeof(range)))
2485 		return -EFAULT;
2486 
2487 	if (f2fs_readonly(sbi->sb))
2488 		return -EROFS;
2489 
2490 	end = range.start + range.len;
2491 	if (end < range.start || range.start < MAIN_BLKADDR(sbi) ||
2492 					end >= MAX_BLKADDR(sbi))
2493 		return -EINVAL;
2494 
2495 	ret = mnt_want_write_file(filp);
2496 	if (ret)
2497 		return ret;
2498 
2499 do_more:
2500 	if (!range.sync) {
2501 		if (!down_write_trylock(&sbi->gc_lock)) {
2502 			ret = -EBUSY;
2503 			goto out;
2504 		}
2505 	} else {
2506 		down_write(&sbi->gc_lock);
2507 	}
2508 
2509 	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2510 	range.start += BLKS_PER_SEC(sbi);
2511 	if (range.start <= end)
2512 		goto do_more;
2513 out:
2514 	mnt_drop_write_file(filp);
2515 	return ret;
2516 }
2517 
2518 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2519 {
2520 	struct inode *inode = file_inode(filp);
2521 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2522 	int ret;
2523 
2524 	if (!capable(CAP_SYS_ADMIN))
2525 		return -EPERM;
2526 
2527 	if (f2fs_readonly(sbi->sb))
2528 		return -EROFS;
2529 
2530 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2531 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2532 		return -EINVAL;
2533 	}
2534 
2535 	ret = mnt_want_write_file(filp);
2536 	if (ret)
2537 		return ret;
2538 
2539 	ret = f2fs_sync_fs(sbi->sb, 1);
2540 
2541 	mnt_drop_write_file(filp);
2542 	return ret;
2543 }
2544 
2545 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2546 					struct file *filp,
2547 					struct f2fs_defragment *range)
2548 {
2549 	struct inode *inode = file_inode(filp);
2550 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2551 					.m_seg_type = NO_CHECK_TYPE ,
2552 					.m_may_create = false };
2553 	struct extent_info ei = {0, 0, 0};
2554 	pgoff_t pg_start, pg_end, next_pgofs;
2555 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2556 	unsigned int total = 0, sec_num;
2557 	block_t blk_end = 0;
2558 	bool fragmented = false;
2559 	int err;
2560 
2561 	/* if in-place-update policy is enabled, don't waste time here */
2562 	if (f2fs_should_update_inplace(inode, NULL))
2563 		return -EINVAL;
2564 
2565 	pg_start = range->start >> PAGE_SHIFT;
2566 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2567 
2568 	f2fs_balance_fs(sbi, true);
2569 
2570 	inode_lock(inode);
2571 
2572 	/* writeback all dirty pages in the range */
2573 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2574 						range->start + range->len - 1);
2575 	if (err)
2576 		goto out;
2577 
2578 	/*
2579 	 * lookup mapping info in extent cache, skip defragmenting if physical
2580 	 * block addresses are continuous.
2581 	 */
2582 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2583 		if (ei.fofs + ei.len >= pg_end)
2584 			goto out;
2585 	}
2586 
2587 	map.m_lblk = pg_start;
2588 	map.m_next_pgofs = &next_pgofs;
2589 
2590 	/*
2591 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2592 	 * physical block addresses are continuous even if there are hole(s)
2593 	 * in logical blocks.
2594 	 */
2595 	while (map.m_lblk < pg_end) {
2596 		map.m_len = pg_end - map.m_lblk;
2597 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2598 		if (err)
2599 			goto out;
2600 
2601 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2602 			map.m_lblk = next_pgofs;
2603 			continue;
2604 		}
2605 
2606 		if (blk_end && blk_end != map.m_pblk)
2607 			fragmented = true;
2608 
2609 		/* record total count of block that we're going to move */
2610 		total += map.m_len;
2611 
2612 		blk_end = map.m_pblk + map.m_len;
2613 
2614 		map.m_lblk += map.m_len;
2615 	}
2616 
2617 	if (!fragmented) {
2618 		total = 0;
2619 		goto out;
2620 	}
2621 
2622 	sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2623 
2624 	/*
2625 	 * make sure there are enough free section for LFS allocation, this can
2626 	 * avoid defragment running in SSR mode when free section are allocated
2627 	 * intensively
2628 	 */
2629 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2630 		err = -EAGAIN;
2631 		goto out;
2632 	}
2633 
2634 	map.m_lblk = pg_start;
2635 	map.m_len = pg_end - pg_start;
2636 	total = 0;
2637 
2638 	while (map.m_lblk < pg_end) {
2639 		pgoff_t idx;
2640 		int cnt = 0;
2641 
2642 do_map:
2643 		map.m_len = pg_end - map.m_lblk;
2644 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2645 		if (err)
2646 			goto clear_out;
2647 
2648 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2649 			map.m_lblk = next_pgofs;
2650 			goto check;
2651 		}
2652 
2653 		set_inode_flag(inode, FI_DO_DEFRAG);
2654 
2655 		idx = map.m_lblk;
2656 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2657 			struct page *page;
2658 
2659 			page = f2fs_get_lock_data_page(inode, idx, true);
2660 			if (IS_ERR(page)) {
2661 				err = PTR_ERR(page);
2662 				goto clear_out;
2663 			}
2664 
2665 			set_page_dirty(page);
2666 			f2fs_put_page(page, 1);
2667 
2668 			idx++;
2669 			cnt++;
2670 			total++;
2671 		}
2672 
2673 		map.m_lblk = idx;
2674 check:
2675 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2676 			goto do_map;
2677 
2678 		clear_inode_flag(inode, FI_DO_DEFRAG);
2679 
2680 		err = filemap_fdatawrite(inode->i_mapping);
2681 		if (err)
2682 			goto out;
2683 	}
2684 clear_out:
2685 	clear_inode_flag(inode, FI_DO_DEFRAG);
2686 out:
2687 	inode_unlock(inode);
2688 	if (!err)
2689 		range->len = (u64)total << PAGE_SHIFT;
2690 	return err;
2691 }
2692 
2693 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2694 {
2695 	struct inode *inode = file_inode(filp);
2696 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2697 	struct f2fs_defragment range;
2698 	int err;
2699 
2700 	if (!capable(CAP_SYS_ADMIN))
2701 		return -EPERM;
2702 
2703 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2704 		return -EINVAL;
2705 
2706 	if (f2fs_readonly(sbi->sb))
2707 		return -EROFS;
2708 
2709 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2710 							sizeof(range)))
2711 		return -EFAULT;
2712 
2713 	/* verify alignment of offset & size */
2714 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2715 		return -EINVAL;
2716 
2717 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2718 					sbi->max_file_blocks))
2719 		return -EINVAL;
2720 
2721 	err = mnt_want_write_file(filp);
2722 	if (err)
2723 		return err;
2724 
2725 	err = f2fs_defragment_range(sbi, filp, &range);
2726 	mnt_drop_write_file(filp);
2727 
2728 	f2fs_update_time(sbi, REQ_TIME);
2729 	if (err < 0)
2730 		return err;
2731 
2732 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2733 							sizeof(range)))
2734 		return -EFAULT;
2735 
2736 	return 0;
2737 }
2738 
2739 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2740 			struct file *file_out, loff_t pos_out, size_t len)
2741 {
2742 	struct inode *src = file_inode(file_in);
2743 	struct inode *dst = file_inode(file_out);
2744 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2745 	size_t olen = len, dst_max_i_size = 0;
2746 	size_t dst_osize;
2747 	int ret;
2748 
2749 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2750 				src->i_sb != dst->i_sb)
2751 		return -EXDEV;
2752 
2753 	if (unlikely(f2fs_readonly(src->i_sb)))
2754 		return -EROFS;
2755 
2756 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2757 		return -EINVAL;
2758 
2759 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2760 		return -EOPNOTSUPP;
2761 
2762 	if (src == dst) {
2763 		if (pos_in == pos_out)
2764 			return 0;
2765 		if (pos_out > pos_in && pos_out < pos_in + len)
2766 			return -EINVAL;
2767 	}
2768 
2769 	inode_lock(src);
2770 	if (src != dst) {
2771 		ret = -EBUSY;
2772 		if (!inode_trylock(dst))
2773 			goto out;
2774 	}
2775 
2776 	ret = -EINVAL;
2777 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2778 		goto out_unlock;
2779 	if (len == 0)
2780 		olen = len = src->i_size - pos_in;
2781 	if (pos_in + len == src->i_size)
2782 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2783 	if (len == 0) {
2784 		ret = 0;
2785 		goto out_unlock;
2786 	}
2787 
2788 	dst_osize = dst->i_size;
2789 	if (pos_out + olen > dst->i_size)
2790 		dst_max_i_size = pos_out + olen;
2791 
2792 	/* verify the end result is block aligned */
2793 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2794 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2795 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2796 		goto out_unlock;
2797 
2798 	ret = f2fs_convert_inline_inode(src);
2799 	if (ret)
2800 		goto out_unlock;
2801 
2802 	ret = f2fs_convert_inline_inode(dst);
2803 	if (ret)
2804 		goto out_unlock;
2805 
2806 	/* write out all dirty pages from offset */
2807 	ret = filemap_write_and_wait_range(src->i_mapping,
2808 					pos_in, pos_in + len);
2809 	if (ret)
2810 		goto out_unlock;
2811 
2812 	ret = filemap_write_and_wait_range(dst->i_mapping,
2813 					pos_out, pos_out + len);
2814 	if (ret)
2815 		goto out_unlock;
2816 
2817 	f2fs_balance_fs(sbi, true);
2818 
2819 	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2820 	if (src != dst) {
2821 		ret = -EBUSY;
2822 		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2823 			goto out_src;
2824 	}
2825 
2826 	f2fs_lock_op(sbi);
2827 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2828 				pos_out >> F2FS_BLKSIZE_BITS,
2829 				len >> F2FS_BLKSIZE_BITS, false);
2830 
2831 	if (!ret) {
2832 		if (dst_max_i_size)
2833 			f2fs_i_size_write(dst, dst_max_i_size);
2834 		else if (dst_osize != dst->i_size)
2835 			f2fs_i_size_write(dst, dst_osize);
2836 	}
2837 	f2fs_unlock_op(sbi);
2838 
2839 	if (src != dst)
2840 		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2841 out_src:
2842 	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2843 out_unlock:
2844 	if (src != dst)
2845 		inode_unlock(dst);
2846 out:
2847 	inode_unlock(src);
2848 	return ret;
2849 }
2850 
2851 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2852 {
2853 	struct f2fs_move_range range;
2854 	struct fd dst;
2855 	int err;
2856 
2857 	if (!(filp->f_mode & FMODE_READ) ||
2858 			!(filp->f_mode & FMODE_WRITE))
2859 		return -EBADF;
2860 
2861 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2862 							sizeof(range)))
2863 		return -EFAULT;
2864 
2865 	dst = fdget(range.dst_fd);
2866 	if (!dst.file)
2867 		return -EBADF;
2868 
2869 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2870 		err = -EBADF;
2871 		goto err_out;
2872 	}
2873 
2874 	err = mnt_want_write_file(filp);
2875 	if (err)
2876 		goto err_out;
2877 
2878 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2879 					range.pos_out, range.len);
2880 
2881 	mnt_drop_write_file(filp);
2882 	if (err)
2883 		goto err_out;
2884 
2885 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2886 						&range, sizeof(range)))
2887 		err = -EFAULT;
2888 err_out:
2889 	fdput(dst);
2890 	return err;
2891 }
2892 
2893 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2894 {
2895 	struct inode *inode = file_inode(filp);
2896 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2897 	struct sit_info *sm = SIT_I(sbi);
2898 	unsigned int start_segno = 0, end_segno = 0;
2899 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2900 	struct f2fs_flush_device range;
2901 	int ret;
2902 
2903 	if (!capable(CAP_SYS_ADMIN))
2904 		return -EPERM;
2905 
2906 	if (f2fs_readonly(sbi->sb))
2907 		return -EROFS;
2908 
2909 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2910 		return -EINVAL;
2911 
2912 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2913 							sizeof(range)))
2914 		return -EFAULT;
2915 
2916 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2917 			__is_large_section(sbi)) {
2918 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2919 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2920 		return -EINVAL;
2921 	}
2922 
2923 	ret = mnt_want_write_file(filp);
2924 	if (ret)
2925 		return ret;
2926 
2927 	if (range.dev_num != 0)
2928 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2929 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2930 
2931 	start_segno = sm->last_victim[FLUSH_DEVICE];
2932 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2933 		start_segno = dev_start_segno;
2934 	end_segno = min(start_segno + range.segments, dev_end_segno);
2935 
2936 	while (start_segno < end_segno) {
2937 		if (!down_write_trylock(&sbi->gc_lock)) {
2938 			ret = -EBUSY;
2939 			goto out;
2940 		}
2941 		sm->last_victim[GC_CB] = end_segno + 1;
2942 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2943 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2944 		ret = f2fs_gc(sbi, true, true, start_segno);
2945 		if (ret == -EAGAIN)
2946 			ret = 0;
2947 		else if (ret < 0)
2948 			break;
2949 		start_segno++;
2950 	}
2951 out:
2952 	mnt_drop_write_file(filp);
2953 	return ret;
2954 }
2955 
2956 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2957 {
2958 	struct inode *inode = file_inode(filp);
2959 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2960 
2961 	/* Must validate to set it with SQLite behavior in Android. */
2962 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2963 
2964 	return put_user(sb_feature, (u32 __user *)arg);
2965 }
2966 
2967 #ifdef CONFIG_QUOTA
2968 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2969 {
2970 	struct dquot *transfer_to[MAXQUOTAS] = {};
2971 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2972 	struct super_block *sb = sbi->sb;
2973 	int err = 0;
2974 
2975 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2976 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2977 		err = __dquot_transfer(inode, transfer_to);
2978 		if (err)
2979 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2980 		dqput(transfer_to[PRJQUOTA]);
2981 	}
2982 	return err;
2983 }
2984 
2985 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2986 {
2987 	struct inode *inode = file_inode(filp);
2988 	struct f2fs_inode_info *fi = F2FS_I(inode);
2989 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2990 	struct page *ipage;
2991 	kprojid_t kprojid;
2992 	int err;
2993 
2994 	if (!f2fs_sb_has_project_quota(sbi)) {
2995 		if (projid != F2FS_DEF_PROJID)
2996 			return -EOPNOTSUPP;
2997 		else
2998 			return 0;
2999 	}
3000 
3001 	if (!f2fs_has_extra_attr(inode))
3002 		return -EOPNOTSUPP;
3003 
3004 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3005 
3006 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3007 		return 0;
3008 
3009 	err = -EPERM;
3010 	/* Is it quota file? Do not allow user to mess with it */
3011 	if (IS_NOQUOTA(inode))
3012 		return err;
3013 
3014 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3015 	if (IS_ERR(ipage))
3016 		return PTR_ERR(ipage);
3017 
3018 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3019 								i_projid)) {
3020 		err = -EOVERFLOW;
3021 		f2fs_put_page(ipage, 1);
3022 		return err;
3023 	}
3024 	f2fs_put_page(ipage, 1);
3025 
3026 	err = dquot_initialize(inode);
3027 	if (err)
3028 		return err;
3029 
3030 	f2fs_lock_op(sbi);
3031 	err = f2fs_transfer_project_quota(inode, kprojid);
3032 	if (err)
3033 		goto out_unlock;
3034 
3035 	F2FS_I(inode)->i_projid = kprojid;
3036 	inode->i_ctime = current_time(inode);
3037 	f2fs_mark_inode_dirty_sync(inode, true);
3038 out_unlock:
3039 	f2fs_unlock_op(sbi);
3040 	return err;
3041 }
3042 #else
3043 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3044 {
3045 	return 0;
3046 }
3047 
3048 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3049 {
3050 	if (projid != F2FS_DEF_PROJID)
3051 		return -EOPNOTSUPP;
3052 	return 0;
3053 }
3054 #endif
3055 
3056 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
3057 
3058 /*
3059  * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
3060  * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
3061  * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
3062  */
3063 
3064 static const struct {
3065 	u32 iflag;
3066 	u32 xflag;
3067 } f2fs_xflags_map[] = {
3068 	{ F2FS_SYNC_FL,		FS_XFLAG_SYNC },
3069 	{ F2FS_IMMUTABLE_FL,	FS_XFLAG_IMMUTABLE },
3070 	{ F2FS_APPEND_FL,	FS_XFLAG_APPEND },
3071 	{ F2FS_NODUMP_FL,	FS_XFLAG_NODUMP },
3072 	{ F2FS_NOATIME_FL,	FS_XFLAG_NOATIME },
3073 	{ F2FS_PROJINHERIT_FL,	FS_XFLAG_PROJINHERIT },
3074 };
3075 
3076 #define F2FS_SUPPORTED_XFLAGS (		\
3077 		FS_XFLAG_SYNC |		\
3078 		FS_XFLAG_IMMUTABLE |	\
3079 		FS_XFLAG_APPEND |	\
3080 		FS_XFLAG_NODUMP |	\
3081 		FS_XFLAG_NOATIME |	\
3082 		FS_XFLAG_PROJINHERIT)
3083 
3084 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
3085 static inline u32 f2fs_iflags_to_xflags(u32 iflags)
3086 {
3087 	u32 xflags = 0;
3088 	int i;
3089 
3090 	for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3091 		if (iflags & f2fs_xflags_map[i].iflag)
3092 			xflags |= f2fs_xflags_map[i].xflag;
3093 
3094 	return xflags;
3095 }
3096 
3097 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
3098 static inline u32 f2fs_xflags_to_iflags(u32 xflags)
3099 {
3100 	u32 iflags = 0;
3101 	int i;
3102 
3103 	for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3104 		if (xflags & f2fs_xflags_map[i].xflag)
3105 			iflags |= f2fs_xflags_map[i].iflag;
3106 
3107 	return iflags;
3108 }
3109 
3110 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
3111 {
3112 	struct f2fs_inode_info *fi = F2FS_I(inode);
3113 
3114 	simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
3115 
3116 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3117 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3118 }
3119 
3120 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
3121 {
3122 	struct inode *inode = file_inode(filp);
3123 	struct fsxattr fa;
3124 
3125 	f2fs_fill_fsxattr(inode, &fa);
3126 
3127 	if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
3128 		return -EFAULT;
3129 	return 0;
3130 }
3131 
3132 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
3133 {
3134 	struct inode *inode = file_inode(filp);
3135 	struct fsxattr fa, old_fa;
3136 	u32 iflags;
3137 	int err;
3138 
3139 	if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
3140 		return -EFAULT;
3141 
3142 	/* Make sure caller has proper permission */
3143 	if (!inode_owner_or_capable(inode))
3144 		return -EACCES;
3145 
3146 	if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
3147 		return -EOPNOTSUPP;
3148 
3149 	iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
3150 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3151 		return -EOPNOTSUPP;
3152 
3153 	err = mnt_want_write_file(filp);
3154 	if (err)
3155 		return err;
3156 
3157 	inode_lock(inode);
3158 
3159 	f2fs_fill_fsxattr(inode, &old_fa);
3160 	err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
3161 	if (err)
3162 		goto out;
3163 
3164 	err = f2fs_setflags_common(inode, iflags,
3165 			f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
3166 	if (err)
3167 		goto out;
3168 
3169 	err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3170 out:
3171 	inode_unlock(inode);
3172 	mnt_drop_write_file(filp);
3173 	return err;
3174 }
3175 
3176 int f2fs_pin_file_control(struct inode *inode, bool inc)
3177 {
3178 	struct f2fs_inode_info *fi = F2FS_I(inode);
3179 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3180 
3181 	/* Use i_gc_failures for normal file as a risk signal. */
3182 	if (inc)
3183 		f2fs_i_gc_failures_write(inode,
3184 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3185 
3186 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3187 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3188 			  __func__, inode->i_ino,
3189 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3190 		clear_inode_flag(inode, FI_PIN_FILE);
3191 		return -EAGAIN;
3192 	}
3193 	return 0;
3194 }
3195 
3196 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3197 {
3198 	struct inode *inode = file_inode(filp);
3199 	__u32 pin;
3200 	int ret = 0;
3201 
3202 	if (get_user(pin, (__u32 __user *)arg))
3203 		return -EFAULT;
3204 
3205 	if (!S_ISREG(inode->i_mode))
3206 		return -EINVAL;
3207 
3208 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3209 		return -EROFS;
3210 
3211 	ret = mnt_want_write_file(filp);
3212 	if (ret)
3213 		return ret;
3214 
3215 	inode_lock(inode);
3216 
3217 	if (f2fs_should_update_outplace(inode, NULL)) {
3218 		ret = -EINVAL;
3219 		goto out;
3220 	}
3221 
3222 	if (!pin) {
3223 		clear_inode_flag(inode, FI_PIN_FILE);
3224 		f2fs_i_gc_failures_write(inode, 0);
3225 		goto done;
3226 	}
3227 
3228 	if (f2fs_pin_file_control(inode, false)) {
3229 		ret = -EAGAIN;
3230 		goto out;
3231 	}
3232 
3233 	ret = f2fs_convert_inline_inode(inode);
3234 	if (ret)
3235 		goto out;
3236 
3237 	if (f2fs_disable_compressed_file(inode)) {
3238 		ret = -EOPNOTSUPP;
3239 		goto out;
3240 	}
3241 
3242 	set_inode_flag(inode, FI_PIN_FILE);
3243 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3244 done:
3245 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3246 out:
3247 	inode_unlock(inode);
3248 	mnt_drop_write_file(filp);
3249 	return ret;
3250 }
3251 
3252 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3253 {
3254 	struct inode *inode = file_inode(filp);
3255 	__u32 pin = 0;
3256 
3257 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3258 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3259 	return put_user(pin, (u32 __user *)arg);
3260 }
3261 
3262 int f2fs_precache_extents(struct inode *inode)
3263 {
3264 	struct f2fs_inode_info *fi = F2FS_I(inode);
3265 	struct f2fs_map_blocks map;
3266 	pgoff_t m_next_extent;
3267 	loff_t end;
3268 	int err;
3269 
3270 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3271 		return -EOPNOTSUPP;
3272 
3273 	map.m_lblk = 0;
3274 	map.m_next_pgofs = NULL;
3275 	map.m_next_extent = &m_next_extent;
3276 	map.m_seg_type = NO_CHECK_TYPE;
3277 	map.m_may_create = false;
3278 	end = F2FS_I_SB(inode)->max_file_blocks;
3279 
3280 	while (map.m_lblk < end) {
3281 		map.m_len = end - map.m_lblk;
3282 
3283 		down_write(&fi->i_gc_rwsem[WRITE]);
3284 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3285 		up_write(&fi->i_gc_rwsem[WRITE]);
3286 		if (err)
3287 			return err;
3288 
3289 		map.m_lblk = m_next_extent;
3290 	}
3291 
3292 	return err;
3293 }
3294 
3295 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3296 {
3297 	return f2fs_precache_extents(file_inode(filp));
3298 }
3299 
3300 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3301 {
3302 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3303 	__u64 block_count;
3304 	int ret;
3305 
3306 	if (!capable(CAP_SYS_ADMIN))
3307 		return -EPERM;
3308 
3309 	if (f2fs_readonly(sbi->sb))
3310 		return -EROFS;
3311 
3312 	if (copy_from_user(&block_count, (void __user *)arg,
3313 			   sizeof(block_count)))
3314 		return -EFAULT;
3315 
3316 	ret = f2fs_resize_fs(sbi, block_count);
3317 
3318 	return ret;
3319 }
3320 
3321 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3322 {
3323 	struct inode *inode = file_inode(filp);
3324 
3325 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3326 
3327 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3328 		f2fs_warn(F2FS_I_SB(inode),
3329 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3330 			  inode->i_ino);
3331 		return -EOPNOTSUPP;
3332 	}
3333 
3334 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3335 }
3336 
3337 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3338 {
3339 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3340 		return -EOPNOTSUPP;
3341 
3342 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3343 }
3344 
3345 static int f2fs_get_volume_name(struct file *filp, unsigned long arg)
3346 {
3347 	struct inode *inode = file_inode(filp);
3348 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3349 	char *vbuf;
3350 	int count;
3351 	int err = 0;
3352 
3353 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3354 	if (!vbuf)
3355 		return -ENOMEM;
3356 
3357 	down_read(&sbi->sb_lock);
3358 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3359 			ARRAY_SIZE(sbi->raw_super->volume_name),
3360 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3361 	up_read(&sbi->sb_lock);
3362 
3363 	if (copy_to_user((char __user *)arg, vbuf,
3364 				min(FSLABEL_MAX, count)))
3365 		err = -EFAULT;
3366 
3367 	kvfree(vbuf);
3368 	return err;
3369 }
3370 
3371 static int f2fs_set_volume_name(struct file *filp, unsigned long arg)
3372 {
3373 	struct inode *inode = file_inode(filp);
3374 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3375 	char *vbuf;
3376 	int err = 0;
3377 
3378 	if (!capable(CAP_SYS_ADMIN))
3379 		return -EPERM;
3380 
3381 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3382 	if (IS_ERR(vbuf))
3383 		return PTR_ERR(vbuf);
3384 
3385 	err = mnt_want_write_file(filp);
3386 	if (err)
3387 		goto out;
3388 
3389 	down_write(&sbi->sb_lock);
3390 
3391 	memset(sbi->raw_super->volume_name, 0,
3392 			sizeof(sbi->raw_super->volume_name));
3393 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3394 			sbi->raw_super->volume_name,
3395 			ARRAY_SIZE(sbi->raw_super->volume_name));
3396 
3397 	err = f2fs_commit_super(sbi, false);
3398 
3399 	up_write(&sbi->sb_lock);
3400 
3401 	mnt_drop_write_file(filp);
3402 out:
3403 	kfree(vbuf);
3404 	return err;
3405 }
3406 
3407 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3408 {
3409 	struct inode *inode = file_inode(filp);
3410 	__u64 blocks;
3411 
3412 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3413 		return -EOPNOTSUPP;
3414 
3415 	if (!f2fs_compressed_file(inode))
3416 		return -EINVAL;
3417 
3418 	blocks = F2FS_I(inode)->i_compr_blocks;
3419 	return put_user(blocks, (u64 __user *)arg);
3420 }
3421 
3422 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
3423 {
3424 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
3425 		return -EIO;
3426 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
3427 		return -ENOSPC;
3428 
3429 	switch (cmd) {
3430 	case F2FS_IOC_GETFLAGS:
3431 		return f2fs_ioc_getflags(filp, arg);
3432 	case F2FS_IOC_SETFLAGS:
3433 		return f2fs_ioc_setflags(filp, arg);
3434 	case F2FS_IOC_GETVERSION:
3435 		return f2fs_ioc_getversion(filp, arg);
3436 	case F2FS_IOC_START_ATOMIC_WRITE:
3437 		return f2fs_ioc_start_atomic_write(filp);
3438 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3439 		return f2fs_ioc_commit_atomic_write(filp);
3440 	case F2FS_IOC_START_VOLATILE_WRITE:
3441 		return f2fs_ioc_start_volatile_write(filp);
3442 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3443 		return f2fs_ioc_release_volatile_write(filp);
3444 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
3445 		return f2fs_ioc_abort_volatile_write(filp);
3446 	case F2FS_IOC_SHUTDOWN:
3447 		return f2fs_ioc_shutdown(filp, arg);
3448 	case FITRIM:
3449 		return f2fs_ioc_fitrim(filp, arg);
3450 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
3451 		return f2fs_ioc_set_encryption_policy(filp, arg);
3452 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
3453 		return f2fs_ioc_get_encryption_policy(filp, arg);
3454 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3455 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
3456 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3457 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
3458 	case FS_IOC_ADD_ENCRYPTION_KEY:
3459 		return f2fs_ioc_add_encryption_key(filp, arg);
3460 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
3461 		return f2fs_ioc_remove_encryption_key(filp, arg);
3462 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3463 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
3464 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3465 		return f2fs_ioc_get_encryption_key_status(filp, arg);
3466 	case FS_IOC_GET_ENCRYPTION_NONCE:
3467 		return f2fs_ioc_get_encryption_nonce(filp, arg);
3468 	case F2FS_IOC_GARBAGE_COLLECT:
3469 		return f2fs_ioc_gc(filp, arg);
3470 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3471 		return f2fs_ioc_gc_range(filp, arg);
3472 	case F2FS_IOC_WRITE_CHECKPOINT:
3473 		return f2fs_ioc_write_checkpoint(filp, arg);
3474 	case F2FS_IOC_DEFRAGMENT:
3475 		return f2fs_ioc_defragment(filp, arg);
3476 	case F2FS_IOC_MOVE_RANGE:
3477 		return f2fs_ioc_move_range(filp, arg);
3478 	case F2FS_IOC_FLUSH_DEVICE:
3479 		return f2fs_ioc_flush_device(filp, arg);
3480 	case F2FS_IOC_GET_FEATURES:
3481 		return f2fs_ioc_get_features(filp, arg);
3482 	case F2FS_IOC_FSGETXATTR:
3483 		return f2fs_ioc_fsgetxattr(filp, arg);
3484 	case F2FS_IOC_FSSETXATTR:
3485 		return f2fs_ioc_fssetxattr(filp, arg);
3486 	case F2FS_IOC_GET_PIN_FILE:
3487 		return f2fs_ioc_get_pin_file(filp, arg);
3488 	case F2FS_IOC_SET_PIN_FILE:
3489 		return f2fs_ioc_set_pin_file(filp, arg);
3490 	case F2FS_IOC_PRECACHE_EXTENTS:
3491 		return f2fs_ioc_precache_extents(filp, arg);
3492 	case F2FS_IOC_RESIZE_FS:
3493 		return f2fs_ioc_resize_fs(filp, arg);
3494 	case FS_IOC_ENABLE_VERITY:
3495 		return f2fs_ioc_enable_verity(filp, arg);
3496 	case FS_IOC_MEASURE_VERITY:
3497 		return f2fs_ioc_measure_verity(filp, arg);
3498 	case F2FS_IOC_GET_VOLUME_NAME:
3499 		return f2fs_get_volume_name(filp, arg);
3500 	case F2FS_IOC_SET_VOLUME_NAME:
3501 		return f2fs_set_volume_name(filp, arg);
3502 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
3503 		return f2fs_get_compress_blocks(filp, arg);
3504 	default:
3505 		return -ENOTTY;
3506 	}
3507 }
3508 
3509 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
3510 {
3511 	struct file *file = iocb->ki_filp;
3512 	struct inode *inode = file_inode(file);
3513 
3514 	if (!f2fs_is_compress_backend_ready(inode))
3515 		return -EOPNOTSUPP;
3516 
3517 	return generic_file_read_iter(iocb, iter);
3518 }
3519 
3520 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3521 {
3522 	struct file *file = iocb->ki_filp;
3523 	struct inode *inode = file_inode(file);
3524 	ssize_t ret;
3525 
3526 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
3527 		ret = -EIO;
3528 		goto out;
3529 	}
3530 
3531 	if (!f2fs_is_compress_backend_ready(inode)) {
3532 		ret = -EOPNOTSUPP;
3533 		goto out;
3534 	}
3535 
3536 	if (iocb->ki_flags & IOCB_NOWAIT) {
3537 		if (!inode_trylock(inode)) {
3538 			ret = -EAGAIN;
3539 			goto out;
3540 		}
3541 	} else {
3542 		inode_lock(inode);
3543 	}
3544 
3545 	ret = generic_write_checks(iocb, from);
3546 	if (ret > 0) {
3547 		bool preallocated = false;
3548 		size_t target_size = 0;
3549 		int err;
3550 
3551 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
3552 			set_inode_flag(inode, FI_NO_PREALLOC);
3553 
3554 		if ((iocb->ki_flags & IOCB_NOWAIT)) {
3555 			if (!f2fs_overwrite_io(inode, iocb->ki_pos,
3556 						iov_iter_count(from)) ||
3557 				f2fs_has_inline_data(inode) ||
3558 				f2fs_force_buffered_io(inode, iocb, from)) {
3559 				clear_inode_flag(inode, FI_NO_PREALLOC);
3560 				inode_unlock(inode);
3561 				ret = -EAGAIN;
3562 				goto out;
3563 			}
3564 			goto write;
3565 		}
3566 
3567 		if (is_inode_flag_set(inode, FI_NO_PREALLOC))
3568 			goto write;
3569 
3570 		if (iocb->ki_flags & IOCB_DIRECT) {
3571 			/*
3572 			 * Convert inline data for Direct I/O before entering
3573 			 * f2fs_direct_IO().
3574 			 */
3575 			err = f2fs_convert_inline_inode(inode);
3576 			if (err)
3577 				goto out_err;
3578 			/*
3579 			 * If force_buffere_io() is true, we have to allocate
3580 			 * blocks all the time, since f2fs_direct_IO will fall
3581 			 * back to buffered IO.
3582 			 */
3583 			if (!f2fs_force_buffered_io(inode, iocb, from) &&
3584 					allow_outplace_dio(inode, iocb, from))
3585 				goto write;
3586 		}
3587 		preallocated = true;
3588 		target_size = iocb->ki_pos + iov_iter_count(from);
3589 
3590 		err = f2fs_preallocate_blocks(iocb, from);
3591 		if (err) {
3592 out_err:
3593 			clear_inode_flag(inode, FI_NO_PREALLOC);
3594 			inode_unlock(inode);
3595 			ret = err;
3596 			goto out;
3597 		}
3598 write:
3599 		ret = __generic_file_write_iter(iocb, from);
3600 		clear_inode_flag(inode, FI_NO_PREALLOC);
3601 
3602 		/* if we couldn't write data, we should deallocate blocks. */
3603 		if (preallocated && i_size_read(inode) < target_size)
3604 			f2fs_truncate(inode);
3605 
3606 		if (ret > 0)
3607 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
3608 	}
3609 	inode_unlock(inode);
3610 out:
3611 	trace_f2fs_file_write_iter(inode, iocb->ki_pos,
3612 					iov_iter_count(from), ret);
3613 	if (ret > 0)
3614 		ret = generic_write_sync(iocb, ret);
3615 	return ret;
3616 }
3617 
3618 #ifdef CONFIG_COMPAT
3619 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3620 {
3621 	switch (cmd) {
3622 	case F2FS_IOC32_GETFLAGS:
3623 		cmd = F2FS_IOC_GETFLAGS;
3624 		break;
3625 	case F2FS_IOC32_SETFLAGS:
3626 		cmd = F2FS_IOC_SETFLAGS;
3627 		break;
3628 	case F2FS_IOC32_GETVERSION:
3629 		cmd = F2FS_IOC_GETVERSION;
3630 		break;
3631 	case F2FS_IOC_START_ATOMIC_WRITE:
3632 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3633 	case F2FS_IOC_START_VOLATILE_WRITE:
3634 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3635 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
3636 	case F2FS_IOC_SHUTDOWN:
3637 	case FITRIM:
3638 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
3639 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3640 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
3641 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3642 	case FS_IOC_ADD_ENCRYPTION_KEY:
3643 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
3644 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3645 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3646 	case FS_IOC_GET_ENCRYPTION_NONCE:
3647 	case F2FS_IOC_GARBAGE_COLLECT:
3648 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3649 	case F2FS_IOC_WRITE_CHECKPOINT:
3650 	case F2FS_IOC_DEFRAGMENT:
3651 	case F2FS_IOC_MOVE_RANGE:
3652 	case F2FS_IOC_FLUSH_DEVICE:
3653 	case F2FS_IOC_GET_FEATURES:
3654 	case F2FS_IOC_FSGETXATTR:
3655 	case F2FS_IOC_FSSETXATTR:
3656 	case F2FS_IOC_GET_PIN_FILE:
3657 	case F2FS_IOC_SET_PIN_FILE:
3658 	case F2FS_IOC_PRECACHE_EXTENTS:
3659 	case F2FS_IOC_RESIZE_FS:
3660 	case FS_IOC_ENABLE_VERITY:
3661 	case FS_IOC_MEASURE_VERITY:
3662 	case F2FS_IOC_GET_VOLUME_NAME:
3663 	case F2FS_IOC_SET_VOLUME_NAME:
3664 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
3665 		break;
3666 	default:
3667 		return -ENOIOCTLCMD;
3668 	}
3669 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3670 }
3671 #endif
3672 
3673 const struct file_operations f2fs_file_operations = {
3674 	.llseek		= f2fs_llseek,
3675 	.read_iter	= f2fs_file_read_iter,
3676 	.write_iter	= f2fs_file_write_iter,
3677 	.open		= f2fs_file_open,
3678 	.release	= f2fs_release_file,
3679 	.mmap		= f2fs_file_mmap,
3680 	.flush		= f2fs_file_flush,
3681 	.fsync		= f2fs_sync_file,
3682 	.fallocate	= f2fs_fallocate,
3683 	.unlocked_ioctl	= f2fs_ioctl,
3684 #ifdef CONFIG_COMPAT
3685 	.compat_ioctl	= f2fs_compat_ioctl,
3686 #endif
3687 	.splice_read	= generic_file_splice_read,
3688 	.splice_write	= iter_file_splice_write,
3689 };
3690