xref: /openbmc/linux/fs/f2fs/file.c (revision d774a589)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uuid.h>
24 #include <linux/file.h>
25 
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "gc.h"
32 #include "trace.h"
33 #include <trace/events/f2fs.h>
34 
35 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
36 						struct vm_fault *vmf)
37 {
38 	struct page *page = vmf->page;
39 	struct inode *inode = file_inode(vma->vm_file);
40 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
41 	struct dnode_of_data dn;
42 	int err;
43 
44 	sb_start_pagefault(inode->i_sb);
45 
46 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
47 
48 	/* block allocation */
49 	f2fs_lock_op(sbi);
50 	set_new_dnode(&dn, inode, NULL, NULL, 0);
51 	err = f2fs_reserve_block(&dn, page->index);
52 	if (err) {
53 		f2fs_unlock_op(sbi);
54 		goto out;
55 	}
56 	f2fs_put_dnode(&dn);
57 	f2fs_unlock_op(sbi);
58 
59 	f2fs_balance_fs(sbi, dn.node_changed);
60 
61 	file_update_time(vma->vm_file);
62 	lock_page(page);
63 	if (unlikely(page->mapping != inode->i_mapping ||
64 			page_offset(page) > i_size_read(inode) ||
65 			!PageUptodate(page))) {
66 		unlock_page(page);
67 		err = -EFAULT;
68 		goto out;
69 	}
70 
71 	/*
72 	 * check to see if the page is mapped already (no holes)
73 	 */
74 	if (PageMappedToDisk(page))
75 		goto mapped;
76 
77 	/* page is wholly or partially inside EOF */
78 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
79 						i_size_read(inode)) {
80 		unsigned offset;
81 		offset = i_size_read(inode) & ~PAGE_MASK;
82 		zero_user_segment(page, offset, PAGE_SIZE);
83 	}
84 	set_page_dirty(page);
85 	if (!PageUptodate(page))
86 		SetPageUptodate(page);
87 
88 	trace_f2fs_vm_page_mkwrite(page, DATA);
89 mapped:
90 	/* fill the page */
91 	f2fs_wait_on_page_writeback(page, DATA, false);
92 
93 	/* wait for GCed encrypted page writeback */
94 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
95 		f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
96 
97 out:
98 	sb_end_pagefault(inode->i_sb);
99 	f2fs_update_time(sbi, REQ_TIME);
100 	return block_page_mkwrite_return(err);
101 }
102 
103 static const struct vm_operations_struct f2fs_file_vm_ops = {
104 	.fault		= filemap_fault,
105 	.map_pages	= filemap_map_pages,
106 	.page_mkwrite	= f2fs_vm_page_mkwrite,
107 };
108 
109 static int get_parent_ino(struct inode *inode, nid_t *pino)
110 {
111 	struct dentry *dentry;
112 
113 	inode = igrab(inode);
114 	dentry = d_find_any_alias(inode);
115 	iput(inode);
116 	if (!dentry)
117 		return 0;
118 
119 	if (update_dent_inode(inode, inode, &dentry->d_name)) {
120 		dput(dentry);
121 		return 0;
122 	}
123 
124 	*pino = parent_ino(dentry);
125 	dput(dentry);
126 	return 1;
127 }
128 
129 static inline bool need_do_checkpoint(struct inode *inode)
130 {
131 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
132 	bool need_cp = false;
133 
134 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
135 		need_cp = true;
136 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
137 		need_cp = true;
138 	else if (file_wrong_pino(inode))
139 		need_cp = true;
140 	else if (!space_for_roll_forward(sbi))
141 		need_cp = true;
142 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
143 		need_cp = true;
144 	else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
145 		need_cp = true;
146 	else if (test_opt(sbi, FASTBOOT))
147 		need_cp = true;
148 	else if (sbi->active_logs == 2)
149 		need_cp = true;
150 
151 	return need_cp;
152 }
153 
154 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
155 {
156 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
157 	bool ret = false;
158 	/* But we need to avoid that there are some inode updates */
159 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
160 		ret = true;
161 	f2fs_put_page(i, 0);
162 	return ret;
163 }
164 
165 static void try_to_fix_pino(struct inode *inode)
166 {
167 	struct f2fs_inode_info *fi = F2FS_I(inode);
168 	nid_t pino;
169 
170 	down_write(&fi->i_sem);
171 	fi->xattr_ver = 0;
172 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
173 			get_parent_ino(inode, &pino)) {
174 		f2fs_i_pino_write(inode, pino);
175 		file_got_pino(inode);
176 	}
177 	up_write(&fi->i_sem);
178 }
179 
180 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
181 						int datasync, bool atomic)
182 {
183 	struct inode *inode = file->f_mapping->host;
184 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
185 	nid_t ino = inode->i_ino;
186 	int ret = 0;
187 	bool need_cp = false;
188 	struct writeback_control wbc = {
189 		.sync_mode = WB_SYNC_ALL,
190 		.nr_to_write = LONG_MAX,
191 		.for_reclaim = 0,
192 	};
193 
194 	if (unlikely(f2fs_readonly(inode->i_sb)))
195 		return 0;
196 
197 	trace_f2fs_sync_file_enter(inode);
198 
199 	/* if fdatasync is triggered, let's do in-place-update */
200 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
201 		set_inode_flag(inode, FI_NEED_IPU);
202 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
203 	clear_inode_flag(inode, FI_NEED_IPU);
204 
205 	if (ret) {
206 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
207 		return ret;
208 	}
209 
210 	/* if the inode is dirty, let's recover all the time */
211 	if (!f2fs_skip_inode_update(inode, datasync)) {
212 		f2fs_write_inode(inode, NULL);
213 		goto go_write;
214 	}
215 
216 	/*
217 	 * if there is no written data, don't waste time to write recovery info.
218 	 */
219 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
220 			!exist_written_data(sbi, ino, APPEND_INO)) {
221 
222 		/* it may call write_inode just prior to fsync */
223 		if (need_inode_page_update(sbi, ino))
224 			goto go_write;
225 
226 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
227 				exist_written_data(sbi, ino, UPDATE_INO))
228 			goto flush_out;
229 		goto out;
230 	}
231 go_write:
232 	/*
233 	 * Both of fdatasync() and fsync() are able to be recovered from
234 	 * sudden-power-off.
235 	 */
236 	down_read(&F2FS_I(inode)->i_sem);
237 	need_cp = need_do_checkpoint(inode);
238 	up_read(&F2FS_I(inode)->i_sem);
239 
240 	if (need_cp) {
241 		/* all the dirty node pages should be flushed for POR */
242 		ret = f2fs_sync_fs(inode->i_sb, 1);
243 
244 		/*
245 		 * We've secured consistency through sync_fs. Following pino
246 		 * will be used only for fsynced inodes after checkpoint.
247 		 */
248 		try_to_fix_pino(inode);
249 		clear_inode_flag(inode, FI_APPEND_WRITE);
250 		clear_inode_flag(inode, FI_UPDATE_WRITE);
251 		goto out;
252 	}
253 sync_nodes:
254 	ret = fsync_node_pages(sbi, inode, &wbc, atomic);
255 	if (ret)
256 		goto out;
257 
258 	/* if cp_error was enabled, we should avoid infinite loop */
259 	if (unlikely(f2fs_cp_error(sbi))) {
260 		ret = -EIO;
261 		goto out;
262 	}
263 
264 	if (need_inode_block_update(sbi, ino)) {
265 		f2fs_mark_inode_dirty_sync(inode, true);
266 		f2fs_write_inode(inode, NULL);
267 		goto sync_nodes;
268 	}
269 
270 	ret = wait_on_node_pages_writeback(sbi, ino);
271 	if (ret)
272 		goto out;
273 
274 	/* once recovery info is written, don't need to tack this */
275 	remove_ino_entry(sbi, ino, APPEND_INO);
276 	clear_inode_flag(inode, FI_APPEND_WRITE);
277 flush_out:
278 	remove_ino_entry(sbi, ino, UPDATE_INO);
279 	clear_inode_flag(inode, FI_UPDATE_WRITE);
280 	ret = f2fs_issue_flush(sbi);
281 	f2fs_update_time(sbi, REQ_TIME);
282 out:
283 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
284 	f2fs_trace_ios(NULL, 1);
285 	return ret;
286 }
287 
288 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
289 {
290 	return f2fs_do_sync_file(file, start, end, datasync, false);
291 }
292 
293 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
294 						pgoff_t pgofs, int whence)
295 {
296 	struct pagevec pvec;
297 	int nr_pages;
298 
299 	if (whence != SEEK_DATA)
300 		return 0;
301 
302 	/* find first dirty page index */
303 	pagevec_init(&pvec, 0);
304 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
305 					PAGECACHE_TAG_DIRTY, 1);
306 	pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
307 	pagevec_release(&pvec);
308 	return pgofs;
309 }
310 
311 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
312 							int whence)
313 {
314 	switch (whence) {
315 	case SEEK_DATA:
316 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
317 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
318 			return true;
319 		break;
320 	case SEEK_HOLE:
321 		if (blkaddr == NULL_ADDR)
322 			return true;
323 		break;
324 	}
325 	return false;
326 }
327 
328 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
329 {
330 	struct inode *inode = file->f_mapping->host;
331 	loff_t maxbytes = inode->i_sb->s_maxbytes;
332 	struct dnode_of_data dn;
333 	pgoff_t pgofs, end_offset, dirty;
334 	loff_t data_ofs = offset;
335 	loff_t isize;
336 	int err = 0;
337 
338 	inode_lock(inode);
339 
340 	isize = i_size_read(inode);
341 	if (offset >= isize)
342 		goto fail;
343 
344 	/* handle inline data case */
345 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
346 		if (whence == SEEK_HOLE)
347 			data_ofs = isize;
348 		goto found;
349 	}
350 
351 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
352 
353 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
354 
355 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
356 		set_new_dnode(&dn, inode, NULL, NULL, 0);
357 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
358 		if (err && err != -ENOENT) {
359 			goto fail;
360 		} else if (err == -ENOENT) {
361 			/* direct node does not exists */
362 			if (whence == SEEK_DATA) {
363 				pgofs = get_next_page_offset(&dn, pgofs);
364 				continue;
365 			} else {
366 				goto found;
367 			}
368 		}
369 
370 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
371 
372 		/* find data/hole in dnode block */
373 		for (; dn.ofs_in_node < end_offset;
374 				dn.ofs_in_node++, pgofs++,
375 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
376 			block_t blkaddr;
377 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
378 
379 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
380 				f2fs_put_dnode(&dn);
381 				goto found;
382 			}
383 		}
384 		f2fs_put_dnode(&dn);
385 	}
386 
387 	if (whence == SEEK_DATA)
388 		goto fail;
389 found:
390 	if (whence == SEEK_HOLE && data_ofs > isize)
391 		data_ofs = isize;
392 	inode_unlock(inode);
393 	return vfs_setpos(file, data_ofs, maxbytes);
394 fail:
395 	inode_unlock(inode);
396 	return -ENXIO;
397 }
398 
399 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
400 {
401 	struct inode *inode = file->f_mapping->host;
402 	loff_t maxbytes = inode->i_sb->s_maxbytes;
403 
404 	switch (whence) {
405 	case SEEK_SET:
406 	case SEEK_CUR:
407 	case SEEK_END:
408 		return generic_file_llseek_size(file, offset, whence,
409 						maxbytes, i_size_read(inode));
410 	case SEEK_DATA:
411 	case SEEK_HOLE:
412 		if (offset < 0)
413 			return -ENXIO;
414 		return f2fs_seek_block(file, offset, whence);
415 	}
416 
417 	return -EINVAL;
418 }
419 
420 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
421 {
422 	struct inode *inode = file_inode(file);
423 	int err;
424 
425 	if (f2fs_encrypted_inode(inode)) {
426 		err = fscrypt_get_encryption_info(inode);
427 		if (err)
428 			return 0;
429 		if (!f2fs_encrypted_inode(inode))
430 			return -ENOKEY;
431 	}
432 
433 	/* we don't need to use inline_data strictly */
434 	err = f2fs_convert_inline_inode(inode);
435 	if (err)
436 		return err;
437 
438 	file_accessed(file);
439 	vma->vm_ops = &f2fs_file_vm_ops;
440 	return 0;
441 }
442 
443 static int f2fs_file_open(struct inode *inode, struct file *filp)
444 {
445 	int ret = generic_file_open(inode, filp);
446 	struct dentry *dir;
447 
448 	if (!ret && f2fs_encrypted_inode(inode)) {
449 		ret = fscrypt_get_encryption_info(inode);
450 		if (ret)
451 			return -EACCES;
452 		if (!fscrypt_has_encryption_key(inode))
453 			return -ENOKEY;
454 	}
455 	dir = dget_parent(file_dentry(filp));
456 	if (f2fs_encrypted_inode(d_inode(dir)) &&
457 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
458 		dput(dir);
459 		return -EPERM;
460 	}
461 	dput(dir);
462 	return ret;
463 }
464 
465 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
466 {
467 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
468 	struct f2fs_node *raw_node;
469 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
470 	__le32 *addr;
471 
472 	raw_node = F2FS_NODE(dn->node_page);
473 	addr = blkaddr_in_node(raw_node) + ofs;
474 
475 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
476 		block_t blkaddr = le32_to_cpu(*addr);
477 		if (blkaddr == NULL_ADDR)
478 			continue;
479 
480 		dn->data_blkaddr = NULL_ADDR;
481 		set_data_blkaddr(dn);
482 		invalidate_blocks(sbi, blkaddr);
483 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
484 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
485 		nr_free++;
486 	}
487 
488 	if (nr_free) {
489 		pgoff_t fofs;
490 		/*
491 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
492 		 * we will invalidate all blkaddr in the whole range.
493 		 */
494 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
495 							dn->inode) + ofs;
496 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
497 		dec_valid_block_count(sbi, dn->inode, nr_free);
498 	}
499 	dn->ofs_in_node = ofs;
500 
501 	f2fs_update_time(sbi, REQ_TIME);
502 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
503 					 dn->ofs_in_node, nr_free);
504 	return nr_free;
505 }
506 
507 void truncate_data_blocks(struct dnode_of_data *dn)
508 {
509 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
510 }
511 
512 static int truncate_partial_data_page(struct inode *inode, u64 from,
513 								bool cache_only)
514 {
515 	unsigned offset = from & (PAGE_SIZE - 1);
516 	pgoff_t index = from >> PAGE_SHIFT;
517 	struct address_space *mapping = inode->i_mapping;
518 	struct page *page;
519 
520 	if (!offset && !cache_only)
521 		return 0;
522 
523 	if (cache_only) {
524 		page = find_lock_page(mapping, index);
525 		if (page && PageUptodate(page))
526 			goto truncate_out;
527 		f2fs_put_page(page, 1);
528 		return 0;
529 	}
530 
531 	page = get_lock_data_page(inode, index, true);
532 	if (IS_ERR(page))
533 		return 0;
534 truncate_out:
535 	f2fs_wait_on_page_writeback(page, DATA, true);
536 	zero_user(page, offset, PAGE_SIZE - offset);
537 	if (!cache_only || !f2fs_encrypted_inode(inode) ||
538 					!S_ISREG(inode->i_mode))
539 		set_page_dirty(page);
540 	f2fs_put_page(page, 1);
541 	return 0;
542 }
543 
544 int truncate_blocks(struct inode *inode, u64 from, bool lock)
545 {
546 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
547 	unsigned int blocksize = inode->i_sb->s_blocksize;
548 	struct dnode_of_data dn;
549 	pgoff_t free_from;
550 	int count = 0, err = 0;
551 	struct page *ipage;
552 	bool truncate_page = false;
553 
554 	trace_f2fs_truncate_blocks_enter(inode, from);
555 
556 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
557 
558 	if (free_from >= sbi->max_file_blocks)
559 		goto free_partial;
560 
561 	if (lock)
562 		f2fs_lock_op(sbi);
563 
564 	ipage = get_node_page(sbi, inode->i_ino);
565 	if (IS_ERR(ipage)) {
566 		err = PTR_ERR(ipage);
567 		goto out;
568 	}
569 
570 	if (f2fs_has_inline_data(inode)) {
571 		if (truncate_inline_inode(ipage, from))
572 			set_page_dirty(ipage);
573 		f2fs_put_page(ipage, 1);
574 		truncate_page = true;
575 		goto out;
576 	}
577 
578 	set_new_dnode(&dn, inode, ipage, NULL, 0);
579 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
580 	if (err) {
581 		if (err == -ENOENT)
582 			goto free_next;
583 		goto out;
584 	}
585 
586 	count = ADDRS_PER_PAGE(dn.node_page, inode);
587 
588 	count -= dn.ofs_in_node;
589 	f2fs_bug_on(sbi, count < 0);
590 
591 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
592 		truncate_data_blocks_range(&dn, count);
593 		free_from += count;
594 	}
595 
596 	f2fs_put_dnode(&dn);
597 free_next:
598 	err = truncate_inode_blocks(inode, free_from);
599 out:
600 	if (lock)
601 		f2fs_unlock_op(sbi);
602 free_partial:
603 	/* lastly zero out the first data page */
604 	if (!err)
605 		err = truncate_partial_data_page(inode, from, truncate_page);
606 
607 	trace_f2fs_truncate_blocks_exit(inode, err);
608 	return err;
609 }
610 
611 int f2fs_truncate(struct inode *inode)
612 {
613 	int err;
614 
615 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
616 				S_ISLNK(inode->i_mode)))
617 		return 0;
618 
619 	trace_f2fs_truncate(inode);
620 
621 	/* we should check inline_data size */
622 	if (!f2fs_may_inline_data(inode)) {
623 		err = f2fs_convert_inline_inode(inode);
624 		if (err)
625 			return err;
626 	}
627 
628 	err = truncate_blocks(inode, i_size_read(inode), true);
629 	if (err)
630 		return err;
631 
632 	inode->i_mtime = inode->i_ctime = current_time(inode);
633 	f2fs_mark_inode_dirty_sync(inode, false);
634 	return 0;
635 }
636 
637 int f2fs_getattr(struct vfsmount *mnt,
638 			 struct dentry *dentry, struct kstat *stat)
639 {
640 	struct inode *inode = d_inode(dentry);
641 	generic_fillattr(inode, stat);
642 	stat->blocks <<= 3;
643 	return 0;
644 }
645 
646 #ifdef CONFIG_F2FS_FS_POSIX_ACL
647 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
648 {
649 	unsigned int ia_valid = attr->ia_valid;
650 
651 	if (ia_valid & ATTR_UID)
652 		inode->i_uid = attr->ia_uid;
653 	if (ia_valid & ATTR_GID)
654 		inode->i_gid = attr->ia_gid;
655 	if (ia_valid & ATTR_ATIME)
656 		inode->i_atime = timespec_trunc(attr->ia_atime,
657 						inode->i_sb->s_time_gran);
658 	if (ia_valid & ATTR_MTIME)
659 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
660 						inode->i_sb->s_time_gran);
661 	if (ia_valid & ATTR_CTIME)
662 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
663 						inode->i_sb->s_time_gran);
664 	if (ia_valid & ATTR_MODE) {
665 		umode_t mode = attr->ia_mode;
666 
667 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
668 			mode &= ~S_ISGID;
669 		set_acl_inode(inode, mode);
670 	}
671 }
672 #else
673 #define __setattr_copy setattr_copy
674 #endif
675 
676 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
677 {
678 	struct inode *inode = d_inode(dentry);
679 	int err;
680 	bool size_changed = false;
681 
682 	err = setattr_prepare(dentry, attr);
683 	if (err)
684 		return err;
685 
686 	if (attr->ia_valid & ATTR_SIZE) {
687 		if (f2fs_encrypted_inode(inode) &&
688 				fscrypt_get_encryption_info(inode))
689 			return -EACCES;
690 
691 		if (attr->ia_size <= i_size_read(inode)) {
692 			truncate_setsize(inode, attr->ia_size);
693 			err = f2fs_truncate(inode);
694 			if (err)
695 				return err;
696 		} else {
697 			/*
698 			 * do not trim all blocks after i_size if target size is
699 			 * larger than i_size.
700 			 */
701 			truncate_setsize(inode, attr->ia_size);
702 
703 			/* should convert inline inode here */
704 			if (!f2fs_may_inline_data(inode)) {
705 				err = f2fs_convert_inline_inode(inode);
706 				if (err)
707 					return err;
708 			}
709 			inode->i_mtime = inode->i_ctime = current_time(inode);
710 		}
711 
712 		size_changed = true;
713 	}
714 
715 	__setattr_copy(inode, attr);
716 
717 	if (attr->ia_valid & ATTR_MODE) {
718 		err = posix_acl_chmod(inode, get_inode_mode(inode));
719 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
720 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
721 			clear_inode_flag(inode, FI_ACL_MODE);
722 		}
723 	}
724 
725 	/* file size may changed here */
726 	f2fs_mark_inode_dirty_sync(inode, size_changed);
727 
728 	/* inode change will produce dirty node pages flushed by checkpoint */
729 	f2fs_balance_fs(F2FS_I_SB(inode), true);
730 
731 	return err;
732 }
733 
734 const struct inode_operations f2fs_file_inode_operations = {
735 	.getattr	= f2fs_getattr,
736 	.setattr	= f2fs_setattr,
737 	.get_acl	= f2fs_get_acl,
738 	.set_acl	= f2fs_set_acl,
739 #ifdef CONFIG_F2FS_FS_XATTR
740 	.listxattr	= f2fs_listxattr,
741 #endif
742 	.fiemap		= f2fs_fiemap,
743 };
744 
745 static int fill_zero(struct inode *inode, pgoff_t index,
746 					loff_t start, loff_t len)
747 {
748 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
749 	struct page *page;
750 
751 	if (!len)
752 		return 0;
753 
754 	f2fs_balance_fs(sbi, true);
755 
756 	f2fs_lock_op(sbi);
757 	page = get_new_data_page(inode, NULL, index, false);
758 	f2fs_unlock_op(sbi);
759 
760 	if (IS_ERR(page))
761 		return PTR_ERR(page);
762 
763 	f2fs_wait_on_page_writeback(page, DATA, true);
764 	zero_user(page, start, len);
765 	set_page_dirty(page);
766 	f2fs_put_page(page, 1);
767 	return 0;
768 }
769 
770 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
771 {
772 	int err;
773 
774 	while (pg_start < pg_end) {
775 		struct dnode_of_data dn;
776 		pgoff_t end_offset, count;
777 
778 		set_new_dnode(&dn, inode, NULL, NULL, 0);
779 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
780 		if (err) {
781 			if (err == -ENOENT) {
782 				pg_start++;
783 				continue;
784 			}
785 			return err;
786 		}
787 
788 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
789 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
790 
791 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
792 
793 		truncate_data_blocks_range(&dn, count);
794 		f2fs_put_dnode(&dn);
795 
796 		pg_start += count;
797 	}
798 	return 0;
799 }
800 
801 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
802 {
803 	pgoff_t pg_start, pg_end;
804 	loff_t off_start, off_end;
805 	int ret;
806 
807 	ret = f2fs_convert_inline_inode(inode);
808 	if (ret)
809 		return ret;
810 
811 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
812 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
813 
814 	off_start = offset & (PAGE_SIZE - 1);
815 	off_end = (offset + len) & (PAGE_SIZE - 1);
816 
817 	if (pg_start == pg_end) {
818 		ret = fill_zero(inode, pg_start, off_start,
819 						off_end - off_start);
820 		if (ret)
821 			return ret;
822 	} else {
823 		if (off_start) {
824 			ret = fill_zero(inode, pg_start++, off_start,
825 						PAGE_SIZE - off_start);
826 			if (ret)
827 				return ret;
828 		}
829 		if (off_end) {
830 			ret = fill_zero(inode, pg_end, 0, off_end);
831 			if (ret)
832 				return ret;
833 		}
834 
835 		if (pg_start < pg_end) {
836 			struct address_space *mapping = inode->i_mapping;
837 			loff_t blk_start, blk_end;
838 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
839 
840 			f2fs_balance_fs(sbi, true);
841 
842 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
843 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
844 			truncate_inode_pages_range(mapping, blk_start,
845 					blk_end - 1);
846 
847 			f2fs_lock_op(sbi);
848 			ret = truncate_hole(inode, pg_start, pg_end);
849 			f2fs_unlock_op(sbi);
850 		}
851 	}
852 
853 	return ret;
854 }
855 
856 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
857 				int *do_replace, pgoff_t off, pgoff_t len)
858 {
859 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
860 	struct dnode_of_data dn;
861 	int ret, done, i;
862 
863 next_dnode:
864 	set_new_dnode(&dn, inode, NULL, NULL, 0);
865 	ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
866 	if (ret && ret != -ENOENT) {
867 		return ret;
868 	} else if (ret == -ENOENT) {
869 		if (dn.max_level == 0)
870 			return -ENOENT;
871 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
872 		blkaddr += done;
873 		do_replace += done;
874 		goto next;
875 	}
876 
877 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
878 							dn.ofs_in_node, len);
879 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
880 		*blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
881 		if (!is_checkpointed_data(sbi, *blkaddr)) {
882 
883 			if (test_opt(sbi, LFS)) {
884 				f2fs_put_dnode(&dn);
885 				return -ENOTSUPP;
886 			}
887 
888 			/* do not invalidate this block address */
889 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
890 			*do_replace = 1;
891 		}
892 	}
893 	f2fs_put_dnode(&dn);
894 next:
895 	len -= done;
896 	off += done;
897 	if (len)
898 		goto next_dnode;
899 	return 0;
900 }
901 
902 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
903 				int *do_replace, pgoff_t off, int len)
904 {
905 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
906 	struct dnode_of_data dn;
907 	int ret, i;
908 
909 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
910 		if (*do_replace == 0)
911 			continue;
912 
913 		set_new_dnode(&dn, inode, NULL, NULL, 0);
914 		ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
915 		if (ret) {
916 			dec_valid_block_count(sbi, inode, 1);
917 			invalidate_blocks(sbi, *blkaddr);
918 		} else {
919 			f2fs_update_data_blkaddr(&dn, *blkaddr);
920 		}
921 		f2fs_put_dnode(&dn);
922 	}
923 	return 0;
924 }
925 
926 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
927 			block_t *blkaddr, int *do_replace,
928 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
929 {
930 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
931 	pgoff_t i = 0;
932 	int ret;
933 
934 	while (i < len) {
935 		if (blkaddr[i] == NULL_ADDR && !full) {
936 			i++;
937 			continue;
938 		}
939 
940 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
941 			struct dnode_of_data dn;
942 			struct node_info ni;
943 			size_t new_size;
944 			pgoff_t ilen;
945 
946 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
947 			ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
948 			if (ret)
949 				return ret;
950 
951 			get_node_info(sbi, dn.nid, &ni);
952 			ilen = min((pgoff_t)
953 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
954 						dn.ofs_in_node, len - i);
955 			do {
956 				dn.data_blkaddr = datablock_addr(dn.node_page,
957 								dn.ofs_in_node);
958 				truncate_data_blocks_range(&dn, 1);
959 
960 				if (do_replace[i]) {
961 					f2fs_i_blocks_write(src_inode,
962 								1, false);
963 					f2fs_i_blocks_write(dst_inode,
964 								1, true);
965 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
966 					blkaddr[i], ni.version, true, false);
967 
968 					do_replace[i] = 0;
969 				}
970 				dn.ofs_in_node++;
971 				i++;
972 				new_size = (dst + i) << PAGE_SHIFT;
973 				if (dst_inode->i_size < new_size)
974 					f2fs_i_size_write(dst_inode, new_size);
975 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
976 
977 			f2fs_put_dnode(&dn);
978 		} else {
979 			struct page *psrc, *pdst;
980 
981 			psrc = get_lock_data_page(src_inode, src + i, true);
982 			if (IS_ERR(psrc))
983 				return PTR_ERR(psrc);
984 			pdst = get_new_data_page(dst_inode, NULL, dst + i,
985 								true);
986 			if (IS_ERR(pdst)) {
987 				f2fs_put_page(psrc, 1);
988 				return PTR_ERR(pdst);
989 			}
990 			f2fs_copy_page(psrc, pdst);
991 			set_page_dirty(pdst);
992 			f2fs_put_page(pdst, 1);
993 			f2fs_put_page(psrc, 1);
994 
995 			ret = truncate_hole(src_inode, src + i, src + i + 1);
996 			if (ret)
997 				return ret;
998 			i++;
999 		}
1000 	}
1001 	return 0;
1002 }
1003 
1004 static int __exchange_data_block(struct inode *src_inode,
1005 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1006 			pgoff_t len, bool full)
1007 {
1008 	block_t *src_blkaddr;
1009 	int *do_replace;
1010 	pgoff_t olen;
1011 	int ret;
1012 
1013 	while (len) {
1014 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1015 
1016 		src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1017 		if (!src_blkaddr)
1018 			return -ENOMEM;
1019 
1020 		do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1021 		if (!do_replace) {
1022 			kvfree(src_blkaddr);
1023 			return -ENOMEM;
1024 		}
1025 
1026 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1027 					do_replace, src, olen);
1028 		if (ret)
1029 			goto roll_back;
1030 
1031 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1032 					do_replace, src, dst, olen, full);
1033 		if (ret)
1034 			goto roll_back;
1035 
1036 		src += olen;
1037 		dst += olen;
1038 		len -= olen;
1039 
1040 		kvfree(src_blkaddr);
1041 		kvfree(do_replace);
1042 	}
1043 	return 0;
1044 
1045 roll_back:
1046 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1047 	kvfree(src_blkaddr);
1048 	kvfree(do_replace);
1049 	return ret;
1050 }
1051 
1052 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1053 {
1054 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1055 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1056 	int ret;
1057 
1058 	f2fs_balance_fs(sbi, true);
1059 	f2fs_lock_op(sbi);
1060 
1061 	f2fs_drop_extent_tree(inode);
1062 
1063 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1064 	f2fs_unlock_op(sbi);
1065 	return ret;
1066 }
1067 
1068 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1069 {
1070 	pgoff_t pg_start, pg_end;
1071 	loff_t new_size;
1072 	int ret;
1073 
1074 	if (offset + len >= i_size_read(inode))
1075 		return -EINVAL;
1076 
1077 	/* collapse range should be aligned to block size of f2fs. */
1078 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1079 		return -EINVAL;
1080 
1081 	ret = f2fs_convert_inline_inode(inode);
1082 	if (ret)
1083 		return ret;
1084 
1085 	pg_start = offset >> PAGE_SHIFT;
1086 	pg_end = (offset + len) >> PAGE_SHIFT;
1087 
1088 	/* write out all dirty pages from offset */
1089 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1090 	if (ret)
1091 		return ret;
1092 
1093 	truncate_pagecache(inode, offset);
1094 
1095 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1096 	if (ret)
1097 		return ret;
1098 
1099 	/* write out all moved pages, if possible */
1100 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1101 	truncate_pagecache(inode, offset);
1102 
1103 	new_size = i_size_read(inode) - len;
1104 	truncate_pagecache(inode, new_size);
1105 
1106 	ret = truncate_blocks(inode, new_size, true);
1107 	if (!ret)
1108 		f2fs_i_size_write(inode, new_size);
1109 
1110 	return ret;
1111 }
1112 
1113 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1114 								pgoff_t end)
1115 {
1116 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1117 	pgoff_t index = start;
1118 	unsigned int ofs_in_node = dn->ofs_in_node;
1119 	blkcnt_t count = 0;
1120 	int ret;
1121 
1122 	for (; index < end; index++, dn->ofs_in_node++) {
1123 		if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1124 			count++;
1125 	}
1126 
1127 	dn->ofs_in_node = ofs_in_node;
1128 	ret = reserve_new_blocks(dn, count);
1129 	if (ret)
1130 		return ret;
1131 
1132 	dn->ofs_in_node = ofs_in_node;
1133 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1134 		dn->data_blkaddr =
1135 				datablock_addr(dn->node_page, dn->ofs_in_node);
1136 		/*
1137 		 * reserve_new_blocks will not guarantee entire block
1138 		 * allocation.
1139 		 */
1140 		if (dn->data_blkaddr == NULL_ADDR) {
1141 			ret = -ENOSPC;
1142 			break;
1143 		}
1144 		if (dn->data_blkaddr != NEW_ADDR) {
1145 			invalidate_blocks(sbi, dn->data_blkaddr);
1146 			dn->data_blkaddr = NEW_ADDR;
1147 			set_data_blkaddr(dn);
1148 		}
1149 	}
1150 
1151 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1152 
1153 	return ret;
1154 }
1155 
1156 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1157 								int mode)
1158 {
1159 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1160 	struct address_space *mapping = inode->i_mapping;
1161 	pgoff_t index, pg_start, pg_end;
1162 	loff_t new_size = i_size_read(inode);
1163 	loff_t off_start, off_end;
1164 	int ret = 0;
1165 
1166 	ret = inode_newsize_ok(inode, (len + offset));
1167 	if (ret)
1168 		return ret;
1169 
1170 	ret = f2fs_convert_inline_inode(inode);
1171 	if (ret)
1172 		return ret;
1173 
1174 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1175 	if (ret)
1176 		return ret;
1177 
1178 	truncate_pagecache_range(inode, offset, offset + len - 1);
1179 
1180 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1181 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1182 
1183 	off_start = offset & (PAGE_SIZE - 1);
1184 	off_end = (offset + len) & (PAGE_SIZE - 1);
1185 
1186 	if (pg_start == pg_end) {
1187 		ret = fill_zero(inode, pg_start, off_start,
1188 						off_end - off_start);
1189 		if (ret)
1190 			return ret;
1191 
1192 		if (offset + len > new_size)
1193 			new_size = offset + len;
1194 		new_size = max_t(loff_t, new_size, offset + len);
1195 	} else {
1196 		if (off_start) {
1197 			ret = fill_zero(inode, pg_start++, off_start,
1198 						PAGE_SIZE - off_start);
1199 			if (ret)
1200 				return ret;
1201 
1202 			new_size = max_t(loff_t, new_size,
1203 					(loff_t)pg_start << PAGE_SHIFT);
1204 		}
1205 
1206 		for (index = pg_start; index < pg_end;) {
1207 			struct dnode_of_data dn;
1208 			unsigned int end_offset;
1209 			pgoff_t end;
1210 
1211 			f2fs_lock_op(sbi);
1212 
1213 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1214 			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1215 			if (ret) {
1216 				f2fs_unlock_op(sbi);
1217 				goto out;
1218 			}
1219 
1220 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1221 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1222 
1223 			ret = f2fs_do_zero_range(&dn, index, end);
1224 			f2fs_put_dnode(&dn);
1225 			f2fs_unlock_op(sbi);
1226 
1227 			f2fs_balance_fs(sbi, dn.node_changed);
1228 
1229 			if (ret)
1230 				goto out;
1231 
1232 			index = end;
1233 			new_size = max_t(loff_t, new_size,
1234 					(loff_t)index << PAGE_SHIFT);
1235 		}
1236 
1237 		if (off_end) {
1238 			ret = fill_zero(inode, pg_end, 0, off_end);
1239 			if (ret)
1240 				goto out;
1241 
1242 			new_size = max_t(loff_t, new_size, offset + len);
1243 		}
1244 	}
1245 
1246 out:
1247 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1248 		f2fs_i_size_write(inode, new_size);
1249 
1250 	return ret;
1251 }
1252 
1253 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1254 {
1255 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1256 	pgoff_t nr, pg_start, pg_end, delta, idx;
1257 	loff_t new_size;
1258 	int ret = 0;
1259 
1260 	new_size = i_size_read(inode) + len;
1261 	if (new_size > inode->i_sb->s_maxbytes)
1262 		return -EFBIG;
1263 
1264 	if (offset >= i_size_read(inode))
1265 		return -EINVAL;
1266 
1267 	/* insert range should be aligned to block size of f2fs. */
1268 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1269 		return -EINVAL;
1270 
1271 	ret = f2fs_convert_inline_inode(inode);
1272 	if (ret)
1273 		return ret;
1274 
1275 	f2fs_balance_fs(sbi, true);
1276 
1277 	ret = truncate_blocks(inode, i_size_read(inode), true);
1278 	if (ret)
1279 		return ret;
1280 
1281 	/* write out all dirty pages from offset */
1282 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1283 	if (ret)
1284 		return ret;
1285 
1286 	truncate_pagecache(inode, offset);
1287 
1288 	pg_start = offset >> PAGE_SHIFT;
1289 	pg_end = (offset + len) >> PAGE_SHIFT;
1290 	delta = pg_end - pg_start;
1291 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1292 
1293 	while (!ret && idx > pg_start) {
1294 		nr = idx - pg_start;
1295 		if (nr > delta)
1296 			nr = delta;
1297 		idx -= nr;
1298 
1299 		f2fs_lock_op(sbi);
1300 		f2fs_drop_extent_tree(inode);
1301 
1302 		ret = __exchange_data_block(inode, inode, idx,
1303 					idx + delta, nr, false);
1304 		f2fs_unlock_op(sbi);
1305 	}
1306 
1307 	/* write out all moved pages, if possible */
1308 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1309 	truncate_pagecache(inode, offset);
1310 
1311 	if (!ret)
1312 		f2fs_i_size_write(inode, new_size);
1313 	return ret;
1314 }
1315 
1316 static int expand_inode_data(struct inode *inode, loff_t offset,
1317 					loff_t len, int mode)
1318 {
1319 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1320 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1321 	pgoff_t pg_end;
1322 	loff_t new_size = i_size_read(inode);
1323 	loff_t off_end;
1324 	int err;
1325 
1326 	err = inode_newsize_ok(inode, (len + offset));
1327 	if (err)
1328 		return err;
1329 
1330 	err = f2fs_convert_inline_inode(inode);
1331 	if (err)
1332 		return err;
1333 
1334 	f2fs_balance_fs(sbi, true);
1335 
1336 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1337 	off_end = (offset + len) & (PAGE_SIZE - 1);
1338 
1339 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1340 	map.m_len = pg_end - map.m_lblk;
1341 	if (off_end)
1342 		map.m_len++;
1343 
1344 	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1345 	if (err) {
1346 		pgoff_t last_off;
1347 
1348 		if (!map.m_len)
1349 			return err;
1350 
1351 		last_off = map.m_lblk + map.m_len - 1;
1352 
1353 		/* update new size to the failed position */
1354 		new_size = (last_off == pg_end) ? offset + len:
1355 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1356 	} else {
1357 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1358 	}
1359 
1360 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1361 		f2fs_i_size_write(inode, new_size);
1362 
1363 	return err;
1364 }
1365 
1366 static long f2fs_fallocate(struct file *file, int mode,
1367 				loff_t offset, loff_t len)
1368 {
1369 	struct inode *inode = file_inode(file);
1370 	long ret = 0;
1371 
1372 	/* f2fs only support ->fallocate for regular file */
1373 	if (!S_ISREG(inode->i_mode))
1374 		return -EINVAL;
1375 
1376 	if (f2fs_encrypted_inode(inode) &&
1377 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1378 		return -EOPNOTSUPP;
1379 
1380 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1381 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1382 			FALLOC_FL_INSERT_RANGE))
1383 		return -EOPNOTSUPP;
1384 
1385 	inode_lock(inode);
1386 
1387 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1388 		if (offset >= inode->i_size)
1389 			goto out;
1390 
1391 		ret = punch_hole(inode, offset, len);
1392 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1393 		ret = f2fs_collapse_range(inode, offset, len);
1394 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1395 		ret = f2fs_zero_range(inode, offset, len, mode);
1396 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1397 		ret = f2fs_insert_range(inode, offset, len);
1398 	} else {
1399 		ret = expand_inode_data(inode, offset, len, mode);
1400 	}
1401 
1402 	if (!ret) {
1403 		inode->i_mtime = inode->i_ctime = current_time(inode);
1404 		f2fs_mark_inode_dirty_sync(inode, false);
1405 		if (mode & FALLOC_FL_KEEP_SIZE)
1406 			file_set_keep_isize(inode);
1407 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1408 	}
1409 
1410 out:
1411 	inode_unlock(inode);
1412 
1413 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1414 	return ret;
1415 }
1416 
1417 static int f2fs_release_file(struct inode *inode, struct file *filp)
1418 {
1419 	/*
1420 	 * f2fs_relase_file is called at every close calls. So we should
1421 	 * not drop any inmemory pages by close called by other process.
1422 	 */
1423 	if (!(filp->f_mode & FMODE_WRITE) ||
1424 			atomic_read(&inode->i_writecount) != 1)
1425 		return 0;
1426 
1427 	/* some remained atomic pages should discarded */
1428 	if (f2fs_is_atomic_file(inode))
1429 		drop_inmem_pages(inode);
1430 	if (f2fs_is_volatile_file(inode)) {
1431 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1432 		set_inode_flag(inode, FI_DROP_CACHE);
1433 		filemap_fdatawrite(inode->i_mapping);
1434 		clear_inode_flag(inode, FI_DROP_CACHE);
1435 	}
1436 	return 0;
1437 }
1438 
1439 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1440 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1441 
1442 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1443 {
1444 	if (S_ISDIR(mode))
1445 		return flags;
1446 	else if (S_ISREG(mode))
1447 		return flags & F2FS_REG_FLMASK;
1448 	else
1449 		return flags & F2FS_OTHER_FLMASK;
1450 }
1451 
1452 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1453 {
1454 	struct inode *inode = file_inode(filp);
1455 	struct f2fs_inode_info *fi = F2FS_I(inode);
1456 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1457 	return put_user(flags, (int __user *)arg);
1458 }
1459 
1460 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1461 {
1462 	struct inode *inode = file_inode(filp);
1463 	struct f2fs_inode_info *fi = F2FS_I(inode);
1464 	unsigned int flags;
1465 	unsigned int oldflags;
1466 	int ret;
1467 
1468 	if (!inode_owner_or_capable(inode))
1469 		return -EACCES;
1470 
1471 	if (get_user(flags, (int __user *)arg))
1472 		return -EFAULT;
1473 
1474 	ret = mnt_want_write_file(filp);
1475 	if (ret)
1476 		return ret;
1477 
1478 	flags = f2fs_mask_flags(inode->i_mode, flags);
1479 
1480 	inode_lock(inode);
1481 
1482 	oldflags = fi->i_flags;
1483 
1484 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1485 		if (!capable(CAP_LINUX_IMMUTABLE)) {
1486 			inode_unlock(inode);
1487 			ret = -EPERM;
1488 			goto out;
1489 		}
1490 	}
1491 
1492 	flags = flags & FS_FL_USER_MODIFIABLE;
1493 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1494 	fi->i_flags = flags;
1495 	inode_unlock(inode);
1496 
1497 	inode->i_ctime = current_time(inode);
1498 	f2fs_set_inode_flags(inode);
1499 out:
1500 	mnt_drop_write_file(filp);
1501 	return ret;
1502 }
1503 
1504 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1505 {
1506 	struct inode *inode = file_inode(filp);
1507 
1508 	return put_user(inode->i_generation, (int __user *)arg);
1509 }
1510 
1511 static int f2fs_ioc_start_atomic_write(struct file *filp)
1512 {
1513 	struct inode *inode = file_inode(filp);
1514 	int ret;
1515 
1516 	if (!inode_owner_or_capable(inode))
1517 		return -EACCES;
1518 
1519 	ret = mnt_want_write_file(filp);
1520 	if (ret)
1521 		return ret;
1522 
1523 	inode_lock(inode);
1524 
1525 	if (f2fs_is_atomic_file(inode))
1526 		goto out;
1527 
1528 	ret = f2fs_convert_inline_inode(inode);
1529 	if (ret)
1530 		goto out;
1531 
1532 	set_inode_flag(inode, FI_ATOMIC_FILE);
1533 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1534 
1535 	if (!get_dirty_pages(inode))
1536 		goto out;
1537 
1538 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1539 		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1540 					inode->i_ino, get_dirty_pages(inode));
1541 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1542 	if (ret)
1543 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1544 out:
1545 	inode_unlock(inode);
1546 	mnt_drop_write_file(filp);
1547 	return ret;
1548 }
1549 
1550 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1551 {
1552 	struct inode *inode = file_inode(filp);
1553 	int ret;
1554 
1555 	if (!inode_owner_or_capable(inode))
1556 		return -EACCES;
1557 
1558 	ret = mnt_want_write_file(filp);
1559 	if (ret)
1560 		return ret;
1561 
1562 	inode_lock(inode);
1563 
1564 	if (f2fs_is_volatile_file(inode))
1565 		goto err_out;
1566 
1567 	if (f2fs_is_atomic_file(inode)) {
1568 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1569 		ret = commit_inmem_pages(inode);
1570 		if (ret) {
1571 			set_inode_flag(inode, FI_ATOMIC_FILE);
1572 			goto err_out;
1573 		}
1574 	}
1575 
1576 	ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1577 err_out:
1578 	inode_unlock(inode);
1579 	mnt_drop_write_file(filp);
1580 	return ret;
1581 }
1582 
1583 static int f2fs_ioc_start_volatile_write(struct file *filp)
1584 {
1585 	struct inode *inode = file_inode(filp);
1586 	int ret;
1587 
1588 	if (!inode_owner_or_capable(inode))
1589 		return -EACCES;
1590 
1591 	ret = mnt_want_write_file(filp);
1592 	if (ret)
1593 		return ret;
1594 
1595 	inode_lock(inode);
1596 
1597 	if (f2fs_is_volatile_file(inode))
1598 		goto out;
1599 
1600 	ret = f2fs_convert_inline_inode(inode);
1601 	if (ret)
1602 		goto out;
1603 
1604 	set_inode_flag(inode, FI_VOLATILE_FILE);
1605 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1606 out:
1607 	inode_unlock(inode);
1608 	mnt_drop_write_file(filp);
1609 	return ret;
1610 }
1611 
1612 static int f2fs_ioc_release_volatile_write(struct file *filp)
1613 {
1614 	struct inode *inode = file_inode(filp);
1615 	int ret;
1616 
1617 	if (!inode_owner_or_capable(inode))
1618 		return -EACCES;
1619 
1620 	ret = mnt_want_write_file(filp);
1621 	if (ret)
1622 		return ret;
1623 
1624 	inode_lock(inode);
1625 
1626 	if (!f2fs_is_volatile_file(inode))
1627 		goto out;
1628 
1629 	if (!f2fs_is_first_block_written(inode)) {
1630 		ret = truncate_partial_data_page(inode, 0, true);
1631 		goto out;
1632 	}
1633 
1634 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1635 out:
1636 	inode_unlock(inode);
1637 	mnt_drop_write_file(filp);
1638 	return ret;
1639 }
1640 
1641 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1642 {
1643 	struct inode *inode = file_inode(filp);
1644 	int ret;
1645 
1646 	if (!inode_owner_or_capable(inode))
1647 		return -EACCES;
1648 
1649 	ret = mnt_want_write_file(filp);
1650 	if (ret)
1651 		return ret;
1652 
1653 	inode_lock(inode);
1654 
1655 	if (f2fs_is_atomic_file(inode))
1656 		drop_inmem_pages(inode);
1657 	if (f2fs_is_volatile_file(inode)) {
1658 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1659 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1660 	}
1661 
1662 	inode_unlock(inode);
1663 
1664 	mnt_drop_write_file(filp);
1665 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1666 	return ret;
1667 }
1668 
1669 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1670 {
1671 	struct inode *inode = file_inode(filp);
1672 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1673 	struct super_block *sb = sbi->sb;
1674 	__u32 in;
1675 	int ret;
1676 
1677 	if (!capable(CAP_SYS_ADMIN))
1678 		return -EPERM;
1679 
1680 	if (get_user(in, (__u32 __user *)arg))
1681 		return -EFAULT;
1682 
1683 	ret = mnt_want_write_file(filp);
1684 	if (ret)
1685 		return ret;
1686 
1687 	switch (in) {
1688 	case F2FS_GOING_DOWN_FULLSYNC:
1689 		sb = freeze_bdev(sb->s_bdev);
1690 		if (sb && !IS_ERR(sb)) {
1691 			f2fs_stop_checkpoint(sbi, false);
1692 			thaw_bdev(sb->s_bdev, sb);
1693 		}
1694 		break;
1695 	case F2FS_GOING_DOWN_METASYNC:
1696 		/* do checkpoint only */
1697 		f2fs_sync_fs(sb, 1);
1698 		f2fs_stop_checkpoint(sbi, false);
1699 		break;
1700 	case F2FS_GOING_DOWN_NOSYNC:
1701 		f2fs_stop_checkpoint(sbi, false);
1702 		break;
1703 	case F2FS_GOING_DOWN_METAFLUSH:
1704 		sync_meta_pages(sbi, META, LONG_MAX);
1705 		f2fs_stop_checkpoint(sbi, false);
1706 		break;
1707 	default:
1708 		ret = -EINVAL;
1709 		goto out;
1710 	}
1711 	f2fs_update_time(sbi, REQ_TIME);
1712 out:
1713 	mnt_drop_write_file(filp);
1714 	return ret;
1715 }
1716 
1717 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1718 {
1719 	struct inode *inode = file_inode(filp);
1720 	struct super_block *sb = inode->i_sb;
1721 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1722 	struct fstrim_range range;
1723 	int ret;
1724 
1725 	if (!capable(CAP_SYS_ADMIN))
1726 		return -EPERM;
1727 
1728 	if (!blk_queue_discard(q))
1729 		return -EOPNOTSUPP;
1730 
1731 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1732 				sizeof(range)))
1733 		return -EFAULT;
1734 
1735 	ret = mnt_want_write_file(filp);
1736 	if (ret)
1737 		return ret;
1738 
1739 	range.minlen = max((unsigned int)range.minlen,
1740 				q->limits.discard_granularity);
1741 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1742 	mnt_drop_write_file(filp);
1743 	if (ret < 0)
1744 		return ret;
1745 
1746 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1747 				sizeof(range)))
1748 		return -EFAULT;
1749 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1750 	return 0;
1751 }
1752 
1753 static bool uuid_is_nonzero(__u8 u[16])
1754 {
1755 	int i;
1756 
1757 	for (i = 0; i < 16; i++)
1758 		if (u[i])
1759 			return true;
1760 	return false;
1761 }
1762 
1763 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1764 {
1765 	struct inode *inode = file_inode(filp);
1766 
1767 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1768 
1769 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1770 }
1771 
1772 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1773 {
1774 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1775 }
1776 
1777 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1778 {
1779 	struct inode *inode = file_inode(filp);
1780 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1781 	int err;
1782 
1783 	if (!f2fs_sb_has_crypto(inode->i_sb))
1784 		return -EOPNOTSUPP;
1785 
1786 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1787 		goto got_it;
1788 
1789 	err = mnt_want_write_file(filp);
1790 	if (err)
1791 		return err;
1792 
1793 	/* update superblock with uuid */
1794 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1795 
1796 	err = f2fs_commit_super(sbi, false);
1797 	if (err) {
1798 		/* undo new data */
1799 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1800 		mnt_drop_write_file(filp);
1801 		return err;
1802 	}
1803 	mnt_drop_write_file(filp);
1804 got_it:
1805 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1806 									16))
1807 		return -EFAULT;
1808 	return 0;
1809 }
1810 
1811 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1812 {
1813 	struct inode *inode = file_inode(filp);
1814 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1815 	__u32 sync;
1816 	int ret;
1817 
1818 	if (!capable(CAP_SYS_ADMIN))
1819 		return -EPERM;
1820 
1821 	if (get_user(sync, (__u32 __user *)arg))
1822 		return -EFAULT;
1823 
1824 	if (f2fs_readonly(sbi->sb))
1825 		return -EROFS;
1826 
1827 	ret = mnt_want_write_file(filp);
1828 	if (ret)
1829 		return ret;
1830 
1831 	if (!sync) {
1832 		if (!mutex_trylock(&sbi->gc_mutex)) {
1833 			ret = -EBUSY;
1834 			goto out;
1835 		}
1836 	} else {
1837 		mutex_lock(&sbi->gc_mutex);
1838 	}
1839 
1840 	ret = f2fs_gc(sbi, sync, true);
1841 out:
1842 	mnt_drop_write_file(filp);
1843 	return ret;
1844 }
1845 
1846 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1847 {
1848 	struct inode *inode = file_inode(filp);
1849 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1850 	int ret;
1851 
1852 	if (!capable(CAP_SYS_ADMIN))
1853 		return -EPERM;
1854 
1855 	if (f2fs_readonly(sbi->sb))
1856 		return -EROFS;
1857 
1858 	ret = mnt_want_write_file(filp);
1859 	if (ret)
1860 		return ret;
1861 
1862 	ret = f2fs_sync_fs(sbi->sb, 1);
1863 
1864 	mnt_drop_write_file(filp);
1865 	return ret;
1866 }
1867 
1868 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1869 					struct file *filp,
1870 					struct f2fs_defragment *range)
1871 {
1872 	struct inode *inode = file_inode(filp);
1873 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1874 	struct extent_info ei;
1875 	pgoff_t pg_start, pg_end;
1876 	unsigned int blk_per_seg = sbi->blocks_per_seg;
1877 	unsigned int total = 0, sec_num;
1878 	unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1879 	block_t blk_end = 0;
1880 	bool fragmented = false;
1881 	int err;
1882 
1883 	/* if in-place-update policy is enabled, don't waste time here */
1884 	if (need_inplace_update(inode))
1885 		return -EINVAL;
1886 
1887 	pg_start = range->start >> PAGE_SHIFT;
1888 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
1889 
1890 	f2fs_balance_fs(sbi, true);
1891 
1892 	inode_lock(inode);
1893 
1894 	/* writeback all dirty pages in the range */
1895 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1896 						range->start + range->len - 1);
1897 	if (err)
1898 		goto out;
1899 
1900 	/*
1901 	 * lookup mapping info in extent cache, skip defragmenting if physical
1902 	 * block addresses are continuous.
1903 	 */
1904 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1905 		if (ei.fofs + ei.len >= pg_end)
1906 			goto out;
1907 	}
1908 
1909 	map.m_lblk = pg_start;
1910 
1911 	/*
1912 	 * lookup mapping info in dnode page cache, skip defragmenting if all
1913 	 * physical block addresses are continuous even if there are hole(s)
1914 	 * in logical blocks.
1915 	 */
1916 	while (map.m_lblk < pg_end) {
1917 		map.m_len = pg_end - map.m_lblk;
1918 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1919 		if (err)
1920 			goto out;
1921 
1922 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1923 			map.m_lblk++;
1924 			continue;
1925 		}
1926 
1927 		if (blk_end && blk_end != map.m_pblk) {
1928 			fragmented = true;
1929 			break;
1930 		}
1931 		blk_end = map.m_pblk + map.m_len;
1932 
1933 		map.m_lblk += map.m_len;
1934 	}
1935 
1936 	if (!fragmented)
1937 		goto out;
1938 
1939 	map.m_lblk = pg_start;
1940 	map.m_len = pg_end - pg_start;
1941 
1942 	sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1943 
1944 	/*
1945 	 * make sure there are enough free section for LFS allocation, this can
1946 	 * avoid defragment running in SSR mode when free section are allocated
1947 	 * intensively
1948 	 */
1949 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
1950 		err = -EAGAIN;
1951 		goto out;
1952 	}
1953 
1954 	while (map.m_lblk < pg_end) {
1955 		pgoff_t idx;
1956 		int cnt = 0;
1957 
1958 do_map:
1959 		map.m_len = pg_end - map.m_lblk;
1960 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1961 		if (err)
1962 			goto clear_out;
1963 
1964 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1965 			map.m_lblk++;
1966 			continue;
1967 		}
1968 
1969 		set_inode_flag(inode, FI_DO_DEFRAG);
1970 
1971 		idx = map.m_lblk;
1972 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1973 			struct page *page;
1974 
1975 			page = get_lock_data_page(inode, idx, true);
1976 			if (IS_ERR(page)) {
1977 				err = PTR_ERR(page);
1978 				goto clear_out;
1979 			}
1980 
1981 			set_page_dirty(page);
1982 			f2fs_put_page(page, 1);
1983 
1984 			idx++;
1985 			cnt++;
1986 			total++;
1987 		}
1988 
1989 		map.m_lblk = idx;
1990 
1991 		if (idx < pg_end && cnt < blk_per_seg)
1992 			goto do_map;
1993 
1994 		clear_inode_flag(inode, FI_DO_DEFRAG);
1995 
1996 		err = filemap_fdatawrite(inode->i_mapping);
1997 		if (err)
1998 			goto out;
1999 	}
2000 clear_out:
2001 	clear_inode_flag(inode, FI_DO_DEFRAG);
2002 out:
2003 	inode_unlock(inode);
2004 	if (!err)
2005 		range->len = (u64)total << PAGE_SHIFT;
2006 	return err;
2007 }
2008 
2009 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2010 {
2011 	struct inode *inode = file_inode(filp);
2012 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2013 	struct f2fs_defragment range;
2014 	int err;
2015 
2016 	if (!capable(CAP_SYS_ADMIN))
2017 		return -EPERM;
2018 
2019 	if (!S_ISREG(inode->i_mode))
2020 		return -EINVAL;
2021 
2022 	err = mnt_want_write_file(filp);
2023 	if (err)
2024 		return err;
2025 
2026 	if (f2fs_readonly(sbi->sb)) {
2027 		err = -EROFS;
2028 		goto out;
2029 	}
2030 
2031 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2032 							sizeof(range))) {
2033 		err = -EFAULT;
2034 		goto out;
2035 	}
2036 
2037 	/* verify alignment of offset & size */
2038 	if (range.start & (F2FS_BLKSIZE - 1) ||
2039 		range.len & (F2FS_BLKSIZE - 1)) {
2040 		err = -EINVAL;
2041 		goto out;
2042 	}
2043 
2044 	err = f2fs_defragment_range(sbi, filp, &range);
2045 	f2fs_update_time(sbi, REQ_TIME);
2046 	if (err < 0)
2047 		goto out;
2048 
2049 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2050 							sizeof(range)))
2051 		err = -EFAULT;
2052 out:
2053 	mnt_drop_write_file(filp);
2054 	return err;
2055 }
2056 
2057 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2058 			struct file *file_out, loff_t pos_out, size_t len)
2059 {
2060 	struct inode *src = file_inode(file_in);
2061 	struct inode *dst = file_inode(file_out);
2062 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2063 	size_t olen = len, dst_max_i_size = 0;
2064 	size_t dst_osize;
2065 	int ret;
2066 
2067 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2068 				src->i_sb != dst->i_sb)
2069 		return -EXDEV;
2070 
2071 	if (unlikely(f2fs_readonly(src->i_sb)))
2072 		return -EROFS;
2073 
2074 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2075 		return -EINVAL;
2076 
2077 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2078 		return -EOPNOTSUPP;
2079 
2080 	if (src == dst) {
2081 		if (pos_in == pos_out)
2082 			return 0;
2083 		if (pos_out > pos_in && pos_out < pos_in + len)
2084 			return -EINVAL;
2085 	}
2086 
2087 	inode_lock(src);
2088 	if (src != dst) {
2089 		if (!inode_trylock(dst)) {
2090 			ret = -EBUSY;
2091 			goto out;
2092 		}
2093 	}
2094 
2095 	ret = -EINVAL;
2096 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2097 		goto out_unlock;
2098 	if (len == 0)
2099 		olen = len = src->i_size - pos_in;
2100 	if (pos_in + len == src->i_size)
2101 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2102 	if (len == 0) {
2103 		ret = 0;
2104 		goto out_unlock;
2105 	}
2106 
2107 	dst_osize = dst->i_size;
2108 	if (pos_out + olen > dst->i_size)
2109 		dst_max_i_size = pos_out + olen;
2110 
2111 	/* verify the end result is block aligned */
2112 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2113 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2114 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2115 		goto out_unlock;
2116 
2117 	ret = f2fs_convert_inline_inode(src);
2118 	if (ret)
2119 		goto out_unlock;
2120 
2121 	ret = f2fs_convert_inline_inode(dst);
2122 	if (ret)
2123 		goto out_unlock;
2124 
2125 	/* write out all dirty pages from offset */
2126 	ret = filemap_write_and_wait_range(src->i_mapping,
2127 					pos_in, pos_in + len);
2128 	if (ret)
2129 		goto out_unlock;
2130 
2131 	ret = filemap_write_and_wait_range(dst->i_mapping,
2132 					pos_out, pos_out + len);
2133 	if (ret)
2134 		goto out_unlock;
2135 
2136 	f2fs_balance_fs(sbi, true);
2137 	f2fs_lock_op(sbi);
2138 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2139 				pos_out >> F2FS_BLKSIZE_BITS,
2140 				len >> F2FS_BLKSIZE_BITS, false);
2141 
2142 	if (!ret) {
2143 		if (dst_max_i_size)
2144 			f2fs_i_size_write(dst, dst_max_i_size);
2145 		else if (dst_osize != dst->i_size)
2146 			f2fs_i_size_write(dst, dst_osize);
2147 	}
2148 	f2fs_unlock_op(sbi);
2149 out_unlock:
2150 	if (src != dst)
2151 		inode_unlock(dst);
2152 out:
2153 	inode_unlock(src);
2154 	return ret;
2155 }
2156 
2157 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2158 {
2159 	struct f2fs_move_range range;
2160 	struct fd dst;
2161 	int err;
2162 
2163 	if (!(filp->f_mode & FMODE_READ) ||
2164 			!(filp->f_mode & FMODE_WRITE))
2165 		return -EBADF;
2166 
2167 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2168 							sizeof(range)))
2169 		return -EFAULT;
2170 
2171 	dst = fdget(range.dst_fd);
2172 	if (!dst.file)
2173 		return -EBADF;
2174 
2175 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2176 		err = -EBADF;
2177 		goto err_out;
2178 	}
2179 
2180 	err = mnt_want_write_file(filp);
2181 	if (err)
2182 		goto err_out;
2183 
2184 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2185 					range.pos_out, range.len);
2186 
2187 	mnt_drop_write_file(filp);
2188 
2189 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2190 						&range, sizeof(range)))
2191 		err = -EFAULT;
2192 err_out:
2193 	fdput(dst);
2194 	return err;
2195 }
2196 
2197 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2198 {
2199 	switch (cmd) {
2200 	case F2FS_IOC_GETFLAGS:
2201 		return f2fs_ioc_getflags(filp, arg);
2202 	case F2FS_IOC_SETFLAGS:
2203 		return f2fs_ioc_setflags(filp, arg);
2204 	case F2FS_IOC_GETVERSION:
2205 		return f2fs_ioc_getversion(filp, arg);
2206 	case F2FS_IOC_START_ATOMIC_WRITE:
2207 		return f2fs_ioc_start_atomic_write(filp);
2208 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2209 		return f2fs_ioc_commit_atomic_write(filp);
2210 	case F2FS_IOC_START_VOLATILE_WRITE:
2211 		return f2fs_ioc_start_volatile_write(filp);
2212 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2213 		return f2fs_ioc_release_volatile_write(filp);
2214 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2215 		return f2fs_ioc_abort_volatile_write(filp);
2216 	case F2FS_IOC_SHUTDOWN:
2217 		return f2fs_ioc_shutdown(filp, arg);
2218 	case FITRIM:
2219 		return f2fs_ioc_fitrim(filp, arg);
2220 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2221 		return f2fs_ioc_set_encryption_policy(filp, arg);
2222 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2223 		return f2fs_ioc_get_encryption_policy(filp, arg);
2224 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2225 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2226 	case F2FS_IOC_GARBAGE_COLLECT:
2227 		return f2fs_ioc_gc(filp, arg);
2228 	case F2FS_IOC_WRITE_CHECKPOINT:
2229 		return f2fs_ioc_write_checkpoint(filp, arg);
2230 	case F2FS_IOC_DEFRAGMENT:
2231 		return f2fs_ioc_defragment(filp, arg);
2232 	case F2FS_IOC_MOVE_RANGE:
2233 		return f2fs_ioc_move_range(filp, arg);
2234 	default:
2235 		return -ENOTTY;
2236 	}
2237 }
2238 
2239 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2240 {
2241 	struct file *file = iocb->ki_filp;
2242 	struct inode *inode = file_inode(file);
2243 	struct blk_plug plug;
2244 	ssize_t ret;
2245 
2246 	if (f2fs_encrypted_inode(inode) &&
2247 				!fscrypt_has_encryption_key(inode) &&
2248 				fscrypt_get_encryption_info(inode))
2249 		return -EACCES;
2250 
2251 	inode_lock(inode);
2252 	ret = generic_write_checks(iocb, from);
2253 	if (ret > 0) {
2254 		int err = f2fs_preallocate_blocks(iocb, from);
2255 
2256 		if (err) {
2257 			inode_unlock(inode);
2258 			return err;
2259 		}
2260 		blk_start_plug(&plug);
2261 		ret = __generic_file_write_iter(iocb, from);
2262 		blk_finish_plug(&plug);
2263 	}
2264 	inode_unlock(inode);
2265 
2266 	if (ret > 0)
2267 		ret = generic_write_sync(iocb, ret);
2268 	return ret;
2269 }
2270 
2271 #ifdef CONFIG_COMPAT
2272 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2273 {
2274 	switch (cmd) {
2275 	case F2FS_IOC32_GETFLAGS:
2276 		cmd = F2FS_IOC_GETFLAGS;
2277 		break;
2278 	case F2FS_IOC32_SETFLAGS:
2279 		cmd = F2FS_IOC_SETFLAGS;
2280 		break;
2281 	case F2FS_IOC32_GETVERSION:
2282 		cmd = F2FS_IOC_GETVERSION;
2283 		break;
2284 	case F2FS_IOC_START_ATOMIC_WRITE:
2285 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2286 	case F2FS_IOC_START_VOLATILE_WRITE:
2287 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2288 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2289 	case F2FS_IOC_SHUTDOWN:
2290 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2291 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2292 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2293 	case F2FS_IOC_GARBAGE_COLLECT:
2294 	case F2FS_IOC_WRITE_CHECKPOINT:
2295 	case F2FS_IOC_DEFRAGMENT:
2296 		break;
2297 	case F2FS_IOC_MOVE_RANGE:
2298 		break;
2299 	default:
2300 		return -ENOIOCTLCMD;
2301 	}
2302 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2303 }
2304 #endif
2305 
2306 const struct file_operations f2fs_file_operations = {
2307 	.llseek		= f2fs_llseek,
2308 	.read_iter	= generic_file_read_iter,
2309 	.write_iter	= f2fs_file_write_iter,
2310 	.open		= f2fs_file_open,
2311 	.release	= f2fs_release_file,
2312 	.mmap		= f2fs_file_mmap,
2313 	.fsync		= f2fs_sync_file,
2314 	.fallocate	= f2fs_fallocate,
2315 	.unlocked_ioctl	= f2fs_ioctl,
2316 #ifdef CONFIG_COMPAT
2317 	.compat_ioctl	= f2fs_compat_ioctl,
2318 #endif
2319 	.splice_read	= generic_file_splice_read,
2320 	.splice_write	= iter_file_splice_write,
2321 };
2322