xref: /openbmc/linux/fs/f2fs/file.c (revision d4295e12)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "xattr.h"
28 #include "acl.h"
29 #include "gc.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32 
33 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
34 {
35 	struct inode *inode = file_inode(vmf->vma->vm_file);
36 	vm_fault_t ret;
37 
38 	down_read(&F2FS_I(inode)->i_mmap_sem);
39 	ret = filemap_fault(vmf);
40 	up_read(&F2FS_I(inode)->i_mmap_sem);
41 
42 	return ret;
43 }
44 
45 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
46 {
47 	struct page *page = vmf->page;
48 	struct inode *inode = file_inode(vmf->vma->vm_file);
49 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
50 	struct dnode_of_data dn = { .node_changed = false };
51 	int err;
52 
53 	if (unlikely(f2fs_cp_error(sbi))) {
54 		err = -EIO;
55 		goto err;
56 	}
57 
58 	sb_start_pagefault(inode->i_sb);
59 
60 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
61 
62 	file_update_time(vmf->vma->vm_file);
63 	down_read(&F2FS_I(inode)->i_mmap_sem);
64 	lock_page(page);
65 	if (unlikely(page->mapping != inode->i_mapping ||
66 			page_offset(page) > i_size_read(inode) ||
67 			!PageUptodate(page))) {
68 		unlock_page(page);
69 		err = -EFAULT;
70 		goto out_sem;
71 	}
72 
73 	/* block allocation */
74 	__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
75 	set_new_dnode(&dn, inode, NULL, NULL, 0);
76 	err = f2fs_get_block(&dn, page->index);
77 	f2fs_put_dnode(&dn);
78 	__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
79 	if (err) {
80 		unlock_page(page);
81 		goto out_sem;
82 	}
83 
84 	/* fill the page */
85 	f2fs_wait_on_page_writeback(page, DATA, false);
86 
87 	/* wait for GCed page writeback via META_MAPPING */
88 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
89 
90 	/*
91 	 * check to see if the page is mapped already (no holes)
92 	 */
93 	if (PageMappedToDisk(page))
94 		goto out_sem;
95 
96 	/* page is wholly or partially inside EOF */
97 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
98 						i_size_read(inode)) {
99 		loff_t offset;
100 
101 		offset = i_size_read(inode) & ~PAGE_MASK;
102 		zero_user_segment(page, offset, PAGE_SIZE);
103 	}
104 	set_page_dirty(page);
105 	if (!PageUptodate(page))
106 		SetPageUptodate(page);
107 
108 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
109 	f2fs_update_time(sbi, REQ_TIME);
110 
111 	trace_f2fs_vm_page_mkwrite(page, DATA);
112 out_sem:
113 	up_read(&F2FS_I(inode)->i_mmap_sem);
114 
115 	f2fs_balance_fs(sbi, dn.node_changed);
116 
117 	sb_end_pagefault(inode->i_sb);
118 err:
119 	return block_page_mkwrite_return(err);
120 }
121 
122 static const struct vm_operations_struct f2fs_file_vm_ops = {
123 	.fault		= f2fs_filemap_fault,
124 	.map_pages	= filemap_map_pages,
125 	.page_mkwrite	= f2fs_vm_page_mkwrite,
126 };
127 
128 static int get_parent_ino(struct inode *inode, nid_t *pino)
129 {
130 	struct dentry *dentry;
131 
132 	inode = igrab(inode);
133 	dentry = d_find_any_alias(inode);
134 	iput(inode);
135 	if (!dentry)
136 		return 0;
137 
138 	*pino = parent_ino(dentry);
139 	dput(dentry);
140 	return 1;
141 }
142 
143 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
144 {
145 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
146 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
147 
148 	if (!S_ISREG(inode->i_mode))
149 		cp_reason = CP_NON_REGULAR;
150 	else if (inode->i_nlink != 1)
151 		cp_reason = CP_HARDLINK;
152 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
153 		cp_reason = CP_SB_NEED_CP;
154 	else if (file_wrong_pino(inode))
155 		cp_reason = CP_WRONG_PINO;
156 	else if (!f2fs_space_for_roll_forward(sbi))
157 		cp_reason = CP_NO_SPC_ROLL;
158 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
159 		cp_reason = CP_NODE_NEED_CP;
160 	else if (test_opt(sbi, FASTBOOT))
161 		cp_reason = CP_FASTBOOT_MODE;
162 	else if (F2FS_OPTION(sbi).active_logs == 2)
163 		cp_reason = CP_SPEC_LOG_NUM;
164 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
165 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
166 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
167 							TRANS_DIR_INO))
168 		cp_reason = CP_RECOVER_DIR;
169 
170 	return cp_reason;
171 }
172 
173 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
174 {
175 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
176 	bool ret = false;
177 	/* But we need to avoid that there are some inode updates */
178 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
179 		ret = true;
180 	f2fs_put_page(i, 0);
181 	return ret;
182 }
183 
184 static void try_to_fix_pino(struct inode *inode)
185 {
186 	struct f2fs_inode_info *fi = F2FS_I(inode);
187 	nid_t pino;
188 
189 	down_write(&fi->i_sem);
190 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
191 			get_parent_ino(inode, &pino)) {
192 		f2fs_i_pino_write(inode, pino);
193 		file_got_pino(inode);
194 	}
195 	up_write(&fi->i_sem);
196 }
197 
198 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
199 						int datasync, bool atomic)
200 {
201 	struct inode *inode = file->f_mapping->host;
202 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
203 	nid_t ino = inode->i_ino;
204 	int ret = 0;
205 	enum cp_reason_type cp_reason = 0;
206 	struct writeback_control wbc = {
207 		.sync_mode = WB_SYNC_ALL,
208 		.nr_to_write = LONG_MAX,
209 		.for_reclaim = 0,
210 	};
211 	unsigned int seq_id = 0;
212 
213 	if (unlikely(f2fs_readonly(inode->i_sb) ||
214 				is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
215 		return 0;
216 
217 	trace_f2fs_sync_file_enter(inode);
218 
219 	/* if fdatasync is triggered, let's do in-place-update */
220 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
221 		set_inode_flag(inode, FI_NEED_IPU);
222 	ret = file_write_and_wait_range(file, start, end);
223 	clear_inode_flag(inode, FI_NEED_IPU);
224 
225 	if (ret) {
226 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
227 		return ret;
228 	}
229 
230 	/* if the inode is dirty, let's recover all the time */
231 	if (!f2fs_skip_inode_update(inode, datasync)) {
232 		f2fs_write_inode(inode, NULL);
233 		goto go_write;
234 	}
235 
236 	/*
237 	 * if there is no written data, don't waste time to write recovery info.
238 	 */
239 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
240 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
241 
242 		/* it may call write_inode just prior to fsync */
243 		if (need_inode_page_update(sbi, ino))
244 			goto go_write;
245 
246 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
247 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
248 			goto flush_out;
249 		goto out;
250 	}
251 go_write:
252 	/*
253 	 * Both of fdatasync() and fsync() are able to be recovered from
254 	 * sudden-power-off.
255 	 */
256 	down_read(&F2FS_I(inode)->i_sem);
257 	cp_reason = need_do_checkpoint(inode);
258 	up_read(&F2FS_I(inode)->i_sem);
259 
260 	if (cp_reason) {
261 		/* all the dirty node pages should be flushed for POR */
262 		ret = f2fs_sync_fs(inode->i_sb, 1);
263 
264 		/*
265 		 * We've secured consistency through sync_fs. Following pino
266 		 * will be used only for fsynced inodes after checkpoint.
267 		 */
268 		try_to_fix_pino(inode);
269 		clear_inode_flag(inode, FI_APPEND_WRITE);
270 		clear_inode_flag(inode, FI_UPDATE_WRITE);
271 		goto out;
272 	}
273 sync_nodes:
274 	atomic_inc(&sbi->wb_sync_req[NODE]);
275 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
276 	atomic_dec(&sbi->wb_sync_req[NODE]);
277 	if (ret)
278 		goto out;
279 
280 	/* if cp_error was enabled, we should avoid infinite loop */
281 	if (unlikely(f2fs_cp_error(sbi))) {
282 		ret = -EIO;
283 		goto out;
284 	}
285 
286 	if (f2fs_need_inode_block_update(sbi, ino)) {
287 		f2fs_mark_inode_dirty_sync(inode, true);
288 		f2fs_write_inode(inode, NULL);
289 		goto sync_nodes;
290 	}
291 
292 	/*
293 	 * If it's atomic_write, it's just fine to keep write ordering. So
294 	 * here we don't need to wait for node write completion, since we use
295 	 * node chain which serializes node blocks. If one of node writes are
296 	 * reordered, we can see simply broken chain, resulting in stopping
297 	 * roll-forward recovery. It means we'll recover all or none node blocks
298 	 * given fsync mark.
299 	 */
300 	if (!atomic) {
301 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
302 		if (ret)
303 			goto out;
304 	}
305 
306 	/* once recovery info is written, don't need to tack this */
307 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
308 	clear_inode_flag(inode, FI_APPEND_WRITE);
309 flush_out:
310 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
311 		ret = f2fs_issue_flush(sbi, inode->i_ino);
312 	if (!ret) {
313 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
314 		clear_inode_flag(inode, FI_UPDATE_WRITE);
315 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
316 	}
317 	f2fs_update_time(sbi, REQ_TIME);
318 out:
319 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
320 	f2fs_trace_ios(NULL, 1);
321 	return ret;
322 }
323 
324 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
325 {
326 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
327 		return -EIO;
328 	return f2fs_do_sync_file(file, start, end, datasync, false);
329 }
330 
331 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
332 						pgoff_t pgofs, int whence)
333 {
334 	struct page *page;
335 	int nr_pages;
336 
337 	if (whence != SEEK_DATA)
338 		return 0;
339 
340 	/* find first dirty page index */
341 	nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
342 				      1, &page);
343 	if (!nr_pages)
344 		return ULONG_MAX;
345 	pgofs = page->index;
346 	put_page(page);
347 	return pgofs;
348 }
349 
350 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
351 				pgoff_t dirty, pgoff_t pgofs, int whence)
352 {
353 	switch (whence) {
354 	case SEEK_DATA:
355 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
356 			is_valid_data_blkaddr(sbi, blkaddr))
357 			return true;
358 		break;
359 	case SEEK_HOLE:
360 		if (blkaddr == NULL_ADDR)
361 			return true;
362 		break;
363 	}
364 	return false;
365 }
366 
367 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
368 {
369 	struct inode *inode = file->f_mapping->host;
370 	loff_t maxbytes = inode->i_sb->s_maxbytes;
371 	struct dnode_of_data dn;
372 	pgoff_t pgofs, end_offset, dirty;
373 	loff_t data_ofs = offset;
374 	loff_t isize;
375 	int err = 0;
376 
377 	inode_lock(inode);
378 
379 	isize = i_size_read(inode);
380 	if (offset >= isize)
381 		goto fail;
382 
383 	/* handle inline data case */
384 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
385 		if (whence == SEEK_HOLE)
386 			data_ofs = isize;
387 		goto found;
388 	}
389 
390 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
391 
392 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
393 
394 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
395 		set_new_dnode(&dn, inode, NULL, NULL, 0);
396 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
397 		if (err && err != -ENOENT) {
398 			goto fail;
399 		} else if (err == -ENOENT) {
400 			/* direct node does not exists */
401 			if (whence == SEEK_DATA) {
402 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
403 				continue;
404 			} else {
405 				goto found;
406 			}
407 		}
408 
409 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
410 
411 		/* find data/hole in dnode block */
412 		for (; dn.ofs_in_node < end_offset;
413 				dn.ofs_in_node++, pgofs++,
414 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
415 			block_t blkaddr;
416 
417 			blkaddr = datablock_addr(dn.inode,
418 					dn.node_page, dn.ofs_in_node);
419 
420 			if (__is_valid_data_blkaddr(blkaddr) &&
421 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
422 						blkaddr, DATA_GENERIC)) {
423 				f2fs_put_dnode(&dn);
424 				goto fail;
425 			}
426 
427 			if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
428 							pgofs, whence)) {
429 				f2fs_put_dnode(&dn);
430 				goto found;
431 			}
432 		}
433 		f2fs_put_dnode(&dn);
434 	}
435 
436 	if (whence == SEEK_DATA)
437 		goto fail;
438 found:
439 	if (whence == SEEK_HOLE && data_ofs > isize)
440 		data_ofs = isize;
441 	inode_unlock(inode);
442 	return vfs_setpos(file, data_ofs, maxbytes);
443 fail:
444 	inode_unlock(inode);
445 	return -ENXIO;
446 }
447 
448 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
449 {
450 	struct inode *inode = file->f_mapping->host;
451 	loff_t maxbytes = inode->i_sb->s_maxbytes;
452 
453 	switch (whence) {
454 	case SEEK_SET:
455 	case SEEK_CUR:
456 	case SEEK_END:
457 		return generic_file_llseek_size(file, offset, whence,
458 						maxbytes, i_size_read(inode));
459 	case SEEK_DATA:
460 	case SEEK_HOLE:
461 		if (offset < 0)
462 			return -ENXIO;
463 		return f2fs_seek_block(file, offset, whence);
464 	}
465 
466 	return -EINVAL;
467 }
468 
469 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
470 {
471 	struct inode *inode = file_inode(file);
472 	int err;
473 
474 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
475 		return -EIO;
476 
477 	/* we don't need to use inline_data strictly */
478 	err = f2fs_convert_inline_inode(inode);
479 	if (err)
480 		return err;
481 
482 	file_accessed(file);
483 	vma->vm_ops = &f2fs_file_vm_ops;
484 	return 0;
485 }
486 
487 static int f2fs_file_open(struct inode *inode, struct file *filp)
488 {
489 	int err = fscrypt_file_open(inode, filp);
490 
491 	if (err)
492 		return err;
493 
494 	filp->f_mode |= FMODE_NOWAIT;
495 
496 	return dquot_file_open(inode, filp);
497 }
498 
499 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
500 {
501 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
502 	struct f2fs_node *raw_node;
503 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
504 	__le32 *addr;
505 	int base = 0;
506 
507 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
508 		base = get_extra_isize(dn->inode);
509 
510 	raw_node = F2FS_NODE(dn->node_page);
511 	addr = blkaddr_in_node(raw_node) + base + ofs;
512 
513 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
514 		block_t blkaddr = le32_to_cpu(*addr);
515 
516 		if (blkaddr == NULL_ADDR)
517 			continue;
518 
519 		dn->data_blkaddr = NULL_ADDR;
520 		f2fs_set_data_blkaddr(dn);
521 
522 		if (__is_valid_data_blkaddr(blkaddr) &&
523 			!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
524 			continue;
525 
526 		f2fs_invalidate_blocks(sbi, blkaddr);
527 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
528 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
529 		nr_free++;
530 	}
531 
532 	if (nr_free) {
533 		pgoff_t fofs;
534 		/*
535 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
536 		 * we will invalidate all blkaddr in the whole range.
537 		 */
538 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
539 							dn->inode) + ofs;
540 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
541 		dec_valid_block_count(sbi, dn->inode, nr_free);
542 	}
543 	dn->ofs_in_node = ofs;
544 
545 	f2fs_update_time(sbi, REQ_TIME);
546 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
547 					 dn->ofs_in_node, nr_free);
548 }
549 
550 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
551 {
552 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
553 }
554 
555 static int truncate_partial_data_page(struct inode *inode, u64 from,
556 								bool cache_only)
557 {
558 	loff_t offset = from & (PAGE_SIZE - 1);
559 	pgoff_t index = from >> PAGE_SHIFT;
560 	struct address_space *mapping = inode->i_mapping;
561 	struct page *page;
562 
563 	if (!offset && !cache_only)
564 		return 0;
565 
566 	if (cache_only) {
567 		page = find_lock_page(mapping, index);
568 		if (page && PageUptodate(page))
569 			goto truncate_out;
570 		f2fs_put_page(page, 1);
571 		return 0;
572 	}
573 
574 	page = f2fs_get_lock_data_page(inode, index, true);
575 	if (IS_ERR(page))
576 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
577 truncate_out:
578 	f2fs_wait_on_page_writeback(page, DATA, true);
579 	zero_user(page, offset, PAGE_SIZE - offset);
580 
581 	/* An encrypted inode should have a key and truncate the last page. */
582 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
583 	if (!cache_only)
584 		set_page_dirty(page);
585 	f2fs_put_page(page, 1);
586 	return 0;
587 }
588 
589 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock,
590 							bool buf_write)
591 {
592 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
593 	struct dnode_of_data dn;
594 	pgoff_t free_from;
595 	int count = 0, err = 0;
596 	struct page *ipage;
597 	bool truncate_page = false;
598 	int flag = buf_write ? F2FS_GET_BLOCK_PRE_AIO : F2FS_GET_BLOCK_PRE_DIO;
599 
600 	trace_f2fs_truncate_blocks_enter(inode, from);
601 
602 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
603 
604 	if (free_from >= sbi->max_file_blocks)
605 		goto free_partial;
606 
607 	if (lock)
608 		__do_map_lock(sbi, flag, true);
609 
610 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
611 	if (IS_ERR(ipage)) {
612 		err = PTR_ERR(ipage);
613 		goto out;
614 	}
615 
616 	if (f2fs_has_inline_data(inode)) {
617 		f2fs_truncate_inline_inode(inode, ipage, from);
618 		f2fs_put_page(ipage, 1);
619 		truncate_page = true;
620 		goto out;
621 	}
622 
623 	set_new_dnode(&dn, inode, ipage, NULL, 0);
624 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
625 	if (err) {
626 		if (err == -ENOENT)
627 			goto free_next;
628 		goto out;
629 	}
630 
631 	count = ADDRS_PER_PAGE(dn.node_page, inode);
632 
633 	count -= dn.ofs_in_node;
634 	f2fs_bug_on(sbi, count < 0);
635 
636 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
637 		f2fs_truncate_data_blocks_range(&dn, count);
638 		free_from += count;
639 	}
640 
641 	f2fs_put_dnode(&dn);
642 free_next:
643 	err = f2fs_truncate_inode_blocks(inode, free_from);
644 out:
645 	if (lock)
646 		__do_map_lock(sbi, flag, false);
647 free_partial:
648 	/* lastly zero out the first data page */
649 	if (!err)
650 		err = truncate_partial_data_page(inode, from, truncate_page);
651 
652 	trace_f2fs_truncate_blocks_exit(inode, err);
653 	return err;
654 }
655 
656 int f2fs_truncate(struct inode *inode)
657 {
658 	int err;
659 
660 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
661 		return -EIO;
662 
663 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
664 				S_ISLNK(inode->i_mode)))
665 		return 0;
666 
667 	trace_f2fs_truncate(inode);
668 
669 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
670 		f2fs_show_injection_info(FAULT_TRUNCATE);
671 		return -EIO;
672 	}
673 
674 	/* we should check inline_data size */
675 	if (!f2fs_may_inline_data(inode)) {
676 		err = f2fs_convert_inline_inode(inode);
677 		if (err)
678 			return err;
679 	}
680 
681 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true, false);
682 	if (err)
683 		return err;
684 
685 	inode->i_mtime = inode->i_ctime = current_time(inode);
686 	f2fs_mark_inode_dirty_sync(inode, false);
687 	return 0;
688 }
689 
690 int f2fs_getattr(const struct path *path, struct kstat *stat,
691 		 u32 request_mask, unsigned int query_flags)
692 {
693 	struct inode *inode = d_inode(path->dentry);
694 	struct f2fs_inode_info *fi = F2FS_I(inode);
695 	struct f2fs_inode *ri;
696 	unsigned int flags;
697 
698 	if (f2fs_has_extra_attr(inode) &&
699 			f2fs_sb_has_inode_crtime(inode->i_sb) &&
700 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
701 		stat->result_mask |= STATX_BTIME;
702 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
703 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
704 	}
705 
706 	flags = fi->i_flags & F2FS_FL_USER_VISIBLE;
707 	if (flags & F2FS_APPEND_FL)
708 		stat->attributes |= STATX_ATTR_APPEND;
709 	if (flags & F2FS_COMPR_FL)
710 		stat->attributes |= STATX_ATTR_COMPRESSED;
711 	if (f2fs_encrypted_inode(inode))
712 		stat->attributes |= STATX_ATTR_ENCRYPTED;
713 	if (flags & F2FS_IMMUTABLE_FL)
714 		stat->attributes |= STATX_ATTR_IMMUTABLE;
715 	if (flags & F2FS_NODUMP_FL)
716 		stat->attributes |= STATX_ATTR_NODUMP;
717 
718 	stat->attributes_mask |= (STATX_ATTR_APPEND |
719 				  STATX_ATTR_COMPRESSED |
720 				  STATX_ATTR_ENCRYPTED |
721 				  STATX_ATTR_IMMUTABLE |
722 				  STATX_ATTR_NODUMP);
723 
724 	generic_fillattr(inode, stat);
725 
726 	/* we need to show initial sectors used for inline_data/dentries */
727 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
728 					f2fs_has_inline_dentry(inode))
729 		stat->blocks += (stat->size + 511) >> 9;
730 
731 	return 0;
732 }
733 
734 #ifdef CONFIG_F2FS_FS_POSIX_ACL
735 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
736 {
737 	unsigned int ia_valid = attr->ia_valid;
738 
739 	if (ia_valid & ATTR_UID)
740 		inode->i_uid = attr->ia_uid;
741 	if (ia_valid & ATTR_GID)
742 		inode->i_gid = attr->ia_gid;
743 	if (ia_valid & ATTR_ATIME)
744 		inode->i_atime = timespec64_trunc(attr->ia_atime,
745 						  inode->i_sb->s_time_gran);
746 	if (ia_valid & ATTR_MTIME)
747 		inode->i_mtime = timespec64_trunc(attr->ia_mtime,
748 						  inode->i_sb->s_time_gran);
749 	if (ia_valid & ATTR_CTIME)
750 		inode->i_ctime = timespec64_trunc(attr->ia_ctime,
751 						  inode->i_sb->s_time_gran);
752 	if (ia_valid & ATTR_MODE) {
753 		umode_t mode = attr->ia_mode;
754 
755 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
756 			mode &= ~S_ISGID;
757 		set_acl_inode(inode, mode);
758 	}
759 }
760 #else
761 #define __setattr_copy setattr_copy
762 #endif
763 
764 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
765 {
766 	struct inode *inode = d_inode(dentry);
767 	int err;
768 	bool size_changed = false;
769 
770 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
771 		return -EIO;
772 
773 	err = setattr_prepare(dentry, attr);
774 	if (err)
775 		return err;
776 
777 	err = fscrypt_prepare_setattr(dentry, attr);
778 	if (err)
779 		return err;
780 
781 	if (is_quota_modification(inode, attr)) {
782 		err = dquot_initialize(inode);
783 		if (err)
784 			return err;
785 	}
786 	if ((attr->ia_valid & ATTR_UID &&
787 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
788 		(attr->ia_valid & ATTR_GID &&
789 		!gid_eq(attr->ia_gid, inode->i_gid))) {
790 		f2fs_lock_op(F2FS_I_SB(inode));
791 		err = dquot_transfer(inode, attr);
792 		if (err) {
793 			set_sbi_flag(F2FS_I_SB(inode),
794 					SBI_QUOTA_NEED_REPAIR);
795 			f2fs_unlock_op(F2FS_I_SB(inode));
796 			return err;
797 		}
798 		/*
799 		 * update uid/gid under lock_op(), so that dquot and inode can
800 		 * be updated atomically.
801 		 */
802 		if (attr->ia_valid & ATTR_UID)
803 			inode->i_uid = attr->ia_uid;
804 		if (attr->ia_valid & ATTR_GID)
805 			inode->i_gid = attr->ia_gid;
806 		f2fs_mark_inode_dirty_sync(inode, true);
807 		f2fs_unlock_op(F2FS_I_SB(inode));
808 	}
809 
810 	if (attr->ia_valid & ATTR_SIZE) {
811 		bool to_smaller = (attr->ia_size <= i_size_read(inode));
812 
813 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
814 		down_write(&F2FS_I(inode)->i_mmap_sem);
815 
816 		truncate_setsize(inode, attr->ia_size);
817 
818 		if (to_smaller)
819 			err = f2fs_truncate(inode);
820 		/*
821 		 * do not trim all blocks after i_size if target size is
822 		 * larger than i_size.
823 		 */
824 		up_write(&F2FS_I(inode)->i_mmap_sem);
825 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
826 
827 		if (err)
828 			return err;
829 
830 		if (!to_smaller) {
831 			/* should convert inline inode here */
832 			if (!f2fs_may_inline_data(inode)) {
833 				err = f2fs_convert_inline_inode(inode);
834 				if (err)
835 					return err;
836 			}
837 			inode->i_mtime = inode->i_ctime = current_time(inode);
838 		}
839 
840 		down_write(&F2FS_I(inode)->i_sem);
841 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
842 		up_write(&F2FS_I(inode)->i_sem);
843 
844 		size_changed = true;
845 	}
846 
847 	__setattr_copy(inode, attr);
848 
849 	if (attr->ia_valid & ATTR_MODE) {
850 		err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
851 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
852 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
853 			clear_inode_flag(inode, FI_ACL_MODE);
854 		}
855 	}
856 
857 	/* file size may changed here */
858 	f2fs_mark_inode_dirty_sync(inode, size_changed);
859 
860 	/* inode change will produce dirty node pages flushed by checkpoint */
861 	f2fs_balance_fs(F2FS_I_SB(inode), true);
862 
863 	return err;
864 }
865 
866 const struct inode_operations f2fs_file_inode_operations = {
867 	.getattr	= f2fs_getattr,
868 	.setattr	= f2fs_setattr,
869 	.get_acl	= f2fs_get_acl,
870 	.set_acl	= f2fs_set_acl,
871 #ifdef CONFIG_F2FS_FS_XATTR
872 	.listxattr	= f2fs_listxattr,
873 #endif
874 	.fiemap		= f2fs_fiemap,
875 };
876 
877 static int fill_zero(struct inode *inode, pgoff_t index,
878 					loff_t start, loff_t len)
879 {
880 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
881 	struct page *page;
882 
883 	if (!len)
884 		return 0;
885 
886 	f2fs_balance_fs(sbi, true);
887 
888 	f2fs_lock_op(sbi);
889 	page = f2fs_get_new_data_page(inode, NULL, index, false);
890 	f2fs_unlock_op(sbi);
891 
892 	if (IS_ERR(page))
893 		return PTR_ERR(page);
894 
895 	f2fs_wait_on_page_writeback(page, DATA, true);
896 	zero_user(page, start, len);
897 	set_page_dirty(page);
898 	f2fs_put_page(page, 1);
899 	return 0;
900 }
901 
902 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
903 {
904 	int err;
905 
906 	while (pg_start < pg_end) {
907 		struct dnode_of_data dn;
908 		pgoff_t end_offset, count;
909 
910 		set_new_dnode(&dn, inode, NULL, NULL, 0);
911 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
912 		if (err) {
913 			if (err == -ENOENT) {
914 				pg_start = f2fs_get_next_page_offset(&dn,
915 								pg_start);
916 				continue;
917 			}
918 			return err;
919 		}
920 
921 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
922 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
923 
924 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
925 
926 		f2fs_truncate_data_blocks_range(&dn, count);
927 		f2fs_put_dnode(&dn);
928 
929 		pg_start += count;
930 	}
931 	return 0;
932 }
933 
934 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
935 {
936 	pgoff_t pg_start, pg_end;
937 	loff_t off_start, off_end;
938 	int ret;
939 
940 	ret = f2fs_convert_inline_inode(inode);
941 	if (ret)
942 		return ret;
943 
944 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
945 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
946 
947 	off_start = offset & (PAGE_SIZE - 1);
948 	off_end = (offset + len) & (PAGE_SIZE - 1);
949 
950 	if (pg_start == pg_end) {
951 		ret = fill_zero(inode, pg_start, off_start,
952 						off_end - off_start);
953 		if (ret)
954 			return ret;
955 	} else {
956 		if (off_start) {
957 			ret = fill_zero(inode, pg_start++, off_start,
958 						PAGE_SIZE - off_start);
959 			if (ret)
960 				return ret;
961 		}
962 		if (off_end) {
963 			ret = fill_zero(inode, pg_end, 0, off_end);
964 			if (ret)
965 				return ret;
966 		}
967 
968 		if (pg_start < pg_end) {
969 			struct address_space *mapping = inode->i_mapping;
970 			loff_t blk_start, blk_end;
971 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
972 
973 			f2fs_balance_fs(sbi, true);
974 
975 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
976 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
977 
978 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
979 			down_write(&F2FS_I(inode)->i_mmap_sem);
980 
981 			truncate_inode_pages_range(mapping, blk_start,
982 					blk_end - 1);
983 
984 			f2fs_lock_op(sbi);
985 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
986 			f2fs_unlock_op(sbi);
987 
988 			up_write(&F2FS_I(inode)->i_mmap_sem);
989 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
990 		}
991 	}
992 
993 	return ret;
994 }
995 
996 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
997 				int *do_replace, pgoff_t off, pgoff_t len)
998 {
999 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1000 	struct dnode_of_data dn;
1001 	int ret, done, i;
1002 
1003 next_dnode:
1004 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1005 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1006 	if (ret && ret != -ENOENT) {
1007 		return ret;
1008 	} else if (ret == -ENOENT) {
1009 		if (dn.max_level == 0)
1010 			return -ENOENT;
1011 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
1012 		blkaddr += done;
1013 		do_replace += done;
1014 		goto next;
1015 	}
1016 
1017 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1018 							dn.ofs_in_node, len);
1019 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1020 		*blkaddr = datablock_addr(dn.inode,
1021 					dn.node_page, dn.ofs_in_node);
1022 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1023 
1024 			if (test_opt(sbi, LFS)) {
1025 				f2fs_put_dnode(&dn);
1026 				return -ENOTSUPP;
1027 			}
1028 
1029 			/* do not invalidate this block address */
1030 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1031 			*do_replace = 1;
1032 		}
1033 	}
1034 	f2fs_put_dnode(&dn);
1035 next:
1036 	len -= done;
1037 	off += done;
1038 	if (len)
1039 		goto next_dnode;
1040 	return 0;
1041 }
1042 
1043 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1044 				int *do_replace, pgoff_t off, int len)
1045 {
1046 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1047 	struct dnode_of_data dn;
1048 	int ret, i;
1049 
1050 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1051 		if (*do_replace == 0)
1052 			continue;
1053 
1054 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1055 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1056 		if (ret) {
1057 			dec_valid_block_count(sbi, inode, 1);
1058 			f2fs_invalidate_blocks(sbi, *blkaddr);
1059 		} else {
1060 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1061 		}
1062 		f2fs_put_dnode(&dn);
1063 	}
1064 	return 0;
1065 }
1066 
1067 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1068 			block_t *blkaddr, int *do_replace,
1069 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1070 {
1071 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1072 	pgoff_t i = 0;
1073 	int ret;
1074 
1075 	while (i < len) {
1076 		if (blkaddr[i] == NULL_ADDR && !full) {
1077 			i++;
1078 			continue;
1079 		}
1080 
1081 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1082 			struct dnode_of_data dn;
1083 			struct node_info ni;
1084 			size_t new_size;
1085 			pgoff_t ilen;
1086 
1087 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1088 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1089 			if (ret)
1090 				return ret;
1091 
1092 			ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1093 			if (ret) {
1094 				f2fs_put_dnode(&dn);
1095 				return ret;
1096 			}
1097 
1098 			ilen = min((pgoff_t)
1099 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1100 						dn.ofs_in_node, len - i);
1101 			do {
1102 				dn.data_blkaddr = datablock_addr(dn.inode,
1103 						dn.node_page, dn.ofs_in_node);
1104 				f2fs_truncate_data_blocks_range(&dn, 1);
1105 
1106 				if (do_replace[i]) {
1107 					f2fs_i_blocks_write(src_inode,
1108 							1, false, false);
1109 					f2fs_i_blocks_write(dst_inode,
1110 							1, true, false);
1111 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1112 					blkaddr[i], ni.version, true, false);
1113 
1114 					do_replace[i] = 0;
1115 				}
1116 				dn.ofs_in_node++;
1117 				i++;
1118 				new_size = (dst + i) << PAGE_SHIFT;
1119 				if (dst_inode->i_size < new_size)
1120 					f2fs_i_size_write(dst_inode, new_size);
1121 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1122 
1123 			f2fs_put_dnode(&dn);
1124 		} else {
1125 			struct page *psrc, *pdst;
1126 
1127 			psrc = f2fs_get_lock_data_page(src_inode,
1128 							src + i, true);
1129 			if (IS_ERR(psrc))
1130 				return PTR_ERR(psrc);
1131 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1132 								true);
1133 			if (IS_ERR(pdst)) {
1134 				f2fs_put_page(psrc, 1);
1135 				return PTR_ERR(pdst);
1136 			}
1137 			f2fs_copy_page(psrc, pdst);
1138 			set_page_dirty(pdst);
1139 			f2fs_put_page(pdst, 1);
1140 			f2fs_put_page(psrc, 1);
1141 
1142 			ret = f2fs_truncate_hole(src_inode,
1143 						src + i, src + i + 1);
1144 			if (ret)
1145 				return ret;
1146 			i++;
1147 		}
1148 	}
1149 	return 0;
1150 }
1151 
1152 static int __exchange_data_block(struct inode *src_inode,
1153 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1154 			pgoff_t len, bool full)
1155 {
1156 	block_t *src_blkaddr;
1157 	int *do_replace;
1158 	pgoff_t olen;
1159 	int ret;
1160 
1161 	while (len) {
1162 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1163 
1164 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1165 					array_size(olen, sizeof(block_t)),
1166 					GFP_KERNEL);
1167 		if (!src_blkaddr)
1168 			return -ENOMEM;
1169 
1170 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1171 					array_size(olen, sizeof(int)),
1172 					GFP_KERNEL);
1173 		if (!do_replace) {
1174 			kvfree(src_blkaddr);
1175 			return -ENOMEM;
1176 		}
1177 
1178 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1179 					do_replace, src, olen);
1180 		if (ret)
1181 			goto roll_back;
1182 
1183 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1184 					do_replace, src, dst, olen, full);
1185 		if (ret)
1186 			goto roll_back;
1187 
1188 		src += olen;
1189 		dst += olen;
1190 		len -= olen;
1191 
1192 		kvfree(src_blkaddr);
1193 		kvfree(do_replace);
1194 	}
1195 	return 0;
1196 
1197 roll_back:
1198 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1199 	kvfree(src_blkaddr);
1200 	kvfree(do_replace);
1201 	return ret;
1202 }
1203 
1204 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1205 {
1206 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1207 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1208 	pgoff_t start = offset >> PAGE_SHIFT;
1209 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1210 	int ret;
1211 
1212 	f2fs_balance_fs(sbi, true);
1213 
1214 	/* avoid gc operation during block exchange */
1215 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1216 	down_write(&F2FS_I(inode)->i_mmap_sem);
1217 
1218 	f2fs_lock_op(sbi);
1219 	f2fs_drop_extent_tree(inode);
1220 	truncate_pagecache(inode, offset);
1221 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1222 	f2fs_unlock_op(sbi);
1223 
1224 	up_write(&F2FS_I(inode)->i_mmap_sem);
1225 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1226 	return ret;
1227 }
1228 
1229 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1230 {
1231 	loff_t new_size;
1232 	int ret;
1233 
1234 	if (offset + len >= i_size_read(inode))
1235 		return -EINVAL;
1236 
1237 	/* collapse range should be aligned to block size of f2fs. */
1238 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1239 		return -EINVAL;
1240 
1241 	ret = f2fs_convert_inline_inode(inode);
1242 	if (ret)
1243 		return ret;
1244 
1245 	/* write out all dirty pages from offset */
1246 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1247 	if (ret)
1248 		return ret;
1249 
1250 	ret = f2fs_do_collapse(inode, offset, len);
1251 	if (ret)
1252 		return ret;
1253 
1254 	/* write out all moved pages, if possible */
1255 	down_write(&F2FS_I(inode)->i_mmap_sem);
1256 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1257 	truncate_pagecache(inode, offset);
1258 
1259 	new_size = i_size_read(inode) - len;
1260 	truncate_pagecache(inode, new_size);
1261 
1262 	ret = f2fs_truncate_blocks(inode, new_size, true, false);
1263 	up_write(&F2FS_I(inode)->i_mmap_sem);
1264 	if (!ret)
1265 		f2fs_i_size_write(inode, new_size);
1266 	return ret;
1267 }
1268 
1269 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1270 								pgoff_t end)
1271 {
1272 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1273 	pgoff_t index = start;
1274 	unsigned int ofs_in_node = dn->ofs_in_node;
1275 	blkcnt_t count = 0;
1276 	int ret;
1277 
1278 	for (; index < end; index++, dn->ofs_in_node++) {
1279 		if (datablock_addr(dn->inode, dn->node_page,
1280 					dn->ofs_in_node) == NULL_ADDR)
1281 			count++;
1282 	}
1283 
1284 	dn->ofs_in_node = ofs_in_node;
1285 	ret = f2fs_reserve_new_blocks(dn, count);
1286 	if (ret)
1287 		return ret;
1288 
1289 	dn->ofs_in_node = ofs_in_node;
1290 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1291 		dn->data_blkaddr = datablock_addr(dn->inode,
1292 					dn->node_page, dn->ofs_in_node);
1293 		/*
1294 		 * f2fs_reserve_new_blocks will not guarantee entire block
1295 		 * allocation.
1296 		 */
1297 		if (dn->data_blkaddr == NULL_ADDR) {
1298 			ret = -ENOSPC;
1299 			break;
1300 		}
1301 		if (dn->data_blkaddr != NEW_ADDR) {
1302 			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1303 			dn->data_blkaddr = NEW_ADDR;
1304 			f2fs_set_data_blkaddr(dn);
1305 		}
1306 	}
1307 
1308 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1309 
1310 	return ret;
1311 }
1312 
1313 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1314 								int mode)
1315 {
1316 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1317 	struct address_space *mapping = inode->i_mapping;
1318 	pgoff_t index, pg_start, pg_end;
1319 	loff_t new_size = i_size_read(inode);
1320 	loff_t off_start, off_end;
1321 	int ret = 0;
1322 
1323 	ret = inode_newsize_ok(inode, (len + offset));
1324 	if (ret)
1325 		return ret;
1326 
1327 	ret = f2fs_convert_inline_inode(inode);
1328 	if (ret)
1329 		return ret;
1330 
1331 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1332 	if (ret)
1333 		return ret;
1334 
1335 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1336 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1337 
1338 	off_start = offset & (PAGE_SIZE - 1);
1339 	off_end = (offset + len) & (PAGE_SIZE - 1);
1340 
1341 	if (pg_start == pg_end) {
1342 		ret = fill_zero(inode, pg_start, off_start,
1343 						off_end - off_start);
1344 		if (ret)
1345 			return ret;
1346 
1347 		new_size = max_t(loff_t, new_size, offset + len);
1348 	} else {
1349 		if (off_start) {
1350 			ret = fill_zero(inode, pg_start++, off_start,
1351 						PAGE_SIZE - off_start);
1352 			if (ret)
1353 				return ret;
1354 
1355 			new_size = max_t(loff_t, new_size,
1356 					(loff_t)pg_start << PAGE_SHIFT);
1357 		}
1358 
1359 		for (index = pg_start; index < pg_end;) {
1360 			struct dnode_of_data dn;
1361 			unsigned int end_offset;
1362 			pgoff_t end;
1363 
1364 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1365 			down_write(&F2FS_I(inode)->i_mmap_sem);
1366 
1367 			truncate_pagecache_range(inode,
1368 				(loff_t)index << PAGE_SHIFT,
1369 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1370 
1371 			f2fs_lock_op(sbi);
1372 
1373 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1374 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1375 			if (ret) {
1376 				f2fs_unlock_op(sbi);
1377 				up_write(&F2FS_I(inode)->i_mmap_sem);
1378 				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1379 				goto out;
1380 			}
1381 
1382 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1383 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1384 
1385 			ret = f2fs_do_zero_range(&dn, index, end);
1386 			f2fs_put_dnode(&dn);
1387 
1388 			f2fs_unlock_op(sbi);
1389 			up_write(&F2FS_I(inode)->i_mmap_sem);
1390 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1391 
1392 			f2fs_balance_fs(sbi, dn.node_changed);
1393 
1394 			if (ret)
1395 				goto out;
1396 
1397 			index = end;
1398 			new_size = max_t(loff_t, new_size,
1399 					(loff_t)index << PAGE_SHIFT);
1400 		}
1401 
1402 		if (off_end) {
1403 			ret = fill_zero(inode, pg_end, 0, off_end);
1404 			if (ret)
1405 				goto out;
1406 
1407 			new_size = max_t(loff_t, new_size, offset + len);
1408 		}
1409 	}
1410 
1411 out:
1412 	if (new_size > i_size_read(inode)) {
1413 		if (mode & FALLOC_FL_KEEP_SIZE)
1414 			file_set_keep_isize(inode);
1415 		else
1416 			f2fs_i_size_write(inode, new_size);
1417 	}
1418 	return ret;
1419 }
1420 
1421 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1422 {
1423 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1424 	pgoff_t nr, pg_start, pg_end, delta, idx;
1425 	loff_t new_size;
1426 	int ret = 0;
1427 
1428 	new_size = i_size_read(inode) + len;
1429 	ret = inode_newsize_ok(inode, new_size);
1430 	if (ret)
1431 		return ret;
1432 
1433 	if (offset >= i_size_read(inode))
1434 		return -EINVAL;
1435 
1436 	/* insert range should be aligned to block size of f2fs. */
1437 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1438 		return -EINVAL;
1439 
1440 	ret = f2fs_convert_inline_inode(inode);
1441 	if (ret)
1442 		return ret;
1443 
1444 	f2fs_balance_fs(sbi, true);
1445 
1446 	down_write(&F2FS_I(inode)->i_mmap_sem);
1447 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true, false);
1448 	up_write(&F2FS_I(inode)->i_mmap_sem);
1449 	if (ret)
1450 		return ret;
1451 
1452 	/* write out all dirty pages from offset */
1453 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1454 	if (ret)
1455 		return ret;
1456 
1457 	pg_start = offset >> PAGE_SHIFT;
1458 	pg_end = (offset + len) >> PAGE_SHIFT;
1459 	delta = pg_end - pg_start;
1460 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1461 
1462 	/* avoid gc operation during block exchange */
1463 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1464 	down_write(&F2FS_I(inode)->i_mmap_sem);
1465 	truncate_pagecache(inode, offset);
1466 
1467 	while (!ret && idx > pg_start) {
1468 		nr = idx - pg_start;
1469 		if (nr > delta)
1470 			nr = delta;
1471 		idx -= nr;
1472 
1473 		f2fs_lock_op(sbi);
1474 		f2fs_drop_extent_tree(inode);
1475 
1476 		ret = __exchange_data_block(inode, inode, idx,
1477 					idx + delta, nr, false);
1478 		f2fs_unlock_op(sbi);
1479 	}
1480 	up_write(&F2FS_I(inode)->i_mmap_sem);
1481 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1482 
1483 	/* write out all moved pages, if possible */
1484 	down_write(&F2FS_I(inode)->i_mmap_sem);
1485 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1486 	truncate_pagecache(inode, offset);
1487 	up_write(&F2FS_I(inode)->i_mmap_sem);
1488 
1489 	if (!ret)
1490 		f2fs_i_size_write(inode, new_size);
1491 	return ret;
1492 }
1493 
1494 static int expand_inode_data(struct inode *inode, loff_t offset,
1495 					loff_t len, int mode)
1496 {
1497 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1498 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1499 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
1500 	pgoff_t pg_end;
1501 	loff_t new_size = i_size_read(inode);
1502 	loff_t off_end;
1503 	int err;
1504 
1505 	err = inode_newsize_ok(inode, (len + offset));
1506 	if (err)
1507 		return err;
1508 
1509 	err = f2fs_convert_inline_inode(inode);
1510 	if (err)
1511 		return err;
1512 
1513 	f2fs_balance_fs(sbi, true);
1514 
1515 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1516 	off_end = (offset + len) & (PAGE_SIZE - 1);
1517 
1518 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1519 	map.m_len = pg_end - map.m_lblk;
1520 	if (off_end)
1521 		map.m_len++;
1522 
1523 	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1524 	if (err) {
1525 		pgoff_t last_off;
1526 
1527 		if (!map.m_len)
1528 			return err;
1529 
1530 		last_off = map.m_lblk + map.m_len - 1;
1531 
1532 		/* update new size to the failed position */
1533 		new_size = (last_off == pg_end) ? offset + len :
1534 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1535 	} else {
1536 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1537 	}
1538 
1539 	if (new_size > i_size_read(inode)) {
1540 		if (mode & FALLOC_FL_KEEP_SIZE)
1541 			file_set_keep_isize(inode);
1542 		else
1543 			f2fs_i_size_write(inode, new_size);
1544 	}
1545 
1546 	return err;
1547 }
1548 
1549 static long f2fs_fallocate(struct file *file, int mode,
1550 				loff_t offset, loff_t len)
1551 {
1552 	struct inode *inode = file_inode(file);
1553 	long ret = 0;
1554 
1555 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1556 		return -EIO;
1557 
1558 	/* f2fs only support ->fallocate for regular file */
1559 	if (!S_ISREG(inode->i_mode))
1560 		return -EINVAL;
1561 
1562 	if (f2fs_encrypted_inode(inode) &&
1563 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1564 		return -EOPNOTSUPP;
1565 
1566 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1567 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1568 			FALLOC_FL_INSERT_RANGE))
1569 		return -EOPNOTSUPP;
1570 
1571 	inode_lock(inode);
1572 
1573 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1574 		if (offset >= inode->i_size)
1575 			goto out;
1576 
1577 		ret = punch_hole(inode, offset, len);
1578 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1579 		ret = f2fs_collapse_range(inode, offset, len);
1580 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1581 		ret = f2fs_zero_range(inode, offset, len, mode);
1582 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1583 		ret = f2fs_insert_range(inode, offset, len);
1584 	} else {
1585 		ret = expand_inode_data(inode, offset, len, mode);
1586 	}
1587 
1588 	if (!ret) {
1589 		inode->i_mtime = inode->i_ctime = current_time(inode);
1590 		f2fs_mark_inode_dirty_sync(inode, false);
1591 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1592 	}
1593 
1594 out:
1595 	inode_unlock(inode);
1596 
1597 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1598 	return ret;
1599 }
1600 
1601 static int f2fs_release_file(struct inode *inode, struct file *filp)
1602 {
1603 	/*
1604 	 * f2fs_relase_file is called at every close calls. So we should
1605 	 * not drop any inmemory pages by close called by other process.
1606 	 */
1607 	if (!(filp->f_mode & FMODE_WRITE) ||
1608 			atomic_read(&inode->i_writecount) != 1)
1609 		return 0;
1610 
1611 	/* some remained atomic pages should discarded */
1612 	if (f2fs_is_atomic_file(inode))
1613 		f2fs_drop_inmem_pages(inode);
1614 	if (f2fs_is_volatile_file(inode)) {
1615 		set_inode_flag(inode, FI_DROP_CACHE);
1616 		filemap_fdatawrite(inode->i_mapping);
1617 		clear_inode_flag(inode, FI_DROP_CACHE);
1618 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1619 		stat_dec_volatile_write(inode);
1620 	}
1621 	return 0;
1622 }
1623 
1624 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1625 {
1626 	struct inode *inode = file_inode(file);
1627 
1628 	/*
1629 	 * If the process doing a transaction is crashed, we should do
1630 	 * roll-back. Otherwise, other reader/write can see corrupted database
1631 	 * until all the writers close its file. Since this should be done
1632 	 * before dropping file lock, it needs to do in ->flush.
1633 	 */
1634 	if (f2fs_is_atomic_file(inode) &&
1635 			F2FS_I(inode)->inmem_task == current)
1636 		f2fs_drop_inmem_pages(inode);
1637 	return 0;
1638 }
1639 
1640 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1641 {
1642 	struct inode *inode = file_inode(filp);
1643 	struct f2fs_inode_info *fi = F2FS_I(inode);
1644 	unsigned int flags = fi->i_flags;
1645 
1646 	if (f2fs_encrypted_inode(inode))
1647 		flags |= F2FS_ENCRYPT_FL;
1648 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1649 		flags |= F2FS_INLINE_DATA_FL;
1650 
1651 	flags &= F2FS_FL_USER_VISIBLE;
1652 
1653 	return put_user(flags, (int __user *)arg);
1654 }
1655 
1656 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1657 {
1658 	struct f2fs_inode_info *fi = F2FS_I(inode);
1659 	unsigned int oldflags;
1660 
1661 	/* Is it quota file? Do not allow user to mess with it */
1662 	if (IS_NOQUOTA(inode))
1663 		return -EPERM;
1664 
1665 	flags = f2fs_mask_flags(inode->i_mode, flags);
1666 
1667 	oldflags = fi->i_flags;
1668 
1669 	if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL))
1670 		if (!capable(CAP_LINUX_IMMUTABLE))
1671 			return -EPERM;
1672 
1673 	flags = flags & F2FS_FL_USER_MODIFIABLE;
1674 	flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE;
1675 	fi->i_flags = flags;
1676 
1677 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1678 		set_inode_flag(inode, FI_PROJ_INHERIT);
1679 	else
1680 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1681 
1682 	inode->i_ctime = current_time(inode);
1683 	f2fs_set_inode_flags(inode);
1684 	f2fs_mark_inode_dirty_sync(inode, false);
1685 	return 0;
1686 }
1687 
1688 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1689 {
1690 	struct inode *inode = file_inode(filp);
1691 	unsigned int flags;
1692 	int ret;
1693 
1694 	if (!inode_owner_or_capable(inode))
1695 		return -EACCES;
1696 
1697 	if (get_user(flags, (int __user *)arg))
1698 		return -EFAULT;
1699 
1700 	ret = mnt_want_write_file(filp);
1701 	if (ret)
1702 		return ret;
1703 
1704 	inode_lock(inode);
1705 
1706 	ret = __f2fs_ioc_setflags(inode, flags);
1707 
1708 	inode_unlock(inode);
1709 	mnt_drop_write_file(filp);
1710 	return ret;
1711 }
1712 
1713 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1714 {
1715 	struct inode *inode = file_inode(filp);
1716 
1717 	return put_user(inode->i_generation, (int __user *)arg);
1718 }
1719 
1720 static int f2fs_ioc_start_atomic_write(struct file *filp)
1721 {
1722 	struct inode *inode = file_inode(filp);
1723 	int ret;
1724 
1725 	if (!inode_owner_or_capable(inode))
1726 		return -EACCES;
1727 
1728 	if (!S_ISREG(inode->i_mode))
1729 		return -EINVAL;
1730 
1731 	ret = mnt_want_write_file(filp);
1732 	if (ret)
1733 		return ret;
1734 
1735 	inode_lock(inode);
1736 
1737 	if (f2fs_is_atomic_file(inode)) {
1738 		if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
1739 			ret = -EINVAL;
1740 		goto out;
1741 	}
1742 
1743 	ret = f2fs_convert_inline_inode(inode);
1744 	if (ret)
1745 		goto out;
1746 
1747 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1748 
1749 	if (!get_dirty_pages(inode))
1750 		goto skip_flush;
1751 
1752 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1753 		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1754 					inode->i_ino, get_dirty_pages(inode));
1755 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1756 	if (ret) {
1757 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1758 		goto out;
1759 	}
1760 skip_flush:
1761 	set_inode_flag(inode, FI_ATOMIC_FILE);
1762 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1763 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1764 
1765 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1766 	F2FS_I(inode)->inmem_task = current;
1767 	stat_inc_atomic_write(inode);
1768 	stat_update_max_atomic_write(inode);
1769 out:
1770 	inode_unlock(inode);
1771 	mnt_drop_write_file(filp);
1772 	return ret;
1773 }
1774 
1775 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1776 {
1777 	struct inode *inode = file_inode(filp);
1778 	int ret;
1779 
1780 	if (!inode_owner_or_capable(inode))
1781 		return -EACCES;
1782 
1783 	ret = mnt_want_write_file(filp);
1784 	if (ret)
1785 		return ret;
1786 
1787 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1788 
1789 	inode_lock(inode);
1790 
1791 	if (f2fs_is_volatile_file(inode)) {
1792 		ret = -EINVAL;
1793 		goto err_out;
1794 	}
1795 
1796 	if (f2fs_is_atomic_file(inode)) {
1797 		ret = f2fs_commit_inmem_pages(inode);
1798 		if (ret)
1799 			goto err_out;
1800 
1801 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1802 		if (!ret) {
1803 			clear_inode_flag(inode, FI_ATOMIC_FILE);
1804 			F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
1805 			stat_dec_atomic_write(inode);
1806 		}
1807 	} else {
1808 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1809 	}
1810 err_out:
1811 	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
1812 		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1813 		ret = -EINVAL;
1814 	}
1815 	inode_unlock(inode);
1816 	mnt_drop_write_file(filp);
1817 	return ret;
1818 }
1819 
1820 static int f2fs_ioc_start_volatile_write(struct file *filp)
1821 {
1822 	struct inode *inode = file_inode(filp);
1823 	int ret;
1824 
1825 	if (!inode_owner_or_capable(inode))
1826 		return -EACCES;
1827 
1828 	if (!S_ISREG(inode->i_mode))
1829 		return -EINVAL;
1830 
1831 	ret = mnt_want_write_file(filp);
1832 	if (ret)
1833 		return ret;
1834 
1835 	inode_lock(inode);
1836 
1837 	if (f2fs_is_volatile_file(inode))
1838 		goto out;
1839 
1840 	ret = f2fs_convert_inline_inode(inode);
1841 	if (ret)
1842 		goto out;
1843 
1844 	stat_inc_volatile_write(inode);
1845 	stat_update_max_volatile_write(inode);
1846 
1847 	set_inode_flag(inode, FI_VOLATILE_FILE);
1848 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1849 out:
1850 	inode_unlock(inode);
1851 	mnt_drop_write_file(filp);
1852 	return ret;
1853 }
1854 
1855 static int f2fs_ioc_release_volatile_write(struct file *filp)
1856 {
1857 	struct inode *inode = file_inode(filp);
1858 	int ret;
1859 
1860 	if (!inode_owner_or_capable(inode))
1861 		return -EACCES;
1862 
1863 	ret = mnt_want_write_file(filp);
1864 	if (ret)
1865 		return ret;
1866 
1867 	inode_lock(inode);
1868 
1869 	if (!f2fs_is_volatile_file(inode))
1870 		goto out;
1871 
1872 	if (!f2fs_is_first_block_written(inode)) {
1873 		ret = truncate_partial_data_page(inode, 0, true);
1874 		goto out;
1875 	}
1876 
1877 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1878 out:
1879 	inode_unlock(inode);
1880 	mnt_drop_write_file(filp);
1881 	return ret;
1882 }
1883 
1884 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1885 {
1886 	struct inode *inode = file_inode(filp);
1887 	int ret;
1888 
1889 	if (!inode_owner_or_capable(inode))
1890 		return -EACCES;
1891 
1892 	ret = mnt_want_write_file(filp);
1893 	if (ret)
1894 		return ret;
1895 
1896 	inode_lock(inode);
1897 
1898 	if (f2fs_is_atomic_file(inode))
1899 		f2fs_drop_inmem_pages(inode);
1900 	if (f2fs_is_volatile_file(inode)) {
1901 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1902 		stat_dec_volatile_write(inode);
1903 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1904 	}
1905 
1906 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1907 
1908 	inode_unlock(inode);
1909 
1910 	mnt_drop_write_file(filp);
1911 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1912 	return ret;
1913 }
1914 
1915 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1916 {
1917 	struct inode *inode = file_inode(filp);
1918 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1919 	struct super_block *sb = sbi->sb;
1920 	__u32 in;
1921 	int ret = 0;
1922 
1923 	if (!capable(CAP_SYS_ADMIN))
1924 		return -EPERM;
1925 
1926 	if (get_user(in, (__u32 __user *)arg))
1927 		return -EFAULT;
1928 
1929 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
1930 		ret = mnt_want_write_file(filp);
1931 		if (ret)
1932 			return ret;
1933 	}
1934 
1935 	switch (in) {
1936 	case F2FS_GOING_DOWN_FULLSYNC:
1937 		sb = freeze_bdev(sb->s_bdev);
1938 		if (IS_ERR(sb)) {
1939 			ret = PTR_ERR(sb);
1940 			goto out;
1941 		}
1942 		if (sb) {
1943 			f2fs_stop_checkpoint(sbi, false);
1944 			set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1945 			thaw_bdev(sb->s_bdev, sb);
1946 		}
1947 		break;
1948 	case F2FS_GOING_DOWN_METASYNC:
1949 		/* do checkpoint only */
1950 		ret = f2fs_sync_fs(sb, 1);
1951 		if (ret)
1952 			goto out;
1953 		f2fs_stop_checkpoint(sbi, false);
1954 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1955 		break;
1956 	case F2FS_GOING_DOWN_NOSYNC:
1957 		f2fs_stop_checkpoint(sbi, false);
1958 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1959 		break;
1960 	case F2FS_GOING_DOWN_METAFLUSH:
1961 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1962 		f2fs_stop_checkpoint(sbi, false);
1963 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1964 		break;
1965 	default:
1966 		ret = -EINVAL;
1967 		goto out;
1968 	}
1969 
1970 	f2fs_stop_gc_thread(sbi);
1971 	f2fs_stop_discard_thread(sbi);
1972 
1973 	f2fs_drop_discard_cmd(sbi);
1974 	clear_opt(sbi, DISCARD);
1975 
1976 	f2fs_update_time(sbi, REQ_TIME);
1977 out:
1978 	if (in != F2FS_GOING_DOWN_FULLSYNC)
1979 		mnt_drop_write_file(filp);
1980 	return ret;
1981 }
1982 
1983 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1984 {
1985 	struct inode *inode = file_inode(filp);
1986 	struct super_block *sb = inode->i_sb;
1987 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1988 	struct fstrim_range range;
1989 	int ret;
1990 
1991 	if (!capable(CAP_SYS_ADMIN))
1992 		return -EPERM;
1993 
1994 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
1995 		return -EOPNOTSUPP;
1996 
1997 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1998 				sizeof(range)))
1999 		return -EFAULT;
2000 
2001 	ret = mnt_want_write_file(filp);
2002 	if (ret)
2003 		return ret;
2004 
2005 	range.minlen = max((unsigned int)range.minlen,
2006 				q->limits.discard_granularity);
2007 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2008 	mnt_drop_write_file(filp);
2009 	if (ret < 0)
2010 		return ret;
2011 
2012 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2013 				sizeof(range)))
2014 		return -EFAULT;
2015 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2016 	return 0;
2017 }
2018 
2019 static bool uuid_is_nonzero(__u8 u[16])
2020 {
2021 	int i;
2022 
2023 	for (i = 0; i < 16; i++)
2024 		if (u[i])
2025 			return true;
2026 	return false;
2027 }
2028 
2029 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2030 {
2031 	struct inode *inode = file_inode(filp);
2032 
2033 	if (!f2fs_sb_has_encrypt(inode->i_sb))
2034 		return -EOPNOTSUPP;
2035 
2036 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2037 
2038 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2039 }
2040 
2041 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2042 {
2043 	if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
2044 		return -EOPNOTSUPP;
2045 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2046 }
2047 
2048 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2049 {
2050 	struct inode *inode = file_inode(filp);
2051 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2052 	int err;
2053 
2054 	if (!f2fs_sb_has_encrypt(inode->i_sb))
2055 		return -EOPNOTSUPP;
2056 
2057 	err = mnt_want_write_file(filp);
2058 	if (err)
2059 		return err;
2060 
2061 	down_write(&sbi->sb_lock);
2062 
2063 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2064 		goto got_it;
2065 
2066 	/* update superblock with uuid */
2067 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2068 
2069 	err = f2fs_commit_super(sbi, false);
2070 	if (err) {
2071 		/* undo new data */
2072 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2073 		goto out_err;
2074 	}
2075 got_it:
2076 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2077 									16))
2078 		err = -EFAULT;
2079 out_err:
2080 	up_write(&sbi->sb_lock);
2081 	mnt_drop_write_file(filp);
2082 	return err;
2083 }
2084 
2085 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2086 {
2087 	struct inode *inode = file_inode(filp);
2088 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2089 	__u32 sync;
2090 	int ret;
2091 
2092 	if (!capable(CAP_SYS_ADMIN))
2093 		return -EPERM;
2094 
2095 	if (get_user(sync, (__u32 __user *)arg))
2096 		return -EFAULT;
2097 
2098 	if (f2fs_readonly(sbi->sb))
2099 		return -EROFS;
2100 
2101 	ret = mnt_want_write_file(filp);
2102 	if (ret)
2103 		return ret;
2104 
2105 	if (!sync) {
2106 		if (!mutex_trylock(&sbi->gc_mutex)) {
2107 			ret = -EBUSY;
2108 			goto out;
2109 		}
2110 	} else {
2111 		mutex_lock(&sbi->gc_mutex);
2112 	}
2113 
2114 	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2115 out:
2116 	mnt_drop_write_file(filp);
2117 	return ret;
2118 }
2119 
2120 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2121 {
2122 	struct inode *inode = file_inode(filp);
2123 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2124 	struct f2fs_gc_range range;
2125 	u64 end;
2126 	int ret;
2127 
2128 	if (!capable(CAP_SYS_ADMIN))
2129 		return -EPERM;
2130 
2131 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2132 							sizeof(range)))
2133 		return -EFAULT;
2134 
2135 	if (f2fs_readonly(sbi->sb))
2136 		return -EROFS;
2137 
2138 	end = range.start + range.len;
2139 	if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
2140 		return -EINVAL;
2141 	}
2142 
2143 	ret = mnt_want_write_file(filp);
2144 	if (ret)
2145 		return ret;
2146 
2147 do_more:
2148 	if (!range.sync) {
2149 		if (!mutex_trylock(&sbi->gc_mutex)) {
2150 			ret = -EBUSY;
2151 			goto out;
2152 		}
2153 	} else {
2154 		mutex_lock(&sbi->gc_mutex);
2155 	}
2156 
2157 	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2158 	range.start += sbi->blocks_per_seg;
2159 	if (range.start <= end)
2160 		goto do_more;
2161 out:
2162 	mnt_drop_write_file(filp);
2163 	return ret;
2164 }
2165 
2166 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2167 {
2168 	struct inode *inode = file_inode(filp);
2169 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2170 	int ret;
2171 
2172 	if (!capable(CAP_SYS_ADMIN))
2173 		return -EPERM;
2174 
2175 	if (f2fs_readonly(sbi->sb))
2176 		return -EROFS;
2177 
2178 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2179 		f2fs_msg(sbi->sb, KERN_INFO,
2180 			"Skipping Checkpoint. Checkpoints currently disabled.");
2181 		return -EINVAL;
2182 	}
2183 
2184 	ret = mnt_want_write_file(filp);
2185 	if (ret)
2186 		return ret;
2187 
2188 	ret = f2fs_sync_fs(sbi->sb, 1);
2189 
2190 	mnt_drop_write_file(filp);
2191 	return ret;
2192 }
2193 
2194 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2195 					struct file *filp,
2196 					struct f2fs_defragment *range)
2197 {
2198 	struct inode *inode = file_inode(filp);
2199 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2200 					.m_seg_type = NO_CHECK_TYPE };
2201 	struct extent_info ei = {0, 0, 0};
2202 	pgoff_t pg_start, pg_end, next_pgofs;
2203 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2204 	unsigned int total = 0, sec_num;
2205 	block_t blk_end = 0;
2206 	bool fragmented = false;
2207 	int err;
2208 
2209 	/* if in-place-update policy is enabled, don't waste time here */
2210 	if (f2fs_should_update_inplace(inode, NULL))
2211 		return -EINVAL;
2212 
2213 	pg_start = range->start >> PAGE_SHIFT;
2214 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2215 
2216 	f2fs_balance_fs(sbi, true);
2217 
2218 	inode_lock(inode);
2219 
2220 	/* writeback all dirty pages in the range */
2221 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2222 						range->start + range->len - 1);
2223 	if (err)
2224 		goto out;
2225 
2226 	/*
2227 	 * lookup mapping info in extent cache, skip defragmenting if physical
2228 	 * block addresses are continuous.
2229 	 */
2230 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2231 		if (ei.fofs + ei.len >= pg_end)
2232 			goto out;
2233 	}
2234 
2235 	map.m_lblk = pg_start;
2236 	map.m_next_pgofs = &next_pgofs;
2237 
2238 	/*
2239 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2240 	 * physical block addresses are continuous even if there are hole(s)
2241 	 * in logical blocks.
2242 	 */
2243 	while (map.m_lblk < pg_end) {
2244 		map.m_len = pg_end - map.m_lblk;
2245 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2246 		if (err)
2247 			goto out;
2248 
2249 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2250 			map.m_lblk = next_pgofs;
2251 			continue;
2252 		}
2253 
2254 		if (blk_end && blk_end != map.m_pblk)
2255 			fragmented = true;
2256 
2257 		/* record total count of block that we're going to move */
2258 		total += map.m_len;
2259 
2260 		blk_end = map.m_pblk + map.m_len;
2261 
2262 		map.m_lblk += map.m_len;
2263 	}
2264 
2265 	if (!fragmented)
2266 		goto out;
2267 
2268 	sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2269 
2270 	/*
2271 	 * make sure there are enough free section for LFS allocation, this can
2272 	 * avoid defragment running in SSR mode when free section are allocated
2273 	 * intensively
2274 	 */
2275 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2276 		err = -EAGAIN;
2277 		goto out;
2278 	}
2279 
2280 	map.m_lblk = pg_start;
2281 	map.m_len = pg_end - pg_start;
2282 	total = 0;
2283 
2284 	while (map.m_lblk < pg_end) {
2285 		pgoff_t idx;
2286 		int cnt = 0;
2287 
2288 do_map:
2289 		map.m_len = pg_end - map.m_lblk;
2290 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2291 		if (err)
2292 			goto clear_out;
2293 
2294 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2295 			map.m_lblk = next_pgofs;
2296 			continue;
2297 		}
2298 
2299 		set_inode_flag(inode, FI_DO_DEFRAG);
2300 
2301 		idx = map.m_lblk;
2302 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2303 			struct page *page;
2304 
2305 			page = f2fs_get_lock_data_page(inode, idx, true);
2306 			if (IS_ERR(page)) {
2307 				err = PTR_ERR(page);
2308 				goto clear_out;
2309 			}
2310 
2311 			set_page_dirty(page);
2312 			f2fs_put_page(page, 1);
2313 
2314 			idx++;
2315 			cnt++;
2316 			total++;
2317 		}
2318 
2319 		map.m_lblk = idx;
2320 
2321 		if (idx < pg_end && cnt < blk_per_seg)
2322 			goto do_map;
2323 
2324 		clear_inode_flag(inode, FI_DO_DEFRAG);
2325 
2326 		err = filemap_fdatawrite(inode->i_mapping);
2327 		if (err)
2328 			goto out;
2329 	}
2330 clear_out:
2331 	clear_inode_flag(inode, FI_DO_DEFRAG);
2332 out:
2333 	inode_unlock(inode);
2334 	if (!err)
2335 		range->len = (u64)total << PAGE_SHIFT;
2336 	return err;
2337 }
2338 
2339 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2340 {
2341 	struct inode *inode = file_inode(filp);
2342 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2343 	struct f2fs_defragment range;
2344 	int err;
2345 
2346 	if (!capable(CAP_SYS_ADMIN))
2347 		return -EPERM;
2348 
2349 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2350 		return -EINVAL;
2351 
2352 	if (f2fs_readonly(sbi->sb))
2353 		return -EROFS;
2354 
2355 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2356 							sizeof(range)))
2357 		return -EFAULT;
2358 
2359 	/* verify alignment of offset & size */
2360 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2361 		return -EINVAL;
2362 
2363 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2364 					sbi->max_file_blocks))
2365 		return -EINVAL;
2366 
2367 	err = mnt_want_write_file(filp);
2368 	if (err)
2369 		return err;
2370 
2371 	err = f2fs_defragment_range(sbi, filp, &range);
2372 	mnt_drop_write_file(filp);
2373 
2374 	f2fs_update_time(sbi, REQ_TIME);
2375 	if (err < 0)
2376 		return err;
2377 
2378 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2379 							sizeof(range)))
2380 		return -EFAULT;
2381 
2382 	return 0;
2383 }
2384 
2385 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2386 			struct file *file_out, loff_t pos_out, size_t len)
2387 {
2388 	struct inode *src = file_inode(file_in);
2389 	struct inode *dst = file_inode(file_out);
2390 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2391 	size_t olen = len, dst_max_i_size = 0;
2392 	size_t dst_osize;
2393 	int ret;
2394 
2395 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2396 				src->i_sb != dst->i_sb)
2397 		return -EXDEV;
2398 
2399 	if (unlikely(f2fs_readonly(src->i_sb)))
2400 		return -EROFS;
2401 
2402 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2403 		return -EINVAL;
2404 
2405 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2406 		return -EOPNOTSUPP;
2407 
2408 	if (src == dst) {
2409 		if (pos_in == pos_out)
2410 			return 0;
2411 		if (pos_out > pos_in && pos_out < pos_in + len)
2412 			return -EINVAL;
2413 	}
2414 
2415 	inode_lock(src);
2416 	if (src != dst) {
2417 		ret = -EBUSY;
2418 		if (!inode_trylock(dst))
2419 			goto out;
2420 	}
2421 
2422 	ret = -EINVAL;
2423 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2424 		goto out_unlock;
2425 	if (len == 0)
2426 		olen = len = src->i_size - pos_in;
2427 	if (pos_in + len == src->i_size)
2428 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2429 	if (len == 0) {
2430 		ret = 0;
2431 		goto out_unlock;
2432 	}
2433 
2434 	dst_osize = dst->i_size;
2435 	if (pos_out + olen > dst->i_size)
2436 		dst_max_i_size = pos_out + olen;
2437 
2438 	/* verify the end result is block aligned */
2439 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2440 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2441 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2442 		goto out_unlock;
2443 
2444 	ret = f2fs_convert_inline_inode(src);
2445 	if (ret)
2446 		goto out_unlock;
2447 
2448 	ret = f2fs_convert_inline_inode(dst);
2449 	if (ret)
2450 		goto out_unlock;
2451 
2452 	/* write out all dirty pages from offset */
2453 	ret = filemap_write_and_wait_range(src->i_mapping,
2454 					pos_in, pos_in + len);
2455 	if (ret)
2456 		goto out_unlock;
2457 
2458 	ret = filemap_write_and_wait_range(dst->i_mapping,
2459 					pos_out, pos_out + len);
2460 	if (ret)
2461 		goto out_unlock;
2462 
2463 	f2fs_balance_fs(sbi, true);
2464 
2465 	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2466 	if (src != dst) {
2467 		ret = -EBUSY;
2468 		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2469 			goto out_src;
2470 	}
2471 
2472 	f2fs_lock_op(sbi);
2473 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2474 				pos_out >> F2FS_BLKSIZE_BITS,
2475 				len >> F2FS_BLKSIZE_BITS, false);
2476 
2477 	if (!ret) {
2478 		if (dst_max_i_size)
2479 			f2fs_i_size_write(dst, dst_max_i_size);
2480 		else if (dst_osize != dst->i_size)
2481 			f2fs_i_size_write(dst, dst_osize);
2482 	}
2483 	f2fs_unlock_op(sbi);
2484 
2485 	if (src != dst)
2486 		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2487 out_src:
2488 	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2489 out_unlock:
2490 	if (src != dst)
2491 		inode_unlock(dst);
2492 out:
2493 	inode_unlock(src);
2494 	return ret;
2495 }
2496 
2497 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2498 {
2499 	struct f2fs_move_range range;
2500 	struct fd dst;
2501 	int err;
2502 
2503 	if (!(filp->f_mode & FMODE_READ) ||
2504 			!(filp->f_mode & FMODE_WRITE))
2505 		return -EBADF;
2506 
2507 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2508 							sizeof(range)))
2509 		return -EFAULT;
2510 
2511 	dst = fdget(range.dst_fd);
2512 	if (!dst.file)
2513 		return -EBADF;
2514 
2515 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2516 		err = -EBADF;
2517 		goto err_out;
2518 	}
2519 
2520 	err = mnt_want_write_file(filp);
2521 	if (err)
2522 		goto err_out;
2523 
2524 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2525 					range.pos_out, range.len);
2526 
2527 	mnt_drop_write_file(filp);
2528 	if (err)
2529 		goto err_out;
2530 
2531 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2532 						&range, sizeof(range)))
2533 		err = -EFAULT;
2534 err_out:
2535 	fdput(dst);
2536 	return err;
2537 }
2538 
2539 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2540 {
2541 	struct inode *inode = file_inode(filp);
2542 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2543 	struct sit_info *sm = SIT_I(sbi);
2544 	unsigned int start_segno = 0, end_segno = 0;
2545 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2546 	struct f2fs_flush_device range;
2547 	int ret;
2548 
2549 	if (!capable(CAP_SYS_ADMIN))
2550 		return -EPERM;
2551 
2552 	if (f2fs_readonly(sbi->sb))
2553 		return -EROFS;
2554 
2555 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2556 		return -EINVAL;
2557 
2558 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2559 							sizeof(range)))
2560 		return -EFAULT;
2561 
2562 	if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2563 			sbi->segs_per_sec != 1) {
2564 		f2fs_msg(sbi->sb, KERN_WARNING,
2565 			"Can't flush %u in %d for segs_per_sec %u != 1\n",
2566 				range.dev_num, sbi->s_ndevs,
2567 				sbi->segs_per_sec);
2568 		return -EINVAL;
2569 	}
2570 
2571 	ret = mnt_want_write_file(filp);
2572 	if (ret)
2573 		return ret;
2574 
2575 	if (range.dev_num != 0)
2576 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2577 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2578 
2579 	start_segno = sm->last_victim[FLUSH_DEVICE];
2580 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2581 		start_segno = dev_start_segno;
2582 	end_segno = min(start_segno + range.segments, dev_end_segno);
2583 
2584 	while (start_segno < end_segno) {
2585 		if (!mutex_trylock(&sbi->gc_mutex)) {
2586 			ret = -EBUSY;
2587 			goto out;
2588 		}
2589 		sm->last_victim[GC_CB] = end_segno + 1;
2590 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2591 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2592 		ret = f2fs_gc(sbi, true, true, start_segno);
2593 		if (ret == -EAGAIN)
2594 			ret = 0;
2595 		else if (ret < 0)
2596 			break;
2597 		start_segno++;
2598 	}
2599 out:
2600 	mnt_drop_write_file(filp);
2601 	return ret;
2602 }
2603 
2604 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2605 {
2606 	struct inode *inode = file_inode(filp);
2607 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2608 
2609 	/* Must validate to set it with SQLite behavior in Android. */
2610 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2611 
2612 	return put_user(sb_feature, (u32 __user *)arg);
2613 }
2614 
2615 #ifdef CONFIG_QUOTA
2616 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2617 {
2618 	struct dquot *transfer_to[MAXQUOTAS] = {};
2619 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2620 	struct super_block *sb = sbi->sb;
2621 	int err = 0;
2622 
2623 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2624 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2625 		err = __dquot_transfer(inode, transfer_to);
2626 		if (err)
2627 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2628 		dqput(transfer_to[PRJQUOTA]);
2629 	}
2630 	return err;
2631 }
2632 
2633 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2634 {
2635 	struct inode *inode = file_inode(filp);
2636 	struct f2fs_inode_info *fi = F2FS_I(inode);
2637 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2638 	struct super_block *sb = sbi->sb;
2639 	struct page *ipage;
2640 	kprojid_t kprojid;
2641 	int err;
2642 
2643 	if (!f2fs_sb_has_project_quota(sb)) {
2644 		if (projid != F2FS_DEF_PROJID)
2645 			return -EOPNOTSUPP;
2646 		else
2647 			return 0;
2648 	}
2649 
2650 	if (!f2fs_has_extra_attr(inode))
2651 		return -EOPNOTSUPP;
2652 
2653 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2654 
2655 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2656 		return 0;
2657 
2658 	err = -EPERM;
2659 	/* Is it quota file? Do not allow user to mess with it */
2660 	if (IS_NOQUOTA(inode))
2661 		return err;
2662 
2663 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2664 	if (IS_ERR(ipage))
2665 		return PTR_ERR(ipage);
2666 
2667 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2668 								i_projid)) {
2669 		err = -EOVERFLOW;
2670 		f2fs_put_page(ipage, 1);
2671 		return err;
2672 	}
2673 	f2fs_put_page(ipage, 1);
2674 
2675 	err = dquot_initialize(inode);
2676 	if (err)
2677 		return err;
2678 
2679 	f2fs_lock_op(sbi);
2680 	err = f2fs_transfer_project_quota(inode, kprojid);
2681 	if (err)
2682 		goto out_unlock;
2683 
2684 	F2FS_I(inode)->i_projid = kprojid;
2685 	inode->i_ctime = current_time(inode);
2686 	f2fs_mark_inode_dirty_sync(inode, true);
2687 out_unlock:
2688 	f2fs_unlock_op(sbi);
2689 	return err;
2690 }
2691 #else
2692 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2693 {
2694 	return 0;
2695 }
2696 
2697 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2698 {
2699 	if (projid != F2FS_DEF_PROJID)
2700 		return -EOPNOTSUPP;
2701 	return 0;
2702 }
2703 #endif
2704 
2705 /* Transfer internal flags to xflags */
2706 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2707 {
2708 	__u32 xflags = 0;
2709 
2710 	if (iflags & F2FS_SYNC_FL)
2711 		xflags |= FS_XFLAG_SYNC;
2712 	if (iflags & F2FS_IMMUTABLE_FL)
2713 		xflags |= FS_XFLAG_IMMUTABLE;
2714 	if (iflags & F2FS_APPEND_FL)
2715 		xflags |= FS_XFLAG_APPEND;
2716 	if (iflags & F2FS_NODUMP_FL)
2717 		xflags |= FS_XFLAG_NODUMP;
2718 	if (iflags & F2FS_NOATIME_FL)
2719 		xflags |= FS_XFLAG_NOATIME;
2720 	if (iflags & F2FS_PROJINHERIT_FL)
2721 		xflags |= FS_XFLAG_PROJINHERIT;
2722 	return xflags;
2723 }
2724 
2725 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2726 				  FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2727 				  FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2728 
2729 /* Transfer xflags flags to internal */
2730 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2731 {
2732 	unsigned long iflags = 0;
2733 
2734 	if (xflags & FS_XFLAG_SYNC)
2735 		iflags |= F2FS_SYNC_FL;
2736 	if (xflags & FS_XFLAG_IMMUTABLE)
2737 		iflags |= F2FS_IMMUTABLE_FL;
2738 	if (xflags & FS_XFLAG_APPEND)
2739 		iflags |= F2FS_APPEND_FL;
2740 	if (xflags & FS_XFLAG_NODUMP)
2741 		iflags |= F2FS_NODUMP_FL;
2742 	if (xflags & FS_XFLAG_NOATIME)
2743 		iflags |= F2FS_NOATIME_FL;
2744 	if (xflags & FS_XFLAG_PROJINHERIT)
2745 		iflags |= F2FS_PROJINHERIT_FL;
2746 
2747 	return iflags;
2748 }
2749 
2750 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2751 {
2752 	struct inode *inode = file_inode(filp);
2753 	struct f2fs_inode_info *fi = F2FS_I(inode);
2754 	struct fsxattr fa;
2755 
2756 	memset(&fa, 0, sizeof(struct fsxattr));
2757 	fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2758 				F2FS_FL_USER_VISIBLE);
2759 
2760 	if (f2fs_sb_has_project_quota(inode->i_sb))
2761 		fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2762 							fi->i_projid);
2763 
2764 	if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2765 		return -EFAULT;
2766 	return 0;
2767 }
2768 
2769 static int f2fs_ioctl_check_project(struct inode *inode, struct fsxattr *fa)
2770 {
2771 	/*
2772 	 * Project Quota ID state is only allowed to change from within the init
2773 	 * namespace. Enforce that restriction only if we are trying to change
2774 	 * the quota ID state. Everything else is allowed in user namespaces.
2775 	 */
2776 	if (current_user_ns() == &init_user_ns)
2777 		return 0;
2778 
2779 	if (__kprojid_val(F2FS_I(inode)->i_projid) != fa->fsx_projid)
2780 		return -EINVAL;
2781 
2782 	if (F2FS_I(inode)->i_flags & F2FS_PROJINHERIT_FL) {
2783 		if (!(fa->fsx_xflags & FS_XFLAG_PROJINHERIT))
2784 			return -EINVAL;
2785 	} else {
2786 		if (fa->fsx_xflags & FS_XFLAG_PROJINHERIT)
2787 			return -EINVAL;
2788 	}
2789 
2790 	return 0;
2791 }
2792 
2793 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2794 {
2795 	struct inode *inode = file_inode(filp);
2796 	struct f2fs_inode_info *fi = F2FS_I(inode);
2797 	struct fsxattr fa;
2798 	unsigned int flags;
2799 	int err;
2800 
2801 	if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2802 		return -EFAULT;
2803 
2804 	/* Make sure caller has proper permission */
2805 	if (!inode_owner_or_capable(inode))
2806 		return -EACCES;
2807 
2808 	if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2809 		return -EOPNOTSUPP;
2810 
2811 	flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2812 	if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2813 		return -EOPNOTSUPP;
2814 
2815 	err = mnt_want_write_file(filp);
2816 	if (err)
2817 		return err;
2818 
2819 	inode_lock(inode);
2820 	err = f2fs_ioctl_check_project(inode, &fa);
2821 	if (err)
2822 		goto out;
2823 	flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2824 				(flags & F2FS_FL_XFLAG_VISIBLE);
2825 	err = __f2fs_ioc_setflags(inode, flags);
2826 	if (err)
2827 		goto out;
2828 
2829 	err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2830 out:
2831 	inode_unlock(inode);
2832 	mnt_drop_write_file(filp);
2833 	return err;
2834 }
2835 
2836 int f2fs_pin_file_control(struct inode *inode, bool inc)
2837 {
2838 	struct f2fs_inode_info *fi = F2FS_I(inode);
2839 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2840 
2841 	/* Use i_gc_failures for normal file as a risk signal. */
2842 	if (inc)
2843 		f2fs_i_gc_failures_write(inode,
2844 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
2845 
2846 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
2847 		f2fs_msg(sbi->sb, KERN_WARNING,
2848 			"%s: Enable GC = ino %lx after %x GC trials\n",
2849 			__func__, inode->i_ino,
2850 			fi->i_gc_failures[GC_FAILURE_PIN]);
2851 		clear_inode_flag(inode, FI_PIN_FILE);
2852 		return -EAGAIN;
2853 	}
2854 	return 0;
2855 }
2856 
2857 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
2858 {
2859 	struct inode *inode = file_inode(filp);
2860 	__u32 pin;
2861 	int ret = 0;
2862 
2863 	if (!inode_owner_or_capable(inode))
2864 		return -EACCES;
2865 
2866 	if (get_user(pin, (__u32 __user *)arg))
2867 		return -EFAULT;
2868 
2869 	if (!S_ISREG(inode->i_mode))
2870 		return -EINVAL;
2871 
2872 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2873 		return -EROFS;
2874 
2875 	ret = mnt_want_write_file(filp);
2876 	if (ret)
2877 		return ret;
2878 
2879 	inode_lock(inode);
2880 
2881 	if (f2fs_should_update_outplace(inode, NULL)) {
2882 		ret = -EINVAL;
2883 		goto out;
2884 	}
2885 
2886 	if (!pin) {
2887 		clear_inode_flag(inode, FI_PIN_FILE);
2888 		f2fs_i_gc_failures_write(inode, 0);
2889 		goto done;
2890 	}
2891 
2892 	if (f2fs_pin_file_control(inode, false)) {
2893 		ret = -EAGAIN;
2894 		goto out;
2895 	}
2896 	ret = f2fs_convert_inline_inode(inode);
2897 	if (ret)
2898 		goto out;
2899 
2900 	set_inode_flag(inode, FI_PIN_FILE);
2901 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2902 done:
2903 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2904 out:
2905 	inode_unlock(inode);
2906 	mnt_drop_write_file(filp);
2907 	return ret;
2908 }
2909 
2910 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
2911 {
2912 	struct inode *inode = file_inode(filp);
2913 	__u32 pin = 0;
2914 
2915 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2916 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2917 	return put_user(pin, (u32 __user *)arg);
2918 }
2919 
2920 int f2fs_precache_extents(struct inode *inode)
2921 {
2922 	struct f2fs_inode_info *fi = F2FS_I(inode);
2923 	struct f2fs_map_blocks map;
2924 	pgoff_t m_next_extent;
2925 	loff_t end;
2926 	int err;
2927 
2928 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
2929 		return -EOPNOTSUPP;
2930 
2931 	map.m_lblk = 0;
2932 	map.m_next_pgofs = NULL;
2933 	map.m_next_extent = &m_next_extent;
2934 	map.m_seg_type = NO_CHECK_TYPE;
2935 	end = F2FS_I_SB(inode)->max_file_blocks;
2936 
2937 	while (map.m_lblk < end) {
2938 		map.m_len = end - map.m_lblk;
2939 
2940 		down_write(&fi->i_gc_rwsem[WRITE]);
2941 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
2942 		up_write(&fi->i_gc_rwsem[WRITE]);
2943 		if (err)
2944 			return err;
2945 
2946 		map.m_lblk = m_next_extent;
2947 	}
2948 
2949 	return err;
2950 }
2951 
2952 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
2953 {
2954 	return f2fs_precache_extents(file_inode(filp));
2955 }
2956 
2957 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2958 {
2959 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2960 		return -EIO;
2961 
2962 	switch (cmd) {
2963 	case F2FS_IOC_GETFLAGS:
2964 		return f2fs_ioc_getflags(filp, arg);
2965 	case F2FS_IOC_SETFLAGS:
2966 		return f2fs_ioc_setflags(filp, arg);
2967 	case F2FS_IOC_GETVERSION:
2968 		return f2fs_ioc_getversion(filp, arg);
2969 	case F2FS_IOC_START_ATOMIC_WRITE:
2970 		return f2fs_ioc_start_atomic_write(filp);
2971 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2972 		return f2fs_ioc_commit_atomic_write(filp);
2973 	case F2FS_IOC_START_VOLATILE_WRITE:
2974 		return f2fs_ioc_start_volatile_write(filp);
2975 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2976 		return f2fs_ioc_release_volatile_write(filp);
2977 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2978 		return f2fs_ioc_abort_volatile_write(filp);
2979 	case F2FS_IOC_SHUTDOWN:
2980 		return f2fs_ioc_shutdown(filp, arg);
2981 	case FITRIM:
2982 		return f2fs_ioc_fitrim(filp, arg);
2983 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2984 		return f2fs_ioc_set_encryption_policy(filp, arg);
2985 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2986 		return f2fs_ioc_get_encryption_policy(filp, arg);
2987 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2988 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2989 	case F2FS_IOC_GARBAGE_COLLECT:
2990 		return f2fs_ioc_gc(filp, arg);
2991 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2992 		return f2fs_ioc_gc_range(filp, arg);
2993 	case F2FS_IOC_WRITE_CHECKPOINT:
2994 		return f2fs_ioc_write_checkpoint(filp, arg);
2995 	case F2FS_IOC_DEFRAGMENT:
2996 		return f2fs_ioc_defragment(filp, arg);
2997 	case F2FS_IOC_MOVE_RANGE:
2998 		return f2fs_ioc_move_range(filp, arg);
2999 	case F2FS_IOC_FLUSH_DEVICE:
3000 		return f2fs_ioc_flush_device(filp, arg);
3001 	case F2FS_IOC_GET_FEATURES:
3002 		return f2fs_ioc_get_features(filp, arg);
3003 	case F2FS_IOC_FSGETXATTR:
3004 		return f2fs_ioc_fsgetxattr(filp, arg);
3005 	case F2FS_IOC_FSSETXATTR:
3006 		return f2fs_ioc_fssetxattr(filp, arg);
3007 	case F2FS_IOC_GET_PIN_FILE:
3008 		return f2fs_ioc_get_pin_file(filp, arg);
3009 	case F2FS_IOC_SET_PIN_FILE:
3010 		return f2fs_ioc_set_pin_file(filp, arg);
3011 	case F2FS_IOC_PRECACHE_EXTENTS:
3012 		return f2fs_ioc_precache_extents(filp, arg);
3013 	default:
3014 		return -ENOTTY;
3015 	}
3016 }
3017 
3018 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3019 {
3020 	struct file *file = iocb->ki_filp;
3021 	struct inode *inode = file_inode(file);
3022 	ssize_t ret;
3023 
3024 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3025 		return -EIO;
3026 
3027 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3028 		return -EINVAL;
3029 
3030 	if (!inode_trylock(inode)) {
3031 		if (iocb->ki_flags & IOCB_NOWAIT)
3032 			return -EAGAIN;
3033 		inode_lock(inode);
3034 	}
3035 
3036 	ret = generic_write_checks(iocb, from);
3037 	if (ret > 0) {
3038 		bool preallocated = false;
3039 		size_t target_size = 0;
3040 		int err;
3041 
3042 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
3043 			set_inode_flag(inode, FI_NO_PREALLOC);
3044 
3045 		if ((iocb->ki_flags & IOCB_NOWAIT) &&
3046 			(iocb->ki_flags & IOCB_DIRECT)) {
3047 				if (!f2fs_overwrite_io(inode, iocb->ki_pos,
3048 						iov_iter_count(from)) ||
3049 					f2fs_has_inline_data(inode) ||
3050 					f2fs_force_buffered_io(inode,
3051 							iocb, from)) {
3052 						clear_inode_flag(inode,
3053 								FI_NO_PREALLOC);
3054 						inode_unlock(inode);
3055 						return -EAGAIN;
3056 				}
3057 
3058 		} else {
3059 			preallocated = true;
3060 			target_size = iocb->ki_pos + iov_iter_count(from);
3061 
3062 			err = f2fs_preallocate_blocks(iocb, from);
3063 			if (err) {
3064 				clear_inode_flag(inode, FI_NO_PREALLOC);
3065 				inode_unlock(inode);
3066 				return err;
3067 			}
3068 		}
3069 		ret = __generic_file_write_iter(iocb, from);
3070 		clear_inode_flag(inode, FI_NO_PREALLOC);
3071 
3072 		/* if we couldn't write data, we should deallocate blocks. */
3073 		if (preallocated && i_size_read(inode) < target_size)
3074 			f2fs_truncate(inode);
3075 
3076 		if (ret > 0)
3077 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
3078 	}
3079 	inode_unlock(inode);
3080 
3081 	if (ret > 0)
3082 		ret = generic_write_sync(iocb, ret);
3083 	return ret;
3084 }
3085 
3086 #ifdef CONFIG_COMPAT
3087 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3088 {
3089 	switch (cmd) {
3090 	case F2FS_IOC32_GETFLAGS:
3091 		cmd = F2FS_IOC_GETFLAGS;
3092 		break;
3093 	case F2FS_IOC32_SETFLAGS:
3094 		cmd = F2FS_IOC_SETFLAGS;
3095 		break;
3096 	case F2FS_IOC32_GETVERSION:
3097 		cmd = F2FS_IOC_GETVERSION;
3098 		break;
3099 	case F2FS_IOC_START_ATOMIC_WRITE:
3100 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3101 	case F2FS_IOC_START_VOLATILE_WRITE:
3102 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3103 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
3104 	case F2FS_IOC_SHUTDOWN:
3105 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
3106 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3107 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
3108 	case F2FS_IOC_GARBAGE_COLLECT:
3109 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3110 	case F2FS_IOC_WRITE_CHECKPOINT:
3111 	case F2FS_IOC_DEFRAGMENT:
3112 	case F2FS_IOC_MOVE_RANGE:
3113 	case F2FS_IOC_FLUSH_DEVICE:
3114 	case F2FS_IOC_GET_FEATURES:
3115 	case F2FS_IOC_FSGETXATTR:
3116 	case F2FS_IOC_FSSETXATTR:
3117 	case F2FS_IOC_GET_PIN_FILE:
3118 	case F2FS_IOC_SET_PIN_FILE:
3119 	case F2FS_IOC_PRECACHE_EXTENTS:
3120 		break;
3121 	default:
3122 		return -ENOIOCTLCMD;
3123 	}
3124 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3125 }
3126 #endif
3127 
3128 const struct file_operations f2fs_file_operations = {
3129 	.llseek		= f2fs_llseek,
3130 	.read_iter	= generic_file_read_iter,
3131 	.write_iter	= f2fs_file_write_iter,
3132 	.open		= f2fs_file_open,
3133 	.release	= f2fs_release_file,
3134 	.mmap		= f2fs_file_mmap,
3135 	.flush		= f2fs_file_flush,
3136 	.fsync		= f2fs_sync_file,
3137 	.fallocate	= f2fs_fallocate,
3138 	.unlocked_ioctl	= f2fs_ioctl,
3139 #ifdef CONFIG_COMPAT
3140 	.compat_ioctl	= f2fs_compat_ioctl,
3141 #endif
3142 	.splice_read	= generic_file_splice_read,
3143 	.splice_write	= iter_file_splice_write,
3144 };
3145