xref: /openbmc/linux/fs/f2fs/file.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uuid.h>
24 #include <linux/file.h>
25 
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "gc.h"
32 #include "trace.h"
33 #include <trace/events/f2fs.h>
34 
35 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
36 						struct vm_fault *vmf)
37 {
38 	struct page *page = vmf->page;
39 	struct inode *inode = file_inode(vma->vm_file);
40 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
41 	struct dnode_of_data dn;
42 	int err;
43 
44 	sb_start_pagefault(inode->i_sb);
45 
46 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
47 
48 	/* block allocation */
49 	f2fs_lock_op(sbi);
50 	set_new_dnode(&dn, inode, NULL, NULL, 0);
51 	err = f2fs_reserve_block(&dn, page->index);
52 	if (err) {
53 		f2fs_unlock_op(sbi);
54 		goto out;
55 	}
56 	f2fs_put_dnode(&dn);
57 	f2fs_unlock_op(sbi);
58 
59 	f2fs_balance_fs(sbi, dn.node_changed);
60 
61 	file_update_time(vma->vm_file);
62 	lock_page(page);
63 	if (unlikely(page->mapping != inode->i_mapping ||
64 			page_offset(page) > i_size_read(inode) ||
65 			!PageUptodate(page))) {
66 		unlock_page(page);
67 		err = -EFAULT;
68 		goto out;
69 	}
70 
71 	/*
72 	 * check to see if the page is mapped already (no holes)
73 	 */
74 	if (PageMappedToDisk(page))
75 		goto mapped;
76 
77 	/* page is wholly or partially inside EOF */
78 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
79 						i_size_read(inode)) {
80 		unsigned offset;
81 		offset = i_size_read(inode) & ~PAGE_MASK;
82 		zero_user_segment(page, offset, PAGE_SIZE);
83 	}
84 	set_page_dirty(page);
85 	if (!PageUptodate(page))
86 		SetPageUptodate(page);
87 
88 	trace_f2fs_vm_page_mkwrite(page, DATA);
89 mapped:
90 	/* fill the page */
91 	f2fs_wait_on_page_writeback(page, DATA, false);
92 
93 	/* wait for GCed encrypted page writeback */
94 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
95 		f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
96 
97 	/* if gced page is attached, don't write to cold segment */
98 	clear_cold_data(page);
99 out:
100 	sb_end_pagefault(inode->i_sb);
101 	f2fs_update_time(sbi, REQ_TIME);
102 	return block_page_mkwrite_return(err);
103 }
104 
105 static const struct vm_operations_struct f2fs_file_vm_ops = {
106 	.fault		= filemap_fault,
107 	.map_pages	= filemap_map_pages,
108 	.page_mkwrite	= f2fs_vm_page_mkwrite,
109 };
110 
111 static int get_parent_ino(struct inode *inode, nid_t *pino)
112 {
113 	struct dentry *dentry;
114 
115 	inode = igrab(inode);
116 	dentry = d_find_any_alias(inode);
117 	iput(inode);
118 	if (!dentry)
119 		return 0;
120 
121 	if (update_dent_inode(inode, inode, &dentry->d_name)) {
122 		dput(dentry);
123 		return 0;
124 	}
125 
126 	*pino = parent_ino(dentry);
127 	dput(dentry);
128 	return 1;
129 }
130 
131 static inline bool need_do_checkpoint(struct inode *inode)
132 {
133 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
134 	bool need_cp = false;
135 
136 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
137 		need_cp = true;
138 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
139 		need_cp = true;
140 	else if (file_wrong_pino(inode))
141 		need_cp = true;
142 	else if (!space_for_roll_forward(sbi))
143 		need_cp = true;
144 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
145 		need_cp = true;
146 	else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
147 		need_cp = true;
148 	else if (test_opt(sbi, FASTBOOT))
149 		need_cp = true;
150 	else if (sbi->active_logs == 2)
151 		need_cp = true;
152 
153 	return need_cp;
154 }
155 
156 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
157 {
158 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
159 	bool ret = false;
160 	/* But we need to avoid that there are some inode updates */
161 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
162 		ret = true;
163 	f2fs_put_page(i, 0);
164 	return ret;
165 }
166 
167 static void try_to_fix_pino(struct inode *inode)
168 {
169 	struct f2fs_inode_info *fi = F2FS_I(inode);
170 	nid_t pino;
171 
172 	down_write(&fi->i_sem);
173 	fi->xattr_ver = 0;
174 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
175 			get_parent_ino(inode, &pino)) {
176 		f2fs_i_pino_write(inode, pino);
177 		file_got_pino(inode);
178 	}
179 	up_write(&fi->i_sem);
180 }
181 
182 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
183 						int datasync, bool atomic)
184 {
185 	struct inode *inode = file->f_mapping->host;
186 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
187 	nid_t ino = inode->i_ino;
188 	int ret = 0;
189 	bool need_cp = false;
190 	struct writeback_control wbc = {
191 		.sync_mode = WB_SYNC_ALL,
192 		.nr_to_write = LONG_MAX,
193 		.for_reclaim = 0,
194 	};
195 
196 	if (unlikely(f2fs_readonly(inode->i_sb)))
197 		return 0;
198 
199 	trace_f2fs_sync_file_enter(inode);
200 
201 	/* if fdatasync is triggered, let's do in-place-update */
202 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
203 		set_inode_flag(inode, FI_NEED_IPU);
204 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
205 	clear_inode_flag(inode, FI_NEED_IPU);
206 
207 	if (ret) {
208 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
209 		return ret;
210 	}
211 
212 	/* if the inode is dirty, let's recover all the time */
213 	if (!datasync && !f2fs_skip_inode_update(inode)) {
214 		f2fs_write_inode(inode, NULL);
215 		goto go_write;
216 	}
217 
218 	/*
219 	 * if there is no written data, don't waste time to write recovery info.
220 	 */
221 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
222 			!exist_written_data(sbi, ino, APPEND_INO)) {
223 
224 		/* it may call write_inode just prior to fsync */
225 		if (need_inode_page_update(sbi, ino))
226 			goto go_write;
227 
228 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
229 				exist_written_data(sbi, ino, UPDATE_INO))
230 			goto flush_out;
231 		goto out;
232 	}
233 go_write:
234 	/*
235 	 * Both of fdatasync() and fsync() are able to be recovered from
236 	 * sudden-power-off.
237 	 */
238 	down_read(&F2FS_I(inode)->i_sem);
239 	need_cp = need_do_checkpoint(inode);
240 	up_read(&F2FS_I(inode)->i_sem);
241 
242 	if (need_cp) {
243 		/* all the dirty node pages should be flushed for POR */
244 		ret = f2fs_sync_fs(inode->i_sb, 1);
245 
246 		/*
247 		 * We've secured consistency through sync_fs. Following pino
248 		 * will be used only for fsynced inodes after checkpoint.
249 		 */
250 		try_to_fix_pino(inode);
251 		clear_inode_flag(inode, FI_APPEND_WRITE);
252 		clear_inode_flag(inode, FI_UPDATE_WRITE);
253 		goto out;
254 	}
255 sync_nodes:
256 	ret = fsync_node_pages(sbi, inode, &wbc, atomic);
257 	if (ret)
258 		goto out;
259 
260 	/* if cp_error was enabled, we should avoid infinite loop */
261 	if (unlikely(f2fs_cp_error(sbi))) {
262 		ret = -EIO;
263 		goto out;
264 	}
265 
266 	if (need_inode_block_update(sbi, ino)) {
267 		f2fs_mark_inode_dirty_sync(inode);
268 		f2fs_write_inode(inode, NULL);
269 		goto sync_nodes;
270 	}
271 
272 	ret = wait_on_node_pages_writeback(sbi, ino);
273 	if (ret)
274 		goto out;
275 
276 	/* once recovery info is written, don't need to tack this */
277 	remove_ino_entry(sbi, ino, APPEND_INO);
278 	clear_inode_flag(inode, FI_APPEND_WRITE);
279 flush_out:
280 	remove_ino_entry(sbi, ino, UPDATE_INO);
281 	clear_inode_flag(inode, FI_UPDATE_WRITE);
282 	ret = f2fs_issue_flush(sbi);
283 	f2fs_update_time(sbi, REQ_TIME);
284 out:
285 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
286 	f2fs_trace_ios(NULL, 1);
287 	return ret;
288 }
289 
290 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
291 {
292 	return f2fs_do_sync_file(file, start, end, datasync, false);
293 }
294 
295 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
296 						pgoff_t pgofs, int whence)
297 {
298 	struct pagevec pvec;
299 	int nr_pages;
300 
301 	if (whence != SEEK_DATA)
302 		return 0;
303 
304 	/* find first dirty page index */
305 	pagevec_init(&pvec, 0);
306 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
307 					PAGECACHE_TAG_DIRTY, 1);
308 	pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
309 	pagevec_release(&pvec);
310 	return pgofs;
311 }
312 
313 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
314 							int whence)
315 {
316 	switch (whence) {
317 	case SEEK_DATA:
318 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
319 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
320 			return true;
321 		break;
322 	case SEEK_HOLE:
323 		if (blkaddr == NULL_ADDR)
324 			return true;
325 		break;
326 	}
327 	return false;
328 }
329 
330 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
331 {
332 	struct inode *inode = file->f_mapping->host;
333 	loff_t maxbytes = inode->i_sb->s_maxbytes;
334 	struct dnode_of_data dn;
335 	pgoff_t pgofs, end_offset, dirty;
336 	loff_t data_ofs = offset;
337 	loff_t isize;
338 	int err = 0;
339 
340 	inode_lock(inode);
341 
342 	isize = i_size_read(inode);
343 	if (offset >= isize)
344 		goto fail;
345 
346 	/* handle inline data case */
347 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
348 		if (whence == SEEK_HOLE)
349 			data_ofs = isize;
350 		goto found;
351 	}
352 
353 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
354 
355 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
356 
357 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
358 		set_new_dnode(&dn, inode, NULL, NULL, 0);
359 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
360 		if (err && err != -ENOENT) {
361 			goto fail;
362 		} else if (err == -ENOENT) {
363 			/* direct node does not exists */
364 			if (whence == SEEK_DATA) {
365 				pgofs = get_next_page_offset(&dn, pgofs);
366 				continue;
367 			} else {
368 				goto found;
369 			}
370 		}
371 
372 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
373 
374 		/* find data/hole in dnode block */
375 		for (; dn.ofs_in_node < end_offset;
376 				dn.ofs_in_node++, pgofs++,
377 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
378 			block_t blkaddr;
379 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
380 
381 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
382 				f2fs_put_dnode(&dn);
383 				goto found;
384 			}
385 		}
386 		f2fs_put_dnode(&dn);
387 	}
388 
389 	if (whence == SEEK_DATA)
390 		goto fail;
391 found:
392 	if (whence == SEEK_HOLE && data_ofs > isize)
393 		data_ofs = isize;
394 	inode_unlock(inode);
395 	return vfs_setpos(file, data_ofs, maxbytes);
396 fail:
397 	inode_unlock(inode);
398 	return -ENXIO;
399 }
400 
401 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
402 {
403 	struct inode *inode = file->f_mapping->host;
404 	loff_t maxbytes = inode->i_sb->s_maxbytes;
405 
406 	switch (whence) {
407 	case SEEK_SET:
408 	case SEEK_CUR:
409 	case SEEK_END:
410 		return generic_file_llseek_size(file, offset, whence,
411 						maxbytes, i_size_read(inode));
412 	case SEEK_DATA:
413 	case SEEK_HOLE:
414 		if (offset < 0)
415 			return -ENXIO;
416 		return f2fs_seek_block(file, offset, whence);
417 	}
418 
419 	return -EINVAL;
420 }
421 
422 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
423 {
424 	struct inode *inode = file_inode(file);
425 	int err;
426 
427 	if (f2fs_encrypted_inode(inode)) {
428 		err = fscrypt_get_encryption_info(inode);
429 		if (err)
430 			return 0;
431 		if (!f2fs_encrypted_inode(inode))
432 			return -ENOKEY;
433 	}
434 
435 	/* we don't need to use inline_data strictly */
436 	err = f2fs_convert_inline_inode(inode);
437 	if (err)
438 		return err;
439 
440 	file_accessed(file);
441 	vma->vm_ops = &f2fs_file_vm_ops;
442 	return 0;
443 }
444 
445 static int f2fs_file_open(struct inode *inode, struct file *filp)
446 {
447 	int ret = generic_file_open(inode, filp);
448 	struct dentry *dir;
449 
450 	if (!ret && f2fs_encrypted_inode(inode)) {
451 		ret = fscrypt_get_encryption_info(inode);
452 		if (ret)
453 			return -EACCES;
454 		if (!fscrypt_has_encryption_key(inode))
455 			return -ENOKEY;
456 	}
457 	dir = dget_parent(file_dentry(filp));
458 	if (f2fs_encrypted_inode(d_inode(dir)) &&
459 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
460 		dput(dir);
461 		return -EPERM;
462 	}
463 	dput(dir);
464 	return ret;
465 }
466 
467 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
468 {
469 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
470 	struct f2fs_node *raw_node;
471 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
472 	__le32 *addr;
473 
474 	raw_node = F2FS_NODE(dn->node_page);
475 	addr = blkaddr_in_node(raw_node) + ofs;
476 
477 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
478 		block_t blkaddr = le32_to_cpu(*addr);
479 		if (blkaddr == NULL_ADDR)
480 			continue;
481 
482 		dn->data_blkaddr = NULL_ADDR;
483 		set_data_blkaddr(dn);
484 		invalidate_blocks(sbi, blkaddr);
485 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
486 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
487 		nr_free++;
488 	}
489 
490 	if (nr_free) {
491 		pgoff_t fofs;
492 		/*
493 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
494 		 * we will invalidate all blkaddr in the whole range.
495 		 */
496 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
497 							dn->inode) + ofs;
498 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
499 		dec_valid_block_count(sbi, dn->inode, nr_free);
500 	}
501 	dn->ofs_in_node = ofs;
502 
503 	f2fs_update_time(sbi, REQ_TIME);
504 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
505 					 dn->ofs_in_node, nr_free);
506 	return nr_free;
507 }
508 
509 void truncate_data_blocks(struct dnode_of_data *dn)
510 {
511 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
512 }
513 
514 static int truncate_partial_data_page(struct inode *inode, u64 from,
515 								bool cache_only)
516 {
517 	unsigned offset = from & (PAGE_SIZE - 1);
518 	pgoff_t index = from >> PAGE_SHIFT;
519 	struct address_space *mapping = inode->i_mapping;
520 	struct page *page;
521 
522 	if (!offset && !cache_only)
523 		return 0;
524 
525 	if (cache_only) {
526 		page = find_lock_page(mapping, index);
527 		if (page && PageUptodate(page))
528 			goto truncate_out;
529 		f2fs_put_page(page, 1);
530 		return 0;
531 	}
532 
533 	page = get_lock_data_page(inode, index, true);
534 	if (IS_ERR(page))
535 		return 0;
536 truncate_out:
537 	f2fs_wait_on_page_writeback(page, DATA, true);
538 	zero_user(page, offset, PAGE_SIZE - offset);
539 	if (!cache_only || !f2fs_encrypted_inode(inode) ||
540 					!S_ISREG(inode->i_mode))
541 		set_page_dirty(page);
542 	f2fs_put_page(page, 1);
543 	return 0;
544 }
545 
546 int truncate_blocks(struct inode *inode, u64 from, bool lock)
547 {
548 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
549 	unsigned int blocksize = inode->i_sb->s_blocksize;
550 	struct dnode_of_data dn;
551 	pgoff_t free_from;
552 	int count = 0, err = 0;
553 	struct page *ipage;
554 	bool truncate_page = false;
555 
556 	trace_f2fs_truncate_blocks_enter(inode, from);
557 
558 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
559 
560 	if (free_from >= sbi->max_file_blocks)
561 		goto free_partial;
562 
563 	if (lock)
564 		f2fs_lock_op(sbi);
565 
566 	ipage = get_node_page(sbi, inode->i_ino);
567 	if (IS_ERR(ipage)) {
568 		err = PTR_ERR(ipage);
569 		goto out;
570 	}
571 
572 	if (f2fs_has_inline_data(inode)) {
573 		if (truncate_inline_inode(ipage, from))
574 			set_page_dirty(ipage);
575 		f2fs_put_page(ipage, 1);
576 		truncate_page = true;
577 		goto out;
578 	}
579 
580 	set_new_dnode(&dn, inode, ipage, NULL, 0);
581 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
582 	if (err) {
583 		if (err == -ENOENT)
584 			goto free_next;
585 		goto out;
586 	}
587 
588 	count = ADDRS_PER_PAGE(dn.node_page, inode);
589 
590 	count -= dn.ofs_in_node;
591 	f2fs_bug_on(sbi, count < 0);
592 
593 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
594 		truncate_data_blocks_range(&dn, count);
595 		free_from += count;
596 	}
597 
598 	f2fs_put_dnode(&dn);
599 free_next:
600 	err = truncate_inode_blocks(inode, free_from);
601 out:
602 	if (lock)
603 		f2fs_unlock_op(sbi);
604 free_partial:
605 	/* lastly zero out the first data page */
606 	if (!err)
607 		err = truncate_partial_data_page(inode, from, truncate_page);
608 
609 	trace_f2fs_truncate_blocks_exit(inode, err);
610 	return err;
611 }
612 
613 int f2fs_truncate(struct inode *inode)
614 {
615 	int err;
616 
617 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
618 				S_ISLNK(inode->i_mode)))
619 		return 0;
620 
621 	trace_f2fs_truncate(inode);
622 
623 	/* we should check inline_data size */
624 	if (!f2fs_may_inline_data(inode)) {
625 		err = f2fs_convert_inline_inode(inode);
626 		if (err)
627 			return err;
628 	}
629 
630 	err = truncate_blocks(inode, i_size_read(inode), true);
631 	if (err)
632 		return err;
633 
634 	inode->i_mtime = inode->i_ctime = current_time(inode);
635 	f2fs_mark_inode_dirty_sync(inode);
636 	return 0;
637 }
638 
639 int f2fs_getattr(struct vfsmount *mnt,
640 			 struct dentry *dentry, struct kstat *stat)
641 {
642 	struct inode *inode = d_inode(dentry);
643 	generic_fillattr(inode, stat);
644 	stat->blocks <<= 3;
645 	return 0;
646 }
647 
648 #ifdef CONFIG_F2FS_FS_POSIX_ACL
649 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
650 {
651 	unsigned int ia_valid = attr->ia_valid;
652 
653 	if (ia_valid & ATTR_UID)
654 		inode->i_uid = attr->ia_uid;
655 	if (ia_valid & ATTR_GID)
656 		inode->i_gid = attr->ia_gid;
657 	if (ia_valid & ATTR_ATIME)
658 		inode->i_atime = timespec_trunc(attr->ia_atime,
659 						inode->i_sb->s_time_gran);
660 	if (ia_valid & ATTR_MTIME)
661 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
662 						inode->i_sb->s_time_gran);
663 	if (ia_valid & ATTR_CTIME)
664 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
665 						inode->i_sb->s_time_gran);
666 	if (ia_valid & ATTR_MODE) {
667 		umode_t mode = attr->ia_mode;
668 
669 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
670 			mode &= ~S_ISGID;
671 		set_acl_inode(inode, mode);
672 	}
673 }
674 #else
675 #define __setattr_copy setattr_copy
676 #endif
677 
678 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
679 {
680 	struct inode *inode = d_inode(dentry);
681 	int err;
682 
683 	err = setattr_prepare(dentry, attr);
684 	if (err)
685 		return err;
686 
687 	if (attr->ia_valid & ATTR_SIZE) {
688 		if (f2fs_encrypted_inode(inode) &&
689 				fscrypt_get_encryption_info(inode))
690 			return -EACCES;
691 
692 		if (attr->ia_size <= i_size_read(inode)) {
693 			truncate_setsize(inode, attr->ia_size);
694 			err = f2fs_truncate(inode);
695 			if (err)
696 				return err;
697 			f2fs_balance_fs(F2FS_I_SB(inode), true);
698 		} else {
699 			/*
700 			 * do not trim all blocks after i_size if target size is
701 			 * larger than i_size.
702 			 */
703 			truncate_setsize(inode, attr->ia_size);
704 
705 			/* should convert inline inode here */
706 			if (!f2fs_may_inline_data(inode)) {
707 				err = f2fs_convert_inline_inode(inode);
708 				if (err)
709 					return err;
710 			}
711 			inode->i_mtime = inode->i_ctime = current_time(inode);
712 		}
713 	}
714 
715 	__setattr_copy(inode, attr);
716 
717 	if (attr->ia_valid & ATTR_MODE) {
718 		err = posix_acl_chmod(inode, get_inode_mode(inode));
719 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
720 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
721 			clear_inode_flag(inode, FI_ACL_MODE);
722 		}
723 	}
724 
725 	f2fs_mark_inode_dirty_sync(inode);
726 	return err;
727 }
728 
729 const struct inode_operations f2fs_file_inode_operations = {
730 	.getattr	= f2fs_getattr,
731 	.setattr	= f2fs_setattr,
732 	.get_acl	= f2fs_get_acl,
733 	.set_acl	= f2fs_set_acl,
734 #ifdef CONFIG_F2FS_FS_XATTR
735 	.listxattr	= f2fs_listxattr,
736 #endif
737 	.fiemap		= f2fs_fiemap,
738 };
739 
740 static int fill_zero(struct inode *inode, pgoff_t index,
741 					loff_t start, loff_t len)
742 {
743 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
744 	struct page *page;
745 
746 	if (!len)
747 		return 0;
748 
749 	f2fs_balance_fs(sbi, true);
750 
751 	f2fs_lock_op(sbi);
752 	page = get_new_data_page(inode, NULL, index, false);
753 	f2fs_unlock_op(sbi);
754 
755 	if (IS_ERR(page))
756 		return PTR_ERR(page);
757 
758 	f2fs_wait_on_page_writeback(page, DATA, true);
759 	zero_user(page, start, len);
760 	set_page_dirty(page);
761 	f2fs_put_page(page, 1);
762 	return 0;
763 }
764 
765 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
766 {
767 	int err;
768 
769 	while (pg_start < pg_end) {
770 		struct dnode_of_data dn;
771 		pgoff_t end_offset, count;
772 
773 		set_new_dnode(&dn, inode, NULL, NULL, 0);
774 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
775 		if (err) {
776 			if (err == -ENOENT) {
777 				pg_start++;
778 				continue;
779 			}
780 			return err;
781 		}
782 
783 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
784 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
785 
786 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
787 
788 		truncate_data_blocks_range(&dn, count);
789 		f2fs_put_dnode(&dn);
790 
791 		pg_start += count;
792 	}
793 	return 0;
794 }
795 
796 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
797 {
798 	pgoff_t pg_start, pg_end;
799 	loff_t off_start, off_end;
800 	int ret;
801 
802 	ret = f2fs_convert_inline_inode(inode);
803 	if (ret)
804 		return ret;
805 
806 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
807 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
808 
809 	off_start = offset & (PAGE_SIZE - 1);
810 	off_end = (offset + len) & (PAGE_SIZE - 1);
811 
812 	if (pg_start == pg_end) {
813 		ret = fill_zero(inode, pg_start, off_start,
814 						off_end - off_start);
815 		if (ret)
816 			return ret;
817 	} else {
818 		if (off_start) {
819 			ret = fill_zero(inode, pg_start++, off_start,
820 						PAGE_SIZE - off_start);
821 			if (ret)
822 				return ret;
823 		}
824 		if (off_end) {
825 			ret = fill_zero(inode, pg_end, 0, off_end);
826 			if (ret)
827 				return ret;
828 		}
829 
830 		if (pg_start < pg_end) {
831 			struct address_space *mapping = inode->i_mapping;
832 			loff_t blk_start, blk_end;
833 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
834 
835 			f2fs_balance_fs(sbi, true);
836 
837 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
838 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
839 			truncate_inode_pages_range(mapping, blk_start,
840 					blk_end - 1);
841 
842 			f2fs_lock_op(sbi);
843 			ret = truncate_hole(inode, pg_start, pg_end);
844 			f2fs_unlock_op(sbi);
845 		}
846 	}
847 
848 	return ret;
849 }
850 
851 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
852 				int *do_replace, pgoff_t off, pgoff_t len)
853 {
854 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
855 	struct dnode_of_data dn;
856 	int ret, done, i;
857 
858 next_dnode:
859 	set_new_dnode(&dn, inode, NULL, NULL, 0);
860 	ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
861 	if (ret && ret != -ENOENT) {
862 		return ret;
863 	} else if (ret == -ENOENT) {
864 		if (dn.max_level == 0)
865 			return -ENOENT;
866 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
867 		blkaddr += done;
868 		do_replace += done;
869 		goto next;
870 	}
871 
872 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
873 							dn.ofs_in_node, len);
874 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
875 		*blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
876 		if (!is_checkpointed_data(sbi, *blkaddr)) {
877 
878 			if (test_opt(sbi, LFS)) {
879 				f2fs_put_dnode(&dn);
880 				return -ENOTSUPP;
881 			}
882 
883 			/* do not invalidate this block address */
884 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
885 			*do_replace = 1;
886 		}
887 	}
888 	f2fs_put_dnode(&dn);
889 next:
890 	len -= done;
891 	off += done;
892 	if (len)
893 		goto next_dnode;
894 	return 0;
895 }
896 
897 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
898 				int *do_replace, pgoff_t off, int len)
899 {
900 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
901 	struct dnode_of_data dn;
902 	int ret, i;
903 
904 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
905 		if (*do_replace == 0)
906 			continue;
907 
908 		set_new_dnode(&dn, inode, NULL, NULL, 0);
909 		ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
910 		if (ret) {
911 			dec_valid_block_count(sbi, inode, 1);
912 			invalidate_blocks(sbi, *blkaddr);
913 		} else {
914 			f2fs_update_data_blkaddr(&dn, *blkaddr);
915 		}
916 		f2fs_put_dnode(&dn);
917 	}
918 	return 0;
919 }
920 
921 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
922 			block_t *blkaddr, int *do_replace,
923 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
924 {
925 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
926 	pgoff_t i = 0;
927 	int ret;
928 
929 	while (i < len) {
930 		if (blkaddr[i] == NULL_ADDR && !full) {
931 			i++;
932 			continue;
933 		}
934 
935 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
936 			struct dnode_of_data dn;
937 			struct node_info ni;
938 			size_t new_size;
939 			pgoff_t ilen;
940 
941 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
942 			ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
943 			if (ret)
944 				return ret;
945 
946 			get_node_info(sbi, dn.nid, &ni);
947 			ilen = min((pgoff_t)
948 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
949 						dn.ofs_in_node, len - i);
950 			do {
951 				dn.data_blkaddr = datablock_addr(dn.node_page,
952 								dn.ofs_in_node);
953 				truncate_data_blocks_range(&dn, 1);
954 
955 				if (do_replace[i]) {
956 					f2fs_i_blocks_write(src_inode,
957 								1, false);
958 					f2fs_i_blocks_write(dst_inode,
959 								1, true);
960 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
961 					blkaddr[i], ni.version, true, false);
962 
963 					do_replace[i] = 0;
964 				}
965 				dn.ofs_in_node++;
966 				i++;
967 				new_size = (dst + i) << PAGE_SHIFT;
968 				if (dst_inode->i_size < new_size)
969 					f2fs_i_size_write(dst_inode, new_size);
970 			} while ((do_replace[i] || blkaddr[i] == NULL_ADDR) && --ilen);
971 
972 			f2fs_put_dnode(&dn);
973 		} else {
974 			struct page *psrc, *pdst;
975 
976 			psrc = get_lock_data_page(src_inode, src + i, true);
977 			if (IS_ERR(psrc))
978 				return PTR_ERR(psrc);
979 			pdst = get_new_data_page(dst_inode, NULL, dst + i,
980 								true);
981 			if (IS_ERR(pdst)) {
982 				f2fs_put_page(psrc, 1);
983 				return PTR_ERR(pdst);
984 			}
985 			f2fs_copy_page(psrc, pdst);
986 			set_page_dirty(pdst);
987 			f2fs_put_page(pdst, 1);
988 			f2fs_put_page(psrc, 1);
989 
990 			ret = truncate_hole(src_inode, src + i, src + i + 1);
991 			if (ret)
992 				return ret;
993 			i++;
994 		}
995 	}
996 	return 0;
997 }
998 
999 static int __exchange_data_block(struct inode *src_inode,
1000 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1001 			pgoff_t len, bool full)
1002 {
1003 	block_t *src_blkaddr;
1004 	int *do_replace;
1005 	pgoff_t olen;
1006 	int ret;
1007 
1008 	while (len) {
1009 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1010 
1011 		src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1012 		if (!src_blkaddr)
1013 			return -ENOMEM;
1014 
1015 		do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1016 		if (!do_replace) {
1017 			kvfree(src_blkaddr);
1018 			return -ENOMEM;
1019 		}
1020 
1021 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1022 					do_replace, src, olen);
1023 		if (ret)
1024 			goto roll_back;
1025 
1026 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1027 					do_replace, src, dst, olen, full);
1028 		if (ret)
1029 			goto roll_back;
1030 
1031 		src += olen;
1032 		dst += olen;
1033 		len -= olen;
1034 
1035 		kvfree(src_blkaddr);
1036 		kvfree(do_replace);
1037 	}
1038 	return 0;
1039 
1040 roll_back:
1041 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1042 	kvfree(src_blkaddr);
1043 	kvfree(do_replace);
1044 	return ret;
1045 }
1046 
1047 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1048 {
1049 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1050 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1051 	int ret;
1052 
1053 	f2fs_balance_fs(sbi, true);
1054 	f2fs_lock_op(sbi);
1055 
1056 	f2fs_drop_extent_tree(inode);
1057 
1058 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1059 	f2fs_unlock_op(sbi);
1060 	return ret;
1061 }
1062 
1063 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1064 {
1065 	pgoff_t pg_start, pg_end;
1066 	loff_t new_size;
1067 	int ret;
1068 
1069 	if (offset + len >= i_size_read(inode))
1070 		return -EINVAL;
1071 
1072 	/* collapse range should be aligned to block size of f2fs. */
1073 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1074 		return -EINVAL;
1075 
1076 	ret = f2fs_convert_inline_inode(inode);
1077 	if (ret)
1078 		return ret;
1079 
1080 	pg_start = offset >> PAGE_SHIFT;
1081 	pg_end = (offset + len) >> PAGE_SHIFT;
1082 
1083 	/* write out all dirty pages from offset */
1084 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1085 	if (ret)
1086 		return ret;
1087 
1088 	truncate_pagecache(inode, offset);
1089 
1090 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1091 	if (ret)
1092 		return ret;
1093 
1094 	/* write out all moved pages, if possible */
1095 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1096 	truncate_pagecache(inode, offset);
1097 
1098 	new_size = i_size_read(inode) - len;
1099 	truncate_pagecache(inode, new_size);
1100 
1101 	ret = truncate_blocks(inode, new_size, true);
1102 	if (!ret)
1103 		f2fs_i_size_write(inode, new_size);
1104 
1105 	return ret;
1106 }
1107 
1108 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1109 								pgoff_t end)
1110 {
1111 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1112 	pgoff_t index = start;
1113 	unsigned int ofs_in_node = dn->ofs_in_node;
1114 	blkcnt_t count = 0;
1115 	int ret;
1116 
1117 	for (; index < end; index++, dn->ofs_in_node++) {
1118 		if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1119 			count++;
1120 	}
1121 
1122 	dn->ofs_in_node = ofs_in_node;
1123 	ret = reserve_new_blocks(dn, count);
1124 	if (ret)
1125 		return ret;
1126 
1127 	dn->ofs_in_node = ofs_in_node;
1128 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1129 		dn->data_blkaddr =
1130 				datablock_addr(dn->node_page, dn->ofs_in_node);
1131 		/*
1132 		 * reserve_new_blocks will not guarantee entire block
1133 		 * allocation.
1134 		 */
1135 		if (dn->data_blkaddr == NULL_ADDR) {
1136 			ret = -ENOSPC;
1137 			break;
1138 		}
1139 		if (dn->data_blkaddr != NEW_ADDR) {
1140 			invalidate_blocks(sbi, dn->data_blkaddr);
1141 			dn->data_blkaddr = NEW_ADDR;
1142 			set_data_blkaddr(dn);
1143 		}
1144 	}
1145 
1146 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1147 
1148 	return ret;
1149 }
1150 
1151 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1152 								int mode)
1153 {
1154 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1155 	struct address_space *mapping = inode->i_mapping;
1156 	pgoff_t index, pg_start, pg_end;
1157 	loff_t new_size = i_size_read(inode);
1158 	loff_t off_start, off_end;
1159 	int ret = 0;
1160 
1161 	ret = inode_newsize_ok(inode, (len + offset));
1162 	if (ret)
1163 		return ret;
1164 
1165 	ret = f2fs_convert_inline_inode(inode);
1166 	if (ret)
1167 		return ret;
1168 
1169 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1170 	if (ret)
1171 		return ret;
1172 
1173 	truncate_pagecache_range(inode, offset, offset + len - 1);
1174 
1175 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1176 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1177 
1178 	off_start = offset & (PAGE_SIZE - 1);
1179 	off_end = (offset + len) & (PAGE_SIZE - 1);
1180 
1181 	if (pg_start == pg_end) {
1182 		ret = fill_zero(inode, pg_start, off_start,
1183 						off_end - off_start);
1184 		if (ret)
1185 			return ret;
1186 
1187 		if (offset + len > new_size)
1188 			new_size = offset + len;
1189 		new_size = max_t(loff_t, new_size, offset + len);
1190 	} else {
1191 		if (off_start) {
1192 			ret = fill_zero(inode, pg_start++, off_start,
1193 						PAGE_SIZE - off_start);
1194 			if (ret)
1195 				return ret;
1196 
1197 			new_size = max_t(loff_t, new_size,
1198 					(loff_t)pg_start << PAGE_SHIFT);
1199 		}
1200 
1201 		for (index = pg_start; index < pg_end;) {
1202 			struct dnode_of_data dn;
1203 			unsigned int end_offset;
1204 			pgoff_t end;
1205 
1206 			f2fs_lock_op(sbi);
1207 
1208 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1209 			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1210 			if (ret) {
1211 				f2fs_unlock_op(sbi);
1212 				goto out;
1213 			}
1214 
1215 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1216 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1217 
1218 			ret = f2fs_do_zero_range(&dn, index, end);
1219 			f2fs_put_dnode(&dn);
1220 			f2fs_unlock_op(sbi);
1221 			if (ret)
1222 				goto out;
1223 
1224 			index = end;
1225 			new_size = max_t(loff_t, new_size,
1226 					(loff_t)index << PAGE_SHIFT);
1227 		}
1228 
1229 		if (off_end) {
1230 			ret = fill_zero(inode, pg_end, 0, off_end);
1231 			if (ret)
1232 				goto out;
1233 
1234 			new_size = max_t(loff_t, new_size, offset + len);
1235 		}
1236 	}
1237 
1238 out:
1239 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1240 		f2fs_i_size_write(inode, new_size);
1241 
1242 	return ret;
1243 }
1244 
1245 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1246 {
1247 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1248 	pgoff_t nr, pg_start, pg_end, delta, idx;
1249 	loff_t new_size;
1250 	int ret = 0;
1251 
1252 	new_size = i_size_read(inode) + len;
1253 	if (new_size > inode->i_sb->s_maxbytes)
1254 		return -EFBIG;
1255 
1256 	if (offset >= i_size_read(inode))
1257 		return -EINVAL;
1258 
1259 	/* insert range should be aligned to block size of f2fs. */
1260 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1261 		return -EINVAL;
1262 
1263 	ret = f2fs_convert_inline_inode(inode);
1264 	if (ret)
1265 		return ret;
1266 
1267 	f2fs_balance_fs(sbi, true);
1268 
1269 	ret = truncate_blocks(inode, i_size_read(inode), true);
1270 	if (ret)
1271 		return ret;
1272 
1273 	/* write out all dirty pages from offset */
1274 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1275 	if (ret)
1276 		return ret;
1277 
1278 	truncate_pagecache(inode, offset);
1279 
1280 	pg_start = offset >> PAGE_SHIFT;
1281 	pg_end = (offset + len) >> PAGE_SHIFT;
1282 	delta = pg_end - pg_start;
1283 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1284 
1285 	while (!ret && idx > pg_start) {
1286 		nr = idx - pg_start;
1287 		if (nr > delta)
1288 			nr = delta;
1289 		idx -= nr;
1290 
1291 		f2fs_lock_op(sbi);
1292 		f2fs_drop_extent_tree(inode);
1293 
1294 		ret = __exchange_data_block(inode, inode, idx,
1295 					idx + delta, nr, false);
1296 		f2fs_unlock_op(sbi);
1297 	}
1298 
1299 	/* write out all moved pages, if possible */
1300 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1301 	truncate_pagecache(inode, offset);
1302 
1303 	if (!ret)
1304 		f2fs_i_size_write(inode, new_size);
1305 	return ret;
1306 }
1307 
1308 static int expand_inode_data(struct inode *inode, loff_t offset,
1309 					loff_t len, int mode)
1310 {
1311 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1312 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1313 	pgoff_t pg_end;
1314 	loff_t new_size = i_size_read(inode);
1315 	loff_t off_end;
1316 	int ret;
1317 
1318 	ret = inode_newsize_ok(inode, (len + offset));
1319 	if (ret)
1320 		return ret;
1321 
1322 	ret = f2fs_convert_inline_inode(inode);
1323 	if (ret)
1324 		return ret;
1325 
1326 	f2fs_balance_fs(sbi, true);
1327 
1328 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1329 	off_end = (offset + len) & (PAGE_SIZE - 1);
1330 
1331 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1332 	map.m_len = pg_end - map.m_lblk;
1333 	if (off_end)
1334 		map.m_len++;
1335 
1336 	ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1337 	if (ret) {
1338 		pgoff_t last_off;
1339 
1340 		if (!map.m_len)
1341 			return ret;
1342 
1343 		last_off = map.m_lblk + map.m_len - 1;
1344 
1345 		/* update new size to the failed position */
1346 		new_size = (last_off == pg_end) ? offset + len:
1347 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1348 	} else {
1349 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1350 	}
1351 
1352 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1353 		f2fs_i_size_write(inode, new_size);
1354 
1355 	return ret;
1356 }
1357 
1358 static long f2fs_fallocate(struct file *file, int mode,
1359 				loff_t offset, loff_t len)
1360 {
1361 	struct inode *inode = file_inode(file);
1362 	long ret = 0;
1363 
1364 	/* f2fs only support ->fallocate for regular file */
1365 	if (!S_ISREG(inode->i_mode))
1366 		return -EINVAL;
1367 
1368 	if (f2fs_encrypted_inode(inode) &&
1369 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1370 		return -EOPNOTSUPP;
1371 
1372 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1373 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1374 			FALLOC_FL_INSERT_RANGE))
1375 		return -EOPNOTSUPP;
1376 
1377 	inode_lock(inode);
1378 
1379 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1380 		if (offset >= inode->i_size)
1381 			goto out;
1382 
1383 		ret = punch_hole(inode, offset, len);
1384 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1385 		ret = f2fs_collapse_range(inode, offset, len);
1386 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1387 		ret = f2fs_zero_range(inode, offset, len, mode);
1388 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1389 		ret = f2fs_insert_range(inode, offset, len);
1390 	} else {
1391 		ret = expand_inode_data(inode, offset, len, mode);
1392 	}
1393 
1394 	if (!ret) {
1395 		inode->i_mtime = inode->i_ctime = current_time(inode);
1396 		f2fs_mark_inode_dirty_sync(inode);
1397 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1398 	}
1399 
1400 out:
1401 	inode_unlock(inode);
1402 
1403 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1404 	return ret;
1405 }
1406 
1407 static int f2fs_release_file(struct inode *inode, struct file *filp)
1408 {
1409 	/*
1410 	 * f2fs_relase_file is called at every close calls. So we should
1411 	 * not drop any inmemory pages by close called by other process.
1412 	 */
1413 	if (!(filp->f_mode & FMODE_WRITE) ||
1414 			atomic_read(&inode->i_writecount) != 1)
1415 		return 0;
1416 
1417 	/* some remained atomic pages should discarded */
1418 	if (f2fs_is_atomic_file(inode))
1419 		drop_inmem_pages(inode);
1420 	if (f2fs_is_volatile_file(inode)) {
1421 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1422 		set_inode_flag(inode, FI_DROP_CACHE);
1423 		filemap_fdatawrite(inode->i_mapping);
1424 		clear_inode_flag(inode, FI_DROP_CACHE);
1425 	}
1426 	return 0;
1427 }
1428 
1429 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1430 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1431 
1432 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1433 {
1434 	if (S_ISDIR(mode))
1435 		return flags;
1436 	else if (S_ISREG(mode))
1437 		return flags & F2FS_REG_FLMASK;
1438 	else
1439 		return flags & F2FS_OTHER_FLMASK;
1440 }
1441 
1442 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1443 {
1444 	struct inode *inode = file_inode(filp);
1445 	struct f2fs_inode_info *fi = F2FS_I(inode);
1446 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1447 	return put_user(flags, (int __user *)arg);
1448 }
1449 
1450 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1451 {
1452 	struct inode *inode = file_inode(filp);
1453 	struct f2fs_inode_info *fi = F2FS_I(inode);
1454 	unsigned int flags;
1455 	unsigned int oldflags;
1456 	int ret;
1457 
1458 	if (!inode_owner_or_capable(inode))
1459 		return -EACCES;
1460 
1461 	if (get_user(flags, (int __user *)arg))
1462 		return -EFAULT;
1463 
1464 	ret = mnt_want_write_file(filp);
1465 	if (ret)
1466 		return ret;
1467 
1468 	flags = f2fs_mask_flags(inode->i_mode, flags);
1469 
1470 	inode_lock(inode);
1471 
1472 	oldflags = fi->i_flags;
1473 
1474 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1475 		if (!capable(CAP_LINUX_IMMUTABLE)) {
1476 			inode_unlock(inode);
1477 			ret = -EPERM;
1478 			goto out;
1479 		}
1480 	}
1481 
1482 	flags = flags & FS_FL_USER_MODIFIABLE;
1483 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1484 	fi->i_flags = flags;
1485 	inode_unlock(inode);
1486 
1487 	inode->i_ctime = current_time(inode);
1488 	f2fs_set_inode_flags(inode);
1489 out:
1490 	mnt_drop_write_file(filp);
1491 	return ret;
1492 }
1493 
1494 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1495 {
1496 	struct inode *inode = file_inode(filp);
1497 
1498 	return put_user(inode->i_generation, (int __user *)arg);
1499 }
1500 
1501 static int f2fs_ioc_start_atomic_write(struct file *filp)
1502 {
1503 	struct inode *inode = file_inode(filp);
1504 	int ret;
1505 
1506 	if (!inode_owner_or_capable(inode))
1507 		return -EACCES;
1508 
1509 	ret = mnt_want_write_file(filp);
1510 	if (ret)
1511 		return ret;
1512 
1513 	inode_lock(inode);
1514 
1515 	if (f2fs_is_atomic_file(inode))
1516 		goto out;
1517 
1518 	ret = f2fs_convert_inline_inode(inode);
1519 	if (ret)
1520 		goto out;
1521 
1522 	set_inode_flag(inode, FI_ATOMIC_FILE);
1523 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1524 
1525 	if (!get_dirty_pages(inode))
1526 		goto out;
1527 
1528 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1529 		"Unexpected flush for atomic writes: ino=%lu, npages=%lld",
1530 					inode->i_ino, get_dirty_pages(inode));
1531 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1532 	if (ret)
1533 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1534 out:
1535 	inode_unlock(inode);
1536 	mnt_drop_write_file(filp);
1537 	return ret;
1538 }
1539 
1540 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1541 {
1542 	struct inode *inode = file_inode(filp);
1543 	int ret;
1544 
1545 	if (!inode_owner_or_capable(inode))
1546 		return -EACCES;
1547 
1548 	ret = mnt_want_write_file(filp);
1549 	if (ret)
1550 		return ret;
1551 
1552 	inode_lock(inode);
1553 
1554 	if (f2fs_is_volatile_file(inode))
1555 		goto err_out;
1556 
1557 	if (f2fs_is_atomic_file(inode)) {
1558 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1559 		ret = commit_inmem_pages(inode);
1560 		if (ret) {
1561 			set_inode_flag(inode, FI_ATOMIC_FILE);
1562 			goto err_out;
1563 		}
1564 	}
1565 
1566 	ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1567 err_out:
1568 	inode_unlock(inode);
1569 	mnt_drop_write_file(filp);
1570 	return ret;
1571 }
1572 
1573 static int f2fs_ioc_start_volatile_write(struct file *filp)
1574 {
1575 	struct inode *inode = file_inode(filp);
1576 	int ret;
1577 
1578 	if (!inode_owner_or_capable(inode))
1579 		return -EACCES;
1580 
1581 	ret = mnt_want_write_file(filp);
1582 	if (ret)
1583 		return ret;
1584 
1585 	inode_lock(inode);
1586 
1587 	if (f2fs_is_volatile_file(inode))
1588 		goto out;
1589 
1590 	ret = f2fs_convert_inline_inode(inode);
1591 	if (ret)
1592 		goto out;
1593 
1594 	set_inode_flag(inode, FI_VOLATILE_FILE);
1595 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1596 out:
1597 	inode_unlock(inode);
1598 	mnt_drop_write_file(filp);
1599 	return ret;
1600 }
1601 
1602 static int f2fs_ioc_release_volatile_write(struct file *filp)
1603 {
1604 	struct inode *inode = file_inode(filp);
1605 	int ret;
1606 
1607 	if (!inode_owner_or_capable(inode))
1608 		return -EACCES;
1609 
1610 	ret = mnt_want_write_file(filp);
1611 	if (ret)
1612 		return ret;
1613 
1614 	inode_lock(inode);
1615 
1616 	if (!f2fs_is_volatile_file(inode))
1617 		goto out;
1618 
1619 	if (!f2fs_is_first_block_written(inode)) {
1620 		ret = truncate_partial_data_page(inode, 0, true);
1621 		goto out;
1622 	}
1623 
1624 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1625 out:
1626 	inode_unlock(inode);
1627 	mnt_drop_write_file(filp);
1628 	return ret;
1629 }
1630 
1631 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1632 {
1633 	struct inode *inode = file_inode(filp);
1634 	int ret;
1635 
1636 	if (!inode_owner_or_capable(inode))
1637 		return -EACCES;
1638 
1639 	ret = mnt_want_write_file(filp);
1640 	if (ret)
1641 		return ret;
1642 
1643 	inode_lock(inode);
1644 
1645 	if (f2fs_is_atomic_file(inode))
1646 		drop_inmem_pages(inode);
1647 	if (f2fs_is_volatile_file(inode)) {
1648 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1649 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1650 	}
1651 
1652 	inode_unlock(inode);
1653 
1654 	mnt_drop_write_file(filp);
1655 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1656 	return ret;
1657 }
1658 
1659 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1660 {
1661 	struct inode *inode = file_inode(filp);
1662 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1663 	struct super_block *sb = sbi->sb;
1664 	__u32 in;
1665 	int ret;
1666 
1667 	if (!capable(CAP_SYS_ADMIN))
1668 		return -EPERM;
1669 
1670 	if (get_user(in, (__u32 __user *)arg))
1671 		return -EFAULT;
1672 
1673 	ret = mnt_want_write_file(filp);
1674 	if (ret)
1675 		return ret;
1676 
1677 	switch (in) {
1678 	case F2FS_GOING_DOWN_FULLSYNC:
1679 		sb = freeze_bdev(sb->s_bdev);
1680 		if (sb && !IS_ERR(sb)) {
1681 			f2fs_stop_checkpoint(sbi, false);
1682 			thaw_bdev(sb->s_bdev, sb);
1683 		}
1684 		break;
1685 	case F2FS_GOING_DOWN_METASYNC:
1686 		/* do checkpoint only */
1687 		f2fs_sync_fs(sb, 1);
1688 		f2fs_stop_checkpoint(sbi, false);
1689 		break;
1690 	case F2FS_GOING_DOWN_NOSYNC:
1691 		f2fs_stop_checkpoint(sbi, false);
1692 		break;
1693 	case F2FS_GOING_DOWN_METAFLUSH:
1694 		sync_meta_pages(sbi, META, LONG_MAX);
1695 		f2fs_stop_checkpoint(sbi, false);
1696 		break;
1697 	default:
1698 		ret = -EINVAL;
1699 		goto out;
1700 	}
1701 	f2fs_update_time(sbi, REQ_TIME);
1702 out:
1703 	mnt_drop_write_file(filp);
1704 	return ret;
1705 }
1706 
1707 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1708 {
1709 	struct inode *inode = file_inode(filp);
1710 	struct super_block *sb = inode->i_sb;
1711 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1712 	struct fstrim_range range;
1713 	int ret;
1714 
1715 	if (!capable(CAP_SYS_ADMIN))
1716 		return -EPERM;
1717 
1718 	if (!blk_queue_discard(q))
1719 		return -EOPNOTSUPP;
1720 
1721 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1722 				sizeof(range)))
1723 		return -EFAULT;
1724 
1725 	ret = mnt_want_write_file(filp);
1726 	if (ret)
1727 		return ret;
1728 
1729 	range.minlen = max((unsigned int)range.minlen,
1730 				q->limits.discard_granularity);
1731 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1732 	mnt_drop_write_file(filp);
1733 	if (ret < 0)
1734 		return ret;
1735 
1736 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1737 				sizeof(range)))
1738 		return -EFAULT;
1739 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1740 	return 0;
1741 }
1742 
1743 static bool uuid_is_nonzero(__u8 u[16])
1744 {
1745 	int i;
1746 
1747 	for (i = 0; i < 16; i++)
1748 		if (u[i])
1749 			return true;
1750 	return false;
1751 }
1752 
1753 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1754 {
1755 	struct fscrypt_policy policy;
1756 	struct inode *inode = file_inode(filp);
1757 
1758 	if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1759 							sizeof(policy)))
1760 		return -EFAULT;
1761 
1762 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1763 
1764 	return fscrypt_process_policy(filp, &policy);
1765 }
1766 
1767 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1768 {
1769 	struct fscrypt_policy policy;
1770 	struct inode *inode = file_inode(filp);
1771 	int err;
1772 
1773 	err = fscrypt_get_policy(inode, &policy);
1774 	if (err)
1775 		return err;
1776 
1777 	if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1778 		return -EFAULT;
1779 	return 0;
1780 }
1781 
1782 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1783 {
1784 	struct inode *inode = file_inode(filp);
1785 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1786 	int err;
1787 
1788 	if (!f2fs_sb_has_crypto(inode->i_sb))
1789 		return -EOPNOTSUPP;
1790 
1791 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1792 		goto got_it;
1793 
1794 	err = mnt_want_write_file(filp);
1795 	if (err)
1796 		return err;
1797 
1798 	/* update superblock with uuid */
1799 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1800 
1801 	err = f2fs_commit_super(sbi, false);
1802 	if (err) {
1803 		/* undo new data */
1804 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1805 		mnt_drop_write_file(filp);
1806 		return err;
1807 	}
1808 	mnt_drop_write_file(filp);
1809 got_it:
1810 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1811 									16))
1812 		return -EFAULT;
1813 	return 0;
1814 }
1815 
1816 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1817 {
1818 	struct inode *inode = file_inode(filp);
1819 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1820 	__u32 sync;
1821 	int ret;
1822 
1823 	if (!capable(CAP_SYS_ADMIN))
1824 		return -EPERM;
1825 
1826 	if (get_user(sync, (__u32 __user *)arg))
1827 		return -EFAULT;
1828 
1829 	if (f2fs_readonly(sbi->sb))
1830 		return -EROFS;
1831 
1832 	ret = mnt_want_write_file(filp);
1833 	if (ret)
1834 		return ret;
1835 
1836 	if (!sync) {
1837 		if (!mutex_trylock(&sbi->gc_mutex)) {
1838 			ret = -EBUSY;
1839 			goto out;
1840 		}
1841 	} else {
1842 		mutex_lock(&sbi->gc_mutex);
1843 	}
1844 
1845 	ret = f2fs_gc(sbi, sync);
1846 out:
1847 	mnt_drop_write_file(filp);
1848 	return ret;
1849 }
1850 
1851 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1852 {
1853 	struct inode *inode = file_inode(filp);
1854 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1855 	int ret;
1856 
1857 	if (!capable(CAP_SYS_ADMIN))
1858 		return -EPERM;
1859 
1860 	if (f2fs_readonly(sbi->sb))
1861 		return -EROFS;
1862 
1863 	ret = mnt_want_write_file(filp);
1864 	if (ret)
1865 		return ret;
1866 
1867 	ret = f2fs_sync_fs(sbi->sb, 1);
1868 
1869 	mnt_drop_write_file(filp);
1870 	return ret;
1871 }
1872 
1873 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1874 					struct file *filp,
1875 					struct f2fs_defragment *range)
1876 {
1877 	struct inode *inode = file_inode(filp);
1878 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1879 	struct extent_info ei;
1880 	pgoff_t pg_start, pg_end;
1881 	unsigned int blk_per_seg = sbi->blocks_per_seg;
1882 	unsigned int total = 0, sec_num;
1883 	unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1884 	block_t blk_end = 0;
1885 	bool fragmented = false;
1886 	int err;
1887 
1888 	/* if in-place-update policy is enabled, don't waste time here */
1889 	if (need_inplace_update(inode))
1890 		return -EINVAL;
1891 
1892 	pg_start = range->start >> PAGE_SHIFT;
1893 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
1894 
1895 	f2fs_balance_fs(sbi, true);
1896 
1897 	inode_lock(inode);
1898 
1899 	/* writeback all dirty pages in the range */
1900 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1901 						range->start + range->len - 1);
1902 	if (err)
1903 		goto out;
1904 
1905 	/*
1906 	 * lookup mapping info in extent cache, skip defragmenting if physical
1907 	 * block addresses are continuous.
1908 	 */
1909 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1910 		if (ei.fofs + ei.len >= pg_end)
1911 			goto out;
1912 	}
1913 
1914 	map.m_lblk = pg_start;
1915 
1916 	/*
1917 	 * lookup mapping info in dnode page cache, skip defragmenting if all
1918 	 * physical block addresses are continuous even if there are hole(s)
1919 	 * in logical blocks.
1920 	 */
1921 	while (map.m_lblk < pg_end) {
1922 		map.m_len = pg_end - map.m_lblk;
1923 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1924 		if (err)
1925 			goto out;
1926 
1927 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1928 			map.m_lblk++;
1929 			continue;
1930 		}
1931 
1932 		if (blk_end && blk_end != map.m_pblk) {
1933 			fragmented = true;
1934 			break;
1935 		}
1936 		blk_end = map.m_pblk + map.m_len;
1937 
1938 		map.m_lblk += map.m_len;
1939 	}
1940 
1941 	if (!fragmented)
1942 		goto out;
1943 
1944 	map.m_lblk = pg_start;
1945 	map.m_len = pg_end - pg_start;
1946 
1947 	sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1948 
1949 	/*
1950 	 * make sure there are enough free section for LFS allocation, this can
1951 	 * avoid defragment running in SSR mode when free section are allocated
1952 	 * intensively
1953 	 */
1954 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
1955 		err = -EAGAIN;
1956 		goto out;
1957 	}
1958 
1959 	while (map.m_lblk < pg_end) {
1960 		pgoff_t idx;
1961 		int cnt = 0;
1962 
1963 do_map:
1964 		map.m_len = pg_end - map.m_lblk;
1965 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1966 		if (err)
1967 			goto clear_out;
1968 
1969 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1970 			map.m_lblk++;
1971 			continue;
1972 		}
1973 
1974 		set_inode_flag(inode, FI_DO_DEFRAG);
1975 
1976 		idx = map.m_lblk;
1977 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1978 			struct page *page;
1979 
1980 			page = get_lock_data_page(inode, idx, true);
1981 			if (IS_ERR(page)) {
1982 				err = PTR_ERR(page);
1983 				goto clear_out;
1984 			}
1985 
1986 			set_page_dirty(page);
1987 			f2fs_put_page(page, 1);
1988 
1989 			idx++;
1990 			cnt++;
1991 			total++;
1992 		}
1993 
1994 		map.m_lblk = idx;
1995 
1996 		if (idx < pg_end && cnt < blk_per_seg)
1997 			goto do_map;
1998 
1999 		clear_inode_flag(inode, FI_DO_DEFRAG);
2000 
2001 		err = filemap_fdatawrite(inode->i_mapping);
2002 		if (err)
2003 			goto out;
2004 	}
2005 clear_out:
2006 	clear_inode_flag(inode, FI_DO_DEFRAG);
2007 out:
2008 	inode_unlock(inode);
2009 	if (!err)
2010 		range->len = (u64)total << PAGE_SHIFT;
2011 	return err;
2012 }
2013 
2014 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2015 {
2016 	struct inode *inode = file_inode(filp);
2017 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2018 	struct f2fs_defragment range;
2019 	int err;
2020 
2021 	if (!capable(CAP_SYS_ADMIN))
2022 		return -EPERM;
2023 
2024 	if (!S_ISREG(inode->i_mode))
2025 		return -EINVAL;
2026 
2027 	err = mnt_want_write_file(filp);
2028 	if (err)
2029 		return err;
2030 
2031 	if (f2fs_readonly(sbi->sb)) {
2032 		err = -EROFS;
2033 		goto out;
2034 	}
2035 
2036 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2037 							sizeof(range))) {
2038 		err = -EFAULT;
2039 		goto out;
2040 	}
2041 
2042 	/* verify alignment of offset & size */
2043 	if (range.start & (F2FS_BLKSIZE - 1) ||
2044 		range.len & (F2FS_BLKSIZE - 1)) {
2045 		err = -EINVAL;
2046 		goto out;
2047 	}
2048 
2049 	err = f2fs_defragment_range(sbi, filp, &range);
2050 	f2fs_update_time(sbi, REQ_TIME);
2051 	if (err < 0)
2052 		goto out;
2053 
2054 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2055 							sizeof(range)))
2056 		err = -EFAULT;
2057 out:
2058 	mnt_drop_write_file(filp);
2059 	return err;
2060 }
2061 
2062 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2063 			struct file *file_out, loff_t pos_out, size_t len)
2064 {
2065 	struct inode *src = file_inode(file_in);
2066 	struct inode *dst = file_inode(file_out);
2067 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2068 	size_t olen = len, dst_max_i_size = 0;
2069 	size_t dst_osize;
2070 	int ret;
2071 
2072 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2073 				src->i_sb != dst->i_sb)
2074 		return -EXDEV;
2075 
2076 	if (unlikely(f2fs_readonly(src->i_sb)))
2077 		return -EROFS;
2078 
2079 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2080 		return -EINVAL;
2081 
2082 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2083 		return -EOPNOTSUPP;
2084 
2085 	if (src == dst) {
2086 		if (pos_in == pos_out)
2087 			return 0;
2088 		if (pos_out > pos_in && pos_out < pos_in + len)
2089 			return -EINVAL;
2090 	}
2091 
2092 	inode_lock(src);
2093 	if (src != dst) {
2094 		if (!inode_trylock(dst)) {
2095 			ret = -EBUSY;
2096 			goto out;
2097 		}
2098 	}
2099 
2100 	ret = -EINVAL;
2101 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2102 		goto out_unlock;
2103 	if (len == 0)
2104 		olen = len = src->i_size - pos_in;
2105 	if (pos_in + len == src->i_size)
2106 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2107 	if (len == 0) {
2108 		ret = 0;
2109 		goto out_unlock;
2110 	}
2111 
2112 	dst_osize = dst->i_size;
2113 	if (pos_out + olen > dst->i_size)
2114 		dst_max_i_size = pos_out + olen;
2115 
2116 	/* verify the end result is block aligned */
2117 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2118 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2119 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2120 		goto out_unlock;
2121 
2122 	ret = f2fs_convert_inline_inode(src);
2123 	if (ret)
2124 		goto out_unlock;
2125 
2126 	ret = f2fs_convert_inline_inode(dst);
2127 	if (ret)
2128 		goto out_unlock;
2129 
2130 	/* write out all dirty pages from offset */
2131 	ret = filemap_write_and_wait_range(src->i_mapping,
2132 					pos_in, pos_in + len);
2133 	if (ret)
2134 		goto out_unlock;
2135 
2136 	ret = filemap_write_and_wait_range(dst->i_mapping,
2137 					pos_out, pos_out + len);
2138 	if (ret)
2139 		goto out_unlock;
2140 
2141 	f2fs_balance_fs(sbi, true);
2142 	f2fs_lock_op(sbi);
2143 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2144 				pos_out >> F2FS_BLKSIZE_BITS,
2145 				len >> F2FS_BLKSIZE_BITS, false);
2146 
2147 	if (!ret) {
2148 		if (dst_max_i_size)
2149 			f2fs_i_size_write(dst, dst_max_i_size);
2150 		else if (dst_osize != dst->i_size)
2151 			f2fs_i_size_write(dst, dst_osize);
2152 	}
2153 	f2fs_unlock_op(sbi);
2154 out_unlock:
2155 	if (src != dst)
2156 		inode_unlock(dst);
2157 out:
2158 	inode_unlock(src);
2159 	return ret;
2160 }
2161 
2162 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2163 {
2164 	struct f2fs_move_range range;
2165 	struct fd dst;
2166 	int err;
2167 
2168 	if (!(filp->f_mode & FMODE_READ) ||
2169 			!(filp->f_mode & FMODE_WRITE))
2170 		return -EBADF;
2171 
2172 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2173 							sizeof(range)))
2174 		return -EFAULT;
2175 
2176 	dst = fdget(range.dst_fd);
2177 	if (!dst.file)
2178 		return -EBADF;
2179 
2180 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2181 		err = -EBADF;
2182 		goto err_out;
2183 	}
2184 
2185 	err = mnt_want_write_file(filp);
2186 	if (err)
2187 		goto err_out;
2188 
2189 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2190 					range.pos_out, range.len);
2191 
2192 	mnt_drop_write_file(filp);
2193 
2194 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2195 						&range, sizeof(range)))
2196 		err = -EFAULT;
2197 err_out:
2198 	fdput(dst);
2199 	return err;
2200 }
2201 
2202 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2203 {
2204 	switch (cmd) {
2205 	case F2FS_IOC_GETFLAGS:
2206 		return f2fs_ioc_getflags(filp, arg);
2207 	case F2FS_IOC_SETFLAGS:
2208 		return f2fs_ioc_setflags(filp, arg);
2209 	case F2FS_IOC_GETVERSION:
2210 		return f2fs_ioc_getversion(filp, arg);
2211 	case F2FS_IOC_START_ATOMIC_WRITE:
2212 		return f2fs_ioc_start_atomic_write(filp);
2213 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2214 		return f2fs_ioc_commit_atomic_write(filp);
2215 	case F2FS_IOC_START_VOLATILE_WRITE:
2216 		return f2fs_ioc_start_volatile_write(filp);
2217 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2218 		return f2fs_ioc_release_volatile_write(filp);
2219 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2220 		return f2fs_ioc_abort_volatile_write(filp);
2221 	case F2FS_IOC_SHUTDOWN:
2222 		return f2fs_ioc_shutdown(filp, arg);
2223 	case FITRIM:
2224 		return f2fs_ioc_fitrim(filp, arg);
2225 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2226 		return f2fs_ioc_set_encryption_policy(filp, arg);
2227 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2228 		return f2fs_ioc_get_encryption_policy(filp, arg);
2229 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2230 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2231 	case F2FS_IOC_GARBAGE_COLLECT:
2232 		return f2fs_ioc_gc(filp, arg);
2233 	case F2FS_IOC_WRITE_CHECKPOINT:
2234 		return f2fs_ioc_write_checkpoint(filp, arg);
2235 	case F2FS_IOC_DEFRAGMENT:
2236 		return f2fs_ioc_defragment(filp, arg);
2237 	case F2FS_IOC_MOVE_RANGE:
2238 		return f2fs_ioc_move_range(filp, arg);
2239 	default:
2240 		return -ENOTTY;
2241 	}
2242 }
2243 
2244 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2245 {
2246 	struct file *file = iocb->ki_filp;
2247 	struct inode *inode = file_inode(file);
2248 	struct blk_plug plug;
2249 	ssize_t ret;
2250 
2251 	if (f2fs_encrypted_inode(inode) &&
2252 				!fscrypt_has_encryption_key(inode) &&
2253 				fscrypt_get_encryption_info(inode))
2254 		return -EACCES;
2255 
2256 	inode_lock(inode);
2257 	ret = generic_write_checks(iocb, from);
2258 	if (ret > 0) {
2259 		ret = f2fs_preallocate_blocks(iocb, from);
2260 		if (!ret) {
2261 			blk_start_plug(&plug);
2262 			ret = __generic_file_write_iter(iocb, from);
2263 			blk_finish_plug(&plug);
2264 		}
2265 	}
2266 	inode_unlock(inode);
2267 
2268 	if (ret > 0)
2269 		ret = generic_write_sync(iocb, ret);
2270 	return ret;
2271 }
2272 
2273 #ifdef CONFIG_COMPAT
2274 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2275 {
2276 	switch (cmd) {
2277 	case F2FS_IOC32_GETFLAGS:
2278 		cmd = F2FS_IOC_GETFLAGS;
2279 		break;
2280 	case F2FS_IOC32_SETFLAGS:
2281 		cmd = F2FS_IOC_SETFLAGS;
2282 		break;
2283 	case F2FS_IOC32_GETVERSION:
2284 		cmd = F2FS_IOC_GETVERSION;
2285 		break;
2286 	case F2FS_IOC_START_ATOMIC_WRITE:
2287 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2288 	case F2FS_IOC_START_VOLATILE_WRITE:
2289 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2290 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2291 	case F2FS_IOC_SHUTDOWN:
2292 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2293 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2294 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2295 	case F2FS_IOC_GARBAGE_COLLECT:
2296 	case F2FS_IOC_WRITE_CHECKPOINT:
2297 	case F2FS_IOC_DEFRAGMENT:
2298 		break;
2299 	case F2FS_IOC_MOVE_RANGE:
2300 		break;
2301 	default:
2302 		return -ENOIOCTLCMD;
2303 	}
2304 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2305 }
2306 #endif
2307 
2308 const struct file_operations f2fs_file_operations = {
2309 	.llseek		= f2fs_llseek,
2310 	.read_iter	= generic_file_read_iter,
2311 	.write_iter	= f2fs_file_write_iter,
2312 	.open		= f2fs_file_open,
2313 	.release	= f2fs_release_file,
2314 	.mmap		= f2fs_file_mmap,
2315 	.fsync		= f2fs_sync_file,
2316 	.fallocate	= f2fs_fallocate,
2317 	.unlocked_ioctl	= f2fs_ioctl,
2318 #ifdef CONFIG_COMPAT
2319 	.compat_ioctl	= f2fs_compat_ioctl,
2320 #endif
2321 	.splice_read	= generic_file_splice_read,
2322 	.splice_write	= iter_file_splice_write,
2323 };
2324