1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "xattr.h" 29 #include "acl.h" 30 #include "gc.h" 31 #include "trace.h" 32 #include <trace/events/f2fs.h> 33 34 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 35 { 36 struct inode *inode = file_inode(vmf->vma->vm_file); 37 vm_fault_t ret; 38 39 down_read(&F2FS_I(inode)->i_mmap_sem); 40 ret = filemap_fault(vmf); 41 up_read(&F2FS_I(inode)->i_mmap_sem); 42 43 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 44 45 return ret; 46 } 47 48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 49 { 50 struct page *page = vmf->page; 51 struct inode *inode = file_inode(vmf->vma->vm_file); 52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 53 struct dnode_of_data dn = { .node_changed = false }; 54 int err; 55 56 if (unlikely(f2fs_cp_error(sbi))) { 57 err = -EIO; 58 goto err; 59 } 60 61 if (!f2fs_is_checkpoint_ready(sbi)) { 62 err = -ENOSPC; 63 goto err; 64 } 65 66 sb_start_pagefault(inode->i_sb); 67 68 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 69 70 file_update_time(vmf->vma->vm_file); 71 down_read(&F2FS_I(inode)->i_mmap_sem); 72 lock_page(page); 73 if (unlikely(page->mapping != inode->i_mapping || 74 page_offset(page) > i_size_read(inode) || 75 !PageUptodate(page))) { 76 unlock_page(page); 77 err = -EFAULT; 78 goto out_sem; 79 } 80 81 /* block allocation */ 82 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 83 set_new_dnode(&dn, inode, NULL, NULL, 0); 84 err = f2fs_get_block(&dn, page->index); 85 f2fs_put_dnode(&dn); 86 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 87 if (err) { 88 unlock_page(page); 89 goto out_sem; 90 } 91 92 /* fill the page */ 93 f2fs_wait_on_page_writeback(page, DATA, false, true); 94 95 /* wait for GCed page writeback via META_MAPPING */ 96 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 97 98 /* 99 * check to see if the page is mapped already (no holes) 100 */ 101 if (PageMappedToDisk(page)) 102 goto out_sem; 103 104 /* page is wholly or partially inside EOF */ 105 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 106 i_size_read(inode)) { 107 loff_t offset; 108 109 offset = i_size_read(inode) & ~PAGE_MASK; 110 zero_user_segment(page, offset, PAGE_SIZE); 111 } 112 set_page_dirty(page); 113 if (!PageUptodate(page)) 114 SetPageUptodate(page); 115 116 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 117 f2fs_update_time(sbi, REQ_TIME); 118 119 trace_f2fs_vm_page_mkwrite(page, DATA); 120 out_sem: 121 up_read(&F2FS_I(inode)->i_mmap_sem); 122 123 f2fs_balance_fs(sbi, dn.node_changed); 124 125 sb_end_pagefault(inode->i_sb); 126 err: 127 return block_page_mkwrite_return(err); 128 } 129 130 static const struct vm_operations_struct f2fs_file_vm_ops = { 131 .fault = f2fs_filemap_fault, 132 .map_pages = filemap_map_pages, 133 .page_mkwrite = f2fs_vm_page_mkwrite, 134 }; 135 136 static int get_parent_ino(struct inode *inode, nid_t *pino) 137 { 138 struct dentry *dentry; 139 140 inode = igrab(inode); 141 dentry = d_find_any_alias(inode); 142 iput(inode); 143 if (!dentry) 144 return 0; 145 146 *pino = parent_ino(dentry); 147 dput(dentry); 148 return 1; 149 } 150 151 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 152 { 153 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 154 enum cp_reason_type cp_reason = CP_NO_NEEDED; 155 156 if (!S_ISREG(inode->i_mode)) 157 cp_reason = CP_NON_REGULAR; 158 else if (inode->i_nlink != 1) 159 cp_reason = CP_HARDLINK; 160 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 161 cp_reason = CP_SB_NEED_CP; 162 else if (file_wrong_pino(inode)) 163 cp_reason = CP_WRONG_PINO; 164 else if (!f2fs_space_for_roll_forward(sbi)) 165 cp_reason = CP_NO_SPC_ROLL; 166 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 167 cp_reason = CP_NODE_NEED_CP; 168 else if (test_opt(sbi, FASTBOOT)) 169 cp_reason = CP_FASTBOOT_MODE; 170 else if (F2FS_OPTION(sbi).active_logs == 2) 171 cp_reason = CP_SPEC_LOG_NUM; 172 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 173 f2fs_need_dentry_mark(sbi, inode->i_ino) && 174 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 175 TRANS_DIR_INO)) 176 cp_reason = CP_RECOVER_DIR; 177 178 return cp_reason; 179 } 180 181 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 182 { 183 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 184 bool ret = false; 185 /* But we need to avoid that there are some inode updates */ 186 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 187 ret = true; 188 f2fs_put_page(i, 0); 189 return ret; 190 } 191 192 static void try_to_fix_pino(struct inode *inode) 193 { 194 struct f2fs_inode_info *fi = F2FS_I(inode); 195 nid_t pino; 196 197 down_write(&fi->i_sem); 198 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 199 get_parent_ino(inode, &pino)) { 200 f2fs_i_pino_write(inode, pino); 201 file_got_pino(inode); 202 } 203 up_write(&fi->i_sem); 204 } 205 206 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 207 int datasync, bool atomic) 208 { 209 struct inode *inode = file->f_mapping->host; 210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 211 nid_t ino = inode->i_ino; 212 int ret = 0; 213 enum cp_reason_type cp_reason = 0; 214 struct writeback_control wbc = { 215 .sync_mode = WB_SYNC_ALL, 216 .nr_to_write = LONG_MAX, 217 .for_reclaim = 0, 218 }; 219 unsigned int seq_id = 0; 220 221 if (unlikely(f2fs_readonly(inode->i_sb) || 222 is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 223 return 0; 224 225 trace_f2fs_sync_file_enter(inode); 226 227 if (S_ISDIR(inode->i_mode)) 228 goto go_write; 229 230 /* if fdatasync is triggered, let's do in-place-update */ 231 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 232 set_inode_flag(inode, FI_NEED_IPU); 233 ret = file_write_and_wait_range(file, start, end); 234 clear_inode_flag(inode, FI_NEED_IPU); 235 236 if (ret) { 237 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 238 return ret; 239 } 240 241 /* if the inode is dirty, let's recover all the time */ 242 if (!f2fs_skip_inode_update(inode, datasync)) { 243 f2fs_write_inode(inode, NULL); 244 goto go_write; 245 } 246 247 /* 248 * if there is no written data, don't waste time to write recovery info. 249 */ 250 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 251 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 252 253 /* it may call write_inode just prior to fsync */ 254 if (need_inode_page_update(sbi, ino)) 255 goto go_write; 256 257 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 258 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 259 goto flush_out; 260 goto out; 261 } 262 go_write: 263 /* 264 * Both of fdatasync() and fsync() are able to be recovered from 265 * sudden-power-off. 266 */ 267 down_read(&F2FS_I(inode)->i_sem); 268 cp_reason = need_do_checkpoint(inode); 269 up_read(&F2FS_I(inode)->i_sem); 270 271 if (cp_reason) { 272 /* all the dirty node pages should be flushed for POR */ 273 ret = f2fs_sync_fs(inode->i_sb, 1); 274 275 /* 276 * We've secured consistency through sync_fs. Following pino 277 * will be used only for fsynced inodes after checkpoint. 278 */ 279 try_to_fix_pino(inode); 280 clear_inode_flag(inode, FI_APPEND_WRITE); 281 clear_inode_flag(inode, FI_UPDATE_WRITE); 282 goto out; 283 } 284 sync_nodes: 285 atomic_inc(&sbi->wb_sync_req[NODE]); 286 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 287 atomic_dec(&sbi->wb_sync_req[NODE]); 288 if (ret) 289 goto out; 290 291 /* if cp_error was enabled, we should avoid infinite loop */ 292 if (unlikely(f2fs_cp_error(sbi))) { 293 ret = -EIO; 294 goto out; 295 } 296 297 if (f2fs_need_inode_block_update(sbi, ino)) { 298 f2fs_mark_inode_dirty_sync(inode, true); 299 f2fs_write_inode(inode, NULL); 300 goto sync_nodes; 301 } 302 303 /* 304 * If it's atomic_write, it's just fine to keep write ordering. So 305 * here we don't need to wait for node write completion, since we use 306 * node chain which serializes node blocks. If one of node writes are 307 * reordered, we can see simply broken chain, resulting in stopping 308 * roll-forward recovery. It means we'll recover all or none node blocks 309 * given fsync mark. 310 */ 311 if (!atomic) { 312 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 313 if (ret) 314 goto out; 315 } 316 317 /* once recovery info is written, don't need to tack this */ 318 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 319 clear_inode_flag(inode, FI_APPEND_WRITE); 320 flush_out: 321 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 322 ret = f2fs_issue_flush(sbi, inode->i_ino); 323 if (!ret) { 324 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 325 clear_inode_flag(inode, FI_UPDATE_WRITE); 326 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 327 } 328 f2fs_update_time(sbi, REQ_TIME); 329 out: 330 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 331 f2fs_trace_ios(NULL, 1); 332 return ret; 333 } 334 335 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 336 { 337 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 338 return -EIO; 339 return f2fs_do_sync_file(file, start, end, datasync, false); 340 } 341 342 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 343 pgoff_t pgofs, int whence) 344 { 345 struct page *page; 346 int nr_pages; 347 348 if (whence != SEEK_DATA) 349 return 0; 350 351 /* find first dirty page index */ 352 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY, 353 1, &page); 354 if (!nr_pages) 355 return ULONG_MAX; 356 pgofs = page->index; 357 put_page(page); 358 return pgofs; 359 } 360 361 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr, 362 pgoff_t dirty, pgoff_t pgofs, int whence) 363 { 364 switch (whence) { 365 case SEEK_DATA: 366 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 367 __is_valid_data_blkaddr(blkaddr)) 368 return true; 369 break; 370 case SEEK_HOLE: 371 if (blkaddr == NULL_ADDR) 372 return true; 373 break; 374 } 375 return false; 376 } 377 378 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 379 { 380 struct inode *inode = file->f_mapping->host; 381 loff_t maxbytes = inode->i_sb->s_maxbytes; 382 struct dnode_of_data dn; 383 pgoff_t pgofs, end_offset, dirty; 384 loff_t data_ofs = offset; 385 loff_t isize; 386 int err = 0; 387 388 inode_lock(inode); 389 390 isize = i_size_read(inode); 391 if (offset >= isize) 392 goto fail; 393 394 /* handle inline data case */ 395 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 396 if (whence == SEEK_HOLE) 397 data_ofs = isize; 398 goto found; 399 } 400 401 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 402 403 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 404 405 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 406 set_new_dnode(&dn, inode, NULL, NULL, 0); 407 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 408 if (err && err != -ENOENT) { 409 goto fail; 410 } else if (err == -ENOENT) { 411 /* direct node does not exists */ 412 if (whence == SEEK_DATA) { 413 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 414 continue; 415 } else { 416 goto found; 417 } 418 } 419 420 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 421 422 /* find data/hole in dnode block */ 423 for (; dn.ofs_in_node < end_offset; 424 dn.ofs_in_node++, pgofs++, 425 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 426 block_t blkaddr; 427 428 blkaddr = datablock_addr(dn.inode, 429 dn.node_page, dn.ofs_in_node); 430 431 if (__is_valid_data_blkaddr(blkaddr) && 432 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 433 blkaddr, DATA_GENERIC_ENHANCE)) { 434 f2fs_put_dnode(&dn); 435 goto fail; 436 } 437 438 if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty, 439 pgofs, whence)) { 440 f2fs_put_dnode(&dn); 441 goto found; 442 } 443 } 444 f2fs_put_dnode(&dn); 445 } 446 447 if (whence == SEEK_DATA) 448 goto fail; 449 found: 450 if (whence == SEEK_HOLE && data_ofs > isize) 451 data_ofs = isize; 452 inode_unlock(inode); 453 return vfs_setpos(file, data_ofs, maxbytes); 454 fail: 455 inode_unlock(inode); 456 return -ENXIO; 457 } 458 459 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 460 { 461 struct inode *inode = file->f_mapping->host; 462 loff_t maxbytes = inode->i_sb->s_maxbytes; 463 464 switch (whence) { 465 case SEEK_SET: 466 case SEEK_CUR: 467 case SEEK_END: 468 return generic_file_llseek_size(file, offset, whence, 469 maxbytes, i_size_read(inode)); 470 case SEEK_DATA: 471 case SEEK_HOLE: 472 if (offset < 0) 473 return -ENXIO; 474 return f2fs_seek_block(file, offset, whence); 475 } 476 477 return -EINVAL; 478 } 479 480 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 481 { 482 struct inode *inode = file_inode(file); 483 int err; 484 485 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 486 return -EIO; 487 488 /* we don't need to use inline_data strictly */ 489 err = f2fs_convert_inline_inode(inode); 490 if (err) 491 return err; 492 493 file_accessed(file); 494 vma->vm_ops = &f2fs_file_vm_ops; 495 return 0; 496 } 497 498 static int f2fs_file_open(struct inode *inode, struct file *filp) 499 { 500 int err = fscrypt_file_open(inode, filp); 501 502 if (err) 503 return err; 504 505 err = fsverity_file_open(inode, filp); 506 if (err) 507 return err; 508 509 filp->f_mode |= FMODE_NOWAIT; 510 511 return dquot_file_open(inode, filp); 512 } 513 514 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 515 { 516 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 517 struct f2fs_node *raw_node; 518 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 519 __le32 *addr; 520 int base = 0; 521 522 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 523 base = get_extra_isize(dn->inode); 524 525 raw_node = F2FS_NODE(dn->node_page); 526 addr = blkaddr_in_node(raw_node) + base + ofs; 527 528 for (; count > 0; count--, addr++, dn->ofs_in_node++) { 529 block_t blkaddr = le32_to_cpu(*addr); 530 531 if (blkaddr == NULL_ADDR) 532 continue; 533 534 dn->data_blkaddr = NULL_ADDR; 535 f2fs_set_data_blkaddr(dn); 536 537 if (__is_valid_data_blkaddr(blkaddr) && 538 !f2fs_is_valid_blkaddr(sbi, blkaddr, 539 DATA_GENERIC_ENHANCE)) 540 continue; 541 542 f2fs_invalidate_blocks(sbi, blkaddr); 543 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 544 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 545 nr_free++; 546 } 547 548 if (nr_free) { 549 pgoff_t fofs; 550 /* 551 * once we invalidate valid blkaddr in range [ofs, ofs + count], 552 * we will invalidate all blkaddr in the whole range. 553 */ 554 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 555 dn->inode) + ofs; 556 f2fs_update_extent_cache_range(dn, fofs, 0, len); 557 dec_valid_block_count(sbi, dn->inode, nr_free); 558 } 559 dn->ofs_in_node = ofs; 560 561 f2fs_update_time(sbi, REQ_TIME); 562 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 563 dn->ofs_in_node, nr_free); 564 } 565 566 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 567 { 568 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 569 } 570 571 static int truncate_partial_data_page(struct inode *inode, u64 from, 572 bool cache_only) 573 { 574 loff_t offset = from & (PAGE_SIZE - 1); 575 pgoff_t index = from >> PAGE_SHIFT; 576 struct address_space *mapping = inode->i_mapping; 577 struct page *page; 578 579 if (!offset && !cache_only) 580 return 0; 581 582 if (cache_only) { 583 page = find_lock_page(mapping, index); 584 if (page && PageUptodate(page)) 585 goto truncate_out; 586 f2fs_put_page(page, 1); 587 return 0; 588 } 589 590 page = f2fs_get_lock_data_page(inode, index, true); 591 if (IS_ERR(page)) 592 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 593 truncate_out: 594 f2fs_wait_on_page_writeback(page, DATA, true, true); 595 zero_user(page, offset, PAGE_SIZE - offset); 596 597 /* An encrypted inode should have a key and truncate the last page. */ 598 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 599 if (!cache_only) 600 set_page_dirty(page); 601 f2fs_put_page(page, 1); 602 return 0; 603 } 604 605 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 606 { 607 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 608 struct dnode_of_data dn; 609 pgoff_t free_from; 610 int count = 0, err = 0; 611 struct page *ipage; 612 bool truncate_page = false; 613 614 trace_f2fs_truncate_blocks_enter(inode, from); 615 616 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 617 618 if (free_from >= sbi->max_file_blocks) 619 goto free_partial; 620 621 if (lock) 622 f2fs_lock_op(sbi); 623 624 ipage = f2fs_get_node_page(sbi, inode->i_ino); 625 if (IS_ERR(ipage)) { 626 err = PTR_ERR(ipage); 627 goto out; 628 } 629 630 if (f2fs_has_inline_data(inode)) { 631 f2fs_truncate_inline_inode(inode, ipage, from); 632 f2fs_put_page(ipage, 1); 633 truncate_page = true; 634 goto out; 635 } 636 637 set_new_dnode(&dn, inode, ipage, NULL, 0); 638 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 639 if (err) { 640 if (err == -ENOENT) 641 goto free_next; 642 goto out; 643 } 644 645 count = ADDRS_PER_PAGE(dn.node_page, inode); 646 647 count -= dn.ofs_in_node; 648 f2fs_bug_on(sbi, count < 0); 649 650 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 651 f2fs_truncate_data_blocks_range(&dn, count); 652 free_from += count; 653 } 654 655 f2fs_put_dnode(&dn); 656 free_next: 657 err = f2fs_truncate_inode_blocks(inode, free_from); 658 out: 659 if (lock) 660 f2fs_unlock_op(sbi); 661 free_partial: 662 /* lastly zero out the first data page */ 663 if (!err) 664 err = truncate_partial_data_page(inode, from, truncate_page); 665 666 trace_f2fs_truncate_blocks_exit(inode, err); 667 return err; 668 } 669 670 int f2fs_truncate(struct inode *inode) 671 { 672 int err; 673 674 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 675 return -EIO; 676 677 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 678 S_ISLNK(inode->i_mode))) 679 return 0; 680 681 trace_f2fs_truncate(inode); 682 683 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 684 f2fs_show_injection_info(FAULT_TRUNCATE); 685 return -EIO; 686 } 687 688 /* we should check inline_data size */ 689 if (!f2fs_may_inline_data(inode)) { 690 err = f2fs_convert_inline_inode(inode); 691 if (err) 692 return err; 693 } 694 695 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 696 if (err) 697 return err; 698 699 inode->i_mtime = inode->i_ctime = current_time(inode); 700 f2fs_mark_inode_dirty_sync(inode, false); 701 return 0; 702 } 703 704 int f2fs_getattr(const struct path *path, struct kstat *stat, 705 u32 request_mask, unsigned int query_flags) 706 { 707 struct inode *inode = d_inode(path->dentry); 708 struct f2fs_inode_info *fi = F2FS_I(inode); 709 struct f2fs_inode *ri; 710 unsigned int flags; 711 712 if (f2fs_has_extra_attr(inode) && 713 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 714 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 715 stat->result_mask |= STATX_BTIME; 716 stat->btime.tv_sec = fi->i_crtime.tv_sec; 717 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 718 } 719 720 flags = fi->i_flags; 721 if (flags & F2FS_APPEND_FL) 722 stat->attributes |= STATX_ATTR_APPEND; 723 if (IS_ENCRYPTED(inode)) 724 stat->attributes |= STATX_ATTR_ENCRYPTED; 725 if (flags & F2FS_IMMUTABLE_FL) 726 stat->attributes |= STATX_ATTR_IMMUTABLE; 727 if (flags & F2FS_NODUMP_FL) 728 stat->attributes |= STATX_ATTR_NODUMP; 729 if (IS_VERITY(inode)) 730 stat->attributes |= STATX_ATTR_VERITY; 731 732 stat->attributes_mask |= (STATX_ATTR_APPEND | 733 STATX_ATTR_ENCRYPTED | 734 STATX_ATTR_IMMUTABLE | 735 STATX_ATTR_NODUMP | 736 STATX_ATTR_VERITY); 737 738 generic_fillattr(inode, stat); 739 740 /* we need to show initial sectors used for inline_data/dentries */ 741 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 742 f2fs_has_inline_dentry(inode)) 743 stat->blocks += (stat->size + 511) >> 9; 744 745 return 0; 746 } 747 748 #ifdef CONFIG_F2FS_FS_POSIX_ACL 749 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 750 { 751 unsigned int ia_valid = attr->ia_valid; 752 753 if (ia_valid & ATTR_UID) 754 inode->i_uid = attr->ia_uid; 755 if (ia_valid & ATTR_GID) 756 inode->i_gid = attr->ia_gid; 757 if (ia_valid & ATTR_ATIME) { 758 inode->i_atime = timestamp_truncate(attr->ia_atime, 759 inode); 760 } 761 if (ia_valid & ATTR_MTIME) { 762 inode->i_mtime = timestamp_truncate(attr->ia_mtime, 763 inode); 764 } 765 if (ia_valid & ATTR_CTIME) { 766 inode->i_ctime = timestamp_truncate(attr->ia_ctime, 767 inode); 768 } 769 if (ia_valid & ATTR_MODE) { 770 umode_t mode = attr->ia_mode; 771 772 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 773 mode &= ~S_ISGID; 774 set_acl_inode(inode, mode); 775 } 776 } 777 #else 778 #define __setattr_copy setattr_copy 779 #endif 780 781 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 782 { 783 struct inode *inode = d_inode(dentry); 784 int err; 785 786 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 787 return -EIO; 788 789 err = setattr_prepare(dentry, attr); 790 if (err) 791 return err; 792 793 err = fscrypt_prepare_setattr(dentry, attr); 794 if (err) 795 return err; 796 797 err = fsverity_prepare_setattr(dentry, attr); 798 if (err) 799 return err; 800 801 if (is_quota_modification(inode, attr)) { 802 err = dquot_initialize(inode); 803 if (err) 804 return err; 805 } 806 if ((attr->ia_valid & ATTR_UID && 807 !uid_eq(attr->ia_uid, inode->i_uid)) || 808 (attr->ia_valid & ATTR_GID && 809 !gid_eq(attr->ia_gid, inode->i_gid))) { 810 f2fs_lock_op(F2FS_I_SB(inode)); 811 err = dquot_transfer(inode, attr); 812 if (err) { 813 set_sbi_flag(F2FS_I_SB(inode), 814 SBI_QUOTA_NEED_REPAIR); 815 f2fs_unlock_op(F2FS_I_SB(inode)); 816 return err; 817 } 818 /* 819 * update uid/gid under lock_op(), so that dquot and inode can 820 * be updated atomically. 821 */ 822 if (attr->ia_valid & ATTR_UID) 823 inode->i_uid = attr->ia_uid; 824 if (attr->ia_valid & ATTR_GID) 825 inode->i_gid = attr->ia_gid; 826 f2fs_mark_inode_dirty_sync(inode, true); 827 f2fs_unlock_op(F2FS_I_SB(inode)); 828 } 829 830 if (attr->ia_valid & ATTR_SIZE) { 831 loff_t old_size = i_size_read(inode); 832 833 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 834 /* 835 * should convert inline inode before i_size_write to 836 * keep smaller than inline_data size with inline flag. 837 */ 838 err = f2fs_convert_inline_inode(inode); 839 if (err) 840 return err; 841 } 842 843 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 844 down_write(&F2FS_I(inode)->i_mmap_sem); 845 846 truncate_setsize(inode, attr->ia_size); 847 848 if (attr->ia_size <= old_size) 849 err = f2fs_truncate(inode); 850 /* 851 * do not trim all blocks after i_size if target size is 852 * larger than i_size. 853 */ 854 up_write(&F2FS_I(inode)->i_mmap_sem); 855 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 856 if (err) 857 return err; 858 859 down_write(&F2FS_I(inode)->i_sem); 860 inode->i_mtime = inode->i_ctime = current_time(inode); 861 F2FS_I(inode)->last_disk_size = i_size_read(inode); 862 up_write(&F2FS_I(inode)->i_sem); 863 } 864 865 __setattr_copy(inode, attr); 866 867 if (attr->ia_valid & ATTR_MODE) { 868 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode)); 869 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 870 inode->i_mode = F2FS_I(inode)->i_acl_mode; 871 clear_inode_flag(inode, FI_ACL_MODE); 872 } 873 } 874 875 /* file size may changed here */ 876 f2fs_mark_inode_dirty_sync(inode, true); 877 878 /* inode change will produce dirty node pages flushed by checkpoint */ 879 f2fs_balance_fs(F2FS_I_SB(inode), true); 880 881 return err; 882 } 883 884 const struct inode_operations f2fs_file_inode_operations = { 885 .getattr = f2fs_getattr, 886 .setattr = f2fs_setattr, 887 .get_acl = f2fs_get_acl, 888 .set_acl = f2fs_set_acl, 889 #ifdef CONFIG_F2FS_FS_XATTR 890 .listxattr = f2fs_listxattr, 891 #endif 892 .fiemap = f2fs_fiemap, 893 }; 894 895 static int fill_zero(struct inode *inode, pgoff_t index, 896 loff_t start, loff_t len) 897 { 898 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 899 struct page *page; 900 901 if (!len) 902 return 0; 903 904 f2fs_balance_fs(sbi, true); 905 906 f2fs_lock_op(sbi); 907 page = f2fs_get_new_data_page(inode, NULL, index, false); 908 f2fs_unlock_op(sbi); 909 910 if (IS_ERR(page)) 911 return PTR_ERR(page); 912 913 f2fs_wait_on_page_writeback(page, DATA, true, true); 914 zero_user(page, start, len); 915 set_page_dirty(page); 916 f2fs_put_page(page, 1); 917 return 0; 918 } 919 920 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 921 { 922 int err; 923 924 while (pg_start < pg_end) { 925 struct dnode_of_data dn; 926 pgoff_t end_offset, count; 927 928 set_new_dnode(&dn, inode, NULL, NULL, 0); 929 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 930 if (err) { 931 if (err == -ENOENT) { 932 pg_start = f2fs_get_next_page_offset(&dn, 933 pg_start); 934 continue; 935 } 936 return err; 937 } 938 939 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 940 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 941 942 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 943 944 f2fs_truncate_data_blocks_range(&dn, count); 945 f2fs_put_dnode(&dn); 946 947 pg_start += count; 948 } 949 return 0; 950 } 951 952 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 953 { 954 pgoff_t pg_start, pg_end; 955 loff_t off_start, off_end; 956 int ret; 957 958 ret = f2fs_convert_inline_inode(inode); 959 if (ret) 960 return ret; 961 962 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 963 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 964 965 off_start = offset & (PAGE_SIZE - 1); 966 off_end = (offset + len) & (PAGE_SIZE - 1); 967 968 if (pg_start == pg_end) { 969 ret = fill_zero(inode, pg_start, off_start, 970 off_end - off_start); 971 if (ret) 972 return ret; 973 } else { 974 if (off_start) { 975 ret = fill_zero(inode, pg_start++, off_start, 976 PAGE_SIZE - off_start); 977 if (ret) 978 return ret; 979 } 980 if (off_end) { 981 ret = fill_zero(inode, pg_end, 0, off_end); 982 if (ret) 983 return ret; 984 } 985 986 if (pg_start < pg_end) { 987 struct address_space *mapping = inode->i_mapping; 988 loff_t blk_start, blk_end; 989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 990 991 f2fs_balance_fs(sbi, true); 992 993 blk_start = (loff_t)pg_start << PAGE_SHIFT; 994 blk_end = (loff_t)pg_end << PAGE_SHIFT; 995 996 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 997 down_write(&F2FS_I(inode)->i_mmap_sem); 998 999 truncate_inode_pages_range(mapping, blk_start, 1000 blk_end - 1); 1001 1002 f2fs_lock_op(sbi); 1003 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1004 f2fs_unlock_op(sbi); 1005 1006 up_write(&F2FS_I(inode)->i_mmap_sem); 1007 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1008 } 1009 } 1010 1011 return ret; 1012 } 1013 1014 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1015 int *do_replace, pgoff_t off, pgoff_t len) 1016 { 1017 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1018 struct dnode_of_data dn; 1019 int ret, done, i; 1020 1021 next_dnode: 1022 set_new_dnode(&dn, inode, NULL, NULL, 0); 1023 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1024 if (ret && ret != -ENOENT) { 1025 return ret; 1026 } else if (ret == -ENOENT) { 1027 if (dn.max_level == 0) 1028 return -ENOENT; 1029 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - dn.ofs_in_node, 1030 len); 1031 blkaddr += done; 1032 do_replace += done; 1033 goto next; 1034 } 1035 1036 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1037 dn.ofs_in_node, len); 1038 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1039 *blkaddr = datablock_addr(dn.inode, 1040 dn.node_page, dn.ofs_in_node); 1041 1042 if (__is_valid_data_blkaddr(*blkaddr) && 1043 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1044 DATA_GENERIC_ENHANCE)) { 1045 f2fs_put_dnode(&dn); 1046 return -EFSCORRUPTED; 1047 } 1048 1049 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1050 1051 if (test_opt(sbi, LFS)) { 1052 f2fs_put_dnode(&dn); 1053 return -EOPNOTSUPP; 1054 } 1055 1056 /* do not invalidate this block address */ 1057 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1058 *do_replace = 1; 1059 } 1060 } 1061 f2fs_put_dnode(&dn); 1062 next: 1063 len -= done; 1064 off += done; 1065 if (len) 1066 goto next_dnode; 1067 return 0; 1068 } 1069 1070 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1071 int *do_replace, pgoff_t off, int len) 1072 { 1073 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1074 struct dnode_of_data dn; 1075 int ret, i; 1076 1077 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1078 if (*do_replace == 0) 1079 continue; 1080 1081 set_new_dnode(&dn, inode, NULL, NULL, 0); 1082 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1083 if (ret) { 1084 dec_valid_block_count(sbi, inode, 1); 1085 f2fs_invalidate_blocks(sbi, *blkaddr); 1086 } else { 1087 f2fs_update_data_blkaddr(&dn, *blkaddr); 1088 } 1089 f2fs_put_dnode(&dn); 1090 } 1091 return 0; 1092 } 1093 1094 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1095 block_t *blkaddr, int *do_replace, 1096 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1097 { 1098 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1099 pgoff_t i = 0; 1100 int ret; 1101 1102 while (i < len) { 1103 if (blkaddr[i] == NULL_ADDR && !full) { 1104 i++; 1105 continue; 1106 } 1107 1108 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1109 struct dnode_of_data dn; 1110 struct node_info ni; 1111 size_t new_size; 1112 pgoff_t ilen; 1113 1114 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1115 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1116 if (ret) 1117 return ret; 1118 1119 ret = f2fs_get_node_info(sbi, dn.nid, &ni); 1120 if (ret) { 1121 f2fs_put_dnode(&dn); 1122 return ret; 1123 } 1124 1125 ilen = min((pgoff_t) 1126 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1127 dn.ofs_in_node, len - i); 1128 do { 1129 dn.data_blkaddr = datablock_addr(dn.inode, 1130 dn.node_page, dn.ofs_in_node); 1131 f2fs_truncate_data_blocks_range(&dn, 1); 1132 1133 if (do_replace[i]) { 1134 f2fs_i_blocks_write(src_inode, 1135 1, false, false); 1136 f2fs_i_blocks_write(dst_inode, 1137 1, true, false); 1138 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1139 blkaddr[i], ni.version, true, false); 1140 1141 do_replace[i] = 0; 1142 } 1143 dn.ofs_in_node++; 1144 i++; 1145 new_size = (dst + i) << PAGE_SHIFT; 1146 if (dst_inode->i_size < new_size) 1147 f2fs_i_size_write(dst_inode, new_size); 1148 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1149 1150 f2fs_put_dnode(&dn); 1151 } else { 1152 struct page *psrc, *pdst; 1153 1154 psrc = f2fs_get_lock_data_page(src_inode, 1155 src + i, true); 1156 if (IS_ERR(psrc)) 1157 return PTR_ERR(psrc); 1158 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1159 true); 1160 if (IS_ERR(pdst)) { 1161 f2fs_put_page(psrc, 1); 1162 return PTR_ERR(pdst); 1163 } 1164 f2fs_copy_page(psrc, pdst); 1165 set_page_dirty(pdst); 1166 f2fs_put_page(pdst, 1); 1167 f2fs_put_page(psrc, 1); 1168 1169 ret = f2fs_truncate_hole(src_inode, 1170 src + i, src + i + 1); 1171 if (ret) 1172 return ret; 1173 i++; 1174 } 1175 } 1176 return 0; 1177 } 1178 1179 static int __exchange_data_block(struct inode *src_inode, 1180 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1181 pgoff_t len, bool full) 1182 { 1183 block_t *src_blkaddr; 1184 int *do_replace; 1185 pgoff_t olen; 1186 int ret; 1187 1188 while (len) { 1189 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1190 1191 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1192 array_size(olen, sizeof(block_t)), 1193 GFP_KERNEL); 1194 if (!src_blkaddr) 1195 return -ENOMEM; 1196 1197 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1198 array_size(olen, sizeof(int)), 1199 GFP_KERNEL); 1200 if (!do_replace) { 1201 kvfree(src_blkaddr); 1202 return -ENOMEM; 1203 } 1204 1205 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1206 do_replace, src, olen); 1207 if (ret) 1208 goto roll_back; 1209 1210 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1211 do_replace, src, dst, olen, full); 1212 if (ret) 1213 goto roll_back; 1214 1215 src += olen; 1216 dst += olen; 1217 len -= olen; 1218 1219 kvfree(src_blkaddr); 1220 kvfree(do_replace); 1221 } 1222 return 0; 1223 1224 roll_back: 1225 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1226 kvfree(src_blkaddr); 1227 kvfree(do_replace); 1228 return ret; 1229 } 1230 1231 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1232 { 1233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1234 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1235 pgoff_t start = offset >> PAGE_SHIFT; 1236 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1237 int ret; 1238 1239 f2fs_balance_fs(sbi, true); 1240 1241 /* avoid gc operation during block exchange */ 1242 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1243 down_write(&F2FS_I(inode)->i_mmap_sem); 1244 1245 f2fs_lock_op(sbi); 1246 f2fs_drop_extent_tree(inode); 1247 truncate_pagecache(inode, offset); 1248 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1249 f2fs_unlock_op(sbi); 1250 1251 up_write(&F2FS_I(inode)->i_mmap_sem); 1252 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1253 return ret; 1254 } 1255 1256 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1257 { 1258 loff_t new_size; 1259 int ret; 1260 1261 if (offset + len >= i_size_read(inode)) 1262 return -EINVAL; 1263 1264 /* collapse range should be aligned to block size of f2fs. */ 1265 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1266 return -EINVAL; 1267 1268 ret = f2fs_convert_inline_inode(inode); 1269 if (ret) 1270 return ret; 1271 1272 /* write out all dirty pages from offset */ 1273 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1274 if (ret) 1275 return ret; 1276 1277 ret = f2fs_do_collapse(inode, offset, len); 1278 if (ret) 1279 return ret; 1280 1281 /* write out all moved pages, if possible */ 1282 down_write(&F2FS_I(inode)->i_mmap_sem); 1283 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1284 truncate_pagecache(inode, offset); 1285 1286 new_size = i_size_read(inode) - len; 1287 truncate_pagecache(inode, new_size); 1288 1289 ret = f2fs_truncate_blocks(inode, new_size, true); 1290 up_write(&F2FS_I(inode)->i_mmap_sem); 1291 if (!ret) 1292 f2fs_i_size_write(inode, new_size); 1293 return ret; 1294 } 1295 1296 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1297 pgoff_t end) 1298 { 1299 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1300 pgoff_t index = start; 1301 unsigned int ofs_in_node = dn->ofs_in_node; 1302 blkcnt_t count = 0; 1303 int ret; 1304 1305 for (; index < end; index++, dn->ofs_in_node++) { 1306 if (datablock_addr(dn->inode, dn->node_page, 1307 dn->ofs_in_node) == NULL_ADDR) 1308 count++; 1309 } 1310 1311 dn->ofs_in_node = ofs_in_node; 1312 ret = f2fs_reserve_new_blocks(dn, count); 1313 if (ret) 1314 return ret; 1315 1316 dn->ofs_in_node = ofs_in_node; 1317 for (index = start; index < end; index++, dn->ofs_in_node++) { 1318 dn->data_blkaddr = datablock_addr(dn->inode, 1319 dn->node_page, dn->ofs_in_node); 1320 /* 1321 * f2fs_reserve_new_blocks will not guarantee entire block 1322 * allocation. 1323 */ 1324 if (dn->data_blkaddr == NULL_ADDR) { 1325 ret = -ENOSPC; 1326 break; 1327 } 1328 if (dn->data_blkaddr != NEW_ADDR) { 1329 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1330 dn->data_blkaddr = NEW_ADDR; 1331 f2fs_set_data_blkaddr(dn); 1332 } 1333 } 1334 1335 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1336 1337 return ret; 1338 } 1339 1340 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1341 int mode) 1342 { 1343 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1344 struct address_space *mapping = inode->i_mapping; 1345 pgoff_t index, pg_start, pg_end; 1346 loff_t new_size = i_size_read(inode); 1347 loff_t off_start, off_end; 1348 int ret = 0; 1349 1350 ret = inode_newsize_ok(inode, (len + offset)); 1351 if (ret) 1352 return ret; 1353 1354 ret = f2fs_convert_inline_inode(inode); 1355 if (ret) 1356 return ret; 1357 1358 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1359 if (ret) 1360 return ret; 1361 1362 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1363 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1364 1365 off_start = offset & (PAGE_SIZE - 1); 1366 off_end = (offset + len) & (PAGE_SIZE - 1); 1367 1368 if (pg_start == pg_end) { 1369 ret = fill_zero(inode, pg_start, off_start, 1370 off_end - off_start); 1371 if (ret) 1372 return ret; 1373 1374 new_size = max_t(loff_t, new_size, offset + len); 1375 } else { 1376 if (off_start) { 1377 ret = fill_zero(inode, pg_start++, off_start, 1378 PAGE_SIZE - off_start); 1379 if (ret) 1380 return ret; 1381 1382 new_size = max_t(loff_t, new_size, 1383 (loff_t)pg_start << PAGE_SHIFT); 1384 } 1385 1386 for (index = pg_start; index < pg_end;) { 1387 struct dnode_of_data dn; 1388 unsigned int end_offset; 1389 pgoff_t end; 1390 1391 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1392 down_write(&F2FS_I(inode)->i_mmap_sem); 1393 1394 truncate_pagecache_range(inode, 1395 (loff_t)index << PAGE_SHIFT, 1396 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1397 1398 f2fs_lock_op(sbi); 1399 1400 set_new_dnode(&dn, inode, NULL, NULL, 0); 1401 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1402 if (ret) { 1403 f2fs_unlock_op(sbi); 1404 up_write(&F2FS_I(inode)->i_mmap_sem); 1405 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1406 goto out; 1407 } 1408 1409 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1410 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1411 1412 ret = f2fs_do_zero_range(&dn, index, end); 1413 f2fs_put_dnode(&dn); 1414 1415 f2fs_unlock_op(sbi); 1416 up_write(&F2FS_I(inode)->i_mmap_sem); 1417 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1418 1419 f2fs_balance_fs(sbi, dn.node_changed); 1420 1421 if (ret) 1422 goto out; 1423 1424 index = end; 1425 new_size = max_t(loff_t, new_size, 1426 (loff_t)index << PAGE_SHIFT); 1427 } 1428 1429 if (off_end) { 1430 ret = fill_zero(inode, pg_end, 0, off_end); 1431 if (ret) 1432 goto out; 1433 1434 new_size = max_t(loff_t, new_size, offset + len); 1435 } 1436 } 1437 1438 out: 1439 if (new_size > i_size_read(inode)) { 1440 if (mode & FALLOC_FL_KEEP_SIZE) 1441 file_set_keep_isize(inode); 1442 else 1443 f2fs_i_size_write(inode, new_size); 1444 } 1445 return ret; 1446 } 1447 1448 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1449 { 1450 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1451 pgoff_t nr, pg_start, pg_end, delta, idx; 1452 loff_t new_size; 1453 int ret = 0; 1454 1455 new_size = i_size_read(inode) + len; 1456 ret = inode_newsize_ok(inode, new_size); 1457 if (ret) 1458 return ret; 1459 1460 if (offset >= i_size_read(inode)) 1461 return -EINVAL; 1462 1463 /* insert range should be aligned to block size of f2fs. */ 1464 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1465 return -EINVAL; 1466 1467 ret = f2fs_convert_inline_inode(inode); 1468 if (ret) 1469 return ret; 1470 1471 f2fs_balance_fs(sbi, true); 1472 1473 down_write(&F2FS_I(inode)->i_mmap_sem); 1474 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1475 up_write(&F2FS_I(inode)->i_mmap_sem); 1476 if (ret) 1477 return ret; 1478 1479 /* write out all dirty pages from offset */ 1480 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1481 if (ret) 1482 return ret; 1483 1484 pg_start = offset >> PAGE_SHIFT; 1485 pg_end = (offset + len) >> PAGE_SHIFT; 1486 delta = pg_end - pg_start; 1487 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1488 1489 /* avoid gc operation during block exchange */ 1490 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1491 down_write(&F2FS_I(inode)->i_mmap_sem); 1492 truncate_pagecache(inode, offset); 1493 1494 while (!ret && idx > pg_start) { 1495 nr = idx - pg_start; 1496 if (nr > delta) 1497 nr = delta; 1498 idx -= nr; 1499 1500 f2fs_lock_op(sbi); 1501 f2fs_drop_extent_tree(inode); 1502 1503 ret = __exchange_data_block(inode, inode, idx, 1504 idx + delta, nr, false); 1505 f2fs_unlock_op(sbi); 1506 } 1507 up_write(&F2FS_I(inode)->i_mmap_sem); 1508 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1509 1510 /* write out all moved pages, if possible */ 1511 down_write(&F2FS_I(inode)->i_mmap_sem); 1512 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1513 truncate_pagecache(inode, offset); 1514 up_write(&F2FS_I(inode)->i_mmap_sem); 1515 1516 if (!ret) 1517 f2fs_i_size_write(inode, new_size); 1518 return ret; 1519 } 1520 1521 static int expand_inode_data(struct inode *inode, loff_t offset, 1522 loff_t len, int mode) 1523 { 1524 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1525 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1526 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1527 .m_may_create = true }; 1528 pgoff_t pg_end; 1529 loff_t new_size = i_size_read(inode); 1530 loff_t off_end; 1531 int err; 1532 1533 err = inode_newsize_ok(inode, (len + offset)); 1534 if (err) 1535 return err; 1536 1537 err = f2fs_convert_inline_inode(inode); 1538 if (err) 1539 return err; 1540 1541 f2fs_balance_fs(sbi, true); 1542 1543 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1544 off_end = (offset + len) & (PAGE_SIZE - 1); 1545 1546 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1547 map.m_len = pg_end - map.m_lblk; 1548 if (off_end) 1549 map.m_len++; 1550 1551 if (f2fs_is_pinned_file(inode)) 1552 map.m_seg_type = CURSEG_COLD_DATA; 1553 1554 err = f2fs_map_blocks(inode, &map, 1, (f2fs_is_pinned_file(inode) ? 1555 F2FS_GET_BLOCK_PRE_DIO : 1556 F2FS_GET_BLOCK_PRE_AIO)); 1557 if (err) { 1558 pgoff_t last_off; 1559 1560 if (!map.m_len) 1561 return err; 1562 1563 last_off = map.m_lblk + map.m_len - 1; 1564 1565 /* update new size to the failed position */ 1566 new_size = (last_off == pg_end) ? offset + len : 1567 (loff_t)(last_off + 1) << PAGE_SHIFT; 1568 } else { 1569 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1570 } 1571 1572 if (new_size > i_size_read(inode)) { 1573 if (mode & FALLOC_FL_KEEP_SIZE) 1574 file_set_keep_isize(inode); 1575 else 1576 f2fs_i_size_write(inode, new_size); 1577 } 1578 1579 return err; 1580 } 1581 1582 static long f2fs_fallocate(struct file *file, int mode, 1583 loff_t offset, loff_t len) 1584 { 1585 struct inode *inode = file_inode(file); 1586 long ret = 0; 1587 1588 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1589 return -EIO; 1590 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1591 return -ENOSPC; 1592 1593 /* f2fs only support ->fallocate for regular file */ 1594 if (!S_ISREG(inode->i_mode)) 1595 return -EINVAL; 1596 1597 if (IS_ENCRYPTED(inode) && 1598 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1599 return -EOPNOTSUPP; 1600 1601 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1602 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1603 FALLOC_FL_INSERT_RANGE)) 1604 return -EOPNOTSUPP; 1605 1606 inode_lock(inode); 1607 1608 if (mode & FALLOC_FL_PUNCH_HOLE) { 1609 if (offset >= inode->i_size) 1610 goto out; 1611 1612 ret = punch_hole(inode, offset, len); 1613 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1614 ret = f2fs_collapse_range(inode, offset, len); 1615 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1616 ret = f2fs_zero_range(inode, offset, len, mode); 1617 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1618 ret = f2fs_insert_range(inode, offset, len); 1619 } else { 1620 ret = expand_inode_data(inode, offset, len, mode); 1621 } 1622 1623 if (!ret) { 1624 inode->i_mtime = inode->i_ctime = current_time(inode); 1625 f2fs_mark_inode_dirty_sync(inode, false); 1626 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1627 } 1628 1629 out: 1630 inode_unlock(inode); 1631 1632 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1633 return ret; 1634 } 1635 1636 static int f2fs_release_file(struct inode *inode, struct file *filp) 1637 { 1638 /* 1639 * f2fs_relase_file is called at every close calls. So we should 1640 * not drop any inmemory pages by close called by other process. 1641 */ 1642 if (!(filp->f_mode & FMODE_WRITE) || 1643 atomic_read(&inode->i_writecount) != 1) 1644 return 0; 1645 1646 /* some remained atomic pages should discarded */ 1647 if (f2fs_is_atomic_file(inode)) 1648 f2fs_drop_inmem_pages(inode); 1649 if (f2fs_is_volatile_file(inode)) { 1650 set_inode_flag(inode, FI_DROP_CACHE); 1651 filemap_fdatawrite(inode->i_mapping); 1652 clear_inode_flag(inode, FI_DROP_CACHE); 1653 clear_inode_flag(inode, FI_VOLATILE_FILE); 1654 stat_dec_volatile_write(inode); 1655 } 1656 return 0; 1657 } 1658 1659 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1660 { 1661 struct inode *inode = file_inode(file); 1662 1663 /* 1664 * If the process doing a transaction is crashed, we should do 1665 * roll-back. Otherwise, other reader/write can see corrupted database 1666 * until all the writers close its file. Since this should be done 1667 * before dropping file lock, it needs to do in ->flush. 1668 */ 1669 if (f2fs_is_atomic_file(inode) && 1670 F2FS_I(inode)->inmem_task == current) 1671 f2fs_drop_inmem_pages(inode); 1672 return 0; 1673 } 1674 1675 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1676 { 1677 struct f2fs_inode_info *fi = F2FS_I(inode); 1678 1679 /* Is it quota file? Do not allow user to mess with it */ 1680 if (IS_NOQUOTA(inode)) 1681 return -EPERM; 1682 1683 if ((iflags ^ fi->i_flags) & F2FS_CASEFOLD_FL) { 1684 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1685 return -EOPNOTSUPP; 1686 if (!f2fs_empty_dir(inode)) 1687 return -ENOTEMPTY; 1688 } 1689 1690 fi->i_flags = iflags | (fi->i_flags & ~mask); 1691 1692 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1693 set_inode_flag(inode, FI_PROJ_INHERIT); 1694 else 1695 clear_inode_flag(inode, FI_PROJ_INHERIT); 1696 1697 inode->i_ctime = current_time(inode); 1698 f2fs_set_inode_flags(inode); 1699 f2fs_mark_inode_dirty_sync(inode, true); 1700 return 0; 1701 } 1702 1703 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */ 1704 1705 /* 1706 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1707 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1708 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1709 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1710 */ 1711 1712 static const struct { 1713 u32 iflag; 1714 u32 fsflag; 1715 } f2fs_fsflags_map[] = { 1716 { F2FS_SYNC_FL, FS_SYNC_FL }, 1717 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1718 { F2FS_APPEND_FL, FS_APPEND_FL }, 1719 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1720 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1721 { F2FS_INDEX_FL, FS_INDEX_FL }, 1722 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1723 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1724 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1725 }; 1726 1727 #define F2FS_GETTABLE_FS_FL ( \ 1728 FS_SYNC_FL | \ 1729 FS_IMMUTABLE_FL | \ 1730 FS_APPEND_FL | \ 1731 FS_NODUMP_FL | \ 1732 FS_NOATIME_FL | \ 1733 FS_INDEX_FL | \ 1734 FS_DIRSYNC_FL | \ 1735 FS_PROJINHERIT_FL | \ 1736 FS_ENCRYPT_FL | \ 1737 FS_INLINE_DATA_FL | \ 1738 FS_NOCOW_FL | \ 1739 FS_VERITY_FL | \ 1740 FS_CASEFOLD_FL) 1741 1742 #define F2FS_SETTABLE_FS_FL ( \ 1743 FS_SYNC_FL | \ 1744 FS_IMMUTABLE_FL | \ 1745 FS_APPEND_FL | \ 1746 FS_NODUMP_FL | \ 1747 FS_NOATIME_FL | \ 1748 FS_DIRSYNC_FL | \ 1749 FS_PROJINHERIT_FL | \ 1750 FS_CASEFOLD_FL) 1751 1752 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1753 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1754 { 1755 u32 fsflags = 0; 1756 int i; 1757 1758 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1759 if (iflags & f2fs_fsflags_map[i].iflag) 1760 fsflags |= f2fs_fsflags_map[i].fsflag; 1761 1762 return fsflags; 1763 } 1764 1765 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1766 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1767 { 1768 u32 iflags = 0; 1769 int i; 1770 1771 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1772 if (fsflags & f2fs_fsflags_map[i].fsflag) 1773 iflags |= f2fs_fsflags_map[i].iflag; 1774 1775 return iflags; 1776 } 1777 1778 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1779 { 1780 struct inode *inode = file_inode(filp); 1781 struct f2fs_inode_info *fi = F2FS_I(inode); 1782 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1783 1784 if (IS_ENCRYPTED(inode)) 1785 fsflags |= FS_ENCRYPT_FL; 1786 if (IS_VERITY(inode)) 1787 fsflags |= FS_VERITY_FL; 1788 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 1789 fsflags |= FS_INLINE_DATA_FL; 1790 if (is_inode_flag_set(inode, FI_PIN_FILE)) 1791 fsflags |= FS_NOCOW_FL; 1792 1793 fsflags &= F2FS_GETTABLE_FS_FL; 1794 1795 return put_user(fsflags, (int __user *)arg); 1796 } 1797 1798 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1799 { 1800 struct inode *inode = file_inode(filp); 1801 struct f2fs_inode_info *fi = F2FS_I(inode); 1802 u32 fsflags, old_fsflags; 1803 u32 iflags; 1804 int ret; 1805 1806 if (!inode_owner_or_capable(inode)) 1807 return -EACCES; 1808 1809 if (get_user(fsflags, (int __user *)arg)) 1810 return -EFAULT; 1811 1812 if (fsflags & ~F2FS_GETTABLE_FS_FL) 1813 return -EOPNOTSUPP; 1814 fsflags &= F2FS_SETTABLE_FS_FL; 1815 1816 iflags = f2fs_fsflags_to_iflags(fsflags); 1817 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 1818 return -EOPNOTSUPP; 1819 1820 ret = mnt_want_write_file(filp); 1821 if (ret) 1822 return ret; 1823 1824 inode_lock(inode); 1825 1826 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1827 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 1828 if (ret) 1829 goto out; 1830 1831 ret = f2fs_setflags_common(inode, iflags, 1832 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL)); 1833 out: 1834 inode_unlock(inode); 1835 mnt_drop_write_file(filp); 1836 return ret; 1837 } 1838 1839 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1840 { 1841 struct inode *inode = file_inode(filp); 1842 1843 return put_user(inode->i_generation, (int __user *)arg); 1844 } 1845 1846 static int f2fs_ioc_start_atomic_write(struct file *filp) 1847 { 1848 struct inode *inode = file_inode(filp); 1849 struct f2fs_inode_info *fi = F2FS_I(inode); 1850 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1851 int ret; 1852 1853 if (!inode_owner_or_capable(inode)) 1854 return -EACCES; 1855 1856 if (!S_ISREG(inode->i_mode)) 1857 return -EINVAL; 1858 1859 if (filp->f_flags & O_DIRECT) 1860 return -EINVAL; 1861 1862 ret = mnt_want_write_file(filp); 1863 if (ret) 1864 return ret; 1865 1866 inode_lock(inode); 1867 1868 if (f2fs_is_atomic_file(inode)) { 1869 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) 1870 ret = -EINVAL; 1871 goto out; 1872 } 1873 1874 ret = f2fs_convert_inline_inode(inode); 1875 if (ret) 1876 goto out; 1877 1878 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1879 1880 /* 1881 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 1882 * f2fs_is_atomic_file. 1883 */ 1884 if (get_dirty_pages(inode)) 1885 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u", 1886 inode->i_ino, get_dirty_pages(inode)); 1887 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 1888 if (ret) { 1889 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1890 goto out; 1891 } 1892 1893 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 1894 if (list_empty(&fi->inmem_ilist)) 1895 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 1896 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 1897 1898 /* add inode in inmem_list first and set atomic_file */ 1899 set_inode_flag(inode, FI_ATOMIC_FILE); 1900 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 1901 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1902 1903 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1904 F2FS_I(inode)->inmem_task = current; 1905 stat_inc_atomic_write(inode); 1906 stat_update_max_atomic_write(inode); 1907 out: 1908 inode_unlock(inode); 1909 mnt_drop_write_file(filp); 1910 return ret; 1911 } 1912 1913 static int f2fs_ioc_commit_atomic_write(struct file *filp) 1914 { 1915 struct inode *inode = file_inode(filp); 1916 int ret; 1917 1918 if (!inode_owner_or_capable(inode)) 1919 return -EACCES; 1920 1921 ret = mnt_want_write_file(filp); 1922 if (ret) 1923 return ret; 1924 1925 f2fs_balance_fs(F2FS_I_SB(inode), true); 1926 1927 inode_lock(inode); 1928 1929 if (f2fs_is_volatile_file(inode)) { 1930 ret = -EINVAL; 1931 goto err_out; 1932 } 1933 1934 if (f2fs_is_atomic_file(inode)) { 1935 ret = f2fs_commit_inmem_pages(inode); 1936 if (ret) 1937 goto err_out; 1938 1939 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1940 if (!ret) 1941 f2fs_drop_inmem_pages(inode); 1942 } else { 1943 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 1944 } 1945 err_out: 1946 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 1947 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 1948 ret = -EINVAL; 1949 } 1950 inode_unlock(inode); 1951 mnt_drop_write_file(filp); 1952 return ret; 1953 } 1954 1955 static int f2fs_ioc_start_volatile_write(struct file *filp) 1956 { 1957 struct inode *inode = file_inode(filp); 1958 int ret; 1959 1960 if (!inode_owner_or_capable(inode)) 1961 return -EACCES; 1962 1963 if (!S_ISREG(inode->i_mode)) 1964 return -EINVAL; 1965 1966 ret = mnt_want_write_file(filp); 1967 if (ret) 1968 return ret; 1969 1970 inode_lock(inode); 1971 1972 if (f2fs_is_volatile_file(inode)) 1973 goto out; 1974 1975 ret = f2fs_convert_inline_inode(inode); 1976 if (ret) 1977 goto out; 1978 1979 stat_inc_volatile_write(inode); 1980 stat_update_max_volatile_write(inode); 1981 1982 set_inode_flag(inode, FI_VOLATILE_FILE); 1983 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1984 out: 1985 inode_unlock(inode); 1986 mnt_drop_write_file(filp); 1987 return ret; 1988 } 1989 1990 static int f2fs_ioc_release_volatile_write(struct file *filp) 1991 { 1992 struct inode *inode = file_inode(filp); 1993 int ret; 1994 1995 if (!inode_owner_or_capable(inode)) 1996 return -EACCES; 1997 1998 ret = mnt_want_write_file(filp); 1999 if (ret) 2000 return ret; 2001 2002 inode_lock(inode); 2003 2004 if (!f2fs_is_volatile_file(inode)) 2005 goto out; 2006 2007 if (!f2fs_is_first_block_written(inode)) { 2008 ret = truncate_partial_data_page(inode, 0, true); 2009 goto out; 2010 } 2011 2012 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 2013 out: 2014 inode_unlock(inode); 2015 mnt_drop_write_file(filp); 2016 return ret; 2017 } 2018 2019 static int f2fs_ioc_abort_volatile_write(struct file *filp) 2020 { 2021 struct inode *inode = file_inode(filp); 2022 int ret; 2023 2024 if (!inode_owner_or_capable(inode)) 2025 return -EACCES; 2026 2027 ret = mnt_want_write_file(filp); 2028 if (ret) 2029 return ret; 2030 2031 inode_lock(inode); 2032 2033 if (f2fs_is_atomic_file(inode)) 2034 f2fs_drop_inmem_pages(inode); 2035 if (f2fs_is_volatile_file(inode)) { 2036 clear_inode_flag(inode, FI_VOLATILE_FILE); 2037 stat_dec_volatile_write(inode); 2038 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2039 } 2040 2041 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2042 2043 inode_unlock(inode); 2044 2045 mnt_drop_write_file(filp); 2046 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2047 return ret; 2048 } 2049 2050 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2051 { 2052 struct inode *inode = file_inode(filp); 2053 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2054 struct super_block *sb = sbi->sb; 2055 __u32 in; 2056 int ret = 0; 2057 2058 if (!capable(CAP_SYS_ADMIN)) 2059 return -EPERM; 2060 2061 if (get_user(in, (__u32 __user *)arg)) 2062 return -EFAULT; 2063 2064 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2065 ret = mnt_want_write_file(filp); 2066 if (ret) 2067 return ret; 2068 } 2069 2070 switch (in) { 2071 case F2FS_GOING_DOWN_FULLSYNC: 2072 sb = freeze_bdev(sb->s_bdev); 2073 if (IS_ERR(sb)) { 2074 ret = PTR_ERR(sb); 2075 goto out; 2076 } 2077 if (sb) { 2078 f2fs_stop_checkpoint(sbi, false); 2079 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2080 thaw_bdev(sb->s_bdev, sb); 2081 } 2082 break; 2083 case F2FS_GOING_DOWN_METASYNC: 2084 /* do checkpoint only */ 2085 ret = f2fs_sync_fs(sb, 1); 2086 if (ret) 2087 goto out; 2088 f2fs_stop_checkpoint(sbi, false); 2089 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2090 break; 2091 case F2FS_GOING_DOWN_NOSYNC: 2092 f2fs_stop_checkpoint(sbi, false); 2093 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2094 break; 2095 case F2FS_GOING_DOWN_METAFLUSH: 2096 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2097 f2fs_stop_checkpoint(sbi, false); 2098 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2099 break; 2100 case F2FS_GOING_DOWN_NEED_FSCK: 2101 set_sbi_flag(sbi, SBI_NEED_FSCK); 2102 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2103 set_sbi_flag(sbi, SBI_IS_DIRTY); 2104 /* do checkpoint only */ 2105 ret = f2fs_sync_fs(sb, 1); 2106 goto out; 2107 default: 2108 ret = -EINVAL; 2109 goto out; 2110 } 2111 2112 f2fs_stop_gc_thread(sbi); 2113 f2fs_stop_discard_thread(sbi); 2114 2115 f2fs_drop_discard_cmd(sbi); 2116 clear_opt(sbi, DISCARD); 2117 2118 f2fs_update_time(sbi, REQ_TIME); 2119 out: 2120 if (in != F2FS_GOING_DOWN_FULLSYNC) 2121 mnt_drop_write_file(filp); 2122 2123 trace_f2fs_shutdown(sbi, in, ret); 2124 2125 return ret; 2126 } 2127 2128 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2129 { 2130 struct inode *inode = file_inode(filp); 2131 struct super_block *sb = inode->i_sb; 2132 struct request_queue *q = bdev_get_queue(sb->s_bdev); 2133 struct fstrim_range range; 2134 int ret; 2135 2136 if (!capable(CAP_SYS_ADMIN)) 2137 return -EPERM; 2138 2139 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2140 return -EOPNOTSUPP; 2141 2142 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2143 sizeof(range))) 2144 return -EFAULT; 2145 2146 ret = mnt_want_write_file(filp); 2147 if (ret) 2148 return ret; 2149 2150 range.minlen = max((unsigned int)range.minlen, 2151 q->limits.discard_granularity); 2152 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2153 mnt_drop_write_file(filp); 2154 if (ret < 0) 2155 return ret; 2156 2157 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2158 sizeof(range))) 2159 return -EFAULT; 2160 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2161 return 0; 2162 } 2163 2164 static bool uuid_is_nonzero(__u8 u[16]) 2165 { 2166 int i; 2167 2168 for (i = 0; i < 16; i++) 2169 if (u[i]) 2170 return true; 2171 return false; 2172 } 2173 2174 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2175 { 2176 struct inode *inode = file_inode(filp); 2177 2178 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2179 return -EOPNOTSUPP; 2180 2181 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2182 2183 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2184 } 2185 2186 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2187 { 2188 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2189 return -EOPNOTSUPP; 2190 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2191 } 2192 2193 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2194 { 2195 struct inode *inode = file_inode(filp); 2196 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2197 int err; 2198 2199 if (!f2fs_sb_has_encrypt(sbi)) 2200 return -EOPNOTSUPP; 2201 2202 err = mnt_want_write_file(filp); 2203 if (err) 2204 return err; 2205 2206 down_write(&sbi->sb_lock); 2207 2208 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2209 goto got_it; 2210 2211 /* update superblock with uuid */ 2212 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2213 2214 err = f2fs_commit_super(sbi, false); 2215 if (err) { 2216 /* undo new data */ 2217 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2218 goto out_err; 2219 } 2220 got_it: 2221 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2222 16)) 2223 err = -EFAULT; 2224 out_err: 2225 up_write(&sbi->sb_lock); 2226 mnt_drop_write_file(filp); 2227 return err; 2228 } 2229 2230 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2231 unsigned long arg) 2232 { 2233 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2234 return -EOPNOTSUPP; 2235 2236 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2237 } 2238 2239 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2240 { 2241 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2242 return -EOPNOTSUPP; 2243 2244 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2245 } 2246 2247 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2248 { 2249 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2250 return -EOPNOTSUPP; 2251 2252 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2253 } 2254 2255 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2256 unsigned long arg) 2257 { 2258 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2259 return -EOPNOTSUPP; 2260 2261 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2262 } 2263 2264 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2265 unsigned long arg) 2266 { 2267 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2268 return -EOPNOTSUPP; 2269 2270 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2271 } 2272 2273 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2274 { 2275 struct inode *inode = file_inode(filp); 2276 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2277 __u32 sync; 2278 int ret; 2279 2280 if (!capable(CAP_SYS_ADMIN)) 2281 return -EPERM; 2282 2283 if (get_user(sync, (__u32 __user *)arg)) 2284 return -EFAULT; 2285 2286 if (f2fs_readonly(sbi->sb)) 2287 return -EROFS; 2288 2289 ret = mnt_want_write_file(filp); 2290 if (ret) 2291 return ret; 2292 2293 if (!sync) { 2294 if (!mutex_trylock(&sbi->gc_mutex)) { 2295 ret = -EBUSY; 2296 goto out; 2297 } 2298 } else { 2299 mutex_lock(&sbi->gc_mutex); 2300 } 2301 2302 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO); 2303 out: 2304 mnt_drop_write_file(filp); 2305 return ret; 2306 } 2307 2308 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2309 { 2310 struct inode *inode = file_inode(filp); 2311 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2312 struct f2fs_gc_range range; 2313 u64 end; 2314 int ret; 2315 2316 if (!capable(CAP_SYS_ADMIN)) 2317 return -EPERM; 2318 2319 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2320 sizeof(range))) 2321 return -EFAULT; 2322 2323 if (f2fs_readonly(sbi->sb)) 2324 return -EROFS; 2325 2326 end = range.start + range.len; 2327 if (end < range.start || range.start < MAIN_BLKADDR(sbi) || 2328 end >= MAX_BLKADDR(sbi)) 2329 return -EINVAL; 2330 2331 ret = mnt_want_write_file(filp); 2332 if (ret) 2333 return ret; 2334 2335 do_more: 2336 if (!range.sync) { 2337 if (!mutex_trylock(&sbi->gc_mutex)) { 2338 ret = -EBUSY; 2339 goto out; 2340 } 2341 } else { 2342 mutex_lock(&sbi->gc_mutex); 2343 } 2344 2345 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start)); 2346 range.start += BLKS_PER_SEC(sbi); 2347 if (range.start <= end) 2348 goto do_more; 2349 out: 2350 mnt_drop_write_file(filp); 2351 return ret; 2352 } 2353 2354 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2355 { 2356 struct inode *inode = file_inode(filp); 2357 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2358 int ret; 2359 2360 if (!capable(CAP_SYS_ADMIN)) 2361 return -EPERM; 2362 2363 if (f2fs_readonly(sbi->sb)) 2364 return -EROFS; 2365 2366 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2367 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2368 return -EINVAL; 2369 } 2370 2371 ret = mnt_want_write_file(filp); 2372 if (ret) 2373 return ret; 2374 2375 ret = f2fs_sync_fs(sbi->sb, 1); 2376 2377 mnt_drop_write_file(filp); 2378 return ret; 2379 } 2380 2381 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2382 struct file *filp, 2383 struct f2fs_defragment *range) 2384 { 2385 struct inode *inode = file_inode(filp); 2386 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2387 .m_seg_type = NO_CHECK_TYPE , 2388 .m_may_create = false }; 2389 struct extent_info ei = {0, 0, 0}; 2390 pgoff_t pg_start, pg_end, next_pgofs; 2391 unsigned int blk_per_seg = sbi->blocks_per_seg; 2392 unsigned int total = 0, sec_num; 2393 block_t blk_end = 0; 2394 bool fragmented = false; 2395 int err; 2396 2397 /* if in-place-update policy is enabled, don't waste time here */ 2398 if (f2fs_should_update_inplace(inode, NULL)) 2399 return -EINVAL; 2400 2401 pg_start = range->start >> PAGE_SHIFT; 2402 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2403 2404 f2fs_balance_fs(sbi, true); 2405 2406 inode_lock(inode); 2407 2408 /* writeback all dirty pages in the range */ 2409 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2410 range->start + range->len - 1); 2411 if (err) 2412 goto out; 2413 2414 /* 2415 * lookup mapping info in extent cache, skip defragmenting if physical 2416 * block addresses are continuous. 2417 */ 2418 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2419 if (ei.fofs + ei.len >= pg_end) 2420 goto out; 2421 } 2422 2423 map.m_lblk = pg_start; 2424 map.m_next_pgofs = &next_pgofs; 2425 2426 /* 2427 * lookup mapping info in dnode page cache, skip defragmenting if all 2428 * physical block addresses are continuous even if there are hole(s) 2429 * in logical blocks. 2430 */ 2431 while (map.m_lblk < pg_end) { 2432 map.m_len = pg_end - map.m_lblk; 2433 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2434 if (err) 2435 goto out; 2436 2437 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2438 map.m_lblk = next_pgofs; 2439 continue; 2440 } 2441 2442 if (blk_end && blk_end != map.m_pblk) 2443 fragmented = true; 2444 2445 /* record total count of block that we're going to move */ 2446 total += map.m_len; 2447 2448 blk_end = map.m_pblk + map.m_len; 2449 2450 map.m_lblk += map.m_len; 2451 } 2452 2453 if (!fragmented) { 2454 total = 0; 2455 goto out; 2456 } 2457 2458 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi)); 2459 2460 /* 2461 * make sure there are enough free section for LFS allocation, this can 2462 * avoid defragment running in SSR mode when free section are allocated 2463 * intensively 2464 */ 2465 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2466 err = -EAGAIN; 2467 goto out; 2468 } 2469 2470 map.m_lblk = pg_start; 2471 map.m_len = pg_end - pg_start; 2472 total = 0; 2473 2474 while (map.m_lblk < pg_end) { 2475 pgoff_t idx; 2476 int cnt = 0; 2477 2478 do_map: 2479 map.m_len = pg_end - map.m_lblk; 2480 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2481 if (err) 2482 goto clear_out; 2483 2484 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2485 map.m_lblk = next_pgofs; 2486 goto check; 2487 } 2488 2489 set_inode_flag(inode, FI_DO_DEFRAG); 2490 2491 idx = map.m_lblk; 2492 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2493 struct page *page; 2494 2495 page = f2fs_get_lock_data_page(inode, idx, true); 2496 if (IS_ERR(page)) { 2497 err = PTR_ERR(page); 2498 goto clear_out; 2499 } 2500 2501 set_page_dirty(page); 2502 f2fs_put_page(page, 1); 2503 2504 idx++; 2505 cnt++; 2506 total++; 2507 } 2508 2509 map.m_lblk = idx; 2510 check: 2511 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2512 goto do_map; 2513 2514 clear_inode_flag(inode, FI_DO_DEFRAG); 2515 2516 err = filemap_fdatawrite(inode->i_mapping); 2517 if (err) 2518 goto out; 2519 } 2520 clear_out: 2521 clear_inode_flag(inode, FI_DO_DEFRAG); 2522 out: 2523 inode_unlock(inode); 2524 if (!err) 2525 range->len = (u64)total << PAGE_SHIFT; 2526 return err; 2527 } 2528 2529 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2530 { 2531 struct inode *inode = file_inode(filp); 2532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2533 struct f2fs_defragment range; 2534 int err; 2535 2536 if (!capable(CAP_SYS_ADMIN)) 2537 return -EPERM; 2538 2539 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2540 return -EINVAL; 2541 2542 if (f2fs_readonly(sbi->sb)) 2543 return -EROFS; 2544 2545 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2546 sizeof(range))) 2547 return -EFAULT; 2548 2549 /* verify alignment of offset & size */ 2550 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2551 return -EINVAL; 2552 2553 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2554 sbi->max_file_blocks)) 2555 return -EINVAL; 2556 2557 err = mnt_want_write_file(filp); 2558 if (err) 2559 return err; 2560 2561 err = f2fs_defragment_range(sbi, filp, &range); 2562 mnt_drop_write_file(filp); 2563 2564 f2fs_update_time(sbi, REQ_TIME); 2565 if (err < 0) 2566 return err; 2567 2568 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2569 sizeof(range))) 2570 return -EFAULT; 2571 2572 return 0; 2573 } 2574 2575 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2576 struct file *file_out, loff_t pos_out, size_t len) 2577 { 2578 struct inode *src = file_inode(file_in); 2579 struct inode *dst = file_inode(file_out); 2580 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2581 size_t olen = len, dst_max_i_size = 0; 2582 size_t dst_osize; 2583 int ret; 2584 2585 if (file_in->f_path.mnt != file_out->f_path.mnt || 2586 src->i_sb != dst->i_sb) 2587 return -EXDEV; 2588 2589 if (unlikely(f2fs_readonly(src->i_sb))) 2590 return -EROFS; 2591 2592 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2593 return -EINVAL; 2594 2595 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2596 return -EOPNOTSUPP; 2597 2598 if (src == dst) { 2599 if (pos_in == pos_out) 2600 return 0; 2601 if (pos_out > pos_in && pos_out < pos_in + len) 2602 return -EINVAL; 2603 } 2604 2605 inode_lock(src); 2606 if (src != dst) { 2607 ret = -EBUSY; 2608 if (!inode_trylock(dst)) 2609 goto out; 2610 } 2611 2612 ret = -EINVAL; 2613 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2614 goto out_unlock; 2615 if (len == 0) 2616 olen = len = src->i_size - pos_in; 2617 if (pos_in + len == src->i_size) 2618 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2619 if (len == 0) { 2620 ret = 0; 2621 goto out_unlock; 2622 } 2623 2624 dst_osize = dst->i_size; 2625 if (pos_out + olen > dst->i_size) 2626 dst_max_i_size = pos_out + olen; 2627 2628 /* verify the end result is block aligned */ 2629 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2630 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2631 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2632 goto out_unlock; 2633 2634 ret = f2fs_convert_inline_inode(src); 2635 if (ret) 2636 goto out_unlock; 2637 2638 ret = f2fs_convert_inline_inode(dst); 2639 if (ret) 2640 goto out_unlock; 2641 2642 /* write out all dirty pages from offset */ 2643 ret = filemap_write_and_wait_range(src->i_mapping, 2644 pos_in, pos_in + len); 2645 if (ret) 2646 goto out_unlock; 2647 2648 ret = filemap_write_and_wait_range(dst->i_mapping, 2649 pos_out, pos_out + len); 2650 if (ret) 2651 goto out_unlock; 2652 2653 f2fs_balance_fs(sbi, true); 2654 2655 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2656 if (src != dst) { 2657 ret = -EBUSY; 2658 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2659 goto out_src; 2660 } 2661 2662 f2fs_lock_op(sbi); 2663 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2664 pos_out >> F2FS_BLKSIZE_BITS, 2665 len >> F2FS_BLKSIZE_BITS, false); 2666 2667 if (!ret) { 2668 if (dst_max_i_size) 2669 f2fs_i_size_write(dst, dst_max_i_size); 2670 else if (dst_osize != dst->i_size) 2671 f2fs_i_size_write(dst, dst_osize); 2672 } 2673 f2fs_unlock_op(sbi); 2674 2675 if (src != dst) 2676 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2677 out_src: 2678 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2679 out_unlock: 2680 if (src != dst) 2681 inode_unlock(dst); 2682 out: 2683 inode_unlock(src); 2684 return ret; 2685 } 2686 2687 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2688 { 2689 struct f2fs_move_range range; 2690 struct fd dst; 2691 int err; 2692 2693 if (!(filp->f_mode & FMODE_READ) || 2694 !(filp->f_mode & FMODE_WRITE)) 2695 return -EBADF; 2696 2697 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2698 sizeof(range))) 2699 return -EFAULT; 2700 2701 dst = fdget(range.dst_fd); 2702 if (!dst.file) 2703 return -EBADF; 2704 2705 if (!(dst.file->f_mode & FMODE_WRITE)) { 2706 err = -EBADF; 2707 goto err_out; 2708 } 2709 2710 err = mnt_want_write_file(filp); 2711 if (err) 2712 goto err_out; 2713 2714 err = f2fs_move_file_range(filp, range.pos_in, dst.file, 2715 range.pos_out, range.len); 2716 2717 mnt_drop_write_file(filp); 2718 if (err) 2719 goto err_out; 2720 2721 if (copy_to_user((struct f2fs_move_range __user *)arg, 2722 &range, sizeof(range))) 2723 err = -EFAULT; 2724 err_out: 2725 fdput(dst); 2726 return err; 2727 } 2728 2729 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2730 { 2731 struct inode *inode = file_inode(filp); 2732 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2733 struct sit_info *sm = SIT_I(sbi); 2734 unsigned int start_segno = 0, end_segno = 0; 2735 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2736 struct f2fs_flush_device range; 2737 int ret; 2738 2739 if (!capable(CAP_SYS_ADMIN)) 2740 return -EPERM; 2741 2742 if (f2fs_readonly(sbi->sb)) 2743 return -EROFS; 2744 2745 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2746 return -EINVAL; 2747 2748 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2749 sizeof(range))) 2750 return -EFAULT; 2751 2752 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2753 __is_large_section(sbi)) { 2754 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2755 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2756 return -EINVAL; 2757 } 2758 2759 ret = mnt_want_write_file(filp); 2760 if (ret) 2761 return ret; 2762 2763 if (range.dev_num != 0) 2764 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2765 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2766 2767 start_segno = sm->last_victim[FLUSH_DEVICE]; 2768 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2769 start_segno = dev_start_segno; 2770 end_segno = min(start_segno + range.segments, dev_end_segno); 2771 2772 while (start_segno < end_segno) { 2773 if (!mutex_trylock(&sbi->gc_mutex)) { 2774 ret = -EBUSY; 2775 goto out; 2776 } 2777 sm->last_victim[GC_CB] = end_segno + 1; 2778 sm->last_victim[GC_GREEDY] = end_segno + 1; 2779 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2780 ret = f2fs_gc(sbi, true, true, start_segno); 2781 if (ret == -EAGAIN) 2782 ret = 0; 2783 else if (ret < 0) 2784 break; 2785 start_segno++; 2786 } 2787 out: 2788 mnt_drop_write_file(filp); 2789 return ret; 2790 } 2791 2792 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2793 { 2794 struct inode *inode = file_inode(filp); 2795 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2796 2797 /* Must validate to set it with SQLite behavior in Android. */ 2798 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2799 2800 return put_user(sb_feature, (u32 __user *)arg); 2801 } 2802 2803 #ifdef CONFIG_QUOTA 2804 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2805 { 2806 struct dquot *transfer_to[MAXQUOTAS] = {}; 2807 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2808 struct super_block *sb = sbi->sb; 2809 int err = 0; 2810 2811 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2812 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2813 err = __dquot_transfer(inode, transfer_to); 2814 if (err) 2815 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2816 dqput(transfer_to[PRJQUOTA]); 2817 } 2818 return err; 2819 } 2820 2821 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 2822 { 2823 struct inode *inode = file_inode(filp); 2824 struct f2fs_inode_info *fi = F2FS_I(inode); 2825 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2826 struct page *ipage; 2827 kprojid_t kprojid; 2828 int err; 2829 2830 if (!f2fs_sb_has_project_quota(sbi)) { 2831 if (projid != F2FS_DEF_PROJID) 2832 return -EOPNOTSUPP; 2833 else 2834 return 0; 2835 } 2836 2837 if (!f2fs_has_extra_attr(inode)) 2838 return -EOPNOTSUPP; 2839 2840 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 2841 2842 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 2843 return 0; 2844 2845 err = -EPERM; 2846 /* Is it quota file? Do not allow user to mess with it */ 2847 if (IS_NOQUOTA(inode)) 2848 return err; 2849 2850 ipage = f2fs_get_node_page(sbi, inode->i_ino); 2851 if (IS_ERR(ipage)) 2852 return PTR_ERR(ipage); 2853 2854 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 2855 i_projid)) { 2856 err = -EOVERFLOW; 2857 f2fs_put_page(ipage, 1); 2858 return err; 2859 } 2860 f2fs_put_page(ipage, 1); 2861 2862 err = dquot_initialize(inode); 2863 if (err) 2864 return err; 2865 2866 f2fs_lock_op(sbi); 2867 err = f2fs_transfer_project_quota(inode, kprojid); 2868 if (err) 2869 goto out_unlock; 2870 2871 F2FS_I(inode)->i_projid = kprojid; 2872 inode->i_ctime = current_time(inode); 2873 f2fs_mark_inode_dirty_sync(inode, true); 2874 out_unlock: 2875 f2fs_unlock_op(sbi); 2876 return err; 2877 } 2878 #else 2879 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2880 { 2881 return 0; 2882 } 2883 2884 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 2885 { 2886 if (projid != F2FS_DEF_PROJID) 2887 return -EOPNOTSUPP; 2888 return 0; 2889 } 2890 #endif 2891 2892 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */ 2893 2894 /* 2895 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable 2896 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its 2897 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS. 2898 */ 2899 2900 static const struct { 2901 u32 iflag; 2902 u32 xflag; 2903 } f2fs_xflags_map[] = { 2904 { F2FS_SYNC_FL, FS_XFLAG_SYNC }, 2905 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE }, 2906 { F2FS_APPEND_FL, FS_XFLAG_APPEND }, 2907 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP }, 2908 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME }, 2909 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT }, 2910 }; 2911 2912 #define F2FS_SUPPORTED_XFLAGS ( \ 2913 FS_XFLAG_SYNC | \ 2914 FS_XFLAG_IMMUTABLE | \ 2915 FS_XFLAG_APPEND | \ 2916 FS_XFLAG_NODUMP | \ 2917 FS_XFLAG_NOATIME | \ 2918 FS_XFLAG_PROJINHERIT) 2919 2920 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */ 2921 static inline u32 f2fs_iflags_to_xflags(u32 iflags) 2922 { 2923 u32 xflags = 0; 2924 int i; 2925 2926 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 2927 if (iflags & f2fs_xflags_map[i].iflag) 2928 xflags |= f2fs_xflags_map[i].xflag; 2929 2930 return xflags; 2931 } 2932 2933 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */ 2934 static inline u32 f2fs_xflags_to_iflags(u32 xflags) 2935 { 2936 u32 iflags = 0; 2937 int i; 2938 2939 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 2940 if (xflags & f2fs_xflags_map[i].xflag) 2941 iflags |= f2fs_xflags_map[i].iflag; 2942 2943 return iflags; 2944 } 2945 2946 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa) 2947 { 2948 struct f2fs_inode_info *fi = F2FS_I(inode); 2949 2950 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags)); 2951 2952 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 2953 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 2954 } 2955 2956 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg) 2957 { 2958 struct inode *inode = file_inode(filp); 2959 struct fsxattr fa; 2960 2961 f2fs_fill_fsxattr(inode, &fa); 2962 2963 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa))) 2964 return -EFAULT; 2965 return 0; 2966 } 2967 2968 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg) 2969 { 2970 struct inode *inode = file_inode(filp); 2971 struct fsxattr fa, old_fa; 2972 u32 iflags; 2973 int err; 2974 2975 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa))) 2976 return -EFAULT; 2977 2978 /* Make sure caller has proper permission */ 2979 if (!inode_owner_or_capable(inode)) 2980 return -EACCES; 2981 2982 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS) 2983 return -EOPNOTSUPP; 2984 2985 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags); 2986 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 2987 return -EOPNOTSUPP; 2988 2989 err = mnt_want_write_file(filp); 2990 if (err) 2991 return err; 2992 2993 inode_lock(inode); 2994 2995 f2fs_fill_fsxattr(inode, &old_fa); 2996 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 2997 if (err) 2998 goto out; 2999 3000 err = f2fs_setflags_common(inode, iflags, 3001 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS)); 3002 if (err) 3003 goto out; 3004 3005 err = f2fs_ioc_setproject(filp, fa.fsx_projid); 3006 out: 3007 inode_unlock(inode); 3008 mnt_drop_write_file(filp); 3009 return err; 3010 } 3011 3012 int f2fs_pin_file_control(struct inode *inode, bool inc) 3013 { 3014 struct f2fs_inode_info *fi = F2FS_I(inode); 3015 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3016 3017 /* Use i_gc_failures for normal file as a risk signal. */ 3018 if (inc) 3019 f2fs_i_gc_failures_write(inode, 3020 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3021 3022 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3023 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3024 __func__, inode->i_ino, 3025 fi->i_gc_failures[GC_FAILURE_PIN]); 3026 clear_inode_flag(inode, FI_PIN_FILE); 3027 return -EAGAIN; 3028 } 3029 return 0; 3030 } 3031 3032 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3033 { 3034 struct inode *inode = file_inode(filp); 3035 __u32 pin; 3036 int ret = 0; 3037 3038 if (get_user(pin, (__u32 __user *)arg)) 3039 return -EFAULT; 3040 3041 if (!S_ISREG(inode->i_mode)) 3042 return -EINVAL; 3043 3044 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3045 return -EROFS; 3046 3047 ret = mnt_want_write_file(filp); 3048 if (ret) 3049 return ret; 3050 3051 inode_lock(inode); 3052 3053 if (f2fs_should_update_outplace(inode, NULL)) { 3054 ret = -EINVAL; 3055 goto out; 3056 } 3057 3058 if (!pin) { 3059 clear_inode_flag(inode, FI_PIN_FILE); 3060 f2fs_i_gc_failures_write(inode, 0); 3061 goto done; 3062 } 3063 3064 if (f2fs_pin_file_control(inode, false)) { 3065 ret = -EAGAIN; 3066 goto out; 3067 } 3068 ret = f2fs_convert_inline_inode(inode); 3069 if (ret) 3070 goto out; 3071 3072 set_inode_flag(inode, FI_PIN_FILE); 3073 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3074 done: 3075 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3076 out: 3077 inode_unlock(inode); 3078 mnt_drop_write_file(filp); 3079 return ret; 3080 } 3081 3082 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3083 { 3084 struct inode *inode = file_inode(filp); 3085 __u32 pin = 0; 3086 3087 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3088 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3089 return put_user(pin, (u32 __user *)arg); 3090 } 3091 3092 int f2fs_precache_extents(struct inode *inode) 3093 { 3094 struct f2fs_inode_info *fi = F2FS_I(inode); 3095 struct f2fs_map_blocks map; 3096 pgoff_t m_next_extent; 3097 loff_t end; 3098 int err; 3099 3100 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3101 return -EOPNOTSUPP; 3102 3103 map.m_lblk = 0; 3104 map.m_next_pgofs = NULL; 3105 map.m_next_extent = &m_next_extent; 3106 map.m_seg_type = NO_CHECK_TYPE; 3107 map.m_may_create = false; 3108 end = F2FS_I_SB(inode)->max_file_blocks; 3109 3110 while (map.m_lblk < end) { 3111 map.m_len = end - map.m_lblk; 3112 3113 down_write(&fi->i_gc_rwsem[WRITE]); 3114 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3115 up_write(&fi->i_gc_rwsem[WRITE]); 3116 if (err) 3117 return err; 3118 3119 map.m_lblk = m_next_extent; 3120 } 3121 3122 return err; 3123 } 3124 3125 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3126 { 3127 return f2fs_precache_extents(file_inode(filp)); 3128 } 3129 3130 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3131 { 3132 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3133 __u64 block_count; 3134 int ret; 3135 3136 if (!capable(CAP_SYS_ADMIN)) 3137 return -EPERM; 3138 3139 if (f2fs_readonly(sbi->sb)) 3140 return -EROFS; 3141 3142 if (copy_from_user(&block_count, (void __user *)arg, 3143 sizeof(block_count))) 3144 return -EFAULT; 3145 3146 ret = f2fs_resize_fs(sbi, block_count); 3147 3148 return ret; 3149 } 3150 3151 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3152 { 3153 struct inode *inode = file_inode(filp); 3154 3155 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3156 3157 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3158 f2fs_warn(F2FS_I_SB(inode), 3159 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n", 3160 inode->i_ino); 3161 return -EOPNOTSUPP; 3162 } 3163 3164 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3165 } 3166 3167 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3168 { 3169 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3170 return -EOPNOTSUPP; 3171 3172 return fsverity_ioctl_measure(filp, (void __user *)arg); 3173 } 3174 3175 static int f2fs_get_volume_name(struct file *filp, unsigned long arg) 3176 { 3177 struct inode *inode = file_inode(filp); 3178 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3179 char *vbuf; 3180 int count; 3181 int err = 0; 3182 3183 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3184 if (!vbuf) 3185 return -ENOMEM; 3186 3187 down_read(&sbi->sb_lock); 3188 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3189 ARRAY_SIZE(sbi->raw_super->volume_name), 3190 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3191 up_read(&sbi->sb_lock); 3192 3193 if (copy_to_user((char __user *)arg, vbuf, 3194 min(FSLABEL_MAX, count))) 3195 err = -EFAULT; 3196 3197 kvfree(vbuf); 3198 return err; 3199 } 3200 3201 static int f2fs_set_volume_name(struct file *filp, unsigned long arg) 3202 { 3203 struct inode *inode = file_inode(filp); 3204 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3205 char *vbuf; 3206 int err = 0; 3207 3208 if (!capable(CAP_SYS_ADMIN)) 3209 return -EPERM; 3210 3211 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3212 if (IS_ERR(vbuf)) 3213 return PTR_ERR(vbuf); 3214 3215 err = mnt_want_write_file(filp); 3216 if (err) 3217 goto out; 3218 3219 down_write(&sbi->sb_lock); 3220 3221 memset(sbi->raw_super->volume_name, 0, 3222 sizeof(sbi->raw_super->volume_name)); 3223 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3224 sbi->raw_super->volume_name, 3225 ARRAY_SIZE(sbi->raw_super->volume_name)); 3226 3227 err = f2fs_commit_super(sbi, false); 3228 3229 up_write(&sbi->sb_lock); 3230 3231 mnt_drop_write_file(filp); 3232 out: 3233 kfree(vbuf); 3234 return err; 3235 } 3236 3237 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 3238 { 3239 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 3240 return -EIO; 3241 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 3242 return -ENOSPC; 3243 3244 switch (cmd) { 3245 case F2FS_IOC_GETFLAGS: 3246 return f2fs_ioc_getflags(filp, arg); 3247 case F2FS_IOC_SETFLAGS: 3248 return f2fs_ioc_setflags(filp, arg); 3249 case F2FS_IOC_GETVERSION: 3250 return f2fs_ioc_getversion(filp, arg); 3251 case F2FS_IOC_START_ATOMIC_WRITE: 3252 return f2fs_ioc_start_atomic_write(filp); 3253 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3254 return f2fs_ioc_commit_atomic_write(filp); 3255 case F2FS_IOC_START_VOLATILE_WRITE: 3256 return f2fs_ioc_start_volatile_write(filp); 3257 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3258 return f2fs_ioc_release_volatile_write(filp); 3259 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3260 return f2fs_ioc_abort_volatile_write(filp); 3261 case F2FS_IOC_SHUTDOWN: 3262 return f2fs_ioc_shutdown(filp, arg); 3263 case FITRIM: 3264 return f2fs_ioc_fitrim(filp, arg); 3265 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3266 return f2fs_ioc_set_encryption_policy(filp, arg); 3267 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3268 return f2fs_ioc_get_encryption_policy(filp, arg); 3269 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3270 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 3271 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 3272 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 3273 case FS_IOC_ADD_ENCRYPTION_KEY: 3274 return f2fs_ioc_add_encryption_key(filp, arg); 3275 case FS_IOC_REMOVE_ENCRYPTION_KEY: 3276 return f2fs_ioc_remove_encryption_key(filp, arg); 3277 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 3278 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 3279 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 3280 return f2fs_ioc_get_encryption_key_status(filp, arg); 3281 case F2FS_IOC_GARBAGE_COLLECT: 3282 return f2fs_ioc_gc(filp, arg); 3283 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3284 return f2fs_ioc_gc_range(filp, arg); 3285 case F2FS_IOC_WRITE_CHECKPOINT: 3286 return f2fs_ioc_write_checkpoint(filp, arg); 3287 case F2FS_IOC_DEFRAGMENT: 3288 return f2fs_ioc_defragment(filp, arg); 3289 case F2FS_IOC_MOVE_RANGE: 3290 return f2fs_ioc_move_range(filp, arg); 3291 case F2FS_IOC_FLUSH_DEVICE: 3292 return f2fs_ioc_flush_device(filp, arg); 3293 case F2FS_IOC_GET_FEATURES: 3294 return f2fs_ioc_get_features(filp, arg); 3295 case F2FS_IOC_FSGETXATTR: 3296 return f2fs_ioc_fsgetxattr(filp, arg); 3297 case F2FS_IOC_FSSETXATTR: 3298 return f2fs_ioc_fssetxattr(filp, arg); 3299 case F2FS_IOC_GET_PIN_FILE: 3300 return f2fs_ioc_get_pin_file(filp, arg); 3301 case F2FS_IOC_SET_PIN_FILE: 3302 return f2fs_ioc_set_pin_file(filp, arg); 3303 case F2FS_IOC_PRECACHE_EXTENTS: 3304 return f2fs_ioc_precache_extents(filp, arg); 3305 case F2FS_IOC_RESIZE_FS: 3306 return f2fs_ioc_resize_fs(filp, arg); 3307 case FS_IOC_ENABLE_VERITY: 3308 return f2fs_ioc_enable_verity(filp, arg); 3309 case FS_IOC_MEASURE_VERITY: 3310 return f2fs_ioc_measure_verity(filp, arg); 3311 case F2FS_IOC_GET_VOLUME_NAME: 3312 return f2fs_get_volume_name(filp, arg); 3313 case F2FS_IOC_SET_VOLUME_NAME: 3314 return f2fs_set_volume_name(filp, arg); 3315 default: 3316 return -ENOTTY; 3317 } 3318 } 3319 3320 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3321 { 3322 struct file *file = iocb->ki_filp; 3323 struct inode *inode = file_inode(file); 3324 ssize_t ret; 3325 3326 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 3327 ret = -EIO; 3328 goto out; 3329 } 3330 3331 if (iocb->ki_flags & IOCB_NOWAIT) { 3332 if (!inode_trylock(inode)) { 3333 ret = -EAGAIN; 3334 goto out; 3335 } 3336 } else { 3337 inode_lock(inode); 3338 } 3339 3340 ret = generic_write_checks(iocb, from); 3341 if (ret > 0) { 3342 bool preallocated = false; 3343 size_t target_size = 0; 3344 int err; 3345 3346 if (iov_iter_fault_in_readable(from, iov_iter_count(from))) 3347 set_inode_flag(inode, FI_NO_PREALLOC); 3348 3349 if ((iocb->ki_flags & IOCB_NOWAIT)) { 3350 if (!f2fs_overwrite_io(inode, iocb->ki_pos, 3351 iov_iter_count(from)) || 3352 f2fs_has_inline_data(inode) || 3353 f2fs_force_buffered_io(inode, iocb, from)) { 3354 clear_inode_flag(inode, FI_NO_PREALLOC); 3355 inode_unlock(inode); 3356 ret = -EAGAIN; 3357 goto out; 3358 } 3359 } else { 3360 preallocated = true; 3361 target_size = iocb->ki_pos + iov_iter_count(from); 3362 3363 err = f2fs_preallocate_blocks(iocb, from); 3364 if (err) { 3365 clear_inode_flag(inode, FI_NO_PREALLOC); 3366 inode_unlock(inode); 3367 ret = err; 3368 goto out; 3369 } 3370 } 3371 ret = __generic_file_write_iter(iocb, from); 3372 clear_inode_flag(inode, FI_NO_PREALLOC); 3373 3374 /* if we couldn't write data, we should deallocate blocks. */ 3375 if (preallocated && i_size_read(inode) < target_size) 3376 f2fs_truncate(inode); 3377 3378 if (ret > 0) 3379 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); 3380 } 3381 inode_unlock(inode); 3382 out: 3383 trace_f2fs_file_write_iter(inode, iocb->ki_pos, 3384 iov_iter_count(from), ret); 3385 if (ret > 0) 3386 ret = generic_write_sync(iocb, ret); 3387 return ret; 3388 } 3389 3390 #ifdef CONFIG_COMPAT 3391 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3392 { 3393 switch (cmd) { 3394 case F2FS_IOC32_GETFLAGS: 3395 cmd = F2FS_IOC_GETFLAGS; 3396 break; 3397 case F2FS_IOC32_SETFLAGS: 3398 cmd = F2FS_IOC_SETFLAGS; 3399 break; 3400 case F2FS_IOC32_GETVERSION: 3401 cmd = F2FS_IOC_GETVERSION; 3402 break; 3403 case F2FS_IOC_START_ATOMIC_WRITE: 3404 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3405 case F2FS_IOC_START_VOLATILE_WRITE: 3406 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3407 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3408 case F2FS_IOC_SHUTDOWN: 3409 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3410 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3411 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3412 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 3413 case FS_IOC_ADD_ENCRYPTION_KEY: 3414 case FS_IOC_REMOVE_ENCRYPTION_KEY: 3415 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 3416 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 3417 case F2FS_IOC_GARBAGE_COLLECT: 3418 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3419 case F2FS_IOC_WRITE_CHECKPOINT: 3420 case F2FS_IOC_DEFRAGMENT: 3421 case F2FS_IOC_MOVE_RANGE: 3422 case F2FS_IOC_FLUSH_DEVICE: 3423 case F2FS_IOC_GET_FEATURES: 3424 case F2FS_IOC_FSGETXATTR: 3425 case F2FS_IOC_FSSETXATTR: 3426 case F2FS_IOC_GET_PIN_FILE: 3427 case F2FS_IOC_SET_PIN_FILE: 3428 case F2FS_IOC_PRECACHE_EXTENTS: 3429 case F2FS_IOC_RESIZE_FS: 3430 case FS_IOC_ENABLE_VERITY: 3431 case FS_IOC_MEASURE_VERITY: 3432 case F2FS_IOC_GET_VOLUME_NAME: 3433 case F2FS_IOC_SET_VOLUME_NAME: 3434 break; 3435 default: 3436 return -ENOIOCTLCMD; 3437 } 3438 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 3439 } 3440 #endif 3441 3442 const struct file_operations f2fs_file_operations = { 3443 .llseek = f2fs_llseek, 3444 .read_iter = generic_file_read_iter, 3445 .write_iter = f2fs_file_write_iter, 3446 .open = f2fs_file_open, 3447 .release = f2fs_release_file, 3448 .mmap = f2fs_file_mmap, 3449 .flush = f2fs_file_flush, 3450 .fsync = f2fs_sync_file, 3451 .fallocate = f2fs_fallocate, 3452 .unlocked_ioctl = f2fs_ioctl, 3453 #ifdef CONFIG_COMPAT 3454 .compat_ioctl = f2fs_compat_ioctl, 3455 #endif 3456 .splice_read = generic_file_splice_read, 3457 .splice_write = iter_file_splice_write, 3458 }; 3459