1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 #include <linux/fadvise.h> 27 #include <linux/iomap.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "acl.h" 34 #include "gc.h" 35 #include "iostat.h" 36 #include <trace/events/f2fs.h> 37 #include <uapi/linux/f2fs.h> 38 39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 40 { 41 struct inode *inode = file_inode(vmf->vma->vm_file); 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (!ret) 46 f2fs_update_iostat(F2FS_I_SB(inode), inode, 47 APP_MAPPED_READ_IO, F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(IS_IMMUTABLE(inode))) 64 return VM_FAULT_SIGBUS; 65 66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 67 return VM_FAULT_SIGBUS; 68 69 if (unlikely(f2fs_cp_error(sbi))) { 70 err = -EIO; 71 goto err; 72 } 73 74 if (!f2fs_is_checkpoint_ready(sbi)) { 75 err = -ENOSPC; 76 goto err; 77 } 78 79 err = f2fs_convert_inline_inode(inode); 80 if (err) 81 goto err; 82 83 #ifdef CONFIG_F2FS_FS_COMPRESSION 84 if (f2fs_compressed_file(inode)) { 85 int ret = f2fs_is_compressed_cluster(inode, page->index); 86 87 if (ret < 0) { 88 err = ret; 89 goto err; 90 } else if (ret) { 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 filemap_invalidate_lock_shared(inode->i_mapping); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 set_new_dnode(&dn, inode, NULL, NULL, 0); 117 err = f2fs_get_block_locked(&dn, page->index); 118 } 119 120 #ifdef CONFIG_F2FS_FS_COMPRESSION 121 if (!need_alloc) { 122 set_new_dnode(&dn, inode, NULL, NULL, 0); 123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 124 f2fs_put_dnode(&dn); 125 } 126 #endif 127 if (err) { 128 unlock_page(page); 129 goto out_sem; 130 } 131 132 f2fs_wait_on_page_writeback(page, DATA, false, true); 133 134 /* wait for GCed page writeback via META_MAPPING */ 135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 136 137 /* 138 * check to see if the page is mapped already (no holes) 139 */ 140 if (PageMappedToDisk(page)) 141 goto out_sem; 142 143 /* page is wholly or partially inside EOF */ 144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 145 i_size_read(inode)) { 146 loff_t offset; 147 148 offset = i_size_read(inode) & ~PAGE_MASK; 149 zero_user_segment(page, offset, PAGE_SIZE); 150 } 151 set_page_dirty(page); 152 if (!PageUptodate(page)) 153 SetPageUptodate(page); 154 155 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE); 156 f2fs_update_time(sbi, REQ_TIME); 157 158 trace_f2fs_vm_page_mkwrite(page, DATA); 159 out_sem: 160 filemap_invalidate_unlock_shared(inode->i_mapping); 161 162 sb_end_pagefault(inode->i_sb); 163 err: 164 return block_page_mkwrite_return(err); 165 } 166 167 static const struct vm_operations_struct f2fs_file_vm_ops = { 168 .fault = f2fs_filemap_fault, 169 .map_pages = filemap_map_pages, 170 .page_mkwrite = f2fs_vm_page_mkwrite, 171 }; 172 173 static int get_parent_ino(struct inode *inode, nid_t *pino) 174 { 175 struct dentry *dentry; 176 177 /* 178 * Make sure to get the non-deleted alias. The alias associated with 179 * the open file descriptor being fsync()'ed may be deleted already. 180 */ 181 dentry = d_find_alias(inode); 182 if (!dentry) 183 return 0; 184 185 *pino = parent_ino(dentry); 186 dput(dentry); 187 return 1; 188 } 189 190 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 191 { 192 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 193 enum cp_reason_type cp_reason = CP_NO_NEEDED; 194 195 if (!S_ISREG(inode->i_mode)) 196 cp_reason = CP_NON_REGULAR; 197 else if (f2fs_compressed_file(inode)) 198 cp_reason = CP_COMPRESSED; 199 else if (inode->i_nlink != 1) 200 cp_reason = CP_HARDLINK; 201 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 202 cp_reason = CP_SB_NEED_CP; 203 else if (file_wrong_pino(inode)) 204 cp_reason = CP_WRONG_PINO; 205 else if (!f2fs_space_for_roll_forward(sbi)) 206 cp_reason = CP_NO_SPC_ROLL; 207 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 208 cp_reason = CP_NODE_NEED_CP; 209 else if (test_opt(sbi, FASTBOOT)) 210 cp_reason = CP_FASTBOOT_MODE; 211 else if (F2FS_OPTION(sbi).active_logs == 2) 212 cp_reason = CP_SPEC_LOG_NUM; 213 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 214 f2fs_need_dentry_mark(sbi, inode->i_ino) && 215 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 216 TRANS_DIR_INO)) 217 cp_reason = CP_RECOVER_DIR; 218 219 return cp_reason; 220 } 221 222 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 223 { 224 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 225 bool ret = false; 226 /* But we need to avoid that there are some inode updates */ 227 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 228 ret = true; 229 f2fs_put_page(i, 0); 230 return ret; 231 } 232 233 static void try_to_fix_pino(struct inode *inode) 234 { 235 struct f2fs_inode_info *fi = F2FS_I(inode); 236 nid_t pino; 237 238 f2fs_down_write(&fi->i_sem); 239 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 240 get_parent_ino(inode, &pino)) { 241 f2fs_i_pino_write(inode, pino); 242 file_got_pino(inode); 243 } 244 f2fs_up_write(&fi->i_sem); 245 } 246 247 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 248 int datasync, bool atomic) 249 { 250 struct inode *inode = file->f_mapping->host; 251 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 252 nid_t ino = inode->i_ino; 253 int ret = 0; 254 enum cp_reason_type cp_reason = 0; 255 struct writeback_control wbc = { 256 .sync_mode = WB_SYNC_ALL, 257 .nr_to_write = LONG_MAX, 258 .for_reclaim = 0, 259 }; 260 unsigned int seq_id = 0; 261 262 if (unlikely(f2fs_readonly(inode->i_sb))) 263 return 0; 264 265 trace_f2fs_sync_file_enter(inode); 266 267 if (S_ISDIR(inode->i_mode)) 268 goto go_write; 269 270 /* if fdatasync is triggered, let's do in-place-update */ 271 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 272 set_inode_flag(inode, FI_NEED_IPU); 273 ret = file_write_and_wait_range(file, start, end); 274 clear_inode_flag(inode, FI_NEED_IPU); 275 276 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 277 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 278 return ret; 279 } 280 281 /* if the inode is dirty, let's recover all the time */ 282 if (!f2fs_skip_inode_update(inode, datasync)) { 283 f2fs_write_inode(inode, NULL); 284 goto go_write; 285 } 286 287 /* 288 * if there is no written data, don't waste time to write recovery info. 289 */ 290 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 291 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 292 293 /* it may call write_inode just prior to fsync */ 294 if (need_inode_page_update(sbi, ino)) 295 goto go_write; 296 297 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 298 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 299 goto flush_out; 300 goto out; 301 } else { 302 /* 303 * for OPU case, during fsync(), node can be persisted before 304 * data when lower device doesn't support write barrier, result 305 * in data corruption after SPO. 306 * So for strict fsync mode, force to use atomic write semantics 307 * to keep write order in between data/node and last node to 308 * avoid potential data corruption. 309 */ 310 if (F2FS_OPTION(sbi).fsync_mode == 311 FSYNC_MODE_STRICT && !atomic) 312 atomic = true; 313 } 314 go_write: 315 /* 316 * Both of fdatasync() and fsync() are able to be recovered from 317 * sudden-power-off. 318 */ 319 f2fs_down_read(&F2FS_I(inode)->i_sem); 320 cp_reason = need_do_checkpoint(inode); 321 f2fs_up_read(&F2FS_I(inode)->i_sem); 322 323 if (cp_reason) { 324 /* all the dirty node pages should be flushed for POR */ 325 ret = f2fs_sync_fs(inode->i_sb, 1); 326 327 /* 328 * We've secured consistency through sync_fs. Following pino 329 * will be used only for fsynced inodes after checkpoint. 330 */ 331 try_to_fix_pino(inode); 332 clear_inode_flag(inode, FI_APPEND_WRITE); 333 clear_inode_flag(inode, FI_UPDATE_WRITE); 334 goto out; 335 } 336 sync_nodes: 337 atomic_inc(&sbi->wb_sync_req[NODE]); 338 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 339 atomic_dec(&sbi->wb_sync_req[NODE]); 340 if (ret) 341 goto out; 342 343 /* if cp_error was enabled, we should avoid infinite loop */ 344 if (unlikely(f2fs_cp_error(sbi))) { 345 ret = -EIO; 346 goto out; 347 } 348 349 if (f2fs_need_inode_block_update(sbi, ino)) { 350 f2fs_mark_inode_dirty_sync(inode, true); 351 f2fs_write_inode(inode, NULL); 352 goto sync_nodes; 353 } 354 355 /* 356 * If it's atomic_write, it's just fine to keep write ordering. So 357 * here we don't need to wait for node write completion, since we use 358 * node chain which serializes node blocks. If one of node writes are 359 * reordered, we can see simply broken chain, resulting in stopping 360 * roll-forward recovery. It means we'll recover all or none node blocks 361 * given fsync mark. 362 */ 363 if (!atomic) { 364 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 365 if (ret) 366 goto out; 367 } 368 369 /* once recovery info is written, don't need to tack this */ 370 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 371 clear_inode_flag(inode, FI_APPEND_WRITE); 372 flush_out: 373 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) || 374 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi))) 375 ret = f2fs_issue_flush(sbi, inode->i_ino); 376 if (!ret) { 377 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 378 clear_inode_flag(inode, FI_UPDATE_WRITE); 379 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 380 } 381 f2fs_update_time(sbi, REQ_TIME); 382 out: 383 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 384 return ret; 385 } 386 387 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 388 { 389 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 390 return -EIO; 391 return f2fs_do_sync_file(file, start, end, datasync, false); 392 } 393 394 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 395 pgoff_t index, int whence) 396 { 397 switch (whence) { 398 case SEEK_DATA: 399 if (__is_valid_data_blkaddr(blkaddr)) 400 return true; 401 if (blkaddr == NEW_ADDR && 402 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 403 return true; 404 break; 405 case SEEK_HOLE: 406 if (blkaddr == NULL_ADDR) 407 return true; 408 break; 409 } 410 return false; 411 } 412 413 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 414 { 415 struct inode *inode = file->f_mapping->host; 416 loff_t maxbytes = inode->i_sb->s_maxbytes; 417 struct dnode_of_data dn; 418 pgoff_t pgofs, end_offset; 419 loff_t data_ofs = offset; 420 loff_t isize; 421 int err = 0; 422 423 inode_lock(inode); 424 425 isize = i_size_read(inode); 426 if (offset >= isize) 427 goto fail; 428 429 /* handle inline data case */ 430 if (f2fs_has_inline_data(inode)) { 431 if (whence == SEEK_HOLE) { 432 data_ofs = isize; 433 goto found; 434 } else if (whence == SEEK_DATA) { 435 data_ofs = offset; 436 goto found; 437 } 438 } 439 440 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 441 442 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 443 set_new_dnode(&dn, inode, NULL, NULL, 0); 444 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 445 if (err && err != -ENOENT) { 446 goto fail; 447 } else if (err == -ENOENT) { 448 /* direct node does not exists */ 449 if (whence == SEEK_DATA) { 450 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 451 continue; 452 } else { 453 goto found; 454 } 455 } 456 457 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 458 459 /* find data/hole in dnode block */ 460 for (; dn.ofs_in_node < end_offset; 461 dn.ofs_in_node++, pgofs++, 462 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 463 block_t blkaddr; 464 465 blkaddr = f2fs_data_blkaddr(&dn); 466 467 if (__is_valid_data_blkaddr(blkaddr) && 468 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 469 blkaddr, DATA_GENERIC_ENHANCE)) { 470 f2fs_put_dnode(&dn); 471 goto fail; 472 } 473 474 if (__found_offset(file->f_mapping, blkaddr, 475 pgofs, whence)) { 476 f2fs_put_dnode(&dn); 477 goto found; 478 } 479 } 480 f2fs_put_dnode(&dn); 481 } 482 483 if (whence == SEEK_DATA) 484 goto fail; 485 found: 486 if (whence == SEEK_HOLE && data_ofs > isize) 487 data_ofs = isize; 488 inode_unlock(inode); 489 return vfs_setpos(file, data_ofs, maxbytes); 490 fail: 491 inode_unlock(inode); 492 return -ENXIO; 493 } 494 495 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 496 { 497 struct inode *inode = file->f_mapping->host; 498 loff_t maxbytes = inode->i_sb->s_maxbytes; 499 500 if (f2fs_compressed_file(inode)) 501 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 502 503 switch (whence) { 504 case SEEK_SET: 505 case SEEK_CUR: 506 case SEEK_END: 507 return generic_file_llseek_size(file, offset, whence, 508 maxbytes, i_size_read(inode)); 509 case SEEK_DATA: 510 case SEEK_HOLE: 511 if (offset < 0) 512 return -ENXIO; 513 return f2fs_seek_block(file, offset, whence); 514 } 515 516 return -EINVAL; 517 } 518 519 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 520 { 521 struct inode *inode = file_inode(file); 522 523 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 524 return -EIO; 525 526 if (!f2fs_is_compress_backend_ready(inode)) 527 return -EOPNOTSUPP; 528 529 file_accessed(file); 530 vma->vm_ops = &f2fs_file_vm_ops; 531 set_inode_flag(inode, FI_MMAP_FILE); 532 return 0; 533 } 534 535 static int f2fs_file_open(struct inode *inode, struct file *filp) 536 { 537 int err = fscrypt_file_open(inode, filp); 538 539 if (err) 540 return err; 541 542 if (!f2fs_is_compress_backend_ready(inode)) 543 return -EOPNOTSUPP; 544 545 err = fsverity_file_open(inode, filp); 546 if (err) 547 return err; 548 549 filp->f_mode |= FMODE_NOWAIT; 550 551 return dquot_file_open(inode, filp); 552 } 553 554 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 555 { 556 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 557 struct f2fs_node *raw_node; 558 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 559 __le32 *addr; 560 int base = 0; 561 bool compressed_cluster = false; 562 int cluster_index = 0, valid_blocks = 0; 563 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 564 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 565 566 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 567 base = get_extra_isize(dn->inode); 568 569 raw_node = F2FS_NODE(dn->node_page); 570 addr = blkaddr_in_node(raw_node) + base + ofs; 571 572 /* Assumption: truncation starts with cluster */ 573 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 574 block_t blkaddr = le32_to_cpu(*addr); 575 576 if (f2fs_compressed_file(dn->inode) && 577 !(cluster_index & (cluster_size - 1))) { 578 if (compressed_cluster) 579 f2fs_i_compr_blocks_update(dn->inode, 580 valid_blocks, false); 581 compressed_cluster = (blkaddr == COMPRESS_ADDR); 582 valid_blocks = 0; 583 } 584 585 if (blkaddr == NULL_ADDR) 586 continue; 587 588 dn->data_blkaddr = NULL_ADDR; 589 f2fs_set_data_blkaddr(dn); 590 591 if (__is_valid_data_blkaddr(blkaddr)) { 592 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 593 DATA_GENERIC_ENHANCE)) 594 continue; 595 if (compressed_cluster) 596 valid_blocks++; 597 } 598 599 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 600 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 601 602 f2fs_invalidate_blocks(sbi, blkaddr); 603 604 if (!released || blkaddr != COMPRESS_ADDR) 605 nr_free++; 606 } 607 608 if (compressed_cluster) 609 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 610 611 if (nr_free) { 612 pgoff_t fofs; 613 /* 614 * once we invalidate valid blkaddr in range [ofs, ofs + count], 615 * we will invalidate all blkaddr in the whole range. 616 */ 617 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 618 dn->inode) + ofs; 619 f2fs_update_read_extent_cache_range(dn, fofs, 0, len); 620 f2fs_update_age_extent_cache_range(dn, fofs, len); 621 dec_valid_block_count(sbi, dn->inode, nr_free); 622 } 623 dn->ofs_in_node = ofs; 624 625 f2fs_update_time(sbi, REQ_TIME); 626 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 627 dn->ofs_in_node, nr_free); 628 } 629 630 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 631 { 632 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 633 } 634 635 static int truncate_partial_data_page(struct inode *inode, u64 from, 636 bool cache_only) 637 { 638 loff_t offset = from & (PAGE_SIZE - 1); 639 pgoff_t index = from >> PAGE_SHIFT; 640 struct address_space *mapping = inode->i_mapping; 641 struct page *page; 642 643 if (!offset && !cache_only) 644 return 0; 645 646 if (cache_only) { 647 page = find_lock_page(mapping, index); 648 if (page && PageUptodate(page)) 649 goto truncate_out; 650 f2fs_put_page(page, 1); 651 return 0; 652 } 653 654 page = f2fs_get_lock_data_page(inode, index, true); 655 if (IS_ERR(page)) 656 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 657 truncate_out: 658 f2fs_wait_on_page_writeback(page, DATA, true, true); 659 zero_user(page, offset, PAGE_SIZE - offset); 660 661 /* An encrypted inode should have a key and truncate the last page. */ 662 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 663 if (!cache_only) 664 set_page_dirty(page); 665 f2fs_put_page(page, 1); 666 return 0; 667 } 668 669 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 670 { 671 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 672 struct dnode_of_data dn; 673 pgoff_t free_from; 674 int count = 0, err = 0; 675 struct page *ipage; 676 bool truncate_page = false; 677 678 trace_f2fs_truncate_blocks_enter(inode, from); 679 680 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 681 682 if (free_from >= max_file_blocks(inode)) 683 goto free_partial; 684 685 if (lock) 686 f2fs_lock_op(sbi); 687 688 ipage = f2fs_get_node_page(sbi, inode->i_ino); 689 if (IS_ERR(ipage)) { 690 err = PTR_ERR(ipage); 691 goto out; 692 } 693 694 if (f2fs_has_inline_data(inode)) { 695 f2fs_truncate_inline_inode(inode, ipage, from); 696 f2fs_put_page(ipage, 1); 697 truncate_page = true; 698 goto out; 699 } 700 701 set_new_dnode(&dn, inode, ipage, NULL, 0); 702 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 703 if (err) { 704 if (err == -ENOENT) 705 goto free_next; 706 goto out; 707 } 708 709 count = ADDRS_PER_PAGE(dn.node_page, inode); 710 711 count -= dn.ofs_in_node; 712 f2fs_bug_on(sbi, count < 0); 713 714 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 715 f2fs_truncate_data_blocks_range(&dn, count); 716 free_from += count; 717 } 718 719 f2fs_put_dnode(&dn); 720 free_next: 721 err = f2fs_truncate_inode_blocks(inode, free_from); 722 out: 723 if (lock) 724 f2fs_unlock_op(sbi); 725 free_partial: 726 /* lastly zero out the first data page */ 727 if (!err) 728 err = truncate_partial_data_page(inode, from, truncate_page); 729 730 trace_f2fs_truncate_blocks_exit(inode, err); 731 return err; 732 } 733 734 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 735 { 736 u64 free_from = from; 737 int err; 738 739 #ifdef CONFIG_F2FS_FS_COMPRESSION 740 /* 741 * for compressed file, only support cluster size 742 * aligned truncation. 743 */ 744 if (f2fs_compressed_file(inode)) 745 free_from = round_up(from, 746 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 747 #endif 748 749 err = f2fs_do_truncate_blocks(inode, free_from, lock); 750 if (err) 751 return err; 752 753 #ifdef CONFIG_F2FS_FS_COMPRESSION 754 /* 755 * For compressed file, after release compress blocks, don't allow write 756 * direct, but we should allow write direct after truncate to zero. 757 */ 758 if (f2fs_compressed_file(inode) && !free_from 759 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 760 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 761 762 if (from != free_from) { 763 err = f2fs_truncate_partial_cluster(inode, from, lock); 764 if (err) 765 return err; 766 } 767 #endif 768 769 return 0; 770 } 771 772 int f2fs_truncate(struct inode *inode) 773 { 774 int err; 775 776 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 777 return -EIO; 778 779 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 780 S_ISLNK(inode->i_mode))) 781 return 0; 782 783 trace_f2fs_truncate(inode); 784 785 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) 786 return -EIO; 787 788 err = f2fs_dquot_initialize(inode); 789 if (err) 790 return err; 791 792 /* we should check inline_data size */ 793 if (!f2fs_may_inline_data(inode)) { 794 err = f2fs_convert_inline_inode(inode); 795 if (err) 796 return err; 797 } 798 799 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 800 if (err) 801 return err; 802 803 inode->i_mtime = inode->i_ctime = current_time(inode); 804 f2fs_mark_inode_dirty_sync(inode, false); 805 return 0; 806 } 807 808 static bool f2fs_force_buffered_io(struct inode *inode, int rw) 809 { 810 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 811 812 if (!fscrypt_dio_supported(inode)) 813 return true; 814 if (fsverity_active(inode)) 815 return true; 816 if (f2fs_compressed_file(inode)) 817 return true; 818 819 /* disallow direct IO if any of devices has unaligned blksize */ 820 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 821 return true; 822 /* 823 * for blkzoned device, fallback direct IO to buffered IO, so 824 * all IOs can be serialized by log-structured write. 825 */ 826 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE)) 827 return true; 828 if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi)) 829 return true; 830 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 831 return true; 832 833 return false; 834 } 835 836 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 837 struct kstat *stat, u32 request_mask, unsigned int query_flags) 838 { 839 struct inode *inode = d_inode(path->dentry); 840 struct f2fs_inode_info *fi = F2FS_I(inode); 841 struct f2fs_inode *ri = NULL; 842 unsigned int flags; 843 844 if (f2fs_has_extra_attr(inode) && 845 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 846 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 847 stat->result_mask |= STATX_BTIME; 848 stat->btime.tv_sec = fi->i_crtime.tv_sec; 849 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 850 } 851 852 /* 853 * Return the DIO alignment restrictions if requested. We only return 854 * this information when requested, since on encrypted files it might 855 * take a fair bit of work to get if the file wasn't opened recently. 856 * 857 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN 858 * cannot represent that, so in that case we report no DIO support. 859 */ 860 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 861 unsigned int bsize = i_blocksize(inode); 862 863 stat->result_mask |= STATX_DIOALIGN; 864 if (!f2fs_force_buffered_io(inode, WRITE)) { 865 stat->dio_mem_align = bsize; 866 stat->dio_offset_align = bsize; 867 } 868 } 869 870 flags = fi->i_flags; 871 if (flags & F2FS_COMPR_FL) 872 stat->attributes |= STATX_ATTR_COMPRESSED; 873 if (flags & F2FS_APPEND_FL) 874 stat->attributes |= STATX_ATTR_APPEND; 875 if (IS_ENCRYPTED(inode)) 876 stat->attributes |= STATX_ATTR_ENCRYPTED; 877 if (flags & F2FS_IMMUTABLE_FL) 878 stat->attributes |= STATX_ATTR_IMMUTABLE; 879 if (flags & F2FS_NODUMP_FL) 880 stat->attributes |= STATX_ATTR_NODUMP; 881 if (IS_VERITY(inode)) 882 stat->attributes |= STATX_ATTR_VERITY; 883 884 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 885 STATX_ATTR_APPEND | 886 STATX_ATTR_ENCRYPTED | 887 STATX_ATTR_IMMUTABLE | 888 STATX_ATTR_NODUMP | 889 STATX_ATTR_VERITY); 890 891 generic_fillattr(idmap, inode, stat); 892 893 /* we need to show initial sectors used for inline_data/dentries */ 894 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 895 f2fs_has_inline_dentry(inode)) 896 stat->blocks += (stat->size + 511) >> 9; 897 898 return 0; 899 } 900 901 #ifdef CONFIG_F2FS_FS_POSIX_ACL 902 static void __setattr_copy(struct mnt_idmap *idmap, 903 struct inode *inode, const struct iattr *attr) 904 { 905 unsigned int ia_valid = attr->ia_valid; 906 907 i_uid_update(idmap, attr, inode); 908 i_gid_update(idmap, attr, inode); 909 if (ia_valid & ATTR_ATIME) 910 inode->i_atime = attr->ia_atime; 911 if (ia_valid & ATTR_MTIME) 912 inode->i_mtime = attr->ia_mtime; 913 if (ia_valid & ATTR_CTIME) 914 inode->i_ctime = attr->ia_ctime; 915 if (ia_valid & ATTR_MODE) { 916 umode_t mode = attr->ia_mode; 917 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 918 919 if (!vfsgid_in_group_p(vfsgid) && 920 !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 921 mode &= ~S_ISGID; 922 set_acl_inode(inode, mode); 923 } 924 } 925 #else 926 #define __setattr_copy setattr_copy 927 #endif 928 929 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 930 struct iattr *attr) 931 { 932 struct inode *inode = d_inode(dentry); 933 int err; 934 935 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 936 return -EIO; 937 938 if (unlikely(IS_IMMUTABLE(inode))) 939 return -EPERM; 940 941 if (unlikely(IS_APPEND(inode) && 942 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 943 ATTR_GID | ATTR_TIMES_SET)))) 944 return -EPERM; 945 946 if ((attr->ia_valid & ATTR_SIZE) && 947 !f2fs_is_compress_backend_ready(inode)) 948 return -EOPNOTSUPP; 949 950 err = setattr_prepare(idmap, dentry, attr); 951 if (err) 952 return err; 953 954 err = fscrypt_prepare_setattr(dentry, attr); 955 if (err) 956 return err; 957 958 err = fsverity_prepare_setattr(dentry, attr); 959 if (err) 960 return err; 961 962 if (is_quota_modification(idmap, inode, attr)) { 963 err = f2fs_dquot_initialize(inode); 964 if (err) 965 return err; 966 } 967 if (i_uid_needs_update(idmap, attr, inode) || 968 i_gid_needs_update(idmap, attr, inode)) { 969 f2fs_lock_op(F2FS_I_SB(inode)); 970 err = dquot_transfer(idmap, inode, attr); 971 if (err) { 972 set_sbi_flag(F2FS_I_SB(inode), 973 SBI_QUOTA_NEED_REPAIR); 974 f2fs_unlock_op(F2FS_I_SB(inode)); 975 return err; 976 } 977 /* 978 * update uid/gid under lock_op(), so that dquot and inode can 979 * be updated atomically. 980 */ 981 i_uid_update(idmap, attr, inode); 982 i_gid_update(idmap, attr, inode); 983 f2fs_mark_inode_dirty_sync(inode, true); 984 f2fs_unlock_op(F2FS_I_SB(inode)); 985 } 986 987 if (attr->ia_valid & ATTR_SIZE) { 988 loff_t old_size = i_size_read(inode); 989 990 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 991 /* 992 * should convert inline inode before i_size_write to 993 * keep smaller than inline_data size with inline flag. 994 */ 995 err = f2fs_convert_inline_inode(inode); 996 if (err) 997 return err; 998 } 999 1000 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1001 filemap_invalidate_lock(inode->i_mapping); 1002 1003 truncate_setsize(inode, attr->ia_size); 1004 1005 if (attr->ia_size <= old_size) 1006 err = f2fs_truncate(inode); 1007 /* 1008 * do not trim all blocks after i_size if target size is 1009 * larger than i_size. 1010 */ 1011 filemap_invalidate_unlock(inode->i_mapping); 1012 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1013 if (err) 1014 return err; 1015 1016 spin_lock(&F2FS_I(inode)->i_size_lock); 1017 inode->i_mtime = inode->i_ctime = current_time(inode); 1018 F2FS_I(inode)->last_disk_size = i_size_read(inode); 1019 spin_unlock(&F2FS_I(inode)->i_size_lock); 1020 } 1021 1022 __setattr_copy(idmap, inode, attr); 1023 1024 if (attr->ia_valid & ATTR_MODE) { 1025 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode)); 1026 1027 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 1028 if (!err) 1029 inode->i_mode = F2FS_I(inode)->i_acl_mode; 1030 clear_inode_flag(inode, FI_ACL_MODE); 1031 } 1032 } 1033 1034 /* file size may changed here */ 1035 f2fs_mark_inode_dirty_sync(inode, true); 1036 1037 /* inode change will produce dirty node pages flushed by checkpoint */ 1038 f2fs_balance_fs(F2FS_I_SB(inode), true); 1039 1040 return err; 1041 } 1042 1043 const struct inode_operations f2fs_file_inode_operations = { 1044 .getattr = f2fs_getattr, 1045 .setattr = f2fs_setattr, 1046 .get_inode_acl = f2fs_get_acl, 1047 .set_acl = f2fs_set_acl, 1048 .listxattr = f2fs_listxattr, 1049 .fiemap = f2fs_fiemap, 1050 .fileattr_get = f2fs_fileattr_get, 1051 .fileattr_set = f2fs_fileattr_set, 1052 }; 1053 1054 static int fill_zero(struct inode *inode, pgoff_t index, 1055 loff_t start, loff_t len) 1056 { 1057 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1058 struct page *page; 1059 1060 if (!len) 1061 return 0; 1062 1063 f2fs_balance_fs(sbi, true); 1064 1065 f2fs_lock_op(sbi); 1066 page = f2fs_get_new_data_page(inode, NULL, index, false); 1067 f2fs_unlock_op(sbi); 1068 1069 if (IS_ERR(page)) 1070 return PTR_ERR(page); 1071 1072 f2fs_wait_on_page_writeback(page, DATA, true, true); 1073 zero_user(page, start, len); 1074 set_page_dirty(page); 1075 f2fs_put_page(page, 1); 1076 return 0; 1077 } 1078 1079 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1080 { 1081 int err; 1082 1083 while (pg_start < pg_end) { 1084 struct dnode_of_data dn; 1085 pgoff_t end_offset, count; 1086 1087 set_new_dnode(&dn, inode, NULL, NULL, 0); 1088 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1089 if (err) { 1090 if (err == -ENOENT) { 1091 pg_start = f2fs_get_next_page_offset(&dn, 1092 pg_start); 1093 continue; 1094 } 1095 return err; 1096 } 1097 1098 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1099 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1100 1101 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1102 1103 f2fs_truncate_data_blocks_range(&dn, count); 1104 f2fs_put_dnode(&dn); 1105 1106 pg_start += count; 1107 } 1108 return 0; 1109 } 1110 1111 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 1112 { 1113 pgoff_t pg_start, pg_end; 1114 loff_t off_start, off_end; 1115 int ret; 1116 1117 ret = f2fs_convert_inline_inode(inode); 1118 if (ret) 1119 return ret; 1120 1121 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1122 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1123 1124 off_start = offset & (PAGE_SIZE - 1); 1125 off_end = (offset + len) & (PAGE_SIZE - 1); 1126 1127 if (pg_start == pg_end) { 1128 ret = fill_zero(inode, pg_start, off_start, 1129 off_end - off_start); 1130 if (ret) 1131 return ret; 1132 } else { 1133 if (off_start) { 1134 ret = fill_zero(inode, pg_start++, off_start, 1135 PAGE_SIZE - off_start); 1136 if (ret) 1137 return ret; 1138 } 1139 if (off_end) { 1140 ret = fill_zero(inode, pg_end, 0, off_end); 1141 if (ret) 1142 return ret; 1143 } 1144 1145 if (pg_start < pg_end) { 1146 loff_t blk_start, blk_end; 1147 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1148 1149 f2fs_balance_fs(sbi, true); 1150 1151 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1152 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1153 1154 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1155 filemap_invalidate_lock(inode->i_mapping); 1156 1157 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1158 1159 f2fs_lock_op(sbi); 1160 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1161 f2fs_unlock_op(sbi); 1162 1163 filemap_invalidate_unlock(inode->i_mapping); 1164 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1165 } 1166 } 1167 1168 return ret; 1169 } 1170 1171 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1172 int *do_replace, pgoff_t off, pgoff_t len) 1173 { 1174 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1175 struct dnode_of_data dn; 1176 int ret, done, i; 1177 1178 next_dnode: 1179 set_new_dnode(&dn, inode, NULL, NULL, 0); 1180 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1181 if (ret && ret != -ENOENT) { 1182 return ret; 1183 } else if (ret == -ENOENT) { 1184 if (dn.max_level == 0) 1185 return -ENOENT; 1186 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1187 dn.ofs_in_node, len); 1188 blkaddr += done; 1189 do_replace += done; 1190 goto next; 1191 } 1192 1193 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1194 dn.ofs_in_node, len); 1195 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1196 *blkaddr = f2fs_data_blkaddr(&dn); 1197 1198 if (__is_valid_data_blkaddr(*blkaddr) && 1199 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1200 DATA_GENERIC_ENHANCE)) { 1201 f2fs_put_dnode(&dn); 1202 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1203 return -EFSCORRUPTED; 1204 } 1205 1206 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1207 1208 if (f2fs_lfs_mode(sbi)) { 1209 f2fs_put_dnode(&dn); 1210 return -EOPNOTSUPP; 1211 } 1212 1213 /* do not invalidate this block address */ 1214 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1215 *do_replace = 1; 1216 } 1217 } 1218 f2fs_put_dnode(&dn); 1219 next: 1220 len -= done; 1221 off += done; 1222 if (len) 1223 goto next_dnode; 1224 return 0; 1225 } 1226 1227 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1228 int *do_replace, pgoff_t off, int len) 1229 { 1230 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1231 struct dnode_of_data dn; 1232 int ret, i; 1233 1234 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1235 if (*do_replace == 0) 1236 continue; 1237 1238 set_new_dnode(&dn, inode, NULL, NULL, 0); 1239 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1240 if (ret) { 1241 dec_valid_block_count(sbi, inode, 1); 1242 f2fs_invalidate_blocks(sbi, *blkaddr); 1243 } else { 1244 f2fs_update_data_blkaddr(&dn, *blkaddr); 1245 } 1246 f2fs_put_dnode(&dn); 1247 } 1248 return 0; 1249 } 1250 1251 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1252 block_t *blkaddr, int *do_replace, 1253 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1254 { 1255 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1256 pgoff_t i = 0; 1257 int ret; 1258 1259 while (i < len) { 1260 if (blkaddr[i] == NULL_ADDR && !full) { 1261 i++; 1262 continue; 1263 } 1264 1265 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1266 struct dnode_of_data dn; 1267 struct node_info ni; 1268 size_t new_size; 1269 pgoff_t ilen; 1270 1271 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1272 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1273 if (ret) 1274 return ret; 1275 1276 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1277 if (ret) { 1278 f2fs_put_dnode(&dn); 1279 return ret; 1280 } 1281 1282 ilen = min((pgoff_t) 1283 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1284 dn.ofs_in_node, len - i); 1285 do { 1286 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1287 f2fs_truncate_data_blocks_range(&dn, 1); 1288 1289 if (do_replace[i]) { 1290 f2fs_i_blocks_write(src_inode, 1291 1, false, false); 1292 f2fs_i_blocks_write(dst_inode, 1293 1, true, false); 1294 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1295 blkaddr[i], ni.version, true, false); 1296 1297 do_replace[i] = 0; 1298 } 1299 dn.ofs_in_node++; 1300 i++; 1301 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1302 if (dst_inode->i_size < new_size) 1303 f2fs_i_size_write(dst_inode, new_size); 1304 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1305 1306 f2fs_put_dnode(&dn); 1307 } else { 1308 struct page *psrc, *pdst; 1309 1310 psrc = f2fs_get_lock_data_page(src_inode, 1311 src + i, true); 1312 if (IS_ERR(psrc)) 1313 return PTR_ERR(psrc); 1314 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1315 true); 1316 if (IS_ERR(pdst)) { 1317 f2fs_put_page(psrc, 1); 1318 return PTR_ERR(pdst); 1319 } 1320 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); 1321 set_page_dirty(pdst); 1322 f2fs_put_page(pdst, 1); 1323 f2fs_put_page(psrc, 1); 1324 1325 ret = f2fs_truncate_hole(src_inode, 1326 src + i, src + i + 1); 1327 if (ret) 1328 return ret; 1329 i++; 1330 } 1331 } 1332 return 0; 1333 } 1334 1335 static int __exchange_data_block(struct inode *src_inode, 1336 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1337 pgoff_t len, bool full) 1338 { 1339 block_t *src_blkaddr; 1340 int *do_replace; 1341 pgoff_t olen; 1342 int ret; 1343 1344 while (len) { 1345 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1346 1347 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1348 array_size(olen, sizeof(block_t)), 1349 GFP_NOFS); 1350 if (!src_blkaddr) 1351 return -ENOMEM; 1352 1353 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1354 array_size(olen, sizeof(int)), 1355 GFP_NOFS); 1356 if (!do_replace) { 1357 kvfree(src_blkaddr); 1358 return -ENOMEM; 1359 } 1360 1361 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1362 do_replace, src, olen); 1363 if (ret) 1364 goto roll_back; 1365 1366 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1367 do_replace, src, dst, olen, full); 1368 if (ret) 1369 goto roll_back; 1370 1371 src += olen; 1372 dst += olen; 1373 len -= olen; 1374 1375 kvfree(src_blkaddr); 1376 kvfree(do_replace); 1377 } 1378 return 0; 1379 1380 roll_back: 1381 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1382 kvfree(src_blkaddr); 1383 kvfree(do_replace); 1384 return ret; 1385 } 1386 1387 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1388 { 1389 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1390 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1391 pgoff_t start = offset >> PAGE_SHIFT; 1392 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1393 int ret; 1394 1395 f2fs_balance_fs(sbi, true); 1396 1397 /* avoid gc operation during block exchange */ 1398 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1399 filemap_invalidate_lock(inode->i_mapping); 1400 1401 f2fs_lock_op(sbi); 1402 f2fs_drop_extent_tree(inode); 1403 truncate_pagecache(inode, offset); 1404 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1405 f2fs_unlock_op(sbi); 1406 1407 filemap_invalidate_unlock(inode->i_mapping); 1408 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1409 return ret; 1410 } 1411 1412 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1413 { 1414 loff_t new_size; 1415 int ret; 1416 1417 if (offset + len >= i_size_read(inode)) 1418 return -EINVAL; 1419 1420 /* collapse range should be aligned to block size of f2fs. */ 1421 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1422 return -EINVAL; 1423 1424 ret = f2fs_convert_inline_inode(inode); 1425 if (ret) 1426 return ret; 1427 1428 /* write out all dirty pages from offset */ 1429 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1430 if (ret) 1431 return ret; 1432 1433 ret = f2fs_do_collapse(inode, offset, len); 1434 if (ret) 1435 return ret; 1436 1437 /* write out all moved pages, if possible */ 1438 filemap_invalidate_lock(inode->i_mapping); 1439 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1440 truncate_pagecache(inode, offset); 1441 1442 new_size = i_size_read(inode) - len; 1443 ret = f2fs_truncate_blocks(inode, new_size, true); 1444 filemap_invalidate_unlock(inode->i_mapping); 1445 if (!ret) 1446 f2fs_i_size_write(inode, new_size); 1447 return ret; 1448 } 1449 1450 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1451 pgoff_t end) 1452 { 1453 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1454 pgoff_t index = start; 1455 unsigned int ofs_in_node = dn->ofs_in_node; 1456 blkcnt_t count = 0; 1457 int ret; 1458 1459 for (; index < end; index++, dn->ofs_in_node++) { 1460 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1461 count++; 1462 } 1463 1464 dn->ofs_in_node = ofs_in_node; 1465 ret = f2fs_reserve_new_blocks(dn, count); 1466 if (ret) 1467 return ret; 1468 1469 dn->ofs_in_node = ofs_in_node; 1470 for (index = start; index < end; index++, dn->ofs_in_node++) { 1471 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1472 /* 1473 * f2fs_reserve_new_blocks will not guarantee entire block 1474 * allocation. 1475 */ 1476 if (dn->data_blkaddr == NULL_ADDR) { 1477 ret = -ENOSPC; 1478 break; 1479 } 1480 1481 if (dn->data_blkaddr == NEW_ADDR) 1482 continue; 1483 1484 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1485 DATA_GENERIC_ENHANCE)) { 1486 ret = -EFSCORRUPTED; 1487 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1488 break; 1489 } 1490 1491 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1492 dn->data_blkaddr = NEW_ADDR; 1493 f2fs_set_data_blkaddr(dn); 1494 } 1495 1496 f2fs_update_read_extent_cache_range(dn, start, 0, index - start); 1497 f2fs_update_age_extent_cache_range(dn, start, index - start); 1498 1499 return ret; 1500 } 1501 1502 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1503 int mode) 1504 { 1505 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1506 struct address_space *mapping = inode->i_mapping; 1507 pgoff_t index, pg_start, pg_end; 1508 loff_t new_size = i_size_read(inode); 1509 loff_t off_start, off_end; 1510 int ret = 0; 1511 1512 ret = inode_newsize_ok(inode, (len + offset)); 1513 if (ret) 1514 return ret; 1515 1516 ret = f2fs_convert_inline_inode(inode); 1517 if (ret) 1518 return ret; 1519 1520 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1521 if (ret) 1522 return ret; 1523 1524 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1525 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1526 1527 off_start = offset & (PAGE_SIZE - 1); 1528 off_end = (offset + len) & (PAGE_SIZE - 1); 1529 1530 if (pg_start == pg_end) { 1531 ret = fill_zero(inode, pg_start, off_start, 1532 off_end - off_start); 1533 if (ret) 1534 return ret; 1535 1536 new_size = max_t(loff_t, new_size, offset + len); 1537 } else { 1538 if (off_start) { 1539 ret = fill_zero(inode, pg_start++, off_start, 1540 PAGE_SIZE - off_start); 1541 if (ret) 1542 return ret; 1543 1544 new_size = max_t(loff_t, new_size, 1545 (loff_t)pg_start << PAGE_SHIFT); 1546 } 1547 1548 for (index = pg_start; index < pg_end;) { 1549 struct dnode_of_data dn; 1550 unsigned int end_offset; 1551 pgoff_t end; 1552 1553 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1554 filemap_invalidate_lock(mapping); 1555 1556 truncate_pagecache_range(inode, 1557 (loff_t)index << PAGE_SHIFT, 1558 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1559 1560 f2fs_lock_op(sbi); 1561 1562 set_new_dnode(&dn, inode, NULL, NULL, 0); 1563 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1564 if (ret) { 1565 f2fs_unlock_op(sbi); 1566 filemap_invalidate_unlock(mapping); 1567 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1568 goto out; 1569 } 1570 1571 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1572 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1573 1574 ret = f2fs_do_zero_range(&dn, index, end); 1575 f2fs_put_dnode(&dn); 1576 1577 f2fs_unlock_op(sbi); 1578 filemap_invalidate_unlock(mapping); 1579 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1580 1581 f2fs_balance_fs(sbi, dn.node_changed); 1582 1583 if (ret) 1584 goto out; 1585 1586 index = end; 1587 new_size = max_t(loff_t, new_size, 1588 (loff_t)index << PAGE_SHIFT); 1589 } 1590 1591 if (off_end) { 1592 ret = fill_zero(inode, pg_end, 0, off_end); 1593 if (ret) 1594 goto out; 1595 1596 new_size = max_t(loff_t, new_size, offset + len); 1597 } 1598 } 1599 1600 out: 1601 if (new_size > i_size_read(inode)) { 1602 if (mode & FALLOC_FL_KEEP_SIZE) 1603 file_set_keep_isize(inode); 1604 else 1605 f2fs_i_size_write(inode, new_size); 1606 } 1607 return ret; 1608 } 1609 1610 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1611 { 1612 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1613 struct address_space *mapping = inode->i_mapping; 1614 pgoff_t nr, pg_start, pg_end, delta, idx; 1615 loff_t new_size; 1616 int ret = 0; 1617 1618 new_size = i_size_read(inode) + len; 1619 ret = inode_newsize_ok(inode, new_size); 1620 if (ret) 1621 return ret; 1622 1623 if (offset >= i_size_read(inode)) 1624 return -EINVAL; 1625 1626 /* insert range should be aligned to block size of f2fs. */ 1627 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1628 return -EINVAL; 1629 1630 ret = f2fs_convert_inline_inode(inode); 1631 if (ret) 1632 return ret; 1633 1634 f2fs_balance_fs(sbi, true); 1635 1636 filemap_invalidate_lock(mapping); 1637 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1638 filemap_invalidate_unlock(mapping); 1639 if (ret) 1640 return ret; 1641 1642 /* write out all dirty pages from offset */ 1643 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1644 if (ret) 1645 return ret; 1646 1647 pg_start = offset >> PAGE_SHIFT; 1648 pg_end = (offset + len) >> PAGE_SHIFT; 1649 delta = pg_end - pg_start; 1650 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1651 1652 /* avoid gc operation during block exchange */ 1653 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1654 filemap_invalidate_lock(mapping); 1655 truncate_pagecache(inode, offset); 1656 1657 while (!ret && idx > pg_start) { 1658 nr = idx - pg_start; 1659 if (nr > delta) 1660 nr = delta; 1661 idx -= nr; 1662 1663 f2fs_lock_op(sbi); 1664 f2fs_drop_extent_tree(inode); 1665 1666 ret = __exchange_data_block(inode, inode, idx, 1667 idx + delta, nr, false); 1668 f2fs_unlock_op(sbi); 1669 } 1670 filemap_invalidate_unlock(mapping); 1671 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1672 1673 /* write out all moved pages, if possible */ 1674 filemap_invalidate_lock(mapping); 1675 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1676 truncate_pagecache(inode, offset); 1677 filemap_invalidate_unlock(mapping); 1678 1679 if (!ret) 1680 f2fs_i_size_write(inode, new_size); 1681 return ret; 1682 } 1683 1684 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset, 1685 loff_t len, int mode) 1686 { 1687 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1688 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1689 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1690 .m_may_create = true }; 1691 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1692 .init_gc_type = FG_GC, 1693 .should_migrate_blocks = false, 1694 .err_gc_skipped = true, 1695 .nr_free_secs = 0 }; 1696 pgoff_t pg_start, pg_end; 1697 loff_t new_size; 1698 loff_t off_end; 1699 block_t expanded = 0; 1700 int err; 1701 1702 err = inode_newsize_ok(inode, (len + offset)); 1703 if (err) 1704 return err; 1705 1706 err = f2fs_convert_inline_inode(inode); 1707 if (err) 1708 return err; 1709 1710 f2fs_balance_fs(sbi, true); 1711 1712 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1713 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1714 off_end = (offset + len) & (PAGE_SIZE - 1); 1715 1716 map.m_lblk = pg_start; 1717 map.m_len = pg_end - pg_start; 1718 if (off_end) 1719 map.m_len++; 1720 1721 if (!map.m_len) 1722 return 0; 1723 1724 if (f2fs_is_pinned_file(inode)) { 1725 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1726 block_t sec_len = roundup(map.m_len, sec_blks); 1727 1728 map.m_len = sec_blks; 1729 next_alloc: 1730 if (has_not_enough_free_secs(sbi, 0, 1731 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1732 f2fs_down_write(&sbi->gc_lock); 1733 err = f2fs_gc(sbi, &gc_control); 1734 if (err && err != -ENODATA) 1735 goto out_err; 1736 } 1737 1738 f2fs_down_write(&sbi->pin_sem); 1739 1740 f2fs_lock_op(sbi); 1741 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 1742 f2fs_unlock_op(sbi); 1743 1744 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1745 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO); 1746 file_dont_truncate(inode); 1747 1748 f2fs_up_write(&sbi->pin_sem); 1749 1750 expanded += map.m_len; 1751 sec_len -= map.m_len; 1752 map.m_lblk += map.m_len; 1753 if (!err && sec_len) 1754 goto next_alloc; 1755 1756 map.m_len = expanded; 1757 } else { 1758 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO); 1759 expanded = map.m_len; 1760 } 1761 out_err: 1762 if (err) { 1763 pgoff_t last_off; 1764 1765 if (!expanded) 1766 return err; 1767 1768 last_off = pg_start + expanded - 1; 1769 1770 /* update new size to the failed position */ 1771 new_size = (last_off == pg_end) ? offset + len : 1772 (loff_t)(last_off + 1) << PAGE_SHIFT; 1773 } else { 1774 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1775 } 1776 1777 if (new_size > i_size_read(inode)) { 1778 if (mode & FALLOC_FL_KEEP_SIZE) 1779 file_set_keep_isize(inode); 1780 else 1781 f2fs_i_size_write(inode, new_size); 1782 } 1783 1784 return err; 1785 } 1786 1787 static long f2fs_fallocate(struct file *file, int mode, 1788 loff_t offset, loff_t len) 1789 { 1790 struct inode *inode = file_inode(file); 1791 long ret = 0; 1792 1793 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1794 return -EIO; 1795 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1796 return -ENOSPC; 1797 if (!f2fs_is_compress_backend_ready(inode)) 1798 return -EOPNOTSUPP; 1799 1800 /* f2fs only support ->fallocate for regular file */ 1801 if (!S_ISREG(inode->i_mode)) 1802 return -EINVAL; 1803 1804 if (IS_ENCRYPTED(inode) && 1805 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1806 return -EOPNOTSUPP; 1807 1808 /* 1809 * Pinned file should not support partial truncation since the block 1810 * can be used by applications. 1811 */ 1812 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1813 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1814 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1815 return -EOPNOTSUPP; 1816 1817 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1818 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1819 FALLOC_FL_INSERT_RANGE)) 1820 return -EOPNOTSUPP; 1821 1822 inode_lock(inode); 1823 1824 ret = file_modified(file); 1825 if (ret) 1826 goto out; 1827 1828 if (mode & FALLOC_FL_PUNCH_HOLE) { 1829 if (offset >= inode->i_size) 1830 goto out; 1831 1832 ret = f2fs_punch_hole(inode, offset, len); 1833 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1834 ret = f2fs_collapse_range(inode, offset, len); 1835 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1836 ret = f2fs_zero_range(inode, offset, len, mode); 1837 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1838 ret = f2fs_insert_range(inode, offset, len); 1839 } else { 1840 ret = f2fs_expand_inode_data(inode, offset, len, mode); 1841 } 1842 1843 if (!ret) { 1844 inode->i_mtime = inode->i_ctime = current_time(inode); 1845 f2fs_mark_inode_dirty_sync(inode, false); 1846 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1847 } 1848 1849 out: 1850 inode_unlock(inode); 1851 1852 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1853 return ret; 1854 } 1855 1856 static int f2fs_release_file(struct inode *inode, struct file *filp) 1857 { 1858 /* 1859 * f2fs_release_file is called at every close calls. So we should 1860 * not drop any inmemory pages by close called by other process. 1861 */ 1862 if (!(filp->f_mode & FMODE_WRITE) || 1863 atomic_read(&inode->i_writecount) != 1) 1864 return 0; 1865 1866 inode_lock(inode); 1867 f2fs_abort_atomic_write(inode, true); 1868 inode_unlock(inode); 1869 1870 return 0; 1871 } 1872 1873 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1874 { 1875 struct inode *inode = file_inode(file); 1876 1877 /* 1878 * If the process doing a transaction is crashed, we should do 1879 * roll-back. Otherwise, other reader/write can see corrupted database 1880 * until all the writers close its file. Since this should be done 1881 * before dropping file lock, it needs to do in ->flush. 1882 */ 1883 if (F2FS_I(inode)->atomic_write_task == current && 1884 (current->flags & PF_EXITING)) { 1885 inode_lock(inode); 1886 f2fs_abort_atomic_write(inode, true); 1887 inode_unlock(inode); 1888 } 1889 1890 return 0; 1891 } 1892 1893 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1894 { 1895 struct f2fs_inode_info *fi = F2FS_I(inode); 1896 u32 masked_flags = fi->i_flags & mask; 1897 1898 /* mask can be shrunk by flags_valid selector */ 1899 iflags &= mask; 1900 1901 /* Is it quota file? Do not allow user to mess with it */ 1902 if (IS_NOQUOTA(inode)) 1903 return -EPERM; 1904 1905 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1906 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1907 return -EOPNOTSUPP; 1908 if (!f2fs_empty_dir(inode)) 1909 return -ENOTEMPTY; 1910 } 1911 1912 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1913 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1914 return -EOPNOTSUPP; 1915 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1916 return -EINVAL; 1917 } 1918 1919 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1920 if (masked_flags & F2FS_COMPR_FL) { 1921 if (!f2fs_disable_compressed_file(inode)) 1922 return -EINVAL; 1923 } else { 1924 /* try to convert inline_data to support compression */ 1925 int err = f2fs_convert_inline_inode(inode); 1926 if (err) 1927 return err; 1928 if (!f2fs_may_compress(inode)) 1929 return -EINVAL; 1930 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 1931 return -EINVAL; 1932 if (set_compress_context(inode)) 1933 return -EOPNOTSUPP; 1934 } 1935 } 1936 1937 fi->i_flags = iflags | (fi->i_flags & ~mask); 1938 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1939 (fi->i_flags & F2FS_NOCOMP_FL)); 1940 1941 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1942 set_inode_flag(inode, FI_PROJ_INHERIT); 1943 else 1944 clear_inode_flag(inode, FI_PROJ_INHERIT); 1945 1946 inode->i_ctime = current_time(inode); 1947 f2fs_set_inode_flags(inode); 1948 f2fs_mark_inode_dirty_sync(inode, true); 1949 return 0; 1950 } 1951 1952 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 1953 1954 /* 1955 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1956 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1957 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1958 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1959 * 1960 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 1961 * FS_IOC_FSSETXATTR is done by the VFS. 1962 */ 1963 1964 static const struct { 1965 u32 iflag; 1966 u32 fsflag; 1967 } f2fs_fsflags_map[] = { 1968 { F2FS_COMPR_FL, FS_COMPR_FL }, 1969 { F2FS_SYNC_FL, FS_SYNC_FL }, 1970 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1971 { F2FS_APPEND_FL, FS_APPEND_FL }, 1972 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1973 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1974 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1975 { F2FS_INDEX_FL, FS_INDEX_FL }, 1976 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1977 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1978 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1979 }; 1980 1981 #define F2FS_GETTABLE_FS_FL ( \ 1982 FS_COMPR_FL | \ 1983 FS_SYNC_FL | \ 1984 FS_IMMUTABLE_FL | \ 1985 FS_APPEND_FL | \ 1986 FS_NODUMP_FL | \ 1987 FS_NOATIME_FL | \ 1988 FS_NOCOMP_FL | \ 1989 FS_INDEX_FL | \ 1990 FS_DIRSYNC_FL | \ 1991 FS_PROJINHERIT_FL | \ 1992 FS_ENCRYPT_FL | \ 1993 FS_INLINE_DATA_FL | \ 1994 FS_NOCOW_FL | \ 1995 FS_VERITY_FL | \ 1996 FS_CASEFOLD_FL) 1997 1998 #define F2FS_SETTABLE_FS_FL ( \ 1999 FS_COMPR_FL | \ 2000 FS_SYNC_FL | \ 2001 FS_IMMUTABLE_FL | \ 2002 FS_APPEND_FL | \ 2003 FS_NODUMP_FL | \ 2004 FS_NOATIME_FL | \ 2005 FS_NOCOMP_FL | \ 2006 FS_DIRSYNC_FL | \ 2007 FS_PROJINHERIT_FL | \ 2008 FS_CASEFOLD_FL) 2009 2010 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 2011 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 2012 { 2013 u32 fsflags = 0; 2014 int i; 2015 2016 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2017 if (iflags & f2fs_fsflags_map[i].iflag) 2018 fsflags |= f2fs_fsflags_map[i].fsflag; 2019 2020 return fsflags; 2021 } 2022 2023 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 2024 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 2025 { 2026 u32 iflags = 0; 2027 int i; 2028 2029 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2030 if (fsflags & f2fs_fsflags_map[i].fsflag) 2031 iflags |= f2fs_fsflags_map[i].iflag; 2032 2033 return iflags; 2034 } 2035 2036 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2037 { 2038 struct inode *inode = file_inode(filp); 2039 2040 return put_user(inode->i_generation, (int __user *)arg); 2041 } 2042 2043 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate) 2044 { 2045 struct inode *inode = file_inode(filp); 2046 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2047 struct f2fs_inode_info *fi = F2FS_I(inode); 2048 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2049 struct inode *pinode; 2050 loff_t isize; 2051 int ret; 2052 2053 if (!inode_owner_or_capable(idmap, inode)) 2054 return -EACCES; 2055 2056 if (!S_ISREG(inode->i_mode)) 2057 return -EINVAL; 2058 2059 if (filp->f_flags & O_DIRECT) 2060 return -EINVAL; 2061 2062 ret = mnt_want_write_file(filp); 2063 if (ret) 2064 return ret; 2065 2066 inode_lock(inode); 2067 2068 if (!f2fs_disable_compressed_file(inode)) { 2069 ret = -EINVAL; 2070 goto out; 2071 } 2072 2073 if (f2fs_is_atomic_file(inode)) 2074 goto out; 2075 2076 ret = f2fs_convert_inline_inode(inode); 2077 if (ret) 2078 goto out; 2079 2080 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2081 2082 /* 2083 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2084 * f2fs_is_atomic_file. 2085 */ 2086 if (get_dirty_pages(inode)) 2087 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2088 inode->i_ino, get_dirty_pages(inode)); 2089 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2090 if (ret) { 2091 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2092 goto out; 2093 } 2094 2095 /* Check if the inode already has a COW inode */ 2096 if (fi->cow_inode == NULL) { 2097 /* Create a COW inode for atomic write */ 2098 pinode = f2fs_iget(inode->i_sb, fi->i_pino); 2099 if (IS_ERR(pinode)) { 2100 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2101 ret = PTR_ERR(pinode); 2102 goto out; 2103 } 2104 2105 ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode); 2106 iput(pinode); 2107 if (ret) { 2108 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2109 goto out; 2110 } 2111 2112 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2113 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2114 } else { 2115 /* Reuse the already created COW inode */ 2116 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true); 2117 if (ret) { 2118 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2119 goto out; 2120 } 2121 } 2122 2123 f2fs_write_inode(inode, NULL); 2124 2125 stat_inc_atomic_inode(inode); 2126 2127 set_inode_flag(inode, FI_ATOMIC_FILE); 2128 2129 isize = i_size_read(inode); 2130 fi->original_i_size = isize; 2131 if (truncate) { 2132 set_inode_flag(inode, FI_ATOMIC_REPLACE); 2133 truncate_inode_pages_final(inode->i_mapping); 2134 f2fs_i_size_write(inode, 0); 2135 isize = 0; 2136 } 2137 f2fs_i_size_write(fi->cow_inode, isize); 2138 2139 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2140 2141 f2fs_update_time(sbi, REQ_TIME); 2142 fi->atomic_write_task = current; 2143 stat_update_max_atomic_write(inode); 2144 fi->atomic_write_cnt = 0; 2145 out: 2146 inode_unlock(inode); 2147 mnt_drop_write_file(filp); 2148 return ret; 2149 } 2150 2151 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2152 { 2153 struct inode *inode = file_inode(filp); 2154 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2155 int ret; 2156 2157 if (!inode_owner_or_capable(idmap, inode)) 2158 return -EACCES; 2159 2160 ret = mnt_want_write_file(filp); 2161 if (ret) 2162 return ret; 2163 2164 f2fs_balance_fs(F2FS_I_SB(inode), true); 2165 2166 inode_lock(inode); 2167 2168 if (f2fs_is_atomic_file(inode)) { 2169 ret = f2fs_commit_atomic_write(inode); 2170 if (!ret) 2171 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2172 2173 f2fs_abort_atomic_write(inode, ret); 2174 } else { 2175 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2176 } 2177 2178 inode_unlock(inode); 2179 mnt_drop_write_file(filp); 2180 return ret; 2181 } 2182 2183 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2184 { 2185 struct inode *inode = file_inode(filp); 2186 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2187 int ret; 2188 2189 if (!inode_owner_or_capable(idmap, inode)) 2190 return -EACCES; 2191 2192 ret = mnt_want_write_file(filp); 2193 if (ret) 2194 return ret; 2195 2196 inode_lock(inode); 2197 2198 f2fs_abort_atomic_write(inode, true); 2199 2200 inode_unlock(inode); 2201 2202 mnt_drop_write_file(filp); 2203 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2204 return ret; 2205 } 2206 2207 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2208 { 2209 struct inode *inode = file_inode(filp); 2210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2211 struct super_block *sb = sbi->sb; 2212 __u32 in; 2213 int ret = 0; 2214 2215 if (!capable(CAP_SYS_ADMIN)) 2216 return -EPERM; 2217 2218 if (get_user(in, (__u32 __user *)arg)) 2219 return -EFAULT; 2220 2221 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2222 ret = mnt_want_write_file(filp); 2223 if (ret) { 2224 if (ret == -EROFS) { 2225 ret = 0; 2226 f2fs_stop_checkpoint(sbi, false, 2227 STOP_CP_REASON_SHUTDOWN); 2228 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2229 trace_f2fs_shutdown(sbi, in, ret); 2230 } 2231 return ret; 2232 } 2233 } 2234 2235 switch (in) { 2236 case F2FS_GOING_DOWN_FULLSYNC: 2237 ret = freeze_bdev(sb->s_bdev); 2238 if (ret) 2239 goto out; 2240 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2241 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2242 thaw_bdev(sb->s_bdev); 2243 break; 2244 case F2FS_GOING_DOWN_METASYNC: 2245 /* do checkpoint only */ 2246 ret = f2fs_sync_fs(sb, 1); 2247 if (ret) 2248 goto out; 2249 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2250 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2251 break; 2252 case F2FS_GOING_DOWN_NOSYNC: 2253 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2254 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2255 break; 2256 case F2FS_GOING_DOWN_METAFLUSH: 2257 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2258 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2259 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2260 break; 2261 case F2FS_GOING_DOWN_NEED_FSCK: 2262 set_sbi_flag(sbi, SBI_NEED_FSCK); 2263 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2264 set_sbi_flag(sbi, SBI_IS_DIRTY); 2265 /* do checkpoint only */ 2266 ret = f2fs_sync_fs(sb, 1); 2267 goto out; 2268 default: 2269 ret = -EINVAL; 2270 goto out; 2271 } 2272 2273 f2fs_stop_gc_thread(sbi); 2274 f2fs_stop_discard_thread(sbi); 2275 2276 f2fs_drop_discard_cmd(sbi); 2277 clear_opt(sbi, DISCARD); 2278 2279 f2fs_update_time(sbi, REQ_TIME); 2280 out: 2281 if (in != F2FS_GOING_DOWN_FULLSYNC) 2282 mnt_drop_write_file(filp); 2283 2284 trace_f2fs_shutdown(sbi, in, ret); 2285 2286 return ret; 2287 } 2288 2289 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2290 { 2291 struct inode *inode = file_inode(filp); 2292 struct super_block *sb = inode->i_sb; 2293 struct fstrim_range range; 2294 int ret; 2295 2296 if (!capable(CAP_SYS_ADMIN)) 2297 return -EPERM; 2298 2299 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2300 return -EOPNOTSUPP; 2301 2302 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2303 sizeof(range))) 2304 return -EFAULT; 2305 2306 ret = mnt_want_write_file(filp); 2307 if (ret) 2308 return ret; 2309 2310 range.minlen = max((unsigned int)range.minlen, 2311 bdev_discard_granularity(sb->s_bdev)); 2312 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2313 mnt_drop_write_file(filp); 2314 if (ret < 0) 2315 return ret; 2316 2317 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2318 sizeof(range))) 2319 return -EFAULT; 2320 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2321 return 0; 2322 } 2323 2324 static bool uuid_is_nonzero(__u8 u[16]) 2325 { 2326 int i; 2327 2328 for (i = 0; i < 16; i++) 2329 if (u[i]) 2330 return true; 2331 return false; 2332 } 2333 2334 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2335 { 2336 struct inode *inode = file_inode(filp); 2337 2338 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2339 return -EOPNOTSUPP; 2340 2341 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2342 2343 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2344 } 2345 2346 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2347 { 2348 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2349 return -EOPNOTSUPP; 2350 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2351 } 2352 2353 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2354 { 2355 struct inode *inode = file_inode(filp); 2356 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2357 u8 encrypt_pw_salt[16]; 2358 int err; 2359 2360 if (!f2fs_sb_has_encrypt(sbi)) 2361 return -EOPNOTSUPP; 2362 2363 err = mnt_want_write_file(filp); 2364 if (err) 2365 return err; 2366 2367 f2fs_down_write(&sbi->sb_lock); 2368 2369 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2370 goto got_it; 2371 2372 /* update superblock with uuid */ 2373 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2374 2375 err = f2fs_commit_super(sbi, false); 2376 if (err) { 2377 /* undo new data */ 2378 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2379 goto out_err; 2380 } 2381 got_it: 2382 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16); 2383 out_err: 2384 f2fs_up_write(&sbi->sb_lock); 2385 mnt_drop_write_file(filp); 2386 2387 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16)) 2388 err = -EFAULT; 2389 2390 return err; 2391 } 2392 2393 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2394 unsigned long arg) 2395 { 2396 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2397 return -EOPNOTSUPP; 2398 2399 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2400 } 2401 2402 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2403 { 2404 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2405 return -EOPNOTSUPP; 2406 2407 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2408 } 2409 2410 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2411 { 2412 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2413 return -EOPNOTSUPP; 2414 2415 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2416 } 2417 2418 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2419 unsigned long arg) 2420 { 2421 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2422 return -EOPNOTSUPP; 2423 2424 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2425 } 2426 2427 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2428 unsigned long arg) 2429 { 2430 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2431 return -EOPNOTSUPP; 2432 2433 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2434 } 2435 2436 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2437 { 2438 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2439 return -EOPNOTSUPP; 2440 2441 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2442 } 2443 2444 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2445 { 2446 struct inode *inode = file_inode(filp); 2447 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2448 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2449 .no_bg_gc = false, 2450 .should_migrate_blocks = false, 2451 .nr_free_secs = 0 }; 2452 __u32 sync; 2453 int ret; 2454 2455 if (!capable(CAP_SYS_ADMIN)) 2456 return -EPERM; 2457 2458 if (get_user(sync, (__u32 __user *)arg)) 2459 return -EFAULT; 2460 2461 if (f2fs_readonly(sbi->sb)) 2462 return -EROFS; 2463 2464 ret = mnt_want_write_file(filp); 2465 if (ret) 2466 return ret; 2467 2468 if (!sync) { 2469 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2470 ret = -EBUSY; 2471 goto out; 2472 } 2473 } else { 2474 f2fs_down_write(&sbi->gc_lock); 2475 } 2476 2477 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2478 gc_control.err_gc_skipped = sync; 2479 ret = f2fs_gc(sbi, &gc_control); 2480 out: 2481 mnt_drop_write_file(filp); 2482 return ret; 2483 } 2484 2485 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2486 { 2487 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2488 struct f2fs_gc_control gc_control = { 2489 .init_gc_type = range->sync ? FG_GC : BG_GC, 2490 .no_bg_gc = false, 2491 .should_migrate_blocks = false, 2492 .err_gc_skipped = range->sync, 2493 .nr_free_secs = 0 }; 2494 u64 end; 2495 int ret; 2496 2497 if (!capable(CAP_SYS_ADMIN)) 2498 return -EPERM; 2499 if (f2fs_readonly(sbi->sb)) 2500 return -EROFS; 2501 2502 end = range->start + range->len; 2503 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2504 end >= MAX_BLKADDR(sbi)) 2505 return -EINVAL; 2506 2507 ret = mnt_want_write_file(filp); 2508 if (ret) 2509 return ret; 2510 2511 do_more: 2512 if (!range->sync) { 2513 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2514 ret = -EBUSY; 2515 goto out; 2516 } 2517 } else { 2518 f2fs_down_write(&sbi->gc_lock); 2519 } 2520 2521 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2522 ret = f2fs_gc(sbi, &gc_control); 2523 if (ret) { 2524 if (ret == -EBUSY) 2525 ret = -EAGAIN; 2526 goto out; 2527 } 2528 range->start += CAP_BLKS_PER_SEC(sbi); 2529 if (range->start <= end) 2530 goto do_more; 2531 out: 2532 mnt_drop_write_file(filp); 2533 return ret; 2534 } 2535 2536 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2537 { 2538 struct f2fs_gc_range range; 2539 2540 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2541 sizeof(range))) 2542 return -EFAULT; 2543 return __f2fs_ioc_gc_range(filp, &range); 2544 } 2545 2546 static int f2fs_ioc_write_checkpoint(struct file *filp) 2547 { 2548 struct inode *inode = file_inode(filp); 2549 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2550 int ret; 2551 2552 if (!capable(CAP_SYS_ADMIN)) 2553 return -EPERM; 2554 2555 if (f2fs_readonly(sbi->sb)) 2556 return -EROFS; 2557 2558 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2559 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2560 return -EINVAL; 2561 } 2562 2563 ret = mnt_want_write_file(filp); 2564 if (ret) 2565 return ret; 2566 2567 ret = f2fs_sync_fs(sbi->sb, 1); 2568 2569 mnt_drop_write_file(filp); 2570 return ret; 2571 } 2572 2573 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2574 struct file *filp, 2575 struct f2fs_defragment *range) 2576 { 2577 struct inode *inode = file_inode(filp); 2578 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2579 .m_seg_type = NO_CHECK_TYPE, 2580 .m_may_create = false }; 2581 struct extent_info ei = {}; 2582 pgoff_t pg_start, pg_end, next_pgofs; 2583 unsigned int blk_per_seg = sbi->blocks_per_seg; 2584 unsigned int total = 0, sec_num; 2585 block_t blk_end = 0; 2586 bool fragmented = false; 2587 int err; 2588 2589 pg_start = range->start >> PAGE_SHIFT; 2590 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2591 2592 f2fs_balance_fs(sbi, true); 2593 2594 inode_lock(inode); 2595 2596 /* if in-place-update policy is enabled, don't waste time here */ 2597 set_inode_flag(inode, FI_OPU_WRITE); 2598 if (f2fs_should_update_inplace(inode, NULL)) { 2599 err = -EINVAL; 2600 goto out; 2601 } 2602 2603 /* writeback all dirty pages in the range */ 2604 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2605 range->start + range->len - 1); 2606 if (err) 2607 goto out; 2608 2609 /* 2610 * lookup mapping info in extent cache, skip defragmenting if physical 2611 * block addresses are continuous. 2612 */ 2613 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) { 2614 if (ei.fofs + ei.len >= pg_end) 2615 goto out; 2616 } 2617 2618 map.m_lblk = pg_start; 2619 map.m_next_pgofs = &next_pgofs; 2620 2621 /* 2622 * lookup mapping info in dnode page cache, skip defragmenting if all 2623 * physical block addresses are continuous even if there are hole(s) 2624 * in logical blocks. 2625 */ 2626 while (map.m_lblk < pg_end) { 2627 map.m_len = pg_end - map.m_lblk; 2628 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2629 if (err) 2630 goto out; 2631 2632 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2633 map.m_lblk = next_pgofs; 2634 continue; 2635 } 2636 2637 if (blk_end && blk_end != map.m_pblk) 2638 fragmented = true; 2639 2640 /* record total count of block that we're going to move */ 2641 total += map.m_len; 2642 2643 blk_end = map.m_pblk + map.m_len; 2644 2645 map.m_lblk += map.m_len; 2646 } 2647 2648 if (!fragmented) { 2649 total = 0; 2650 goto out; 2651 } 2652 2653 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2654 2655 /* 2656 * make sure there are enough free section for LFS allocation, this can 2657 * avoid defragment running in SSR mode when free section are allocated 2658 * intensively 2659 */ 2660 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2661 err = -EAGAIN; 2662 goto out; 2663 } 2664 2665 map.m_lblk = pg_start; 2666 map.m_len = pg_end - pg_start; 2667 total = 0; 2668 2669 while (map.m_lblk < pg_end) { 2670 pgoff_t idx; 2671 int cnt = 0; 2672 2673 do_map: 2674 map.m_len = pg_end - map.m_lblk; 2675 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2676 if (err) 2677 goto clear_out; 2678 2679 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2680 map.m_lblk = next_pgofs; 2681 goto check; 2682 } 2683 2684 set_inode_flag(inode, FI_SKIP_WRITES); 2685 2686 idx = map.m_lblk; 2687 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2688 struct page *page; 2689 2690 page = f2fs_get_lock_data_page(inode, idx, true); 2691 if (IS_ERR(page)) { 2692 err = PTR_ERR(page); 2693 goto clear_out; 2694 } 2695 2696 set_page_dirty(page); 2697 set_page_private_gcing(page); 2698 f2fs_put_page(page, 1); 2699 2700 idx++; 2701 cnt++; 2702 total++; 2703 } 2704 2705 map.m_lblk = idx; 2706 check: 2707 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2708 goto do_map; 2709 2710 clear_inode_flag(inode, FI_SKIP_WRITES); 2711 2712 err = filemap_fdatawrite(inode->i_mapping); 2713 if (err) 2714 goto out; 2715 } 2716 clear_out: 2717 clear_inode_flag(inode, FI_SKIP_WRITES); 2718 out: 2719 clear_inode_flag(inode, FI_OPU_WRITE); 2720 inode_unlock(inode); 2721 if (!err) 2722 range->len = (u64)total << PAGE_SHIFT; 2723 return err; 2724 } 2725 2726 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2727 { 2728 struct inode *inode = file_inode(filp); 2729 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2730 struct f2fs_defragment range; 2731 int err; 2732 2733 if (!capable(CAP_SYS_ADMIN)) 2734 return -EPERM; 2735 2736 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2737 return -EINVAL; 2738 2739 if (f2fs_readonly(sbi->sb)) 2740 return -EROFS; 2741 2742 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2743 sizeof(range))) 2744 return -EFAULT; 2745 2746 /* verify alignment of offset & size */ 2747 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2748 return -EINVAL; 2749 2750 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2751 max_file_blocks(inode))) 2752 return -EINVAL; 2753 2754 err = mnt_want_write_file(filp); 2755 if (err) 2756 return err; 2757 2758 err = f2fs_defragment_range(sbi, filp, &range); 2759 mnt_drop_write_file(filp); 2760 2761 f2fs_update_time(sbi, REQ_TIME); 2762 if (err < 0) 2763 return err; 2764 2765 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2766 sizeof(range))) 2767 return -EFAULT; 2768 2769 return 0; 2770 } 2771 2772 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2773 struct file *file_out, loff_t pos_out, size_t len) 2774 { 2775 struct inode *src = file_inode(file_in); 2776 struct inode *dst = file_inode(file_out); 2777 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2778 size_t olen = len, dst_max_i_size = 0; 2779 size_t dst_osize; 2780 int ret; 2781 2782 if (file_in->f_path.mnt != file_out->f_path.mnt || 2783 src->i_sb != dst->i_sb) 2784 return -EXDEV; 2785 2786 if (unlikely(f2fs_readonly(src->i_sb))) 2787 return -EROFS; 2788 2789 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2790 return -EINVAL; 2791 2792 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2793 return -EOPNOTSUPP; 2794 2795 if (pos_out < 0 || pos_in < 0) 2796 return -EINVAL; 2797 2798 if (src == dst) { 2799 if (pos_in == pos_out) 2800 return 0; 2801 if (pos_out > pos_in && pos_out < pos_in + len) 2802 return -EINVAL; 2803 } 2804 2805 inode_lock(src); 2806 if (src != dst) { 2807 ret = -EBUSY; 2808 if (!inode_trylock(dst)) 2809 goto out; 2810 } 2811 2812 ret = -EINVAL; 2813 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2814 goto out_unlock; 2815 if (len == 0) 2816 olen = len = src->i_size - pos_in; 2817 if (pos_in + len == src->i_size) 2818 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2819 if (len == 0) { 2820 ret = 0; 2821 goto out_unlock; 2822 } 2823 2824 dst_osize = dst->i_size; 2825 if (pos_out + olen > dst->i_size) 2826 dst_max_i_size = pos_out + olen; 2827 2828 /* verify the end result is block aligned */ 2829 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2830 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2831 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2832 goto out_unlock; 2833 2834 ret = f2fs_convert_inline_inode(src); 2835 if (ret) 2836 goto out_unlock; 2837 2838 ret = f2fs_convert_inline_inode(dst); 2839 if (ret) 2840 goto out_unlock; 2841 2842 /* write out all dirty pages from offset */ 2843 ret = filemap_write_and_wait_range(src->i_mapping, 2844 pos_in, pos_in + len); 2845 if (ret) 2846 goto out_unlock; 2847 2848 ret = filemap_write_and_wait_range(dst->i_mapping, 2849 pos_out, pos_out + len); 2850 if (ret) 2851 goto out_unlock; 2852 2853 f2fs_balance_fs(sbi, true); 2854 2855 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2856 if (src != dst) { 2857 ret = -EBUSY; 2858 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2859 goto out_src; 2860 } 2861 2862 f2fs_lock_op(sbi); 2863 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2864 pos_out >> F2FS_BLKSIZE_BITS, 2865 len >> F2FS_BLKSIZE_BITS, false); 2866 2867 if (!ret) { 2868 if (dst_max_i_size) 2869 f2fs_i_size_write(dst, dst_max_i_size); 2870 else if (dst_osize != dst->i_size) 2871 f2fs_i_size_write(dst, dst_osize); 2872 } 2873 f2fs_unlock_op(sbi); 2874 2875 if (src != dst) 2876 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2877 out_src: 2878 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2879 out_unlock: 2880 if (src != dst) 2881 inode_unlock(dst); 2882 out: 2883 inode_unlock(src); 2884 return ret; 2885 } 2886 2887 static int __f2fs_ioc_move_range(struct file *filp, 2888 struct f2fs_move_range *range) 2889 { 2890 struct fd dst; 2891 int err; 2892 2893 if (!(filp->f_mode & FMODE_READ) || 2894 !(filp->f_mode & FMODE_WRITE)) 2895 return -EBADF; 2896 2897 dst = fdget(range->dst_fd); 2898 if (!dst.file) 2899 return -EBADF; 2900 2901 if (!(dst.file->f_mode & FMODE_WRITE)) { 2902 err = -EBADF; 2903 goto err_out; 2904 } 2905 2906 err = mnt_want_write_file(filp); 2907 if (err) 2908 goto err_out; 2909 2910 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2911 range->pos_out, range->len); 2912 2913 mnt_drop_write_file(filp); 2914 err_out: 2915 fdput(dst); 2916 return err; 2917 } 2918 2919 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2920 { 2921 struct f2fs_move_range range; 2922 2923 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2924 sizeof(range))) 2925 return -EFAULT; 2926 return __f2fs_ioc_move_range(filp, &range); 2927 } 2928 2929 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2930 { 2931 struct inode *inode = file_inode(filp); 2932 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2933 struct sit_info *sm = SIT_I(sbi); 2934 unsigned int start_segno = 0, end_segno = 0; 2935 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2936 struct f2fs_flush_device range; 2937 struct f2fs_gc_control gc_control = { 2938 .init_gc_type = FG_GC, 2939 .should_migrate_blocks = true, 2940 .err_gc_skipped = true, 2941 .nr_free_secs = 0 }; 2942 int ret; 2943 2944 if (!capable(CAP_SYS_ADMIN)) 2945 return -EPERM; 2946 2947 if (f2fs_readonly(sbi->sb)) 2948 return -EROFS; 2949 2950 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2951 return -EINVAL; 2952 2953 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2954 sizeof(range))) 2955 return -EFAULT; 2956 2957 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2958 __is_large_section(sbi)) { 2959 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2960 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2961 return -EINVAL; 2962 } 2963 2964 ret = mnt_want_write_file(filp); 2965 if (ret) 2966 return ret; 2967 2968 if (range.dev_num != 0) 2969 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2970 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2971 2972 start_segno = sm->last_victim[FLUSH_DEVICE]; 2973 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2974 start_segno = dev_start_segno; 2975 end_segno = min(start_segno + range.segments, dev_end_segno); 2976 2977 while (start_segno < end_segno) { 2978 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2979 ret = -EBUSY; 2980 goto out; 2981 } 2982 sm->last_victim[GC_CB] = end_segno + 1; 2983 sm->last_victim[GC_GREEDY] = end_segno + 1; 2984 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2985 2986 gc_control.victim_segno = start_segno; 2987 ret = f2fs_gc(sbi, &gc_control); 2988 if (ret == -EAGAIN) 2989 ret = 0; 2990 else if (ret < 0) 2991 break; 2992 start_segno++; 2993 } 2994 out: 2995 mnt_drop_write_file(filp); 2996 return ret; 2997 } 2998 2999 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 3000 { 3001 struct inode *inode = file_inode(filp); 3002 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 3003 3004 /* Must validate to set it with SQLite behavior in Android. */ 3005 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 3006 3007 return put_user(sb_feature, (u32 __user *)arg); 3008 } 3009 3010 #ifdef CONFIG_QUOTA 3011 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3012 { 3013 struct dquot *transfer_to[MAXQUOTAS] = {}; 3014 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3015 struct super_block *sb = sbi->sb; 3016 int err; 3017 3018 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 3019 if (IS_ERR(transfer_to[PRJQUOTA])) 3020 return PTR_ERR(transfer_to[PRJQUOTA]); 3021 3022 err = __dquot_transfer(inode, transfer_to); 3023 if (err) 3024 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3025 dqput(transfer_to[PRJQUOTA]); 3026 return err; 3027 } 3028 3029 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3030 { 3031 struct f2fs_inode_info *fi = F2FS_I(inode); 3032 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3033 struct f2fs_inode *ri = NULL; 3034 kprojid_t kprojid; 3035 int err; 3036 3037 if (!f2fs_sb_has_project_quota(sbi)) { 3038 if (projid != F2FS_DEF_PROJID) 3039 return -EOPNOTSUPP; 3040 else 3041 return 0; 3042 } 3043 3044 if (!f2fs_has_extra_attr(inode)) 3045 return -EOPNOTSUPP; 3046 3047 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3048 3049 if (projid_eq(kprojid, fi->i_projid)) 3050 return 0; 3051 3052 err = -EPERM; 3053 /* Is it quota file? Do not allow user to mess with it */ 3054 if (IS_NOQUOTA(inode)) 3055 return err; 3056 3057 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 3058 return -EOVERFLOW; 3059 3060 err = f2fs_dquot_initialize(inode); 3061 if (err) 3062 return err; 3063 3064 f2fs_lock_op(sbi); 3065 err = f2fs_transfer_project_quota(inode, kprojid); 3066 if (err) 3067 goto out_unlock; 3068 3069 fi->i_projid = kprojid; 3070 inode->i_ctime = current_time(inode); 3071 f2fs_mark_inode_dirty_sync(inode, true); 3072 out_unlock: 3073 f2fs_unlock_op(sbi); 3074 return err; 3075 } 3076 #else 3077 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3078 { 3079 return 0; 3080 } 3081 3082 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3083 { 3084 if (projid != F2FS_DEF_PROJID) 3085 return -EOPNOTSUPP; 3086 return 0; 3087 } 3088 #endif 3089 3090 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3091 { 3092 struct inode *inode = d_inode(dentry); 3093 struct f2fs_inode_info *fi = F2FS_I(inode); 3094 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3095 3096 if (IS_ENCRYPTED(inode)) 3097 fsflags |= FS_ENCRYPT_FL; 3098 if (IS_VERITY(inode)) 3099 fsflags |= FS_VERITY_FL; 3100 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3101 fsflags |= FS_INLINE_DATA_FL; 3102 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3103 fsflags |= FS_NOCOW_FL; 3104 3105 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3106 3107 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3108 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3109 3110 return 0; 3111 } 3112 3113 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3114 struct dentry *dentry, struct fileattr *fa) 3115 { 3116 struct inode *inode = d_inode(dentry); 3117 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3118 u32 iflags; 3119 int err; 3120 3121 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3122 return -EIO; 3123 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3124 return -ENOSPC; 3125 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3126 return -EOPNOTSUPP; 3127 fsflags &= F2FS_SETTABLE_FS_FL; 3128 if (!fa->flags_valid) 3129 mask &= FS_COMMON_FL; 3130 3131 iflags = f2fs_fsflags_to_iflags(fsflags); 3132 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3133 return -EOPNOTSUPP; 3134 3135 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3136 if (!err) 3137 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3138 3139 return err; 3140 } 3141 3142 int f2fs_pin_file_control(struct inode *inode, bool inc) 3143 { 3144 struct f2fs_inode_info *fi = F2FS_I(inode); 3145 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3146 3147 /* Use i_gc_failures for normal file as a risk signal. */ 3148 if (inc) 3149 f2fs_i_gc_failures_write(inode, 3150 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3151 3152 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3153 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3154 __func__, inode->i_ino, 3155 fi->i_gc_failures[GC_FAILURE_PIN]); 3156 clear_inode_flag(inode, FI_PIN_FILE); 3157 return -EAGAIN; 3158 } 3159 return 0; 3160 } 3161 3162 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3163 { 3164 struct inode *inode = file_inode(filp); 3165 __u32 pin; 3166 int ret = 0; 3167 3168 if (get_user(pin, (__u32 __user *)arg)) 3169 return -EFAULT; 3170 3171 if (!S_ISREG(inode->i_mode)) 3172 return -EINVAL; 3173 3174 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3175 return -EROFS; 3176 3177 ret = mnt_want_write_file(filp); 3178 if (ret) 3179 return ret; 3180 3181 inode_lock(inode); 3182 3183 if (!pin) { 3184 clear_inode_flag(inode, FI_PIN_FILE); 3185 f2fs_i_gc_failures_write(inode, 0); 3186 goto done; 3187 } 3188 3189 if (f2fs_should_update_outplace(inode, NULL)) { 3190 ret = -EINVAL; 3191 goto out; 3192 } 3193 3194 if (f2fs_pin_file_control(inode, false)) { 3195 ret = -EAGAIN; 3196 goto out; 3197 } 3198 3199 ret = f2fs_convert_inline_inode(inode); 3200 if (ret) 3201 goto out; 3202 3203 if (!f2fs_disable_compressed_file(inode)) { 3204 ret = -EOPNOTSUPP; 3205 goto out; 3206 } 3207 3208 set_inode_flag(inode, FI_PIN_FILE); 3209 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3210 done: 3211 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3212 out: 3213 inode_unlock(inode); 3214 mnt_drop_write_file(filp); 3215 return ret; 3216 } 3217 3218 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3219 { 3220 struct inode *inode = file_inode(filp); 3221 __u32 pin = 0; 3222 3223 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3224 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3225 return put_user(pin, (u32 __user *)arg); 3226 } 3227 3228 int f2fs_precache_extents(struct inode *inode) 3229 { 3230 struct f2fs_inode_info *fi = F2FS_I(inode); 3231 struct f2fs_map_blocks map; 3232 pgoff_t m_next_extent; 3233 loff_t end; 3234 int err; 3235 3236 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3237 return -EOPNOTSUPP; 3238 3239 map.m_lblk = 0; 3240 map.m_next_pgofs = NULL; 3241 map.m_next_extent = &m_next_extent; 3242 map.m_seg_type = NO_CHECK_TYPE; 3243 map.m_may_create = false; 3244 end = max_file_blocks(inode); 3245 3246 while (map.m_lblk < end) { 3247 map.m_len = end - map.m_lblk; 3248 3249 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3250 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE); 3251 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3252 if (err) 3253 return err; 3254 3255 map.m_lblk = m_next_extent; 3256 } 3257 3258 return 0; 3259 } 3260 3261 static int f2fs_ioc_precache_extents(struct file *filp) 3262 { 3263 return f2fs_precache_extents(file_inode(filp)); 3264 } 3265 3266 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3267 { 3268 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3269 __u64 block_count; 3270 3271 if (!capable(CAP_SYS_ADMIN)) 3272 return -EPERM; 3273 3274 if (f2fs_readonly(sbi->sb)) 3275 return -EROFS; 3276 3277 if (copy_from_user(&block_count, (void __user *)arg, 3278 sizeof(block_count))) 3279 return -EFAULT; 3280 3281 return f2fs_resize_fs(sbi, block_count); 3282 } 3283 3284 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3285 { 3286 struct inode *inode = file_inode(filp); 3287 3288 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3289 3290 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3291 f2fs_warn(F2FS_I_SB(inode), 3292 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3293 inode->i_ino); 3294 return -EOPNOTSUPP; 3295 } 3296 3297 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3298 } 3299 3300 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3301 { 3302 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3303 return -EOPNOTSUPP; 3304 3305 return fsverity_ioctl_measure(filp, (void __user *)arg); 3306 } 3307 3308 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3309 { 3310 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3311 return -EOPNOTSUPP; 3312 3313 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3314 } 3315 3316 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3317 { 3318 struct inode *inode = file_inode(filp); 3319 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3320 char *vbuf; 3321 int count; 3322 int err = 0; 3323 3324 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3325 if (!vbuf) 3326 return -ENOMEM; 3327 3328 f2fs_down_read(&sbi->sb_lock); 3329 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3330 ARRAY_SIZE(sbi->raw_super->volume_name), 3331 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3332 f2fs_up_read(&sbi->sb_lock); 3333 3334 if (copy_to_user((char __user *)arg, vbuf, 3335 min(FSLABEL_MAX, count))) 3336 err = -EFAULT; 3337 3338 kfree(vbuf); 3339 return err; 3340 } 3341 3342 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3343 { 3344 struct inode *inode = file_inode(filp); 3345 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3346 char *vbuf; 3347 int err = 0; 3348 3349 if (!capable(CAP_SYS_ADMIN)) 3350 return -EPERM; 3351 3352 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3353 if (IS_ERR(vbuf)) 3354 return PTR_ERR(vbuf); 3355 3356 err = mnt_want_write_file(filp); 3357 if (err) 3358 goto out; 3359 3360 f2fs_down_write(&sbi->sb_lock); 3361 3362 memset(sbi->raw_super->volume_name, 0, 3363 sizeof(sbi->raw_super->volume_name)); 3364 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3365 sbi->raw_super->volume_name, 3366 ARRAY_SIZE(sbi->raw_super->volume_name)); 3367 3368 err = f2fs_commit_super(sbi, false); 3369 3370 f2fs_up_write(&sbi->sb_lock); 3371 3372 mnt_drop_write_file(filp); 3373 out: 3374 kfree(vbuf); 3375 return err; 3376 } 3377 3378 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3379 { 3380 struct inode *inode = file_inode(filp); 3381 __u64 blocks; 3382 3383 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3384 return -EOPNOTSUPP; 3385 3386 if (!f2fs_compressed_file(inode)) 3387 return -EINVAL; 3388 3389 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3390 return put_user(blocks, (u64 __user *)arg); 3391 } 3392 3393 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3394 { 3395 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3396 unsigned int released_blocks = 0; 3397 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3398 block_t blkaddr; 3399 int i; 3400 3401 for (i = 0; i < count; i++) { 3402 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3403 dn->ofs_in_node + i); 3404 3405 if (!__is_valid_data_blkaddr(blkaddr)) 3406 continue; 3407 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3408 DATA_GENERIC_ENHANCE))) { 3409 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3410 return -EFSCORRUPTED; 3411 } 3412 } 3413 3414 while (count) { 3415 int compr_blocks = 0; 3416 3417 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3418 blkaddr = f2fs_data_blkaddr(dn); 3419 3420 if (i == 0) { 3421 if (blkaddr == COMPRESS_ADDR) 3422 continue; 3423 dn->ofs_in_node += cluster_size; 3424 goto next; 3425 } 3426 3427 if (__is_valid_data_blkaddr(blkaddr)) 3428 compr_blocks++; 3429 3430 if (blkaddr != NEW_ADDR) 3431 continue; 3432 3433 dn->data_blkaddr = NULL_ADDR; 3434 f2fs_set_data_blkaddr(dn); 3435 } 3436 3437 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3438 dec_valid_block_count(sbi, dn->inode, 3439 cluster_size - compr_blocks); 3440 3441 released_blocks += cluster_size - compr_blocks; 3442 next: 3443 count -= cluster_size; 3444 } 3445 3446 return released_blocks; 3447 } 3448 3449 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3450 { 3451 struct inode *inode = file_inode(filp); 3452 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3453 pgoff_t page_idx = 0, last_idx; 3454 unsigned int released_blocks = 0; 3455 int ret; 3456 int writecount; 3457 3458 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3459 return -EOPNOTSUPP; 3460 3461 if (!f2fs_compressed_file(inode)) 3462 return -EINVAL; 3463 3464 if (f2fs_readonly(sbi->sb)) 3465 return -EROFS; 3466 3467 ret = mnt_want_write_file(filp); 3468 if (ret) 3469 return ret; 3470 3471 f2fs_balance_fs(F2FS_I_SB(inode), true); 3472 3473 inode_lock(inode); 3474 3475 writecount = atomic_read(&inode->i_writecount); 3476 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3477 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3478 ret = -EBUSY; 3479 goto out; 3480 } 3481 3482 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3483 ret = -EINVAL; 3484 goto out; 3485 } 3486 3487 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3488 if (ret) 3489 goto out; 3490 3491 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3492 inode->i_ctime = current_time(inode); 3493 f2fs_mark_inode_dirty_sync(inode, true); 3494 3495 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3496 goto out; 3497 3498 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3499 filemap_invalidate_lock(inode->i_mapping); 3500 3501 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3502 3503 while (page_idx < last_idx) { 3504 struct dnode_of_data dn; 3505 pgoff_t end_offset, count; 3506 3507 set_new_dnode(&dn, inode, NULL, NULL, 0); 3508 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3509 if (ret) { 3510 if (ret == -ENOENT) { 3511 page_idx = f2fs_get_next_page_offset(&dn, 3512 page_idx); 3513 ret = 0; 3514 continue; 3515 } 3516 break; 3517 } 3518 3519 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3520 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3521 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3522 3523 ret = release_compress_blocks(&dn, count); 3524 3525 f2fs_put_dnode(&dn); 3526 3527 if (ret < 0) 3528 break; 3529 3530 page_idx += count; 3531 released_blocks += ret; 3532 } 3533 3534 filemap_invalidate_unlock(inode->i_mapping); 3535 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3536 out: 3537 inode_unlock(inode); 3538 3539 mnt_drop_write_file(filp); 3540 3541 if (ret >= 0) { 3542 ret = put_user(released_blocks, (u64 __user *)arg); 3543 } else if (released_blocks && 3544 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3545 set_sbi_flag(sbi, SBI_NEED_FSCK); 3546 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3547 "iblocks=%llu, released=%u, compr_blocks=%u, " 3548 "run fsck to fix.", 3549 __func__, inode->i_ino, inode->i_blocks, 3550 released_blocks, 3551 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3552 } 3553 3554 return ret; 3555 } 3556 3557 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3558 { 3559 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3560 unsigned int reserved_blocks = 0; 3561 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3562 block_t blkaddr; 3563 int i; 3564 3565 for (i = 0; i < count; i++) { 3566 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3567 dn->ofs_in_node + i); 3568 3569 if (!__is_valid_data_blkaddr(blkaddr)) 3570 continue; 3571 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3572 DATA_GENERIC_ENHANCE))) { 3573 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3574 return -EFSCORRUPTED; 3575 } 3576 } 3577 3578 while (count) { 3579 int compr_blocks = 0; 3580 blkcnt_t reserved; 3581 int ret; 3582 3583 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3584 blkaddr = f2fs_data_blkaddr(dn); 3585 3586 if (i == 0) { 3587 if (blkaddr == COMPRESS_ADDR) 3588 continue; 3589 dn->ofs_in_node += cluster_size; 3590 goto next; 3591 } 3592 3593 if (__is_valid_data_blkaddr(blkaddr)) { 3594 compr_blocks++; 3595 continue; 3596 } 3597 3598 dn->data_blkaddr = NEW_ADDR; 3599 f2fs_set_data_blkaddr(dn); 3600 } 3601 3602 reserved = cluster_size - compr_blocks; 3603 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3604 if (ret) 3605 return ret; 3606 3607 if (reserved != cluster_size - compr_blocks) 3608 return -ENOSPC; 3609 3610 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3611 3612 reserved_blocks += reserved; 3613 next: 3614 count -= cluster_size; 3615 } 3616 3617 return reserved_blocks; 3618 } 3619 3620 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3621 { 3622 struct inode *inode = file_inode(filp); 3623 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3624 pgoff_t page_idx = 0, last_idx; 3625 unsigned int reserved_blocks = 0; 3626 int ret; 3627 3628 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3629 return -EOPNOTSUPP; 3630 3631 if (!f2fs_compressed_file(inode)) 3632 return -EINVAL; 3633 3634 if (f2fs_readonly(sbi->sb)) 3635 return -EROFS; 3636 3637 ret = mnt_want_write_file(filp); 3638 if (ret) 3639 return ret; 3640 3641 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3642 goto out; 3643 3644 f2fs_balance_fs(F2FS_I_SB(inode), true); 3645 3646 inode_lock(inode); 3647 3648 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3649 ret = -EINVAL; 3650 goto unlock_inode; 3651 } 3652 3653 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3654 filemap_invalidate_lock(inode->i_mapping); 3655 3656 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3657 3658 while (page_idx < last_idx) { 3659 struct dnode_of_data dn; 3660 pgoff_t end_offset, count; 3661 3662 set_new_dnode(&dn, inode, NULL, NULL, 0); 3663 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3664 if (ret) { 3665 if (ret == -ENOENT) { 3666 page_idx = f2fs_get_next_page_offset(&dn, 3667 page_idx); 3668 ret = 0; 3669 continue; 3670 } 3671 break; 3672 } 3673 3674 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3675 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3676 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3677 3678 ret = reserve_compress_blocks(&dn, count); 3679 3680 f2fs_put_dnode(&dn); 3681 3682 if (ret < 0) 3683 break; 3684 3685 page_idx += count; 3686 reserved_blocks += ret; 3687 } 3688 3689 filemap_invalidate_unlock(inode->i_mapping); 3690 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3691 3692 if (ret >= 0) { 3693 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3694 inode->i_ctime = current_time(inode); 3695 f2fs_mark_inode_dirty_sync(inode, true); 3696 } 3697 unlock_inode: 3698 inode_unlock(inode); 3699 out: 3700 mnt_drop_write_file(filp); 3701 3702 if (ret >= 0) { 3703 ret = put_user(reserved_blocks, (u64 __user *)arg); 3704 } else if (reserved_blocks && 3705 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3706 set_sbi_flag(sbi, SBI_NEED_FSCK); 3707 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3708 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3709 "run fsck to fix.", 3710 __func__, inode->i_ino, inode->i_blocks, 3711 reserved_blocks, 3712 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3713 } 3714 3715 return ret; 3716 } 3717 3718 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3719 pgoff_t off, block_t block, block_t len, u32 flags) 3720 { 3721 sector_t sector = SECTOR_FROM_BLOCK(block); 3722 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3723 int ret = 0; 3724 3725 if (flags & F2FS_TRIM_FILE_DISCARD) { 3726 if (bdev_max_secure_erase_sectors(bdev)) 3727 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3728 GFP_NOFS); 3729 else 3730 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3731 GFP_NOFS); 3732 } 3733 3734 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3735 if (IS_ENCRYPTED(inode)) 3736 ret = fscrypt_zeroout_range(inode, off, block, len); 3737 else 3738 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3739 GFP_NOFS, 0); 3740 } 3741 3742 return ret; 3743 } 3744 3745 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3746 { 3747 struct inode *inode = file_inode(filp); 3748 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3749 struct address_space *mapping = inode->i_mapping; 3750 struct block_device *prev_bdev = NULL; 3751 struct f2fs_sectrim_range range; 3752 pgoff_t index, pg_end, prev_index = 0; 3753 block_t prev_block = 0, len = 0; 3754 loff_t end_addr; 3755 bool to_end = false; 3756 int ret = 0; 3757 3758 if (!(filp->f_mode & FMODE_WRITE)) 3759 return -EBADF; 3760 3761 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3762 sizeof(range))) 3763 return -EFAULT; 3764 3765 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3766 !S_ISREG(inode->i_mode)) 3767 return -EINVAL; 3768 3769 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3770 !f2fs_hw_support_discard(sbi)) || 3771 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3772 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3773 return -EOPNOTSUPP; 3774 3775 file_start_write(filp); 3776 inode_lock(inode); 3777 3778 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3779 range.start >= inode->i_size) { 3780 ret = -EINVAL; 3781 goto err; 3782 } 3783 3784 if (range.len == 0) 3785 goto err; 3786 3787 if (inode->i_size - range.start > range.len) { 3788 end_addr = range.start + range.len; 3789 } else { 3790 end_addr = range.len == (u64)-1 ? 3791 sbi->sb->s_maxbytes : inode->i_size; 3792 to_end = true; 3793 } 3794 3795 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3796 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3797 ret = -EINVAL; 3798 goto err; 3799 } 3800 3801 index = F2FS_BYTES_TO_BLK(range.start); 3802 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3803 3804 ret = f2fs_convert_inline_inode(inode); 3805 if (ret) 3806 goto err; 3807 3808 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3809 filemap_invalidate_lock(mapping); 3810 3811 ret = filemap_write_and_wait_range(mapping, range.start, 3812 to_end ? LLONG_MAX : end_addr - 1); 3813 if (ret) 3814 goto out; 3815 3816 truncate_inode_pages_range(mapping, range.start, 3817 to_end ? -1 : end_addr - 1); 3818 3819 while (index < pg_end) { 3820 struct dnode_of_data dn; 3821 pgoff_t end_offset, count; 3822 int i; 3823 3824 set_new_dnode(&dn, inode, NULL, NULL, 0); 3825 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3826 if (ret) { 3827 if (ret == -ENOENT) { 3828 index = f2fs_get_next_page_offset(&dn, index); 3829 continue; 3830 } 3831 goto out; 3832 } 3833 3834 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3835 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3836 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3837 struct block_device *cur_bdev; 3838 block_t blkaddr = f2fs_data_blkaddr(&dn); 3839 3840 if (!__is_valid_data_blkaddr(blkaddr)) 3841 continue; 3842 3843 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3844 DATA_GENERIC_ENHANCE)) { 3845 ret = -EFSCORRUPTED; 3846 f2fs_put_dnode(&dn); 3847 f2fs_handle_error(sbi, 3848 ERROR_INVALID_BLKADDR); 3849 goto out; 3850 } 3851 3852 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3853 if (f2fs_is_multi_device(sbi)) { 3854 int di = f2fs_target_device_index(sbi, blkaddr); 3855 3856 blkaddr -= FDEV(di).start_blk; 3857 } 3858 3859 if (len) { 3860 if (prev_bdev == cur_bdev && 3861 index == prev_index + len && 3862 blkaddr == prev_block + len) { 3863 len++; 3864 } else { 3865 ret = f2fs_secure_erase(prev_bdev, 3866 inode, prev_index, prev_block, 3867 len, range.flags); 3868 if (ret) { 3869 f2fs_put_dnode(&dn); 3870 goto out; 3871 } 3872 3873 len = 0; 3874 } 3875 } 3876 3877 if (!len) { 3878 prev_bdev = cur_bdev; 3879 prev_index = index; 3880 prev_block = blkaddr; 3881 len = 1; 3882 } 3883 } 3884 3885 f2fs_put_dnode(&dn); 3886 3887 if (fatal_signal_pending(current)) { 3888 ret = -EINTR; 3889 goto out; 3890 } 3891 cond_resched(); 3892 } 3893 3894 if (len) 3895 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3896 prev_block, len, range.flags); 3897 out: 3898 filemap_invalidate_unlock(mapping); 3899 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3900 err: 3901 inode_unlock(inode); 3902 file_end_write(filp); 3903 3904 return ret; 3905 } 3906 3907 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3908 { 3909 struct inode *inode = file_inode(filp); 3910 struct f2fs_comp_option option; 3911 3912 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3913 return -EOPNOTSUPP; 3914 3915 inode_lock_shared(inode); 3916 3917 if (!f2fs_compressed_file(inode)) { 3918 inode_unlock_shared(inode); 3919 return -ENODATA; 3920 } 3921 3922 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3923 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3924 3925 inode_unlock_shared(inode); 3926 3927 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3928 sizeof(option))) 3929 return -EFAULT; 3930 3931 return 0; 3932 } 3933 3934 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 3935 { 3936 struct inode *inode = file_inode(filp); 3937 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3938 struct f2fs_comp_option option; 3939 int ret = 0; 3940 3941 if (!f2fs_sb_has_compression(sbi)) 3942 return -EOPNOTSUPP; 3943 3944 if (!(filp->f_mode & FMODE_WRITE)) 3945 return -EBADF; 3946 3947 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 3948 sizeof(option))) 3949 return -EFAULT; 3950 3951 if (!f2fs_compressed_file(inode) || 3952 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 3953 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 3954 option.algorithm >= COMPRESS_MAX) 3955 return -EINVAL; 3956 3957 file_start_write(filp); 3958 inode_lock(inode); 3959 3960 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 3961 ret = -EBUSY; 3962 goto out; 3963 } 3964 3965 if (F2FS_HAS_BLOCKS(inode)) { 3966 ret = -EFBIG; 3967 goto out; 3968 } 3969 3970 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 3971 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 3972 F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size); 3973 f2fs_mark_inode_dirty_sync(inode, true); 3974 3975 if (!f2fs_is_compress_backend_ready(inode)) 3976 f2fs_warn(sbi, "compression algorithm is successfully set, " 3977 "but current kernel doesn't support this algorithm."); 3978 out: 3979 inode_unlock(inode); 3980 file_end_write(filp); 3981 3982 return ret; 3983 } 3984 3985 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 3986 { 3987 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 3988 struct address_space *mapping = inode->i_mapping; 3989 struct page *page; 3990 pgoff_t redirty_idx = page_idx; 3991 int i, page_len = 0, ret = 0; 3992 3993 page_cache_ra_unbounded(&ractl, len, 0); 3994 3995 for (i = 0; i < len; i++, page_idx++) { 3996 page = read_cache_page(mapping, page_idx, NULL, NULL); 3997 if (IS_ERR(page)) { 3998 ret = PTR_ERR(page); 3999 break; 4000 } 4001 page_len++; 4002 } 4003 4004 for (i = 0; i < page_len; i++, redirty_idx++) { 4005 page = find_lock_page(mapping, redirty_idx); 4006 4007 /* It will never fail, when page has pinned above */ 4008 f2fs_bug_on(F2FS_I_SB(inode), !page); 4009 4010 set_page_dirty(page); 4011 f2fs_put_page(page, 1); 4012 f2fs_put_page(page, 0); 4013 } 4014 4015 return ret; 4016 } 4017 4018 static int f2fs_ioc_decompress_file(struct file *filp) 4019 { 4020 struct inode *inode = file_inode(filp); 4021 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4022 struct f2fs_inode_info *fi = F2FS_I(inode); 4023 pgoff_t page_idx = 0, last_idx; 4024 unsigned int blk_per_seg = sbi->blocks_per_seg; 4025 int cluster_size = fi->i_cluster_size; 4026 int count, ret; 4027 4028 if (!f2fs_sb_has_compression(sbi) || 4029 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4030 return -EOPNOTSUPP; 4031 4032 if (!(filp->f_mode & FMODE_WRITE)) 4033 return -EBADF; 4034 4035 if (!f2fs_compressed_file(inode)) 4036 return -EINVAL; 4037 4038 f2fs_balance_fs(F2FS_I_SB(inode), true); 4039 4040 file_start_write(filp); 4041 inode_lock(inode); 4042 4043 if (!f2fs_is_compress_backend_ready(inode)) { 4044 ret = -EOPNOTSUPP; 4045 goto out; 4046 } 4047 4048 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4049 ret = -EINVAL; 4050 goto out; 4051 } 4052 4053 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4054 if (ret) 4055 goto out; 4056 4057 if (!atomic_read(&fi->i_compr_blocks)) 4058 goto out; 4059 4060 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4061 4062 count = last_idx - page_idx; 4063 while (count) { 4064 int len = min(cluster_size, count); 4065 4066 ret = redirty_blocks(inode, page_idx, len); 4067 if (ret < 0) 4068 break; 4069 4070 if (get_dirty_pages(inode) >= blk_per_seg) { 4071 ret = filemap_fdatawrite(inode->i_mapping); 4072 if (ret < 0) 4073 break; 4074 } 4075 4076 count -= len; 4077 page_idx += len; 4078 } 4079 4080 if (!ret) 4081 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4082 LLONG_MAX); 4083 4084 if (ret) 4085 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4086 __func__, ret); 4087 out: 4088 inode_unlock(inode); 4089 file_end_write(filp); 4090 4091 return ret; 4092 } 4093 4094 static int f2fs_ioc_compress_file(struct file *filp) 4095 { 4096 struct inode *inode = file_inode(filp); 4097 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4098 pgoff_t page_idx = 0, last_idx; 4099 unsigned int blk_per_seg = sbi->blocks_per_seg; 4100 int cluster_size = F2FS_I(inode)->i_cluster_size; 4101 int count, ret; 4102 4103 if (!f2fs_sb_has_compression(sbi) || 4104 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4105 return -EOPNOTSUPP; 4106 4107 if (!(filp->f_mode & FMODE_WRITE)) 4108 return -EBADF; 4109 4110 if (!f2fs_compressed_file(inode)) 4111 return -EINVAL; 4112 4113 f2fs_balance_fs(F2FS_I_SB(inode), true); 4114 4115 file_start_write(filp); 4116 inode_lock(inode); 4117 4118 if (!f2fs_is_compress_backend_ready(inode)) { 4119 ret = -EOPNOTSUPP; 4120 goto out; 4121 } 4122 4123 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4124 ret = -EINVAL; 4125 goto out; 4126 } 4127 4128 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4129 if (ret) 4130 goto out; 4131 4132 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4133 4134 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4135 4136 count = last_idx - page_idx; 4137 while (count) { 4138 int len = min(cluster_size, count); 4139 4140 ret = redirty_blocks(inode, page_idx, len); 4141 if (ret < 0) 4142 break; 4143 4144 if (get_dirty_pages(inode) >= blk_per_seg) { 4145 ret = filemap_fdatawrite(inode->i_mapping); 4146 if (ret < 0) 4147 break; 4148 } 4149 4150 count -= len; 4151 page_idx += len; 4152 } 4153 4154 if (!ret) 4155 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4156 LLONG_MAX); 4157 4158 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4159 4160 if (ret) 4161 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4162 __func__, ret); 4163 out: 4164 inode_unlock(inode); 4165 file_end_write(filp); 4166 4167 return ret; 4168 } 4169 4170 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4171 { 4172 switch (cmd) { 4173 case FS_IOC_GETVERSION: 4174 return f2fs_ioc_getversion(filp, arg); 4175 case F2FS_IOC_START_ATOMIC_WRITE: 4176 return f2fs_ioc_start_atomic_write(filp, false); 4177 case F2FS_IOC_START_ATOMIC_REPLACE: 4178 return f2fs_ioc_start_atomic_write(filp, true); 4179 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4180 return f2fs_ioc_commit_atomic_write(filp); 4181 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4182 return f2fs_ioc_abort_atomic_write(filp); 4183 case F2FS_IOC_START_VOLATILE_WRITE: 4184 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4185 return -EOPNOTSUPP; 4186 case F2FS_IOC_SHUTDOWN: 4187 return f2fs_ioc_shutdown(filp, arg); 4188 case FITRIM: 4189 return f2fs_ioc_fitrim(filp, arg); 4190 case FS_IOC_SET_ENCRYPTION_POLICY: 4191 return f2fs_ioc_set_encryption_policy(filp, arg); 4192 case FS_IOC_GET_ENCRYPTION_POLICY: 4193 return f2fs_ioc_get_encryption_policy(filp, arg); 4194 case FS_IOC_GET_ENCRYPTION_PWSALT: 4195 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4196 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4197 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4198 case FS_IOC_ADD_ENCRYPTION_KEY: 4199 return f2fs_ioc_add_encryption_key(filp, arg); 4200 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4201 return f2fs_ioc_remove_encryption_key(filp, arg); 4202 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4203 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4204 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4205 return f2fs_ioc_get_encryption_key_status(filp, arg); 4206 case FS_IOC_GET_ENCRYPTION_NONCE: 4207 return f2fs_ioc_get_encryption_nonce(filp, arg); 4208 case F2FS_IOC_GARBAGE_COLLECT: 4209 return f2fs_ioc_gc(filp, arg); 4210 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4211 return f2fs_ioc_gc_range(filp, arg); 4212 case F2FS_IOC_WRITE_CHECKPOINT: 4213 return f2fs_ioc_write_checkpoint(filp); 4214 case F2FS_IOC_DEFRAGMENT: 4215 return f2fs_ioc_defragment(filp, arg); 4216 case F2FS_IOC_MOVE_RANGE: 4217 return f2fs_ioc_move_range(filp, arg); 4218 case F2FS_IOC_FLUSH_DEVICE: 4219 return f2fs_ioc_flush_device(filp, arg); 4220 case F2FS_IOC_GET_FEATURES: 4221 return f2fs_ioc_get_features(filp, arg); 4222 case F2FS_IOC_GET_PIN_FILE: 4223 return f2fs_ioc_get_pin_file(filp, arg); 4224 case F2FS_IOC_SET_PIN_FILE: 4225 return f2fs_ioc_set_pin_file(filp, arg); 4226 case F2FS_IOC_PRECACHE_EXTENTS: 4227 return f2fs_ioc_precache_extents(filp); 4228 case F2FS_IOC_RESIZE_FS: 4229 return f2fs_ioc_resize_fs(filp, arg); 4230 case FS_IOC_ENABLE_VERITY: 4231 return f2fs_ioc_enable_verity(filp, arg); 4232 case FS_IOC_MEASURE_VERITY: 4233 return f2fs_ioc_measure_verity(filp, arg); 4234 case FS_IOC_READ_VERITY_METADATA: 4235 return f2fs_ioc_read_verity_metadata(filp, arg); 4236 case FS_IOC_GETFSLABEL: 4237 return f2fs_ioc_getfslabel(filp, arg); 4238 case FS_IOC_SETFSLABEL: 4239 return f2fs_ioc_setfslabel(filp, arg); 4240 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4241 return f2fs_get_compress_blocks(filp, arg); 4242 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4243 return f2fs_release_compress_blocks(filp, arg); 4244 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4245 return f2fs_reserve_compress_blocks(filp, arg); 4246 case F2FS_IOC_SEC_TRIM_FILE: 4247 return f2fs_sec_trim_file(filp, arg); 4248 case F2FS_IOC_GET_COMPRESS_OPTION: 4249 return f2fs_ioc_get_compress_option(filp, arg); 4250 case F2FS_IOC_SET_COMPRESS_OPTION: 4251 return f2fs_ioc_set_compress_option(filp, arg); 4252 case F2FS_IOC_DECOMPRESS_FILE: 4253 return f2fs_ioc_decompress_file(filp); 4254 case F2FS_IOC_COMPRESS_FILE: 4255 return f2fs_ioc_compress_file(filp); 4256 default: 4257 return -ENOTTY; 4258 } 4259 } 4260 4261 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4262 { 4263 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4264 return -EIO; 4265 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4266 return -ENOSPC; 4267 4268 return __f2fs_ioctl(filp, cmd, arg); 4269 } 4270 4271 /* 4272 * Return %true if the given read or write request should use direct I/O, or 4273 * %false if it should use buffered I/O. 4274 */ 4275 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4276 struct iov_iter *iter) 4277 { 4278 unsigned int align; 4279 4280 if (!(iocb->ki_flags & IOCB_DIRECT)) 4281 return false; 4282 4283 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) 4284 return false; 4285 4286 /* 4287 * Direct I/O not aligned to the disk's logical_block_size will be 4288 * attempted, but will fail with -EINVAL. 4289 * 4290 * f2fs additionally requires that direct I/O be aligned to the 4291 * filesystem block size, which is often a stricter requirement. 4292 * However, f2fs traditionally falls back to buffered I/O on requests 4293 * that are logical_block_size-aligned but not fs-block aligned. 4294 * 4295 * The below logic implements this behavior. 4296 */ 4297 align = iocb->ki_pos | iov_iter_alignment(iter); 4298 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4299 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4300 return false; 4301 4302 return true; 4303 } 4304 4305 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4306 unsigned int flags) 4307 { 4308 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4309 4310 dec_page_count(sbi, F2FS_DIO_READ); 4311 if (error) 4312 return error; 4313 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size); 4314 return 0; 4315 } 4316 4317 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4318 .end_io = f2fs_dio_read_end_io, 4319 }; 4320 4321 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4322 { 4323 struct file *file = iocb->ki_filp; 4324 struct inode *inode = file_inode(file); 4325 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4326 struct f2fs_inode_info *fi = F2FS_I(inode); 4327 const loff_t pos = iocb->ki_pos; 4328 const size_t count = iov_iter_count(to); 4329 struct iomap_dio *dio; 4330 ssize_t ret; 4331 4332 if (count == 0) 4333 return 0; /* skip atime update */ 4334 4335 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4336 4337 if (iocb->ki_flags & IOCB_NOWAIT) { 4338 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4339 ret = -EAGAIN; 4340 goto out; 4341 } 4342 } else { 4343 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4344 } 4345 4346 /* 4347 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4348 * the higher-level function iomap_dio_rw() in order to ensure that the 4349 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4350 */ 4351 inc_page_count(sbi, F2FS_DIO_READ); 4352 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4353 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4354 if (IS_ERR_OR_NULL(dio)) { 4355 ret = PTR_ERR_OR_ZERO(dio); 4356 if (ret != -EIOCBQUEUED) 4357 dec_page_count(sbi, F2FS_DIO_READ); 4358 } else { 4359 ret = iomap_dio_complete(dio); 4360 } 4361 4362 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4363 4364 file_accessed(file); 4365 out: 4366 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4367 return ret; 4368 } 4369 4370 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count, 4371 int rw) 4372 { 4373 struct inode *inode = file_inode(file); 4374 char *buf, *path; 4375 4376 buf = f2fs_getname(F2FS_I_SB(inode)); 4377 if (!buf) 4378 return; 4379 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX); 4380 if (IS_ERR(path)) 4381 goto free_buf; 4382 if (rw == WRITE) 4383 trace_f2fs_datawrite_start(inode, pos, count, 4384 current->pid, path, current->comm); 4385 else 4386 trace_f2fs_dataread_start(inode, pos, count, 4387 current->pid, path, current->comm); 4388 free_buf: 4389 f2fs_putname(buf); 4390 } 4391 4392 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4393 { 4394 struct inode *inode = file_inode(iocb->ki_filp); 4395 const loff_t pos = iocb->ki_pos; 4396 ssize_t ret; 4397 4398 if (!f2fs_is_compress_backend_ready(inode)) 4399 return -EOPNOTSUPP; 4400 4401 if (trace_f2fs_dataread_start_enabled()) 4402 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 4403 iov_iter_count(to), READ); 4404 4405 if (f2fs_should_use_dio(inode, iocb, to)) { 4406 ret = f2fs_dio_read_iter(iocb, to); 4407 } else { 4408 ret = filemap_read(iocb, to, 0); 4409 if (ret > 0) 4410 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4411 APP_BUFFERED_READ_IO, ret); 4412 } 4413 if (trace_f2fs_dataread_end_enabled()) 4414 trace_f2fs_dataread_end(inode, pos, ret); 4415 return ret; 4416 } 4417 4418 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos, 4419 struct pipe_inode_info *pipe, 4420 size_t len, unsigned int flags) 4421 { 4422 struct inode *inode = file_inode(in); 4423 const loff_t pos = *ppos; 4424 ssize_t ret; 4425 4426 if (!f2fs_is_compress_backend_ready(inode)) 4427 return -EOPNOTSUPP; 4428 4429 if (trace_f2fs_dataread_start_enabled()) 4430 f2fs_trace_rw_file_path(in, pos, len, READ); 4431 4432 ret = filemap_splice_read(in, ppos, pipe, len, flags); 4433 if (ret > 0) 4434 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4435 APP_BUFFERED_READ_IO, ret); 4436 4437 if (trace_f2fs_dataread_end_enabled()) 4438 trace_f2fs_dataread_end(inode, pos, ret); 4439 return ret; 4440 } 4441 4442 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4443 { 4444 struct file *file = iocb->ki_filp; 4445 struct inode *inode = file_inode(file); 4446 ssize_t count; 4447 int err; 4448 4449 if (IS_IMMUTABLE(inode)) 4450 return -EPERM; 4451 4452 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4453 return -EPERM; 4454 4455 count = generic_write_checks(iocb, from); 4456 if (count <= 0) 4457 return count; 4458 4459 err = file_modified(file); 4460 if (err) 4461 return err; 4462 return count; 4463 } 4464 4465 /* 4466 * Preallocate blocks for a write request, if it is possible and helpful to do 4467 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4468 * blocks were preallocated, or a negative errno value if something went 4469 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4470 * requested blocks (not just some of them) have been allocated. 4471 */ 4472 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4473 bool dio) 4474 { 4475 struct inode *inode = file_inode(iocb->ki_filp); 4476 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4477 const loff_t pos = iocb->ki_pos; 4478 const size_t count = iov_iter_count(iter); 4479 struct f2fs_map_blocks map = {}; 4480 int flag; 4481 int ret; 4482 4483 /* If it will be an out-of-place direct write, don't bother. */ 4484 if (dio && f2fs_lfs_mode(sbi)) 4485 return 0; 4486 /* 4487 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4488 * buffered IO, if DIO meets any holes. 4489 */ 4490 if (dio && i_size_read(inode) && 4491 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4492 return 0; 4493 4494 /* No-wait I/O can't allocate blocks. */ 4495 if (iocb->ki_flags & IOCB_NOWAIT) 4496 return 0; 4497 4498 /* If it will be a short write, don't bother. */ 4499 if (fault_in_iov_iter_readable(iter, count)) 4500 return 0; 4501 4502 if (f2fs_has_inline_data(inode)) { 4503 /* If the data will fit inline, don't bother. */ 4504 if (pos + count <= MAX_INLINE_DATA(inode)) 4505 return 0; 4506 ret = f2fs_convert_inline_inode(inode); 4507 if (ret) 4508 return ret; 4509 } 4510 4511 /* Do not preallocate blocks that will be written partially in 4KB. */ 4512 map.m_lblk = F2FS_BLK_ALIGN(pos); 4513 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4514 if (map.m_len > map.m_lblk) 4515 map.m_len -= map.m_lblk; 4516 else 4517 map.m_len = 0; 4518 map.m_may_create = true; 4519 if (dio) { 4520 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4521 flag = F2FS_GET_BLOCK_PRE_DIO; 4522 } else { 4523 map.m_seg_type = NO_CHECK_TYPE; 4524 flag = F2FS_GET_BLOCK_PRE_AIO; 4525 } 4526 4527 ret = f2fs_map_blocks(inode, &map, flag); 4528 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4529 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4530 return ret; 4531 if (ret == 0) 4532 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4533 return map.m_len; 4534 } 4535 4536 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4537 struct iov_iter *from) 4538 { 4539 struct file *file = iocb->ki_filp; 4540 struct inode *inode = file_inode(file); 4541 ssize_t ret; 4542 4543 if (iocb->ki_flags & IOCB_NOWAIT) 4544 return -EOPNOTSUPP; 4545 4546 ret = generic_perform_write(iocb, from); 4547 4548 if (ret > 0) { 4549 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4550 APP_BUFFERED_IO, ret); 4551 } 4552 return ret; 4553 } 4554 4555 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4556 unsigned int flags) 4557 { 4558 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4559 4560 dec_page_count(sbi, F2FS_DIO_WRITE); 4561 if (error) 4562 return error; 4563 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size); 4564 return 0; 4565 } 4566 4567 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4568 .end_io = f2fs_dio_write_end_io, 4569 }; 4570 4571 static void f2fs_flush_buffered_write(struct address_space *mapping, 4572 loff_t start_pos, loff_t end_pos) 4573 { 4574 int ret; 4575 4576 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos); 4577 if (ret < 0) 4578 return; 4579 invalidate_mapping_pages(mapping, 4580 start_pos >> PAGE_SHIFT, 4581 end_pos >> PAGE_SHIFT); 4582 } 4583 4584 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4585 bool *may_need_sync) 4586 { 4587 struct file *file = iocb->ki_filp; 4588 struct inode *inode = file_inode(file); 4589 struct f2fs_inode_info *fi = F2FS_I(inode); 4590 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4591 const bool do_opu = f2fs_lfs_mode(sbi); 4592 const loff_t pos = iocb->ki_pos; 4593 const ssize_t count = iov_iter_count(from); 4594 unsigned int dio_flags; 4595 struct iomap_dio *dio; 4596 ssize_t ret; 4597 4598 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4599 4600 if (iocb->ki_flags & IOCB_NOWAIT) { 4601 /* f2fs_convert_inline_inode() and block allocation can block */ 4602 if (f2fs_has_inline_data(inode) || 4603 !f2fs_overwrite_io(inode, pos, count)) { 4604 ret = -EAGAIN; 4605 goto out; 4606 } 4607 4608 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4609 ret = -EAGAIN; 4610 goto out; 4611 } 4612 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4613 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4614 ret = -EAGAIN; 4615 goto out; 4616 } 4617 } else { 4618 ret = f2fs_convert_inline_inode(inode); 4619 if (ret) 4620 goto out; 4621 4622 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4623 if (do_opu) 4624 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4625 } 4626 4627 /* 4628 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4629 * the higher-level function iomap_dio_rw() in order to ensure that the 4630 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4631 */ 4632 inc_page_count(sbi, F2FS_DIO_WRITE); 4633 dio_flags = 0; 4634 if (pos + count > inode->i_size) 4635 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4636 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4637 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4638 if (IS_ERR_OR_NULL(dio)) { 4639 ret = PTR_ERR_OR_ZERO(dio); 4640 if (ret == -ENOTBLK) 4641 ret = 0; 4642 if (ret != -EIOCBQUEUED) 4643 dec_page_count(sbi, F2FS_DIO_WRITE); 4644 } else { 4645 ret = iomap_dio_complete(dio); 4646 } 4647 4648 if (do_opu) 4649 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4650 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4651 4652 if (ret < 0) 4653 goto out; 4654 if (pos + ret > inode->i_size) 4655 f2fs_i_size_write(inode, pos + ret); 4656 if (!do_opu) 4657 set_inode_flag(inode, FI_UPDATE_WRITE); 4658 4659 if (iov_iter_count(from)) { 4660 ssize_t ret2; 4661 loff_t bufio_start_pos = iocb->ki_pos; 4662 4663 /* 4664 * The direct write was partial, so we need to fall back to a 4665 * buffered write for the remainder. 4666 */ 4667 4668 ret2 = f2fs_buffered_write_iter(iocb, from); 4669 if (iov_iter_count(from)) 4670 f2fs_write_failed(inode, iocb->ki_pos); 4671 if (ret2 < 0) 4672 goto out; 4673 4674 /* 4675 * Ensure that the pagecache pages are written to disk and 4676 * invalidated to preserve the expected O_DIRECT semantics. 4677 */ 4678 if (ret2 > 0) { 4679 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4680 4681 ret += ret2; 4682 4683 f2fs_flush_buffered_write(file->f_mapping, 4684 bufio_start_pos, 4685 bufio_end_pos); 4686 } 4687 } else { 4688 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4689 *may_need_sync = false; 4690 } 4691 out: 4692 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4693 return ret; 4694 } 4695 4696 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4697 { 4698 struct inode *inode = file_inode(iocb->ki_filp); 4699 const loff_t orig_pos = iocb->ki_pos; 4700 const size_t orig_count = iov_iter_count(from); 4701 loff_t target_size; 4702 bool dio; 4703 bool may_need_sync = true; 4704 int preallocated; 4705 ssize_t ret; 4706 4707 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4708 ret = -EIO; 4709 goto out; 4710 } 4711 4712 if (!f2fs_is_compress_backend_ready(inode)) { 4713 ret = -EOPNOTSUPP; 4714 goto out; 4715 } 4716 4717 if (iocb->ki_flags & IOCB_NOWAIT) { 4718 if (!inode_trylock(inode)) { 4719 ret = -EAGAIN; 4720 goto out; 4721 } 4722 } else { 4723 inode_lock(inode); 4724 } 4725 4726 ret = f2fs_write_checks(iocb, from); 4727 if (ret <= 0) 4728 goto out_unlock; 4729 4730 /* Determine whether we will do a direct write or a buffered write. */ 4731 dio = f2fs_should_use_dio(inode, iocb, from); 4732 4733 /* Possibly preallocate the blocks for the write. */ 4734 target_size = iocb->ki_pos + iov_iter_count(from); 4735 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 4736 if (preallocated < 0) { 4737 ret = preallocated; 4738 } else { 4739 if (trace_f2fs_datawrite_start_enabled()) 4740 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 4741 orig_count, WRITE); 4742 4743 /* Do the actual write. */ 4744 ret = dio ? 4745 f2fs_dio_write_iter(iocb, from, &may_need_sync) : 4746 f2fs_buffered_write_iter(iocb, from); 4747 4748 if (trace_f2fs_datawrite_end_enabled()) 4749 trace_f2fs_datawrite_end(inode, orig_pos, ret); 4750 } 4751 4752 /* Don't leave any preallocated blocks around past i_size. */ 4753 if (preallocated && i_size_read(inode) < target_size) { 4754 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4755 filemap_invalidate_lock(inode->i_mapping); 4756 if (!f2fs_truncate(inode)) 4757 file_dont_truncate(inode); 4758 filemap_invalidate_unlock(inode->i_mapping); 4759 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4760 } else { 4761 file_dont_truncate(inode); 4762 } 4763 4764 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 4765 out_unlock: 4766 inode_unlock(inode); 4767 out: 4768 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 4769 4770 if (ret > 0 && may_need_sync) 4771 ret = generic_write_sync(iocb, ret); 4772 4773 /* If buffered IO was forced, flush and drop the data from 4774 * the page cache to preserve O_DIRECT semantics 4775 */ 4776 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT)) 4777 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping, 4778 orig_pos, 4779 orig_pos + ret - 1); 4780 4781 return ret; 4782 } 4783 4784 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 4785 int advice) 4786 { 4787 struct address_space *mapping; 4788 struct backing_dev_info *bdi; 4789 struct inode *inode = file_inode(filp); 4790 int err; 4791 4792 if (advice == POSIX_FADV_SEQUENTIAL) { 4793 if (S_ISFIFO(inode->i_mode)) 4794 return -ESPIPE; 4795 4796 mapping = filp->f_mapping; 4797 if (!mapping || len < 0) 4798 return -EINVAL; 4799 4800 bdi = inode_to_bdi(mapping->host); 4801 filp->f_ra.ra_pages = bdi->ra_pages * 4802 F2FS_I_SB(inode)->seq_file_ra_mul; 4803 spin_lock(&filp->f_lock); 4804 filp->f_mode &= ~FMODE_RANDOM; 4805 spin_unlock(&filp->f_lock); 4806 return 0; 4807 } 4808 4809 err = generic_fadvise(filp, offset, len, advice); 4810 if (!err && advice == POSIX_FADV_DONTNEED && 4811 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 4812 f2fs_compressed_file(inode)) 4813 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 4814 4815 return err; 4816 } 4817 4818 #ifdef CONFIG_COMPAT 4819 struct compat_f2fs_gc_range { 4820 u32 sync; 4821 compat_u64 start; 4822 compat_u64 len; 4823 }; 4824 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4825 struct compat_f2fs_gc_range) 4826 4827 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4828 { 4829 struct compat_f2fs_gc_range __user *urange; 4830 struct f2fs_gc_range range; 4831 int err; 4832 4833 urange = compat_ptr(arg); 4834 err = get_user(range.sync, &urange->sync); 4835 err |= get_user(range.start, &urange->start); 4836 err |= get_user(range.len, &urange->len); 4837 if (err) 4838 return -EFAULT; 4839 4840 return __f2fs_ioc_gc_range(file, &range); 4841 } 4842 4843 struct compat_f2fs_move_range { 4844 u32 dst_fd; 4845 compat_u64 pos_in; 4846 compat_u64 pos_out; 4847 compat_u64 len; 4848 }; 4849 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4850 struct compat_f2fs_move_range) 4851 4852 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4853 { 4854 struct compat_f2fs_move_range __user *urange; 4855 struct f2fs_move_range range; 4856 int err; 4857 4858 urange = compat_ptr(arg); 4859 err = get_user(range.dst_fd, &urange->dst_fd); 4860 err |= get_user(range.pos_in, &urange->pos_in); 4861 err |= get_user(range.pos_out, &urange->pos_out); 4862 err |= get_user(range.len, &urange->len); 4863 if (err) 4864 return -EFAULT; 4865 4866 return __f2fs_ioc_move_range(file, &range); 4867 } 4868 4869 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4870 { 4871 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4872 return -EIO; 4873 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4874 return -ENOSPC; 4875 4876 switch (cmd) { 4877 case FS_IOC32_GETVERSION: 4878 cmd = FS_IOC_GETVERSION; 4879 break; 4880 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4881 return f2fs_compat_ioc_gc_range(file, arg); 4882 case F2FS_IOC32_MOVE_RANGE: 4883 return f2fs_compat_ioc_move_range(file, arg); 4884 case F2FS_IOC_START_ATOMIC_WRITE: 4885 case F2FS_IOC_START_ATOMIC_REPLACE: 4886 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4887 case F2FS_IOC_START_VOLATILE_WRITE: 4888 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4889 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4890 case F2FS_IOC_SHUTDOWN: 4891 case FITRIM: 4892 case FS_IOC_SET_ENCRYPTION_POLICY: 4893 case FS_IOC_GET_ENCRYPTION_PWSALT: 4894 case FS_IOC_GET_ENCRYPTION_POLICY: 4895 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4896 case FS_IOC_ADD_ENCRYPTION_KEY: 4897 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4898 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4899 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4900 case FS_IOC_GET_ENCRYPTION_NONCE: 4901 case F2FS_IOC_GARBAGE_COLLECT: 4902 case F2FS_IOC_WRITE_CHECKPOINT: 4903 case F2FS_IOC_DEFRAGMENT: 4904 case F2FS_IOC_FLUSH_DEVICE: 4905 case F2FS_IOC_GET_FEATURES: 4906 case F2FS_IOC_GET_PIN_FILE: 4907 case F2FS_IOC_SET_PIN_FILE: 4908 case F2FS_IOC_PRECACHE_EXTENTS: 4909 case F2FS_IOC_RESIZE_FS: 4910 case FS_IOC_ENABLE_VERITY: 4911 case FS_IOC_MEASURE_VERITY: 4912 case FS_IOC_READ_VERITY_METADATA: 4913 case FS_IOC_GETFSLABEL: 4914 case FS_IOC_SETFSLABEL: 4915 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4916 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4917 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4918 case F2FS_IOC_SEC_TRIM_FILE: 4919 case F2FS_IOC_GET_COMPRESS_OPTION: 4920 case F2FS_IOC_SET_COMPRESS_OPTION: 4921 case F2FS_IOC_DECOMPRESS_FILE: 4922 case F2FS_IOC_COMPRESS_FILE: 4923 break; 4924 default: 4925 return -ENOIOCTLCMD; 4926 } 4927 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4928 } 4929 #endif 4930 4931 const struct file_operations f2fs_file_operations = { 4932 .llseek = f2fs_llseek, 4933 .read_iter = f2fs_file_read_iter, 4934 .write_iter = f2fs_file_write_iter, 4935 .iopoll = iocb_bio_iopoll, 4936 .open = f2fs_file_open, 4937 .release = f2fs_release_file, 4938 .mmap = f2fs_file_mmap, 4939 .flush = f2fs_file_flush, 4940 .fsync = f2fs_sync_file, 4941 .fallocate = f2fs_fallocate, 4942 .unlocked_ioctl = f2fs_ioctl, 4943 #ifdef CONFIG_COMPAT 4944 .compat_ioctl = f2fs_compat_ioctl, 4945 #endif 4946 .splice_read = f2fs_file_splice_read, 4947 .splice_write = iter_file_splice_write, 4948 .fadvise = f2fs_file_fadvise, 4949 }; 4950