xref: /openbmc/linux/fs/f2fs/file.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/random.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33 
34 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
35 						struct vm_fault *vmf)
36 {
37 	struct page *page = vmf->page;
38 	struct inode *inode = file_inode(vma->vm_file);
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	struct dnode_of_data dn;
41 	int err;
42 
43 	sb_start_pagefault(inode->i_sb);
44 
45 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
46 
47 	/* block allocation */
48 	f2fs_lock_op(sbi);
49 	set_new_dnode(&dn, inode, NULL, NULL, 0);
50 	err = f2fs_reserve_block(&dn, page->index);
51 	if (err) {
52 		f2fs_unlock_op(sbi);
53 		goto out;
54 	}
55 	f2fs_put_dnode(&dn);
56 	f2fs_unlock_op(sbi);
57 
58 	f2fs_balance_fs(sbi, dn.node_changed);
59 
60 	file_update_time(vma->vm_file);
61 	lock_page(page);
62 	if (unlikely(page->mapping != inode->i_mapping ||
63 			page_offset(page) > i_size_read(inode) ||
64 			!PageUptodate(page))) {
65 		unlock_page(page);
66 		err = -EFAULT;
67 		goto out;
68 	}
69 
70 	/*
71 	 * check to see if the page is mapped already (no holes)
72 	 */
73 	if (PageMappedToDisk(page))
74 		goto mapped;
75 
76 	/* page is wholly or partially inside EOF */
77 	if (((loff_t)(page->index + 1) << PAGE_CACHE_SHIFT) >
78 						i_size_read(inode)) {
79 		unsigned offset;
80 		offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
81 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
82 	}
83 	set_page_dirty(page);
84 	SetPageUptodate(page);
85 
86 	trace_f2fs_vm_page_mkwrite(page, DATA);
87 mapped:
88 	/* fill the page */
89 	f2fs_wait_on_page_writeback(page, DATA);
90 
91 	/* wait for GCed encrypted page writeback */
92 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
93 		f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
94 
95 	/* if gced page is attached, don't write to cold segment */
96 	clear_cold_data(page);
97 out:
98 	sb_end_pagefault(inode->i_sb);
99 	f2fs_update_time(sbi, REQ_TIME);
100 	return block_page_mkwrite_return(err);
101 }
102 
103 static const struct vm_operations_struct f2fs_file_vm_ops = {
104 	.fault		= filemap_fault,
105 	.map_pages	= filemap_map_pages,
106 	.page_mkwrite	= f2fs_vm_page_mkwrite,
107 };
108 
109 static int get_parent_ino(struct inode *inode, nid_t *pino)
110 {
111 	struct dentry *dentry;
112 
113 	inode = igrab(inode);
114 	dentry = d_find_any_alias(inode);
115 	iput(inode);
116 	if (!dentry)
117 		return 0;
118 
119 	if (update_dent_inode(inode, inode, &dentry->d_name)) {
120 		dput(dentry);
121 		return 0;
122 	}
123 
124 	*pino = parent_ino(dentry);
125 	dput(dentry);
126 	return 1;
127 }
128 
129 static inline bool need_do_checkpoint(struct inode *inode)
130 {
131 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
132 	bool need_cp = false;
133 
134 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
135 		need_cp = true;
136 	else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
137 		need_cp = true;
138 	else if (file_wrong_pino(inode))
139 		need_cp = true;
140 	else if (!space_for_roll_forward(sbi))
141 		need_cp = true;
142 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
143 		need_cp = true;
144 	else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
145 		need_cp = true;
146 	else if (test_opt(sbi, FASTBOOT))
147 		need_cp = true;
148 	else if (sbi->active_logs == 2)
149 		need_cp = true;
150 
151 	return need_cp;
152 }
153 
154 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
155 {
156 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
157 	bool ret = false;
158 	/* But we need to avoid that there are some inode updates */
159 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
160 		ret = true;
161 	f2fs_put_page(i, 0);
162 	return ret;
163 }
164 
165 static void try_to_fix_pino(struct inode *inode)
166 {
167 	struct f2fs_inode_info *fi = F2FS_I(inode);
168 	nid_t pino;
169 
170 	down_write(&fi->i_sem);
171 	fi->xattr_ver = 0;
172 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
173 			get_parent_ino(inode, &pino)) {
174 		fi->i_pino = pino;
175 		file_got_pino(inode);
176 		up_write(&fi->i_sem);
177 
178 		mark_inode_dirty_sync(inode);
179 		f2fs_write_inode(inode, NULL);
180 	} else {
181 		up_write(&fi->i_sem);
182 	}
183 }
184 
185 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
186 {
187 	struct inode *inode = file->f_mapping->host;
188 	struct f2fs_inode_info *fi = F2FS_I(inode);
189 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 	nid_t ino = inode->i_ino;
191 	int ret = 0;
192 	bool need_cp = false;
193 	struct writeback_control wbc = {
194 		.sync_mode = WB_SYNC_ALL,
195 		.nr_to_write = LONG_MAX,
196 		.for_reclaim = 0,
197 	};
198 
199 	if (unlikely(f2fs_readonly(inode->i_sb)))
200 		return 0;
201 
202 	trace_f2fs_sync_file_enter(inode);
203 
204 	/* if fdatasync is triggered, let's do in-place-update */
205 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
206 		set_inode_flag(fi, FI_NEED_IPU);
207 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
208 	clear_inode_flag(fi, FI_NEED_IPU);
209 
210 	if (ret) {
211 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
212 		return ret;
213 	}
214 
215 	/* if the inode is dirty, let's recover all the time */
216 	if (!datasync) {
217 		f2fs_write_inode(inode, NULL);
218 		goto go_write;
219 	}
220 
221 	/*
222 	 * if there is no written data, don't waste time to write recovery info.
223 	 */
224 	if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
225 			!exist_written_data(sbi, ino, APPEND_INO)) {
226 
227 		/* it may call write_inode just prior to fsync */
228 		if (need_inode_page_update(sbi, ino))
229 			goto go_write;
230 
231 		if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
232 				exist_written_data(sbi, ino, UPDATE_INO))
233 			goto flush_out;
234 		goto out;
235 	}
236 go_write:
237 	/*
238 	 * Both of fdatasync() and fsync() are able to be recovered from
239 	 * sudden-power-off.
240 	 */
241 	down_read(&fi->i_sem);
242 	need_cp = need_do_checkpoint(inode);
243 	up_read(&fi->i_sem);
244 
245 	if (need_cp) {
246 		/* all the dirty node pages should be flushed for POR */
247 		ret = f2fs_sync_fs(inode->i_sb, 1);
248 
249 		/*
250 		 * We've secured consistency through sync_fs. Following pino
251 		 * will be used only for fsynced inodes after checkpoint.
252 		 */
253 		try_to_fix_pino(inode);
254 		clear_inode_flag(fi, FI_APPEND_WRITE);
255 		clear_inode_flag(fi, FI_UPDATE_WRITE);
256 		goto out;
257 	}
258 sync_nodes:
259 	sync_node_pages(sbi, ino, &wbc);
260 
261 	/* if cp_error was enabled, we should avoid infinite loop */
262 	if (unlikely(f2fs_cp_error(sbi))) {
263 		ret = -EIO;
264 		goto out;
265 	}
266 
267 	if (need_inode_block_update(sbi, ino)) {
268 		mark_inode_dirty_sync(inode);
269 		f2fs_write_inode(inode, NULL);
270 		goto sync_nodes;
271 	}
272 
273 	ret = wait_on_node_pages_writeback(sbi, ino);
274 	if (ret)
275 		goto out;
276 
277 	/* once recovery info is written, don't need to tack this */
278 	remove_ino_entry(sbi, ino, APPEND_INO);
279 	clear_inode_flag(fi, FI_APPEND_WRITE);
280 flush_out:
281 	remove_ino_entry(sbi, ino, UPDATE_INO);
282 	clear_inode_flag(fi, FI_UPDATE_WRITE);
283 	ret = f2fs_issue_flush(sbi);
284 	f2fs_update_time(sbi, REQ_TIME);
285 out:
286 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
287 	f2fs_trace_ios(NULL, 1);
288 	return ret;
289 }
290 
291 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
292 						pgoff_t pgofs, int whence)
293 {
294 	struct pagevec pvec;
295 	int nr_pages;
296 
297 	if (whence != SEEK_DATA)
298 		return 0;
299 
300 	/* find first dirty page index */
301 	pagevec_init(&pvec, 0);
302 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
303 					PAGECACHE_TAG_DIRTY, 1);
304 	pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
305 	pagevec_release(&pvec);
306 	return pgofs;
307 }
308 
309 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
310 							int whence)
311 {
312 	switch (whence) {
313 	case SEEK_DATA:
314 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
315 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
316 			return true;
317 		break;
318 	case SEEK_HOLE:
319 		if (blkaddr == NULL_ADDR)
320 			return true;
321 		break;
322 	}
323 	return false;
324 }
325 
326 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
327 {
328 	struct inode *inode = file->f_mapping->host;
329 	loff_t maxbytes = inode->i_sb->s_maxbytes;
330 	struct dnode_of_data dn;
331 	pgoff_t pgofs, end_offset, dirty;
332 	loff_t data_ofs = offset;
333 	loff_t isize;
334 	int err = 0;
335 
336 	inode_lock(inode);
337 
338 	isize = i_size_read(inode);
339 	if (offset >= isize)
340 		goto fail;
341 
342 	/* handle inline data case */
343 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
344 		if (whence == SEEK_HOLE)
345 			data_ofs = isize;
346 		goto found;
347 	}
348 
349 	pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
350 
351 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
352 
353 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
354 		set_new_dnode(&dn, inode, NULL, NULL, 0);
355 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
356 		if (err && err != -ENOENT) {
357 			goto fail;
358 		} else if (err == -ENOENT) {
359 			/* direct node does not exists */
360 			if (whence == SEEK_DATA) {
361 				pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
362 							F2FS_I(inode));
363 				continue;
364 			} else {
365 				goto found;
366 			}
367 		}
368 
369 		end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
370 
371 		/* find data/hole in dnode block */
372 		for (; dn.ofs_in_node < end_offset;
373 				dn.ofs_in_node++, pgofs++,
374 				data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
375 			block_t blkaddr;
376 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
377 
378 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
379 				f2fs_put_dnode(&dn);
380 				goto found;
381 			}
382 		}
383 		f2fs_put_dnode(&dn);
384 	}
385 
386 	if (whence == SEEK_DATA)
387 		goto fail;
388 found:
389 	if (whence == SEEK_HOLE && data_ofs > isize)
390 		data_ofs = isize;
391 	inode_unlock(inode);
392 	return vfs_setpos(file, data_ofs, maxbytes);
393 fail:
394 	inode_unlock(inode);
395 	return -ENXIO;
396 }
397 
398 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
399 {
400 	struct inode *inode = file->f_mapping->host;
401 	loff_t maxbytes = inode->i_sb->s_maxbytes;
402 
403 	switch (whence) {
404 	case SEEK_SET:
405 	case SEEK_CUR:
406 	case SEEK_END:
407 		return generic_file_llseek_size(file, offset, whence,
408 						maxbytes, i_size_read(inode));
409 	case SEEK_DATA:
410 	case SEEK_HOLE:
411 		if (offset < 0)
412 			return -ENXIO;
413 		return f2fs_seek_block(file, offset, whence);
414 	}
415 
416 	return -EINVAL;
417 }
418 
419 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
420 {
421 	struct inode *inode = file_inode(file);
422 	int err;
423 
424 	if (f2fs_encrypted_inode(inode)) {
425 		err = f2fs_get_encryption_info(inode);
426 		if (err)
427 			return 0;
428 	}
429 
430 	/* we don't need to use inline_data strictly */
431 	err = f2fs_convert_inline_inode(inode);
432 	if (err)
433 		return err;
434 
435 	file_accessed(file);
436 	vma->vm_ops = &f2fs_file_vm_ops;
437 	return 0;
438 }
439 
440 static int f2fs_file_open(struct inode *inode, struct file *filp)
441 {
442 	int ret = generic_file_open(inode, filp);
443 
444 	if (!ret && f2fs_encrypted_inode(inode)) {
445 		ret = f2fs_get_encryption_info(inode);
446 		if (ret)
447 			ret = -EACCES;
448 	}
449 	return ret;
450 }
451 
452 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
453 {
454 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
455 	struct f2fs_node *raw_node;
456 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
457 	__le32 *addr;
458 
459 	raw_node = F2FS_NODE(dn->node_page);
460 	addr = blkaddr_in_node(raw_node) + ofs;
461 
462 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
463 		block_t blkaddr = le32_to_cpu(*addr);
464 		if (blkaddr == NULL_ADDR)
465 			continue;
466 
467 		dn->data_blkaddr = NULL_ADDR;
468 		set_data_blkaddr(dn);
469 		invalidate_blocks(sbi, blkaddr);
470 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
471 			clear_inode_flag(F2FS_I(dn->inode),
472 						FI_FIRST_BLOCK_WRITTEN);
473 		nr_free++;
474 	}
475 
476 	if (nr_free) {
477 		pgoff_t fofs;
478 		/*
479 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
480 		 * we will invalidate all blkaddr in the whole range.
481 		 */
482 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
483 						F2FS_I(dn->inode)) + ofs;
484 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
485 		dec_valid_block_count(sbi, dn->inode, nr_free);
486 		sync_inode_page(dn);
487 	}
488 	dn->ofs_in_node = ofs;
489 
490 	f2fs_update_time(sbi, REQ_TIME);
491 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
492 					 dn->ofs_in_node, nr_free);
493 	return nr_free;
494 }
495 
496 void truncate_data_blocks(struct dnode_of_data *dn)
497 {
498 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
499 }
500 
501 static int truncate_partial_data_page(struct inode *inode, u64 from,
502 								bool cache_only)
503 {
504 	unsigned offset = from & (PAGE_CACHE_SIZE - 1);
505 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
506 	struct address_space *mapping = inode->i_mapping;
507 	struct page *page;
508 
509 	if (!offset && !cache_only)
510 		return 0;
511 
512 	if (cache_only) {
513 		page = f2fs_grab_cache_page(mapping, index, false);
514 		if (page && PageUptodate(page))
515 			goto truncate_out;
516 		f2fs_put_page(page, 1);
517 		return 0;
518 	}
519 
520 	page = get_lock_data_page(inode, index, true);
521 	if (IS_ERR(page))
522 		return 0;
523 truncate_out:
524 	f2fs_wait_on_page_writeback(page, DATA);
525 	zero_user(page, offset, PAGE_CACHE_SIZE - offset);
526 	if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
527 		set_page_dirty(page);
528 	f2fs_put_page(page, 1);
529 	return 0;
530 }
531 
532 int truncate_blocks(struct inode *inode, u64 from, bool lock)
533 {
534 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
535 	unsigned int blocksize = inode->i_sb->s_blocksize;
536 	struct dnode_of_data dn;
537 	pgoff_t free_from;
538 	int count = 0, err = 0;
539 	struct page *ipage;
540 	bool truncate_page = false;
541 
542 	trace_f2fs_truncate_blocks_enter(inode, from);
543 
544 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
545 
546 	if (lock)
547 		f2fs_lock_op(sbi);
548 
549 	ipage = get_node_page(sbi, inode->i_ino);
550 	if (IS_ERR(ipage)) {
551 		err = PTR_ERR(ipage);
552 		goto out;
553 	}
554 
555 	if (f2fs_has_inline_data(inode)) {
556 		if (truncate_inline_inode(ipage, from))
557 			set_page_dirty(ipage);
558 		f2fs_put_page(ipage, 1);
559 		truncate_page = true;
560 		goto out;
561 	}
562 
563 	set_new_dnode(&dn, inode, ipage, NULL, 0);
564 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
565 	if (err) {
566 		if (err == -ENOENT)
567 			goto free_next;
568 		goto out;
569 	}
570 
571 	count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
572 
573 	count -= dn.ofs_in_node;
574 	f2fs_bug_on(sbi, count < 0);
575 
576 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
577 		truncate_data_blocks_range(&dn, count);
578 		free_from += count;
579 	}
580 
581 	f2fs_put_dnode(&dn);
582 free_next:
583 	err = truncate_inode_blocks(inode, free_from);
584 out:
585 	if (lock)
586 		f2fs_unlock_op(sbi);
587 
588 	/* lastly zero out the first data page */
589 	if (!err)
590 		err = truncate_partial_data_page(inode, from, truncate_page);
591 
592 	trace_f2fs_truncate_blocks_exit(inode, err);
593 	return err;
594 }
595 
596 int f2fs_truncate(struct inode *inode, bool lock)
597 {
598 	int err;
599 
600 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
601 				S_ISLNK(inode->i_mode)))
602 		return 0;
603 
604 	trace_f2fs_truncate(inode);
605 
606 	/* we should check inline_data size */
607 	if (!f2fs_may_inline_data(inode)) {
608 		err = f2fs_convert_inline_inode(inode);
609 		if (err)
610 			return err;
611 	}
612 
613 	err = truncate_blocks(inode, i_size_read(inode), lock);
614 	if (err)
615 		return err;
616 
617 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
618 	mark_inode_dirty(inode);
619 	return 0;
620 }
621 
622 int f2fs_getattr(struct vfsmount *mnt,
623 			 struct dentry *dentry, struct kstat *stat)
624 {
625 	struct inode *inode = d_inode(dentry);
626 	generic_fillattr(inode, stat);
627 	stat->blocks <<= 3;
628 	return 0;
629 }
630 
631 #ifdef CONFIG_F2FS_FS_POSIX_ACL
632 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
633 {
634 	struct f2fs_inode_info *fi = F2FS_I(inode);
635 	unsigned int ia_valid = attr->ia_valid;
636 
637 	if (ia_valid & ATTR_UID)
638 		inode->i_uid = attr->ia_uid;
639 	if (ia_valid & ATTR_GID)
640 		inode->i_gid = attr->ia_gid;
641 	if (ia_valid & ATTR_ATIME)
642 		inode->i_atime = timespec_trunc(attr->ia_atime,
643 						inode->i_sb->s_time_gran);
644 	if (ia_valid & ATTR_MTIME)
645 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
646 						inode->i_sb->s_time_gran);
647 	if (ia_valid & ATTR_CTIME)
648 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
649 						inode->i_sb->s_time_gran);
650 	if (ia_valid & ATTR_MODE) {
651 		umode_t mode = attr->ia_mode;
652 
653 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
654 			mode &= ~S_ISGID;
655 		set_acl_inode(fi, mode);
656 	}
657 }
658 #else
659 #define __setattr_copy setattr_copy
660 #endif
661 
662 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
663 {
664 	struct inode *inode = d_inode(dentry);
665 	struct f2fs_inode_info *fi = F2FS_I(inode);
666 	int err;
667 
668 	err = inode_change_ok(inode, attr);
669 	if (err)
670 		return err;
671 
672 	if (attr->ia_valid & ATTR_SIZE) {
673 		if (f2fs_encrypted_inode(inode) &&
674 				f2fs_get_encryption_info(inode))
675 			return -EACCES;
676 
677 		if (attr->ia_size <= i_size_read(inode)) {
678 			truncate_setsize(inode, attr->ia_size);
679 			err = f2fs_truncate(inode, true);
680 			if (err)
681 				return err;
682 			f2fs_balance_fs(F2FS_I_SB(inode), true);
683 		} else {
684 			/*
685 			 * do not trim all blocks after i_size if target size is
686 			 * larger than i_size.
687 			 */
688 			truncate_setsize(inode, attr->ia_size);
689 
690 			/* should convert inline inode here */
691 			if (!f2fs_may_inline_data(inode)) {
692 				err = f2fs_convert_inline_inode(inode);
693 				if (err)
694 					return err;
695 			}
696 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
697 		}
698 	}
699 
700 	__setattr_copy(inode, attr);
701 
702 	if (attr->ia_valid & ATTR_MODE) {
703 		err = posix_acl_chmod(inode, get_inode_mode(inode));
704 		if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
705 			inode->i_mode = fi->i_acl_mode;
706 			clear_inode_flag(fi, FI_ACL_MODE);
707 		}
708 	}
709 
710 	mark_inode_dirty(inode);
711 	return err;
712 }
713 
714 const struct inode_operations f2fs_file_inode_operations = {
715 	.getattr	= f2fs_getattr,
716 	.setattr	= f2fs_setattr,
717 	.get_acl	= f2fs_get_acl,
718 	.set_acl	= f2fs_set_acl,
719 #ifdef CONFIG_F2FS_FS_XATTR
720 	.setxattr	= generic_setxattr,
721 	.getxattr	= generic_getxattr,
722 	.listxattr	= f2fs_listxattr,
723 	.removexattr	= generic_removexattr,
724 #endif
725 	.fiemap		= f2fs_fiemap,
726 };
727 
728 static int fill_zero(struct inode *inode, pgoff_t index,
729 					loff_t start, loff_t len)
730 {
731 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
732 	struct page *page;
733 
734 	if (!len)
735 		return 0;
736 
737 	f2fs_balance_fs(sbi, true);
738 
739 	f2fs_lock_op(sbi);
740 	page = get_new_data_page(inode, NULL, index, false);
741 	f2fs_unlock_op(sbi);
742 
743 	if (IS_ERR(page))
744 		return PTR_ERR(page);
745 
746 	f2fs_wait_on_page_writeback(page, DATA);
747 	zero_user(page, start, len);
748 	set_page_dirty(page);
749 	f2fs_put_page(page, 1);
750 	return 0;
751 }
752 
753 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
754 {
755 	int err;
756 
757 	while (pg_start < pg_end) {
758 		struct dnode_of_data dn;
759 		pgoff_t end_offset, count;
760 
761 		set_new_dnode(&dn, inode, NULL, NULL, 0);
762 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
763 		if (err) {
764 			if (err == -ENOENT) {
765 				pg_start++;
766 				continue;
767 			}
768 			return err;
769 		}
770 
771 		end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
772 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
773 
774 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
775 
776 		truncate_data_blocks_range(&dn, count);
777 		f2fs_put_dnode(&dn);
778 
779 		pg_start += count;
780 	}
781 	return 0;
782 }
783 
784 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
785 {
786 	pgoff_t pg_start, pg_end;
787 	loff_t off_start, off_end;
788 	int ret;
789 
790 	ret = f2fs_convert_inline_inode(inode);
791 	if (ret)
792 		return ret;
793 
794 	pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
795 	pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
796 
797 	off_start = offset & (PAGE_CACHE_SIZE - 1);
798 	off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
799 
800 	if (pg_start == pg_end) {
801 		ret = fill_zero(inode, pg_start, off_start,
802 						off_end - off_start);
803 		if (ret)
804 			return ret;
805 	} else {
806 		if (off_start) {
807 			ret = fill_zero(inode, pg_start++, off_start,
808 						PAGE_CACHE_SIZE - off_start);
809 			if (ret)
810 				return ret;
811 		}
812 		if (off_end) {
813 			ret = fill_zero(inode, pg_end, 0, off_end);
814 			if (ret)
815 				return ret;
816 		}
817 
818 		if (pg_start < pg_end) {
819 			struct address_space *mapping = inode->i_mapping;
820 			loff_t blk_start, blk_end;
821 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
822 
823 			f2fs_balance_fs(sbi, true);
824 
825 			blk_start = (loff_t)pg_start << PAGE_CACHE_SHIFT;
826 			blk_end = (loff_t)pg_end << PAGE_CACHE_SHIFT;
827 			truncate_inode_pages_range(mapping, blk_start,
828 					blk_end - 1);
829 
830 			f2fs_lock_op(sbi);
831 			ret = truncate_hole(inode, pg_start, pg_end);
832 			f2fs_unlock_op(sbi);
833 		}
834 	}
835 
836 	return ret;
837 }
838 
839 static int __exchange_data_block(struct inode *inode, pgoff_t src,
840 					pgoff_t dst, bool full)
841 {
842 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
843 	struct dnode_of_data dn;
844 	block_t new_addr;
845 	bool do_replace = false;
846 	int ret;
847 
848 	set_new_dnode(&dn, inode, NULL, NULL, 0);
849 	ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA);
850 	if (ret && ret != -ENOENT) {
851 		return ret;
852 	} else if (ret == -ENOENT) {
853 		new_addr = NULL_ADDR;
854 	} else {
855 		new_addr = dn.data_blkaddr;
856 		if (!is_checkpointed_data(sbi, new_addr)) {
857 			dn.data_blkaddr = NULL_ADDR;
858 			/* do not invalidate this block address */
859 			set_data_blkaddr(&dn);
860 			f2fs_update_extent_cache(&dn);
861 			do_replace = true;
862 		}
863 		f2fs_put_dnode(&dn);
864 	}
865 
866 	if (new_addr == NULL_ADDR)
867 		return full ? truncate_hole(inode, dst, dst + 1) : 0;
868 
869 	if (do_replace) {
870 		struct page *ipage = get_node_page(sbi, inode->i_ino);
871 		struct node_info ni;
872 
873 		if (IS_ERR(ipage)) {
874 			ret = PTR_ERR(ipage);
875 			goto err_out;
876 		}
877 
878 		set_new_dnode(&dn, inode, ipage, NULL, 0);
879 		ret = f2fs_reserve_block(&dn, dst);
880 		if (ret)
881 			goto err_out;
882 
883 		truncate_data_blocks_range(&dn, 1);
884 
885 		get_node_info(sbi, dn.nid, &ni);
886 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
887 				ni.version, true);
888 		f2fs_put_dnode(&dn);
889 	} else {
890 		struct page *psrc, *pdst;
891 
892 		psrc = get_lock_data_page(inode, src, true);
893 		if (IS_ERR(psrc))
894 			return PTR_ERR(psrc);
895 		pdst = get_new_data_page(inode, NULL, dst, false);
896 		if (IS_ERR(pdst)) {
897 			f2fs_put_page(psrc, 1);
898 			return PTR_ERR(pdst);
899 		}
900 		f2fs_copy_page(psrc, pdst);
901 		set_page_dirty(pdst);
902 		f2fs_put_page(pdst, 1);
903 		f2fs_put_page(psrc, 1);
904 
905 		return truncate_hole(inode, src, src + 1);
906 	}
907 	return 0;
908 
909 err_out:
910 	if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) {
911 		dn.data_blkaddr = new_addr;
912 		set_data_blkaddr(&dn);
913 		f2fs_update_extent_cache(&dn);
914 		f2fs_put_dnode(&dn);
915 	}
916 	return ret;
917 }
918 
919 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
920 {
921 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
922 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
923 	int ret = 0;
924 
925 	for (; end < nrpages; start++, end++) {
926 		f2fs_balance_fs(sbi, true);
927 		f2fs_lock_op(sbi);
928 		ret = __exchange_data_block(inode, end, start, true);
929 		f2fs_unlock_op(sbi);
930 		if (ret)
931 			break;
932 	}
933 	return ret;
934 }
935 
936 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
937 {
938 	pgoff_t pg_start, pg_end;
939 	loff_t new_size;
940 	int ret;
941 
942 	if (offset + len >= i_size_read(inode))
943 		return -EINVAL;
944 
945 	/* collapse range should be aligned to block size of f2fs. */
946 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
947 		return -EINVAL;
948 
949 	ret = f2fs_convert_inline_inode(inode);
950 	if (ret)
951 		return ret;
952 
953 	pg_start = offset >> PAGE_CACHE_SHIFT;
954 	pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
955 
956 	/* write out all dirty pages from offset */
957 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
958 	if (ret)
959 		return ret;
960 
961 	truncate_pagecache(inode, offset);
962 
963 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
964 	if (ret)
965 		return ret;
966 
967 	/* write out all moved pages, if possible */
968 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
969 	truncate_pagecache(inode, offset);
970 
971 	new_size = i_size_read(inode) - len;
972 	truncate_pagecache(inode, new_size);
973 
974 	ret = truncate_blocks(inode, new_size, true);
975 	if (!ret)
976 		i_size_write(inode, new_size);
977 
978 	return ret;
979 }
980 
981 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
982 								int mode)
983 {
984 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
985 	struct address_space *mapping = inode->i_mapping;
986 	pgoff_t index, pg_start, pg_end;
987 	loff_t new_size = i_size_read(inode);
988 	loff_t off_start, off_end;
989 	int ret = 0;
990 
991 	ret = inode_newsize_ok(inode, (len + offset));
992 	if (ret)
993 		return ret;
994 
995 	ret = f2fs_convert_inline_inode(inode);
996 	if (ret)
997 		return ret;
998 
999 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1000 	if (ret)
1001 		return ret;
1002 
1003 	truncate_pagecache_range(inode, offset, offset + len - 1);
1004 
1005 	pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1006 	pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1007 
1008 	off_start = offset & (PAGE_CACHE_SIZE - 1);
1009 	off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1010 
1011 	if (pg_start == pg_end) {
1012 		ret = fill_zero(inode, pg_start, off_start,
1013 						off_end - off_start);
1014 		if (ret)
1015 			return ret;
1016 
1017 		if (offset + len > new_size)
1018 			new_size = offset + len;
1019 		new_size = max_t(loff_t, new_size, offset + len);
1020 	} else {
1021 		if (off_start) {
1022 			ret = fill_zero(inode, pg_start++, off_start,
1023 						PAGE_CACHE_SIZE - off_start);
1024 			if (ret)
1025 				return ret;
1026 
1027 			new_size = max_t(loff_t, new_size,
1028 					(loff_t)pg_start << PAGE_CACHE_SHIFT);
1029 		}
1030 
1031 		for (index = pg_start; index < pg_end; index++) {
1032 			struct dnode_of_data dn;
1033 			struct page *ipage;
1034 
1035 			f2fs_lock_op(sbi);
1036 
1037 			ipage = get_node_page(sbi, inode->i_ino);
1038 			if (IS_ERR(ipage)) {
1039 				ret = PTR_ERR(ipage);
1040 				f2fs_unlock_op(sbi);
1041 				goto out;
1042 			}
1043 
1044 			set_new_dnode(&dn, inode, ipage, NULL, 0);
1045 			ret = f2fs_reserve_block(&dn, index);
1046 			if (ret) {
1047 				f2fs_unlock_op(sbi);
1048 				goto out;
1049 			}
1050 
1051 			if (dn.data_blkaddr != NEW_ADDR) {
1052 				invalidate_blocks(sbi, dn.data_blkaddr);
1053 
1054 				dn.data_blkaddr = NEW_ADDR;
1055 				set_data_blkaddr(&dn);
1056 
1057 				dn.data_blkaddr = NULL_ADDR;
1058 				f2fs_update_extent_cache(&dn);
1059 			}
1060 			f2fs_put_dnode(&dn);
1061 			f2fs_unlock_op(sbi);
1062 
1063 			new_size = max_t(loff_t, new_size,
1064 				(loff_t)(index + 1) << PAGE_CACHE_SHIFT);
1065 		}
1066 
1067 		if (off_end) {
1068 			ret = fill_zero(inode, pg_end, 0, off_end);
1069 			if (ret)
1070 				goto out;
1071 
1072 			new_size = max_t(loff_t, new_size, offset + len);
1073 		}
1074 	}
1075 
1076 out:
1077 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1078 		i_size_write(inode, new_size);
1079 		mark_inode_dirty(inode);
1080 		update_inode_page(inode);
1081 	}
1082 
1083 	return ret;
1084 }
1085 
1086 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1087 {
1088 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1089 	pgoff_t pg_start, pg_end, delta, nrpages, idx;
1090 	loff_t new_size;
1091 	int ret = 0;
1092 
1093 	new_size = i_size_read(inode) + len;
1094 	if (new_size > inode->i_sb->s_maxbytes)
1095 		return -EFBIG;
1096 
1097 	if (offset >= i_size_read(inode))
1098 		return -EINVAL;
1099 
1100 	/* insert range should be aligned to block size of f2fs. */
1101 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1102 		return -EINVAL;
1103 
1104 	ret = f2fs_convert_inline_inode(inode);
1105 	if (ret)
1106 		return ret;
1107 
1108 	f2fs_balance_fs(sbi, true);
1109 
1110 	ret = truncate_blocks(inode, i_size_read(inode), true);
1111 	if (ret)
1112 		return ret;
1113 
1114 	/* write out all dirty pages from offset */
1115 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1116 	if (ret)
1117 		return ret;
1118 
1119 	truncate_pagecache(inode, offset);
1120 
1121 	pg_start = offset >> PAGE_CACHE_SHIFT;
1122 	pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
1123 	delta = pg_end - pg_start;
1124 	nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1125 
1126 	for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
1127 		f2fs_lock_op(sbi);
1128 		ret = __exchange_data_block(inode, idx, idx + delta, false);
1129 		f2fs_unlock_op(sbi);
1130 		if (ret)
1131 			break;
1132 	}
1133 
1134 	/* write out all moved pages, if possible */
1135 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1136 	truncate_pagecache(inode, offset);
1137 
1138 	if (!ret)
1139 		i_size_write(inode, new_size);
1140 	return ret;
1141 }
1142 
1143 static int expand_inode_data(struct inode *inode, loff_t offset,
1144 					loff_t len, int mode)
1145 {
1146 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1147 	pgoff_t index, pg_start, pg_end;
1148 	loff_t new_size = i_size_read(inode);
1149 	loff_t off_start, off_end;
1150 	int ret = 0;
1151 
1152 	ret = inode_newsize_ok(inode, (len + offset));
1153 	if (ret)
1154 		return ret;
1155 
1156 	ret = f2fs_convert_inline_inode(inode);
1157 	if (ret)
1158 		return ret;
1159 
1160 	f2fs_balance_fs(sbi, true);
1161 
1162 	pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1163 	pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1164 
1165 	off_start = offset & (PAGE_CACHE_SIZE - 1);
1166 	off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1167 
1168 	f2fs_lock_op(sbi);
1169 
1170 	for (index = pg_start; index <= pg_end; index++) {
1171 		struct dnode_of_data dn;
1172 
1173 		if (index == pg_end && !off_end)
1174 			goto noalloc;
1175 
1176 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1177 		ret = f2fs_reserve_block(&dn, index);
1178 		if (ret)
1179 			break;
1180 noalloc:
1181 		if (pg_start == pg_end)
1182 			new_size = offset + len;
1183 		else if (index == pg_start && off_start)
1184 			new_size = (loff_t)(index + 1) << PAGE_CACHE_SHIFT;
1185 		else if (index == pg_end)
1186 			new_size = ((loff_t)index << PAGE_CACHE_SHIFT) +
1187 								off_end;
1188 		else
1189 			new_size += PAGE_CACHE_SIZE;
1190 	}
1191 
1192 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1193 		i_size_read(inode) < new_size) {
1194 		i_size_write(inode, new_size);
1195 		mark_inode_dirty(inode);
1196 		update_inode_page(inode);
1197 	}
1198 	f2fs_unlock_op(sbi);
1199 
1200 	return ret;
1201 }
1202 
1203 static long f2fs_fallocate(struct file *file, int mode,
1204 				loff_t offset, loff_t len)
1205 {
1206 	struct inode *inode = file_inode(file);
1207 	long ret = 0;
1208 
1209 	/* f2fs only support ->fallocate for regular file */
1210 	if (!S_ISREG(inode->i_mode))
1211 		return -EINVAL;
1212 
1213 	if (f2fs_encrypted_inode(inode) &&
1214 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1215 		return -EOPNOTSUPP;
1216 
1217 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1218 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1219 			FALLOC_FL_INSERT_RANGE))
1220 		return -EOPNOTSUPP;
1221 
1222 	inode_lock(inode);
1223 
1224 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1225 		if (offset >= inode->i_size)
1226 			goto out;
1227 
1228 		ret = punch_hole(inode, offset, len);
1229 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1230 		ret = f2fs_collapse_range(inode, offset, len);
1231 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1232 		ret = f2fs_zero_range(inode, offset, len, mode);
1233 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1234 		ret = f2fs_insert_range(inode, offset, len);
1235 	} else {
1236 		ret = expand_inode_data(inode, offset, len, mode);
1237 	}
1238 
1239 	if (!ret) {
1240 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1241 		mark_inode_dirty(inode);
1242 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1243 	}
1244 
1245 out:
1246 	inode_unlock(inode);
1247 
1248 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1249 	return ret;
1250 }
1251 
1252 static int f2fs_release_file(struct inode *inode, struct file *filp)
1253 {
1254 	/* some remained atomic pages should discarded */
1255 	if (f2fs_is_atomic_file(inode))
1256 		commit_inmem_pages(inode, true);
1257 	if (f2fs_is_volatile_file(inode)) {
1258 		set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1259 		filemap_fdatawrite(inode->i_mapping);
1260 		clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1261 	}
1262 	return 0;
1263 }
1264 
1265 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1266 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1267 
1268 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1269 {
1270 	if (S_ISDIR(mode))
1271 		return flags;
1272 	else if (S_ISREG(mode))
1273 		return flags & F2FS_REG_FLMASK;
1274 	else
1275 		return flags & F2FS_OTHER_FLMASK;
1276 }
1277 
1278 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1279 {
1280 	struct inode *inode = file_inode(filp);
1281 	struct f2fs_inode_info *fi = F2FS_I(inode);
1282 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1283 	return put_user(flags, (int __user *)arg);
1284 }
1285 
1286 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1287 {
1288 	struct inode *inode = file_inode(filp);
1289 	struct f2fs_inode_info *fi = F2FS_I(inode);
1290 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1291 	unsigned int oldflags;
1292 	int ret;
1293 
1294 	ret = mnt_want_write_file(filp);
1295 	if (ret)
1296 		return ret;
1297 
1298 	if (!inode_owner_or_capable(inode)) {
1299 		ret = -EACCES;
1300 		goto out;
1301 	}
1302 
1303 	if (get_user(flags, (int __user *)arg)) {
1304 		ret = -EFAULT;
1305 		goto out;
1306 	}
1307 
1308 	flags = f2fs_mask_flags(inode->i_mode, flags);
1309 
1310 	inode_lock(inode);
1311 
1312 	oldflags = fi->i_flags;
1313 
1314 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1315 		if (!capable(CAP_LINUX_IMMUTABLE)) {
1316 			inode_unlock(inode);
1317 			ret = -EPERM;
1318 			goto out;
1319 		}
1320 	}
1321 
1322 	flags = flags & FS_FL_USER_MODIFIABLE;
1323 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1324 	fi->i_flags = flags;
1325 	inode_unlock(inode);
1326 
1327 	f2fs_set_inode_flags(inode);
1328 	inode->i_ctime = CURRENT_TIME;
1329 	mark_inode_dirty(inode);
1330 out:
1331 	mnt_drop_write_file(filp);
1332 	return ret;
1333 }
1334 
1335 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1336 {
1337 	struct inode *inode = file_inode(filp);
1338 
1339 	return put_user(inode->i_generation, (int __user *)arg);
1340 }
1341 
1342 static int f2fs_ioc_start_atomic_write(struct file *filp)
1343 {
1344 	struct inode *inode = file_inode(filp);
1345 	int ret;
1346 
1347 	if (!inode_owner_or_capable(inode))
1348 		return -EACCES;
1349 
1350 	if (f2fs_is_atomic_file(inode))
1351 		return 0;
1352 
1353 	ret = f2fs_convert_inline_inode(inode);
1354 	if (ret)
1355 		return ret;
1356 
1357 	set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1358 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1359 
1360 	return 0;
1361 }
1362 
1363 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1364 {
1365 	struct inode *inode = file_inode(filp);
1366 	int ret;
1367 
1368 	if (!inode_owner_or_capable(inode))
1369 		return -EACCES;
1370 
1371 	if (f2fs_is_volatile_file(inode))
1372 		return 0;
1373 
1374 	ret = mnt_want_write_file(filp);
1375 	if (ret)
1376 		return ret;
1377 
1378 	if (f2fs_is_atomic_file(inode)) {
1379 		clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1380 		ret = commit_inmem_pages(inode, false);
1381 		if (ret) {
1382 			set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1383 			goto err_out;
1384 		}
1385 	}
1386 
1387 	ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1388 err_out:
1389 	mnt_drop_write_file(filp);
1390 	return ret;
1391 }
1392 
1393 static int f2fs_ioc_start_volatile_write(struct file *filp)
1394 {
1395 	struct inode *inode = file_inode(filp);
1396 	int ret;
1397 
1398 	if (!inode_owner_or_capable(inode))
1399 		return -EACCES;
1400 
1401 	if (f2fs_is_volatile_file(inode))
1402 		return 0;
1403 
1404 	ret = f2fs_convert_inline_inode(inode);
1405 	if (ret)
1406 		return ret;
1407 
1408 	set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1409 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1410 	return 0;
1411 }
1412 
1413 static int f2fs_ioc_release_volatile_write(struct file *filp)
1414 {
1415 	struct inode *inode = file_inode(filp);
1416 
1417 	if (!inode_owner_or_capable(inode))
1418 		return -EACCES;
1419 
1420 	if (!f2fs_is_volatile_file(inode))
1421 		return 0;
1422 
1423 	if (!f2fs_is_first_block_written(inode))
1424 		return truncate_partial_data_page(inode, 0, true);
1425 
1426 	return punch_hole(inode, 0, F2FS_BLKSIZE);
1427 }
1428 
1429 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1430 {
1431 	struct inode *inode = file_inode(filp);
1432 	int ret;
1433 
1434 	if (!inode_owner_or_capable(inode))
1435 		return -EACCES;
1436 
1437 	ret = mnt_want_write_file(filp);
1438 	if (ret)
1439 		return ret;
1440 
1441 	if (f2fs_is_atomic_file(inode)) {
1442 		clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1443 		commit_inmem_pages(inode, true);
1444 	}
1445 	if (f2fs_is_volatile_file(inode)) {
1446 		clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1447 		ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1448 	}
1449 
1450 	mnt_drop_write_file(filp);
1451 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1452 	return ret;
1453 }
1454 
1455 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1456 {
1457 	struct inode *inode = file_inode(filp);
1458 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1459 	struct super_block *sb = sbi->sb;
1460 	__u32 in;
1461 
1462 	if (!capable(CAP_SYS_ADMIN))
1463 		return -EPERM;
1464 
1465 	if (get_user(in, (__u32 __user *)arg))
1466 		return -EFAULT;
1467 
1468 	switch (in) {
1469 	case F2FS_GOING_DOWN_FULLSYNC:
1470 		sb = freeze_bdev(sb->s_bdev);
1471 		if (sb && !IS_ERR(sb)) {
1472 			f2fs_stop_checkpoint(sbi);
1473 			thaw_bdev(sb->s_bdev, sb);
1474 		}
1475 		break;
1476 	case F2FS_GOING_DOWN_METASYNC:
1477 		/* do checkpoint only */
1478 		f2fs_sync_fs(sb, 1);
1479 		f2fs_stop_checkpoint(sbi);
1480 		break;
1481 	case F2FS_GOING_DOWN_NOSYNC:
1482 		f2fs_stop_checkpoint(sbi);
1483 		break;
1484 	case F2FS_GOING_DOWN_METAFLUSH:
1485 		sync_meta_pages(sbi, META, LONG_MAX);
1486 		f2fs_stop_checkpoint(sbi);
1487 		break;
1488 	default:
1489 		return -EINVAL;
1490 	}
1491 	f2fs_update_time(sbi, REQ_TIME);
1492 	return 0;
1493 }
1494 
1495 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1496 {
1497 	struct inode *inode = file_inode(filp);
1498 	struct super_block *sb = inode->i_sb;
1499 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1500 	struct fstrim_range range;
1501 	int ret;
1502 
1503 	if (!capable(CAP_SYS_ADMIN))
1504 		return -EPERM;
1505 
1506 	if (!blk_queue_discard(q))
1507 		return -EOPNOTSUPP;
1508 
1509 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1510 				sizeof(range)))
1511 		return -EFAULT;
1512 
1513 	range.minlen = max((unsigned int)range.minlen,
1514 				q->limits.discard_granularity);
1515 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1516 	if (ret < 0)
1517 		return ret;
1518 
1519 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1520 				sizeof(range)))
1521 		return -EFAULT;
1522 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1523 	return 0;
1524 }
1525 
1526 static bool uuid_is_nonzero(__u8 u[16])
1527 {
1528 	int i;
1529 
1530 	for (i = 0; i < 16; i++)
1531 		if (u[i])
1532 			return true;
1533 	return false;
1534 }
1535 
1536 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1537 {
1538 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1539 	struct f2fs_encryption_policy policy;
1540 	struct inode *inode = file_inode(filp);
1541 
1542 	if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
1543 				sizeof(policy)))
1544 		return -EFAULT;
1545 
1546 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1547 	return f2fs_process_policy(&policy, inode);
1548 #else
1549 	return -EOPNOTSUPP;
1550 #endif
1551 }
1552 
1553 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1554 {
1555 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1556 	struct f2fs_encryption_policy policy;
1557 	struct inode *inode = file_inode(filp);
1558 	int err;
1559 
1560 	err = f2fs_get_policy(inode, &policy);
1561 	if (err)
1562 		return err;
1563 
1564 	if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
1565 							sizeof(policy)))
1566 		return -EFAULT;
1567 	return 0;
1568 #else
1569 	return -EOPNOTSUPP;
1570 #endif
1571 }
1572 
1573 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1574 {
1575 	struct inode *inode = file_inode(filp);
1576 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1577 	int err;
1578 
1579 	if (!f2fs_sb_has_crypto(inode->i_sb))
1580 		return -EOPNOTSUPP;
1581 
1582 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1583 		goto got_it;
1584 
1585 	err = mnt_want_write_file(filp);
1586 	if (err)
1587 		return err;
1588 
1589 	/* update superblock with uuid */
1590 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1591 
1592 	err = f2fs_commit_super(sbi, false);
1593 	if (err) {
1594 		/* undo new data */
1595 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1596 		mnt_drop_write_file(filp);
1597 		return err;
1598 	}
1599 	mnt_drop_write_file(filp);
1600 got_it:
1601 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1602 									16))
1603 		return -EFAULT;
1604 	return 0;
1605 }
1606 
1607 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1608 {
1609 	struct inode *inode = file_inode(filp);
1610 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1611 	__u32 sync;
1612 
1613 	if (!capable(CAP_SYS_ADMIN))
1614 		return -EPERM;
1615 
1616 	if (get_user(sync, (__u32 __user *)arg))
1617 		return -EFAULT;
1618 
1619 	if (f2fs_readonly(sbi->sb))
1620 		return -EROFS;
1621 
1622 	if (!sync) {
1623 		if (!mutex_trylock(&sbi->gc_mutex))
1624 			return -EBUSY;
1625 	} else {
1626 		mutex_lock(&sbi->gc_mutex);
1627 	}
1628 
1629 	return f2fs_gc(sbi, sync);
1630 }
1631 
1632 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1633 {
1634 	struct inode *inode = file_inode(filp);
1635 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1636 
1637 	if (!capable(CAP_SYS_ADMIN))
1638 		return -EPERM;
1639 
1640 	if (f2fs_readonly(sbi->sb))
1641 		return -EROFS;
1642 
1643 	return f2fs_sync_fs(sbi->sb, 1);
1644 }
1645 
1646 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1647 					struct file *filp,
1648 					struct f2fs_defragment *range)
1649 {
1650 	struct inode *inode = file_inode(filp);
1651 	struct f2fs_map_blocks map;
1652 	struct extent_info ei;
1653 	pgoff_t pg_start, pg_end;
1654 	unsigned int blk_per_seg = sbi->blocks_per_seg;
1655 	unsigned int total = 0, sec_num;
1656 	unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1657 	block_t blk_end = 0;
1658 	bool fragmented = false;
1659 	int err;
1660 
1661 	/* if in-place-update policy is enabled, don't waste time here */
1662 	if (need_inplace_update(inode))
1663 		return -EINVAL;
1664 
1665 	pg_start = range->start >> PAGE_CACHE_SHIFT;
1666 	pg_end = (range->start + range->len) >> PAGE_CACHE_SHIFT;
1667 
1668 	f2fs_balance_fs(sbi, true);
1669 
1670 	inode_lock(inode);
1671 
1672 	/* writeback all dirty pages in the range */
1673 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1674 						range->start + range->len - 1);
1675 	if (err)
1676 		goto out;
1677 
1678 	/*
1679 	 * lookup mapping info in extent cache, skip defragmenting if physical
1680 	 * block addresses are continuous.
1681 	 */
1682 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1683 		if (ei.fofs + ei.len >= pg_end)
1684 			goto out;
1685 	}
1686 
1687 	map.m_lblk = pg_start;
1688 
1689 	/*
1690 	 * lookup mapping info in dnode page cache, skip defragmenting if all
1691 	 * physical block addresses are continuous even if there are hole(s)
1692 	 * in logical blocks.
1693 	 */
1694 	while (map.m_lblk < pg_end) {
1695 		map.m_len = pg_end - map.m_lblk;
1696 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1697 		if (err)
1698 			goto out;
1699 
1700 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1701 			map.m_lblk++;
1702 			continue;
1703 		}
1704 
1705 		if (blk_end && blk_end != map.m_pblk) {
1706 			fragmented = true;
1707 			break;
1708 		}
1709 		blk_end = map.m_pblk + map.m_len;
1710 
1711 		map.m_lblk += map.m_len;
1712 	}
1713 
1714 	if (!fragmented)
1715 		goto out;
1716 
1717 	map.m_lblk = pg_start;
1718 	map.m_len = pg_end - pg_start;
1719 
1720 	sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1721 
1722 	/*
1723 	 * make sure there are enough free section for LFS allocation, this can
1724 	 * avoid defragment running in SSR mode when free section are allocated
1725 	 * intensively
1726 	 */
1727 	if (has_not_enough_free_secs(sbi, sec_num)) {
1728 		err = -EAGAIN;
1729 		goto out;
1730 	}
1731 
1732 	while (map.m_lblk < pg_end) {
1733 		pgoff_t idx;
1734 		int cnt = 0;
1735 
1736 do_map:
1737 		map.m_len = pg_end - map.m_lblk;
1738 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1739 		if (err)
1740 			goto clear_out;
1741 
1742 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1743 			map.m_lblk++;
1744 			continue;
1745 		}
1746 
1747 		set_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1748 
1749 		idx = map.m_lblk;
1750 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1751 			struct page *page;
1752 
1753 			page = get_lock_data_page(inode, idx, true);
1754 			if (IS_ERR(page)) {
1755 				err = PTR_ERR(page);
1756 				goto clear_out;
1757 			}
1758 
1759 			set_page_dirty(page);
1760 			f2fs_put_page(page, 1);
1761 
1762 			idx++;
1763 			cnt++;
1764 			total++;
1765 		}
1766 
1767 		map.m_lblk = idx;
1768 
1769 		if (idx < pg_end && cnt < blk_per_seg)
1770 			goto do_map;
1771 
1772 		clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1773 
1774 		err = filemap_fdatawrite(inode->i_mapping);
1775 		if (err)
1776 			goto out;
1777 	}
1778 clear_out:
1779 	clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1780 out:
1781 	inode_unlock(inode);
1782 	if (!err)
1783 		range->len = (u64)total << PAGE_CACHE_SHIFT;
1784 	return err;
1785 }
1786 
1787 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
1788 {
1789 	struct inode *inode = file_inode(filp);
1790 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1791 	struct f2fs_defragment range;
1792 	int err;
1793 
1794 	if (!capable(CAP_SYS_ADMIN))
1795 		return -EPERM;
1796 
1797 	if (!S_ISREG(inode->i_mode))
1798 		return -EINVAL;
1799 
1800 	err = mnt_want_write_file(filp);
1801 	if (err)
1802 		return err;
1803 
1804 	if (f2fs_readonly(sbi->sb)) {
1805 		err = -EROFS;
1806 		goto out;
1807 	}
1808 
1809 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
1810 							sizeof(range))) {
1811 		err = -EFAULT;
1812 		goto out;
1813 	}
1814 
1815 	/* verify alignment of offset & size */
1816 	if (range.start & (F2FS_BLKSIZE - 1) ||
1817 		range.len & (F2FS_BLKSIZE - 1)) {
1818 		err = -EINVAL;
1819 		goto out;
1820 	}
1821 
1822 	err = f2fs_defragment_range(sbi, filp, &range);
1823 	f2fs_update_time(sbi, REQ_TIME);
1824 	if (err < 0)
1825 		goto out;
1826 
1827 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
1828 							sizeof(range)))
1829 		err = -EFAULT;
1830 out:
1831 	mnt_drop_write_file(filp);
1832 	return err;
1833 }
1834 
1835 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1836 {
1837 	switch (cmd) {
1838 	case F2FS_IOC_GETFLAGS:
1839 		return f2fs_ioc_getflags(filp, arg);
1840 	case F2FS_IOC_SETFLAGS:
1841 		return f2fs_ioc_setflags(filp, arg);
1842 	case F2FS_IOC_GETVERSION:
1843 		return f2fs_ioc_getversion(filp, arg);
1844 	case F2FS_IOC_START_ATOMIC_WRITE:
1845 		return f2fs_ioc_start_atomic_write(filp);
1846 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1847 		return f2fs_ioc_commit_atomic_write(filp);
1848 	case F2FS_IOC_START_VOLATILE_WRITE:
1849 		return f2fs_ioc_start_volatile_write(filp);
1850 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1851 		return f2fs_ioc_release_volatile_write(filp);
1852 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
1853 		return f2fs_ioc_abort_volatile_write(filp);
1854 	case F2FS_IOC_SHUTDOWN:
1855 		return f2fs_ioc_shutdown(filp, arg);
1856 	case FITRIM:
1857 		return f2fs_ioc_fitrim(filp, arg);
1858 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
1859 		return f2fs_ioc_set_encryption_policy(filp, arg);
1860 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
1861 		return f2fs_ioc_get_encryption_policy(filp, arg);
1862 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1863 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1864 	case F2FS_IOC_GARBAGE_COLLECT:
1865 		return f2fs_ioc_gc(filp, arg);
1866 	case F2FS_IOC_WRITE_CHECKPOINT:
1867 		return f2fs_ioc_write_checkpoint(filp, arg);
1868 	case F2FS_IOC_DEFRAGMENT:
1869 		return f2fs_ioc_defragment(filp, arg);
1870 	default:
1871 		return -ENOTTY;
1872 	}
1873 }
1874 
1875 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1876 {
1877 	struct inode *inode = file_inode(iocb->ki_filp);
1878 
1879 	if (f2fs_encrypted_inode(inode) &&
1880 				!f2fs_has_encryption_key(inode) &&
1881 				f2fs_get_encryption_info(inode))
1882 		return -EACCES;
1883 
1884 	return generic_file_write_iter(iocb, from);
1885 }
1886 
1887 #ifdef CONFIG_COMPAT
1888 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1889 {
1890 	switch (cmd) {
1891 	case F2FS_IOC32_GETFLAGS:
1892 		cmd = F2FS_IOC_GETFLAGS;
1893 		break;
1894 	case F2FS_IOC32_SETFLAGS:
1895 		cmd = F2FS_IOC_SETFLAGS;
1896 		break;
1897 	case F2FS_IOC32_GETVERSION:
1898 		cmd = F2FS_IOC_GETVERSION;
1899 		break;
1900 	case F2FS_IOC_START_ATOMIC_WRITE:
1901 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1902 	case F2FS_IOC_START_VOLATILE_WRITE:
1903 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1904 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
1905 	case F2FS_IOC_SHUTDOWN:
1906 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
1907 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1908 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
1909 	case F2FS_IOC_GARBAGE_COLLECT:
1910 	case F2FS_IOC_WRITE_CHECKPOINT:
1911 	case F2FS_IOC_DEFRAGMENT:
1912 		break;
1913 	default:
1914 		return -ENOIOCTLCMD;
1915 	}
1916 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1917 }
1918 #endif
1919 
1920 const struct file_operations f2fs_file_operations = {
1921 	.llseek		= f2fs_llseek,
1922 	.read_iter	= generic_file_read_iter,
1923 	.write_iter	= f2fs_file_write_iter,
1924 	.open		= f2fs_file_open,
1925 	.release	= f2fs_release_file,
1926 	.mmap		= f2fs_file_mmap,
1927 	.fsync		= f2fs_sync_file,
1928 	.fallocate	= f2fs_fallocate,
1929 	.unlocked_ioctl	= f2fs_ioctl,
1930 #ifdef CONFIG_COMPAT
1931 	.compat_ioctl	= f2fs_compat_ioctl,
1932 #endif
1933 	.splice_read	= generic_file_splice_read,
1934 	.splice_write	= iter_file_splice_write,
1935 };
1936