xref: /openbmc/linux/fs/f2fs/file.c (revision b35565bb)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35 
36 static int f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 	struct inode *inode = file_inode(vmf->vma->vm_file);
39 	int err;
40 
41 	down_read(&F2FS_I(inode)->i_mmap_sem);
42 	err = filemap_fault(vmf);
43 	up_read(&F2FS_I(inode)->i_mmap_sem);
44 
45 	return err;
46 }
47 
48 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 	struct page *page = vmf->page;
51 	struct inode *inode = file_inode(vmf->vma->vm_file);
52 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 	struct dnode_of_data dn;
54 	int err;
55 
56 	sb_start_pagefault(inode->i_sb);
57 
58 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
59 
60 	/* block allocation */
61 	f2fs_lock_op(sbi);
62 	set_new_dnode(&dn, inode, NULL, NULL, 0);
63 	err = f2fs_reserve_block(&dn, page->index);
64 	if (err) {
65 		f2fs_unlock_op(sbi);
66 		goto out;
67 	}
68 	f2fs_put_dnode(&dn);
69 	f2fs_unlock_op(sbi);
70 
71 	f2fs_balance_fs(sbi, dn.node_changed);
72 
73 	file_update_time(vmf->vma->vm_file);
74 	down_read(&F2FS_I(inode)->i_mmap_sem);
75 	lock_page(page);
76 	if (unlikely(page->mapping != inode->i_mapping ||
77 			page_offset(page) > i_size_read(inode) ||
78 			!PageUptodate(page))) {
79 		unlock_page(page);
80 		err = -EFAULT;
81 		goto out_sem;
82 	}
83 
84 	/*
85 	 * check to see if the page is mapped already (no holes)
86 	 */
87 	if (PageMappedToDisk(page))
88 		goto mapped;
89 
90 	/* page is wholly or partially inside EOF */
91 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
92 						i_size_read(inode)) {
93 		unsigned offset;
94 		offset = i_size_read(inode) & ~PAGE_MASK;
95 		zero_user_segment(page, offset, PAGE_SIZE);
96 	}
97 	set_page_dirty(page);
98 	if (!PageUptodate(page))
99 		SetPageUptodate(page);
100 
101 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
102 
103 	trace_f2fs_vm_page_mkwrite(page, DATA);
104 mapped:
105 	/* fill the page */
106 	f2fs_wait_on_page_writeback(page, DATA, false);
107 
108 	/* wait for GCed encrypted page writeback */
109 	if (f2fs_encrypted_file(inode))
110 		f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
111 
112 out_sem:
113 	up_read(&F2FS_I(inode)->i_mmap_sem);
114 out:
115 	sb_end_pagefault(inode->i_sb);
116 	f2fs_update_time(sbi, REQ_TIME);
117 	return block_page_mkwrite_return(err);
118 }
119 
120 static const struct vm_operations_struct f2fs_file_vm_ops = {
121 	.fault		= f2fs_filemap_fault,
122 	.map_pages	= filemap_map_pages,
123 	.page_mkwrite	= f2fs_vm_page_mkwrite,
124 };
125 
126 static int get_parent_ino(struct inode *inode, nid_t *pino)
127 {
128 	struct dentry *dentry;
129 
130 	inode = igrab(inode);
131 	dentry = d_find_any_alias(inode);
132 	iput(inode);
133 	if (!dentry)
134 		return 0;
135 
136 	*pino = parent_ino(dentry);
137 	dput(dentry);
138 	return 1;
139 }
140 
141 static inline bool need_do_checkpoint(struct inode *inode)
142 {
143 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
144 	bool need_cp = false;
145 
146 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
147 		need_cp = true;
148 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
149 		need_cp = true;
150 	else if (file_wrong_pino(inode))
151 		need_cp = true;
152 	else if (!space_for_roll_forward(sbi))
153 		need_cp = true;
154 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
155 		need_cp = true;
156 	else if (test_opt(sbi, FASTBOOT))
157 		need_cp = true;
158 	else if (sbi->active_logs == 2)
159 		need_cp = true;
160 
161 	return need_cp;
162 }
163 
164 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
165 {
166 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
167 	bool ret = false;
168 	/* But we need to avoid that there are some inode updates */
169 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
170 		ret = true;
171 	f2fs_put_page(i, 0);
172 	return ret;
173 }
174 
175 static void try_to_fix_pino(struct inode *inode)
176 {
177 	struct f2fs_inode_info *fi = F2FS_I(inode);
178 	nid_t pino;
179 
180 	down_write(&fi->i_sem);
181 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
182 			get_parent_ino(inode, &pino)) {
183 		f2fs_i_pino_write(inode, pino);
184 		file_got_pino(inode);
185 	}
186 	up_write(&fi->i_sem);
187 }
188 
189 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
190 						int datasync, bool atomic)
191 {
192 	struct inode *inode = file->f_mapping->host;
193 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
194 	nid_t ino = inode->i_ino;
195 	int ret = 0;
196 	bool need_cp = false;
197 	struct writeback_control wbc = {
198 		.sync_mode = WB_SYNC_ALL,
199 		.nr_to_write = LONG_MAX,
200 		.for_reclaim = 0,
201 	};
202 
203 	if (unlikely(f2fs_readonly(inode->i_sb)))
204 		return 0;
205 
206 	trace_f2fs_sync_file_enter(inode);
207 
208 	/* if fdatasync is triggered, let's do in-place-update */
209 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
210 		set_inode_flag(inode, FI_NEED_IPU);
211 	ret = file_write_and_wait_range(file, start, end);
212 	clear_inode_flag(inode, FI_NEED_IPU);
213 
214 	if (ret) {
215 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
216 		return ret;
217 	}
218 
219 	/* if the inode is dirty, let's recover all the time */
220 	if (!f2fs_skip_inode_update(inode, datasync)) {
221 		f2fs_write_inode(inode, NULL);
222 		goto go_write;
223 	}
224 
225 	/*
226 	 * if there is no written data, don't waste time to write recovery info.
227 	 */
228 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
229 			!exist_written_data(sbi, ino, APPEND_INO)) {
230 
231 		/* it may call write_inode just prior to fsync */
232 		if (need_inode_page_update(sbi, ino))
233 			goto go_write;
234 
235 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
236 				exist_written_data(sbi, ino, UPDATE_INO))
237 			goto flush_out;
238 		goto out;
239 	}
240 go_write:
241 	/*
242 	 * Both of fdatasync() and fsync() are able to be recovered from
243 	 * sudden-power-off.
244 	 */
245 	down_read(&F2FS_I(inode)->i_sem);
246 	need_cp = need_do_checkpoint(inode);
247 	up_read(&F2FS_I(inode)->i_sem);
248 
249 	if (need_cp) {
250 		/* all the dirty node pages should be flushed for POR */
251 		ret = f2fs_sync_fs(inode->i_sb, 1);
252 
253 		/*
254 		 * We've secured consistency through sync_fs. Following pino
255 		 * will be used only for fsynced inodes after checkpoint.
256 		 */
257 		try_to_fix_pino(inode);
258 		clear_inode_flag(inode, FI_APPEND_WRITE);
259 		clear_inode_flag(inode, FI_UPDATE_WRITE);
260 		goto out;
261 	}
262 sync_nodes:
263 	ret = fsync_node_pages(sbi, inode, &wbc, atomic);
264 	if (ret)
265 		goto out;
266 
267 	/* if cp_error was enabled, we should avoid infinite loop */
268 	if (unlikely(f2fs_cp_error(sbi))) {
269 		ret = -EIO;
270 		goto out;
271 	}
272 
273 	if (need_inode_block_update(sbi, ino)) {
274 		f2fs_mark_inode_dirty_sync(inode, true);
275 		f2fs_write_inode(inode, NULL);
276 		goto sync_nodes;
277 	}
278 
279 	/*
280 	 * If it's atomic_write, it's just fine to keep write ordering. So
281 	 * here we don't need to wait for node write completion, since we use
282 	 * node chain which serializes node blocks. If one of node writes are
283 	 * reordered, we can see simply broken chain, resulting in stopping
284 	 * roll-forward recovery. It means we'll recover all or none node blocks
285 	 * given fsync mark.
286 	 */
287 	if (!atomic) {
288 		ret = wait_on_node_pages_writeback(sbi, ino);
289 		if (ret)
290 			goto out;
291 	}
292 
293 	/* once recovery info is written, don't need to tack this */
294 	remove_ino_entry(sbi, ino, APPEND_INO);
295 	clear_inode_flag(inode, FI_APPEND_WRITE);
296 flush_out:
297 	remove_ino_entry(sbi, ino, UPDATE_INO);
298 	clear_inode_flag(inode, FI_UPDATE_WRITE);
299 	if (!atomic)
300 		ret = f2fs_issue_flush(sbi);
301 	f2fs_update_time(sbi, REQ_TIME);
302 out:
303 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
304 	f2fs_trace_ios(NULL, 1);
305 	return ret;
306 }
307 
308 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
309 {
310 	return f2fs_do_sync_file(file, start, end, datasync, false);
311 }
312 
313 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
314 						pgoff_t pgofs, int whence)
315 {
316 	struct pagevec pvec;
317 	int nr_pages;
318 
319 	if (whence != SEEK_DATA)
320 		return 0;
321 
322 	/* find first dirty page index */
323 	pagevec_init(&pvec, 0);
324 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
325 					PAGECACHE_TAG_DIRTY, 1);
326 	pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
327 	pagevec_release(&pvec);
328 	return pgofs;
329 }
330 
331 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
332 							int whence)
333 {
334 	switch (whence) {
335 	case SEEK_DATA:
336 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
337 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
338 			return true;
339 		break;
340 	case SEEK_HOLE:
341 		if (blkaddr == NULL_ADDR)
342 			return true;
343 		break;
344 	}
345 	return false;
346 }
347 
348 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
349 {
350 	struct inode *inode = file->f_mapping->host;
351 	loff_t maxbytes = inode->i_sb->s_maxbytes;
352 	struct dnode_of_data dn;
353 	pgoff_t pgofs, end_offset, dirty;
354 	loff_t data_ofs = offset;
355 	loff_t isize;
356 	int err = 0;
357 
358 	inode_lock(inode);
359 
360 	isize = i_size_read(inode);
361 	if (offset >= isize)
362 		goto fail;
363 
364 	/* handle inline data case */
365 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
366 		if (whence == SEEK_HOLE)
367 			data_ofs = isize;
368 		goto found;
369 	}
370 
371 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
372 
373 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
374 
375 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
376 		set_new_dnode(&dn, inode, NULL, NULL, 0);
377 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
378 		if (err && err != -ENOENT) {
379 			goto fail;
380 		} else if (err == -ENOENT) {
381 			/* direct node does not exists */
382 			if (whence == SEEK_DATA) {
383 				pgofs = get_next_page_offset(&dn, pgofs);
384 				continue;
385 			} else {
386 				goto found;
387 			}
388 		}
389 
390 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
391 
392 		/* find data/hole in dnode block */
393 		for (; dn.ofs_in_node < end_offset;
394 				dn.ofs_in_node++, pgofs++,
395 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
396 			block_t blkaddr;
397 			blkaddr = datablock_addr(dn.inode,
398 					dn.node_page, dn.ofs_in_node);
399 
400 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
401 				f2fs_put_dnode(&dn);
402 				goto found;
403 			}
404 		}
405 		f2fs_put_dnode(&dn);
406 	}
407 
408 	if (whence == SEEK_DATA)
409 		goto fail;
410 found:
411 	if (whence == SEEK_HOLE && data_ofs > isize)
412 		data_ofs = isize;
413 	inode_unlock(inode);
414 	return vfs_setpos(file, data_ofs, maxbytes);
415 fail:
416 	inode_unlock(inode);
417 	return -ENXIO;
418 }
419 
420 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
421 {
422 	struct inode *inode = file->f_mapping->host;
423 	loff_t maxbytes = inode->i_sb->s_maxbytes;
424 
425 	switch (whence) {
426 	case SEEK_SET:
427 	case SEEK_CUR:
428 	case SEEK_END:
429 		return generic_file_llseek_size(file, offset, whence,
430 						maxbytes, i_size_read(inode));
431 	case SEEK_DATA:
432 	case SEEK_HOLE:
433 		if (offset < 0)
434 			return -ENXIO;
435 		return f2fs_seek_block(file, offset, whence);
436 	}
437 
438 	return -EINVAL;
439 }
440 
441 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
442 {
443 	struct inode *inode = file_inode(file);
444 	int err;
445 
446 	/* we don't need to use inline_data strictly */
447 	err = f2fs_convert_inline_inode(inode);
448 	if (err)
449 		return err;
450 
451 	file_accessed(file);
452 	vma->vm_ops = &f2fs_file_vm_ops;
453 	return 0;
454 }
455 
456 static int f2fs_file_open(struct inode *inode, struct file *filp)
457 {
458 	struct dentry *dir;
459 
460 	if (f2fs_encrypted_inode(inode)) {
461 		int ret = fscrypt_get_encryption_info(inode);
462 		if (ret)
463 			return -EACCES;
464 		if (!fscrypt_has_encryption_key(inode))
465 			return -ENOKEY;
466 	}
467 	dir = dget_parent(file_dentry(filp));
468 	if (f2fs_encrypted_inode(d_inode(dir)) &&
469 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
470 		dput(dir);
471 		return -EPERM;
472 	}
473 	dput(dir);
474 	return dquot_file_open(inode, filp);
475 }
476 
477 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
478 {
479 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
480 	struct f2fs_node *raw_node;
481 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
482 	__le32 *addr;
483 	int base = 0;
484 
485 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
486 		base = get_extra_isize(dn->inode);
487 
488 	raw_node = F2FS_NODE(dn->node_page);
489 	addr = blkaddr_in_node(raw_node) + base + ofs;
490 
491 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
492 		block_t blkaddr = le32_to_cpu(*addr);
493 		if (blkaddr == NULL_ADDR)
494 			continue;
495 
496 		dn->data_blkaddr = NULL_ADDR;
497 		set_data_blkaddr(dn);
498 		invalidate_blocks(sbi, blkaddr);
499 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
500 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
501 		nr_free++;
502 	}
503 
504 	if (nr_free) {
505 		pgoff_t fofs;
506 		/*
507 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
508 		 * we will invalidate all blkaddr in the whole range.
509 		 */
510 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
511 							dn->inode) + ofs;
512 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
513 		dec_valid_block_count(sbi, dn->inode, nr_free);
514 	}
515 	dn->ofs_in_node = ofs;
516 
517 	f2fs_update_time(sbi, REQ_TIME);
518 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
519 					 dn->ofs_in_node, nr_free);
520 	return nr_free;
521 }
522 
523 void truncate_data_blocks(struct dnode_of_data *dn)
524 {
525 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
526 }
527 
528 static int truncate_partial_data_page(struct inode *inode, u64 from,
529 								bool cache_only)
530 {
531 	unsigned offset = from & (PAGE_SIZE - 1);
532 	pgoff_t index = from >> PAGE_SHIFT;
533 	struct address_space *mapping = inode->i_mapping;
534 	struct page *page;
535 
536 	if (!offset && !cache_only)
537 		return 0;
538 
539 	if (cache_only) {
540 		page = find_lock_page(mapping, index);
541 		if (page && PageUptodate(page))
542 			goto truncate_out;
543 		f2fs_put_page(page, 1);
544 		return 0;
545 	}
546 
547 	page = get_lock_data_page(inode, index, true);
548 	if (IS_ERR(page))
549 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
550 truncate_out:
551 	f2fs_wait_on_page_writeback(page, DATA, true);
552 	zero_user(page, offset, PAGE_SIZE - offset);
553 
554 	/* An encrypted inode should have a key and truncate the last page. */
555 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
556 	if (!cache_only)
557 		set_page_dirty(page);
558 	f2fs_put_page(page, 1);
559 	return 0;
560 }
561 
562 int truncate_blocks(struct inode *inode, u64 from, bool lock)
563 {
564 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
565 	unsigned int blocksize = inode->i_sb->s_blocksize;
566 	struct dnode_of_data dn;
567 	pgoff_t free_from;
568 	int count = 0, err = 0;
569 	struct page *ipage;
570 	bool truncate_page = false;
571 
572 	trace_f2fs_truncate_blocks_enter(inode, from);
573 
574 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
575 
576 	if (free_from >= sbi->max_file_blocks)
577 		goto free_partial;
578 
579 	if (lock)
580 		f2fs_lock_op(sbi);
581 
582 	ipage = get_node_page(sbi, inode->i_ino);
583 	if (IS_ERR(ipage)) {
584 		err = PTR_ERR(ipage);
585 		goto out;
586 	}
587 
588 	if (f2fs_has_inline_data(inode)) {
589 		truncate_inline_inode(inode, ipage, from);
590 		f2fs_put_page(ipage, 1);
591 		truncate_page = true;
592 		goto out;
593 	}
594 
595 	set_new_dnode(&dn, inode, ipage, NULL, 0);
596 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
597 	if (err) {
598 		if (err == -ENOENT)
599 			goto free_next;
600 		goto out;
601 	}
602 
603 	count = ADDRS_PER_PAGE(dn.node_page, inode);
604 
605 	count -= dn.ofs_in_node;
606 	f2fs_bug_on(sbi, count < 0);
607 
608 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
609 		truncate_data_blocks_range(&dn, count);
610 		free_from += count;
611 	}
612 
613 	f2fs_put_dnode(&dn);
614 free_next:
615 	err = truncate_inode_blocks(inode, free_from);
616 out:
617 	if (lock)
618 		f2fs_unlock_op(sbi);
619 free_partial:
620 	/* lastly zero out the first data page */
621 	if (!err)
622 		err = truncate_partial_data_page(inode, from, truncate_page);
623 
624 	trace_f2fs_truncate_blocks_exit(inode, err);
625 	return err;
626 }
627 
628 int f2fs_truncate(struct inode *inode)
629 {
630 	int err;
631 
632 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
633 				S_ISLNK(inode->i_mode)))
634 		return 0;
635 
636 	trace_f2fs_truncate(inode);
637 
638 #ifdef CONFIG_F2FS_FAULT_INJECTION
639 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
640 		f2fs_show_injection_info(FAULT_TRUNCATE);
641 		return -EIO;
642 	}
643 #endif
644 	/* we should check inline_data size */
645 	if (!f2fs_may_inline_data(inode)) {
646 		err = f2fs_convert_inline_inode(inode);
647 		if (err)
648 			return err;
649 	}
650 
651 	err = truncate_blocks(inode, i_size_read(inode), true);
652 	if (err)
653 		return err;
654 
655 	inode->i_mtime = inode->i_ctime = current_time(inode);
656 	f2fs_mark_inode_dirty_sync(inode, false);
657 	return 0;
658 }
659 
660 int f2fs_getattr(const struct path *path, struct kstat *stat,
661 		 u32 request_mask, unsigned int query_flags)
662 {
663 	struct inode *inode = d_inode(path->dentry);
664 	struct f2fs_inode_info *fi = F2FS_I(inode);
665 	unsigned int flags;
666 
667 	flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
668 	if (flags & FS_APPEND_FL)
669 		stat->attributes |= STATX_ATTR_APPEND;
670 	if (flags & FS_COMPR_FL)
671 		stat->attributes |= STATX_ATTR_COMPRESSED;
672 	if (f2fs_encrypted_inode(inode))
673 		stat->attributes |= STATX_ATTR_ENCRYPTED;
674 	if (flags & FS_IMMUTABLE_FL)
675 		stat->attributes |= STATX_ATTR_IMMUTABLE;
676 	if (flags & FS_NODUMP_FL)
677 		stat->attributes |= STATX_ATTR_NODUMP;
678 
679 	stat->attributes_mask |= (STATX_ATTR_APPEND |
680 				  STATX_ATTR_COMPRESSED |
681 				  STATX_ATTR_ENCRYPTED |
682 				  STATX_ATTR_IMMUTABLE |
683 				  STATX_ATTR_NODUMP);
684 
685 	generic_fillattr(inode, stat);
686 	return 0;
687 }
688 
689 #ifdef CONFIG_F2FS_FS_POSIX_ACL
690 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
691 {
692 	unsigned int ia_valid = attr->ia_valid;
693 
694 	if (ia_valid & ATTR_UID)
695 		inode->i_uid = attr->ia_uid;
696 	if (ia_valid & ATTR_GID)
697 		inode->i_gid = attr->ia_gid;
698 	if (ia_valid & ATTR_ATIME)
699 		inode->i_atime = timespec_trunc(attr->ia_atime,
700 						inode->i_sb->s_time_gran);
701 	if (ia_valid & ATTR_MTIME)
702 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
703 						inode->i_sb->s_time_gran);
704 	if (ia_valid & ATTR_CTIME)
705 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
706 						inode->i_sb->s_time_gran);
707 	if (ia_valid & ATTR_MODE) {
708 		umode_t mode = attr->ia_mode;
709 
710 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
711 			mode &= ~S_ISGID;
712 		set_acl_inode(inode, mode);
713 	}
714 }
715 #else
716 #define __setattr_copy setattr_copy
717 #endif
718 
719 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
720 {
721 	struct inode *inode = d_inode(dentry);
722 	int err;
723 	bool size_changed = false;
724 
725 	err = setattr_prepare(dentry, attr);
726 	if (err)
727 		return err;
728 
729 	if (is_quota_modification(inode, attr)) {
730 		err = dquot_initialize(inode);
731 		if (err)
732 			return err;
733 	}
734 	if ((attr->ia_valid & ATTR_UID &&
735 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
736 		(attr->ia_valid & ATTR_GID &&
737 		!gid_eq(attr->ia_gid, inode->i_gid))) {
738 		err = dquot_transfer(inode, attr);
739 		if (err)
740 			return err;
741 	}
742 
743 	if (attr->ia_valid & ATTR_SIZE) {
744 		if (f2fs_encrypted_inode(inode)) {
745 			err = fscrypt_get_encryption_info(inode);
746 			if (err)
747 				return err;
748 			if (!fscrypt_has_encryption_key(inode))
749 				return -ENOKEY;
750 		}
751 
752 		if (attr->ia_size <= i_size_read(inode)) {
753 			down_write(&F2FS_I(inode)->i_mmap_sem);
754 			truncate_setsize(inode, attr->ia_size);
755 			err = f2fs_truncate(inode);
756 			up_write(&F2FS_I(inode)->i_mmap_sem);
757 			if (err)
758 				return err;
759 		} else {
760 			/*
761 			 * do not trim all blocks after i_size if target size is
762 			 * larger than i_size.
763 			 */
764 			down_write(&F2FS_I(inode)->i_mmap_sem);
765 			truncate_setsize(inode, attr->ia_size);
766 			up_write(&F2FS_I(inode)->i_mmap_sem);
767 
768 			/* should convert inline inode here */
769 			if (!f2fs_may_inline_data(inode)) {
770 				err = f2fs_convert_inline_inode(inode);
771 				if (err)
772 					return err;
773 			}
774 			inode->i_mtime = inode->i_ctime = current_time(inode);
775 		}
776 
777 		size_changed = true;
778 	}
779 
780 	__setattr_copy(inode, attr);
781 
782 	if (attr->ia_valid & ATTR_MODE) {
783 		err = posix_acl_chmod(inode, get_inode_mode(inode));
784 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
785 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
786 			clear_inode_flag(inode, FI_ACL_MODE);
787 		}
788 	}
789 
790 	/* file size may changed here */
791 	f2fs_mark_inode_dirty_sync(inode, size_changed);
792 
793 	/* inode change will produce dirty node pages flushed by checkpoint */
794 	f2fs_balance_fs(F2FS_I_SB(inode), true);
795 
796 	return err;
797 }
798 
799 const struct inode_operations f2fs_file_inode_operations = {
800 	.getattr	= f2fs_getattr,
801 	.setattr	= f2fs_setattr,
802 	.get_acl	= f2fs_get_acl,
803 	.set_acl	= f2fs_set_acl,
804 #ifdef CONFIG_F2FS_FS_XATTR
805 	.listxattr	= f2fs_listxattr,
806 #endif
807 	.fiemap		= f2fs_fiemap,
808 };
809 
810 static int fill_zero(struct inode *inode, pgoff_t index,
811 					loff_t start, loff_t len)
812 {
813 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
814 	struct page *page;
815 
816 	if (!len)
817 		return 0;
818 
819 	f2fs_balance_fs(sbi, true);
820 
821 	f2fs_lock_op(sbi);
822 	page = get_new_data_page(inode, NULL, index, false);
823 	f2fs_unlock_op(sbi);
824 
825 	if (IS_ERR(page))
826 		return PTR_ERR(page);
827 
828 	f2fs_wait_on_page_writeback(page, DATA, true);
829 	zero_user(page, start, len);
830 	set_page_dirty(page);
831 	f2fs_put_page(page, 1);
832 	return 0;
833 }
834 
835 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
836 {
837 	int err;
838 
839 	while (pg_start < pg_end) {
840 		struct dnode_of_data dn;
841 		pgoff_t end_offset, count;
842 
843 		set_new_dnode(&dn, inode, NULL, NULL, 0);
844 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
845 		if (err) {
846 			if (err == -ENOENT) {
847 				pg_start++;
848 				continue;
849 			}
850 			return err;
851 		}
852 
853 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
854 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
855 
856 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
857 
858 		truncate_data_blocks_range(&dn, count);
859 		f2fs_put_dnode(&dn);
860 
861 		pg_start += count;
862 	}
863 	return 0;
864 }
865 
866 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
867 {
868 	pgoff_t pg_start, pg_end;
869 	loff_t off_start, off_end;
870 	int ret;
871 
872 	ret = f2fs_convert_inline_inode(inode);
873 	if (ret)
874 		return ret;
875 
876 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
877 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
878 
879 	off_start = offset & (PAGE_SIZE - 1);
880 	off_end = (offset + len) & (PAGE_SIZE - 1);
881 
882 	if (pg_start == pg_end) {
883 		ret = fill_zero(inode, pg_start, off_start,
884 						off_end - off_start);
885 		if (ret)
886 			return ret;
887 	} else {
888 		if (off_start) {
889 			ret = fill_zero(inode, pg_start++, off_start,
890 						PAGE_SIZE - off_start);
891 			if (ret)
892 				return ret;
893 		}
894 		if (off_end) {
895 			ret = fill_zero(inode, pg_end, 0, off_end);
896 			if (ret)
897 				return ret;
898 		}
899 
900 		if (pg_start < pg_end) {
901 			struct address_space *mapping = inode->i_mapping;
902 			loff_t blk_start, blk_end;
903 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
904 
905 			f2fs_balance_fs(sbi, true);
906 
907 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
908 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
909 			down_write(&F2FS_I(inode)->i_mmap_sem);
910 			truncate_inode_pages_range(mapping, blk_start,
911 					blk_end - 1);
912 
913 			f2fs_lock_op(sbi);
914 			ret = truncate_hole(inode, pg_start, pg_end);
915 			f2fs_unlock_op(sbi);
916 			up_write(&F2FS_I(inode)->i_mmap_sem);
917 		}
918 	}
919 
920 	return ret;
921 }
922 
923 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
924 				int *do_replace, pgoff_t off, pgoff_t len)
925 {
926 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
927 	struct dnode_of_data dn;
928 	int ret, done, i;
929 
930 next_dnode:
931 	set_new_dnode(&dn, inode, NULL, NULL, 0);
932 	ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
933 	if (ret && ret != -ENOENT) {
934 		return ret;
935 	} else if (ret == -ENOENT) {
936 		if (dn.max_level == 0)
937 			return -ENOENT;
938 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
939 		blkaddr += done;
940 		do_replace += done;
941 		goto next;
942 	}
943 
944 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
945 							dn.ofs_in_node, len);
946 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
947 		*blkaddr = datablock_addr(dn.inode,
948 					dn.node_page, dn.ofs_in_node);
949 		if (!is_checkpointed_data(sbi, *blkaddr)) {
950 
951 			if (test_opt(sbi, LFS)) {
952 				f2fs_put_dnode(&dn);
953 				return -ENOTSUPP;
954 			}
955 
956 			/* do not invalidate this block address */
957 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
958 			*do_replace = 1;
959 		}
960 	}
961 	f2fs_put_dnode(&dn);
962 next:
963 	len -= done;
964 	off += done;
965 	if (len)
966 		goto next_dnode;
967 	return 0;
968 }
969 
970 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
971 				int *do_replace, pgoff_t off, int len)
972 {
973 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
974 	struct dnode_of_data dn;
975 	int ret, i;
976 
977 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
978 		if (*do_replace == 0)
979 			continue;
980 
981 		set_new_dnode(&dn, inode, NULL, NULL, 0);
982 		ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
983 		if (ret) {
984 			dec_valid_block_count(sbi, inode, 1);
985 			invalidate_blocks(sbi, *blkaddr);
986 		} else {
987 			f2fs_update_data_blkaddr(&dn, *blkaddr);
988 		}
989 		f2fs_put_dnode(&dn);
990 	}
991 	return 0;
992 }
993 
994 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
995 			block_t *blkaddr, int *do_replace,
996 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
997 {
998 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
999 	pgoff_t i = 0;
1000 	int ret;
1001 
1002 	while (i < len) {
1003 		if (blkaddr[i] == NULL_ADDR && !full) {
1004 			i++;
1005 			continue;
1006 		}
1007 
1008 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1009 			struct dnode_of_data dn;
1010 			struct node_info ni;
1011 			size_t new_size;
1012 			pgoff_t ilen;
1013 
1014 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1015 			ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1016 			if (ret)
1017 				return ret;
1018 
1019 			get_node_info(sbi, dn.nid, &ni);
1020 			ilen = min((pgoff_t)
1021 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1022 						dn.ofs_in_node, len - i);
1023 			do {
1024 				dn.data_blkaddr = datablock_addr(dn.inode,
1025 						dn.node_page, dn.ofs_in_node);
1026 				truncate_data_blocks_range(&dn, 1);
1027 
1028 				if (do_replace[i]) {
1029 					f2fs_i_blocks_write(src_inode,
1030 							1, false, false);
1031 					f2fs_i_blocks_write(dst_inode,
1032 							1, true, false);
1033 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1034 					blkaddr[i], ni.version, true, false);
1035 
1036 					do_replace[i] = 0;
1037 				}
1038 				dn.ofs_in_node++;
1039 				i++;
1040 				new_size = (dst + i) << PAGE_SHIFT;
1041 				if (dst_inode->i_size < new_size)
1042 					f2fs_i_size_write(dst_inode, new_size);
1043 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1044 
1045 			f2fs_put_dnode(&dn);
1046 		} else {
1047 			struct page *psrc, *pdst;
1048 
1049 			psrc = get_lock_data_page(src_inode, src + i, true);
1050 			if (IS_ERR(psrc))
1051 				return PTR_ERR(psrc);
1052 			pdst = get_new_data_page(dst_inode, NULL, dst + i,
1053 								true);
1054 			if (IS_ERR(pdst)) {
1055 				f2fs_put_page(psrc, 1);
1056 				return PTR_ERR(pdst);
1057 			}
1058 			f2fs_copy_page(psrc, pdst);
1059 			set_page_dirty(pdst);
1060 			f2fs_put_page(pdst, 1);
1061 			f2fs_put_page(psrc, 1);
1062 
1063 			ret = truncate_hole(src_inode, src + i, src + i + 1);
1064 			if (ret)
1065 				return ret;
1066 			i++;
1067 		}
1068 	}
1069 	return 0;
1070 }
1071 
1072 static int __exchange_data_block(struct inode *src_inode,
1073 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1074 			pgoff_t len, bool full)
1075 {
1076 	block_t *src_blkaddr;
1077 	int *do_replace;
1078 	pgoff_t olen;
1079 	int ret;
1080 
1081 	while (len) {
1082 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1083 
1084 		src_blkaddr = kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1085 		if (!src_blkaddr)
1086 			return -ENOMEM;
1087 
1088 		do_replace = kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1089 		if (!do_replace) {
1090 			kvfree(src_blkaddr);
1091 			return -ENOMEM;
1092 		}
1093 
1094 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1095 					do_replace, src, olen);
1096 		if (ret)
1097 			goto roll_back;
1098 
1099 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1100 					do_replace, src, dst, olen, full);
1101 		if (ret)
1102 			goto roll_back;
1103 
1104 		src += olen;
1105 		dst += olen;
1106 		len -= olen;
1107 
1108 		kvfree(src_blkaddr);
1109 		kvfree(do_replace);
1110 	}
1111 	return 0;
1112 
1113 roll_back:
1114 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1115 	kvfree(src_blkaddr);
1116 	kvfree(do_replace);
1117 	return ret;
1118 }
1119 
1120 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1121 {
1122 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1123 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1124 	int ret;
1125 
1126 	f2fs_balance_fs(sbi, true);
1127 	f2fs_lock_op(sbi);
1128 
1129 	f2fs_drop_extent_tree(inode);
1130 
1131 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1132 	f2fs_unlock_op(sbi);
1133 	return ret;
1134 }
1135 
1136 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1137 {
1138 	pgoff_t pg_start, pg_end;
1139 	loff_t new_size;
1140 	int ret;
1141 
1142 	if (offset + len >= i_size_read(inode))
1143 		return -EINVAL;
1144 
1145 	/* collapse range should be aligned to block size of f2fs. */
1146 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1147 		return -EINVAL;
1148 
1149 	ret = f2fs_convert_inline_inode(inode);
1150 	if (ret)
1151 		return ret;
1152 
1153 	pg_start = offset >> PAGE_SHIFT;
1154 	pg_end = (offset + len) >> PAGE_SHIFT;
1155 
1156 	down_write(&F2FS_I(inode)->i_mmap_sem);
1157 	/* write out all dirty pages from offset */
1158 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1159 	if (ret)
1160 		goto out;
1161 
1162 	truncate_pagecache(inode, offset);
1163 
1164 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1165 	if (ret)
1166 		goto out;
1167 
1168 	/* write out all moved pages, if possible */
1169 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1170 	truncate_pagecache(inode, offset);
1171 
1172 	new_size = i_size_read(inode) - len;
1173 	truncate_pagecache(inode, new_size);
1174 
1175 	ret = truncate_blocks(inode, new_size, true);
1176 	if (!ret)
1177 		f2fs_i_size_write(inode, new_size);
1178 
1179 out:
1180 	up_write(&F2FS_I(inode)->i_mmap_sem);
1181 	return ret;
1182 }
1183 
1184 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1185 								pgoff_t end)
1186 {
1187 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1188 	pgoff_t index = start;
1189 	unsigned int ofs_in_node = dn->ofs_in_node;
1190 	blkcnt_t count = 0;
1191 	int ret;
1192 
1193 	for (; index < end; index++, dn->ofs_in_node++) {
1194 		if (datablock_addr(dn->inode, dn->node_page,
1195 					dn->ofs_in_node) == NULL_ADDR)
1196 			count++;
1197 	}
1198 
1199 	dn->ofs_in_node = ofs_in_node;
1200 	ret = reserve_new_blocks(dn, count);
1201 	if (ret)
1202 		return ret;
1203 
1204 	dn->ofs_in_node = ofs_in_node;
1205 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1206 		dn->data_blkaddr = datablock_addr(dn->inode,
1207 					dn->node_page, dn->ofs_in_node);
1208 		/*
1209 		 * reserve_new_blocks will not guarantee entire block
1210 		 * allocation.
1211 		 */
1212 		if (dn->data_blkaddr == NULL_ADDR) {
1213 			ret = -ENOSPC;
1214 			break;
1215 		}
1216 		if (dn->data_blkaddr != NEW_ADDR) {
1217 			invalidate_blocks(sbi, dn->data_blkaddr);
1218 			dn->data_blkaddr = NEW_ADDR;
1219 			set_data_blkaddr(dn);
1220 		}
1221 	}
1222 
1223 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1224 
1225 	return ret;
1226 }
1227 
1228 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1229 								int mode)
1230 {
1231 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1232 	struct address_space *mapping = inode->i_mapping;
1233 	pgoff_t index, pg_start, pg_end;
1234 	loff_t new_size = i_size_read(inode);
1235 	loff_t off_start, off_end;
1236 	int ret = 0;
1237 
1238 	ret = inode_newsize_ok(inode, (len + offset));
1239 	if (ret)
1240 		return ret;
1241 
1242 	ret = f2fs_convert_inline_inode(inode);
1243 	if (ret)
1244 		return ret;
1245 
1246 	down_write(&F2FS_I(inode)->i_mmap_sem);
1247 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1248 	if (ret)
1249 		goto out_sem;
1250 
1251 	truncate_pagecache_range(inode, offset, offset + len - 1);
1252 
1253 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1254 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1255 
1256 	off_start = offset & (PAGE_SIZE - 1);
1257 	off_end = (offset + len) & (PAGE_SIZE - 1);
1258 
1259 	if (pg_start == pg_end) {
1260 		ret = fill_zero(inode, pg_start, off_start,
1261 						off_end - off_start);
1262 		if (ret)
1263 			goto out_sem;
1264 
1265 		new_size = max_t(loff_t, new_size, offset + len);
1266 	} else {
1267 		if (off_start) {
1268 			ret = fill_zero(inode, pg_start++, off_start,
1269 						PAGE_SIZE - off_start);
1270 			if (ret)
1271 				goto out_sem;
1272 
1273 			new_size = max_t(loff_t, new_size,
1274 					(loff_t)pg_start << PAGE_SHIFT);
1275 		}
1276 
1277 		for (index = pg_start; index < pg_end;) {
1278 			struct dnode_of_data dn;
1279 			unsigned int end_offset;
1280 			pgoff_t end;
1281 
1282 			f2fs_lock_op(sbi);
1283 
1284 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1285 			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1286 			if (ret) {
1287 				f2fs_unlock_op(sbi);
1288 				goto out;
1289 			}
1290 
1291 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1292 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1293 
1294 			ret = f2fs_do_zero_range(&dn, index, end);
1295 			f2fs_put_dnode(&dn);
1296 			f2fs_unlock_op(sbi);
1297 
1298 			f2fs_balance_fs(sbi, dn.node_changed);
1299 
1300 			if (ret)
1301 				goto out;
1302 
1303 			index = end;
1304 			new_size = max_t(loff_t, new_size,
1305 					(loff_t)index << PAGE_SHIFT);
1306 		}
1307 
1308 		if (off_end) {
1309 			ret = fill_zero(inode, pg_end, 0, off_end);
1310 			if (ret)
1311 				goto out;
1312 
1313 			new_size = max_t(loff_t, new_size, offset + len);
1314 		}
1315 	}
1316 
1317 out:
1318 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1319 		f2fs_i_size_write(inode, new_size);
1320 out_sem:
1321 	up_write(&F2FS_I(inode)->i_mmap_sem);
1322 
1323 	return ret;
1324 }
1325 
1326 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1327 {
1328 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1329 	pgoff_t nr, pg_start, pg_end, delta, idx;
1330 	loff_t new_size;
1331 	int ret = 0;
1332 
1333 	new_size = i_size_read(inode) + len;
1334 	ret = inode_newsize_ok(inode, new_size);
1335 	if (ret)
1336 		return ret;
1337 
1338 	if (offset >= i_size_read(inode))
1339 		return -EINVAL;
1340 
1341 	/* insert range should be aligned to block size of f2fs. */
1342 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1343 		return -EINVAL;
1344 
1345 	ret = f2fs_convert_inline_inode(inode);
1346 	if (ret)
1347 		return ret;
1348 
1349 	f2fs_balance_fs(sbi, true);
1350 
1351 	down_write(&F2FS_I(inode)->i_mmap_sem);
1352 	ret = truncate_blocks(inode, i_size_read(inode), true);
1353 	if (ret)
1354 		goto out;
1355 
1356 	/* write out all dirty pages from offset */
1357 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1358 	if (ret)
1359 		goto out;
1360 
1361 	truncate_pagecache(inode, offset);
1362 
1363 	pg_start = offset >> PAGE_SHIFT;
1364 	pg_end = (offset + len) >> PAGE_SHIFT;
1365 	delta = pg_end - pg_start;
1366 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1367 
1368 	while (!ret && idx > pg_start) {
1369 		nr = idx - pg_start;
1370 		if (nr > delta)
1371 			nr = delta;
1372 		idx -= nr;
1373 
1374 		f2fs_lock_op(sbi);
1375 		f2fs_drop_extent_tree(inode);
1376 
1377 		ret = __exchange_data_block(inode, inode, idx,
1378 					idx + delta, nr, false);
1379 		f2fs_unlock_op(sbi);
1380 	}
1381 
1382 	/* write out all moved pages, if possible */
1383 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1384 	truncate_pagecache(inode, offset);
1385 
1386 	if (!ret)
1387 		f2fs_i_size_write(inode, new_size);
1388 out:
1389 	up_write(&F2FS_I(inode)->i_mmap_sem);
1390 	return ret;
1391 }
1392 
1393 static int expand_inode_data(struct inode *inode, loff_t offset,
1394 					loff_t len, int mode)
1395 {
1396 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1397 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1398 	pgoff_t pg_end;
1399 	loff_t new_size = i_size_read(inode);
1400 	loff_t off_end;
1401 	int err;
1402 
1403 	err = inode_newsize_ok(inode, (len + offset));
1404 	if (err)
1405 		return err;
1406 
1407 	err = f2fs_convert_inline_inode(inode);
1408 	if (err)
1409 		return err;
1410 
1411 	f2fs_balance_fs(sbi, true);
1412 
1413 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1414 	off_end = (offset + len) & (PAGE_SIZE - 1);
1415 
1416 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1417 	map.m_len = pg_end - map.m_lblk;
1418 	if (off_end)
1419 		map.m_len++;
1420 
1421 	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1422 	if (err) {
1423 		pgoff_t last_off;
1424 
1425 		if (!map.m_len)
1426 			return err;
1427 
1428 		last_off = map.m_lblk + map.m_len - 1;
1429 
1430 		/* update new size to the failed position */
1431 		new_size = (last_off == pg_end) ? offset + len:
1432 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1433 	} else {
1434 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1435 	}
1436 
1437 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1438 		f2fs_i_size_write(inode, new_size);
1439 
1440 	return err;
1441 }
1442 
1443 static long f2fs_fallocate(struct file *file, int mode,
1444 				loff_t offset, loff_t len)
1445 {
1446 	struct inode *inode = file_inode(file);
1447 	long ret = 0;
1448 
1449 	/* f2fs only support ->fallocate for regular file */
1450 	if (!S_ISREG(inode->i_mode))
1451 		return -EINVAL;
1452 
1453 	if (f2fs_encrypted_inode(inode) &&
1454 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1455 		return -EOPNOTSUPP;
1456 
1457 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1458 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1459 			FALLOC_FL_INSERT_RANGE))
1460 		return -EOPNOTSUPP;
1461 
1462 	inode_lock(inode);
1463 
1464 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1465 		if (offset >= inode->i_size)
1466 			goto out;
1467 
1468 		ret = punch_hole(inode, offset, len);
1469 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1470 		ret = f2fs_collapse_range(inode, offset, len);
1471 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1472 		ret = f2fs_zero_range(inode, offset, len, mode);
1473 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1474 		ret = f2fs_insert_range(inode, offset, len);
1475 	} else {
1476 		ret = expand_inode_data(inode, offset, len, mode);
1477 	}
1478 
1479 	if (!ret) {
1480 		inode->i_mtime = inode->i_ctime = current_time(inode);
1481 		f2fs_mark_inode_dirty_sync(inode, false);
1482 		if (mode & FALLOC_FL_KEEP_SIZE)
1483 			file_set_keep_isize(inode);
1484 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1485 	}
1486 
1487 out:
1488 	inode_unlock(inode);
1489 
1490 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1491 	return ret;
1492 }
1493 
1494 static int f2fs_release_file(struct inode *inode, struct file *filp)
1495 {
1496 	/*
1497 	 * f2fs_relase_file is called at every close calls. So we should
1498 	 * not drop any inmemory pages by close called by other process.
1499 	 */
1500 	if (!(filp->f_mode & FMODE_WRITE) ||
1501 			atomic_read(&inode->i_writecount) != 1)
1502 		return 0;
1503 
1504 	/* some remained atomic pages should discarded */
1505 	if (f2fs_is_atomic_file(inode))
1506 		drop_inmem_pages(inode);
1507 	if (f2fs_is_volatile_file(inode)) {
1508 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1509 		stat_dec_volatile_write(inode);
1510 		set_inode_flag(inode, FI_DROP_CACHE);
1511 		filemap_fdatawrite(inode->i_mapping);
1512 		clear_inode_flag(inode, FI_DROP_CACHE);
1513 	}
1514 	return 0;
1515 }
1516 
1517 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1518 {
1519 	struct inode *inode = file_inode(file);
1520 
1521 	/*
1522 	 * If the process doing a transaction is crashed, we should do
1523 	 * roll-back. Otherwise, other reader/write can see corrupted database
1524 	 * until all the writers close its file. Since this should be done
1525 	 * before dropping file lock, it needs to do in ->flush.
1526 	 */
1527 	if (f2fs_is_atomic_file(inode) &&
1528 			F2FS_I(inode)->inmem_task == current)
1529 		drop_inmem_pages(inode);
1530 	return 0;
1531 }
1532 
1533 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1534 {
1535 	struct inode *inode = file_inode(filp);
1536 	struct f2fs_inode_info *fi = F2FS_I(inode);
1537 	unsigned int flags = fi->i_flags &
1538 			(FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
1539 	return put_user(flags, (int __user *)arg);
1540 }
1541 
1542 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1543 {
1544 	struct f2fs_inode_info *fi = F2FS_I(inode);
1545 	unsigned int oldflags;
1546 
1547 	/* Is it quota file? Do not allow user to mess with it */
1548 	if (IS_NOQUOTA(inode))
1549 		return -EPERM;
1550 
1551 	flags = f2fs_mask_flags(inode->i_mode, flags);
1552 
1553 	oldflags = fi->i_flags;
1554 
1555 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
1556 		if (!capable(CAP_LINUX_IMMUTABLE))
1557 			return -EPERM;
1558 
1559 	flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1560 	flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1561 	fi->i_flags = flags;
1562 
1563 	if (fi->i_flags & FS_PROJINHERIT_FL)
1564 		set_inode_flag(inode, FI_PROJ_INHERIT);
1565 	else
1566 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1567 
1568 	inode->i_ctime = current_time(inode);
1569 	f2fs_set_inode_flags(inode);
1570 	f2fs_mark_inode_dirty_sync(inode, false);
1571 	return 0;
1572 }
1573 
1574 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1575 {
1576 	struct inode *inode = file_inode(filp);
1577 	unsigned int flags;
1578 	int ret;
1579 
1580 	if (!inode_owner_or_capable(inode))
1581 		return -EACCES;
1582 
1583 	if (get_user(flags, (int __user *)arg))
1584 		return -EFAULT;
1585 
1586 	ret = mnt_want_write_file(filp);
1587 	if (ret)
1588 		return ret;
1589 
1590 	inode_lock(inode);
1591 
1592 	ret = __f2fs_ioc_setflags(inode, flags);
1593 
1594 	inode_unlock(inode);
1595 	mnt_drop_write_file(filp);
1596 	return ret;
1597 }
1598 
1599 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1600 {
1601 	struct inode *inode = file_inode(filp);
1602 
1603 	return put_user(inode->i_generation, (int __user *)arg);
1604 }
1605 
1606 static int f2fs_ioc_start_atomic_write(struct file *filp)
1607 {
1608 	struct inode *inode = file_inode(filp);
1609 	int ret;
1610 
1611 	if (!inode_owner_or_capable(inode))
1612 		return -EACCES;
1613 
1614 	if (!S_ISREG(inode->i_mode))
1615 		return -EINVAL;
1616 
1617 	ret = mnt_want_write_file(filp);
1618 	if (ret)
1619 		return ret;
1620 
1621 	inode_lock(inode);
1622 
1623 	if (f2fs_is_atomic_file(inode))
1624 		goto out;
1625 
1626 	ret = f2fs_convert_inline_inode(inode);
1627 	if (ret)
1628 		goto out;
1629 
1630 	set_inode_flag(inode, FI_ATOMIC_FILE);
1631 	set_inode_flag(inode, FI_HOT_DATA);
1632 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1633 
1634 	if (!get_dirty_pages(inode))
1635 		goto inc_stat;
1636 
1637 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1638 		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1639 					inode->i_ino, get_dirty_pages(inode));
1640 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1641 	if (ret) {
1642 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1643 		clear_inode_flag(inode, FI_HOT_DATA);
1644 		goto out;
1645 	}
1646 
1647 inc_stat:
1648 	F2FS_I(inode)->inmem_task = current;
1649 	stat_inc_atomic_write(inode);
1650 	stat_update_max_atomic_write(inode);
1651 out:
1652 	inode_unlock(inode);
1653 	mnt_drop_write_file(filp);
1654 	return ret;
1655 }
1656 
1657 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1658 {
1659 	struct inode *inode = file_inode(filp);
1660 	int ret;
1661 
1662 	if (!inode_owner_or_capable(inode))
1663 		return -EACCES;
1664 
1665 	ret = mnt_want_write_file(filp);
1666 	if (ret)
1667 		return ret;
1668 
1669 	inode_lock(inode);
1670 
1671 	if (f2fs_is_volatile_file(inode))
1672 		goto err_out;
1673 
1674 	if (f2fs_is_atomic_file(inode)) {
1675 		ret = commit_inmem_pages(inode);
1676 		if (ret)
1677 			goto err_out;
1678 
1679 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1680 		if (!ret) {
1681 			clear_inode_flag(inode, FI_ATOMIC_FILE);
1682 			clear_inode_flag(inode, FI_HOT_DATA);
1683 			stat_dec_atomic_write(inode);
1684 		}
1685 	} else {
1686 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1687 	}
1688 err_out:
1689 	inode_unlock(inode);
1690 	mnt_drop_write_file(filp);
1691 	return ret;
1692 }
1693 
1694 static int f2fs_ioc_start_volatile_write(struct file *filp)
1695 {
1696 	struct inode *inode = file_inode(filp);
1697 	int ret;
1698 
1699 	if (!inode_owner_or_capable(inode))
1700 		return -EACCES;
1701 
1702 	if (!S_ISREG(inode->i_mode))
1703 		return -EINVAL;
1704 
1705 	ret = mnt_want_write_file(filp);
1706 	if (ret)
1707 		return ret;
1708 
1709 	inode_lock(inode);
1710 
1711 	if (f2fs_is_volatile_file(inode))
1712 		goto out;
1713 
1714 	ret = f2fs_convert_inline_inode(inode);
1715 	if (ret)
1716 		goto out;
1717 
1718 	stat_inc_volatile_write(inode);
1719 	stat_update_max_volatile_write(inode);
1720 
1721 	set_inode_flag(inode, FI_VOLATILE_FILE);
1722 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1723 out:
1724 	inode_unlock(inode);
1725 	mnt_drop_write_file(filp);
1726 	return ret;
1727 }
1728 
1729 static int f2fs_ioc_release_volatile_write(struct file *filp)
1730 {
1731 	struct inode *inode = file_inode(filp);
1732 	int ret;
1733 
1734 	if (!inode_owner_or_capable(inode))
1735 		return -EACCES;
1736 
1737 	ret = mnt_want_write_file(filp);
1738 	if (ret)
1739 		return ret;
1740 
1741 	inode_lock(inode);
1742 
1743 	if (!f2fs_is_volatile_file(inode))
1744 		goto out;
1745 
1746 	if (!f2fs_is_first_block_written(inode)) {
1747 		ret = truncate_partial_data_page(inode, 0, true);
1748 		goto out;
1749 	}
1750 
1751 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1752 out:
1753 	inode_unlock(inode);
1754 	mnt_drop_write_file(filp);
1755 	return ret;
1756 }
1757 
1758 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1759 {
1760 	struct inode *inode = file_inode(filp);
1761 	int ret;
1762 
1763 	if (!inode_owner_or_capable(inode))
1764 		return -EACCES;
1765 
1766 	ret = mnt_want_write_file(filp);
1767 	if (ret)
1768 		return ret;
1769 
1770 	inode_lock(inode);
1771 
1772 	if (f2fs_is_atomic_file(inode))
1773 		drop_inmem_pages(inode);
1774 	if (f2fs_is_volatile_file(inode)) {
1775 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1776 		stat_dec_volatile_write(inode);
1777 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1778 	}
1779 
1780 	inode_unlock(inode);
1781 
1782 	mnt_drop_write_file(filp);
1783 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1784 	return ret;
1785 }
1786 
1787 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1788 {
1789 	struct inode *inode = file_inode(filp);
1790 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1791 	struct super_block *sb = sbi->sb;
1792 	__u32 in;
1793 	int ret;
1794 
1795 	if (!capable(CAP_SYS_ADMIN))
1796 		return -EPERM;
1797 
1798 	if (get_user(in, (__u32 __user *)arg))
1799 		return -EFAULT;
1800 
1801 	ret = mnt_want_write_file(filp);
1802 	if (ret)
1803 		return ret;
1804 
1805 	switch (in) {
1806 	case F2FS_GOING_DOWN_FULLSYNC:
1807 		sb = freeze_bdev(sb->s_bdev);
1808 		if (sb && !IS_ERR(sb)) {
1809 			f2fs_stop_checkpoint(sbi, false);
1810 			thaw_bdev(sb->s_bdev, sb);
1811 		}
1812 		break;
1813 	case F2FS_GOING_DOWN_METASYNC:
1814 		/* do checkpoint only */
1815 		f2fs_sync_fs(sb, 1);
1816 		f2fs_stop_checkpoint(sbi, false);
1817 		break;
1818 	case F2FS_GOING_DOWN_NOSYNC:
1819 		f2fs_stop_checkpoint(sbi, false);
1820 		break;
1821 	case F2FS_GOING_DOWN_METAFLUSH:
1822 		sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1823 		f2fs_stop_checkpoint(sbi, false);
1824 		break;
1825 	default:
1826 		ret = -EINVAL;
1827 		goto out;
1828 	}
1829 	f2fs_update_time(sbi, REQ_TIME);
1830 out:
1831 	mnt_drop_write_file(filp);
1832 	return ret;
1833 }
1834 
1835 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1836 {
1837 	struct inode *inode = file_inode(filp);
1838 	struct super_block *sb = inode->i_sb;
1839 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1840 	struct fstrim_range range;
1841 	int ret;
1842 
1843 	if (!capable(CAP_SYS_ADMIN))
1844 		return -EPERM;
1845 
1846 	if (!blk_queue_discard(q))
1847 		return -EOPNOTSUPP;
1848 
1849 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1850 				sizeof(range)))
1851 		return -EFAULT;
1852 
1853 	ret = mnt_want_write_file(filp);
1854 	if (ret)
1855 		return ret;
1856 
1857 	range.minlen = max((unsigned int)range.minlen,
1858 				q->limits.discard_granularity);
1859 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1860 	mnt_drop_write_file(filp);
1861 	if (ret < 0)
1862 		return ret;
1863 
1864 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1865 				sizeof(range)))
1866 		return -EFAULT;
1867 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1868 	return 0;
1869 }
1870 
1871 static bool uuid_is_nonzero(__u8 u[16])
1872 {
1873 	int i;
1874 
1875 	for (i = 0; i < 16; i++)
1876 		if (u[i])
1877 			return true;
1878 	return false;
1879 }
1880 
1881 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1882 {
1883 	struct inode *inode = file_inode(filp);
1884 
1885 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1886 
1887 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1888 }
1889 
1890 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1891 {
1892 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1893 }
1894 
1895 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1896 {
1897 	struct inode *inode = file_inode(filp);
1898 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1899 	int err;
1900 
1901 	if (!f2fs_sb_has_crypto(inode->i_sb))
1902 		return -EOPNOTSUPP;
1903 
1904 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1905 		goto got_it;
1906 
1907 	err = mnt_want_write_file(filp);
1908 	if (err)
1909 		return err;
1910 
1911 	/* update superblock with uuid */
1912 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1913 
1914 	err = f2fs_commit_super(sbi, false);
1915 	if (err) {
1916 		/* undo new data */
1917 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1918 		mnt_drop_write_file(filp);
1919 		return err;
1920 	}
1921 	mnt_drop_write_file(filp);
1922 got_it:
1923 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1924 									16))
1925 		return -EFAULT;
1926 	return 0;
1927 }
1928 
1929 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1930 {
1931 	struct inode *inode = file_inode(filp);
1932 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1933 	__u32 sync;
1934 	int ret;
1935 
1936 	if (!capable(CAP_SYS_ADMIN))
1937 		return -EPERM;
1938 
1939 	if (get_user(sync, (__u32 __user *)arg))
1940 		return -EFAULT;
1941 
1942 	if (f2fs_readonly(sbi->sb))
1943 		return -EROFS;
1944 
1945 	ret = mnt_want_write_file(filp);
1946 	if (ret)
1947 		return ret;
1948 
1949 	if (!sync) {
1950 		if (!mutex_trylock(&sbi->gc_mutex)) {
1951 			ret = -EBUSY;
1952 			goto out;
1953 		}
1954 	} else {
1955 		mutex_lock(&sbi->gc_mutex);
1956 	}
1957 
1958 	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
1959 out:
1960 	mnt_drop_write_file(filp);
1961 	return ret;
1962 }
1963 
1964 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
1965 {
1966 	struct inode *inode = file_inode(filp);
1967 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1968 	struct f2fs_gc_range range;
1969 	u64 end;
1970 	int ret;
1971 
1972 	if (!capable(CAP_SYS_ADMIN))
1973 		return -EPERM;
1974 
1975 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
1976 							sizeof(range)))
1977 		return -EFAULT;
1978 
1979 	if (f2fs_readonly(sbi->sb))
1980 		return -EROFS;
1981 
1982 	ret = mnt_want_write_file(filp);
1983 	if (ret)
1984 		return ret;
1985 
1986 	end = range.start + range.len;
1987 	if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi))
1988 		return -EINVAL;
1989 do_more:
1990 	if (!range.sync) {
1991 		if (!mutex_trylock(&sbi->gc_mutex)) {
1992 			ret = -EBUSY;
1993 			goto out;
1994 		}
1995 	} else {
1996 		mutex_lock(&sbi->gc_mutex);
1997 	}
1998 
1999 	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2000 	range.start += sbi->blocks_per_seg;
2001 	if (range.start <= end)
2002 		goto do_more;
2003 out:
2004 	mnt_drop_write_file(filp);
2005 	return ret;
2006 }
2007 
2008 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2009 {
2010 	struct inode *inode = file_inode(filp);
2011 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2012 	int ret;
2013 
2014 	if (!capable(CAP_SYS_ADMIN))
2015 		return -EPERM;
2016 
2017 	if (f2fs_readonly(sbi->sb))
2018 		return -EROFS;
2019 
2020 	ret = mnt_want_write_file(filp);
2021 	if (ret)
2022 		return ret;
2023 
2024 	ret = f2fs_sync_fs(sbi->sb, 1);
2025 
2026 	mnt_drop_write_file(filp);
2027 	return ret;
2028 }
2029 
2030 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2031 					struct file *filp,
2032 					struct f2fs_defragment *range)
2033 {
2034 	struct inode *inode = file_inode(filp);
2035 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
2036 	struct extent_info ei = {0,0,0};
2037 	pgoff_t pg_start, pg_end;
2038 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2039 	unsigned int total = 0, sec_num;
2040 	block_t blk_end = 0;
2041 	bool fragmented = false;
2042 	int err;
2043 
2044 	/* if in-place-update policy is enabled, don't waste time here */
2045 	if (need_inplace_update_policy(inode, NULL))
2046 		return -EINVAL;
2047 
2048 	pg_start = range->start >> PAGE_SHIFT;
2049 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2050 
2051 	f2fs_balance_fs(sbi, true);
2052 
2053 	inode_lock(inode);
2054 
2055 	/* writeback all dirty pages in the range */
2056 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2057 						range->start + range->len - 1);
2058 	if (err)
2059 		goto out;
2060 
2061 	/*
2062 	 * lookup mapping info in extent cache, skip defragmenting if physical
2063 	 * block addresses are continuous.
2064 	 */
2065 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2066 		if (ei.fofs + ei.len >= pg_end)
2067 			goto out;
2068 	}
2069 
2070 	map.m_lblk = pg_start;
2071 
2072 	/*
2073 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2074 	 * physical block addresses are continuous even if there are hole(s)
2075 	 * in logical blocks.
2076 	 */
2077 	while (map.m_lblk < pg_end) {
2078 		map.m_len = pg_end - map.m_lblk;
2079 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2080 		if (err)
2081 			goto out;
2082 
2083 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2084 			map.m_lblk++;
2085 			continue;
2086 		}
2087 
2088 		if (blk_end && blk_end != map.m_pblk) {
2089 			fragmented = true;
2090 			break;
2091 		}
2092 		blk_end = map.m_pblk + map.m_len;
2093 
2094 		map.m_lblk += map.m_len;
2095 	}
2096 
2097 	if (!fragmented)
2098 		goto out;
2099 
2100 	map.m_lblk = pg_start;
2101 	map.m_len = pg_end - pg_start;
2102 
2103 	sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2104 
2105 	/*
2106 	 * make sure there are enough free section for LFS allocation, this can
2107 	 * avoid defragment running in SSR mode when free section are allocated
2108 	 * intensively
2109 	 */
2110 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2111 		err = -EAGAIN;
2112 		goto out;
2113 	}
2114 
2115 	while (map.m_lblk < pg_end) {
2116 		pgoff_t idx;
2117 		int cnt = 0;
2118 
2119 do_map:
2120 		map.m_len = pg_end - map.m_lblk;
2121 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2122 		if (err)
2123 			goto clear_out;
2124 
2125 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2126 			map.m_lblk++;
2127 			continue;
2128 		}
2129 
2130 		set_inode_flag(inode, FI_DO_DEFRAG);
2131 
2132 		idx = map.m_lblk;
2133 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2134 			struct page *page;
2135 
2136 			page = get_lock_data_page(inode, idx, true);
2137 			if (IS_ERR(page)) {
2138 				err = PTR_ERR(page);
2139 				goto clear_out;
2140 			}
2141 
2142 			set_page_dirty(page);
2143 			f2fs_put_page(page, 1);
2144 
2145 			idx++;
2146 			cnt++;
2147 			total++;
2148 		}
2149 
2150 		map.m_lblk = idx;
2151 
2152 		if (idx < pg_end && cnt < blk_per_seg)
2153 			goto do_map;
2154 
2155 		clear_inode_flag(inode, FI_DO_DEFRAG);
2156 
2157 		err = filemap_fdatawrite(inode->i_mapping);
2158 		if (err)
2159 			goto out;
2160 	}
2161 clear_out:
2162 	clear_inode_flag(inode, FI_DO_DEFRAG);
2163 out:
2164 	inode_unlock(inode);
2165 	if (!err)
2166 		range->len = (u64)total << PAGE_SHIFT;
2167 	return err;
2168 }
2169 
2170 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2171 {
2172 	struct inode *inode = file_inode(filp);
2173 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2174 	struct f2fs_defragment range;
2175 	int err;
2176 
2177 	if (!capable(CAP_SYS_ADMIN))
2178 		return -EPERM;
2179 
2180 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2181 		return -EINVAL;
2182 
2183 	if (f2fs_readonly(sbi->sb))
2184 		return -EROFS;
2185 
2186 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2187 							sizeof(range)))
2188 		return -EFAULT;
2189 
2190 	/* verify alignment of offset & size */
2191 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2192 		return -EINVAL;
2193 
2194 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2195 					sbi->max_file_blocks))
2196 		return -EINVAL;
2197 
2198 	err = mnt_want_write_file(filp);
2199 	if (err)
2200 		return err;
2201 
2202 	err = f2fs_defragment_range(sbi, filp, &range);
2203 	mnt_drop_write_file(filp);
2204 
2205 	f2fs_update_time(sbi, REQ_TIME);
2206 	if (err < 0)
2207 		return err;
2208 
2209 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2210 							sizeof(range)))
2211 		return -EFAULT;
2212 
2213 	return 0;
2214 }
2215 
2216 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2217 			struct file *file_out, loff_t pos_out, size_t len)
2218 {
2219 	struct inode *src = file_inode(file_in);
2220 	struct inode *dst = file_inode(file_out);
2221 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2222 	size_t olen = len, dst_max_i_size = 0;
2223 	size_t dst_osize;
2224 	int ret;
2225 
2226 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2227 				src->i_sb != dst->i_sb)
2228 		return -EXDEV;
2229 
2230 	if (unlikely(f2fs_readonly(src->i_sb)))
2231 		return -EROFS;
2232 
2233 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2234 		return -EINVAL;
2235 
2236 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2237 		return -EOPNOTSUPP;
2238 
2239 	if (src == dst) {
2240 		if (pos_in == pos_out)
2241 			return 0;
2242 		if (pos_out > pos_in && pos_out < pos_in + len)
2243 			return -EINVAL;
2244 	}
2245 
2246 	inode_lock(src);
2247 	if (src != dst) {
2248 		if (!inode_trylock(dst)) {
2249 			ret = -EBUSY;
2250 			goto out;
2251 		}
2252 	}
2253 
2254 	ret = -EINVAL;
2255 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2256 		goto out_unlock;
2257 	if (len == 0)
2258 		olen = len = src->i_size - pos_in;
2259 	if (pos_in + len == src->i_size)
2260 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2261 	if (len == 0) {
2262 		ret = 0;
2263 		goto out_unlock;
2264 	}
2265 
2266 	dst_osize = dst->i_size;
2267 	if (pos_out + olen > dst->i_size)
2268 		dst_max_i_size = pos_out + olen;
2269 
2270 	/* verify the end result is block aligned */
2271 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2272 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2273 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2274 		goto out_unlock;
2275 
2276 	ret = f2fs_convert_inline_inode(src);
2277 	if (ret)
2278 		goto out_unlock;
2279 
2280 	ret = f2fs_convert_inline_inode(dst);
2281 	if (ret)
2282 		goto out_unlock;
2283 
2284 	/* write out all dirty pages from offset */
2285 	ret = filemap_write_and_wait_range(src->i_mapping,
2286 					pos_in, pos_in + len);
2287 	if (ret)
2288 		goto out_unlock;
2289 
2290 	ret = filemap_write_and_wait_range(dst->i_mapping,
2291 					pos_out, pos_out + len);
2292 	if (ret)
2293 		goto out_unlock;
2294 
2295 	f2fs_balance_fs(sbi, true);
2296 	f2fs_lock_op(sbi);
2297 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2298 				pos_out >> F2FS_BLKSIZE_BITS,
2299 				len >> F2FS_BLKSIZE_BITS, false);
2300 
2301 	if (!ret) {
2302 		if (dst_max_i_size)
2303 			f2fs_i_size_write(dst, dst_max_i_size);
2304 		else if (dst_osize != dst->i_size)
2305 			f2fs_i_size_write(dst, dst_osize);
2306 	}
2307 	f2fs_unlock_op(sbi);
2308 out_unlock:
2309 	if (src != dst)
2310 		inode_unlock(dst);
2311 out:
2312 	inode_unlock(src);
2313 	return ret;
2314 }
2315 
2316 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2317 {
2318 	struct f2fs_move_range range;
2319 	struct fd dst;
2320 	int err;
2321 
2322 	if (!(filp->f_mode & FMODE_READ) ||
2323 			!(filp->f_mode & FMODE_WRITE))
2324 		return -EBADF;
2325 
2326 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2327 							sizeof(range)))
2328 		return -EFAULT;
2329 
2330 	dst = fdget(range.dst_fd);
2331 	if (!dst.file)
2332 		return -EBADF;
2333 
2334 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2335 		err = -EBADF;
2336 		goto err_out;
2337 	}
2338 
2339 	err = mnt_want_write_file(filp);
2340 	if (err)
2341 		goto err_out;
2342 
2343 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2344 					range.pos_out, range.len);
2345 
2346 	mnt_drop_write_file(filp);
2347 	if (err)
2348 		goto err_out;
2349 
2350 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2351 						&range, sizeof(range)))
2352 		err = -EFAULT;
2353 err_out:
2354 	fdput(dst);
2355 	return err;
2356 }
2357 
2358 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2359 {
2360 	struct inode *inode = file_inode(filp);
2361 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2362 	struct sit_info *sm = SIT_I(sbi);
2363 	unsigned int start_segno = 0, end_segno = 0;
2364 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2365 	struct f2fs_flush_device range;
2366 	int ret;
2367 
2368 	if (!capable(CAP_SYS_ADMIN))
2369 		return -EPERM;
2370 
2371 	if (f2fs_readonly(sbi->sb))
2372 		return -EROFS;
2373 
2374 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2375 							sizeof(range)))
2376 		return -EFAULT;
2377 
2378 	if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2379 			sbi->segs_per_sec != 1) {
2380 		f2fs_msg(sbi->sb, KERN_WARNING,
2381 			"Can't flush %u in %d for segs_per_sec %u != 1\n",
2382 				range.dev_num, sbi->s_ndevs,
2383 				sbi->segs_per_sec);
2384 		return -EINVAL;
2385 	}
2386 
2387 	ret = mnt_want_write_file(filp);
2388 	if (ret)
2389 		return ret;
2390 
2391 	if (range.dev_num != 0)
2392 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2393 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2394 
2395 	start_segno = sm->last_victim[FLUSH_DEVICE];
2396 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2397 		start_segno = dev_start_segno;
2398 	end_segno = min(start_segno + range.segments, dev_end_segno);
2399 
2400 	while (start_segno < end_segno) {
2401 		if (!mutex_trylock(&sbi->gc_mutex)) {
2402 			ret = -EBUSY;
2403 			goto out;
2404 		}
2405 		sm->last_victim[GC_CB] = end_segno + 1;
2406 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2407 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2408 		ret = f2fs_gc(sbi, true, true, start_segno);
2409 		if (ret == -EAGAIN)
2410 			ret = 0;
2411 		else if (ret < 0)
2412 			break;
2413 		start_segno++;
2414 	}
2415 out:
2416 	mnt_drop_write_file(filp);
2417 	return ret;
2418 }
2419 
2420 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2421 {
2422 	struct inode *inode = file_inode(filp);
2423 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2424 
2425 	/* Must validate to set it with SQLite behavior in Android. */
2426 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2427 
2428 	return put_user(sb_feature, (u32 __user *)arg);
2429 }
2430 
2431 #ifdef CONFIG_QUOTA
2432 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2433 {
2434 	struct inode *inode = file_inode(filp);
2435 	struct f2fs_inode_info *fi = F2FS_I(inode);
2436 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2437 	struct super_block *sb = sbi->sb;
2438 	struct dquot *transfer_to[MAXQUOTAS] = {};
2439 	struct page *ipage;
2440 	kprojid_t kprojid;
2441 	int err;
2442 
2443 	if (!f2fs_sb_has_project_quota(sb)) {
2444 		if (projid != F2FS_DEF_PROJID)
2445 			return -EOPNOTSUPP;
2446 		else
2447 			return 0;
2448 	}
2449 
2450 	if (!f2fs_has_extra_attr(inode))
2451 		return -EOPNOTSUPP;
2452 
2453 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2454 
2455 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2456 		return 0;
2457 
2458 	err = mnt_want_write_file(filp);
2459 	if (err)
2460 		return err;
2461 
2462 	err = -EPERM;
2463 	inode_lock(inode);
2464 
2465 	/* Is it quota file? Do not allow user to mess with it */
2466 	if (IS_NOQUOTA(inode))
2467 		goto out_unlock;
2468 
2469 	ipage = get_node_page(sbi, inode->i_ino);
2470 	if (IS_ERR(ipage)) {
2471 		err = PTR_ERR(ipage);
2472 		goto out_unlock;
2473 	}
2474 
2475 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2476 								i_projid)) {
2477 		err = -EOVERFLOW;
2478 		f2fs_put_page(ipage, 1);
2479 		goto out_unlock;
2480 	}
2481 	f2fs_put_page(ipage, 1);
2482 
2483 	dquot_initialize(inode);
2484 
2485 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2486 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2487 		err = __dquot_transfer(inode, transfer_to);
2488 		dqput(transfer_to[PRJQUOTA]);
2489 		if (err)
2490 			goto out_dirty;
2491 	}
2492 
2493 	F2FS_I(inode)->i_projid = kprojid;
2494 	inode->i_ctime = current_time(inode);
2495 out_dirty:
2496 	f2fs_mark_inode_dirty_sync(inode, true);
2497 out_unlock:
2498 	inode_unlock(inode);
2499 	mnt_drop_write_file(filp);
2500 	return err;
2501 }
2502 #else
2503 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2504 {
2505 	if (projid != F2FS_DEF_PROJID)
2506 		return -EOPNOTSUPP;
2507 	return 0;
2508 }
2509 #endif
2510 
2511 /* Transfer internal flags to xflags */
2512 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2513 {
2514 	__u32 xflags = 0;
2515 
2516 	if (iflags & FS_SYNC_FL)
2517 		xflags |= FS_XFLAG_SYNC;
2518 	if (iflags & FS_IMMUTABLE_FL)
2519 		xflags |= FS_XFLAG_IMMUTABLE;
2520 	if (iflags & FS_APPEND_FL)
2521 		xflags |= FS_XFLAG_APPEND;
2522 	if (iflags & FS_NODUMP_FL)
2523 		xflags |= FS_XFLAG_NODUMP;
2524 	if (iflags & FS_NOATIME_FL)
2525 		xflags |= FS_XFLAG_NOATIME;
2526 	if (iflags & FS_PROJINHERIT_FL)
2527 		xflags |= FS_XFLAG_PROJINHERIT;
2528 	return xflags;
2529 }
2530 
2531 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2532 				  FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2533 				  FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2534 
2535 /* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
2536 #define F2FS_FL_XFLAG_VISIBLE		(FS_SYNC_FL | \
2537 					 FS_IMMUTABLE_FL | \
2538 					 FS_APPEND_FL | \
2539 					 FS_NODUMP_FL | \
2540 					 FS_NOATIME_FL | \
2541 					 FS_PROJINHERIT_FL)
2542 
2543 /* Transfer xflags flags to internal */
2544 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2545 {
2546 	unsigned long iflags = 0;
2547 
2548 	if (xflags & FS_XFLAG_SYNC)
2549 		iflags |= FS_SYNC_FL;
2550 	if (xflags & FS_XFLAG_IMMUTABLE)
2551 		iflags |= FS_IMMUTABLE_FL;
2552 	if (xflags & FS_XFLAG_APPEND)
2553 		iflags |= FS_APPEND_FL;
2554 	if (xflags & FS_XFLAG_NODUMP)
2555 		iflags |= FS_NODUMP_FL;
2556 	if (xflags & FS_XFLAG_NOATIME)
2557 		iflags |= FS_NOATIME_FL;
2558 	if (xflags & FS_XFLAG_PROJINHERIT)
2559 		iflags |= FS_PROJINHERIT_FL;
2560 
2561 	return iflags;
2562 }
2563 
2564 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2565 {
2566 	struct inode *inode = file_inode(filp);
2567 	struct f2fs_inode_info *fi = F2FS_I(inode);
2568 	struct fsxattr fa;
2569 
2570 	memset(&fa, 0, sizeof(struct fsxattr));
2571 	fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2572 				(FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
2573 
2574 	if (f2fs_sb_has_project_quota(inode->i_sb))
2575 		fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2576 							fi->i_projid);
2577 
2578 	if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2579 		return -EFAULT;
2580 	return 0;
2581 }
2582 
2583 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2584 {
2585 	struct inode *inode = file_inode(filp);
2586 	struct f2fs_inode_info *fi = F2FS_I(inode);
2587 	struct fsxattr fa;
2588 	unsigned int flags;
2589 	int err;
2590 
2591 	if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2592 		return -EFAULT;
2593 
2594 	/* Make sure caller has proper permission */
2595 	if (!inode_owner_or_capable(inode))
2596 		return -EACCES;
2597 
2598 	if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2599 		return -EOPNOTSUPP;
2600 
2601 	flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2602 	if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2603 		return -EOPNOTSUPP;
2604 
2605 	err = mnt_want_write_file(filp);
2606 	if (err)
2607 		return err;
2608 
2609 	inode_lock(inode);
2610 	flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2611 				(flags & F2FS_FL_XFLAG_VISIBLE);
2612 	err = __f2fs_ioc_setflags(inode, flags);
2613 	inode_unlock(inode);
2614 	mnt_drop_write_file(filp);
2615 	if (err)
2616 		return err;
2617 
2618 	err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2619 	if (err)
2620 		return err;
2621 
2622 	return 0;
2623 }
2624 
2625 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2626 {
2627 	switch (cmd) {
2628 	case F2FS_IOC_GETFLAGS:
2629 		return f2fs_ioc_getflags(filp, arg);
2630 	case F2FS_IOC_SETFLAGS:
2631 		return f2fs_ioc_setflags(filp, arg);
2632 	case F2FS_IOC_GETVERSION:
2633 		return f2fs_ioc_getversion(filp, arg);
2634 	case F2FS_IOC_START_ATOMIC_WRITE:
2635 		return f2fs_ioc_start_atomic_write(filp);
2636 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2637 		return f2fs_ioc_commit_atomic_write(filp);
2638 	case F2FS_IOC_START_VOLATILE_WRITE:
2639 		return f2fs_ioc_start_volatile_write(filp);
2640 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2641 		return f2fs_ioc_release_volatile_write(filp);
2642 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2643 		return f2fs_ioc_abort_volatile_write(filp);
2644 	case F2FS_IOC_SHUTDOWN:
2645 		return f2fs_ioc_shutdown(filp, arg);
2646 	case FITRIM:
2647 		return f2fs_ioc_fitrim(filp, arg);
2648 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2649 		return f2fs_ioc_set_encryption_policy(filp, arg);
2650 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2651 		return f2fs_ioc_get_encryption_policy(filp, arg);
2652 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2653 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2654 	case F2FS_IOC_GARBAGE_COLLECT:
2655 		return f2fs_ioc_gc(filp, arg);
2656 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2657 		return f2fs_ioc_gc_range(filp, arg);
2658 	case F2FS_IOC_WRITE_CHECKPOINT:
2659 		return f2fs_ioc_write_checkpoint(filp, arg);
2660 	case F2FS_IOC_DEFRAGMENT:
2661 		return f2fs_ioc_defragment(filp, arg);
2662 	case F2FS_IOC_MOVE_RANGE:
2663 		return f2fs_ioc_move_range(filp, arg);
2664 	case F2FS_IOC_FLUSH_DEVICE:
2665 		return f2fs_ioc_flush_device(filp, arg);
2666 	case F2FS_IOC_GET_FEATURES:
2667 		return f2fs_ioc_get_features(filp, arg);
2668 	case F2FS_IOC_FSGETXATTR:
2669 		return f2fs_ioc_fsgetxattr(filp, arg);
2670 	case F2FS_IOC_FSSETXATTR:
2671 		return f2fs_ioc_fssetxattr(filp, arg);
2672 	default:
2673 		return -ENOTTY;
2674 	}
2675 }
2676 
2677 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2678 {
2679 	struct file *file = iocb->ki_filp;
2680 	struct inode *inode = file_inode(file);
2681 	struct blk_plug plug;
2682 	ssize_t ret;
2683 
2684 	inode_lock(inode);
2685 	ret = generic_write_checks(iocb, from);
2686 	if (ret > 0) {
2687 		int err;
2688 
2689 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2690 			set_inode_flag(inode, FI_NO_PREALLOC);
2691 
2692 		err = f2fs_preallocate_blocks(iocb, from);
2693 		if (err) {
2694 			inode_unlock(inode);
2695 			return err;
2696 		}
2697 		blk_start_plug(&plug);
2698 		ret = __generic_file_write_iter(iocb, from);
2699 		blk_finish_plug(&plug);
2700 		clear_inode_flag(inode, FI_NO_PREALLOC);
2701 
2702 		if (ret > 0)
2703 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2704 	}
2705 	inode_unlock(inode);
2706 
2707 	if (ret > 0)
2708 		ret = generic_write_sync(iocb, ret);
2709 	return ret;
2710 }
2711 
2712 #ifdef CONFIG_COMPAT
2713 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2714 {
2715 	switch (cmd) {
2716 	case F2FS_IOC32_GETFLAGS:
2717 		cmd = F2FS_IOC_GETFLAGS;
2718 		break;
2719 	case F2FS_IOC32_SETFLAGS:
2720 		cmd = F2FS_IOC_SETFLAGS;
2721 		break;
2722 	case F2FS_IOC32_GETVERSION:
2723 		cmd = F2FS_IOC_GETVERSION;
2724 		break;
2725 	case F2FS_IOC_START_ATOMIC_WRITE:
2726 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2727 	case F2FS_IOC_START_VOLATILE_WRITE:
2728 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2729 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2730 	case F2FS_IOC_SHUTDOWN:
2731 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2732 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2733 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2734 	case F2FS_IOC_GARBAGE_COLLECT:
2735 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2736 	case F2FS_IOC_WRITE_CHECKPOINT:
2737 	case F2FS_IOC_DEFRAGMENT:
2738 	case F2FS_IOC_MOVE_RANGE:
2739 	case F2FS_IOC_FLUSH_DEVICE:
2740 	case F2FS_IOC_GET_FEATURES:
2741 	case F2FS_IOC_FSGETXATTR:
2742 	case F2FS_IOC_FSSETXATTR:
2743 		break;
2744 	default:
2745 		return -ENOIOCTLCMD;
2746 	}
2747 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2748 }
2749 #endif
2750 
2751 const struct file_operations f2fs_file_operations = {
2752 	.llseek		= f2fs_llseek,
2753 	.read_iter	= generic_file_read_iter,
2754 	.write_iter	= f2fs_file_write_iter,
2755 	.open		= f2fs_file_open,
2756 	.release	= f2fs_release_file,
2757 	.mmap		= f2fs_file_mmap,
2758 	.flush		= f2fs_file_flush,
2759 	.fsync		= f2fs_sync_file,
2760 	.fallocate	= f2fs_fallocate,
2761 	.unlocked_ioctl	= f2fs_ioctl,
2762 #ifdef CONFIG_COMPAT
2763 	.compat_ioctl	= f2fs_compat_ioctl,
2764 #endif
2765 	.splice_read	= generic_file_splice_read,
2766 	.splice_write	= iter_file_splice_write,
2767 };
2768