1 /* 2 * fs/f2fs/file.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/stat.h> 14 #include <linux/buffer_head.h> 15 #include <linux/writeback.h> 16 #include <linux/blkdev.h> 17 #include <linux/falloc.h> 18 #include <linux/types.h> 19 #include <linux/compat.h> 20 #include <linux/uaccess.h> 21 #include <linux/mount.h> 22 #include <linux/pagevec.h> 23 #include <linux/uuid.h> 24 #include <linux/file.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "xattr.h" 30 #include "acl.h" 31 #include "gc.h" 32 #include "trace.h" 33 #include <trace/events/f2fs.h> 34 35 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma, 36 struct vm_fault *vmf) 37 { 38 struct page *page = vmf->page; 39 struct inode *inode = file_inode(vma->vm_file); 40 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 41 struct dnode_of_data dn; 42 int err; 43 44 sb_start_pagefault(inode->i_sb); 45 46 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 47 48 /* block allocation */ 49 f2fs_lock_op(sbi); 50 set_new_dnode(&dn, inode, NULL, NULL, 0); 51 err = f2fs_reserve_block(&dn, page->index); 52 if (err) { 53 f2fs_unlock_op(sbi); 54 goto out; 55 } 56 f2fs_put_dnode(&dn); 57 f2fs_unlock_op(sbi); 58 59 f2fs_balance_fs(sbi, dn.node_changed); 60 61 file_update_time(vma->vm_file); 62 lock_page(page); 63 if (unlikely(page->mapping != inode->i_mapping || 64 page_offset(page) > i_size_read(inode) || 65 !PageUptodate(page))) { 66 unlock_page(page); 67 err = -EFAULT; 68 goto out; 69 } 70 71 /* 72 * check to see if the page is mapped already (no holes) 73 */ 74 if (PageMappedToDisk(page)) 75 goto mapped; 76 77 /* page is wholly or partially inside EOF */ 78 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 79 i_size_read(inode)) { 80 unsigned offset; 81 offset = i_size_read(inode) & ~PAGE_MASK; 82 zero_user_segment(page, offset, PAGE_SIZE); 83 } 84 set_page_dirty(page); 85 if (!PageUptodate(page)) 86 SetPageUptodate(page); 87 88 trace_f2fs_vm_page_mkwrite(page, DATA); 89 mapped: 90 /* fill the page */ 91 f2fs_wait_on_page_writeback(page, DATA, false); 92 93 /* wait for GCed encrypted page writeback */ 94 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 95 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr); 96 97 out: 98 sb_end_pagefault(inode->i_sb); 99 f2fs_update_time(sbi, REQ_TIME); 100 return block_page_mkwrite_return(err); 101 } 102 103 static const struct vm_operations_struct f2fs_file_vm_ops = { 104 .fault = filemap_fault, 105 .map_pages = filemap_map_pages, 106 .page_mkwrite = f2fs_vm_page_mkwrite, 107 }; 108 109 static int get_parent_ino(struct inode *inode, nid_t *pino) 110 { 111 struct dentry *dentry; 112 113 inode = igrab(inode); 114 dentry = d_find_any_alias(inode); 115 iput(inode); 116 if (!dentry) 117 return 0; 118 119 if (update_dent_inode(inode, inode, &dentry->d_name)) { 120 dput(dentry); 121 return 0; 122 } 123 124 *pino = parent_ino(dentry); 125 dput(dentry); 126 return 1; 127 } 128 129 static inline bool need_do_checkpoint(struct inode *inode) 130 { 131 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 132 bool need_cp = false; 133 134 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1) 135 need_cp = true; 136 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 137 need_cp = true; 138 else if (file_wrong_pino(inode)) 139 need_cp = true; 140 else if (!space_for_roll_forward(sbi)) 141 need_cp = true; 142 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 143 need_cp = true; 144 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi))) 145 need_cp = true; 146 else if (test_opt(sbi, FASTBOOT)) 147 need_cp = true; 148 else if (sbi->active_logs == 2) 149 need_cp = true; 150 151 return need_cp; 152 } 153 154 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 155 { 156 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 157 bool ret = false; 158 /* But we need to avoid that there are some inode updates */ 159 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino)) 160 ret = true; 161 f2fs_put_page(i, 0); 162 return ret; 163 } 164 165 static void try_to_fix_pino(struct inode *inode) 166 { 167 struct f2fs_inode_info *fi = F2FS_I(inode); 168 nid_t pino; 169 170 down_write(&fi->i_sem); 171 fi->xattr_ver = 0; 172 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 173 get_parent_ino(inode, &pino)) { 174 f2fs_i_pino_write(inode, pino); 175 file_got_pino(inode); 176 } 177 up_write(&fi->i_sem); 178 } 179 180 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 181 int datasync, bool atomic) 182 { 183 struct inode *inode = file->f_mapping->host; 184 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 185 nid_t ino = inode->i_ino; 186 int ret = 0; 187 bool need_cp = false; 188 struct writeback_control wbc = { 189 .sync_mode = WB_SYNC_ALL, 190 .nr_to_write = LONG_MAX, 191 .for_reclaim = 0, 192 }; 193 194 if (unlikely(f2fs_readonly(inode->i_sb))) 195 return 0; 196 197 trace_f2fs_sync_file_enter(inode); 198 199 /* if fdatasync is triggered, let's do in-place-update */ 200 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 201 set_inode_flag(inode, FI_NEED_IPU); 202 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 203 clear_inode_flag(inode, FI_NEED_IPU); 204 205 if (ret) { 206 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); 207 return ret; 208 } 209 210 /* if the inode is dirty, let's recover all the time */ 211 if (!f2fs_skip_inode_update(inode, datasync)) { 212 f2fs_write_inode(inode, NULL); 213 goto go_write; 214 } 215 216 /* 217 * if there is no written data, don't waste time to write recovery info. 218 */ 219 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 220 !exist_written_data(sbi, ino, APPEND_INO)) { 221 222 /* it may call write_inode just prior to fsync */ 223 if (need_inode_page_update(sbi, ino)) 224 goto go_write; 225 226 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 227 exist_written_data(sbi, ino, UPDATE_INO)) 228 goto flush_out; 229 goto out; 230 } 231 go_write: 232 /* 233 * Both of fdatasync() and fsync() are able to be recovered from 234 * sudden-power-off. 235 */ 236 down_read(&F2FS_I(inode)->i_sem); 237 need_cp = need_do_checkpoint(inode); 238 up_read(&F2FS_I(inode)->i_sem); 239 240 if (need_cp) { 241 /* all the dirty node pages should be flushed for POR */ 242 ret = f2fs_sync_fs(inode->i_sb, 1); 243 244 /* 245 * We've secured consistency through sync_fs. Following pino 246 * will be used only for fsynced inodes after checkpoint. 247 */ 248 try_to_fix_pino(inode); 249 clear_inode_flag(inode, FI_APPEND_WRITE); 250 clear_inode_flag(inode, FI_UPDATE_WRITE); 251 goto out; 252 } 253 sync_nodes: 254 ret = fsync_node_pages(sbi, inode, &wbc, atomic); 255 if (ret) 256 goto out; 257 258 /* if cp_error was enabled, we should avoid infinite loop */ 259 if (unlikely(f2fs_cp_error(sbi))) { 260 ret = -EIO; 261 goto out; 262 } 263 264 if (need_inode_block_update(sbi, ino)) { 265 f2fs_mark_inode_dirty_sync(inode, true); 266 f2fs_write_inode(inode, NULL); 267 goto sync_nodes; 268 } 269 270 ret = wait_on_node_pages_writeback(sbi, ino); 271 if (ret) 272 goto out; 273 274 /* once recovery info is written, don't need to tack this */ 275 remove_ino_entry(sbi, ino, APPEND_INO); 276 clear_inode_flag(inode, FI_APPEND_WRITE); 277 flush_out: 278 remove_ino_entry(sbi, ino, UPDATE_INO); 279 clear_inode_flag(inode, FI_UPDATE_WRITE); 280 ret = f2fs_issue_flush(sbi); 281 f2fs_update_time(sbi, REQ_TIME); 282 out: 283 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); 284 f2fs_trace_ios(NULL, 1); 285 return ret; 286 } 287 288 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 289 { 290 return f2fs_do_sync_file(file, start, end, datasync, false); 291 } 292 293 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 294 pgoff_t pgofs, int whence) 295 { 296 struct pagevec pvec; 297 int nr_pages; 298 299 if (whence != SEEK_DATA) 300 return 0; 301 302 /* find first dirty page index */ 303 pagevec_init(&pvec, 0); 304 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs, 305 PAGECACHE_TAG_DIRTY, 1); 306 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX; 307 pagevec_release(&pvec); 308 return pgofs; 309 } 310 311 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs, 312 int whence) 313 { 314 switch (whence) { 315 case SEEK_DATA: 316 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 317 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR)) 318 return true; 319 break; 320 case SEEK_HOLE: 321 if (blkaddr == NULL_ADDR) 322 return true; 323 break; 324 } 325 return false; 326 } 327 328 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 329 { 330 struct inode *inode = file->f_mapping->host; 331 loff_t maxbytes = inode->i_sb->s_maxbytes; 332 struct dnode_of_data dn; 333 pgoff_t pgofs, end_offset, dirty; 334 loff_t data_ofs = offset; 335 loff_t isize; 336 int err = 0; 337 338 inode_lock(inode); 339 340 isize = i_size_read(inode); 341 if (offset >= isize) 342 goto fail; 343 344 /* handle inline data case */ 345 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 346 if (whence == SEEK_HOLE) 347 data_ofs = isize; 348 goto found; 349 } 350 351 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 352 353 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 354 355 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 356 set_new_dnode(&dn, inode, NULL, NULL, 0); 357 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 358 if (err && err != -ENOENT) { 359 goto fail; 360 } else if (err == -ENOENT) { 361 /* direct node does not exists */ 362 if (whence == SEEK_DATA) { 363 pgofs = get_next_page_offset(&dn, pgofs); 364 continue; 365 } else { 366 goto found; 367 } 368 } 369 370 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 371 372 /* find data/hole in dnode block */ 373 for (; dn.ofs_in_node < end_offset; 374 dn.ofs_in_node++, pgofs++, 375 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 376 block_t blkaddr; 377 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 378 379 if (__found_offset(blkaddr, dirty, pgofs, whence)) { 380 f2fs_put_dnode(&dn); 381 goto found; 382 } 383 } 384 f2fs_put_dnode(&dn); 385 } 386 387 if (whence == SEEK_DATA) 388 goto fail; 389 found: 390 if (whence == SEEK_HOLE && data_ofs > isize) 391 data_ofs = isize; 392 inode_unlock(inode); 393 return vfs_setpos(file, data_ofs, maxbytes); 394 fail: 395 inode_unlock(inode); 396 return -ENXIO; 397 } 398 399 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 400 { 401 struct inode *inode = file->f_mapping->host; 402 loff_t maxbytes = inode->i_sb->s_maxbytes; 403 404 switch (whence) { 405 case SEEK_SET: 406 case SEEK_CUR: 407 case SEEK_END: 408 return generic_file_llseek_size(file, offset, whence, 409 maxbytes, i_size_read(inode)); 410 case SEEK_DATA: 411 case SEEK_HOLE: 412 if (offset < 0) 413 return -ENXIO; 414 return f2fs_seek_block(file, offset, whence); 415 } 416 417 return -EINVAL; 418 } 419 420 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 421 { 422 struct inode *inode = file_inode(file); 423 int err; 424 425 if (f2fs_encrypted_inode(inode)) { 426 err = fscrypt_get_encryption_info(inode); 427 if (err) 428 return 0; 429 if (!f2fs_encrypted_inode(inode)) 430 return -ENOKEY; 431 } 432 433 /* we don't need to use inline_data strictly */ 434 err = f2fs_convert_inline_inode(inode); 435 if (err) 436 return err; 437 438 file_accessed(file); 439 vma->vm_ops = &f2fs_file_vm_ops; 440 return 0; 441 } 442 443 static int f2fs_file_open(struct inode *inode, struct file *filp) 444 { 445 int ret = generic_file_open(inode, filp); 446 struct dentry *dir; 447 448 if (!ret && f2fs_encrypted_inode(inode)) { 449 ret = fscrypt_get_encryption_info(inode); 450 if (ret) 451 return -EACCES; 452 if (!fscrypt_has_encryption_key(inode)) 453 return -ENOKEY; 454 } 455 dir = dget_parent(file_dentry(filp)); 456 if (f2fs_encrypted_inode(d_inode(dir)) && 457 !fscrypt_has_permitted_context(d_inode(dir), inode)) { 458 dput(dir); 459 return -EPERM; 460 } 461 dput(dir); 462 return ret; 463 } 464 465 int truncate_data_blocks_range(struct dnode_of_data *dn, int count) 466 { 467 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 468 struct f2fs_node *raw_node; 469 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 470 __le32 *addr; 471 472 raw_node = F2FS_NODE(dn->node_page); 473 addr = blkaddr_in_node(raw_node) + ofs; 474 475 for (; count > 0; count--, addr++, dn->ofs_in_node++) { 476 block_t blkaddr = le32_to_cpu(*addr); 477 if (blkaddr == NULL_ADDR) 478 continue; 479 480 dn->data_blkaddr = NULL_ADDR; 481 set_data_blkaddr(dn); 482 invalidate_blocks(sbi, blkaddr); 483 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 484 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 485 nr_free++; 486 } 487 488 if (nr_free) { 489 pgoff_t fofs; 490 /* 491 * once we invalidate valid blkaddr in range [ofs, ofs + count], 492 * we will invalidate all blkaddr in the whole range. 493 */ 494 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), 495 dn->inode) + ofs; 496 f2fs_update_extent_cache_range(dn, fofs, 0, len); 497 dec_valid_block_count(sbi, dn->inode, nr_free); 498 } 499 dn->ofs_in_node = ofs; 500 501 f2fs_update_time(sbi, REQ_TIME); 502 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 503 dn->ofs_in_node, nr_free); 504 return nr_free; 505 } 506 507 void truncate_data_blocks(struct dnode_of_data *dn) 508 { 509 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK); 510 } 511 512 static int truncate_partial_data_page(struct inode *inode, u64 from, 513 bool cache_only) 514 { 515 unsigned offset = from & (PAGE_SIZE - 1); 516 pgoff_t index = from >> PAGE_SHIFT; 517 struct address_space *mapping = inode->i_mapping; 518 struct page *page; 519 520 if (!offset && !cache_only) 521 return 0; 522 523 if (cache_only) { 524 page = find_lock_page(mapping, index); 525 if (page && PageUptodate(page)) 526 goto truncate_out; 527 f2fs_put_page(page, 1); 528 return 0; 529 } 530 531 page = get_lock_data_page(inode, index, true); 532 if (IS_ERR(page)) 533 return 0; 534 truncate_out: 535 f2fs_wait_on_page_writeback(page, DATA, true); 536 zero_user(page, offset, PAGE_SIZE - offset); 537 if (!cache_only || !f2fs_encrypted_inode(inode) || 538 !S_ISREG(inode->i_mode)) 539 set_page_dirty(page); 540 f2fs_put_page(page, 1); 541 return 0; 542 } 543 544 int truncate_blocks(struct inode *inode, u64 from, bool lock) 545 { 546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 547 unsigned int blocksize = inode->i_sb->s_blocksize; 548 struct dnode_of_data dn; 549 pgoff_t free_from; 550 int count = 0, err = 0; 551 struct page *ipage; 552 bool truncate_page = false; 553 554 trace_f2fs_truncate_blocks_enter(inode, from); 555 556 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1); 557 558 if (free_from >= sbi->max_file_blocks) 559 goto free_partial; 560 561 if (lock) 562 f2fs_lock_op(sbi); 563 564 ipage = get_node_page(sbi, inode->i_ino); 565 if (IS_ERR(ipage)) { 566 err = PTR_ERR(ipage); 567 goto out; 568 } 569 570 if (f2fs_has_inline_data(inode)) { 571 if (truncate_inline_inode(ipage, from)) 572 set_page_dirty(ipage); 573 f2fs_put_page(ipage, 1); 574 truncate_page = true; 575 goto out; 576 } 577 578 set_new_dnode(&dn, inode, ipage, NULL, 0); 579 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 580 if (err) { 581 if (err == -ENOENT) 582 goto free_next; 583 goto out; 584 } 585 586 count = ADDRS_PER_PAGE(dn.node_page, inode); 587 588 count -= dn.ofs_in_node; 589 f2fs_bug_on(sbi, count < 0); 590 591 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 592 truncate_data_blocks_range(&dn, count); 593 free_from += count; 594 } 595 596 f2fs_put_dnode(&dn); 597 free_next: 598 err = truncate_inode_blocks(inode, free_from); 599 out: 600 if (lock) 601 f2fs_unlock_op(sbi); 602 free_partial: 603 /* lastly zero out the first data page */ 604 if (!err) 605 err = truncate_partial_data_page(inode, from, truncate_page); 606 607 trace_f2fs_truncate_blocks_exit(inode, err); 608 return err; 609 } 610 611 int f2fs_truncate(struct inode *inode) 612 { 613 int err; 614 615 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 616 S_ISLNK(inode->i_mode))) 617 return 0; 618 619 trace_f2fs_truncate(inode); 620 621 /* we should check inline_data size */ 622 if (!f2fs_may_inline_data(inode)) { 623 err = f2fs_convert_inline_inode(inode); 624 if (err) 625 return err; 626 } 627 628 err = truncate_blocks(inode, i_size_read(inode), true); 629 if (err) 630 return err; 631 632 inode->i_mtime = inode->i_ctime = current_time(inode); 633 f2fs_mark_inode_dirty_sync(inode, false); 634 return 0; 635 } 636 637 int f2fs_getattr(struct vfsmount *mnt, 638 struct dentry *dentry, struct kstat *stat) 639 { 640 struct inode *inode = d_inode(dentry); 641 generic_fillattr(inode, stat); 642 stat->blocks <<= 3; 643 return 0; 644 } 645 646 #ifdef CONFIG_F2FS_FS_POSIX_ACL 647 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 648 { 649 unsigned int ia_valid = attr->ia_valid; 650 651 if (ia_valid & ATTR_UID) 652 inode->i_uid = attr->ia_uid; 653 if (ia_valid & ATTR_GID) 654 inode->i_gid = attr->ia_gid; 655 if (ia_valid & ATTR_ATIME) 656 inode->i_atime = timespec_trunc(attr->ia_atime, 657 inode->i_sb->s_time_gran); 658 if (ia_valid & ATTR_MTIME) 659 inode->i_mtime = timespec_trunc(attr->ia_mtime, 660 inode->i_sb->s_time_gran); 661 if (ia_valid & ATTR_CTIME) 662 inode->i_ctime = timespec_trunc(attr->ia_ctime, 663 inode->i_sb->s_time_gran); 664 if (ia_valid & ATTR_MODE) { 665 umode_t mode = attr->ia_mode; 666 667 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 668 mode &= ~S_ISGID; 669 set_acl_inode(inode, mode); 670 } 671 } 672 #else 673 #define __setattr_copy setattr_copy 674 #endif 675 676 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 677 { 678 struct inode *inode = d_inode(dentry); 679 int err; 680 bool size_changed = false; 681 682 err = setattr_prepare(dentry, attr); 683 if (err) 684 return err; 685 686 if (attr->ia_valid & ATTR_SIZE) { 687 if (f2fs_encrypted_inode(inode) && 688 fscrypt_get_encryption_info(inode)) 689 return -EACCES; 690 691 if (attr->ia_size <= i_size_read(inode)) { 692 truncate_setsize(inode, attr->ia_size); 693 err = f2fs_truncate(inode); 694 if (err) 695 return err; 696 } else { 697 /* 698 * do not trim all blocks after i_size if target size is 699 * larger than i_size. 700 */ 701 truncate_setsize(inode, attr->ia_size); 702 703 /* should convert inline inode here */ 704 if (!f2fs_may_inline_data(inode)) { 705 err = f2fs_convert_inline_inode(inode); 706 if (err) 707 return err; 708 } 709 inode->i_mtime = inode->i_ctime = current_time(inode); 710 } 711 712 size_changed = true; 713 } 714 715 __setattr_copy(inode, attr); 716 717 if (attr->ia_valid & ATTR_MODE) { 718 err = posix_acl_chmod(inode, get_inode_mode(inode)); 719 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 720 inode->i_mode = F2FS_I(inode)->i_acl_mode; 721 clear_inode_flag(inode, FI_ACL_MODE); 722 } 723 } 724 725 /* file size may changed here */ 726 f2fs_mark_inode_dirty_sync(inode, size_changed); 727 728 /* inode change will produce dirty node pages flushed by checkpoint */ 729 f2fs_balance_fs(F2FS_I_SB(inode), true); 730 731 return err; 732 } 733 734 const struct inode_operations f2fs_file_inode_operations = { 735 .getattr = f2fs_getattr, 736 .setattr = f2fs_setattr, 737 .get_acl = f2fs_get_acl, 738 .set_acl = f2fs_set_acl, 739 #ifdef CONFIG_F2FS_FS_XATTR 740 .listxattr = f2fs_listxattr, 741 #endif 742 .fiemap = f2fs_fiemap, 743 }; 744 745 static int fill_zero(struct inode *inode, pgoff_t index, 746 loff_t start, loff_t len) 747 { 748 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 749 struct page *page; 750 751 if (!len) 752 return 0; 753 754 f2fs_balance_fs(sbi, true); 755 756 f2fs_lock_op(sbi); 757 page = get_new_data_page(inode, NULL, index, false); 758 f2fs_unlock_op(sbi); 759 760 if (IS_ERR(page)) 761 return PTR_ERR(page); 762 763 f2fs_wait_on_page_writeback(page, DATA, true); 764 zero_user(page, start, len); 765 set_page_dirty(page); 766 f2fs_put_page(page, 1); 767 return 0; 768 } 769 770 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 771 { 772 int err; 773 774 while (pg_start < pg_end) { 775 struct dnode_of_data dn; 776 pgoff_t end_offset, count; 777 778 set_new_dnode(&dn, inode, NULL, NULL, 0); 779 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 780 if (err) { 781 if (err == -ENOENT) { 782 pg_start++; 783 continue; 784 } 785 return err; 786 } 787 788 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 789 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 790 791 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 792 793 truncate_data_blocks_range(&dn, count); 794 f2fs_put_dnode(&dn); 795 796 pg_start += count; 797 } 798 return 0; 799 } 800 801 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 802 { 803 pgoff_t pg_start, pg_end; 804 loff_t off_start, off_end; 805 int ret; 806 807 ret = f2fs_convert_inline_inode(inode); 808 if (ret) 809 return ret; 810 811 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 812 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 813 814 off_start = offset & (PAGE_SIZE - 1); 815 off_end = (offset + len) & (PAGE_SIZE - 1); 816 817 if (pg_start == pg_end) { 818 ret = fill_zero(inode, pg_start, off_start, 819 off_end - off_start); 820 if (ret) 821 return ret; 822 } else { 823 if (off_start) { 824 ret = fill_zero(inode, pg_start++, off_start, 825 PAGE_SIZE - off_start); 826 if (ret) 827 return ret; 828 } 829 if (off_end) { 830 ret = fill_zero(inode, pg_end, 0, off_end); 831 if (ret) 832 return ret; 833 } 834 835 if (pg_start < pg_end) { 836 struct address_space *mapping = inode->i_mapping; 837 loff_t blk_start, blk_end; 838 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 839 840 f2fs_balance_fs(sbi, true); 841 842 blk_start = (loff_t)pg_start << PAGE_SHIFT; 843 blk_end = (loff_t)pg_end << PAGE_SHIFT; 844 truncate_inode_pages_range(mapping, blk_start, 845 blk_end - 1); 846 847 f2fs_lock_op(sbi); 848 ret = truncate_hole(inode, pg_start, pg_end); 849 f2fs_unlock_op(sbi); 850 } 851 } 852 853 return ret; 854 } 855 856 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 857 int *do_replace, pgoff_t off, pgoff_t len) 858 { 859 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 860 struct dnode_of_data dn; 861 int ret, done, i; 862 863 next_dnode: 864 set_new_dnode(&dn, inode, NULL, NULL, 0); 865 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 866 if (ret && ret != -ENOENT) { 867 return ret; 868 } else if (ret == -ENOENT) { 869 if (dn.max_level == 0) 870 return -ENOENT; 871 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len); 872 blkaddr += done; 873 do_replace += done; 874 goto next; 875 } 876 877 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 878 dn.ofs_in_node, len); 879 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 880 *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 881 if (!is_checkpointed_data(sbi, *blkaddr)) { 882 883 if (test_opt(sbi, LFS)) { 884 f2fs_put_dnode(&dn); 885 return -ENOTSUPP; 886 } 887 888 /* do not invalidate this block address */ 889 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 890 *do_replace = 1; 891 } 892 } 893 f2fs_put_dnode(&dn); 894 next: 895 len -= done; 896 off += done; 897 if (len) 898 goto next_dnode; 899 return 0; 900 } 901 902 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 903 int *do_replace, pgoff_t off, int len) 904 { 905 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 906 struct dnode_of_data dn; 907 int ret, i; 908 909 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 910 if (*do_replace == 0) 911 continue; 912 913 set_new_dnode(&dn, inode, NULL, NULL, 0); 914 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 915 if (ret) { 916 dec_valid_block_count(sbi, inode, 1); 917 invalidate_blocks(sbi, *blkaddr); 918 } else { 919 f2fs_update_data_blkaddr(&dn, *blkaddr); 920 } 921 f2fs_put_dnode(&dn); 922 } 923 return 0; 924 } 925 926 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 927 block_t *blkaddr, int *do_replace, 928 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 929 { 930 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 931 pgoff_t i = 0; 932 int ret; 933 934 while (i < len) { 935 if (blkaddr[i] == NULL_ADDR && !full) { 936 i++; 937 continue; 938 } 939 940 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 941 struct dnode_of_data dn; 942 struct node_info ni; 943 size_t new_size; 944 pgoff_t ilen; 945 946 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 947 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 948 if (ret) 949 return ret; 950 951 get_node_info(sbi, dn.nid, &ni); 952 ilen = min((pgoff_t) 953 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 954 dn.ofs_in_node, len - i); 955 do { 956 dn.data_blkaddr = datablock_addr(dn.node_page, 957 dn.ofs_in_node); 958 truncate_data_blocks_range(&dn, 1); 959 960 if (do_replace[i]) { 961 f2fs_i_blocks_write(src_inode, 962 1, false); 963 f2fs_i_blocks_write(dst_inode, 964 1, true); 965 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 966 blkaddr[i], ni.version, true, false); 967 968 do_replace[i] = 0; 969 } 970 dn.ofs_in_node++; 971 i++; 972 new_size = (dst + i) << PAGE_SHIFT; 973 if (dst_inode->i_size < new_size) 974 f2fs_i_size_write(dst_inode, new_size); 975 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 976 977 f2fs_put_dnode(&dn); 978 } else { 979 struct page *psrc, *pdst; 980 981 psrc = get_lock_data_page(src_inode, src + i, true); 982 if (IS_ERR(psrc)) 983 return PTR_ERR(psrc); 984 pdst = get_new_data_page(dst_inode, NULL, dst + i, 985 true); 986 if (IS_ERR(pdst)) { 987 f2fs_put_page(psrc, 1); 988 return PTR_ERR(pdst); 989 } 990 f2fs_copy_page(psrc, pdst); 991 set_page_dirty(pdst); 992 f2fs_put_page(pdst, 1); 993 f2fs_put_page(psrc, 1); 994 995 ret = truncate_hole(src_inode, src + i, src + i + 1); 996 if (ret) 997 return ret; 998 i++; 999 } 1000 } 1001 return 0; 1002 } 1003 1004 static int __exchange_data_block(struct inode *src_inode, 1005 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1006 pgoff_t len, bool full) 1007 { 1008 block_t *src_blkaddr; 1009 int *do_replace; 1010 pgoff_t olen; 1011 int ret; 1012 1013 while (len) { 1014 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len); 1015 1016 src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL); 1017 if (!src_blkaddr) 1018 return -ENOMEM; 1019 1020 do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL); 1021 if (!do_replace) { 1022 kvfree(src_blkaddr); 1023 return -ENOMEM; 1024 } 1025 1026 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1027 do_replace, src, olen); 1028 if (ret) 1029 goto roll_back; 1030 1031 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1032 do_replace, src, dst, olen, full); 1033 if (ret) 1034 goto roll_back; 1035 1036 src += olen; 1037 dst += olen; 1038 len -= olen; 1039 1040 kvfree(src_blkaddr); 1041 kvfree(do_replace); 1042 } 1043 return 0; 1044 1045 roll_back: 1046 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len); 1047 kvfree(src_blkaddr); 1048 kvfree(do_replace); 1049 return ret; 1050 } 1051 1052 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end) 1053 { 1054 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1055 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; 1056 int ret; 1057 1058 f2fs_balance_fs(sbi, true); 1059 f2fs_lock_op(sbi); 1060 1061 f2fs_drop_extent_tree(inode); 1062 1063 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1064 f2fs_unlock_op(sbi); 1065 return ret; 1066 } 1067 1068 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1069 { 1070 pgoff_t pg_start, pg_end; 1071 loff_t new_size; 1072 int ret; 1073 1074 if (offset + len >= i_size_read(inode)) 1075 return -EINVAL; 1076 1077 /* collapse range should be aligned to block size of f2fs. */ 1078 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1079 return -EINVAL; 1080 1081 ret = f2fs_convert_inline_inode(inode); 1082 if (ret) 1083 return ret; 1084 1085 pg_start = offset >> PAGE_SHIFT; 1086 pg_end = (offset + len) >> PAGE_SHIFT; 1087 1088 /* write out all dirty pages from offset */ 1089 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1090 if (ret) 1091 return ret; 1092 1093 truncate_pagecache(inode, offset); 1094 1095 ret = f2fs_do_collapse(inode, pg_start, pg_end); 1096 if (ret) 1097 return ret; 1098 1099 /* write out all moved pages, if possible */ 1100 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1101 truncate_pagecache(inode, offset); 1102 1103 new_size = i_size_read(inode) - len; 1104 truncate_pagecache(inode, new_size); 1105 1106 ret = truncate_blocks(inode, new_size, true); 1107 if (!ret) 1108 f2fs_i_size_write(inode, new_size); 1109 1110 return ret; 1111 } 1112 1113 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1114 pgoff_t end) 1115 { 1116 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1117 pgoff_t index = start; 1118 unsigned int ofs_in_node = dn->ofs_in_node; 1119 blkcnt_t count = 0; 1120 int ret; 1121 1122 for (; index < end; index++, dn->ofs_in_node++) { 1123 if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR) 1124 count++; 1125 } 1126 1127 dn->ofs_in_node = ofs_in_node; 1128 ret = reserve_new_blocks(dn, count); 1129 if (ret) 1130 return ret; 1131 1132 dn->ofs_in_node = ofs_in_node; 1133 for (index = start; index < end; index++, dn->ofs_in_node++) { 1134 dn->data_blkaddr = 1135 datablock_addr(dn->node_page, dn->ofs_in_node); 1136 /* 1137 * reserve_new_blocks will not guarantee entire block 1138 * allocation. 1139 */ 1140 if (dn->data_blkaddr == NULL_ADDR) { 1141 ret = -ENOSPC; 1142 break; 1143 } 1144 if (dn->data_blkaddr != NEW_ADDR) { 1145 invalidate_blocks(sbi, dn->data_blkaddr); 1146 dn->data_blkaddr = NEW_ADDR; 1147 set_data_blkaddr(dn); 1148 } 1149 } 1150 1151 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1152 1153 return ret; 1154 } 1155 1156 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1157 int mode) 1158 { 1159 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1160 struct address_space *mapping = inode->i_mapping; 1161 pgoff_t index, pg_start, pg_end; 1162 loff_t new_size = i_size_read(inode); 1163 loff_t off_start, off_end; 1164 int ret = 0; 1165 1166 ret = inode_newsize_ok(inode, (len + offset)); 1167 if (ret) 1168 return ret; 1169 1170 ret = f2fs_convert_inline_inode(inode); 1171 if (ret) 1172 return ret; 1173 1174 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1175 if (ret) 1176 return ret; 1177 1178 truncate_pagecache_range(inode, offset, offset + len - 1); 1179 1180 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1181 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1182 1183 off_start = offset & (PAGE_SIZE - 1); 1184 off_end = (offset + len) & (PAGE_SIZE - 1); 1185 1186 if (pg_start == pg_end) { 1187 ret = fill_zero(inode, pg_start, off_start, 1188 off_end - off_start); 1189 if (ret) 1190 return ret; 1191 1192 if (offset + len > new_size) 1193 new_size = offset + len; 1194 new_size = max_t(loff_t, new_size, offset + len); 1195 } else { 1196 if (off_start) { 1197 ret = fill_zero(inode, pg_start++, off_start, 1198 PAGE_SIZE - off_start); 1199 if (ret) 1200 return ret; 1201 1202 new_size = max_t(loff_t, new_size, 1203 (loff_t)pg_start << PAGE_SHIFT); 1204 } 1205 1206 for (index = pg_start; index < pg_end;) { 1207 struct dnode_of_data dn; 1208 unsigned int end_offset; 1209 pgoff_t end; 1210 1211 f2fs_lock_op(sbi); 1212 1213 set_new_dnode(&dn, inode, NULL, NULL, 0); 1214 ret = get_dnode_of_data(&dn, index, ALLOC_NODE); 1215 if (ret) { 1216 f2fs_unlock_op(sbi); 1217 goto out; 1218 } 1219 1220 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1221 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1222 1223 ret = f2fs_do_zero_range(&dn, index, end); 1224 f2fs_put_dnode(&dn); 1225 f2fs_unlock_op(sbi); 1226 1227 f2fs_balance_fs(sbi, dn.node_changed); 1228 1229 if (ret) 1230 goto out; 1231 1232 index = end; 1233 new_size = max_t(loff_t, new_size, 1234 (loff_t)index << PAGE_SHIFT); 1235 } 1236 1237 if (off_end) { 1238 ret = fill_zero(inode, pg_end, 0, off_end); 1239 if (ret) 1240 goto out; 1241 1242 new_size = max_t(loff_t, new_size, offset + len); 1243 } 1244 } 1245 1246 out: 1247 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) 1248 f2fs_i_size_write(inode, new_size); 1249 1250 return ret; 1251 } 1252 1253 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1254 { 1255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1256 pgoff_t nr, pg_start, pg_end, delta, idx; 1257 loff_t new_size; 1258 int ret = 0; 1259 1260 new_size = i_size_read(inode) + len; 1261 if (new_size > inode->i_sb->s_maxbytes) 1262 return -EFBIG; 1263 1264 if (offset >= i_size_read(inode)) 1265 return -EINVAL; 1266 1267 /* insert range should be aligned to block size of f2fs. */ 1268 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1269 return -EINVAL; 1270 1271 ret = f2fs_convert_inline_inode(inode); 1272 if (ret) 1273 return ret; 1274 1275 f2fs_balance_fs(sbi, true); 1276 1277 ret = truncate_blocks(inode, i_size_read(inode), true); 1278 if (ret) 1279 return ret; 1280 1281 /* write out all dirty pages from offset */ 1282 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1283 if (ret) 1284 return ret; 1285 1286 truncate_pagecache(inode, offset); 1287 1288 pg_start = offset >> PAGE_SHIFT; 1289 pg_end = (offset + len) >> PAGE_SHIFT; 1290 delta = pg_end - pg_start; 1291 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; 1292 1293 while (!ret && idx > pg_start) { 1294 nr = idx - pg_start; 1295 if (nr > delta) 1296 nr = delta; 1297 idx -= nr; 1298 1299 f2fs_lock_op(sbi); 1300 f2fs_drop_extent_tree(inode); 1301 1302 ret = __exchange_data_block(inode, inode, idx, 1303 idx + delta, nr, false); 1304 f2fs_unlock_op(sbi); 1305 } 1306 1307 /* write out all moved pages, if possible */ 1308 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1309 truncate_pagecache(inode, offset); 1310 1311 if (!ret) 1312 f2fs_i_size_write(inode, new_size); 1313 return ret; 1314 } 1315 1316 static int expand_inode_data(struct inode *inode, loff_t offset, 1317 loff_t len, int mode) 1318 { 1319 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1320 struct f2fs_map_blocks map = { .m_next_pgofs = NULL }; 1321 pgoff_t pg_end; 1322 loff_t new_size = i_size_read(inode); 1323 loff_t off_end; 1324 int err; 1325 1326 err = inode_newsize_ok(inode, (len + offset)); 1327 if (err) 1328 return err; 1329 1330 err = f2fs_convert_inline_inode(inode); 1331 if (err) 1332 return err; 1333 1334 f2fs_balance_fs(sbi, true); 1335 1336 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1337 off_end = (offset + len) & (PAGE_SIZE - 1); 1338 1339 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1340 map.m_len = pg_end - map.m_lblk; 1341 if (off_end) 1342 map.m_len++; 1343 1344 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1345 if (err) { 1346 pgoff_t last_off; 1347 1348 if (!map.m_len) 1349 return err; 1350 1351 last_off = map.m_lblk + map.m_len - 1; 1352 1353 /* update new size to the failed position */ 1354 new_size = (last_off == pg_end) ? offset + len: 1355 (loff_t)(last_off + 1) << PAGE_SHIFT; 1356 } else { 1357 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1358 } 1359 1360 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) 1361 f2fs_i_size_write(inode, new_size); 1362 1363 return err; 1364 } 1365 1366 static long f2fs_fallocate(struct file *file, int mode, 1367 loff_t offset, loff_t len) 1368 { 1369 struct inode *inode = file_inode(file); 1370 long ret = 0; 1371 1372 /* f2fs only support ->fallocate for regular file */ 1373 if (!S_ISREG(inode->i_mode)) 1374 return -EINVAL; 1375 1376 if (f2fs_encrypted_inode(inode) && 1377 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1378 return -EOPNOTSUPP; 1379 1380 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1381 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1382 FALLOC_FL_INSERT_RANGE)) 1383 return -EOPNOTSUPP; 1384 1385 inode_lock(inode); 1386 1387 if (mode & FALLOC_FL_PUNCH_HOLE) { 1388 if (offset >= inode->i_size) 1389 goto out; 1390 1391 ret = punch_hole(inode, offset, len); 1392 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1393 ret = f2fs_collapse_range(inode, offset, len); 1394 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1395 ret = f2fs_zero_range(inode, offset, len, mode); 1396 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1397 ret = f2fs_insert_range(inode, offset, len); 1398 } else { 1399 ret = expand_inode_data(inode, offset, len, mode); 1400 } 1401 1402 if (!ret) { 1403 inode->i_mtime = inode->i_ctime = current_time(inode); 1404 f2fs_mark_inode_dirty_sync(inode, false); 1405 if (mode & FALLOC_FL_KEEP_SIZE) 1406 file_set_keep_isize(inode); 1407 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1408 } 1409 1410 out: 1411 inode_unlock(inode); 1412 1413 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1414 return ret; 1415 } 1416 1417 static int f2fs_release_file(struct inode *inode, struct file *filp) 1418 { 1419 /* 1420 * f2fs_relase_file is called at every close calls. So we should 1421 * not drop any inmemory pages by close called by other process. 1422 */ 1423 if (!(filp->f_mode & FMODE_WRITE) || 1424 atomic_read(&inode->i_writecount) != 1) 1425 return 0; 1426 1427 /* some remained atomic pages should discarded */ 1428 if (f2fs_is_atomic_file(inode)) 1429 drop_inmem_pages(inode); 1430 if (f2fs_is_volatile_file(inode)) { 1431 clear_inode_flag(inode, FI_VOLATILE_FILE); 1432 set_inode_flag(inode, FI_DROP_CACHE); 1433 filemap_fdatawrite(inode->i_mapping); 1434 clear_inode_flag(inode, FI_DROP_CACHE); 1435 } 1436 return 0; 1437 } 1438 1439 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 1440 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 1441 1442 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 1443 { 1444 if (S_ISDIR(mode)) 1445 return flags; 1446 else if (S_ISREG(mode)) 1447 return flags & F2FS_REG_FLMASK; 1448 else 1449 return flags & F2FS_OTHER_FLMASK; 1450 } 1451 1452 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1453 { 1454 struct inode *inode = file_inode(filp); 1455 struct f2fs_inode_info *fi = F2FS_I(inode); 1456 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE; 1457 return put_user(flags, (int __user *)arg); 1458 } 1459 1460 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1461 { 1462 struct inode *inode = file_inode(filp); 1463 struct f2fs_inode_info *fi = F2FS_I(inode); 1464 unsigned int flags; 1465 unsigned int oldflags; 1466 int ret; 1467 1468 if (!inode_owner_or_capable(inode)) 1469 return -EACCES; 1470 1471 if (get_user(flags, (int __user *)arg)) 1472 return -EFAULT; 1473 1474 ret = mnt_want_write_file(filp); 1475 if (ret) 1476 return ret; 1477 1478 flags = f2fs_mask_flags(inode->i_mode, flags); 1479 1480 inode_lock(inode); 1481 1482 oldflags = fi->i_flags; 1483 1484 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 1485 if (!capable(CAP_LINUX_IMMUTABLE)) { 1486 inode_unlock(inode); 1487 ret = -EPERM; 1488 goto out; 1489 } 1490 } 1491 1492 flags = flags & FS_FL_USER_MODIFIABLE; 1493 flags |= oldflags & ~FS_FL_USER_MODIFIABLE; 1494 fi->i_flags = flags; 1495 inode_unlock(inode); 1496 1497 inode->i_ctime = current_time(inode); 1498 f2fs_set_inode_flags(inode); 1499 out: 1500 mnt_drop_write_file(filp); 1501 return ret; 1502 } 1503 1504 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1505 { 1506 struct inode *inode = file_inode(filp); 1507 1508 return put_user(inode->i_generation, (int __user *)arg); 1509 } 1510 1511 static int f2fs_ioc_start_atomic_write(struct file *filp) 1512 { 1513 struct inode *inode = file_inode(filp); 1514 int ret; 1515 1516 if (!inode_owner_or_capable(inode)) 1517 return -EACCES; 1518 1519 ret = mnt_want_write_file(filp); 1520 if (ret) 1521 return ret; 1522 1523 inode_lock(inode); 1524 1525 if (f2fs_is_atomic_file(inode)) 1526 goto out; 1527 1528 ret = f2fs_convert_inline_inode(inode); 1529 if (ret) 1530 goto out; 1531 1532 set_inode_flag(inode, FI_ATOMIC_FILE); 1533 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1534 1535 if (!get_dirty_pages(inode)) 1536 goto out; 1537 1538 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING, 1539 "Unexpected flush for atomic writes: ino=%lu, npages=%u", 1540 inode->i_ino, get_dirty_pages(inode)); 1541 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 1542 if (ret) 1543 clear_inode_flag(inode, FI_ATOMIC_FILE); 1544 out: 1545 inode_unlock(inode); 1546 mnt_drop_write_file(filp); 1547 return ret; 1548 } 1549 1550 static int f2fs_ioc_commit_atomic_write(struct file *filp) 1551 { 1552 struct inode *inode = file_inode(filp); 1553 int ret; 1554 1555 if (!inode_owner_or_capable(inode)) 1556 return -EACCES; 1557 1558 ret = mnt_want_write_file(filp); 1559 if (ret) 1560 return ret; 1561 1562 inode_lock(inode); 1563 1564 if (f2fs_is_volatile_file(inode)) 1565 goto err_out; 1566 1567 if (f2fs_is_atomic_file(inode)) { 1568 clear_inode_flag(inode, FI_ATOMIC_FILE); 1569 ret = commit_inmem_pages(inode); 1570 if (ret) { 1571 set_inode_flag(inode, FI_ATOMIC_FILE); 1572 goto err_out; 1573 } 1574 } 1575 1576 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1577 err_out: 1578 inode_unlock(inode); 1579 mnt_drop_write_file(filp); 1580 return ret; 1581 } 1582 1583 static int f2fs_ioc_start_volatile_write(struct file *filp) 1584 { 1585 struct inode *inode = file_inode(filp); 1586 int ret; 1587 1588 if (!inode_owner_or_capable(inode)) 1589 return -EACCES; 1590 1591 ret = mnt_want_write_file(filp); 1592 if (ret) 1593 return ret; 1594 1595 inode_lock(inode); 1596 1597 if (f2fs_is_volatile_file(inode)) 1598 goto out; 1599 1600 ret = f2fs_convert_inline_inode(inode); 1601 if (ret) 1602 goto out; 1603 1604 set_inode_flag(inode, FI_VOLATILE_FILE); 1605 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1606 out: 1607 inode_unlock(inode); 1608 mnt_drop_write_file(filp); 1609 return ret; 1610 } 1611 1612 static int f2fs_ioc_release_volatile_write(struct file *filp) 1613 { 1614 struct inode *inode = file_inode(filp); 1615 int ret; 1616 1617 if (!inode_owner_or_capable(inode)) 1618 return -EACCES; 1619 1620 ret = mnt_want_write_file(filp); 1621 if (ret) 1622 return ret; 1623 1624 inode_lock(inode); 1625 1626 if (!f2fs_is_volatile_file(inode)) 1627 goto out; 1628 1629 if (!f2fs_is_first_block_written(inode)) { 1630 ret = truncate_partial_data_page(inode, 0, true); 1631 goto out; 1632 } 1633 1634 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 1635 out: 1636 inode_unlock(inode); 1637 mnt_drop_write_file(filp); 1638 return ret; 1639 } 1640 1641 static int f2fs_ioc_abort_volatile_write(struct file *filp) 1642 { 1643 struct inode *inode = file_inode(filp); 1644 int ret; 1645 1646 if (!inode_owner_or_capable(inode)) 1647 return -EACCES; 1648 1649 ret = mnt_want_write_file(filp); 1650 if (ret) 1651 return ret; 1652 1653 inode_lock(inode); 1654 1655 if (f2fs_is_atomic_file(inode)) 1656 drop_inmem_pages(inode); 1657 if (f2fs_is_volatile_file(inode)) { 1658 clear_inode_flag(inode, FI_VOLATILE_FILE); 1659 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1660 } 1661 1662 inode_unlock(inode); 1663 1664 mnt_drop_write_file(filp); 1665 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1666 return ret; 1667 } 1668 1669 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 1670 { 1671 struct inode *inode = file_inode(filp); 1672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1673 struct super_block *sb = sbi->sb; 1674 __u32 in; 1675 int ret; 1676 1677 if (!capable(CAP_SYS_ADMIN)) 1678 return -EPERM; 1679 1680 if (get_user(in, (__u32 __user *)arg)) 1681 return -EFAULT; 1682 1683 ret = mnt_want_write_file(filp); 1684 if (ret) 1685 return ret; 1686 1687 switch (in) { 1688 case F2FS_GOING_DOWN_FULLSYNC: 1689 sb = freeze_bdev(sb->s_bdev); 1690 if (sb && !IS_ERR(sb)) { 1691 f2fs_stop_checkpoint(sbi, false); 1692 thaw_bdev(sb->s_bdev, sb); 1693 } 1694 break; 1695 case F2FS_GOING_DOWN_METASYNC: 1696 /* do checkpoint only */ 1697 f2fs_sync_fs(sb, 1); 1698 f2fs_stop_checkpoint(sbi, false); 1699 break; 1700 case F2FS_GOING_DOWN_NOSYNC: 1701 f2fs_stop_checkpoint(sbi, false); 1702 break; 1703 case F2FS_GOING_DOWN_METAFLUSH: 1704 sync_meta_pages(sbi, META, LONG_MAX); 1705 f2fs_stop_checkpoint(sbi, false); 1706 break; 1707 default: 1708 ret = -EINVAL; 1709 goto out; 1710 } 1711 f2fs_update_time(sbi, REQ_TIME); 1712 out: 1713 mnt_drop_write_file(filp); 1714 return ret; 1715 } 1716 1717 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 1718 { 1719 struct inode *inode = file_inode(filp); 1720 struct super_block *sb = inode->i_sb; 1721 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1722 struct fstrim_range range; 1723 int ret; 1724 1725 if (!capable(CAP_SYS_ADMIN)) 1726 return -EPERM; 1727 1728 if (!blk_queue_discard(q)) 1729 return -EOPNOTSUPP; 1730 1731 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 1732 sizeof(range))) 1733 return -EFAULT; 1734 1735 ret = mnt_want_write_file(filp); 1736 if (ret) 1737 return ret; 1738 1739 range.minlen = max((unsigned int)range.minlen, 1740 q->limits.discard_granularity); 1741 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 1742 mnt_drop_write_file(filp); 1743 if (ret < 0) 1744 return ret; 1745 1746 if (copy_to_user((struct fstrim_range __user *)arg, &range, 1747 sizeof(range))) 1748 return -EFAULT; 1749 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1750 return 0; 1751 } 1752 1753 static bool uuid_is_nonzero(__u8 u[16]) 1754 { 1755 int i; 1756 1757 for (i = 0; i < 16; i++) 1758 if (u[i]) 1759 return true; 1760 return false; 1761 } 1762 1763 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 1764 { 1765 struct inode *inode = file_inode(filp); 1766 1767 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1768 1769 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 1770 } 1771 1772 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 1773 { 1774 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 1775 } 1776 1777 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 1778 { 1779 struct inode *inode = file_inode(filp); 1780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1781 int err; 1782 1783 if (!f2fs_sb_has_crypto(inode->i_sb)) 1784 return -EOPNOTSUPP; 1785 1786 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 1787 goto got_it; 1788 1789 err = mnt_want_write_file(filp); 1790 if (err) 1791 return err; 1792 1793 /* update superblock with uuid */ 1794 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 1795 1796 err = f2fs_commit_super(sbi, false); 1797 if (err) { 1798 /* undo new data */ 1799 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 1800 mnt_drop_write_file(filp); 1801 return err; 1802 } 1803 mnt_drop_write_file(filp); 1804 got_it: 1805 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 1806 16)) 1807 return -EFAULT; 1808 return 0; 1809 } 1810 1811 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 1812 { 1813 struct inode *inode = file_inode(filp); 1814 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1815 __u32 sync; 1816 int ret; 1817 1818 if (!capable(CAP_SYS_ADMIN)) 1819 return -EPERM; 1820 1821 if (get_user(sync, (__u32 __user *)arg)) 1822 return -EFAULT; 1823 1824 if (f2fs_readonly(sbi->sb)) 1825 return -EROFS; 1826 1827 ret = mnt_want_write_file(filp); 1828 if (ret) 1829 return ret; 1830 1831 if (!sync) { 1832 if (!mutex_trylock(&sbi->gc_mutex)) { 1833 ret = -EBUSY; 1834 goto out; 1835 } 1836 } else { 1837 mutex_lock(&sbi->gc_mutex); 1838 } 1839 1840 ret = f2fs_gc(sbi, sync, true); 1841 out: 1842 mnt_drop_write_file(filp); 1843 return ret; 1844 } 1845 1846 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 1847 { 1848 struct inode *inode = file_inode(filp); 1849 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1850 int ret; 1851 1852 if (!capable(CAP_SYS_ADMIN)) 1853 return -EPERM; 1854 1855 if (f2fs_readonly(sbi->sb)) 1856 return -EROFS; 1857 1858 ret = mnt_want_write_file(filp); 1859 if (ret) 1860 return ret; 1861 1862 ret = f2fs_sync_fs(sbi->sb, 1); 1863 1864 mnt_drop_write_file(filp); 1865 return ret; 1866 } 1867 1868 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 1869 struct file *filp, 1870 struct f2fs_defragment *range) 1871 { 1872 struct inode *inode = file_inode(filp); 1873 struct f2fs_map_blocks map = { .m_next_pgofs = NULL }; 1874 struct extent_info ei; 1875 pgoff_t pg_start, pg_end; 1876 unsigned int blk_per_seg = sbi->blocks_per_seg; 1877 unsigned int total = 0, sec_num; 1878 unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg; 1879 block_t blk_end = 0; 1880 bool fragmented = false; 1881 int err; 1882 1883 /* if in-place-update policy is enabled, don't waste time here */ 1884 if (need_inplace_update(inode)) 1885 return -EINVAL; 1886 1887 pg_start = range->start >> PAGE_SHIFT; 1888 pg_end = (range->start + range->len) >> PAGE_SHIFT; 1889 1890 f2fs_balance_fs(sbi, true); 1891 1892 inode_lock(inode); 1893 1894 /* writeback all dirty pages in the range */ 1895 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 1896 range->start + range->len - 1); 1897 if (err) 1898 goto out; 1899 1900 /* 1901 * lookup mapping info in extent cache, skip defragmenting if physical 1902 * block addresses are continuous. 1903 */ 1904 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 1905 if (ei.fofs + ei.len >= pg_end) 1906 goto out; 1907 } 1908 1909 map.m_lblk = pg_start; 1910 1911 /* 1912 * lookup mapping info in dnode page cache, skip defragmenting if all 1913 * physical block addresses are continuous even if there are hole(s) 1914 * in logical blocks. 1915 */ 1916 while (map.m_lblk < pg_end) { 1917 map.m_len = pg_end - map.m_lblk; 1918 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ); 1919 if (err) 1920 goto out; 1921 1922 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 1923 map.m_lblk++; 1924 continue; 1925 } 1926 1927 if (blk_end && blk_end != map.m_pblk) { 1928 fragmented = true; 1929 break; 1930 } 1931 blk_end = map.m_pblk + map.m_len; 1932 1933 map.m_lblk += map.m_len; 1934 } 1935 1936 if (!fragmented) 1937 goto out; 1938 1939 map.m_lblk = pg_start; 1940 map.m_len = pg_end - pg_start; 1941 1942 sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec; 1943 1944 /* 1945 * make sure there are enough free section for LFS allocation, this can 1946 * avoid defragment running in SSR mode when free section are allocated 1947 * intensively 1948 */ 1949 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 1950 err = -EAGAIN; 1951 goto out; 1952 } 1953 1954 while (map.m_lblk < pg_end) { 1955 pgoff_t idx; 1956 int cnt = 0; 1957 1958 do_map: 1959 map.m_len = pg_end - map.m_lblk; 1960 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ); 1961 if (err) 1962 goto clear_out; 1963 1964 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 1965 map.m_lblk++; 1966 continue; 1967 } 1968 1969 set_inode_flag(inode, FI_DO_DEFRAG); 1970 1971 idx = map.m_lblk; 1972 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 1973 struct page *page; 1974 1975 page = get_lock_data_page(inode, idx, true); 1976 if (IS_ERR(page)) { 1977 err = PTR_ERR(page); 1978 goto clear_out; 1979 } 1980 1981 set_page_dirty(page); 1982 f2fs_put_page(page, 1); 1983 1984 idx++; 1985 cnt++; 1986 total++; 1987 } 1988 1989 map.m_lblk = idx; 1990 1991 if (idx < pg_end && cnt < blk_per_seg) 1992 goto do_map; 1993 1994 clear_inode_flag(inode, FI_DO_DEFRAG); 1995 1996 err = filemap_fdatawrite(inode->i_mapping); 1997 if (err) 1998 goto out; 1999 } 2000 clear_out: 2001 clear_inode_flag(inode, FI_DO_DEFRAG); 2002 out: 2003 inode_unlock(inode); 2004 if (!err) 2005 range->len = (u64)total << PAGE_SHIFT; 2006 return err; 2007 } 2008 2009 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2010 { 2011 struct inode *inode = file_inode(filp); 2012 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2013 struct f2fs_defragment range; 2014 int err; 2015 2016 if (!capable(CAP_SYS_ADMIN)) 2017 return -EPERM; 2018 2019 if (!S_ISREG(inode->i_mode)) 2020 return -EINVAL; 2021 2022 err = mnt_want_write_file(filp); 2023 if (err) 2024 return err; 2025 2026 if (f2fs_readonly(sbi->sb)) { 2027 err = -EROFS; 2028 goto out; 2029 } 2030 2031 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2032 sizeof(range))) { 2033 err = -EFAULT; 2034 goto out; 2035 } 2036 2037 /* verify alignment of offset & size */ 2038 if (range.start & (F2FS_BLKSIZE - 1) || 2039 range.len & (F2FS_BLKSIZE - 1)) { 2040 err = -EINVAL; 2041 goto out; 2042 } 2043 2044 err = f2fs_defragment_range(sbi, filp, &range); 2045 f2fs_update_time(sbi, REQ_TIME); 2046 if (err < 0) 2047 goto out; 2048 2049 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2050 sizeof(range))) 2051 err = -EFAULT; 2052 out: 2053 mnt_drop_write_file(filp); 2054 return err; 2055 } 2056 2057 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2058 struct file *file_out, loff_t pos_out, size_t len) 2059 { 2060 struct inode *src = file_inode(file_in); 2061 struct inode *dst = file_inode(file_out); 2062 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2063 size_t olen = len, dst_max_i_size = 0; 2064 size_t dst_osize; 2065 int ret; 2066 2067 if (file_in->f_path.mnt != file_out->f_path.mnt || 2068 src->i_sb != dst->i_sb) 2069 return -EXDEV; 2070 2071 if (unlikely(f2fs_readonly(src->i_sb))) 2072 return -EROFS; 2073 2074 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2075 return -EINVAL; 2076 2077 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst)) 2078 return -EOPNOTSUPP; 2079 2080 if (src == dst) { 2081 if (pos_in == pos_out) 2082 return 0; 2083 if (pos_out > pos_in && pos_out < pos_in + len) 2084 return -EINVAL; 2085 } 2086 2087 inode_lock(src); 2088 if (src != dst) { 2089 if (!inode_trylock(dst)) { 2090 ret = -EBUSY; 2091 goto out; 2092 } 2093 } 2094 2095 ret = -EINVAL; 2096 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2097 goto out_unlock; 2098 if (len == 0) 2099 olen = len = src->i_size - pos_in; 2100 if (pos_in + len == src->i_size) 2101 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2102 if (len == 0) { 2103 ret = 0; 2104 goto out_unlock; 2105 } 2106 2107 dst_osize = dst->i_size; 2108 if (pos_out + olen > dst->i_size) 2109 dst_max_i_size = pos_out + olen; 2110 2111 /* verify the end result is block aligned */ 2112 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2113 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2114 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2115 goto out_unlock; 2116 2117 ret = f2fs_convert_inline_inode(src); 2118 if (ret) 2119 goto out_unlock; 2120 2121 ret = f2fs_convert_inline_inode(dst); 2122 if (ret) 2123 goto out_unlock; 2124 2125 /* write out all dirty pages from offset */ 2126 ret = filemap_write_and_wait_range(src->i_mapping, 2127 pos_in, pos_in + len); 2128 if (ret) 2129 goto out_unlock; 2130 2131 ret = filemap_write_and_wait_range(dst->i_mapping, 2132 pos_out, pos_out + len); 2133 if (ret) 2134 goto out_unlock; 2135 2136 f2fs_balance_fs(sbi, true); 2137 f2fs_lock_op(sbi); 2138 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2139 pos_out >> F2FS_BLKSIZE_BITS, 2140 len >> F2FS_BLKSIZE_BITS, false); 2141 2142 if (!ret) { 2143 if (dst_max_i_size) 2144 f2fs_i_size_write(dst, dst_max_i_size); 2145 else if (dst_osize != dst->i_size) 2146 f2fs_i_size_write(dst, dst_osize); 2147 } 2148 f2fs_unlock_op(sbi); 2149 out_unlock: 2150 if (src != dst) 2151 inode_unlock(dst); 2152 out: 2153 inode_unlock(src); 2154 return ret; 2155 } 2156 2157 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2158 { 2159 struct f2fs_move_range range; 2160 struct fd dst; 2161 int err; 2162 2163 if (!(filp->f_mode & FMODE_READ) || 2164 !(filp->f_mode & FMODE_WRITE)) 2165 return -EBADF; 2166 2167 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2168 sizeof(range))) 2169 return -EFAULT; 2170 2171 dst = fdget(range.dst_fd); 2172 if (!dst.file) 2173 return -EBADF; 2174 2175 if (!(dst.file->f_mode & FMODE_WRITE)) { 2176 err = -EBADF; 2177 goto err_out; 2178 } 2179 2180 err = mnt_want_write_file(filp); 2181 if (err) 2182 goto err_out; 2183 2184 err = f2fs_move_file_range(filp, range.pos_in, dst.file, 2185 range.pos_out, range.len); 2186 2187 mnt_drop_write_file(filp); 2188 2189 if (copy_to_user((struct f2fs_move_range __user *)arg, 2190 &range, sizeof(range))) 2191 err = -EFAULT; 2192 err_out: 2193 fdput(dst); 2194 return err; 2195 } 2196 2197 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 2198 { 2199 switch (cmd) { 2200 case F2FS_IOC_GETFLAGS: 2201 return f2fs_ioc_getflags(filp, arg); 2202 case F2FS_IOC_SETFLAGS: 2203 return f2fs_ioc_setflags(filp, arg); 2204 case F2FS_IOC_GETVERSION: 2205 return f2fs_ioc_getversion(filp, arg); 2206 case F2FS_IOC_START_ATOMIC_WRITE: 2207 return f2fs_ioc_start_atomic_write(filp); 2208 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 2209 return f2fs_ioc_commit_atomic_write(filp); 2210 case F2FS_IOC_START_VOLATILE_WRITE: 2211 return f2fs_ioc_start_volatile_write(filp); 2212 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 2213 return f2fs_ioc_release_volatile_write(filp); 2214 case F2FS_IOC_ABORT_VOLATILE_WRITE: 2215 return f2fs_ioc_abort_volatile_write(filp); 2216 case F2FS_IOC_SHUTDOWN: 2217 return f2fs_ioc_shutdown(filp, arg); 2218 case FITRIM: 2219 return f2fs_ioc_fitrim(filp, arg); 2220 case F2FS_IOC_SET_ENCRYPTION_POLICY: 2221 return f2fs_ioc_set_encryption_policy(filp, arg); 2222 case F2FS_IOC_GET_ENCRYPTION_POLICY: 2223 return f2fs_ioc_get_encryption_policy(filp, arg); 2224 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 2225 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 2226 case F2FS_IOC_GARBAGE_COLLECT: 2227 return f2fs_ioc_gc(filp, arg); 2228 case F2FS_IOC_WRITE_CHECKPOINT: 2229 return f2fs_ioc_write_checkpoint(filp, arg); 2230 case F2FS_IOC_DEFRAGMENT: 2231 return f2fs_ioc_defragment(filp, arg); 2232 case F2FS_IOC_MOVE_RANGE: 2233 return f2fs_ioc_move_range(filp, arg); 2234 default: 2235 return -ENOTTY; 2236 } 2237 } 2238 2239 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2240 { 2241 struct file *file = iocb->ki_filp; 2242 struct inode *inode = file_inode(file); 2243 struct blk_plug plug; 2244 ssize_t ret; 2245 2246 if (f2fs_encrypted_inode(inode) && 2247 !fscrypt_has_encryption_key(inode) && 2248 fscrypt_get_encryption_info(inode)) 2249 return -EACCES; 2250 2251 inode_lock(inode); 2252 ret = generic_write_checks(iocb, from); 2253 if (ret > 0) { 2254 int err = f2fs_preallocate_blocks(iocb, from); 2255 2256 if (err) { 2257 inode_unlock(inode); 2258 return err; 2259 } 2260 blk_start_plug(&plug); 2261 ret = __generic_file_write_iter(iocb, from); 2262 blk_finish_plug(&plug); 2263 } 2264 inode_unlock(inode); 2265 2266 if (ret > 0) 2267 ret = generic_write_sync(iocb, ret); 2268 return ret; 2269 } 2270 2271 #ifdef CONFIG_COMPAT 2272 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2273 { 2274 switch (cmd) { 2275 case F2FS_IOC32_GETFLAGS: 2276 cmd = F2FS_IOC_GETFLAGS; 2277 break; 2278 case F2FS_IOC32_SETFLAGS: 2279 cmd = F2FS_IOC_SETFLAGS; 2280 break; 2281 case F2FS_IOC32_GETVERSION: 2282 cmd = F2FS_IOC_GETVERSION; 2283 break; 2284 case F2FS_IOC_START_ATOMIC_WRITE: 2285 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 2286 case F2FS_IOC_START_VOLATILE_WRITE: 2287 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 2288 case F2FS_IOC_ABORT_VOLATILE_WRITE: 2289 case F2FS_IOC_SHUTDOWN: 2290 case F2FS_IOC_SET_ENCRYPTION_POLICY: 2291 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 2292 case F2FS_IOC_GET_ENCRYPTION_POLICY: 2293 case F2FS_IOC_GARBAGE_COLLECT: 2294 case F2FS_IOC_WRITE_CHECKPOINT: 2295 case F2FS_IOC_DEFRAGMENT: 2296 break; 2297 case F2FS_IOC_MOVE_RANGE: 2298 break; 2299 default: 2300 return -ENOIOCTLCMD; 2301 } 2302 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 2303 } 2304 #endif 2305 2306 const struct file_operations f2fs_file_operations = { 2307 .llseek = f2fs_llseek, 2308 .read_iter = generic_file_read_iter, 2309 .write_iter = f2fs_file_write_iter, 2310 .open = f2fs_file_open, 2311 .release = f2fs_release_file, 2312 .mmap = f2fs_file_mmap, 2313 .fsync = f2fs_sync_file, 2314 .fallocate = f2fs_fallocate, 2315 .unlocked_ioctl = f2fs_ioctl, 2316 #ifdef CONFIG_COMPAT 2317 .compat_ioctl = f2fs_compat_ioctl, 2318 #endif 2319 .splice_read = generic_file_splice_read, 2320 .splice_write = iter_file_splice_write, 2321 }; 2322