xref: /openbmc/linux/fs/f2fs/file.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include <trace/events/f2fs.h>
34 #include <uapi/linux/f2fs.h>
35 
36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 	struct inode *inode = file_inode(vmf->vma->vm_file);
39 	vm_fault_t ret;
40 
41 	down_read(&F2FS_I(inode)->i_mmap_sem);
42 	ret = filemap_fault(vmf);
43 	up_read(&F2FS_I(inode)->i_mmap_sem);
44 
45 	if (!ret)
46 		f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
47 							F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	down_read(&F2FS_I(inode)->i_mmap_sem);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
117 		set_new_dnode(&dn, inode, NULL, NULL, 0);
118 		err = f2fs_get_block(&dn, page->index);
119 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
120 	}
121 
122 #ifdef CONFIG_F2FS_FS_COMPRESSION
123 	if (!need_alloc) {
124 		set_new_dnode(&dn, inode, NULL, NULL, 0);
125 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
126 		f2fs_put_dnode(&dn);
127 	}
128 #endif
129 	if (err) {
130 		unlock_page(page);
131 		goto out_sem;
132 	}
133 
134 	f2fs_wait_on_page_writeback(page, DATA, false, true);
135 
136 	/* wait for GCed page writeback via META_MAPPING */
137 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
138 
139 	/*
140 	 * check to see if the page is mapped already (no holes)
141 	 */
142 	if (PageMappedToDisk(page))
143 		goto out_sem;
144 
145 	/* page is wholly or partially inside EOF */
146 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
147 						i_size_read(inode)) {
148 		loff_t offset;
149 
150 		offset = i_size_read(inode) & ~PAGE_MASK;
151 		zero_user_segment(page, offset, PAGE_SIZE);
152 	}
153 	set_page_dirty(page);
154 	if (!PageUptodate(page))
155 		SetPageUptodate(page);
156 
157 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
158 	f2fs_update_time(sbi, REQ_TIME);
159 
160 	trace_f2fs_vm_page_mkwrite(page, DATA);
161 out_sem:
162 	up_read(&F2FS_I(inode)->i_mmap_sem);
163 
164 	sb_end_pagefault(inode->i_sb);
165 err:
166 	return block_page_mkwrite_return(err);
167 }
168 
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170 	.fault		= f2fs_filemap_fault,
171 	.map_pages	= filemap_map_pages,
172 	.page_mkwrite	= f2fs_vm_page_mkwrite,
173 };
174 
175 static int get_parent_ino(struct inode *inode, nid_t *pino)
176 {
177 	struct dentry *dentry;
178 
179 	/*
180 	 * Make sure to get the non-deleted alias.  The alias associated with
181 	 * the open file descriptor being fsync()'ed may be deleted already.
182 	 */
183 	dentry = d_find_alias(inode);
184 	if (!dentry)
185 		return 0;
186 
187 	*pino = parent_ino(dentry);
188 	dput(dentry);
189 	return 1;
190 }
191 
192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
193 {
194 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
196 
197 	if (!S_ISREG(inode->i_mode))
198 		cp_reason = CP_NON_REGULAR;
199 	else if (f2fs_compressed_file(inode))
200 		cp_reason = CP_COMPRESSED;
201 	else if (inode->i_nlink != 1)
202 		cp_reason = CP_HARDLINK;
203 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204 		cp_reason = CP_SB_NEED_CP;
205 	else if (file_wrong_pino(inode))
206 		cp_reason = CP_WRONG_PINO;
207 	else if (!f2fs_space_for_roll_forward(sbi))
208 		cp_reason = CP_NO_SPC_ROLL;
209 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210 		cp_reason = CP_NODE_NEED_CP;
211 	else if (test_opt(sbi, FASTBOOT))
212 		cp_reason = CP_FASTBOOT_MODE;
213 	else if (F2FS_OPTION(sbi).active_logs == 2)
214 		cp_reason = CP_SPEC_LOG_NUM;
215 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
218 							TRANS_DIR_INO))
219 		cp_reason = CP_RECOVER_DIR;
220 
221 	return cp_reason;
222 }
223 
224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
225 {
226 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
227 	bool ret = false;
228 	/* But we need to avoid that there are some inode updates */
229 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
230 		ret = true;
231 	f2fs_put_page(i, 0);
232 	return ret;
233 }
234 
235 static void try_to_fix_pino(struct inode *inode)
236 {
237 	struct f2fs_inode_info *fi = F2FS_I(inode);
238 	nid_t pino;
239 
240 	down_write(&fi->i_sem);
241 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
242 			get_parent_ino(inode, &pino)) {
243 		f2fs_i_pino_write(inode, pino);
244 		file_got_pino(inode);
245 	}
246 	up_write(&fi->i_sem);
247 }
248 
249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
250 						int datasync, bool atomic)
251 {
252 	struct inode *inode = file->f_mapping->host;
253 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
254 	nid_t ino = inode->i_ino;
255 	int ret = 0;
256 	enum cp_reason_type cp_reason = 0;
257 	struct writeback_control wbc = {
258 		.sync_mode = WB_SYNC_ALL,
259 		.nr_to_write = LONG_MAX,
260 		.for_reclaim = 0,
261 	};
262 	unsigned int seq_id = 0;
263 
264 	if (unlikely(f2fs_readonly(inode->i_sb) ||
265 				is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
266 		return 0;
267 
268 	trace_f2fs_sync_file_enter(inode);
269 
270 	if (S_ISDIR(inode->i_mode))
271 		goto go_write;
272 
273 	/* if fdatasync is triggered, let's do in-place-update */
274 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
275 		set_inode_flag(inode, FI_NEED_IPU);
276 	ret = file_write_and_wait_range(file, start, end);
277 	clear_inode_flag(inode, FI_NEED_IPU);
278 
279 	if (ret) {
280 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
281 		return ret;
282 	}
283 
284 	/* if the inode is dirty, let's recover all the time */
285 	if (!f2fs_skip_inode_update(inode, datasync)) {
286 		f2fs_write_inode(inode, NULL);
287 		goto go_write;
288 	}
289 
290 	/*
291 	 * if there is no written data, don't waste time to write recovery info.
292 	 */
293 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
294 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
295 
296 		/* it may call write_inode just prior to fsync */
297 		if (need_inode_page_update(sbi, ino))
298 			goto go_write;
299 
300 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
301 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
302 			goto flush_out;
303 		goto out;
304 	}
305 go_write:
306 	/*
307 	 * Both of fdatasync() and fsync() are able to be recovered from
308 	 * sudden-power-off.
309 	 */
310 	down_read(&F2FS_I(inode)->i_sem);
311 	cp_reason = need_do_checkpoint(inode);
312 	up_read(&F2FS_I(inode)->i_sem);
313 
314 	if (cp_reason) {
315 		/* all the dirty node pages should be flushed for POR */
316 		ret = f2fs_sync_fs(inode->i_sb, 1);
317 
318 		/*
319 		 * We've secured consistency through sync_fs. Following pino
320 		 * will be used only for fsynced inodes after checkpoint.
321 		 */
322 		try_to_fix_pino(inode);
323 		clear_inode_flag(inode, FI_APPEND_WRITE);
324 		clear_inode_flag(inode, FI_UPDATE_WRITE);
325 		goto out;
326 	}
327 sync_nodes:
328 	atomic_inc(&sbi->wb_sync_req[NODE]);
329 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
330 	atomic_dec(&sbi->wb_sync_req[NODE]);
331 	if (ret)
332 		goto out;
333 
334 	/* if cp_error was enabled, we should avoid infinite loop */
335 	if (unlikely(f2fs_cp_error(sbi))) {
336 		ret = -EIO;
337 		goto out;
338 	}
339 
340 	if (f2fs_need_inode_block_update(sbi, ino)) {
341 		f2fs_mark_inode_dirty_sync(inode, true);
342 		f2fs_write_inode(inode, NULL);
343 		goto sync_nodes;
344 	}
345 
346 	/*
347 	 * If it's atomic_write, it's just fine to keep write ordering. So
348 	 * here we don't need to wait for node write completion, since we use
349 	 * node chain which serializes node blocks. If one of node writes are
350 	 * reordered, we can see simply broken chain, resulting in stopping
351 	 * roll-forward recovery. It means we'll recover all or none node blocks
352 	 * given fsync mark.
353 	 */
354 	if (!atomic) {
355 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
356 		if (ret)
357 			goto out;
358 	}
359 
360 	/* once recovery info is written, don't need to tack this */
361 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
362 	clear_inode_flag(inode, FI_APPEND_WRITE);
363 flush_out:
364 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
365 		ret = f2fs_issue_flush(sbi, inode->i_ino);
366 	if (!ret) {
367 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
368 		clear_inode_flag(inode, FI_UPDATE_WRITE);
369 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
370 	}
371 	f2fs_update_time(sbi, REQ_TIME);
372 out:
373 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
374 	return ret;
375 }
376 
377 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
378 {
379 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
380 		return -EIO;
381 	return f2fs_do_sync_file(file, start, end, datasync, false);
382 }
383 
384 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
385 				pgoff_t index, int whence)
386 {
387 	switch (whence) {
388 	case SEEK_DATA:
389 		if (__is_valid_data_blkaddr(blkaddr))
390 			return true;
391 		if (blkaddr == NEW_ADDR &&
392 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
393 			return true;
394 		break;
395 	case SEEK_HOLE:
396 		if (blkaddr == NULL_ADDR)
397 			return true;
398 		break;
399 	}
400 	return false;
401 }
402 
403 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
404 {
405 	struct inode *inode = file->f_mapping->host;
406 	loff_t maxbytes = inode->i_sb->s_maxbytes;
407 	struct dnode_of_data dn;
408 	pgoff_t pgofs, end_offset;
409 	loff_t data_ofs = offset;
410 	loff_t isize;
411 	int err = 0;
412 
413 	inode_lock(inode);
414 
415 	isize = i_size_read(inode);
416 	if (offset >= isize)
417 		goto fail;
418 
419 	/* handle inline data case */
420 	if (f2fs_has_inline_data(inode)) {
421 		if (whence == SEEK_HOLE) {
422 			data_ofs = isize;
423 			goto found;
424 		} else if (whence == SEEK_DATA) {
425 			data_ofs = offset;
426 			goto found;
427 		}
428 	}
429 
430 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
431 
432 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
433 		set_new_dnode(&dn, inode, NULL, NULL, 0);
434 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
435 		if (err && err != -ENOENT) {
436 			goto fail;
437 		} else if (err == -ENOENT) {
438 			/* direct node does not exists */
439 			if (whence == SEEK_DATA) {
440 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
441 				continue;
442 			} else {
443 				goto found;
444 			}
445 		}
446 
447 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
448 
449 		/* find data/hole in dnode block */
450 		for (; dn.ofs_in_node < end_offset;
451 				dn.ofs_in_node++, pgofs++,
452 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
453 			block_t blkaddr;
454 
455 			blkaddr = f2fs_data_blkaddr(&dn);
456 
457 			if (__is_valid_data_blkaddr(blkaddr) &&
458 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
459 					blkaddr, DATA_GENERIC_ENHANCE)) {
460 				f2fs_put_dnode(&dn);
461 				goto fail;
462 			}
463 
464 			if (__found_offset(file->f_mapping, blkaddr,
465 							pgofs, whence)) {
466 				f2fs_put_dnode(&dn);
467 				goto found;
468 			}
469 		}
470 		f2fs_put_dnode(&dn);
471 	}
472 
473 	if (whence == SEEK_DATA)
474 		goto fail;
475 found:
476 	if (whence == SEEK_HOLE && data_ofs > isize)
477 		data_ofs = isize;
478 	inode_unlock(inode);
479 	return vfs_setpos(file, data_ofs, maxbytes);
480 fail:
481 	inode_unlock(inode);
482 	return -ENXIO;
483 }
484 
485 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
486 {
487 	struct inode *inode = file->f_mapping->host;
488 	loff_t maxbytes = inode->i_sb->s_maxbytes;
489 
490 	if (f2fs_compressed_file(inode))
491 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
492 
493 	switch (whence) {
494 	case SEEK_SET:
495 	case SEEK_CUR:
496 	case SEEK_END:
497 		return generic_file_llseek_size(file, offset, whence,
498 						maxbytes, i_size_read(inode));
499 	case SEEK_DATA:
500 	case SEEK_HOLE:
501 		if (offset < 0)
502 			return -ENXIO;
503 		return f2fs_seek_block(file, offset, whence);
504 	}
505 
506 	return -EINVAL;
507 }
508 
509 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
510 {
511 	struct inode *inode = file_inode(file);
512 
513 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
514 		return -EIO;
515 
516 	if (!f2fs_is_compress_backend_ready(inode))
517 		return -EOPNOTSUPP;
518 
519 	file_accessed(file);
520 	vma->vm_ops = &f2fs_file_vm_ops;
521 	set_inode_flag(inode, FI_MMAP_FILE);
522 	return 0;
523 }
524 
525 static int f2fs_file_open(struct inode *inode, struct file *filp)
526 {
527 	int err = fscrypt_file_open(inode, filp);
528 
529 	if (err)
530 		return err;
531 
532 	if (!f2fs_is_compress_backend_ready(inode))
533 		return -EOPNOTSUPP;
534 
535 	err = fsverity_file_open(inode, filp);
536 	if (err)
537 		return err;
538 
539 	filp->f_mode |= FMODE_NOWAIT;
540 
541 	return dquot_file_open(inode, filp);
542 }
543 
544 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
545 {
546 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
547 	struct f2fs_node *raw_node;
548 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
549 	__le32 *addr;
550 	int base = 0;
551 	bool compressed_cluster = false;
552 	int cluster_index = 0, valid_blocks = 0;
553 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
554 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
555 
556 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
557 		base = get_extra_isize(dn->inode);
558 
559 	raw_node = F2FS_NODE(dn->node_page);
560 	addr = blkaddr_in_node(raw_node) + base + ofs;
561 
562 	/* Assumption: truncateion starts with cluster */
563 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
564 		block_t blkaddr = le32_to_cpu(*addr);
565 
566 		if (f2fs_compressed_file(dn->inode) &&
567 					!(cluster_index & (cluster_size - 1))) {
568 			if (compressed_cluster)
569 				f2fs_i_compr_blocks_update(dn->inode,
570 							valid_blocks, false);
571 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
572 			valid_blocks = 0;
573 		}
574 
575 		if (blkaddr == NULL_ADDR)
576 			continue;
577 
578 		dn->data_blkaddr = NULL_ADDR;
579 		f2fs_set_data_blkaddr(dn);
580 
581 		if (__is_valid_data_blkaddr(blkaddr)) {
582 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
583 					DATA_GENERIC_ENHANCE))
584 				continue;
585 			if (compressed_cluster)
586 				valid_blocks++;
587 		}
588 
589 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
590 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
591 
592 		f2fs_invalidate_blocks(sbi, blkaddr);
593 
594 		if (!released || blkaddr != COMPRESS_ADDR)
595 			nr_free++;
596 	}
597 
598 	if (compressed_cluster)
599 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
600 
601 	if (nr_free) {
602 		pgoff_t fofs;
603 		/*
604 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
605 		 * we will invalidate all blkaddr in the whole range.
606 		 */
607 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
608 							dn->inode) + ofs;
609 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
610 		dec_valid_block_count(sbi, dn->inode, nr_free);
611 	}
612 	dn->ofs_in_node = ofs;
613 
614 	f2fs_update_time(sbi, REQ_TIME);
615 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
616 					 dn->ofs_in_node, nr_free);
617 }
618 
619 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
620 {
621 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
622 }
623 
624 static int truncate_partial_data_page(struct inode *inode, u64 from,
625 								bool cache_only)
626 {
627 	loff_t offset = from & (PAGE_SIZE - 1);
628 	pgoff_t index = from >> PAGE_SHIFT;
629 	struct address_space *mapping = inode->i_mapping;
630 	struct page *page;
631 
632 	if (!offset && !cache_only)
633 		return 0;
634 
635 	if (cache_only) {
636 		page = find_lock_page(mapping, index);
637 		if (page && PageUptodate(page))
638 			goto truncate_out;
639 		f2fs_put_page(page, 1);
640 		return 0;
641 	}
642 
643 	page = f2fs_get_lock_data_page(inode, index, true);
644 	if (IS_ERR(page))
645 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
646 truncate_out:
647 	f2fs_wait_on_page_writeback(page, DATA, true, true);
648 	zero_user(page, offset, PAGE_SIZE - offset);
649 
650 	/* An encrypted inode should have a key and truncate the last page. */
651 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
652 	if (!cache_only)
653 		set_page_dirty(page);
654 	f2fs_put_page(page, 1);
655 	return 0;
656 }
657 
658 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
659 {
660 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
661 	struct dnode_of_data dn;
662 	pgoff_t free_from;
663 	int count = 0, err = 0;
664 	struct page *ipage;
665 	bool truncate_page = false;
666 
667 	trace_f2fs_truncate_blocks_enter(inode, from);
668 
669 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
670 
671 	if (free_from >= max_file_blocks(inode))
672 		goto free_partial;
673 
674 	if (lock)
675 		f2fs_lock_op(sbi);
676 
677 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
678 	if (IS_ERR(ipage)) {
679 		err = PTR_ERR(ipage);
680 		goto out;
681 	}
682 
683 	if (f2fs_has_inline_data(inode)) {
684 		f2fs_truncate_inline_inode(inode, ipage, from);
685 		f2fs_put_page(ipage, 1);
686 		truncate_page = true;
687 		goto out;
688 	}
689 
690 	set_new_dnode(&dn, inode, ipage, NULL, 0);
691 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
692 	if (err) {
693 		if (err == -ENOENT)
694 			goto free_next;
695 		goto out;
696 	}
697 
698 	count = ADDRS_PER_PAGE(dn.node_page, inode);
699 
700 	count -= dn.ofs_in_node;
701 	f2fs_bug_on(sbi, count < 0);
702 
703 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
704 		f2fs_truncate_data_blocks_range(&dn, count);
705 		free_from += count;
706 	}
707 
708 	f2fs_put_dnode(&dn);
709 free_next:
710 	err = f2fs_truncate_inode_blocks(inode, free_from);
711 out:
712 	if (lock)
713 		f2fs_unlock_op(sbi);
714 free_partial:
715 	/* lastly zero out the first data page */
716 	if (!err)
717 		err = truncate_partial_data_page(inode, from, truncate_page);
718 
719 	trace_f2fs_truncate_blocks_exit(inode, err);
720 	return err;
721 }
722 
723 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
724 {
725 	u64 free_from = from;
726 	int err;
727 
728 #ifdef CONFIG_F2FS_FS_COMPRESSION
729 	/*
730 	 * for compressed file, only support cluster size
731 	 * aligned truncation.
732 	 */
733 	if (f2fs_compressed_file(inode))
734 		free_from = round_up(from,
735 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
736 #endif
737 
738 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
739 	if (err)
740 		return err;
741 
742 #ifdef CONFIG_F2FS_FS_COMPRESSION
743 	if (from != free_from) {
744 		err = f2fs_truncate_partial_cluster(inode, from, lock);
745 		if (err)
746 			return err;
747 	}
748 #endif
749 
750 	return 0;
751 }
752 
753 int f2fs_truncate(struct inode *inode)
754 {
755 	int err;
756 
757 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
758 		return -EIO;
759 
760 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
761 				S_ISLNK(inode->i_mode)))
762 		return 0;
763 
764 	trace_f2fs_truncate(inode);
765 
766 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
767 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
768 		return -EIO;
769 	}
770 
771 	err = dquot_initialize(inode);
772 	if (err)
773 		return err;
774 
775 	/* we should check inline_data size */
776 	if (!f2fs_may_inline_data(inode)) {
777 		err = f2fs_convert_inline_inode(inode);
778 		if (err)
779 			return err;
780 	}
781 
782 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
783 	if (err)
784 		return err;
785 
786 	inode->i_mtime = inode->i_ctime = current_time(inode);
787 	f2fs_mark_inode_dirty_sync(inode, false);
788 	return 0;
789 }
790 
791 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
792 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
793 {
794 	struct inode *inode = d_inode(path->dentry);
795 	struct f2fs_inode_info *fi = F2FS_I(inode);
796 	struct f2fs_inode *ri;
797 	unsigned int flags;
798 
799 	if (f2fs_has_extra_attr(inode) &&
800 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
801 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
802 		stat->result_mask |= STATX_BTIME;
803 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
804 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
805 	}
806 
807 	flags = fi->i_flags;
808 	if (flags & F2FS_COMPR_FL)
809 		stat->attributes |= STATX_ATTR_COMPRESSED;
810 	if (flags & F2FS_APPEND_FL)
811 		stat->attributes |= STATX_ATTR_APPEND;
812 	if (IS_ENCRYPTED(inode))
813 		stat->attributes |= STATX_ATTR_ENCRYPTED;
814 	if (flags & F2FS_IMMUTABLE_FL)
815 		stat->attributes |= STATX_ATTR_IMMUTABLE;
816 	if (flags & F2FS_NODUMP_FL)
817 		stat->attributes |= STATX_ATTR_NODUMP;
818 	if (IS_VERITY(inode))
819 		stat->attributes |= STATX_ATTR_VERITY;
820 
821 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
822 				  STATX_ATTR_APPEND |
823 				  STATX_ATTR_ENCRYPTED |
824 				  STATX_ATTR_IMMUTABLE |
825 				  STATX_ATTR_NODUMP |
826 				  STATX_ATTR_VERITY);
827 
828 	generic_fillattr(&init_user_ns, inode, stat);
829 
830 	/* we need to show initial sectors used for inline_data/dentries */
831 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
832 					f2fs_has_inline_dentry(inode))
833 		stat->blocks += (stat->size + 511) >> 9;
834 
835 	return 0;
836 }
837 
838 #ifdef CONFIG_F2FS_FS_POSIX_ACL
839 static void __setattr_copy(struct user_namespace *mnt_userns,
840 			   struct inode *inode, const struct iattr *attr)
841 {
842 	unsigned int ia_valid = attr->ia_valid;
843 
844 	if (ia_valid & ATTR_UID)
845 		inode->i_uid = attr->ia_uid;
846 	if (ia_valid & ATTR_GID)
847 		inode->i_gid = attr->ia_gid;
848 	if (ia_valid & ATTR_ATIME)
849 		inode->i_atime = attr->ia_atime;
850 	if (ia_valid & ATTR_MTIME)
851 		inode->i_mtime = attr->ia_mtime;
852 	if (ia_valid & ATTR_CTIME)
853 		inode->i_ctime = attr->ia_ctime;
854 	if (ia_valid & ATTR_MODE) {
855 		umode_t mode = attr->ia_mode;
856 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
857 
858 		if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
859 			mode &= ~S_ISGID;
860 		set_acl_inode(inode, mode);
861 	}
862 }
863 #else
864 #define __setattr_copy setattr_copy
865 #endif
866 
867 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
868 		 struct iattr *attr)
869 {
870 	struct inode *inode = d_inode(dentry);
871 	int err;
872 
873 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
874 		return -EIO;
875 
876 	if (unlikely(IS_IMMUTABLE(inode)))
877 		return -EPERM;
878 
879 	if (unlikely(IS_APPEND(inode) &&
880 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
881 				  ATTR_GID | ATTR_TIMES_SET))))
882 		return -EPERM;
883 
884 	if ((attr->ia_valid & ATTR_SIZE) &&
885 		!f2fs_is_compress_backend_ready(inode))
886 		return -EOPNOTSUPP;
887 
888 	err = setattr_prepare(&init_user_ns, dentry, attr);
889 	if (err)
890 		return err;
891 
892 	err = fscrypt_prepare_setattr(dentry, attr);
893 	if (err)
894 		return err;
895 
896 	err = fsverity_prepare_setattr(dentry, attr);
897 	if (err)
898 		return err;
899 
900 	if (is_quota_modification(inode, attr)) {
901 		err = dquot_initialize(inode);
902 		if (err)
903 			return err;
904 	}
905 	if ((attr->ia_valid & ATTR_UID &&
906 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
907 		(attr->ia_valid & ATTR_GID &&
908 		!gid_eq(attr->ia_gid, inode->i_gid))) {
909 		f2fs_lock_op(F2FS_I_SB(inode));
910 		err = dquot_transfer(inode, attr);
911 		if (err) {
912 			set_sbi_flag(F2FS_I_SB(inode),
913 					SBI_QUOTA_NEED_REPAIR);
914 			f2fs_unlock_op(F2FS_I_SB(inode));
915 			return err;
916 		}
917 		/*
918 		 * update uid/gid under lock_op(), so that dquot and inode can
919 		 * be updated atomically.
920 		 */
921 		if (attr->ia_valid & ATTR_UID)
922 			inode->i_uid = attr->ia_uid;
923 		if (attr->ia_valid & ATTR_GID)
924 			inode->i_gid = attr->ia_gid;
925 		f2fs_mark_inode_dirty_sync(inode, true);
926 		f2fs_unlock_op(F2FS_I_SB(inode));
927 	}
928 
929 	if (attr->ia_valid & ATTR_SIZE) {
930 		loff_t old_size = i_size_read(inode);
931 
932 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
933 			/*
934 			 * should convert inline inode before i_size_write to
935 			 * keep smaller than inline_data size with inline flag.
936 			 */
937 			err = f2fs_convert_inline_inode(inode);
938 			if (err)
939 				return err;
940 		}
941 
942 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
943 		down_write(&F2FS_I(inode)->i_mmap_sem);
944 
945 		truncate_setsize(inode, attr->ia_size);
946 
947 		if (attr->ia_size <= old_size)
948 			err = f2fs_truncate(inode);
949 		/*
950 		 * do not trim all blocks after i_size if target size is
951 		 * larger than i_size.
952 		 */
953 		up_write(&F2FS_I(inode)->i_mmap_sem);
954 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
955 		if (err)
956 			return err;
957 
958 		spin_lock(&F2FS_I(inode)->i_size_lock);
959 		inode->i_mtime = inode->i_ctime = current_time(inode);
960 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
961 		spin_unlock(&F2FS_I(inode)->i_size_lock);
962 	}
963 
964 	__setattr_copy(&init_user_ns, inode, attr);
965 
966 	if (attr->ia_valid & ATTR_MODE) {
967 		err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode));
968 
969 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
970 			if (!err)
971 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
972 			clear_inode_flag(inode, FI_ACL_MODE);
973 		}
974 	}
975 
976 	/* file size may changed here */
977 	f2fs_mark_inode_dirty_sync(inode, true);
978 
979 	/* inode change will produce dirty node pages flushed by checkpoint */
980 	f2fs_balance_fs(F2FS_I_SB(inode), true);
981 
982 	return err;
983 }
984 
985 const struct inode_operations f2fs_file_inode_operations = {
986 	.getattr	= f2fs_getattr,
987 	.setattr	= f2fs_setattr,
988 	.get_acl	= f2fs_get_acl,
989 	.set_acl	= f2fs_set_acl,
990 	.listxattr	= f2fs_listxattr,
991 	.fiemap		= f2fs_fiemap,
992 	.fileattr_get	= f2fs_fileattr_get,
993 	.fileattr_set	= f2fs_fileattr_set,
994 };
995 
996 static int fill_zero(struct inode *inode, pgoff_t index,
997 					loff_t start, loff_t len)
998 {
999 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1000 	struct page *page;
1001 
1002 	if (!len)
1003 		return 0;
1004 
1005 	f2fs_balance_fs(sbi, true);
1006 
1007 	f2fs_lock_op(sbi);
1008 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1009 	f2fs_unlock_op(sbi);
1010 
1011 	if (IS_ERR(page))
1012 		return PTR_ERR(page);
1013 
1014 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1015 	zero_user(page, start, len);
1016 	set_page_dirty(page);
1017 	f2fs_put_page(page, 1);
1018 	return 0;
1019 }
1020 
1021 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1022 {
1023 	int err;
1024 
1025 	while (pg_start < pg_end) {
1026 		struct dnode_of_data dn;
1027 		pgoff_t end_offset, count;
1028 
1029 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1030 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1031 		if (err) {
1032 			if (err == -ENOENT) {
1033 				pg_start = f2fs_get_next_page_offset(&dn,
1034 								pg_start);
1035 				continue;
1036 			}
1037 			return err;
1038 		}
1039 
1040 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1041 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1042 
1043 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1044 
1045 		f2fs_truncate_data_blocks_range(&dn, count);
1046 		f2fs_put_dnode(&dn);
1047 
1048 		pg_start += count;
1049 	}
1050 	return 0;
1051 }
1052 
1053 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1054 {
1055 	pgoff_t pg_start, pg_end;
1056 	loff_t off_start, off_end;
1057 	int ret;
1058 
1059 	ret = f2fs_convert_inline_inode(inode);
1060 	if (ret)
1061 		return ret;
1062 
1063 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1064 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1065 
1066 	off_start = offset & (PAGE_SIZE - 1);
1067 	off_end = (offset + len) & (PAGE_SIZE - 1);
1068 
1069 	if (pg_start == pg_end) {
1070 		ret = fill_zero(inode, pg_start, off_start,
1071 						off_end - off_start);
1072 		if (ret)
1073 			return ret;
1074 	} else {
1075 		if (off_start) {
1076 			ret = fill_zero(inode, pg_start++, off_start,
1077 						PAGE_SIZE - off_start);
1078 			if (ret)
1079 				return ret;
1080 		}
1081 		if (off_end) {
1082 			ret = fill_zero(inode, pg_end, 0, off_end);
1083 			if (ret)
1084 				return ret;
1085 		}
1086 
1087 		if (pg_start < pg_end) {
1088 			struct address_space *mapping = inode->i_mapping;
1089 			loff_t blk_start, blk_end;
1090 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1091 
1092 			f2fs_balance_fs(sbi, true);
1093 
1094 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1095 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1096 
1097 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1098 			down_write(&F2FS_I(inode)->i_mmap_sem);
1099 
1100 			truncate_inode_pages_range(mapping, blk_start,
1101 					blk_end - 1);
1102 
1103 			f2fs_lock_op(sbi);
1104 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1105 			f2fs_unlock_op(sbi);
1106 
1107 			up_write(&F2FS_I(inode)->i_mmap_sem);
1108 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1109 		}
1110 	}
1111 
1112 	return ret;
1113 }
1114 
1115 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1116 				int *do_replace, pgoff_t off, pgoff_t len)
1117 {
1118 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1119 	struct dnode_of_data dn;
1120 	int ret, done, i;
1121 
1122 next_dnode:
1123 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1124 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1125 	if (ret && ret != -ENOENT) {
1126 		return ret;
1127 	} else if (ret == -ENOENT) {
1128 		if (dn.max_level == 0)
1129 			return -ENOENT;
1130 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1131 						dn.ofs_in_node, len);
1132 		blkaddr += done;
1133 		do_replace += done;
1134 		goto next;
1135 	}
1136 
1137 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1138 							dn.ofs_in_node, len);
1139 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1140 		*blkaddr = f2fs_data_blkaddr(&dn);
1141 
1142 		if (__is_valid_data_blkaddr(*blkaddr) &&
1143 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1144 					DATA_GENERIC_ENHANCE)) {
1145 			f2fs_put_dnode(&dn);
1146 			return -EFSCORRUPTED;
1147 		}
1148 
1149 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1150 
1151 			if (f2fs_lfs_mode(sbi)) {
1152 				f2fs_put_dnode(&dn);
1153 				return -EOPNOTSUPP;
1154 			}
1155 
1156 			/* do not invalidate this block address */
1157 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1158 			*do_replace = 1;
1159 		}
1160 	}
1161 	f2fs_put_dnode(&dn);
1162 next:
1163 	len -= done;
1164 	off += done;
1165 	if (len)
1166 		goto next_dnode;
1167 	return 0;
1168 }
1169 
1170 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1171 				int *do_replace, pgoff_t off, int len)
1172 {
1173 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1174 	struct dnode_of_data dn;
1175 	int ret, i;
1176 
1177 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1178 		if (*do_replace == 0)
1179 			continue;
1180 
1181 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1182 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1183 		if (ret) {
1184 			dec_valid_block_count(sbi, inode, 1);
1185 			f2fs_invalidate_blocks(sbi, *blkaddr);
1186 		} else {
1187 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1188 		}
1189 		f2fs_put_dnode(&dn);
1190 	}
1191 	return 0;
1192 }
1193 
1194 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1195 			block_t *blkaddr, int *do_replace,
1196 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1197 {
1198 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1199 	pgoff_t i = 0;
1200 	int ret;
1201 
1202 	while (i < len) {
1203 		if (blkaddr[i] == NULL_ADDR && !full) {
1204 			i++;
1205 			continue;
1206 		}
1207 
1208 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1209 			struct dnode_of_data dn;
1210 			struct node_info ni;
1211 			size_t new_size;
1212 			pgoff_t ilen;
1213 
1214 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1215 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1216 			if (ret)
1217 				return ret;
1218 
1219 			ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1220 			if (ret) {
1221 				f2fs_put_dnode(&dn);
1222 				return ret;
1223 			}
1224 
1225 			ilen = min((pgoff_t)
1226 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1227 						dn.ofs_in_node, len - i);
1228 			do {
1229 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1230 				f2fs_truncate_data_blocks_range(&dn, 1);
1231 
1232 				if (do_replace[i]) {
1233 					f2fs_i_blocks_write(src_inode,
1234 							1, false, false);
1235 					f2fs_i_blocks_write(dst_inode,
1236 							1, true, false);
1237 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1238 					blkaddr[i], ni.version, true, false);
1239 
1240 					do_replace[i] = 0;
1241 				}
1242 				dn.ofs_in_node++;
1243 				i++;
1244 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1245 				if (dst_inode->i_size < new_size)
1246 					f2fs_i_size_write(dst_inode, new_size);
1247 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1248 
1249 			f2fs_put_dnode(&dn);
1250 		} else {
1251 			struct page *psrc, *pdst;
1252 
1253 			psrc = f2fs_get_lock_data_page(src_inode,
1254 							src + i, true);
1255 			if (IS_ERR(psrc))
1256 				return PTR_ERR(psrc);
1257 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1258 								true);
1259 			if (IS_ERR(pdst)) {
1260 				f2fs_put_page(psrc, 1);
1261 				return PTR_ERR(pdst);
1262 			}
1263 			f2fs_copy_page(psrc, pdst);
1264 			set_page_dirty(pdst);
1265 			f2fs_put_page(pdst, 1);
1266 			f2fs_put_page(psrc, 1);
1267 
1268 			ret = f2fs_truncate_hole(src_inode,
1269 						src + i, src + i + 1);
1270 			if (ret)
1271 				return ret;
1272 			i++;
1273 		}
1274 	}
1275 	return 0;
1276 }
1277 
1278 static int __exchange_data_block(struct inode *src_inode,
1279 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1280 			pgoff_t len, bool full)
1281 {
1282 	block_t *src_blkaddr;
1283 	int *do_replace;
1284 	pgoff_t olen;
1285 	int ret;
1286 
1287 	while (len) {
1288 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1289 
1290 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1291 					array_size(olen, sizeof(block_t)),
1292 					GFP_NOFS);
1293 		if (!src_blkaddr)
1294 			return -ENOMEM;
1295 
1296 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1297 					array_size(olen, sizeof(int)),
1298 					GFP_NOFS);
1299 		if (!do_replace) {
1300 			kvfree(src_blkaddr);
1301 			return -ENOMEM;
1302 		}
1303 
1304 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1305 					do_replace, src, olen);
1306 		if (ret)
1307 			goto roll_back;
1308 
1309 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1310 					do_replace, src, dst, olen, full);
1311 		if (ret)
1312 			goto roll_back;
1313 
1314 		src += olen;
1315 		dst += olen;
1316 		len -= olen;
1317 
1318 		kvfree(src_blkaddr);
1319 		kvfree(do_replace);
1320 	}
1321 	return 0;
1322 
1323 roll_back:
1324 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1325 	kvfree(src_blkaddr);
1326 	kvfree(do_replace);
1327 	return ret;
1328 }
1329 
1330 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1331 {
1332 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1333 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1334 	pgoff_t start = offset >> PAGE_SHIFT;
1335 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1336 	int ret;
1337 
1338 	f2fs_balance_fs(sbi, true);
1339 
1340 	/* avoid gc operation during block exchange */
1341 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1342 	down_write(&F2FS_I(inode)->i_mmap_sem);
1343 
1344 	f2fs_lock_op(sbi);
1345 	f2fs_drop_extent_tree(inode);
1346 	truncate_pagecache(inode, offset);
1347 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1348 	f2fs_unlock_op(sbi);
1349 
1350 	up_write(&F2FS_I(inode)->i_mmap_sem);
1351 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1352 	return ret;
1353 }
1354 
1355 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1356 {
1357 	loff_t new_size;
1358 	int ret;
1359 
1360 	if (offset + len >= i_size_read(inode))
1361 		return -EINVAL;
1362 
1363 	/* collapse range should be aligned to block size of f2fs. */
1364 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1365 		return -EINVAL;
1366 
1367 	ret = f2fs_convert_inline_inode(inode);
1368 	if (ret)
1369 		return ret;
1370 
1371 	/* write out all dirty pages from offset */
1372 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1373 	if (ret)
1374 		return ret;
1375 
1376 	ret = f2fs_do_collapse(inode, offset, len);
1377 	if (ret)
1378 		return ret;
1379 
1380 	/* write out all moved pages, if possible */
1381 	down_write(&F2FS_I(inode)->i_mmap_sem);
1382 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1383 	truncate_pagecache(inode, offset);
1384 
1385 	new_size = i_size_read(inode) - len;
1386 	ret = f2fs_truncate_blocks(inode, new_size, true);
1387 	up_write(&F2FS_I(inode)->i_mmap_sem);
1388 	if (!ret)
1389 		f2fs_i_size_write(inode, new_size);
1390 	return ret;
1391 }
1392 
1393 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1394 								pgoff_t end)
1395 {
1396 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1397 	pgoff_t index = start;
1398 	unsigned int ofs_in_node = dn->ofs_in_node;
1399 	blkcnt_t count = 0;
1400 	int ret;
1401 
1402 	for (; index < end; index++, dn->ofs_in_node++) {
1403 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1404 			count++;
1405 	}
1406 
1407 	dn->ofs_in_node = ofs_in_node;
1408 	ret = f2fs_reserve_new_blocks(dn, count);
1409 	if (ret)
1410 		return ret;
1411 
1412 	dn->ofs_in_node = ofs_in_node;
1413 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1414 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1415 		/*
1416 		 * f2fs_reserve_new_blocks will not guarantee entire block
1417 		 * allocation.
1418 		 */
1419 		if (dn->data_blkaddr == NULL_ADDR) {
1420 			ret = -ENOSPC;
1421 			break;
1422 		}
1423 		if (dn->data_blkaddr != NEW_ADDR) {
1424 			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1425 			dn->data_blkaddr = NEW_ADDR;
1426 			f2fs_set_data_blkaddr(dn);
1427 		}
1428 	}
1429 
1430 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1431 
1432 	return ret;
1433 }
1434 
1435 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1436 								int mode)
1437 {
1438 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1439 	struct address_space *mapping = inode->i_mapping;
1440 	pgoff_t index, pg_start, pg_end;
1441 	loff_t new_size = i_size_read(inode);
1442 	loff_t off_start, off_end;
1443 	int ret = 0;
1444 
1445 	ret = inode_newsize_ok(inode, (len + offset));
1446 	if (ret)
1447 		return ret;
1448 
1449 	ret = f2fs_convert_inline_inode(inode);
1450 	if (ret)
1451 		return ret;
1452 
1453 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1454 	if (ret)
1455 		return ret;
1456 
1457 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1458 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1459 
1460 	off_start = offset & (PAGE_SIZE - 1);
1461 	off_end = (offset + len) & (PAGE_SIZE - 1);
1462 
1463 	if (pg_start == pg_end) {
1464 		ret = fill_zero(inode, pg_start, off_start,
1465 						off_end - off_start);
1466 		if (ret)
1467 			return ret;
1468 
1469 		new_size = max_t(loff_t, new_size, offset + len);
1470 	} else {
1471 		if (off_start) {
1472 			ret = fill_zero(inode, pg_start++, off_start,
1473 						PAGE_SIZE - off_start);
1474 			if (ret)
1475 				return ret;
1476 
1477 			new_size = max_t(loff_t, new_size,
1478 					(loff_t)pg_start << PAGE_SHIFT);
1479 		}
1480 
1481 		for (index = pg_start; index < pg_end;) {
1482 			struct dnode_of_data dn;
1483 			unsigned int end_offset;
1484 			pgoff_t end;
1485 
1486 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1487 			down_write(&F2FS_I(inode)->i_mmap_sem);
1488 
1489 			truncate_pagecache_range(inode,
1490 				(loff_t)index << PAGE_SHIFT,
1491 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1492 
1493 			f2fs_lock_op(sbi);
1494 
1495 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1496 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1497 			if (ret) {
1498 				f2fs_unlock_op(sbi);
1499 				up_write(&F2FS_I(inode)->i_mmap_sem);
1500 				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1501 				goto out;
1502 			}
1503 
1504 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1505 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1506 
1507 			ret = f2fs_do_zero_range(&dn, index, end);
1508 			f2fs_put_dnode(&dn);
1509 
1510 			f2fs_unlock_op(sbi);
1511 			up_write(&F2FS_I(inode)->i_mmap_sem);
1512 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1513 
1514 			f2fs_balance_fs(sbi, dn.node_changed);
1515 
1516 			if (ret)
1517 				goto out;
1518 
1519 			index = end;
1520 			new_size = max_t(loff_t, new_size,
1521 					(loff_t)index << PAGE_SHIFT);
1522 		}
1523 
1524 		if (off_end) {
1525 			ret = fill_zero(inode, pg_end, 0, off_end);
1526 			if (ret)
1527 				goto out;
1528 
1529 			new_size = max_t(loff_t, new_size, offset + len);
1530 		}
1531 	}
1532 
1533 out:
1534 	if (new_size > i_size_read(inode)) {
1535 		if (mode & FALLOC_FL_KEEP_SIZE)
1536 			file_set_keep_isize(inode);
1537 		else
1538 			f2fs_i_size_write(inode, new_size);
1539 	}
1540 	return ret;
1541 }
1542 
1543 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1544 {
1545 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1546 	pgoff_t nr, pg_start, pg_end, delta, idx;
1547 	loff_t new_size;
1548 	int ret = 0;
1549 
1550 	new_size = i_size_read(inode) + len;
1551 	ret = inode_newsize_ok(inode, new_size);
1552 	if (ret)
1553 		return ret;
1554 
1555 	if (offset >= i_size_read(inode))
1556 		return -EINVAL;
1557 
1558 	/* insert range should be aligned to block size of f2fs. */
1559 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1560 		return -EINVAL;
1561 
1562 	ret = f2fs_convert_inline_inode(inode);
1563 	if (ret)
1564 		return ret;
1565 
1566 	f2fs_balance_fs(sbi, true);
1567 
1568 	down_write(&F2FS_I(inode)->i_mmap_sem);
1569 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1570 	up_write(&F2FS_I(inode)->i_mmap_sem);
1571 	if (ret)
1572 		return ret;
1573 
1574 	/* write out all dirty pages from offset */
1575 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1576 	if (ret)
1577 		return ret;
1578 
1579 	pg_start = offset >> PAGE_SHIFT;
1580 	pg_end = (offset + len) >> PAGE_SHIFT;
1581 	delta = pg_end - pg_start;
1582 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1583 
1584 	/* avoid gc operation during block exchange */
1585 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1586 	down_write(&F2FS_I(inode)->i_mmap_sem);
1587 	truncate_pagecache(inode, offset);
1588 
1589 	while (!ret && idx > pg_start) {
1590 		nr = idx - pg_start;
1591 		if (nr > delta)
1592 			nr = delta;
1593 		idx -= nr;
1594 
1595 		f2fs_lock_op(sbi);
1596 		f2fs_drop_extent_tree(inode);
1597 
1598 		ret = __exchange_data_block(inode, inode, idx,
1599 					idx + delta, nr, false);
1600 		f2fs_unlock_op(sbi);
1601 	}
1602 	up_write(&F2FS_I(inode)->i_mmap_sem);
1603 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1604 
1605 	/* write out all moved pages, if possible */
1606 	down_write(&F2FS_I(inode)->i_mmap_sem);
1607 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1608 	truncate_pagecache(inode, offset);
1609 	up_write(&F2FS_I(inode)->i_mmap_sem);
1610 
1611 	if (!ret)
1612 		f2fs_i_size_write(inode, new_size);
1613 	return ret;
1614 }
1615 
1616 static int expand_inode_data(struct inode *inode, loff_t offset,
1617 					loff_t len, int mode)
1618 {
1619 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1620 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1621 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1622 			.m_may_create = true };
1623 	pgoff_t pg_start, pg_end;
1624 	loff_t new_size = i_size_read(inode);
1625 	loff_t off_end;
1626 	block_t expanded = 0;
1627 	int err;
1628 
1629 	err = inode_newsize_ok(inode, (len + offset));
1630 	if (err)
1631 		return err;
1632 
1633 	err = f2fs_convert_inline_inode(inode);
1634 	if (err)
1635 		return err;
1636 
1637 	f2fs_balance_fs(sbi, true);
1638 
1639 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1640 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1641 	off_end = (offset + len) & (PAGE_SIZE - 1);
1642 
1643 	map.m_lblk = pg_start;
1644 	map.m_len = pg_end - pg_start;
1645 	if (off_end)
1646 		map.m_len++;
1647 
1648 	if (!map.m_len)
1649 		return 0;
1650 
1651 	if (f2fs_is_pinned_file(inode)) {
1652 		block_t sec_blks = BLKS_PER_SEC(sbi);
1653 		block_t sec_len = roundup(map.m_len, sec_blks);
1654 
1655 		map.m_len = sec_blks;
1656 next_alloc:
1657 		if (has_not_enough_free_secs(sbi, 0,
1658 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1659 			down_write(&sbi->gc_lock);
1660 			err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1661 			if (err && err != -ENODATA && err != -EAGAIN)
1662 				goto out_err;
1663 		}
1664 
1665 		down_write(&sbi->pin_sem);
1666 
1667 		f2fs_lock_op(sbi);
1668 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1669 		f2fs_unlock_op(sbi);
1670 
1671 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1672 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1673 
1674 		up_write(&sbi->pin_sem);
1675 
1676 		expanded += map.m_len;
1677 		sec_len -= map.m_len;
1678 		map.m_lblk += map.m_len;
1679 		if (!err && sec_len)
1680 			goto next_alloc;
1681 
1682 		map.m_len = expanded;
1683 	} else {
1684 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1685 		expanded = map.m_len;
1686 	}
1687 out_err:
1688 	if (err) {
1689 		pgoff_t last_off;
1690 
1691 		if (!expanded)
1692 			return err;
1693 
1694 		last_off = pg_start + expanded - 1;
1695 
1696 		/* update new size to the failed position */
1697 		new_size = (last_off == pg_end) ? offset + len :
1698 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1699 	} else {
1700 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1701 	}
1702 
1703 	if (new_size > i_size_read(inode)) {
1704 		if (mode & FALLOC_FL_KEEP_SIZE)
1705 			file_set_keep_isize(inode);
1706 		else
1707 			f2fs_i_size_write(inode, new_size);
1708 	}
1709 
1710 	return err;
1711 }
1712 
1713 static long f2fs_fallocate(struct file *file, int mode,
1714 				loff_t offset, loff_t len)
1715 {
1716 	struct inode *inode = file_inode(file);
1717 	long ret = 0;
1718 
1719 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1720 		return -EIO;
1721 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1722 		return -ENOSPC;
1723 	if (!f2fs_is_compress_backend_ready(inode))
1724 		return -EOPNOTSUPP;
1725 
1726 	/* f2fs only support ->fallocate for regular file */
1727 	if (!S_ISREG(inode->i_mode))
1728 		return -EINVAL;
1729 
1730 	if (IS_ENCRYPTED(inode) &&
1731 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1732 		return -EOPNOTSUPP;
1733 
1734 	if (f2fs_compressed_file(inode) &&
1735 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1736 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1737 		return -EOPNOTSUPP;
1738 
1739 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1740 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1741 			FALLOC_FL_INSERT_RANGE))
1742 		return -EOPNOTSUPP;
1743 
1744 	inode_lock(inode);
1745 
1746 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1747 		if (offset >= inode->i_size)
1748 			goto out;
1749 
1750 		ret = punch_hole(inode, offset, len);
1751 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1752 		ret = f2fs_collapse_range(inode, offset, len);
1753 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1754 		ret = f2fs_zero_range(inode, offset, len, mode);
1755 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1756 		ret = f2fs_insert_range(inode, offset, len);
1757 	} else {
1758 		ret = expand_inode_data(inode, offset, len, mode);
1759 	}
1760 
1761 	if (!ret) {
1762 		inode->i_mtime = inode->i_ctime = current_time(inode);
1763 		f2fs_mark_inode_dirty_sync(inode, false);
1764 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1765 	}
1766 
1767 out:
1768 	inode_unlock(inode);
1769 
1770 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1771 	return ret;
1772 }
1773 
1774 static int f2fs_release_file(struct inode *inode, struct file *filp)
1775 {
1776 	/*
1777 	 * f2fs_relase_file is called at every close calls. So we should
1778 	 * not drop any inmemory pages by close called by other process.
1779 	 */
1780 	if (!(filp->f_mode & FMODE_WRITE) ||
1781 			atomic_read(&inode->i_writecount) != 1)
1782 		return 0;
1783 
1784 	/* some remained atomic pages should discarded */
1785 	if (f2fs_is_atomic_file(inode))
1786 		f2fs_drop_inmem_pages(inode);
1787 	if (f2fs_is_volatile_file(inode)) {
1788 		set_inode_flag(inode, FI_DROP_CACHE);
1789 		filemap_fdatawrite(inode->i_mapping);
1790 		clear_inode_flag(inode, FI_DROP_CACHE);
1791 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1792 		stat_dec_volatile_write(inode);
1793 	}
1794 	return 0;
1795 }
1796 
1797 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1798 {
1799 	struct inode *inode = file_inode(file);
1800 
1801 	/*
1802 	 * If the process doing a transaction is crashed, we should do
1803 	 * roll-back. Otherwise, other reader/write can see corrupted database
1804 	 * until all the writers close its file. Since this should be done
1805 	 * before dropping file lock, it needs to do in ->flush.
1806 	 */
1807 	if (f2fs_is_atomic_file(inode) &&
1808 			F2FS_I(inode)->inmem_task == current)
1809 		f2fs_drop_inmem_pages(inode);
1810 	return 0;
1811 }
1812 
1813 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1814 {
1815 	struct f2fs_inode_info *fi = F2FS_I(inode);
1816 	u32 masked_flags = fi->i_flags & mask;
1817 
1818 	/* mask can be shrunk by flags_valid selector */
1819 	iflags &= mask;
1820 
1821 	/* Is it quota file? Do not allow user to mess with it */
1822 	if (IS_NOQUOTA(inode))
1823 		return -EPERM;
1824 
1825 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1826 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1827 			return -EOPNOTSUPP;
1828 		if (!f2fs_empty_dir(inode))
1829 			return -ENOTEMPTY;
1830 	}
1831 
1832 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1833 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1834 			return -EOPNOTSUPP;
1835 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1836 			return -EINVAL;
1837 	}
1838 
1839 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1840 		if (masked_flags & F2FS_COMPR_FL) {
1841 			if (!f2fs_disable_compressed_file(inode))
1842 				return -EINVAL;
1843 		}
1844 		if (iflags & F2FS_NOCOMP_FL)
1845 			return -EINVAL;
1846 		if (iflags & F2FS_COMPR_FL) {
1847 			if (!f2fs_may_compress(inode))
1848 				return -EINVAL;
1849 			if (S_ISREG(inode->i_mode) && inode->i_size)
1850 				return -EINVAL;
1851 
1852 			set_compress_context(inode);
1853 		}
1854 	}
1855 	if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1856 		if (masked_flags & F2FS_COMPR_FL)
1857 			return -EINVAL;
1858 	}
1859 
1860 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1861 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1862 					(fi->i_flags & F2FS_NOCOMP_FL));
1863 
1864 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1865 		set_inode_flag(inode, FI_PROJ_INHERIT);
1866 	else
1867 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1868 
1869 	inode->i_ctime = current_time(inode);
1870 	f2fs_set_inode_flags(inode);
1871 	f2fs_mark_inode_dirty_sync(inode, true);
1872 	return 0;
1873 }
1874 
1875 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1876 
1877 /*
1878  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1879  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1880  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1881  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1882  *
1883  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1884  * FS_IOC_FSSETXATTR is done by the VFS.
1885  */
1886 
1887 static const struct {
1888 	u32 iflag;
1889 	u32 fsflag;
1890 } f2fs_fsflags_map[] = {
1891 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1892 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1893 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1894 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1895 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1896 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1897 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1898 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1899 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1900 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1901 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1902 };
1903 
1904 #define F2FS_GETTABLE_FS_FL (		\
1905 		FS_COMPR_FL |		\
1906 		FS_SYNC_FL |		\
1907 		FS_IMMUTABLE_FL |	\
1908 		FS_APPEND_FL |		\
1909 		FS_NODUMP_FL |		\
1910 		FS_NOATIME_FL |		\
1911 		FS_NOCOMP_FL |		\
1912 		FS_INDEX_FL |		\
1913 		FS_DIRSYNC_FL |		\
1914 		FS_PROJINHERIT_FL |	\
1915 		FS_ENCRYPT_FL |		\
1916 		FS_INLINE_DATA_FL |	\
1917 		FS_NOCOW_FL |		\
1918 		FS_VERITY_FL |		\
1919 		FS_CASEFOLD_FL)
1920 
1921 #define F2FS_SETTABLE_FS_FL (		\
1922 		FS_COMPR_FL |		\
1923 		FS_SYNC_FL |		\
1924 		FS_IMMUTABLE_FL |	\
1925 		FS_APPEND_FL |		\
1926 		FS_NODUMP_FL |		\
1927 		FS_NOATIME_FL |		\
1928 		FS_NOCOMP_FL |		\
1929 		FS_DIRSYNC_FL |		\
1930 		FS_PROJINHERIT_FL |	\
1931 		FS_CASEFOLD_FL)
1932 
1933 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1934 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1935 {
1936 	u32 fsflags = 0;
1937 	int i;
1938 
1939 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1940 		if (iflags & f2fs_fsflags_map[i].iflag)
1941 			fsflags |= f2fs_fsflags_map[i].fsflag;
1942 
1943 	return fsflags;
1944 }
1945 
1946 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1947 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1948 {
1949 	u32 iflags = 0;
1950 	int i;
1951 
1952 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1953 		if (fsflags & f2fs_fsflags_map[i].fsflag)
1954 			iflags |= f2fs_fsflags_map[i].iflag;
1955 
1956 	return iflags;
1957 }
1958 
1959 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1960 {
1961 	struct inode *inode = file_inode(filp);
1962 
1963 	return put_user(inode->i_generation, (int __user *)arg);
1964 }
1965 
1966 static int f2fs_ioc_start_atomic_write(struct file *filp)
1967 {
1968 	struct inode *inode = file_inode(filp);
1969 	struct f2fs_inode_info *fi = F2FS_I(inode);
1970 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1971 	int ret;
1972 
1973 	if (!inode_owner_or_capable(&init_user_ns, inode))
1974 		return -EACCES;
1975 
1976 	if (!S_ISREG(inode->i_mode))
1977 		return -EINVAL;
1978 
1979 	if (filp->f_flags & O_DIRECT)
1980 		return -EINVAL;
1981 
1982 	ret = mnt_want_write_file(filp);
1983 	if (ret)
1984 		return ret;
1985 
1986 	inode_lock(inode);
1987 
1988 	f2fs_disable_compressed_file(inode);
1989 
1990 	if (f2fs_is_atomic_file(inode)) {
1991 		if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
1992 			ret = -EINVAL;
1993 		goto out;
1994 	}
1995 
1996 	ret = f2fs_convert_inline_inode(inode);
1997 	if (ret)
1998 		goto out;
1999 
2000 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2001 
2002 	/*
2003 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2004 	 * f2fs_is_atomic_file.
2005 	 */
2006 	if (get_dirty_pages(inode))
2007 		f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2008 			  inode->i_ino, get_dirty_pages(inode));
2009 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2010 	if (ret) {
2011 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2012 		goto out;
2013 	}
2014 
2015 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2016 	if (list_empty(&fi->inmem_ilist))
2017 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2018 	sbi->atomic_files++;
2019 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2020 
2021 	/* add inode in inmem_list first and set atomic_file */
2022 	set_inode_flag(inode, FI_ATOMIC_FILE);
2023 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2024 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2025 
2026 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2027 	F2FS_I(inode)->inmem_task = current;
2028 	stat_update_max_atomic_write(inode);
2029 out:
2030 	inode_unlock(inode);
2031 	mnt_drop_write_file(filp);
2032 	return ret;
2033 }
2034 
2035 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2036 {
2037 	struct inode *inode = file_inode(filp);
2038 	int ret;
2039 
2040 	if (!inode_owner_or_capable(&init_user_ns, inode))
2041 		return -EACCES;
2042 
2043 	ret = mnt_want_write_file(filp);
2044 	if (ret)
2045 		return ret;
2046 
2047 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2048 
2049 	inode_lock(inode);
2050 
2051 	if (f2fs_is_volatile_file(inode)) {
2052 		ret = -EINVAL;
2053 		goto err_out;
2054 	}
2055 
2056 	if (f2fs_is_atomic_file(inode)) {
2057 		ret = f2fs_commit_inmem_pages(inode);
2058 		if (ret)
2059 			goto err_out;
2060 
2061 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2062 		if (!ret)
2063 			f2fs_drop_inmem_pages(inode);
2064 	} else {
2065 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2066 	}
2067 err_out:
2068 	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2069 		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2070 		ret = -EINVAL;
2071 	}
2072 	inode_unlock(inode);
2073 	mnt_drop_write_file(filp);
2074 	return ret;
2075 }
2076 
2077 static int f2fs_ioc_start_volatile_write(struct file *filp)
2078 {
2079 	struct inode *inode = file_inode(filp);
2080 	int ret;
2081 
2082 	if (!inode_owner_or_capable(&init_user_ns, inode))
2083 		return -EACCES;
2084 
2085 	if (!S_ISREG(inode->i_mode))
2086 		return -EINVAL;
2087 
2088 	ret = mnt_want_write_file(filp);
2089 	if (ret)
2090 		return ret;
2091 
2092 	inode_lock(inode);
2093 
2094 	if (f2fs_is_volatile_file(inode))
2095 		goto out;
2096 
2097 	ret = f2fs_convert_inline_inode(inode);
2098 	if (ret)
2099 		goto out;
2100 
2101 	stat_inc_volatile_write(inode);
2102 	stat_update_max_volatile_write(inode);
2103 
2104 	set_inode_flag(inode, FI_VOLATILE_FILE);
2105 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2106 out:
2107 	inode_unlock(inode);
2108 	mnt_drop_write_file(filp);
2109 	return ret;
2110 }
2111 
2112 static int f2fs_ioc_release_volatile_write(struct file *filp)
2113 {
2114 	struct inode *inode = file_inode(filp);
2115 	int ret;
2116 
2117 	if (!inode_owner_or_capable(&init_user_ns, inode))
2118 		return -EACCES;
2119 
2120 	ret = mnt_want_write_file(filp);
2121 	if (ret)
2122 		return ret;
2123 
2124 	inode_lock(inode);
2125 
2126 	if (!f2fs_is_volatile_file(inode))
2127 		goto out;
2128 
2129 	if (!f2fs_is_first_block_written(inode)) {
2130 		ret = truncate_partial_data_page(inode, 0, true);
2131 		goto out;
2132 	}
2133 
2134 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2135 out:
2136 	inode_unlock(inode);
2137 	mnt_drop_write_file(filp);
2138 	return ret;
2139 }
2140 
2141 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2142 {
2143 	struct inode *inode = file_inode(filp);
2144 	int ret;
2145 
2146 	if (!inode_owner_or_capable(&init_user_ns, inode))
2147 		return -EACCES;
2148 
2149 	ret = mnt_want_write_file(filp);
2150 	if (ret)
2151 		return ret;
2152 
2153 	inode_lock(inode);
2154 
2155 	if (f2fs_is_atomic_file(inode))
2156 		f2fs_drop_inmem_pages(inode);
2157 	if (f2fs_is_volatile_file(inode)) {
2158 		clear_inode_flag(inode, FI_VOLATILE_FILE);
2159 		stat_dec_volatile_write(inode);
2160 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2161 	}
2162 
2163 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2164 
2165 	inode_unlock(inode);
2166 
2167 	mnt_drop_write_file(filp);
2168 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2169 	return ret;
2170 }
2171 
2172 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2173 {
2174 	struct inode *inode = file_inode(filp);
2175 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2176 	struct super_block *sb = sbi->sb;
2177 	__u32 in;
2178 	int ret = 0;
2179 
2180 	if (!capable(CAP_SYS_ADMIN))
2181 		return -EPERM;
2182 
2183 	if (get_user(in, (__u32 __user *)arg))
2184 		return -EFAULT;
2185 
2186 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2187 		ret = mnt_want_write_file(filp);
2188 		if (ret) {
2189 			if (ret == -EROFS) {
2190 				ret = 0;
2191 				f2fs_stop_checkpoint(sbi, false);
2192 				set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2193 				trace_f2fs_shutdown(sbi, in, ret);
2194 			}
2195 			return ret;
2196 		}
2197 	}
2198 
2199 	switch (in) {
2200 	case F2FS_GOING_DOWN_FULLSYNC:
2201 		ret = freeze_bdev(sb->s_bdev);
2202 		if (ret)
2203 			goto out;
2204 		f2fs_stop_checkpoint(sbi, false);
2205 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2206 		thaw_bdev(sb->s_bdev);
2207 		break;
2208 	case F2FS_GOING_DOWN_METASYNC:
2209 		/* do checkpoint only */
2210 		ret = f2fs_sync_fs(sb, 1);
2211 		if (ret)
2212 			goto out;
2213 		f2fs_stop_checkpoint(sbi, false);
2214 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2215 		break;
2216 	case F2FS_GOING_DOWN_NOSYNC:
2217 		f2fs_stop_checkpoint(sbi, false);
2218 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2219 		break;
2220 	case F2FS_GOING_DOWN_METAFLUSH:
2221 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2222 		f2fs_stop_checkpoint(sbi, false);
2223 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2224 		break;
2225 	case F2FS_GOING_DOWN_NEED_FSCK:
2226 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2227 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2228 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2229 		/* do checkpoint only */
2230 		ret = f2fs_sync_fs(sb, 1);
2231 		goto out;
2232 	default:
2233 		ret = -EINVAL;
2234 		goto out;
2235 	}
2236 
2237 	f2fs_stop_gc_thread(sbi);
2238 	f2fs_stop_discard_thread(sbi);
2239 
2240 	f2fs_drop_discard_cmd(sbi);
2241 	clear_opt(sbi, DISCARD);
2242 
2243 	f2fs_update_time(sbi, REQ_TIME);
2244 out:
2245 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2246 		mnt_drop_write_file(filp);
2247 
2248 	trace_f2fs_shutdown(sbi, in, ret);
2249 
2250 	return ret;
2251 }
2252 
2253 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2254 {
2255 	struct inode *inode = file_inode(filp);
2256 	struct super_block *sb = inode->i_sb;
2257 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
2258 	struct fstrim_range range;
2259 	int ret;
2260 
2261 	if (!capable(CAP_SYS_ADMIN))
2262 		return -EPERM;
2263 
2264 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2265 		return -EOPNOTSUPP;
2266 
2267 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2268 				sizeof(range)))
2269 		return -EFAULT;
2270 
2271 	ret = mnt_want_write_file(filp);
2272 	if (ret)
2273 		return ret;
2274 
2275 	range.minlen = max((unsigned int)range.minlen,
2276 				q->limits.discard_granularity);
2277 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2278 	mnt_drop_write_file(filp);
2279 	if (ret < 0)
2280 		return ret;
2281 
2282 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2283 				sizeof(range)))
2284 		return -EFAULT;
2285 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2286 	return 0;
2287 }
2288 
2289 static bool uuid_is_nonzero(__u8 u[16])
2290 {
2291 	int i;
2292 
2293 	for (i = 0; i < 16; i++)
2294 		if (u[i])
2295 			return true;
2296 	return false;
2297 }
2298 
2299 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2300 {
2301 	struct inode *inode = file_inode(filp);
2302 
2303 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2304 		return -EOPNOTSUPP;
2305 
2306 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2307 
2308 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2309 }
2310 
2311 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2312 {
2313 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2314 		return -EOPNOTSUPP;
2315 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2316 }
2317 
2318 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2319 {
2320 	struct inode *inode = file_inode(filp);
2321 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2322 	int err;
2323 
2324 	if (!f2fs_sb_has_encrypt(sbi))
2325 		return -EOPNOTSUPP;
2326 
2327 	err = mnt_want_write_file(filp);
2328 	if (err)
2329 		return err;
2330 
2331 	down_write(&sbi->sb_lock);
2332 
2333 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2334 		goto got_it;
2335 
2336 	/* update superblock with uuid */
2337 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2338 
2339 	err = f2fs_commit_super(sbi, false);
2340 	if (err) {
2341 		/* undo new data */
2342 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2343 		goto out_err;
2344 	}
2345 got_it:
2346 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2347 									16))
2348 		err = -EFAULT;
2349 out_err:
2350 	up_write(&sbi->sb_lock);
2351 	mnt_drop_write_file(filp);
2352 	return err;
2353 }
2354 
2355 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2356 					     unsigned long arg)
2357 {
2358 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2359 		return -EOPNOTSUPP;
2360 
2361 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2362 }
2363 
2364 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2365 {
2366 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2367 		return -EOPNOTSUPP;
2368 
2369 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2370 }
2371 
2372 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2373 {
2374 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2375 		return -EOPNOTSUPP;
2376 
2377 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2378 }
2379 
2380 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2381 						    unsigned long arg)
2382 {
2383 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2384 		return -EOPNOTSUPP;
2385 
2386 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2387 }
2388 
2389 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2390 					      unsigned long arg)
2391 {
2392 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2393 		return -EOPNOTSUPP;
2394 
2395 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2396 }
2397 
2398 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2399 {
2400 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2401 		return -EOPNOTSUPP;
2402 
2403 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2404 }
2405 
2406 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2407 {
2408 	struct inode *inode = file_inode(filp);
2409 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2410 	__u32 sync;
2411 	int ret;
2412 
2413 	if (!capable(CAP_SYS_ADMIN))
2414 		return -EPERM;
2415 
2416 	if (get_user(sync, (__u32 __user *)arg))
2417 		return -EFAULT;
2418 
2419 	if (f2fs_readonly(sbi->sb))
2420 		return -EROFS;
2421 
2422 	ret = mnt_want_write_file(filp);
2423 	if (ret)
2424 		return ret;
2425 
2426 	if (!sync) {
2427 		if (!down_write_trylock(&sbi->gc_lock)) {
2428 			ret = -EBUSY;
2429 			goto out;
2430 		}
2431 	} else {
2432 		down_write(&sbi->gc_lock);
2433 	}
2434 
2435 	ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2436 out:
2437 	mnt_drop_write_file(filp);
2438 	return ret;
2439 }
2440 
2441 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2442 {
2443 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2444 	u64 end;
2445 	int ret;
2446 
2447 	if (!capable(CAP_SYS_ADMIN))
2448 		return -EPERM;
2449 	if (f2fs_readonly(sbi->sb))
2450 		return -EROFS;
2451 
2452 	end = range->start + range->len;
2453 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2454 					end >= MAX_BLKADDR(sbi))
2455 		return -EINVAL;
2456 
2457 	ret = mnt_want_write_file(filp);
2458 	if (ret)
2459 		return ret;
2460 
2461 do_more:
2462 	if (!range->sync) {
2463 		if (!down_write_trylock(&sbi->gc_lock)) {
2464 			ret = -EBUSY;
2465 			goto out;
2466 		}
2467 	} else {
2468 		down_write(&sbi->gc_lock);
2469 	}
2470 
2471 	ret = f2fs_gc(sbi, range->sync, true, false,
2472 				GET_SEGNO(sbi, range->start));
2473 	if (ret) {
2474 		if (ret == -EBUSY)
2475 			ret = -EAGAIN;
2476 		goto out;
2477 	}
2478 	range->start += BLKS_PER_SEC(sbi);
2479 	if (range->start <= end)
2480 		goto do_more;
2481 out:
2482 	mnt_drop_write_file(filp);
2483 	return ret;
2484 }
2485 
2486 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2487 {
2488 	struct f2fs_gc_range range;
2489 
2490 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2491 							sizeof(range)))
2492 		return -EFAULT;
2493 	return __f2fs_ioc_gc_range(filp, &range);
2494 }
2495 
2496 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2497 {
2498 	struct inode *inode = file_inode(filp);
2499 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2500 	int ret;
2501 
2502 	if (!capable(CAP_SYS_ADMIN))
2503 		return -EPERM;
2504 
2505 	if (f2fs_readonly(sbi->sb))
2506 		return -EROFS;
2507 
2508 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2509 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2510 		return -EINVAL;
2511 	}
2512 
2513 	ret = mnt_want_write_file(filp);
2514 	if (ret)
2515 		return ret;
2516 
2517 	ret = f2fs_sync_fs(sbi->sb, 1);
2518 
2519 	mnt_drop_write_file(filp);
2520 	return ret;
2521 }
2522 
2523 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2524 					struct file *filp,
2525 					struct f2fs_defragment *range)
2526 {
2527 	struct inode *inode = file_inode(filp);
2528 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2529 					.m_seg_type = NO_CHECK_TYPE,
2530 					.m_may_create = false };
2531 	struct extent_info ei = {0, 0, 0};
2532 	pgoff_t pg_start, pg_end, next_pgofs;
2533 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2534 	unsigned int total = 0, sec_num;
2535 	block_t blk_end = 0;
2536 	bool fragmented = false;
2537 	int err;
2538 
2539 	/* if in-place-update policy is enabled, don't waste time here */
2540 	if (f2fs_should_update_inplace(inode, NULL))
2541 		return -EINVAL;
2542 
2543 	pg_start = range->start >> PAGE_SHIFT;
2544 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2545 
2546 	f2fs_balance_fs(sbi, true);
2547 
2548 	inode_lock(inode);
2549 
2550 	/* writeback all dirty pages in the range */
2551 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2552 						range->start + range->len - 1);
2553 	if (err)
2554 		goto out;
2555 
2556 	/*
2557 	 * lookup mapping info in extent cache, skip defragmenting if physical
2558 	 * block addresses are continuous.
2559 	 */
2560 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2561 		if (ei.fofs + ei.len >= pg_end)
2562 			goto out;
2563 	}
2564 
2565 	map.m_lblk = pg_start;
2566 	map.m_next_pgofs = &next_pgofs;
2567 
2568 	/*
2569 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2570 	 * physical block addresses are continuous even if there are hole(s)
2571 	 * in logical blocks.
2572 	 */
2573 	while (map.m_lblk < pg_end) {
2574 		map.m_len = pg_end - map.m_lblk;
2575 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2576 		if (err)
2577 			goto out;
2578 
2579 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2580 			map.m_lblk = next_pgofs;
2581 			continue;
2582 		}
2583 
2584 		if (blk_end && blk_end != map.m_pblk)
2585 			fragmented = true;
2586 
2587 		/* record total count of block that we're going to move */
2588 		total += map.m_len;
2589 
2590 		blk_end = map.m_pblk + map.m_len;
2591 
2592 		map.m_lblk += map.m_len;
2593 	}
2594 
2595 	if (!fragmented) {
2596 		total = 0;
2597 		goto out;
2598 	}
2599 
2600 	sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2601 
2602 	/*
2603 	 * make sure there are enough free section for LFS allocation, this can
2604 	 * avoid defragment running in SSR mode when free section are allocated
2605 	 * intensively
2606 	 */
2607 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2608 		err = -EAGAIN;
2609 		goto out;
2610 	}
2611 
2612 	map.m_lblk = pg_start;
2613 	map.m_len = pg_end - pg_start;
2614 	total = 0;
2615 
2616 	while (map.m_lblk < pg_end) {
2617 		pgoff_t idx;
2618 		int cnt = 0;
2619 
2620 do_map:
2621 		map.m_len = pg_end - map.m_lblk;
2622 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2623 		if (err)
2624 			goto clear_out;
2625 
2626 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2627 			map.m_lblk = next_pgofs;
2628 			goto check;
2629 		}
2630 
2631 		set_inode_flag(inode, FI_DO_DEFRAG);
2632 
2633 		idx = map.m_lblk;
2634 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2635 			struct page *page;
2636 
2637 			page = f2fs_get_lock_data_page(inode, idx, true);
2638 			if (IS_ERR(page)) {
2639 				err = PTR_ERR(page);
2640 				goto clear_out;
2641 			}
2642 
2643 			set_page_dirty(page);
2644 			f2fs_put_page(page, 1);
2645 
2646 			idx++;
2647 			cnt++;
2648 			total++;
2649 		}
2650 
2651 		map.m_lblk = idx;
2652 check:
2653 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2654 			goto do_map;
2655 
2656 		clear_inode_flag(inode, FI_DO_DEFRAG);
2657 
2658 		err = filemap_fdatawrite(inode->i_mapping);
2659 		if (err)
2660 			goto out;
2661 	}
2662 clear_out:
2663 	clear_inode_flag(inode, FI_DO_DEFRAG);
2664 out:
2665 	inode_unlock(inode);
2666 	if (!err)
2667 		range->len = (u64)total << PAGE_SHIFT;
2668 	return err;
2669 }
2670 
2671 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2672 {
2673 	struct inode *inode = file_inode(filp);
2674 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2675 	struct f2fs_defragment range;
2676 	int err;
2677 
2678 	if (!capable(CAP_SYS_ADMIN))
2679 		return -EPERM;
2680 
2681 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2682 		return -EINVAL;
2683 
2684 	if (f2fs_readonly(sbi->sb))
2685 		return -EROFS;
2686 
2687 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2688 							sizeof(range)))
2689 		return -EFAULT;
2690 
2691 	/* verify alignment of offset & size */
2692 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2693 		return -EINVAL;
2694 
2695 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2696 					max_file_blocks(inode)))
2697 		return -EINVAL;
2698 
2699 	err = mnt_want_write_file(filp);
2700 	if (err)
2701 		return err;
2702 
2703 	err = f2fs_defragment_range(sbi, filp, &range);
2704 	mnt_drop_write_file(filp);
2705 
2706 	f2fs_update_time(sbi, REQ_TIME);
2707 	if (err < 0)
2708 		return err;
2709 
2710 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2711 							sizeof(range)))
2712 		return -EFAULT;
2713 
2714 	return 0;
2715 }
2716 
2717 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2718 			struct file *file_out, loff_t pos_out, size_t len)
2719 {
2720 	struct inode *src = file_inode(file_in);
2721 	struct inode *dst = file_inode(file_out);
2722 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2723 	size_t olen = len, dst_max_i_size = 0;
2724 	size_t dst_osize;
2725 	int ret;
2726 
2727 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2728 				src->i_sb != dst->i_sb)
2729 		return -EXDEV;
2730 
2731 	if (unlikely(f2fs_readonly(src->i_sb)))
2732 		return -EROFS;
2733 
2734 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2735 		return -EINVAL;
2736 
2737 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2738 		return -EOPNOTSUPP;
2739 
2740 	if (pos_out < 0 || pos_in < 0)
2741 		return -EINVAL;
2742 
2743 	if (src == dst) {
2744 		if (pos_in == pos_out)
2745 			return 0;
2746 		if (pos_out > pos_in && pos_out < pos_in + len)
2747 			return -EINVAL;
2748 	}
2749 
2750 	inode_lock(src);
2751 	if (src != dst) {
2752 		ret = -EBUSY;
2753 		if (!inode_trylock(dst))
2754 			goto out;
2755 	}
2756 
2757 	ret = -EINVAL;
2758 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2759 		goto out_unlock;
2760 	if (len == 0)
2761 		olen = len = src->i_size - pos_in;
2762 	if (pos_in + len == src->i_size)
2763 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2764 	if (len == 0) {
2765 		ret = 0;
2766 		goto out_unlock;
2767 	}
2768 
2769 	dst_osize = dst->i_size;
2770 	if (pos_out + olen > dst->i_size)
2771 		dst_max_i_size = pos_out + olen;
2772 
2773 	/* verify the end result is block aligned */
2774 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2775 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2776 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2777 		goto out_unlock;
2778 
2779 	ret = f2fs_convert_inline_inode(src);
2780 	if (ret)
2781 		goto out_unlock;
2782 
2783 	ret = f2fs_convert_inline_inode(dst);
2784 	if (ret)
2785 		goto out_unlock;
2786 
2787 	/* write out all dirty pages from offset */
2788 	ret = filemap_write_and_wait_range(src->i_mapping,
2789 					pos_in, pos_in + len);
2790 	if (ret)
2791 		goto out_unlock;
2792 
2793 	ret = filemap_write_and_wait_range(dst->i_mapping,
2794 					pos_out, pos_out + len);
2795 	if (ret)
2796 		goto out_unlock;
2797 
2798 	f2fs_balance_fs(sbi, true);
2799 
2800 	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2801 	if (src != dst) {
2802 		ret = -EBUSY;
2803 		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2804 			goto out_src;
2805 	}
2806 
2807 	f2fs_lock_op(sbi);
2808 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2809 				pos_out >> F2FS_BLKSIZE_BITS,
2810 				len >> F2FS_BLKSIZE_BITS, false);
2811 
2812 	if (!ret) {
2813 		if (dst_max_i_size)
2814 			f2fs_i_size_write(dst, dst_max_i_size);
2815 		else if (dst_osize != dst->i_size)
2816 			f2fs_i_size_write(dst, dst_osize);
2817 	}
2818 	f2fs_unlock_op(sbi);
2819 
2820 	if (src != dst)
2821 		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2822 out_src:
2823 	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2824 out_unlock:
2825 	if (src != dst)
2826 		inode_unlock(dst);
2827 out:
2828 	inode_unlock(src);
2829 	return ret;
2830 }
2831 
2832 static int __f2fs_ioc_move_range(struct file *filp,
2833 				struct f2fs_move_range *range)
2834 {
2835 	struct fd dst;
2836 	int err;
2837 
2838 	if (!(filp->f_mode & FMODE_READ) ||
2839 			!(filp->f_mode & FMODE_WRITE))
2840 		return -EBADF;
2841 
2842 	dst = fdget(range->dst_fd);
2843 	if (!dst.file)
2844 		return -EBADF;
2845 
2846 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2847 		err = -EBADF;
2848 		goto err_out;
2849 	}
2850 
2851 	err = mnt_want_write_file(filp);
2852 	if (err)
2853 		goto err_out;
2854 
2855 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2856 					range->pos_out, range->len);
2857 
2858 	mnt_drop_write_file(filp);
2859 err_out:
2860 	fdput(dst);
2861 	return err;
2862 }
2863 
2864 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2865 {
2866 	struct f2fs_move_range range;
2867 
2868 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2869 							sizeof(range)))
2870 		return -EFAULT;
2871 	return __f2fs_ioc_move_range(filp, &range);
2872 }
2873 
2874 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2875 {
2876 	struct inode *inode = file_inode(filp);
2877 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2878 	struct sit_info *sm = SIT_I(sbi);
2879 	unsigned int start_segno = 0, end_segno = 0;
2880 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2881 	struct f2fs_flush_device range;
2882 	int ret;
2883 
2884 	if (!capable(CAP_SYS_ADMIN))
2885 		return -EPERM;
2886 
2887 	if (f2fs_readonly(sbi->sb))
2888 		return -EROFS;
2889 
2890 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2891 		return -EINVAL;
2892 
2893 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2894 							sizeof(range)))
2895 		return -EFAULT;
2896 
2897 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2898 			__is_large_section(sbi)) {
2899 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2900 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2901 		return -EINVAL;
2902 	}
2903 
2904 	ret = mnt_want_write_file(filp);
2905 	if (ret)
2906 		return ret;
2907 
2908 	if (range.dev_num != 0)
2909 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2910 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2911 
2912 	start_segno = sm->last_victim[FLUSH_DEVICE];
2913 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2914 		start_segno = dev_start_segno;
2915 	end_segno = min(start_segno + range.segments, dev_end_segno);
2916 
2917 	while (start_segno < end_segno) {
2918 		if (!down_write_trylock(&sbi->gc_lock)) {
2919 			ret = -EBUSY;
2920 			goto out;
2921 		}
2922 		sm->last_victim[GC_CB] = end_segno + 1;
2923 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2924 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2925 		ret = f2fs_gc(sbi, true, true, true, start_segno);
2926 		if (ret == -EAGAIN)
2927 			ret = 0;
2928 		else if (ret < 0)
2929 			break;
2930 		start_segno++;
2931 	}
2932 out:
2933 	mnt_drop_write_file(filp);
2934 	return ret;
2935 }
2936 
2937 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2938 {
2939 	struct inode *inode = file_inode(filp);
2940 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2941 
2942 	/* Must validate to set it with SQLite behavior in Android. */
2943 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2944 
2945 	return put_user(sb_feature, (u32 __user *)arg);
2946 }
2947 
2948 #ifdef CONFIG_QUOTA
2949 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2950 {
2951 	struct dquot *transfer_to[MAXQUOTAS] = {};
2952 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2953 	struct super_block *sb = sbi->sb;
2954 	int err = 0;
2955 
2956 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2957 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2958 		err = __dquot_transfer(inode, transfer_to);
2959 		if (err)
2960 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2961 		dqput(transfer_to[PRJQUOTA]);
2962 	}
2963 	return err;
2964 }
2965 
2966 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2967 {
2968 	struct f2fs_inode_info *fi = F2FS_I(inode);
2969 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2970 	struct page *ipage;
2971 	kprojid_t kprojid;
2972 	int err;
2973 
2974 	if (!f2fs_sb_has_project_quota(sbi)) {
2975 		if (projid != F2FS_DEF_PROJID)
2976 			return -EOPNOTSUPP;
2977 		else
2978 			return 0;
2979 	}
2980 
2981 	if (!f2fs_has_extra_attr(inode))
2982 		return -EOPNOTSUPP;
2983 
2984 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2985 
2986 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2987 		return 0;
2988 
2989 	err = -EPERM;
2990 	/* Is it quota file? Do not allow user to mess with it */
2991 	if (IS_NOQUOTA(inode))
2992 		return err;
2993 
2994 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2995 	if (IS_ERR(ipage))
2996 		return PTR_ERR(ipage);
2997 
2998 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2999 								i_projid)) {
3000 		err = -EOVERFLOW;
3001 		f2fs_put_page(ipage, 1);
3002 		return err;
3003 	}
3004 	f2fs_put_page(ipage, 1);
3005 
3006 	err = dquot_initialize(inode);
3007 	if (err)
3008 		return err;
3009 
3010 	f2fs_lock_op(sbi);
3011 	err = f2fs_transfer_project_quota(inode, kprojid);
3012 	if (err)
3013 		goto out_unlock;
3014 
3015 	F2FS_I(inode)->i_projid = kprojid;
3016 	inode->i_ctime = current_time(inode);
3017 	f2fs_mark_inode_dirty_sync(inode, true);
3018 out_unlock:
3019 	f2fs_unlock_op(sbi);
3020 	return err;
3021 }
3022 #else
3023 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3024 {
3025 	return 0;
3026 }
3027 
3028 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3029 {
3030 	if (projid != F2FS_DEF_PROJID)
3031 		return -EOPNOTSUPP;
3032 	return 0;
3033 }
3034 #endif
3035 
3036 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3037 {
3038 	struct inode *inode = d_inode(dentry);
3039 	struct f2fs_inode_info *fi = F2FS_I(inode);
3040 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3041 
3042 	if (IS_ENCRYPTED(inode))
3043 		fsflags |= FS_ENCRYPT_FL;
3044 	if (IS_VERITY(inode))
3045 		fsflags |= FS_VERITY_FL;
3046 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3047 		fsflags |= FS_INLINE_DATA_FL;
3048 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3049 		fsflags |= FS_NOCOW_FL;
3050 
3051 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3052 
3053 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3054 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3055 
3056 	return 0;
3057 }
3058 
3059 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3060 		      struct dentry *dentry, struct fileattr *fa)
3061 {
3062 	struct inode *inode = d_inode(dentry);
3063 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3064 	u32 iflags;
3065 	int err;
3066 
3067 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3068 		return -EIO;
3069 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3070 		return -ENOSPC;
3071 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3072 		return -EOPNOTSUPP;
3073 	fsflags &= F2FS_SETTABLE_FS_FL;
3074 	if (!fa->flags_valid)
3075 		mask &= FS_COMMON_FL;
3076 
3077 	iflags = f2fs_fsflags_to_iflags(fsflags);
3078 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3079 		return -EOPNOTSUPP;
3080 
3081 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3082 	if (!err)
3083 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3084 
3085 	return err;
3086 }
3087 
3088 int f2fs_pin_file_control(struct inode *inode, bool inc)
3089 {
3090 	struct f2fs_inode_info *fi = F2FS_I(inode);
3091 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3092 
3093 	/* Use i_gc_failures for normal file as a risk signal. */
3094 	if (inc)
3095 		f2fs_i_gc_failures_write(inode,
3096 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3097 
3098 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3099 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3100 			  __func__, inode->i_ino,
3101 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3102 		clear_inode_flag(inode, FI_PIN_FILE);
3103 		return -EAGAIN;
3104 	}
3105 	return 0;
3106 }
3107 
3108 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3109 {
3110 	struct inode *inode = file_inode(filp);
3111 	__u32 pin;
3112 	int ret = 0;
3113 
3114 	if (get_user(pin, (__u32 __user *)arg))
3115 		return -EFAULT;
3116 
3117 	if (!S_ISREG(inode->i_mode))
3118 		return -EINVAL;
3119 
3120 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3121 		return -EROFS;
3122 
3123 	ret = mnt_want_write_file(filp);
3124 	if (ret)
3125 		return ret;
3126 
3127 	inode_lock(inode);
3128 
3129 	if (f2fs_should_update_outplace(inode, NULL)) {
3130 		ret = -EINVAL;
3131 		goto out;
3132 	}
3133 
3134 	if (!pin) {
3135 		clear_inode_flag(inode, FI_PIN_FILE);
3136 		f2fs_i_gc_failures_write(inode, 0);
3137 		goto done;
3138 	}
3139 
3140 	if (f2fs_pin_file_control(inode, false)) {
3141 		ret = -EAGAIN;
3142 		goto out;
3143 	}
3144 
3145 	ret = f2fs_convert_inline_inode(inode);
3146 	if (ret)
3147 		goto out;
3148 
3149 	if (!f2fs_disable_compressed_file(inode)) {
3150 		ret = -EOPNOTSUPP;
3151 		goto out;
3152 	}
3153 
3154 	set_inode_flag(inode, FI_PIN_FILE);
3155 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3156 done:
3157 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3158 out:
3159 	inode_unlock(inode);
3160 	mnt_drop_write_file(filp);
3161 	return ret;
3162 }
3163 
3164 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3165 {
3166 	struct inode *inode = file_inode(filp);
3167 	__u32 pin = 0;
3168 
3169 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3170 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3171 	return put_user(pin, (u32 __user *)arg);
3172 }
3173 
3174 int f2fs_precache_extents(struct inode *inode)
3175 {
3176 	struct f2fs_inode_info *fi = F2FS_I(inode);
3177 	struct f2fs_map_blocks map;
3178 	pgoff_t m_next_extent;
3179 	loff_t end;
3180 	int err;
3181 
3182 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3183 		return -EOPNOTSUPP;
3184 
3185 	map.m_lblk = 0;
3186 	map.m_next_pgofs = NULL;
3187 	map.m_next_extent = &m_next_extent;
3188 	map.m_seg_type = NO_CHECK_TYPE;
3189 	map.m_may_create = false;
3190 	end = max_file_blocks(inode);
3191 
3192 	while (map.m_lblk < end) {
3193 		map.m_len = end - map.m_lblk;
3194 
3195 		down_write(&fi->i_gc_rwsem[WRITE]);
3196 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3197 		up_write(&fi->i_gc_rwsem[WRITE]);
3198 		if (err)
3199 			return err;
3200 
3201 		map.m_lblk = m_next_extent;
3202 	}
3203 
3204 	return 0;
3205 }
3206 
3207 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3208 {
3209 	return f2fs_precache_extents(file_inode(filp));
3210 }
3211 
3212 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3213 {
3214 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3215 	__u64 block_count;
3216 
3217 	if (!capable(CAP_SYS_ADMIN))
3218 		return -EPERM;
3219 
3220 	if (f2fs_readonly(sbi->sb))
3221 		return -EROFS;
3222 
3223 	if (copy_from_user(&block_count, (void __user *)arg,
3224 			   sizeof(block_count)))
3225 		return -EFAULT;
3226 
3227 	return f2fs_resize_fs(sbi, block_count);
3228 }
3229 
3230 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3231 {
3232 	struct inode *inode = file_inode(filp);
3233 
3234 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3235 
3236 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3237 		f2fs_warn(F2FS_I_SB(inode),
3238 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3239 			  inode->i_ino);
3240 		return -EOPNOTSUPP;
3241 	}
3242 
3243 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3244 }
3245 
3246 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3247 {
3248 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3249 		return -EOPNOTSUPP;
3250 
3251 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3252 }
3253 
3254 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3255 {
3256 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3257 		return -EOPNOTSUPP;
3258 
3259 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3260 }
3261 
3262 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3263 {
3264 	struct inode *inode = file_inode(filp);
3265 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3266 	char *vbuf;
3267 	int count;
3268 	int err = 0;
3269 
3270 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3271 	if (!vbuf)
3272 		return -ENOMEM;
3273 
3274 	down_read(&sbi->sb_lock);
3275 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3276 			ARRAY_SIZE(sbi->raw_super->volume_name),
3277 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3278 	up_read(&sbi->sb_lock);
3279 
3280 	if (copy_to_user((char __user *)arg, vbuf,
3281 				min(FSLABEL_MAX, count)))
3282 		err = -EFAULT;
3283 
3284 	kfree(vbuf);
3285 	return err;
3286 }
3287 
3288 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3289 {
3290 	struct inode *inode = file_inode(filp);
3291 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3292 	char *vbuf;
3293 	int err = 0;
3294 
3295 	if (!capable(CAP_SYS_ADMIN))
3296 		return -EPERM;
3297 
3298 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3299 	if (IS_ERR(vbuf))
3300 		return PTR_ERR(vbuf);
3301 
3302 	err = mnt_want_write_file(filp);
3303 	if (err)
3304 		goto out;
3305 
3306 	down_write(&sbi->sb_lock);
3307 
3308 	memset(sbi->raw_super->volume_name, 0,
3309 			sizeof(sbi->raw_super->volume_name));
3310 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3311 			sbi->raw_super->volume_name,
3312 			ARRAY_SIZE(sbi->raw_super->volume_name));
3313 
3314 	err = f2fs_commit_super(sbi, false);
3315 
3316 	up_write(&sbi->sb_lock);
3317 
3318 	mnt_drop_write_file(filp);
3319 out:
3320 	kfree(vbuf);
3321 	return err;
3322 }
3323 
3324 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3325 {
3326 	struct inode *inode = file_inode(filp);
3327 	__u64 blocks;
3328 
3329 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3330 		return -EOPNOTSUPP;
3331 
3332 	if (!f2fs_compressed_file(inode))
3333 		return -EINVAL;
3334 
3335 	blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3336 	return put_user(blocks, (u64 __user *)arg);
3337 }
3338 
3339 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3340 {
3341 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3342 	unsigned int released_blocks = 0;
3343 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3344 	block_t blkaddr;
3345 	int i;
3346 
3347 	for (i = 0; i < count; i++) {
3348 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3349 						dn->ofs_in_node + i);
3350 
3351 		if (!__is_valid_data_blkaddr(blkaddr))
3352 			continue;
3353 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3354 					DATA_GENERIC_ENHANCE)))
3355 			return -EFSCORRUPTED;
3356 	}
3357 
3358 	while (count) {
3359 		int compr_blocks = 0;
3360 
3361 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3362 			blkaddr = f2fs_data_blkaddr(dn);
3363 
3364 			if (i == 0) {
3365 				if (blkaddr == COMPRESS_ADDR)
3366 					continue;
3367 				dn->ofs_in_node += cluster_size;
3368 				goto next;
3369 			}
3370 
3371 			if (__is_valid_data_blkaddr(blkaddr))
3372 				compr_blocks++;
3373 
3374 			if (blkaddr != NEW_ADDR)
3375 				continue;
3376 
3377 			dn->data_blkaddr = NULL_ADDR;
3378 			f2fs_set_data_blkaddr(dn);
3379 		}
3380 
3381 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3382 		dec_valid_block_count(sbi, dn->inode,
3383 					cluster_size - compr_blocks);
3384 
3385 		released_blocks += cluster_size - compr_blocks;
3386 next:
3387 		count -= cluster_size;
3388 	}
3389 
3390 	return released_blocks;
3391 }
3392 
3393 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3394 {
3395 	struct inode *inode = file_inode(filp);
3396 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3397 	pgoff_t page_idx = 0, last_idx;
3398 	unsigned int released_blocks = 0;
3399 	int ret;
3400 	int writecount;
3401 
3402 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3403 		return -EOPNOTSUPP;
3404 
3405 	if (!f2fs_compressed_file(inode))
3406 		return -EINVAL;
3407 
3408 	if (f2fs_readonly(sbi->sb))
3409 		return -EROFS;
3410 
3411 	ret = mnt_want_write_file(filp);
3412 	if (ret)
3413 		return ret;
3414 
3415 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3416 
3417 	inode_lock(inode);
3418 
3419 	writecount = atomic_read(&inode->i_writecount);
3420 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3421 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3422 		ret = -EBUSY;
3423 		goto out;
3424 	}
3425 
3426 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3427 		ret = -EINVAL;
3428 		goto out;
3429 	}
3430 
3431 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3432 	if (ret)
3433 		goto out;
3434 
3435 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3436 	inode->i_ctime = current_time(inode);
3437 	f2fs_mark_inode_dirty_sync(inode, true);
3438 
3439 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3440 		goto out;
3441 
3442 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3443 	down_write(&F2FS_I(inode)->i_mmap_sem);
3444 
3445 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3446 
3447 	while (page_idx < last_idx) {
3448 		struct dnode_of_data dn;
3449 		pgoff_t end_offset, count;
3450 
3451 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3452 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3453 		if (ret) {
3454 			if (ret == -ENOENT) {
3455 				page_idx = f2fs_get_next_page_offset(&dn,
3456 								page_idx);
3457 				ret = 0;
3458 				continue;
3459 			}
3460 			break;
3461 		}
3462 
3463 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3464 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3465 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3466 
3467 		ret = release_compress_blocks(&dn, count);
3468 
3469 		f2fs_put_dnode(&dn);
3470 
3471 		if (ret < 0)
3472 			break;
3473 
3474 		page_idx += count;
3475 		released_blocks += ret;
3476 	}
3477 
3478 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3479 	up_write(&F2FS_I(inode)->i_mmap_sem);
3480 out:
3481 	inode_unlock(inode);
3482 
3483 	mnt_drop_write_file(filp);
3484 
3485 	if (ret >= 0) {
3486 		ret = put_user(released_blocks, (u64 __user *)arg);
3487 	} else if (released_blocks &&
3488 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3489 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3490 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3491 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3492 			"run fsck to fix.",
3493 			__func__, inode->i_ino, inode->i_blocks,
3494 			released_blocks,
3495 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3496 	}
3497 
3498 	return ret;
3499 }
3500 
3501 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3502 {
3503 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3504 	unsigned int reserved_blocks = 0;
3505 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3506 	block_t blkaddr;
3507 	int i;
3508 
3509 	for (i = 0; i < count; i++) {
3510 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3511 						dn->ofs_in_node + i);
3512 
3513 		if (!__is_valid_data_blkaddr(blkaddr))
3514 			continue;
3515 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3516 					DATA_GENERIC_ENHANCE)))
3517 			return -EFSCORRUPTED;
3518 	}
3519 
3520 	while (count) {
3521 		int compr_blocks = 0;
3522 		blkcnt_t reserved;
3523 		int ret;
3524 
3525 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3526 			blkaddr = f2fs_data_blkaddr(dn);
3527 
3528 			if (i == 0) {
3529 				if (blkaddr == COMPRESS_ADDR)
3530 					continue;
3531 				dn->ofs_in_node += cluster_size;
3532 				goto next;
3533 			}
3534 
3535 			if (__is_valid_data_blkaddr(blkaddr)) {
3536 				compr_blocks++;
3537 				continue;
3538 			}
3539 
3540 			dn->data_blkaddr = NEW_ADDR;
3541 			f2fs_set_data_blkaddr(dn);
3542 		}
3543 
3544 		reserved = cluster_size - compr_blocks;
3545 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3546 		if (ret)
3547 			return ret;
3548 
3549 		if (reserved != cluster_size - compr_blocks)
3550 			return -ENOSPC;
3551 
3552 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3553 
3554 		reserved_blocks += reserved;
3555 next:
3556 		count -= cluster_size;
3557 	}
3558 
3559 	return reserved_blocks;
3560 }
3561 
3562 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3563 {
3564 	struct inode *inode = file_inode(filp);
3565 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3566 	pgoff_t page_idx = 0, last_idx;
3567 	unsigned int reserved_blocks = 0;
3568 	int ret;
3569 
3570 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3571 		return -EOPNOTSUPP;
3572 
3573 	if (!f2fs_compressed_file(inode))
3574 		return -EINVAL;
3575 
3576 	if (f2fs_readonly(sbi->sb))
3577 		return -EROFS;
3578 
3579 	ret = mnt_want_write_file(filp);
3580 	if (ret)
3581 		return ret;
3582 
3583 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3584 		goto out;
3585 
3586 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3587 
3588 	inode_lock(inode);
3589 
3590 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3591 		ret = -EINVAL;
3592 		goto unlock_inode;
3593 	}
3594 
3595 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3596 	down_write(&F2FS_I(inode)->i_mmap_sem);
3597 
3598 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3599 
3600 	while (page_idx < last_idx) {
3601 		struct dnode_of_data dn;
3602 		pgoff_t end_offset, count;
3603 
3604 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3605 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3606 		if (ret) {
3607 			if (ret == -ENOENT) {
3608 				page_idx = f2fs_get_next_page_offset(&dn,
3609 								page_idx);
3610 				ret = 0;
3611 				continue;
3612 			}
3613 			break;
3614 		}
3615 
3616 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3617 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3618 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3619 
3620 		ret = reserve_compress_blocks(&dn, count);
3621 
3622 		f2fs_put_dnode(&dn);
3623 
3624 		if (ret < 0)
3625 			break;
3626 
3627 		page_idx += count;
3628 		reserved_blocks += ret;
3629 	}
3630 
3631 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3632 	up_write(&F2FS_I(inode)->i_mmap_sem);
3633 
3634 	if (ret >= 0) {
3635 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3636 		inode->i_ctime = current_time(inode);
3637 		f2fs_mark_inode_dirty_sync(inode, true);
3638 	}
3639 unlock_inode:
3640 	inode_unlock(inode);
3641 out:
3642 	mnt_drop_write_file(filp);
3643 
3644 	if (ret >= 0) {
3645 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3646 	} else if (reserved_blocks &&
3647 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3648 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3649 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3650 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3651 			"run fsck to fix.",
3652 			__func__, inode->i_ino, inode->i_blocks,
3653 			reserved_blocks,
3654 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3655 	}
3656 
3657 	return ret;
3658 }
3659 
3660 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3661 		pgoff_t off, block_t block, block_t len, u32 flags)
3662 {
3663 	struct request_queue *q = bdev_get_queue(bdev);
3664 	sector_t sector = SECTOR_FROM_BLOCK(block);
3665 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3666 	int ret = 0;
3667 
3668 	if (!q)
3669 		return -ENXIO;
3670 
3671 	if (flags & F2FS_TRIM_FILE_DISCARD)
3672 		ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3673 						blk_queue_secure_erase(q) ?
3674 						BLKDEV_DISCARD_SECURE : 0);
3675 
3676 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3677 		if (IS_ENCRYPTED(inode))
3678 			ret = fscrypt_zeroout_range(inode, off, block, len);
3679 		else
3680 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3681 					GFP_NOFS, 0);
3682 	}
3683 
3684 	return ret;
3685 }
3686 
3687 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3688 {
3689 	struct inode *inode = file_inode(filp);
3690 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3691 	struct address_space *mapping = inode->i_mapping;
3692 	struct block_device *prev_bdev = NULL;
3693 	struct f2fs_sectrim_range range;
3694 	pgoff_t index, pg_end, prev_index = 0;
3695 	block_t prev_block = 0, len = 0;
3696 	loff_t end_addr;
3697 	bool to_end = false;
3698 	int ret = 0;
3699 
3700 	if (!(filp->f_mode & FMODE_WRITE))
3701 		return -EBADF;
3702 
3703 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3704 				sizeof(range)))
3705 		return -EFAULT;
3706 
3707 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3708 			!S_ISREG(inode->i_mode))
3709 		return -EINVAL;
3710 
3711 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3712 			!f2fs_hw_support_discard(sbi)) ||
3713 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3714 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3715 		return -EOPNOTSUPP;
3716 
3717 	file_start_write(filp);
3718 	inode_lock(inode);
3719 
3720 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3721 			range.start >= inode->i_size) {
3722 		ret = -EINVAL;
3723 		goto err;
3724 	}
3725 
3726 	if (range.len == 0)
3727 		goto err;
3728 
3729 	if (inode->i_size - range.start > range.len) {
3730 		end_addr = range.start + range.len;
3731 	} else {
3732 		end_addr = range.len == (u64)-1 ?
3733 			sbi->sb->s_maxbytes : inode->i_size;
3734 		to_end = true;
3735 	}
3736 
3737 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3738 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3739 		ret = -EINVAL;
3740 		goto err;
3741 	}
3742 
3743 	index = F2FS_BYTES_TO_BLK(range.start);
3744 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3745 
3746 	ret = f2fs_convert_inline_inode(inode);
3747 	if (ret)
3748 		goto err;
3749 
3750 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3751 	down_write(&F2FS_I(inode)->i_mmap_sem);
3752 
3753 	ret = filemap_write_and_wait_range(mapping, range.start,
3754 			to_end ? LLONG_MAX : end_addr - 1);
3755 	if (ret)
3756 		goto out;
3757 
3758 	truncate_inode_pages_range(mapping, range.start,
3759 			to_end ? -1 : end_addr - 1);
3760 
3761 	while (index < pg_end) {
3762 		struct dnode_of_data dn;
3763 		pgoff_t end_offset, count;
3764 		int i;
3765 
3766 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3767 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3768 		if (ret) {
3769 			if (ret == -ENOENT) {
3770 				index = f2fs_get_next_page_offset(&dn, index);
3771 				continue;
3772 			}
3773 			goto out;
3774 		}
3775 
3776 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3777 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3778 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3779 			struct block_device *cur_bdev;
3780 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3781 
3782 			if (!__is_valid_data_blkaddr(blkaddr))
3783 				continue;
3784 
3785 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3786 						DATA_GENERIC_ENHANCE)) {
3787 				ret = -EFSCORRUPTED;
3788 				f2fs_put_dnode(&dn);
3789 				goto out;
3790 			}
3791 
3792 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3793 			if (f2fs_is_multi_device(sbi)) {
3794 				int di = f2fs_target_device_index(sbi, blkaddr);
3795 
3796 				blkaddr -= FDEV(di).start_blk;
3797 			}
3798 
3799 			if (len) {
3800 				if (prev_bdev == cur_bdev &&
3801 						index == prev_index + len &&
3802 						blkaddr == prev_block + len) {
3803 					len++;
3804 				} else {
3805 					ret = f2fs_secure_erase(prev_bdev,
3806 						inode, prev_index, prev_block,
3807 						len, range.flags);
3808 					if (ret) {
3809 						f2fs_put_dnode(&dn);
3810 						goto out;
3811 					}
3812 
3813 					len = 0;
3814 				}
3815 			}
3816 
3817 			if (!len) {
3818 				prev_bdev = cur_bdev;
3819 				prev_index = index;
3820 				prev_block = blkaddr;
3821 				len = 1;
3822 			}
3823 		}
3824 
3825 		f2fs_put_dnode(&dn);
3826 
3827 		if (fatal_signal_pending(current)) {
3828 			ret = -EINTR;
3829 			goto out;
3830 		}
3831 		cond_resched();
3832 	}
3833 
3834 	if (len)
3835 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3836 				prev_block, len, range.flags);
3837 out:
3838 	up_write(&F2FS_I(inode)->i_mmap_sem);
3839 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3840 err:
3841 	inode_unlock(inode);
3842 	file_end_write(filp);
3843 
3844 	return ret;
3845 }
3846 
3847 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3848 {
3849 	struct inode *inode = file_inode(filp);
3850 	struct f2fs_comp_option option;
3851 
3852 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3853 		return -EOPNOTSUPP;
3854 
3855 	inode_lock_shared(inode);
3856 
3857 	if (!f2fs_compressed_file(inode)) {
3858 		inode_unlock_shared(inode);
3859 		return -ENODATA;
3860 	}
3861 
3862 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3863 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3864 
3865 	inode_unlock_shared(inode);
3866 
3867 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3868 				sizeof(option)))
3869 		return -EFAULT;
3870 
3871 	return 0;
3872 }
3873 
3874 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3875 {
3876 	struct inode *inode = file_inode(filp);
3877 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3878 	struct f2fs_comp_option option;
3879 	int ret = 0;
3880 
3881 	if (!f2fs_sb_has_compression(sbi))
3882 		return -EOPNOTSUPP;
3883 
3884 	if (!(filp->f_mode & FMODE_WRITE))
3885 		return -EBADF;
3886 
3887 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3888 				sizeof(option)))
3889 		return -EFAULT;
3890 
3891 	if (!f2fs_compressed_file(inode) ||
3892 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3893 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3894 			option.algorithm >= COMPRESS_MAX)
3895 		return -EINVAL;
3896 
3897 	file_start_write(filp);
3898 	inode_lock(inode);
3899 
3900 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3901 		ret = -EBUSY;
3902 		goto out;
3903 	}
3904 
3905 	if (inode->i_size != 0) {
3906 		ret = -EFBIG;
3907 		goto out;
3908 	}
3909 
3910 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3911 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3912 	F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3913 	f2fs_mark_inode_dirty_sync(inode, true);
3914 
3915 	if (!f2fs_is_compress_backend_ready(inode))
3916 		f2fs_warn(sbi, "compression algorithm is successfully set, "
3917 			"but current kernel doesn't support this algorithm.");
3918 out:
3919 	inode_unlock(inode);
3920 	file_end_write(filp);
3921 
3922 	return ret;
3923 }
3924 
3925 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3926 {
3927 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3928 	struct address_space *mapping = inode->i_mapping;
3929 	struct page *page;
3930 	pgoff_t redirty_idx = page_idx;
3931 	int i, page_len = 0, ret = 0;
3932 
3933 	page_cache_ra_unbounded(&ractl, len, 0);
3934 
3935 	for (i = 0; i < len; i++, page_idx++) {
3936 		page = read_cache_page(mapping, page_idx, NULL, NULL);
3937 		if (IS_ERR(page)) {
3938 			ret = PTR_ERR(page);
3939 			break;
3940 		}
3941 		page_len++;
3942 	}
3943 
3944 	for (i = 0; i < page_len; i++, redirty_idx++) {
3945 		page = find_lock_page(mapping, redirty_idx);
3946 		if (!page) {
3947 			ret = -ENOMEM;
3948 			break;
3949 		}
3950 		set_page_dirty(page);
3951 		f2fs_put_page(page, 1);
3952 		f2fs_put_page(page, 0);
3953 	}
3954 
3955 	return ret;
3956 }
3957 
3958 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3959 {
3960 	struct inode *inode = file_inode(filp);
3961 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3962 	struct f2fs_inode_info *fi = F2FS_I(inode);
3963 	pgoff_t page_idx = 0, last_idx;
3964 	unsigned int blk_per_seg = sbi->blocks_per_seg;
3965 	int cluster_size = F2FS_I(inode)->i_cluster_size;
3966 	int count, ret;
3967 
3968 	if (!f2fs_sb_has_compression(sbi) ||
3969 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3970 		return -EOPNOTSUPP;
3971 
3972 	if (!(filp->f_mode & FMODE_WRITE))
3973 		return -EBADF;
3974 
3975 	if (!f2fs_compressed_file(inode))
3976 		return -EINVAL;
3977 
3978 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3979 
3980 	file_start_write(filp);
3981 	inode_lock(inode);
3982 
3983 	if (!f2fs_is_compress_backend_ready(inode)) {
3984 		ret = -EOPNOTSUPP;
3985 		goto out;
3986 	}
3987 
3988 	if (f2fs_is_mmap_file(inode)) {
3989 		ret = -EBUSY;
3990 		goto out;
3991 	}
3992 
3993 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3994 	if (ret)
3995 		goto out;
3996 
3997 	if (!atomic_read(&fi->i_compr_blocks))
3998 		goto out;
3999 
4000 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4001 
4002 	count = last_idx - page_idx;
4003 	while (count) {
4004 		int len = min(cluster_size, count);
4005 
4006 		ret = redirty_blocks(inode, page_idx, len);
4007 		if (ret < 0)
4008 			break;
4009 
4010 		if (get_dirty_pages(inode) >= blk_per_seg)
4011 			filemap_fdatawrite(inode->i_mapping);
4012 
4013 		count -= len;
4014 		page_idx += len;
4015 	}
4016 
4017 	if (!ret)
4018 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4019 							LLONG_MAX);
4020 
4021 	if (ret)
4022 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4023 			  __func__, ret);
4024 out:
4025 	inode_unlock(inode);
4026 	file_end_write(filp);
4027 
4028 	return ret;
4029 }
4030 
4031 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4032 {
4033 	struct inode *inode = file_inode(filp);
4034 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4035 	pgoff_t page_idx = 0, last_idx;
4036 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4037 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4038 	int count, ret;
4039 
4040 	if (!f2fs_sb_has_compression(sbi) ||
4041 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4042 		return -EOPNOTSUPP;
4043 
4044 	if (!(filp->f_mode & FMODE_WRITE))
4045 		return -EBADF;
4046 
4047 	if (!f2fs_compressed_file(inode))
4048 		return -EINVAL;
4049 
4050 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4051 
4052 	file_start_write(filp);
4053 	inode_lock(inode);
4054 
4055 	if (!f2fs_is_compress_backend_ready(inode)) {
4056 		ret = -EOPNOTSUPP;
4057 		goto out;
4058 	}
4059 
4060 	if (f2fs_is_mmap_file(inode)) {
4061 		ret = -EBUSY;
4062 		goto out;
4063 	}
4064 
4065 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4066 	if (ret)
4067 		goto out;
4068 
4069 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4070 
4071 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4072 
4073 	count = last_idx - page_idx;
4074 	while (count) {
4075 		int len = min(cluster_size, count);
4076 
4077 		ret = redirty_blocks(inode, page_idx, len);
4078 		if (ret < 0)
4079 			break;
4080 
4081 		if (get_dirty_pages(inode) >= blk_per_seg)
4082 			filemap_fdatawrite(inode->i_mapping);
4083 
4084 		count -= len;
4085 		page_idx += len;
4086 	}
4087 
4088 	if (!ret)
4089 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4090 							LLONG_MAX);
4091 
4092 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4093 
4094 	if (ret)
4095 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4096 			  __func__, ret);
4097 out:
4098 	inode_unlock(inode);
4099 	file_end_write(filp);
4100 
4101 	return ret;
4102 }
4103 
4104 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4105 {
4106 	switch (cmd) {
4107 	case FS_IOC_GETVERSION:
4108 		return f2fs_ioc_getversion(filp, arg);
4109 	case F2FS_IOC_START_ATOMIC_WRITE:
4110 		return f2fs_ioc_start_atomic_write(filp);
4111 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4112 		return f2fs_ioc_commit_atomic_write(filp);
4113 	case F2FS_IOC_START_VOLATILE_WRITE:
4114 		return f2fs_ioc_start_volatile_write(filp);
4115 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4116 		return f2fs_ioc_release_volatile_write(filp);
4117 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
4118 		return f2fs_ioc_abort_volatile_write(filp);
4119 	case F2FS_IOC_SHUTDOWN:
4120 		return f2fs_ioc_shutdown(filp, arg);
4121 	case FITRIM:
4122 		return f2fs_ioc_fitrim(filp, arg);
4123 	case FS_IOC_SET_ENCRYPTION_POLICY:
4124 		return f2fs_ioc_set_encryption_policy(filp, arg);
4125 	case FS_IOC_GET_ENCRYPTION_POLICY:
4126 		return f2fs_ioc_get_encryption_policy(filp, arg);
4127 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4128 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4129 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4130 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4131 	case FS_IOC_ADD_ENCRYPTION_KEY:
4132 		return f2fs_ioc_add_encryption_key(filp, arg);
4133 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4134 		return f2fs_ioc_remove_encryption_key(filp, arg);
4135 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4136 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4137 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4138 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4139 	case FS_IOC_GET_ENCRYPTION_NONCE:
4140 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4141 	case F2FS_IOC_GARBAGE_COLLECT:
4142 		return f2fs_ioc_gc(filp, arg);
4143 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4144 		return f2fs_ioc_gc_range(filp, arg);
4145 	case F2FS_IOC_WRITE_CHECKPOINT:
4146 		return f2fs_ioc_write_checkpoint(filp, arg);
4147 	case F2FS_IOC_DEFRAGMENT:
4148 		return f2fs_ioc_defragment(filp, arg);
4149 	case F2FS_IOC_MOVE_RANGE:
4150 		return f2fs_ioc_move_range(filp, arg);
4151 	case F2FS_IOC_FLUSH_DEVICE:
4152 		return f2fs_ioc_flush_device(filp, arg);
4153 	case F2FS_IOC_GET_FEATURES:
4154 		return f2fs_ioc_get_features(filp, arg);
4155 	case F2FS_IOC_GET_PIN_FILE:
4156 		return f2fs_ioc_get_pin_file(filp, arg);
4157 	case F2FS_IOC_SET_PIN_FILE:
4158 		return f2fs_ioc_set_pin_file(filp, arg);
4159 	case F2FS_IOC_PRECACHE_EXTENTS:
4160 		return f2fs_ioc_precache_extents(filp, arg);
4161 	case F2FS_IOC_RESIZE_FS:
4162 		return f2fs_ioc_resize_fs(filp, arg);
4163 	case FS_IOC_ENABLE_VERITY:
4164 		return f2fs_ioc_enable_verity(filp, arg);
4165 	case FS_IOC_MEASURE_VERITY:
4166 		return f2fs_ioc_measure_verity(filp, arg);
4167 	case FS_IOC_READ_VERITY_METADATA:
4168 		return f2fs_ioc_read_verity_metadata(filp, arg);
4169 	case FS_IOC_GETFSLABEL:
4170 		return f2fs_ioc_getfslabel(filp, arg);
4171 	case FS_IOC_SETFSLABEL:
4172 		return f2fs_ioc_setfslabel(filp, arg);
4173 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4174 		return f2fs_get_compress_blocks(filp, arg);
4175 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4176 		return f2fs_release_compress_blocks(filp, arg);
4177 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4178 		return f2fs_reserve_compress_blocks(filp, arg);
4179 	case F2FS_IOC_SEC_TRIM_FILE:
4180 		return f2fs_sec_trim_file(filp, arg);
4181 	case F2FS_IOC_GET_COMPRESS_OPTION:
4182 		return f2fs_ioc_get_compress_option(filp, arg);
4183 	case F2FS_IOC_SET_COMPRESS_OPTION:
4184 		return f2fs_ioc_set_compress_option(filp, arg);
4185 	case F2FS_IOC_DECOMPRESS_FILE:
4186 		return f2fs_ioc_decompress_file(filp, arg);
4187 	case F2FS_IOC_COMPRESS_FILE:
4188 		return f2fs_ioc_compress_file(filp, arg);
4189 	default:
4190 		return -ENOTTY;
4191 	}
4192 }
4193 
4194 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4195 {
4196 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4197 		return -EIO;
4198 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4199 		return -ENOSPC;
4200 
4201 	return __f2fs_ioctl(filp, cmd, arg);
4202 }
4203 
4204 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4205 {
4206 	struct file *file = iocb->ki_filp;
4207 	struct inode *inode = file_inode(file);
4208 	int ret;
4209 
4210 	if (!f2fs_is_compress_backend_ready(inode))
4211 		return -EOPNOTSUPP;
4212 
4213 	ret = generic_file_read_iter(iocb, iter);
4214 
4215 	if (ret > 0)
4216 		f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4217 
4218 	return ret;
4219 }
4220 
4221 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4222 {
4223 	struct file *file = iocb->ki_filp;
4224 	struct inode *inode = file_inode(file);
4225 	ssize_t ret;
4226 
4227 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4228 		ret = -EIO;
4229 		goto out;
4230 	}
4231 
4232 	if (!f2fs_is_compress_backend_ready(inode)) {
4233 		ret = -EOPNOTSUPP;
4234 		goto out;
4235 	}
4236 
4237 	if (iocb->ki_flags & IOCB_NOWAIT) {
4238 		if (!inode_trylock(inode)) {
4239 			ret = -EAGAIN;
4240 			goto out;
4241 		}
4242 	} else {
4243 		inode_lock(inode);
4244 	}
4245 
4246 	if (unlikely(IS_IMMUTABLE(inode))) {
4247 		ret = -EPERM;
4248 		goto unlock;
4249 	}
4250 
4251 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4252 		ret = -EPERM;
4253 		goto unlock;
4254 	}
4255 
4256 	ret = generic_write_checks(iocb, from);
4257 	if (ret > 0) {
4258 		bool preallocated = false;
4259 		size_t target_size = 0;
4260 		int err;
4261 
4262 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
4263 			set_inode_flag(inode, FI_NO_PREALLOC);
4264 
4265 		if ((iocb->ki_flags & IOCB_NOWAIT)) {
4266 			if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4267 						iov_iter_count(from)) ||
4268 				f2fs_has_inline_data(inode) ||
4269 				f2fs_force_buffered_io(inode, iocb, from)) {
4270 				clear_inode_flag(inode, FI_NO_PREALLOC);
4271 				inode_unlock(inode);
4272 				ret = -EAGAIN;
4273 				goto out;
4274 			}
4275 			goto write;
4276 		}
4277 
4278 		if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4279 			goto write;
4280 
4281 		if (iocb->ki_flags & IOCB_DIRECT) {
4282 			/*
4283 			 * Convert inline data for Direct I/O before entering
4284 			 * f2fs_direct_IO().
4285 			 */
4286 			err = f2fs_convert_inline_inode(inode);
4287 			if (err)
4288 				goto out_err;
4289 			/*
4290 			 * If force_buffere_io() is true, we have to allocate
4291 			 * blocks all the time, since f2fs_direct_IO will fall
4292 			 * back to buffered IO.
4293 			 */
4294 			if (!f2fs_force_buffered_io(inode, iocb, from) &&
4295 					allow_outplace_dio(inode, iocb, from))
4296 				goto write;
4297 		}
4298 		preallocated = true;
4299 		target_size = iocb->ki_pos + iov_iter_count(from);
4300 
4301 		err = f2fs_preallocate_blocks(iocb, from);
4302 		if (err) {
4303 out_err:
4304 			clear_inode_flag(inode, FI_NO_PREALLOC);
4305 			inode_unlock(inode);
4306 			ret = err;
4307 			goto out;
4308 		}
4309 write:
4310 		ret = __generic_file_write_iter(iocb, from);
4311 		clear_inode_flag(inode, FI_NO_PREALLOC);
4312 
4313 		/* if we couldn't write data, we should deallocate blocks. */
4314 		if (preallocated && i_size_read(inode) < target_size) {
4315 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4316 			down_write(&F2FS_I(inode)->i_mmap_sem);
4317 			f2fs_truncate(inode);
4318 			up_write(&F2FS_I(inode)->i_mmap_sem);
4319 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4320 		}
4321 
4322 		if (ret > 0)
4323 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4324 	}
4325 unlock:
4326 	inode_unlock(inode);
4327 out:
4328 	trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4329 					iov_iter_count(from), ret);
4330 	if (ret > 0)
4331 		ret = generic_write_sync(iocb, ret);
4332 	return ret;
4333 }
4334 
4335 #ifdef CONFIG_COMPAT
4336 struct compat_f2fs_gc_range {
4337 	u32 sync;
4338 	compat_u64 start;
4339 	compat_u64 len;
4340 };
4341 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4342 						struct compat_f2fs_gc_range)
4343 
4344 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4345 {
4346 	struct compat_f2fs_gc_range __user *urange;
4347 	struct f2fs_gc_range range;
4348 	int err;
4349 
4350 	urange = compat_ptr(arg);
4351 	err = get_user(range.sync, &urange->sync);
4352 	err |= get_user(range.start, &urange->start);
4353 	err |= get_user(range.len, &urange->len);
4354 	if (err)
4355 		return -EFAULT;
4356 
4357 	return __f2fs_ioc_gc_range(file, &range);
4358 }
4359 
4360 struct compat_f2fs_move_range {
4361 	u32 dst_fd;
4362 	compat_u64 pos_in;
4363 	compat_u64 pos_out;
4364 	compat_u64 len;
4365 };
4366 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4367 					struct compat_f2fs_move_range)
4368 
4369 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4370 {
4371 	struct compat_f2fs_move_range __user *urange;
4372 	struct f2fs_move_range range;
4373 	int err;
4374 
4375 	urange = compat_ptr(arg);
4376 	err = get_user(range.dst_fd, &urange->dst_fd);
4377 	err |= get_user(range.pos_in, &urange->pos_in);
4378 	err |= get_user(range.pos_out, &urange->pos_out);
4379 	err |= get_user(range.len, &urange->len);
4380 	if (err)
4381 		return -EFAULT;
4382 
4383 	return __f2fs_ioc_move_range(file, &range);
4384 }
4385 
4386 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4387 {
4388 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4389 		return -EIO;
4390 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4391 		return -ENOSPC;
4392 
4393 	switch (cmd) {
4394 	case FS_IOC32_GETVERSION:
4395 		cmd = FS_IOC_GETVERSION;
4396 		break;
4397 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4398 		return f2fs_compat_ioc_gc_range(file, arg);
4399 	case F2FS_IOC32_MOVE_RANGE:
4400 		return f2fs_compat_ioc_move_range(file, arg);
4401 	case F2FS_IOC_START_ATOMIC_WRITE:
4402 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4403 	case F2FS_IOC_START_VOLATILE_WRITE:
4404 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4405 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
4406 	case F2FS_IOC_SHUTDOWN:
4407 	case FITRIM:
4408 	case FS_IOC_SET_ENCRYPTION_POLICY:
4409 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4410 	case FS_IOC_GET_ENCRYPTION_POLICY:
4411 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4412 	case FS_IOC_ADD_ENCRYPTION_KEY:
4413 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4414 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4415 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4416 	case FS_IOC_GET_ENCRYPTION_NONCE:
4417 	case F2FS_IOC_GARBAGE_COLLECT:
4418 	case F2FS_IOC_WRITE_CHECKPOINT:
4419 	case F2FS_IOC_DEFRAGMENT:
4420 	case F2FS_IOC_FLUSH_DEVICE:
4421 	case F2FS_IOC_GET_FEATURES:
4422 	case F2FS_IOC_GET_PIN_FILE:
4423 	case F2FS_IOC_SET_PIN_FILE:
4424 	case F2FS_IOC_PRECACHE_EXTENTS:
4425 	case F2FS_IOC_RESIZE_FS:
4426 	case FS_IOC_ENABLE_VERITY:
4427 	case FS_IOC_MEASURE_VERITY:
4428 	case FS_IOC_READ_VERITY_METADATA:
4429 	case FS_IOC_GETFSLABEL:
4430 	case FS_IOC_SETFSLABEL:
4431 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4432 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4433 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4434 	case F2FS_IOC_SEC_TRIM_FILE:
4435 	case F2FS_IOC_GET_COMPRESS_OPTION:
4436 	case F2FS_IOC_SET_COMPRESS_OPTION:
4437 	case F2FS_IOC_DECOMPRESS_FILE:
4438 	case F2FS_IOC_COMPRESS_FILE:
4439 		break;
4440 	default:
4441 		return -ENOIOCTLCMD;
4442 	}
4443 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4444 }
4445 #endif
4446 
4447 const struct file_operations f2fs_file_operations = {
4448 	.llseek		= f2fs_llseek,
4449 	.read_iter	= f2fs_file_read_iter,
4450 	.write_iter	= f2fs_file_write_iter,
4451 	.open		= f2fs_file_open,
4452 	.release	= f2fs_release_file,
4453 	.mmap		= f2fs_file_mmap,
4454 	.flush		= f2fs_file_flush,
4455 	.fsync		= f2fs_sync_file,
4456 	.fallocate	= f2fs_fallocate,
4457 	.unlocked_ioctl	= f2fs_ioctl,
4458 #ifdef CONFIG_COMPAT
4459 	.compat_ioctl	= f2fs_compat_ioctl,
4460 #endif
4461 	.splice_read	= generic_file_splice_read,
4462 	.splice_write	= iter_file_splice_write,
4463 };
4464