xref: /openbmc/linux/fs/f2fs/file.c (revision a86854d0)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35 
36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 	struct inode *inode = file_inode(vmf->vma->vm_file);
39 	vm_fault_t ret;
40 
41 	down_read(&F2FS_I(inode)->i_mmap_sem);
42 	ret = filemap_fault(vmf);
43 	up_read(&F2FS_I(inode)->i_mmap_sem);
44 
45 	return ret;
46 }
47 
48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 	struct page *page = vmf->page;
51 	struct inode *inode = file_inode(vmf->vma->vm_file);
52 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 	struct dnode_of_data dn;
54 	int err;
55 
56 	if (unlikely(f2fs_cp_error(sbi))) {
57 		err = -EIO;
58 		goto err;
59 	}
60 
61 	sb_start_pagefault(inode->i_sb);
62 
63 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
64 
65 	/* block allocation */
66 	f2fs_lock_op(sbi);
67 	set_new_dnode(&dn, inode, NULL, NULL, 0);
68 	err = f2fs_reserve_block(&dn, page->index);
69 	if (err) {
70 		f2fs_unlock_op(sbi);
71 		goto out;
72 	}
73 	f2fs_put_dnode(&dn);
74 	f2fs_unlock_op(sbi);
75 
76 	f2fs_balance_fs(sbi, dn.node_changed);
77 
78 	file_update_time(vmf->vma->vm_file);
79 	down_read(&F2FS_I(inode)->i_mmap_sem);
80 	lock_page(page);
81 	if (unlikely(page->mapping != inode->i_mapping ||
82 			page_offset(page) > i_size_read(inode) ||
83 			!PageUptodate(page))) {
84 		unlock_page(page);
85 		err = -EFAULT;
86 		goto out_sem;
87 	}
88 
89 	/*
90 	 * check to see if the page is mapped already (no holes)
91 	 */
92 	if (PageMappedToDisk(page))
93 		goto mapped;
94 
95 	/* page is wholly or partially inside EOF */
96 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
97 						i_size_read(inode)) {
98 		loff_t offset;
99 
100 		offset = i_size_read(inode) & ~PAGE_MASK;
101 		zero_user_segment(page, offset, PAGE_SIZE);
102 	}
103 	set_page_dirty(page);
104 	if (!PageUptodate(page))
105 		SetPageUptodate(page);
106 
107 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
108 
109 	trace_f2fs_vm_page_mkwrite(page, DATA);
110 mapped:
111 	/* fill the page */
112 	f2fs_wait_on_page_writeback(page, DATA, false);
113 
114 	/* wait for GCed page writeback via META_MAPPING */
115 	if (f2fs_post_read_required(inode))
116 		f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
117 
118 out_sem:
119 	up_read(&F2FS_I(inode)->i_mmap_sem);
120 out:
121 	sb_end_pagefault(inode->i_sb);
122 	f2fs_update_time(sbi, REQ_TIME);
123 err:
124 	return block_page_mkwrite_return(err);
125 }
126 
127 static const struct vm_operations_struct f2fs_file_vm_ops = {
128 	.fault		= f2fs_filemap_fault,
129 	.map_pages	= filemap_map_pages,
130 	.page_mkwrite	= f2fs_vm_page_mkwrite,
131 };
132 
133 static int get_parent_ino(struct inode *inode, nid_t *pino)
134 {
135 	struct dentry *dentry;
136 
137 	inode = igrab(inode);
138 	dentry = d_find_any_alias(inode);
139 	iput(inode);
140 	if (!dentry)
141 		return 0;
142 
143 	*pino = parent_ino(dentry);
144 	dput(dentry);
145 	return 1;
146 }
147 
148 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
149 {
150 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
151 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
152 
153 	if (!S_ISREG(inode->i_mode))
154 		cp_reason = CP_NON_REGULAR;
155 	else if (inode->i_nlink != 1)
156 		cp_reason = CP_HARDLINK;
157 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
158 		cp_reason = CP_SB_NEED_CP;
159 	else if (file_wrong_pino(inode))
160 		cp_reason = CP_WRONG_PINO;
161 	else if (!f2fs_space_for_roll_forward(sbi))
162 		cp_reason = CP_NO_SPC_ROLL;
163 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
164 		cp_reason = CP_NODE_NEED_CP;
165 	else if (test_opt(sbi, FASTBOOT))
166 		cp_reason = CP_FASTBOOT_MODE;
167 	else if (F2FS_OPTION(sbi).active_logs == 2)
168 		cp_reason = CP_SPEC_LOG_NUM;
169 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
170 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
171 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
172 							TRANS_DIR_INO))
173 		cp_reason = CP_RECOVER_DIR;
174 
175 	return cp_reason;
176 }
177 
178 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
179 {
180 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
181 	bool ret = false;
182 	/* But we need to avoid that there are some inode updates */
183 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
184 		ret = true;
185 	f2fs_put_page(i, 0);
186 	return ret;
187 }
188 
189 static void try_to_fix_pino(struct inode *inode)
190 {
191 	struct f2fs_inode_info *fi = F2FS_I(inode);
192 	nid_t pino;
193 
194 	down_write(&fi->i_sem);
195 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
196 			get_parent_ino(inode, &pino)) {
197 		f2fs_i_pino_write(inode, pino);
198 		file_got_pino(inode);
199 	}
200 	up_write(&fi->i_sem);
201 }
202 
203 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
204 						int datasync, bool atomic)
205 {
206 	struct inode *inode = file->f_mapping->host;
207 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
208 	nid_t ino = inode->i_ino;
209 	int ret = 0;
210 	enum cp_reason_type cp_reason = 0;
211 	struct writeback_control wbc = {
212 		.sync_mode = WB_SYNC_ALL,
213 		.nr_to_write = LONG_MAX,
214 		.for_reclaim = 0,
215 	};
216 
217 	if (unlikely(f2fs_readonly(inode->i_sb)))
218 		return 0;
219 
220 	trace_f2fs_sync_file_enter(inode);
221 
222 	/* if fdatasync is triggered, let's do in-place-update */
223 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
224 		set_inode_flag(inode, FI_NEED_IPU);
225 	ret = file_write_and_wait_range(file, start, end);
226 	clear_inode_flag(inode, FI_NEED_IPU);
227 
228 	if (ret) {
229 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
230 		return ret;
231 	}
232 
233 	/* if the inode is dirty, let's recover all the time */
234 	if (!f2fs_skip_inode_update(inode, datasync)) {
235 		f2fs_write_inode(inode, NULL);
236 		goto go_write;
237 	}
238 
239 	/*
240 	 * if there is no written data, don't waste time to write recovery info.
241 	 */
242 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
243 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
244 
245 		/* it may call write_inode just prior to fsync */
246 		if (need_inode_page_update(sbi, ino))
247 			goto go_write;
248 
249 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
250 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
251 			goto flush_out;
252 		goto out;
253 	}
254 go_write:
255 	/*
256 	 * Both of fdatasync() and fsync() are able to be recovered from
257 	 * sudden-power-off.
258 	 */
259 	down_read(&F2FS_I(inode)->i_sem);
260 	cp_reason = need_do_checkpoint(inode);
261 	up_read(&F2FS_I(inode)->i_sem);
262 
263 	if (cp_reason) {
264 		/* all the dirty node pages should be flushed for POR */
265 		ret = f2fs_sync_fs(inode->i_sb, 1);
266 
267 		/*
268 		 * We've secured consistency through sync_fs. Following pino
269 		 * will be used only for fsynced inodes after checkpoint.
270 		 */
271 		try_to_fix_pino(inode);
272 		clear_inode_flag(inode, FI_APPEND_WRITE);
273 		clear_inode_flag(inode, FI_UPDATE_WRITE);
274 		goto out;
275 	}
276 sync_nodes:
277 	atomic_inc(&sbi->wb_sync_req[NODE]);
278 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic);
279 	atomic_dec(&sbi->wb_sync_req[NODE]);
280 	if (ret)
281 		goto out;
282 
283 	/* if cp_error was enabled, we should avoid infinite loop */
284 	if (unlikely(f2fs_cp_error(sbi))) {
285 		ret = -EIO;
286 		goto out;
287 	}
288 
289 	if (f2fs_need_inode_block_update(sbi, ino)) {
290 		f2fs_mark_inode_dirty_sync(inode, true);
291 		f2fs_write_inode(inode, NULL);
292 		goto sync_nodes;
293 	}
294 
295 	/*
296 	 * If it's atomic_write, it's just fine to keep write ordering. So
297 	 * here we don't need to wait for node write completion, since we use
298 	 * node chain which serializes node blocks. If one of node writes are
299 	 * reordered, we can see simply broken chain, resulting in stopping
300 	 * roll-forward recovery. It means we'll recover all or none node blocks
301 	 * given fsync mark.
302 	 */
303 	if (!atomic) {
304 		ret = f2fs_wait_on_node_pages_writeback(sbi, ino);
305 		if (ret)
306 			goto out;
307 	}
308 
309 	/* once recovery info is written, don't need to tack this */
310 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
311 	clear_inode_flag(inode, FI_APPEND_WRITE);
312 flush_out:
313 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
314 		ret = f2fs_issue_flush(sbi, inode->i_ino);
315 	if (!ret) {
316 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
317 		clear_inode_flag(inode, FI_UPDATE_WRITE);
318 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
319 	}
320 	f2fs_update_time(sbi, REQ_TIME);
321 out:
322 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
323 	f2fs_trace_ios(NULL, 1);
324 	return ret;
325 }
326 
327 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
328 {
329 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
330 		return -EIO;
331 	return f2fs_do_sync_file(file, start, end, datasync, false);
332 }
333 
334 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
335 						pgoff_t pgofs, int whence)
336 {
337 	struct page *page;
338 	int nr_pages;
339 
340 	if (whence != SEEK_DATA)
341 		return 0;
342 
343 	/* find first dirty page index */
344 	nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
345 				      1, &page);
346 	if (!nr_pages)
347 		return ULONG_MAX;
348 	pgofs = page->index;
349 	put_page(page);
350 	return pgofs;
351 }
352 
353 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
354 							int whence)
355 {
356 	switch (whence) {
357 	case SEEK_DATA:
358 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
359 			is_valid_blkaddr(blkaddr))
360 			return true;
361 		break;
362 	case SEEK_HOLE:
363 		if (blkaddr == NULL_ADDR)
364 			return true;
365 		break;
366 	}
367 	return false;
368 }
369 
370 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
371 {
372 	struct inode *inode = file->f_mapping->host;
373 	loff_t maxbytes = inode->i_sb->s_maxbytes;
374 	struct dnode_of_data dn;
375 	pgoff_t pgofs, end_offset, dirty;
376 	loff_t data_ofs = offset;
377 	loff_t isize;
378 	int err = 0;
379 
380 	inode_lock(inode);
381 
382 	isize = i_size_read(inode);
383 	if (offset >= isize)
384 		goto fail;
385 
386 	/* handle inline data case */
387 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
388 		if (whence == SEEK_HOLE)
389 			data_ofs = isize;
390 		goto found;
391 	}
392 
393 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
394 
395 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
396 
397 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
398 		set_new_dnode(&dn, inode, NULL, NULL, 0);
399 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
400 		if (err && err != -ENOENT) {
401 			goto fail;
402 		} else if (err == -ENOENT) {
403 			/* direct node does not exists */
404 			if (whence == SEEK_DATA) {
405 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
406 				continue;
407 			} else {
408 				goto found;
409 			}
410 		}
411 
412 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
413 
414 		/* find data/hole in dnode block */
415 		for (; dn.ofs_in_node < end_offset;
416 				dn.ofs_in_node++, pgofs++,
417 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
418 			block_t blkaddr;
419 
420 			blkaddr = datablock_addr(dn.inode,
421 					dn.node_page, dn.ofs_in_node);
422 
423 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
424 				f2fs_put_dnode(&dn);
425 				goto found;
426 			}
427 		}
428 		f2fs_put_dnode(&dn);
429 	}
430 
431 	if (whence == SEEK_DATA)
432 		goto fail;
433 found:
434 	if (whence == SEEK_HOLE && data_ofs > isize)
435 		data_ofs = isize;
436 	inode_unlock(inode);
437 	return vfs_setpos(file, data_ofs, maxbytes);
438 fail:
439 	inode_unlock(inode);
440 	return -ENXIO;
441 }
442 
443 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
444 {
445 	struct inode *inode = file->f_mapping->host;
446 	loff_t maxbytes = inode->i_sb->s_maxbytes;
447 
448 	switch (whence) {
449 	case SEEK_SET:
450 	case SEEK_CUR:
451 	case SEEK_END:
452 		return generic_file_llseek_size(file, offset, whence,
453 						maxbytes, i_size_read(inode));
454 	case SEEK_DATA:
455 	case SEEK_HOLE:
456 		if (offset < 0)
457 			return -ENXIO;
458 		return f2fs_seek_block(file, offset, whence);
459 	}
460 
461 	return -EINVAL;
462 }
463 
464 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
465 {
466 	struct inode *inode = file_inode(file);
467 	int err;
468 
469 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
470 		return -EIO;
471 
472 	/* we don't need to use inline_data strictly */
473 	err = f2fs_convert_inline_inode(inode);
474 	if (err)
475 		return err;
476 
477 	file_accessed(file);
478 	vma->vm_ops = &f2fs_file_vm_ops;
479 	return 0;
480 }
481 
482 static int f2fs_file_open(struct inode *inode, struct file *filp)
483 {
484 	int err = fscrypt_file_open(inode, filp);
485 
486 	if (err)
487 		return err;
488 
489 	filp->f_mode |= FMODE_NOWAIT;
490 
491 	return dquot_file_open(inode, filp);
492 }
493 
494 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
495 {
496 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
497 	struct f2fs_node *raw_node;
498 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
499 	__le32 *addr;
500 	int base = 0;
501 
502 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
503 		base = get_extra_isize(dn->inode);
504 
505 	raw_node = F2FS_NODE(dn->node_page);
506 	addr = blkaddr_in_node(raw_node) + base + ofs;
507 
508 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
509 		block_t blkaddr = le32_to_cpu(*addr);
510 
511 		if (blkaddr == NULL_ADDR)
512 			continue;
513 
514 		dn->data_blkaddr = NULL_ADDR;
515 		f2fs_set_data_blkaddr(dn);
516 		f2fs_invalidate_blocks(sbi, blkaddr);
517 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
518 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
519 		nr_free++;
520 	}
521 
522 	if (nr_free) {
523 		pgoff_t fofs;
524 		/*
525 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
526 		 * we will invalidate all blkaddr in the whole range.
527 		 */
528 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
529 							dn->inode) + ofs;
530 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
531 		dec_valid_block_count(sbi, dn->inode, nr_free);
532 	}
533 	dn->ofs_in_node = ofs;
534 
535 	f2fs_update_time(sbi, REQ_TIME);
536 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
537 					 dn->ofs_in_node, nr_free);
538 }
539 
540 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
541 {
542 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
543 }
544 
545 static int truncate_partial_data_page(struct inode *inode, u64 from,
546 								bool cache_only)
547 {
548 	loff_t offset = from & (PAGE_SIZE - 1);
549 	pgoff_t index = from >> PAGE_SHIFT;
550 	struct address_space *mapping = inode->i_mapping;
551 	struct page *page;
552 
553 	if (!offset && !cache_only)
554 		return 0;
555 
556 	if (cache_only) {
557 		page = find_lock_page(mapping, index);
558 		if (page && PageUptodate(page))
559 			goto truncate_out;
560 		f2fs_put_page(page, 1);
561 		return 0;
562 	}
563 
564 	page = f2fs_get_lock_data_page(inode, index, true);
565 	if (IS_ERR(page))
566 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
567 truncate_out:
568 	f2fs_wait_on_page_writeback(page, DATA, true);
569 	zero_user(page, offset, PAGE_SIZE - offset);
570 
571 	/* An encrypted inode should have a key and truncate the last page. */
572 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
573 	if (!cache_only)
574 		set_page_dirty(page);
575 	f2fs_put_page(page, 1);
576 	return 0;
577 }
578 
579 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
580 {
581 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
582 	struct dnode_of_data dn;
583 	pgoff_t free_from;
584 	int count = 0, err = 0;
585 	struct page *ipage;
586 	bool truncate_page = false;
587 
588 	trace_f2fs_truncate_blocks_enter(inode, from);
589 
590 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
591 
592 	if (free_from >= sbi->max_file_blocks)
593 		goto free_partial;
594 
595 	if (lock)
596 		f2fs_lock_op(sbi);
597 
598 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
599 	if (IS_ERR(ipage)) {
600 		err = PTR_ERR(ipage);
601 		goto out;
602 	}
603 
604 	if (f2fs_has_inline_data(inode)) {
605 		f2fs_truncate_inline_inode(inode, ipage, from);
606 		f2fs_put_page(ipage, 1);
607 		truncate_page = true;
608 		goto out;
609 	}
610 
611 	set_new_dnode(&dn, inode, ipage, NULL, 0);
612 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
613 	if (err) {
614 		if (err == -ENOENT)
615 			goto free_next;
616 		goto out;
617 	}
618 
619 	count = ADDRS_PER_PAGE(dn.node_page, inode);
620 
621 	count -= dn.ofs_in_node;
622 	f2fs_bug_on(sbi, count < 0);
623 
624 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
625 		f2fs_truncate_data_blocks_range(&dn, count);
626 		free_from += count;
627 	}
628 
629 	f2fs_put_dnode(&dn);
630 free_next:
631 	err = f2fs_truncate_inode_blocks(inode, free_from);
632 out:
633 	if (lock)
634 		f2fs_unlock_op(sbi);
635 free_partial:
636 	/* lastly zero out the first data page */
637 	if (!err)
638 		err = truncate_partial_data_page(inode, from, truncate_page);
639 
640 	trace_f2fs_truncate_blocks_exit(inode, err);
641 	return err;
642 }
643 
644 int f2fs_truncate(struct inode *inode)
645 {
646 	int err;
647 
648 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
649 		return -EIO;
650 
651 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
652 				S_ISLNK(inode->i_mode)))
653 		return 0;
654 
655 	trace_f2fs_truncate(inode);
656 
657 #ifdef CONFIG_F2FS_FAULT_INJECTION
658 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
659 		f2fs_show_injection_info(FAULT_TRUNCATE);
660 		return -EIO;
661 	}
662 #endif
663 	/* we should check inline_data size */
664 	if (!f2fs_may_inline_data(inode)) {
665 		err = f2fs_convert_inline_inode(inode);
666 		if (err)
667 			return err;
668 	}
669 
670 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
671 	if (err)
672 		return err;
673 
674 	inode->i_mtime = inode->i_ctime = current_time(inode);
675 	f2fs_mark_inode_dirty_sync(inode, false);
676 	return 0;
677 }
678 
679 int f2fs_getattr(const struct path *path, struct kstat *stat,
680 		 u32 request_mask, unsigned int query_flags)
681 {
682 	struct inode *inode = d_inode(path->dentry);
683 	struct f2fs_inode_info *fi = F2FS_I(inode);
684 	struct f2fs_inode *ri;
685 	unsigned int flags;
686 
687 	if (f2fs_has_extra_attr(inode) &&
688 			f2fs_sb_has_inode_crtime(inode->i_sb) &&
689 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
690 		stat->result_mask |= STATX_BTIME;
691 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
692 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
693 	}
694 
695 	flags = fi->i_flags & F2FS_FL_USER_VISIBLE;
696 	if (flags & F2FS_APPEND_FL)
697 		stat->attributes |= STATX_ATTR_APPEND;
698 	if (flags & F2FS_COMPR_FL)
699 		stat->attributes |= STATX_ATTR_COMPRESSED;
700 	if (f2fs_encrypted_inode(inode))
701 		stat->attributes |= STATX_ATTR_ENCRYPTED;
702 	if (flags & F2FS_IMMUTABLE_FL)
703 		stat->attributes |= STATX_ATTR_IMMUTABLE;
704 	if (flags & F2FS_NODUMP_FL)
705 		stat->attributes |= STATX_ATTR_NODUMP;
706 
707 	stat->attributes_mask |= (STATX_ATTR_APPEND |
708 				  STATX_ATTR_COMPRESSED |
709 				  STATX_ATTR_ENCRYPTED |
710 				  STATX_ATTR_IMMUTABLE |
711 				  STATX_ATTR_NODUMP);
712 
713 	generic_fillattr(inode, stat);
714 
715 	/* we need to show initial sectors used for inline_data/dentries */
716 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
717 					f2fs_has_inline_dentry(inode))
718 		stat->blocks += (stat->size + 511) >> 9;
719 
720 	return 0;
721 }
722 
723 #ifdef CONFIG_F2FS_FS_POSIX_ACL
724 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
725 {
726 	unsigned int ia_valid = attr->ia_valid;
727 
728 	if (ia_valid & ATTR_UID)
729 		inode->i_uid = attr->ia_uid;
730 	if (ia_valid & ATTR_GID)
731 		inode->i_gid = attr->ia_gid;
732 	if (ia_valid & ATTR_ATIME)
733 		inode->i_atime = timespec_trunc(attr->ia_atime,
734 						inode->i_sb->s_time_gran);
735 	if (ia_valid & ATTR_MTIME)
736 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
737 						inode->i_sb->s_time_gran);
738 	if (ia_valid & ATTR_CTIME)
739 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
740 						inode->i_sb->s_time_gran);
741 	if (ia_valid & ATTR_MODE) {
742 		umode_t mode = attr->ia_mode;
743 
744 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
745 			mode &= ~S_ISGID;
746 		set_acl_inode(inode, mode);
747 	}
748 }
749 #else
750 #define __setattr_copy setattr_copy
751 #endif
752 
753 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
754 {
755 	struct inode *inode = d_inode(dentry);
756 	int err;
757 	bool size_changed = false;
758 
759 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
760 		return -EIO;
761 
762 	err = setattr_prepare(dentry, attr);
763 	if (err)
764 		return err;
765 
766 	err = fscrypt_prepare_setattr(dentry, attr);
767 	if (err)
768 		return err;
769 
770 	if (is_quota_modification(inode, attr)) {
771 		err = dquot_initialize(inode);
772 		if (err)
773 			return err;
774 	}
775 	if ((attr->ia_valid & ATTR_UID &&
776 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
777 		(attr->ia_valid & ATTR_GID &&
778 		!gid_eq(attr->ia_gid, inode->i_gid))) {
779 		err = dquot_transfer(inode, attr);
780 		if (err)
781 			return err;
782 	}
783 
784 	if (attr->ia_valid & ATTR_SIZE) {
785 		if (attr->ia_size <= i_size_read(inode)) {
786 			down_write(&F2FS_I(inode)->i_mmap_sem);
787 			truncate_setsize(inode, attr->ia_size);
788 			err = f2fs_truncate(inode);
789 			up_write(&F2FS_I(inode)->i_mmap_sem);
790 			if (err)
791 				return err;
792 		} else {
793 			/*
794 			 * do not trim all blocks after i_size if target size is
795 			 * larger than i_size.
796 			 */
797 			down_write(&F2FS_I(inode)->i_mmap_sem);
798 			truncate_setsize(inode, attr->ia_size);
799 			up_write(&F2FS_I(inode)->i_mmap_sem);
800 
801 			/* should convert inline inode here */
802 			if (!f2fs_may_inline_data(inode)) {
803 				err = f2fs_convert_inline_inode(inode);
804 				if (err)
805 					return err;
806 			}
807 			inode->i_mtime = inode->i_ctime = current_time(inode);
808 		}
809 
810 		down_write(&F2FS_I(inode)->i_sem);
811 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
812 		up_write(&F2FS_I(inode)->i_sem);
813 
814 		size_changed = true;
815 	}
816 
817 	__setattr_copy(inode, attr);
818 
819 	if (attr->ia_valid & ATTR_MODE) {
820 		err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
821 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
822 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
823 			clear_inode_flag(inode, FI_ACL_MODE);
824 		}
825 	}
826 
827 	/* file size may changed here */
828 	f2fs_mark_inode_dirty_sync(inode, size_changed);
829 
830 	/* inode change will produce dirty node pages flushed by checkpoint */
831 	f2fs_balance_fs(F2FS_I_SB(inode), true);
832 
833 	return err;
834 }
835 
836 const struct inode_operations f2fs_file_inode_operations = {
837 	.getattr	= f2fs_getattr,
838 	.setattr	= f2fs_setattr,
839 	.get_acl	= f2fs_get_acl,
840 	.set_acl	= f2fs_set_acl,
841 #ifdef CONFIG_F2FS_FS_XATTR
842 	.listxattr	= f2fs_listxattr,
843 #endif
844 	.fiemap		= f2fs_fiemap,
845 };
846 
847 static int fill_zero(struct inode *inode, pgoff_t index,
848 					loff_t start, loff_t len)
849 {
850 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
851 	struct page *page;
852 
853 	if (!len)
854 		return 0;
855 
856 	f2fs_balance_fs(sbi, true);
857 
858 	f2fs_lock_op(sbi);
859 	page = f2fs_get_new_data_page(inode, NULL, index, false);
860 	f2fs_unlock_op(sbi);
861 
862 	if (IS_ERR(page))
863 		return PTR_ERR(page);
864 
865 	f2fs_wait_on_page_writeback(page, DATA, true);
866 	zero_user(page, start, len);
867 	set_page_dirty(page);
868 	f2fs_put_page(page, 1);
869 	return 0;
870 }
871 
872 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
873 {
874 	int err;
875 
876 	while (pg_start < pg_end) {
877 		struct dnode_of_data dn;
878 		pgoff_t end_offset, count;
879 
880 		set_new_dnode(&dn, inode, NULL, NULL, 0);
881 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
882 		if (err) {
883 			if (err == -ENOENT) {
884 				pg_start = f2fs_get_next_page_offset(&dn,
885 								pg_start);
886 				continue;
887 			}
888 			return err;
889 		}
890 
891 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
892 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
893 
894 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
895 
896 		f2fs_truncate_data_blocks_range(&dn, count);
897 		f2fs_put_dnode(&dn);
898 
899 		pg_start += count;
900 	}
901 	return 0;
902 }
903 
904 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
905 {
906 	pgoff_t pg_start, pg_end;
907 	loff_t off_start, off_end;
908 	int ret;
909 
910 	ret = f2fs_convert_inline_inode(inode);
911 	if (ret)
912 		return ret;
913 
914 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
915 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
916 
917 	off_start = offset & (PAGE_SIZE - 1);
918 	off_end = (offset + len) & (PAGE_SIZE - 1);
919 
920 	if (pg_start == pg_end) {
921 		ret = fill_zero(inode, pg_start, off_start,
922 						off_end - off_start);
923 		if (ret)
924 			return ret;
925 	} else {
926 		if (off_start) {
927 			ret = fill_zero(inode, pg_start++, off_start,
928 						PAGE_SIZE - off_start);
929 			if (ret)
930 				return ret;
931 		}
932 		if (off_end) {
933 			ret = fill_zero(inode, pg_end, 0, off_end);
934 			if (ret)
935 				return ret;
936 		}
937 
938 		if (pg_start < pg_end) {
939 			struct address_space *mapping = inode->i_mapping;
940 			loff_t blk_start, blk_end;
941 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
942 
943 			f2fs_balance_fs(sbi, true);
944 
945 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
946 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
947 			down_write(&F2FS_I(inode)->i_mmap_sem);
948 			truncate_inode_pages_range(mapping, blk_start,
949 					blk_end - 1);
950 
951 			f2fs_lock_op(sbi);
952 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
953 			f2fs_unlock_op(sbi);
954 			up_write(&F2FS_I(inode)->i_mmap_sem);
955 		}
956 	}
957 
958 	return ret;
959 }
960 
961 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
962 				int *do_replace, pgoff_t off, pgoff_t len)
963 {
964 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
965 	struct dnode_of_data dn;
966 	int ret, done, i;
967 
968 next_dnode:
969 	set_new_dnode(&dn, inode, NULL, NULL, 0);
970 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
971 	if (ret && ret != -ENOENT) {
972 		return ret;
973 	} else if (ret == -ENOENT) {
974 		if (dn.max_level == 0)
975 			return -ENOENT;
976 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
977 		blkaddr += done;
978 		do_replace += done;
979 		goto next;
980 	}
981 
982 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
983 							dn.ofs_in_node, len);
984 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
985 		*blkaddr = datablock_addr(dn.inode,
986 					dn.node_page, dn.ofs_in_node);
987 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
988 
989 			if (test_opt(sbi, LFS)) {
990 				f2fs_put_dnode(&dn);
991 				return -ENOTSUPP;
992 			}
993 
994 			/* do not invalidate this block address */
995 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
996 			*do_replace = 1;
997 		}
998 	}
999 	f2fs_put_dnode(&dn);
1000 next:
1001 	len -= done;
1002 	off += done;
1003 	if (len)
1004 		goto next_dnode;
1005 	return 0;
1006 }
1007 
1008 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1009 				int *do_replace, pgoff_t off, int len)
1010 {
1011 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1012 	struct dnode_of_data dn;
1013 	int ret, i;
1014 
1015 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1016 		if (*do_replace == 0)
1017 			continue;
1018 
1019 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1020 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1021 		if (ret) {
1022 			dec_valid_block_count(sbi, inode, 1);
1023 			f2fs_invalidate_blocks(sbi, *blkaddr);
1024 		} else {
1025 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1026 		}
1027 		f2fs_put_dnode(&dn);
1028 	}
1029 	return 0;
1030 }
1031 
1032 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1033 			block_t *blkaddr, int *do_replace,
1034 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1035 {
1036 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1037 	pgoff_t i = 0;
1038 	int ret;
1039 
1040 	while (i < len) {
1041 		if (blkaddr[i] == NULL_ADDR && !full) {
1042 			i++;
1043 			continue;
1044 		}
1045 
1046 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1047 			struct dnode_of_data dn;
1048 			struct node_info ni;
1049 			size_t new_size;
1050 			pgoff_t ilen;
1051 
1052 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1053 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1054 			if (ret)
1055 				return ret;
1056 
1057 			f2fs_get_node_info(sbi, dn.nid, &ni);
1058 			ilen = min((pgoff_t)
1059 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1060 						dn.ofs_in_node, len - i);
1061 			do {
1062 				dn.data_blkaddr = datablock_addr(dn.inode,
1063 						dn.node_page, dn.ofs_in_node);
1064 				f2fs_truncate_data_blocks_range(&dn, 1);
1065 
1066 				if (do_replace[i]) {
1067 					f2fs_i_blocks_write(src_inode,
1068 							1, false, false);
1069 					f2fs_i_blocks_write(dst_inode,
1070 							1, true, false);
1071 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1072 					blkaddr[i], ni.version, true, false);
1073 
1074 					do_replace[i] = 0;
1075 				}
1076 				dn.ofs_in_node++;
1077 				i++;
1078 				new_size = (dst + i) << PAGE_SHIFT;
1079 				if (dst_inode->i_size < new_size)
1080 					f2fs_i_size_write(dst_inode, new_size);
1081 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1082 
1083 			f2fs_put_dnode(&dn);
1084 		} else {
1085 			struct page *psrc, *pdst;
1086 
1087 			psrc = f2fs_get_lock_data_page(src_inode,
1088 							src + i, true);
1089 			if (IS_ERR(psrc))
1090 				return PTR_ERR(psrc);
1091 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1092 								true);
1093 			if (IS_ERR(pdst)) {
1094 				f2fs_put_page(psrc, 1);
1095 				return PTR_ERR(pdst);
1096 			}
1097 			f2fs_copy_page(psrc, pdst);
1098 			set_page_dirty(pdst);
1099 			f2fs_put_page(pdst, 1);
1100 			f2fs_put_page(psrc, 1);
1101 
1102 			ret = f2fs_truncate_hole(src_inode,
1103 						src + i, src + i + 1);
1104 			if (ret)
1105 				return ret;
1106 			i++;
1107 		}
1108 	}
1109 	return 0;
1110 }
1111 
1112 static int __exchange_data_block(struct inode *src_inode,
1113 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1114 			pgoff_t len, bool full)
1115 {
1116 	block_t *src_blkaddr;
1117 	int *do_replace;
1118 	pgoff_t olen;
1119 	int ret;
1120 
1121 	while (len) {
1122 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1123 
1124 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1125 					sizeof(block_t) * olen, GFP_KERNEL);
1126 		if (!src_blkaddr)
1127 			return -ENOMEM;
1128 
1129 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1130 					sizeof(int) * olen, GFP_KERNEL);
1131 		if (!do_replace) {
1132 			kvfree(src_blkaddr);
1133 			return -ENOMEM;
1134 		}
1135 
1136 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1137 					do_replace, src, olen);
1138 		if (ret)
1139 			goto roll_back;
1140 
1141 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1142 					do_replace, src, dst, olen, full);
1143 		if (ret)
1144 			goto roll_back;
1145 
1146 		src += olen;
1147 		dst += olen;
1148 		len -= olen;
1149 
1150 		kvfree(src_blkaddr);
1151 		kvfree(do_replace);
1152 	}
1153 	return 0;
1154 
1155 roll_back:
1156 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1157 	kvfree(src_blkaddr);
1158 	kvfree(do_replace);
1159 	return ret;
1160 }
1161 
1162 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1163 {
1164 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1165 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1166 	int ret;
1167 
1168 	f2fs_balance_fs(sbi, true);
1169 	f2fs_lock_op(sbi);
1170 
1171 	f2fs_drop_extent_tree(inode);
1172 
1173 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1174 	f2fs_unlock_op(sbi);
1175 	return ret;
1176 }
1177 
1178 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1179 {
1180 	pgoff_t pg_start, pg_end;
1181 	loff_t new_size;
1182 	int ret;
1183 
1184 	if (offset + len >= i_size_read(inode))
1185 		return -EINVAL;
1186 
1187 	/* collapse range should be aligned to block size of f2fs. */
1188 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1189 		return -EINVAL;
1190 
1191 	ret = f2fs_convert_inline_inode(inode);
1192 	if (ret)
1193 		return ret;
1194 
1195 	pg_start = offset >> PAGE_SHIFT;
1196 	pg_end = (offset + len) >> PAGE_SHIFT;
1197 
1198 	/* avoid gc operation during block exchange */
1199 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1200 
1201 	down_write(&F2FS_I(inode)->i_mmap_sem);
1202 	/* write out all dirty pages from offset */
1203 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1204 	if (ret)
1205 		goto out_unlock;
1206 
1207 	truncate_pagecache(inode, offset);
1208 
1209 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1210 	if (ret)
1211 		goto out_unlock;
1212 
1213 	/* write out all moved pages, if possible */
1214 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1215 	truncate_pagecache(inode, offset);
1216 
1217 	new_size = i_size_read(inode) - len;
1218 	truncate_pagecache(inode, new_size);
1219 
1220 	ret = f2fs_truncate_blocks(inode, new_size, true);
1221 	if (!ret)
1222 		f2fs_i_size_write(inode, new_size);
1223 out_unlock:
1224 	up_write(&F2FS_I(inode)->i_mmap_sem);
1225 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1226 	return ret;
1227 }
1228 
1229 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1230 								pgoff_t end)
1231 {
1232 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1233 	pgoff_t index = start;
1234 	unsigned int ofs_in_node = dn->ofs_in_node;
1235 	blkcnt_t count = 0;
1236 	int ret;
1237 
1238 	for (; index < end; index++, dn->ofs_in_node++) {
1239 		if (datablock_addr(dn->inode, dn->node_page,
1240 					dn->ofs_in_node) == NULL_ADDR)
1241 			count++;
1242 	}
1243 
1244 	dn->ofs_in_node = ofs_in_node;
1245 	ret = f2fs_reserve_new_blocks(dn, count);
1246 	if (ret)
1247 		return ret;
1248 
1249 	dn->ofs_in_node = ofs_in_node;
1250 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1251 		dn->data_blkaddr = datablock_addr(dn->inode,
1252 					dn->node_page, dn->ofs_in_node);
1253 		/*
1254 		 * f2fs_reserve_new_blocks will not guarantee entire block
1255 		 * allocation.
1256 		 */
1257 		if (dn->data_blkaddr == NULL_ADDR) {
1258 			ret = -ENOSPC;
1259 			break;
1260 		}
1261 		if (dn->data_blkaddr != NEW_ADDR) {
1262 			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1263 			dn->data_blkaddr = NEW_ADDR;
1264 			f2fs_set_data_blkaddr(dn);
1265 		}
1266 	}
1267 
1268 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1269 
1270 	return ret;
1271 }
1272 
1273 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1274 								int mode)
1275 {
1276 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1277 	struct address_space *mapping = inode->i_mapping;
1278 	pgoff_t index, pg_start, pg_end;
1279 	loff_t new_size = i_size_read(inode);
1280 	loff_t off_start, off_end;
1281 	int ret = 0;
1282 
1283 	ret = inode_newsize_ok(inode, (len + offset));
1284 	if (ret)
1285 		return ret;
1286 
1287 	ret = f2fs_convert_inline_inode(inode);
1288 	if (ret)
1289 		return ret;
1290 
1291 	down_write(&F2FS_I(inode)->i_mmap_sem);
1292 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1293 	if (ret)
1294 		goto out_sem;
1295 
1296 	truncate_pagecache_range(inode, offset, offset + len - 1);
1297 
1298 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1299 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1300 
1301 	off_start = offset & (PAGE_SIZE - 1);
1302 	off_end = (offset + len) & (PAGE_SIZE - 1);
1303 
1304 	if (pg_start == pg_end) {
1305 		ret = fill_zero(inode, pg_start, off_start,
1306 						off_end - off_start);
1307 		if (ret)
1308 			goto out_sem;
1309 
1310 		new_size = max_t(loff_t, new_size, offset + len);
1311 	} else {
1312 		if (off_start) {
1313 			ret = fill_zero(inode, pg_start++, off_start,
1314 						PAGE_SIZE - off_start);
1315 			if (ret)
1316 				goto out_sem;
1317 
1318 			new_size = max_t(loff_t, new_size,
1319 					(loff_t)pg_start << PAGE_SHIFT);
1320 		}
1321 
1322 		for (index = pg_start; index < pg_end;) {
1323 			struct dnode_of_data dn;
1324 			unsigned int end_offset;
1325 			pgoff_t end;
1326 
1327 			f2fs_lock_op(sbi);
1328 
1329 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1330 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1331 			if (ret) {
1332 				f2fs_unlock_op(sbi);
1333 				goto out;
1334 			}
1335 
1336 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1337 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1338 
1339 			ret = f2fs_do_zero_range(&dn, index, end);
1340 			f2fs_put_dnode(&dn);
1341 			f2fs_unlock_op(sbi);
1342 
1343 			f2fs_balance_fs(sbi, dn.node_changed);
1344 
1345 			if (ret)
1346 				goto out;
1347 
1348 			index = end;
1349 			new_size = max_t(loff_t, new_size,
1350 					(loff_t)index << PAGE_SHIFT);
1351 		}
1352 
1353 		if (off_end) {
1354 			ret = fill_zero(inode, pg_end, 0, off_end);
1355 			if (ret)
1356 				goto out;
1357 
1358 			new_size = max_t(loff_t, new_size, offset + len);
1359 		}
1360 	}
1361 
1362 out:
1363 	if (new_size > i_size_read(inode)) {
1364 		if (mode & FALLOC_FL_KEEP_SIZE)
1365 			file_set_keep_isize(inode);
1366 		else
1367 			f2fs_i_size_write(inode, new_size);
1368 	}
1369 out_sem:
1370 	up_write(&F2FS_I(inode)->i_mmap_sem);
1371 
1372 	return ret;
1373 }
1374 
1375 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1376 {
1377 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1378 	pgoff_t nr, pg_start, pg_end, delta, idx;
1379 	loff_t new_size;
1380 	int ret = 0;
1381 
1382 	new_size = i_size_read(inode) + len;
1383 	ret = inode_newsize_ok(inode, new_size);
1384 	if (ret)
1385 		return ret;
1386 
1387 	if (offset >= i_size_read(inode))
1388 		return -EINVAL;
1389 
1390 	/* insert range should be aligned to block size of f2fs. */
1391 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1392 		return -EINVAL;
1393 
1394 	ret = f2fs_convert_inline_inode(inode);
1395 	if (ret)
1396 		return ret;
1397 
1398 	f2fs_balance_fs(sbi, true);
1399 
1400 	/* avoid gc operation during block exchange */
1401 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1402 
1403 	down_write(&F2FS_I(inode)->i_mmap_sem);
1404 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1405 	if (ret)
1406 		goto out;
1407 
1408 	/* write out all dirty pages from offset */
1409 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1410 	if (ret)
1411 		goto out;
1412 
1413 	truncate_pagecache(inode, offset);
1414 
1415 	pg_start = offset >> PAGE_SHIFT;
1416 	pg_end = (offset + len) >> PAGE_SHIFT;
1417 	delta = pg_end - pg_start;
1418 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1419 
1420 	while (!ret && idx > pg_start) {
1421 		nr = idx - pg_start;
1422 		if (nr > delta)
1423 			nr = delta;
1424 		idx -= nr;
1425 
1426 		f2fs_lock_op(sbi);
1427 		f2fs_drop_extent_tree(inode);
1428 
1429 		ret = __exchange_data_block(inode, inode, idx,
1430 					idx + delta, nr, false);
1431 		f2fs_unlock_op(sbi);
1432 	}
1433 
1434 	/* write out all moved pages, if possible */
1435 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1436 	truncate_pagecache(inode, offset);
1437 
1438 	if (!ret)
1439 		f2fs_i_size_write(inode, new_size);
1440 out:
1441 	up_write(&F2FS_I(inode)->i_mmap_sem);
1442 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1443 	return ret;
1444 }
1445 
1446 static int expand_inode_data(struct inode *inode, loff_t offset,
1447 					loff_t len, int mode)
1448 {
1449 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1450 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1451 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
1452 	pgoff_t pg_end;
1453 	loff_t new_size = i_size_read(inode);
1454 	loff_t off_end;
1455 	int err;
1456 
1457 	err = inode_newsize_ok(inode, (len + offset));
1458 	if (err)
1459 		return err;
1460 
1461 	err = f2fs_convert_inline_inode(inode);
1462 	if (err)
1463 		return err;
1464 
1465 	f2fs_balance_fs(sbi, true);
1466 
1467 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1468 	off_end = (offset + len) & (PAGE_SIZE - 1);
1469 
1470 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1471 	map.m_len = pg_end - map.m_lblk;
1472 	if (off_end)
1473 		map.m_len++;
1474 
1475 	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1476 	if (err) {
1477 		pgoff_t last_off;
1478 
1479 		if (!map.m_len)
1480 			return err;
1481 
1482 		last_off = map.m_lblk + map.m_len - 1;
1483 
1484 		/* update new size to the failed position */
1485 		new_size = (last_off == pg_end) ? offset + len :
1486 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1487 	} else {
1488 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1489 	}
1490 
1491 	if (new_size > i_size_read(inode)) {
1492 		if (mode & FALLOC_FL_KEEP_SIZE)
1493 			file_set_keep_isize(inode);
1494 		else
1495 			f2fs_i_size_write(inode, new_size);
1496 	}
1497 
1498 	return err;
1499 }
1500 
1501 static long f2fs_fallocate(struct file *file, int mode,
1502 				loff_t offset, loff_t len)
1503 {
1504 	struct inode *inode = file_inode(file);
1505 	long ret = 0;
1506 
1507 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1508 		return -EIO;
1509 
1510 	/* f2fs only support ->fallocate for regular file */
1511 	if (!S_ISREG(inode->i_mode))
1512 		return -EINVAL;
1513 
1514 	if (f2fs_encrypted_inode(inode) &&
1515 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1516 		return -EOPNOTSUPP;
1517 
1518 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1519 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1520 			FALLOC_FL_INSERT_RANGE))
1521 		return -EOPNOTSUPP;
1522 
1523 	inode_lock(inode);
1524 
1525 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1526 		if (offset >= inode->i_size)
1527 			goto out;
1528 
1529 		ret = punch_hole(inode, offset, len);
1530 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1531 		ret = f2fs_collapse_range(inode, offset, len);
1532 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1533 		ret = f2fs_zero_range(inode, offset, len, mode);
1534 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1535 		ret = f2fs_insert_range(inode, offset, len);
1536 	} else {
1537 		ret = expand_inode_data(inode, offset, len, mode);
1538 	}
1539 
1540 	if (!ret) {
1541 		inode->i_mtime = inode->i_ctime = current_time(inode);
1542 		f2fs_mark_inode_dirty_sync(inode, false);
1543 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1544 	}
1545 
1546 out:
1547 	inode_unlock(inode);
1548 
1549 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1550 	return ret;
1551 }
1552 
1553 static int f2fs_release_file(struct inode *inode, struct file *filp)
1554 {
1555 	/*
1556 	 * f2fs_relase_file is called at every close calls. So we should
1557 	 * not drop any inmemory pages by close called by other process.
1558 	 */
1559 	if (!(filp->f_mode & FMODE_WRITE) ||
1560 			atomic_read(&inode->i_writecount) != 1)
1561 		return 0;
1562 
1563 	/* some remained atomic pages should discarded */
1564 	if (f2fs_is_atomic_file(inode))
1565 		f2fs_drop_inmem_pages(inode);
1566 	if (f2fs_is_volatile_file(inode)) {
1567 		set_inode_flag(inode, FI_DROP_CACHE);
1568 		filemap_fdatawrite(inode->i_mapping);
1569 		clear_inode_flag(inode, FI_DROP_CACHE);
1570 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1571 		stat_dec_volatile_write(inode);
1572 	}
1573 	return 0;
1574 }
1575 
1576 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1577 {
1578 	struct inode *inode = file_inode(file);
1579 
1580 	/*
1581 	 * If the process doing a transaction is crashed, we should do
1582 	 * roll-back. Otherwise, other reader/write can see corrupted database
1583 	 * until all the writers close its file. Since this should be done
1584 	 * before dropping file lock, it needs to do in ->flush.
1585 	 */
1586 	if (f2fs_is_atomic_file(inode) &&
1587 			F2FS_I(inode)->inmem_task == current)
1588 		f2fs_drop_inmem_pages(inode);
1589 	return 0;
1590 }
1591 
1592 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1593 {
1594 	struct inode *inode = file_inode(filp);
1595 	struct f2fs_inode_info *fi = F2FS_I(inode);
1596 	unsigned int flags = fi->i_flags;
1597 
1598 	if (file_is_encrypt(inode))
1599 		flags |= F2FS_ENCRYPT_FL;
1600 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1601 		flags |= F2FS_INLINE_DATA_FL;
1602 
1603 	flags &= F2FS_FL_USER_VISIBLE;
1604 
1605 	return put_user(flags, (int __user *)arg);
1606 }
1607 
1608 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1609 {
1610 	struct f2fs_inode_info *fi = F2FS_I(inode);
1611 	unsigned int oldflags;
1612 
1613 	/* Is it quota file? Do not allow user to mess with it */
1614 	if (IS_NOQUOTA(inode))
1615 		return -EPERM;
1616 
1617 	flags = f2fs_mask_flags(inode->i_mode, flags);
1618 
1619 	oldflags = fi->i_flags;
1620 
1621 	if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL))
1622 		if (!capable(CAP_LINUX_IMMUTABLE))
1623 			return -EPERM;
1624 
1625 	flags = flags & F2FS_FL_USER_MODIFIABLE;
1626 	flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE;
1627 	fi->i_flags = flags;
1628 
1629 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1630 		set_inode_flag(inode, FI_PROJ_INHERIT);
1631 	else
1632 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1633 
1634 	inode->i_ctime = current_time(inode);
1635 	f2fs_set_inode_flags(inode);
1636 	f2fs_mark_inode_dirty_sync(inode, false);
1637 	return 0;
1638 }
1639 
1640 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1641 {
1642 	struct inode *inode = file_inode(filp);
1643 	unsigned int flags;
1644 	int ret;
1645 
1646 	if (!inode_owner_or_capable(inode))
1647 		return -EACCES;
1648 
1649 	if (get_user(flags, (int __user *)arg))
1650 		return -EFAULT;
1651 
1652 	ret = mnt_want_write_file(filp);
1653 	if (ret)
1654 		return ret;
1655 
1656 	inode_lock(inode);
1657 
1658 	ret = __f2fs_ioc_setflags(inode, flags);
1659 
1660 	inode_unlock(inode);
1661 	mnt_drop_write_file(filp);
1662 	return ret;
1663 }
1664 
1665 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1666 {
1667 	struct inode *inode = file_inode(filp);
1668 
1669 	return put_user(inode->i_generation, (int __user *)arg);
1670 }
1671 
1672 static int f2fs_ioc_start_atomic_write(struct file *filp)
1673 {
1674 	struct inode *inode = file_inode(filp);
1675 	int ret;
1676 
1677 	if (!inode_owner_or_capable(inode))
1678 		return -EACCES;
1679 
1680 	if (!S_ISREG(inode->i_mode))
1681 		return -EINVAL;
1682 
1683 	ret = mnt_want_write_file(filp);
1684 	if (ret)
1685 		return ret;
1686 
1687 	inode_lock(inode);
1688 
1689 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1690 
1691 	if (f2fs_is_atomic_file(inode))
1692 		goto out;
1693 
1694 	ret = f2fs_convert_inline_inode(inode);
1695 	if (ret)
1696 		goto out;
1697 
1698 	if (!get_dirty_pages(inode))
1699 		goto skip_flush;
1700 
1701 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1702 		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1703 					inode->i_ino, get_dirty_pages(inode));
1704 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1705 	if (ret)
1706 		goto out;
1707 skip_flush:
1708 	set_inode_flag(inode, FI_ATOMIC_FILE);
1709 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1710 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1711 
1712 	F2FS_I(inode)->inmem_task = current;
1713 	stat_inc_atomic_write(inode);
1714 	stat_update_max_atomic_write(inode);
1715 out:
1716 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1717 	inode_unlock(inode);
1718 	mnt_drop_write_file(filp);
1719 	return ret;
1720 }
1721 
1722 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1723 {
1724 	struct inode *inode = file_inode(filp);
1725 	int ret;
1726 
1727 	if (!inode_owner_or_capable(inode))
1728 		return -EACCES;
1729 
1730 	ret = mnt_want_write_file(filp);
1731 	if (ret)
1732 		return ret;
1733 
1734 	inode_lock(inode);
1735 
1736 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1737 
1738 	if (f2fs_is_volatile_file(inode)) {
1739 		ret = -EINVAL;
1740 		goto err_out;
1741 	}
1742 
1743 	if (f2fs_is_atomic_file(inode)) {
1744 		ret = f2fs_commit_inmem_pages(inode);
1745 		if (ret)
1746 			goto err_out;
1747 
1748 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1749 		if (!ret) {
1750 			clear_inode_flag(inode, FI_ATOMIC_FILE);
1751 			F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
1752 			stat_dec_atomic_write(inode);
1753 		}
1754 	} else {
1755 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1756 	}
1757 err_out:
1758 	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
1759 		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1760 		ret = -EINVAL;
1761 	}
1762 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1763 	inode_unlock(inode);
1764 	mnt_drop_write_file(filp);
1765 	return ret;
1766 }
1767 
1768 static int f2fs_ioc_start_volatile_write(struct file *filp)
1769 {
1770 	struct inode *inode = file_inode(filp);
1771 	int ret;
1772 
1773 	if (!inode_owner_or_capable(inode))
1774 		return -EACCES;
1775 
1776 	if (!S_ISREG(inode->i_mode))
1777 		return -EINVAL;
1778 
1779 	ret = mnt_want_write_file(filp);
1780 	if (ret)
1781 		return ret;
1782 
1783 	inode_lock(inode);
1784 
1785 	if (f2fs_is_volatile_file(inode))
1786 		goto out;
1787 
1788 	ret = f2fs_convert_inline_inode(inode);
1789 	if (ret)
1790 		goto out;
1791 
1792 	stat_inc_volatile_write(inode);
1793 	stat_update_max_volatile_write(inode);
1794 
1795 	set_inode_flag(inode, FI_VOLATILE_FILE);
1796 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1797 out:
1798 	inode_unlock(inode);
1799 	mnt_drop_write_file(filp);
1800 	return ret;
1801 }
1802 
1803 static int f2fs_ioc_release_volatile_write(struct file *filp)
1804 {
1805 	struct inode *inode = file_inode(filp);
1806 	int ret;
1807 
1808 	if (!inode_owner_or_capable(inode))
1809 		return -EACCES;
1810 
1811 	ret = mnt_want_write_file(filp);
1812 	if (ret)
1813 		return ret;
1814 
1815 	inode_lock(inode);
1816 
1817 	if (!f2fs_is_volatile_file(inode))
1818 		goto out;
1819 
1820 	if (!f2fs_is_first_block_written(inode)) {
1821 		ret = truncate_partial_data_page(inode, 0, true);
1822 		goto out;
1823 	}
1824 
1825 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1826 out:
1827 	inode_unlock(inode);
1828 	mnt_drop_write_file(filp);
1829 	return ret;
1830 }
1831 
1832 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1833 {
1834 	struct inode *inode = file_inode(filp);
1835 	int ret;
1836 
1837 	if (!inode_owner_or_capable(inode))
1838 		return -EACCES;
1839 
1840 	ret = mnt_want_write_file(filp);
1841 	if (ret)
1842 		return ret;
1843 
1844 	inode_lock(inode);
1845 
1846 	if (f2fs_is_atomic_file(inode))
1847 		f2fs_drop_inmem_pages(inode);
1848 	if (f2fs_is_volatile_file(inode)) {
1849 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1850 		stat_dec_volatile_write(inode);
1851 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1852 	}
1853 
1854 	inode_unlock(inode);
1855 
1856 	mnt_drop_write_file(filp);
1857 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1858 	return ret;
1859 }
1860 
1861 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1862 {
1863 	struct inode *inode = file_inode(filp);
1864 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1865 	struct super_block *sb = sbi->sb;
1866 	__u32 in;
1867 	int ret;
1868 
1869 	if (!capable(CAP_SYS_ADMIN))
1870 		return -EPERM;
1871 
1872 	if (get_user(in, (__u32 __user *)arg))
1873 		return -EFAULT;
1874 
1875 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
1876 		ret = mnt_want_write_file(filp);
1877 		if (ret)
1878 			return ret;
1879 	}
1880 
1881 	switch (in) {
1882 	case F2FS_GOING_DOWN_FULLSYNC:
1883 		sb = freeze_bdev(sb->s_bdev);
1884 		if (IS_ERR(sb)) {
1885 			ret = PTR_ERR(sb);
1886 			goto out;
1887 		}
1888 		if (sb) {
1889 			f2fs_stop_checkpoint(sbi, false);
1890 			thaw_bdev(sb->s_bdev, sb);
1891 		}
1892 		break;
1893 	case F2FS_GOING_DOWN_METASYNC:
1894 		/* do checkpoint only */
1895 		ret = f2fs_sync_fs(sb, 1);
1896 		if (ret)
1897 			goto out;
1898 		f2fs_stop_checkpoint(sbi, false);
1899 		break;
1900 	case F2FS_GOING_DOWN_NOSYNC:
1901 		f2fs_stop_checkpoint(sbi, false);
1902 		break;
1903 	case F2FS_GOING_DOWN_METAFLUSH:
1904 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1905 		f2fs_stop_checkpoint(sbi, false);
1906 		break;
1907 	default:
1908 		ret = -EINVAL;
1909 		goto out;
1910 	}
1911 
1912 	f2fs_stop_gc_thread(sbi);
1913 	f2fs_stop_discard_thread(sbi);
1914 
1915 	f2fs_drop_discard_cmd(sbi);
1916 	clear_opt(sbi, DISCARD);
1917 
1918 	f2fs_update_time(sbi, REQ_TIME);
1919 out:
1920 	if (in != F2FS_GOING_DOWN_FULLSYNC)
1921 		mnt_drop_write_file(filp);
1922 	return ret;
1923 }
1924 
1925 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1926 {
1927 	struct inode *inode = file_inode(filp);
1928 	struct super_block *sb = inode->i_sb;
1929 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1930 	struct fstrim_range range;
1931 	int ret;
1932 
1933 	if (!capable(CAP_SYS_ADMIN))
1934 		return -EPERM;
1935 
1936 	if (!blk_queue_discard(q))
1937 		return -EOPNOTSUPP;
1938 
1939 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1940 				sizeof(range)))
1941 		return -EFAULT;
1942 
1943 	ret = mnt_want_write_file(filp);
1944 	if (ret)
1945 		return ret;
1946 
1947 	range.minlen = max((unsigned int)range.minlen,
1948 				q->limits.discard_granularity);
1949 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1950 	mnt_drop_write_file(filp);
1951 	if (ret < 0)
1952 		return ret;
1953 
1954 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1955 				sizeof(range)))
1956 		return -EFAULT;
1957 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1958 	return 0;
1959 }
1960 
1961 static bool uuid_is_nonzero(__u8 u[16])
1962 {
1963 	int i;
1964 
1965 	for (i = 0; i < 16; i++)
1966 		if (u[i])
1967 			return true;
1968 	return false;
1969 }
1970 
1971 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1972 {
1973 	struct inode *inode = file_inode(filp);
1974 
1975 	if (!f2fs_sb_has_encrypt(inode->i_sb))
1976 		return -EOPNOTSUPP;
1977 
1978 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1979 
1980 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1981 }
1982 
1983 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1984 {
1985 	if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
1986 		return -EOPNOTSUPP;
1987 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1988 }
1989 
1990 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1991 {
1992 	struct inode *inode = file_inode(filp);
1993 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1994 	int err;
1995 
1996 	if (!f2fs_sb_has_encrypt(inode->i_sb))
1997 		return -EOPNOTSUPP;
1998 
1999 	err = mnt_want_write_file(filp);
2000 	if (err)
2001 		return err;
2002 
2003 	down_write(&sbi->sb_lock);
2004 
2005 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2006 		goto got_it;
2007 
2008 	/* update superblock with uuid */
2009 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2010 
2011 	err = f2fs_commit_super(sbi, false);
2012 	if (err) {
2013 		/* undo new data */
2014 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2015 		goto out_err;
2016 	}
2017 got_it:
2018 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2019 									16))
2020 		err = -EFAULT;
2021 out_err:
2022 	up_write(&sbi->sb_lock);
2023 	mnt_drop_write_file(filp);
2024 	return err;
2025 }
2026 
2027 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2028 {
2029 	struct inode *inode = file_inode(filp);
2030 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2031 	__u32 sync;
2032 	int ret;
2033 
2034 	if (!capable(CAP_SYS_ADMIN))
2035 		return -EPERM;
2036 
2037 	if (get_user(sync, (__u32 __user *)arg))
2038 		return -EFAULT;
2039 
2040 	if (f2fs_readonly(sbi->sb))
2041 		return -EROFS;
2042 
2043 	ret = mnt_want_write_file(filp);
2044 	if (ret)
2045 		return ret;
2046 
2047 	if (!sync) {
2048 		if (!mutex_trylock(&sbi->gc_mutex)) {
2049 			ret = -EBUSY;
2050 			goto out;
2051 		}
2052 	} else {
2053 		mutex_lock(&sbi->gc_mutex);
2054 	}
2055 
2056 	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2057 out:
2058 	mnt_drop_write_file(filp);
2059 	return ret;
2060 }
2061 
2062 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2063 {
2064 	struct inode *inode = file_inode(filp);
2065 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2066 	struct f2fs_gc_range range;
2067 	u64 end;
2068 	int ret;
2069 
2070 	if (!capable(CAP_SYS_ADMIN))
2071 		return -EPERM;
2072 
2073 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2074 							sizeof(range)))
2075 		return -EFAULT;
2076 
2077 	if (f2fs_readonly(sbi->sb))
2078 		return -EROFS;
2079 
2080 	end = range.start + range.len;
2081 	if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
2082 		return -EINVAL;
2083 	}
2084 
2085 	ret = mnt_want_write_file(filp);
2086 	if (ret)
2087 		return ret;
2088 
2089 do_more:
2090 	if (!range.sync) {
2091 		if (!mutex_trylock(&sbi->gc_mutex)) {
2092 			ret = -EBUSY;
2093 			goto out;
2094 		}
2095 	} else {
2096 		mutex_lock(&sbi->gc_mutex);
2097 	}
2098 
2099 	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2100 	range.start += sbi->blocks_per_seg;
2101 	if (range.start <= end)
2102 		goto do_more;
2103 out:
2104 	mnt_drop_write_file(filp);
2105 	return ret;
2106 }
2107 
2108 static int f2fs_ioc_f2fs_write_checkpoint(struct file *filp, unsigned long arg)
2109 {
2110 	struct inode *inode = file_inode(filp);
2111 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2112 	int ret;
2113 
2114 	if (!capable(CAP_SYS_ADMIN))
2115 		return -EPERM;
2116 
2117 	if (f2fs_readonly(sbi->sb))
2118 		return -EROFS;
2119 
2120 	ret = mnt_want_write_file(filp);
2121 	if (ret)
2122 		return ret;
2123 
2124 	ret = f2fs_sync_fs(sbi->sb, 1);
2125 
2126 	mnt_drop_write_file(filp);
2127 	return ret;
2128 }
2129 
2130 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2131 					struct file *filp,
2132 					struct f2fs_defragment *range)
2133 {
2134 	struct inode *inode = file_inode(filp);
2135 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2136 					.m_seg_type = NO_CHECK_TYPE };
2137 	struct extent_info ei = {0, 0, 0};
2138 	pgoff_t pg_start, pg_end, next_pgofs;
2139 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2140 	unsigned int total = 0, sec_num;
2141 	block_t blk_end = 0;
2142 	bool fragmented = false;
2143 	int err;
2144 
2145 	/* if in-place-update policy is enabled, don't waste time here */
2146 	if (f2fs_should_update_inplace(inode, NULL))
2147 		return -EINVAL;
2148 
2149 	pg_start = range->start >> PAGE_SHIFT;
2150 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2151 
2152 	f2fs_balance_fs(sbi, true);
2153 
2154 	inode_lock(inode);
2155 
2156 	/* writeback all dirty pages in the range */
2157 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2158 						range->start + range->len - 1);
2159 	if (err)
2160 		goto out;
2161 
2162 	/*
2163 	 * lookup mapping info in extent cache, skip defragmenting if physical
2164 	 * block addresses are continuous.
2165 	 */
2166 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2167 		if (ei.fofs + ei.len >= pg_end)
2168 			goto out;
2169 	}
2170 
2171 	map.m_lblk = pg_start;
2172 	map.m_next_pgofs = &next_pgofs;
2173 
2174 	/*
2175 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2176 	 * physical block addresses are continuous even if there are hole(s)
2177 	 * in logical blocks.
2178 	 */
2179 	while (map.m_lblk < pg_end) {
2180 		map.m_len = pg_end - map.m_lblk;
2181 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2182 		if (err)
2183 			goto out;
2184 
2185 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2186 			map.m_lblk = next_pgofs;
2187 			continue;
2188 		}
2189 
2190 		if (blk_end && blk_end != map.m_pblk)
2191 			fragmented = true;
2192 
2193 		/* record total count of block that we're going to move */
2194 		total += map.m_len;
2195 
2196 		blk_end = map.m_pblk + map.m_len;
2197 
2198 		map.m_lblk += map.m_len;
2199 	}
2200 
2201 	if (!fragmented)
2202 		goto out;
2203 
2204 	sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2205 
2206 	/*
2207 	 * make sure there are enough free section for LFS allocation, this can
2208 	 * avoid defragment running in SSR mode when free section are allocated
2209 	 * intensively
2210 	 */
2211 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2212 		err = -EAGAIN;
2213 		goto out;
2214 	}
2215 
2216 	map.m_lblk = pg_start;
2217 	map.m_len = pg_end - pg_start;
2218 	total = 0;
2219 
2220 	while (map.m_lblk < pg_end) {
2221 		pgoff_t idx;
2222 		int cnt = 0;
2223 
2224 do_map:
2225 		map.m_len = pg_end - map.m_lblk;
2226 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2227 		if (err)
2228 			goto clear_out;
2229 
2230 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2231 			map.m_lblk = next_pgofs;
2232 			continue;
2233 		}
2234 
2235 		set_inode_flag(inode, FI_DO_DEFRAG);
2236 
2237 		idx = map.m_lblk;
2238 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2239 			struct page *page;
2240 
2241 			page = f2fs_get_lock_data_page(inode, idx, true);
2242 			if (IS_ERR(page)) {
2243 				err = PTR_ERR(page);
2244 				goto clear_out;
2245 			}
2246 
2247 			set_page_dirty(page);
2248 			f2fs_put_page(page, 1);
2249 
2250 			idx++;
2251 			cnt++;
2252 			total++;
2253 		}
2254 
2255 		map.m_lblk = idx;
2256 
2257 		if (idx < pg_end && cnt < blk_per_seg)
2258 			goto do_map;
2259 
2260 		clear_inode_flag(inode, FI_DO_DEFRAG);
2261 
2262 		err = filemap_fdatawrite(inode->i_mapping);
2263 		if (err)
2264 			goto out;
2265 	}
2266 clear_out:
2267 	clear_inode_flag(inode, FI_DO_DEFRAG);
2268 out:
2269 	inode_unlock(inode);
2270 	if (!err)
2271 		range->len = (u64)total << PAGE_SHIFT;
2272 	return err;
2273 }
2274 
2275 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2276 {
2277 	struct inode *inode = file_inode(filp);
2278 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2279 	struct f2fs_defragment range;
2280 	int err;
2281 
2282 	if (!capable(CAP_SYS_ADMIN))
2283 		return -EPERM;
2284 
2285 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2286 		return -EINVAL;
2287 
2288 	if (f2fs_readonly(sbi->sb))
2289 		return -EROFS;
2290 
2291 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2292 							sizeof(range)))
2293 		return -EFAULT;
2294 
2295 	/* verify alignment of offset & size */
2296 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2297 		return -EINVAL;
2298 
2299 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2300 					sbi->max_file_blocks))
2301 		return -EINVAL;
2302 
2303 	err = mnt_want_write_file(filp);
2304 	if (err)
2305 		return err;
2306 
2307 	err = f2fs_defragment_range(sbi, filp, &range);
2308 	mnt_drop_write_file(filp);
2309 
2310 	f2fs_update_time(sbi, REQ_TIME);
2311 	if (err < 0)
2312 		return err;
2313 
2314 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2315 							sizeof(range)))
2316 		return -EFAULT;
2317 
2318 	return 0;
2319 }
2320 
2321 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2322 			struct file *file_out, loff_t pos_out, size_t len)
2323 {
2324 	struct inode *src = file_inode(file_in);
2325 	struct inode *dst = file_inode(file_out);
2326 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2327 	size_t olen = len, dst_max_i_size = 0;
2328 	size_t dst_osize;
2329 	int ret;
2330 
2331 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2332 				src->i_sb != dst->i_sb)
2333 		return -EXDEV;
2334 
2335 	if (unlikely(f2fs_readonly(src->i_sb)))
2336 		return -EROFS;
2337 
2338 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2339 		return -EINVAL;
2340 
2341 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2342 		return -EOPNOTSUPP;
2343 
2344 	if (src == dst) {
2345 		if (pos_in == pos_out)
2346 			return 0;
2347 		if (pos_out > pos_in && pos_out < pos_in + len)
2348 			return -EINVAL;
2349 	}
2350 
2351 	inode_lock(src);
2352 	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2353 	if (src != dst) {
2354 		ret = -EBUSY;
2355 		if (!inode_trylock(dst))
2356 			goto out;
2357 		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) {
2358 			inode_unlock(dst);
2359 			goto out;
2360 		}
2361 	}
2362 
2363 	ret = -EINVAL;
2364 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2365 		goto out_unlock;
2366 	if (len == 0)
2367 		olen = len = src->i_size - pos_in;
2368 	if (pos_in + len == src->i_size)
2369 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2370 	if (len == 0) {
2371 		ret = 0;
2372 		goto out_unlock;
2373 	}
2374 
2375 	dst_osize = dst->i_size;
2376 	if (pos_out + olen > dst->i_size)
2377 		dst_max_i_size = pos_out + olen;
2378 
2379 	/* verify the end result is block aligned */
2380 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2381 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2382 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2383 		goto out_unlock;
2384 
2385 	ret = f2fs_convert_inline_inode(src);
2386 	if (ret)
2387 		goto out_unlock;
2388 
2389 	ret = f2fs_convert_inline_inode(dst);
2390 	if (ret)
2391 		goto out_unlock;
2392 
2393 	/* write out all dirty pages from offset */
2394 	ret = filemap_write_and_wait_range(src->i_mapping,
2395 					pos_in, pos_in + len);
2396 	if (ret)
2397 		goto out_unlock;
2398 
2399 	ret = filemap_write_and_wait_range(dst->i_mapping,
2400 					pos_out, pos_out + len);
2401 	if (ret)
2402 		goto out_unlock;
2403 
2404 	f2fs_balance_fs(sbi, true);
2405 	f2fs_lock_op(sbi);
2406 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2407 				pos_out >> F2FS_BLKSIZE_BITS,
2408 				len >> F2FS_BLKSIZE_BITS, false);
2409 
2410 	if (!ret) {
2411 		if (dst_max_i_size)
2412 			f2fs_i_size_write(dst, dst_max_i_size);
2413 		else if (dst_osize != dst->i_size)
2414 			f2fs_i_size_write(dst, dst_osize);
2415 	}
2416 	f2fs_unlock_op(sbi);
2417 out_unlock:
2418 	if (src != dst) {
2419 		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2420 		inode_unlock(dst);
2421 	}
2422 out:
2423 	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2424 	inode_unlock(src);
2425 	return ret;
2426 }
2427 
2428 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2429 {
2430 	struct f2fs_move_range range;
2431 	struct fd dst;
2432 	int err;
2433 
2434 	if (!(filp->f_mode & FMODE_READ) ||
2435 			!(filp->f_mode & FMODE_WRITE))
2436 		return -EBADF;
2437 
2438 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2439 							sizeof(range)))
2440 		return -EFAULT;
2441 
2442 	dst = fdget(range.dst_fd);
2443 	if (!dst.file)
2444 		return -EBADF;
2445 
2446 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2447 		err = -EBADF;
2448 		goto err_out;
2449 	}
2450 
2451 	err = mnt_want_write_file(filp);
2452 	if (err)
2453 		goto err_out;
2454 
2455 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2456 					range.pos_out, range.len);
2457 
2458 	mnt_drop_write_file(filp);
2459 	if (err)
2460 		goto err_out;
2461 
2462 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2463 						&range, sizeof(range)))
2464 		err = -EFAULT;
2465 err_out:
2466 	fdput(dst);
2467 	return err;
2468 }
2469 
2470 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2471 {
2472 	struct inode *inode = file_inode(filp);
2473 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2474 	struct sit_info *sm = SIT_I(sbi);
2475 	unsigned int start_segno = 0, end_segno = 0;
2476 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2477 	struct f2fs_flush_device range;
2478 	int ret;
2479 
2480 	if (!capable(CAP_SYS_ADMIN))
2481 		return -EPERM;
2482 
2483 	if (f2fs_readonly(sbi->sb))
2484 		return -EROFS;
2485 
2486 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2487 							sizeof(range)))
2488 		return -EFAULT;
2489 
2490 	if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2491 			sbi->segs_per_sec != 1) {
2492 		f2fs_msg(sbi->sb, KERN_WARNING,
2493 			"Can't flush %u in %d for segs_per_sec %u != 1\n",
2494 				range.dev_num, sbi->s_ndevs,
2495 				sbi->segs_per_sec);
2496 		return -EINVAL;
2497 	}
2498 
2499 	ret = mnt_want_write_file(filp);
2500 	if (ret)
2501 		return ret;
2502 
2503 	if (range.dev_num != 0)
2504 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2505 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2506 
2507 	start_segno = sm->last_victim[FLUSH_DEVICE];
2508 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2509 		start_segno = dev_start_segno;
2510 	end_segno = min(start_segno + range.segments, dev_end_segno);
2511 
2512 	while (start_segno < end_segno) {
2513 		if (!mutex_trylock(&sbi->gc_mutex)) {
2514 			ret = -EBUSY;
2515 			goto out;
2516 		}
2517 		sm->last_victim[GC_CB] = end_segno + 1;
2518 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2519 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2520 		ret = f2fs_gc(sbi, true, true, start_segno);
2521 		if (ret == -EAGAIN)
2522 			ret = 0;
2523 		else if (ret < 0)
2524 			break;
2525 		start_segno++;
2526 	}
2527 out:
2528 	mnt_drop_write_file(filp);
2529 	return ret;
2530 }
2531 
2532 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2533 {
2534 	struct inode *inode = file_inode(filp);
2535 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2536 
2537 	/* Must validate to set it with SQLite behavior in Android. */
2538 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2539 
2540 	return put_user(sb_feature, (u32 __user *)arg);
2541 }
2542 
2543 #ifdef CONFIG_QUOTA
2544 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2545 {
2546 	struct inode *inode = file_inode(filp);
2547 	struct f2fs_inode_info *fi = F2FS_I(inode);
2548 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2549 	struct super_block *sb = sbi->sb;
2550 	struct dquot *transfer_to[MAXQUOTAS] = {};
2551 	struct page *ipage;
2552 	kprojid_t kprojid;
2553 	int err;
2554 
2555 	if (!f2fs_sb_has_project_quota(sb)) {
2556 		if (projid != F2FS_DEF_PROJID)
2557 			return -EOPNOTSUPP;
2558 		else
2559 			return 0;
2560 	}
2561 
2562 	if (!f2fs_has_extra_attr(inode))
2563 		return -EOPNOTSUPP;
2564 
2565 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2566 
2567 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2568 		return 0;
2569 
2570 	err = mnt_want_write_file(filp);
2571 	if (err)
2572 		return err;
2573 
2574 	err = -EPERM;
2575 	inode_lock(inode);
2576 
2577 	/* Is it quota file? Do not allow user to mess with it */
2578 	if (IS_NOQUOTA(inode))
2579 		goto out_unlock;
2580 
2581 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2582 	if (IS_ERR(ipage)) {
2583 		err = PTR_ERR(ipage);
2584 		goto out_unlock;
2585 	}
2586 
2587 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2588 								i_projid)) {
2589 		err = -EOVERFLOW;
2590 		f2fs_put_page(ipage, 1);
2591 		goto out_unlock;
2592 	}
2593 	f2fs_put_page(ipage, 1);
2594 
2595 	err = dquot_initialize(inode);
2596 	if (err)
2597 		goto out_unlock;
2598 
2599 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2600 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2601 		err = __dquot_transfer(inode, transfer_to);
2602 		dqput(transfer_to[PRJQUOTA]);
2603 		if (err)
2604 			goto out_dirty;
2605 	}
2606 
2607 	F2FS_I(inode)->i_projid = kprojid;
2608 	inode->i_ctime = current_time(inode);
2609 out_dirty:
2610 	f2fs_mark_inode_dirty_sync(inode, true);
2611 out_unlock:
2612 	inode_unlock(inode);
2613 	mnt_drop_write_file(filp);
2614 	return err;
2615 }
2616 #else
2617 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2618 {
2619 	if (projid != F2FS_DEF_PROJID)
2620 		return -EOPNOTSUPP;
2621 	return 0;
2622 }
2623 #endif
2624 
2625 /* Transfer internal flags to xflags */
2626 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2627 {
2628 	__u32 xflags = 0;
2629 
2630 	if (iflags & F2FS_SYNC_FL)
2631 		xflags |= FS_XFLAG_SYNC;
2632 	if (iflags & F2FS_IMMUTABLE_FL)
2633 		xflags |= FS_XFLAG_IMMUTABLE;
2634 	if (iflags & F2FS_APPEND_FL)
2635 		xflags |= FS_XFLAG_APPEND;
2636 	if (iflags & F2FS_NODUMP_FL)
2637 		xflags |= FS_XFLAG_NODUMP;
2638 	if (iflags & F2FS_NOATIME_FL)
2639 		xflags |= FS_XFLAG_NOATIME;
2640 	if (iflags & F2FS_PROJINHERIT_FL)
2641 		xflags |= FS_XFLAG_PROJINHERIT;
2642 	return xflags;
2643 }
2644 
2645 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2646 				  FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2647 				  FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2648 
2649 /* Transfer xflags flags to internal */
2650 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2651 {
2652 	unsigned long iflags = 0;
2653 
2654 	if (xflags & FS_XFLAG_SYNC)
2655 		iflags |= F2FS_SYNC_FL;
2656 	if (xflags & FS_XFLAG_IMMUTABLE)
2657 		iflags |= F2FS_IMMUTABLE_FL;
2658 	if (xflags & FS_XFLAG_APPEND)
2659 		iflags |= F2FS_APPEND_FL;
2660 	if (xflags & FS_XFLAG_NODUMP)
2661 		iflags |= F2FS_NODUMP_FL;
2662 	if (xflags & FS_XFLAG_NOATIME)
2663 		iflags |= F2FS_NOATIME_FL;
2664 	if (xflags & FS_XFLAG_PROJINHERIT)
2665 		iflags |= F2FS_PROJINHERIT_FL;
2666 
2667 	return iflags;
2668 }
2669 
2670 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2671 {
2672 	struct inode *inode = file_inode(filp);
2673 	struct f2fs_inode_info *fi = F2FS_I(inode);
2674 	struct fsxattr fa;
2675 
2676 	memset(&fa, 0, sizeof(struct fsxattr));
2677 	fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2678 				F2FS_FL_USER_VISIBLE);
2679 
2680 	if (f2fs_sb_has_project_quota(inode->i_sb))
2681 		fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2682 							fi->i_projid);
2683 
2684 	if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2685 		return -EFAULT;
2686 	return 0;
2687 }
2688 
2689 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2690 {
2691 	struct inode *inode = file_inode(filp);
2692 	struct f2fs_inode_info *fi = F2FS_I(inode);
2693 	struct fsxattr fa;
2694 	unsigned int flags;
2695 	int err;
2696 
2697 	if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2698 		return -EFAULT;
2699 
2700 	/* Make sure caller has proper permission */
2701 	if (!inode_owner_or_capable(inode))
2702 		return -EACCES;
2703 
2704 	if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2705 		return -EOPNOTSUPP;
2706 
2707 	flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2708 	if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2709 		return -EOPNOTSUPP;
2710 
2711 	err = mnt_want_write_file(filp);
2712 	if (err)
2713 		return err;
2714 
2715 	inode_lock(inode);
2716 	flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2717 				(flags & F2FS_FL_XFLAG_VISIBLE);
2718 	err = __f2fs_ioc_setflags(inode, flags);
2719 	inode_unlock(inode);
2720 	mnt_drop_write_file(filp);
2721 	if (err)
2722 		return err;
2723 
2724 	err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2725 	if (err)
2726 		return err;
2727 
2728 	return 0;
2729 }
2730 
2731 int f2fs_pin_file_control(struct inode *inode, bool inc)
2732 {
2733 	struct f2fs_inode_info *fi = F2FS_I(inode);
2734 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2735 
2736 	/* Use i_gc_failures for normal file as a risk signal. */
2737 	if (inc)
2738 		f2fs_i_gc_failures_write(inode,
2739 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
2740 
2741 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
2742 		f2fs_msg(sbi->sb, KERN_WARNING,
2743 			"%s: Enable GC = ino %lx after %x GC trials\n",
2744 			__func__, inode->i_ino,
2745 			fi->i_gc_failures[GC_FAILURE_PIN]);
2746 		clear_inode_flag(inode, FI_PIN_FILE);
2747 		return -EAGAIN;
2748 	}
2749 	return 0;
2750 }
2751 
2752 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
2753 {
2754 	struct inode *inode = file_inode(filp);
2755 	__u32 pin;
2756 	int ret = 0;
2757 
2758 	if (!inode_owner_or_capable(inode))
2759 		return -EACCES;
2760 
2761 	if (get_user(pin, (__u32 __user *)arg))
2762 		return -EFAULT;
2763 
2764 	if (!S_ISREG(inode->i_mode))
2765 		return -EINVAL;
2766 
2767 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2768 		return -EROFS;
2769 
2770 	ret = mnt_want_write_file(filp);
2771 	if (ret)
2772 		return ret;
2773 
2774 	inode_lock(inode);
2775 
2776 	if (f2fs_should_update_outplace(inode, NULL)) {
2777 		ret = -EINVAL;
2778 		goto out;
2779 	}
2780 
2781 	if (!pin) {
2782 		clear_inode_flag(inode, FI_PIN_FILE);
2783 		F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = 1;
2784 		goto done;
2785 	}
2786 
2787 	if (f2fs_pin_file_control(inode, false)) {
2788 		ret = -EAGAIN;
2789 		goto out;
2790 	}
2791 	ret = f2fs_convert_inline_inode(inode);
2792 	if (ret)
2793 		goto out;
2794 
2795 	set_inode_flag(inode, FI_PIN_FILE);
2796 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2797 done:
2798 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2799 out:
2800 	inode_unlock(inode);
2801 	mnt_drop_write_file(filp);
2802 	return ret;
2803 }
2804 
2805 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
2806 {
2807 	struct inode *inode = file_inode(filp);
2808 	__u32 pin = 0;
2809 
2810 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2811 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2812 	return put_user(pin, (u32 __user *)arg);
2813 }
2814 
2815 int f2fs_precache_extents(struct inode *inode)
2816 {
2817 	struct f2fs_inode_info *fi = F2FS_I(inode);
2818 	struct f2fs_map_blocks map;
2819 	pgoff_t m_next_extent;
2820 	loff_t end;
2821 	int err;
2822 
2823 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
2824 		return -EOPNOTSUPP;
2825 
2826 	map.m_lblk = 0;
2827 	map.m_next_pgofs = NULL;
2828 	map.m_next_extent = &m_next_extent;
2829 	map.m_seg_type = NO_CHECK_TYPE;
2830 	end = F2FS_I_SB(inode)->max_file_blocks;
2831 
2832 	while (map.m_lblk < end) {
2833 		map.m_len = end - map.m_lblk;
2834 
2835 		down_write(&fi->i_gc_rwsem[WRITE]);
2836 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
2837 		up_write(&fi->i_gc_rwsem[WRITE]);
2838 		if (err)
2839 			return err;
2840 
2841 		map.m_lblk = m_next_extent;
2842 	}
2843 
2844 	return err;
2845 }
2846 
2847 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
2848 {
2849 	return f2fs_precache_extents(file_inode(filp));
2850 }
2851 
2852 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2853 {
2854 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2855 		return -EIO;
2856 
2857 	switch (cmd) {
2858 	case F2FS_IOC_GETFLAGS:
2859 		return f2fs_ioc_getflags(filp, arg);
2860 	case F2FS_IOC_SETFLAGS:
2861 		return f2fs_ioc_setflags(filp, arg);
2862 	case F2FS_IOC_GETVERSION:
2863 		return f2fs_ioc_getversion(filp, arg);
2864 	case F2FS_IOC_START_ATOMIC_WRITE:
2865 		return f2fs_ioc_start_atomic_write(filp);
2866 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2867 		return f2fs_ioc_commit_atomic_write(filp);
2868 	case F2FS_IOC_START_VOLATILE_WRITE:
2869 		return f2fs_ioc_start_volatile_write(filp);
2870 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2871 		return f2fs_ioc_release_volatile_write(filp);
2872 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2873 		return f2fs_ioc_abort_volatile_write(filp);
2874 	case F2FS_IOC_SHUTDOWN:
2875 		return f2fs_ioc_shutdown(filp, arg);
2876 	case FITRIM:
2877 		return f2fs_ioc_fitrim(filp, arg);
2878 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2879 		return f2fs_ioc_set_encryption_policy(filp, arg);
2880 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2881 		return f2fs_ioc_get_encryption_policy(filp, arg);
2882 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2883 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2884 	case F2FS_IOC_GARBAGE_COLLECT:
2885 		return f2fs_ioc_gc(filp, arg);
2886 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2887 		return f2fs_ioc_gc_range(filp, arg);
2888 	case F2FS_IOC_WRITE_CHECKPOINT:
2889 		return f2fs_ioc_f2fs_write_checkpoint(filp, arg);
2890 	case F2FS_IOC_DEFRAGMENT:
2891 		return f2fs_ioc_defragment(filp, arg);
2892 	case F2FS_IOC_MOVE_RANGE:
2893 		return f2fs_ioc_move_range(filp, arg);
2894 	case F2FS_IOC_FLUSH_DEVICE:
2895 		return f2fs_ioc_flush_device(filp, arg);
2896 	case F2FS_IOC_GET_FEATURES:
2897 		return f2fs_ioc_get_features(filp, arg);
2898 	case F2FS_IOC_FSGETXATTR:
2899 		return f2fs_ioc_fsgetxattr(filp, arg);
2900 	case F2FS_IOC_FSSETXATTR:
2901 		return f2fs_ioc_fssetxattr(filp, arg);
2902 	case F2FS_IOC_GET_PIN_FILE:
2903 		return f2fs_ioc_get_pin_file(filp, arg);
2904 	case F2FS_IOC_SET_PIN_FILE:
2905 		return f2fs_ioc_set_pin_file(filp, arg);
2906 	case F2FS_IOC_PRECACHE_EXTENTS:
2907 		return f2fs_ioc_precache_extents(filp, arg);
2908 	default:
2909 		return -ENOTTY;
2910 	}
2911 }
2912 
2913 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2914 {
2915 	struct file *file = iocb->ki_filp;
2916 	struct inode *inode = file_inode(file);
2917 	ssize_t ret;
2918 
2919 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2920 		return -EIO;
2921 
2922 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2923 		return -EINVAL;
2924 
2925 	if (!inode_trylock(inode)) {
2926 		if (iocb->ki_flags & IOCB_NOWAIT)
2927 			return -EAGAIN;
2928 		inode_lock(inode);
2929 	}
2930 
2931 	ret = generic_write_checks(iocb, from);
2932 	if (ret > 0) {
2933 		bool preallocated = false;
2934 		size_t target_size = 0;
2935 		int err;
2936 
2937 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2938 			set_inode_flag(inode, FI_NO_PREALLOC);
2939 
2940 		if ((iocb->ki_flags & IOCB_NOWAIT) &&
2941 			(iocb->ki_flags & IOCB_DIRECT)) {
2942 				if (!f2fs_overwrite_io(inode, iocb->ki_pos,
2943 						iov_iter_count(from)) ||
2944 					f2fs_has_inline_data(inode) ||
2945 					f2fs_force_buffered_io(inode, WRITE)) {
2946 						clear_inode_flag(inode,
2947 								FI_NO_PREALLOC);
2948 						inode_unlock(inode);
2949 						return -EAGAIN;
2950 				}
2951 
2952 		} else {
2953 			preallocated = true;
2954 			target_size = iocb->ki_pos + iov_iter_count(from);
2955 
2956 			err = f2fs_preallocate_blocks(iocb, from);
2957 			if (err) {
2958 				clear_inode_flag(inode, FI_NO_PREALLOC);
2959 				inode_unlock(inode);
2960 				return err;
2961 			}
2962 		}
2963 		ret = __generic_file_write_iter(iocb, from);
2964 		clear_inode_flag(inode, FI_NO_PREALLOC);
2965 
2966 		/* if we couldn't write data, we should deallocate blocks. */
2967 		if (preallocated && i_size_read(inode) < target_size)
2968 			f2fs_truncate(inode);
2969 
2970 		if (ret > 0)
2971 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2972 	}
2973 	inode_unlock(inode);
2974 
2975 	if (ret > 0)
2976 		ret = generic_write_sync(iocb, ret);
2977 	return ret;
2978 }
2979 
2980 #ifdef CONFIG_COMPAT
2981 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2982 {
2983 	switch (cmd) {
2984 	case F2FS_IOC32_GETFLAGS:
2985 		cmd = F2FS_IOC_GETFLAGS;
2986 		break;
2987 	case F2FS_IOC32_SETFLAGS:
2988 		cmd = F2FS_IOC_SETFLAGS;
2989 		break;
2990 	case F2FS_IOC32_GETVERSION:
2991 		cmd = F2FS_IOC_GETVERSION;
2992 		break;
2993 	case F2FS_IOC_START_ATOMIC_WRITE:
2994 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2995 	case F2FS_IOC_START_VOLATILE_WRITE:
2996 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2997 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2998 	case F2FS_IOC_SHUTDOWN:
2999 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
3000 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3001 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
3002 	case F2FS_IOC_GARBAGE_COLLECT:
3003 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3004 	case F2FS_IOC_WRITE_CHECKPOINT:
3005 	case F2FS_IOC_DEFRAGMENT:
3006 	case F2FS_IOC_MOVE_RANGE:
3007 	case F2FS_IOC_FLUSH_DEVICE:
3008 	case F2FS_IOC_GET_FEATURES:
3009 	case F2FS_IOC_FSGETXATTR:
3010 	case F2FS_IOC_FSSETXATTR:
3011 	case F2FS_IOC_GET_PIN_FILE:
3012 	case F2FS_IOC_SET_PIN_FILE:
3013 	case F2FS_IOC_PRECACHE_EXTENTS:
3014 		break;
3015 	default:
3016 		return -ENOIOCTLCMD;
3017 	}
3018 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3019 }
3020 #endif
3021 
3022 const struct file_operations f2fs_file_operations = {
3023 	.llseek		= f2fs_llseek,
3024 	.read_iter	= generic_file_read_iter,
3025 	.write_iter	= f2fs_file_write_iter,
3026 	.open		= f2fs_file_open,
3027 	.release	= f2fs_release_file,
3028 	.mmap		= f2fs_file_mmap,
3029 	.flush		= f2fs_file_flush,
3030 	.fsync		= f2fs_sync_file,
3031 	.fallocate	= f2fs_fallocate,
3032 	.unlocked_ioctl	= f2fs_ioctl,
3033 #ifdef CONFIG_COMPAT
3034 	.compat_ioctl	= f2fs_compat_ioctl,
3035 #endif
3036 	.splice_read	= generic_file_splice_read,
3037 	.splice_write	= iter_file_splice_write,
3038 };
3039