xref: /openbmc/linux/fs/f2fs/file.c (revision 9a69abf8)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/falloc.h>
17 #include <linux/types.h>
18 #include <linux/compat.h>
19 #include <linux/uaccess.h>
20 #include <linux/mount.h>
21 
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "xattr.h"
26 #include "acl.h"
27 
28 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
29 						struct vm_fault *vmf)
30 {
31 	struct page *page = vmf->page;
32 	struct inode *inode = file_inode(vma->vm_file);
33 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
34 	block_t old_blk_addr;
35 	struct dnode_of_data dn;
36 	int err;
37 
38 	f2fs_balance_fs(sbi);
39 
40 	sb_start_pagefault(inode->i_sb);
41 
42 	mutex_lock_op(sbi, DATA_NEW);
43 
44 	/* block allocation */
45 	set_new_dnode(&dn, inode, NULL, NULL, 0);
46 	err = get_dnode_of_data(&dn, page->index, 0);
47 	if (err) {
48 		mutex_unlock_op(sbi, DATA_NEW);
49 		goto out;
50 	}
51 
52 	old_blk_addr = dn.data_blkaddr;
53 
54 	if (old_blk_addr == NULL_ADDR) {
55 		err = reserve_new_block(&dn);
56 		if (err) {
57 			f2fs_put_dnode(&dn);
58 			mutex_unlock_op(sbi, DATA_NEW);
59 			goto out;
60 		}
61 	}
62 	f2fs_put_dnode(&dn);
63 
64 	mutex_unlock_op(sbi, DATA_NEW);
65 
66 	lock_page(page);
67 	if (page->mapping != inode->i_mapping ||
68 			page_offset(page) >= i_size_read(inode) ||
69 			!PageUptodate(page)) {
70 		unlock_page(page);
71 		err = -EFAULT;
72 		goto out;
73 	}
74 
75 	/*
76 	 * check to see if the page is mapped already (no holes)
77 	 */
78 	if (PageMappedToDisk(page))
79 		goto out;
80 
81 	/* fill the page */
82 	wait_on_page_writeback(page);
83 
84 	/* page is wholly or partially inside EOF */
85 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
86 		unsigned offset;
87 		offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
88 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
89 	}
90 	set_page_dirty(page);
91 	SetPageUptodate(page);
92 
93 	file_update_time(vma->vm_file);
94 out:
95 	sb_end_pagefault(inode->i_sb);
96 	return block_page_mkwrite_return(err);
97 }
98 
99 static const struct vm_operations_struct f2fs_file_vm_ops = {
100 	.fault		= filemap_fault,
101 	.page_mkwrite	= f2fs_vm_page_mkwrite,
102 	.remap_pages	= generic_file_remap_pages,
103 };
104 
105 static int need_to_sync_dir(struct f2fs_sb_info *sbi, struct inode *inode)
106 {
107 	struct dentry *dentry;
108 	nid_t pino;
109 
110 	inode = igrab(inode);
111 	dentry = d_find_any_alias(inode);
112 	if (!dentry) {
113 		iput(inode);
114 		return 0;
115 	}
116 	pino = dentry->d_parent->d_inode->i_ino;
117 	dput(dentry);
118 	iput(inode);
119 	return !is_checkpointed_node(sbi, pino);
120 }
121 
122 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
123 {
124 	struct inode *inode = file->f_mapping->host;
125 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
126 	unsigned long long cur_version;
127 	int ret = 0;
128 	bool need_cp = false;
129 	struct writeback_control wbc = {
130 		.sync_mode = WB_SYNC_ALL,
131 		.nr_to_write = LONG_MAX,
132 		.for_reclaim = 0,
133 	};
134 
135 	if (inode->i_sb->s_flags & MS_RDONLY)
136 		return 0;
137 
138 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
139 	if (ret)
140 		return ret;
141 
142 	/* guarantee free sections for fsync */
143 	f2fs_balance_fs(sbi);
144 
145 	mutex_lock(&inode->i_mutex);
146 
147 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
148 		goto out;
149 
150 	mutex_lock(&sbi->cp_mutex);
151 	cur_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
152 	mutex_unlock(&sbi->cp_mutex);
153 
154 	if (F2FS_I(inode)->data_version != cur_version &&
155 					!(inode->i_state & I_DIRTY))
156 		goto out;
157 	F2FS_I(inode)->data_version--;
158 
159 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
160 		need_cp = true;
161 	else if (is_inode_flag_set(F2FS_I(inode), FI_NEED_CP))
162 		need_cp = true;
163 	else if (!space_for_roll_forward(sbi))
164 		need_cp = true;
165 	else if (need_to_sync_dir(sbi, inode))
166 		need_cp = true;
167 
168 	if (need_cp) {
169 		/* all the dirty node pages should be flushed for POR */
170 		ret = f2fs_sync_fs(inode->i_sb, 1);
171 		clear_inode_flag(F2FS_I(inode), FI_NEED_CP);
172 	} else {
173 		/* if there is no written node page, write its inode page */
174 		while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
175 			ret = f2fs_write_inode(inode, NULL);
176 			if (ret)
177 				goto out;
178 		}
179 		filemap_fdatawait_range(sbi->node_inode->i_mapping,
180 							0, LONG_MAX);
181 	}
182 out:
183 	mutex_unlock(&inode->i_mutex);
184 	return ret;
185 }
186 
187 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
188 {
189 	file_accessed(file);
190 	vma->vm_ops = &f2fs_file_vm_ops;
191 	return 0;
192 }
193 
194 static int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
195 {
196 	int nr_free = 0, ofs = dn->ofs_in_node;
197 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
198 	struct f2fs_node *raw_node;
199 	__le32 *addr;
200 
201 	raw_node = page_address(dn->node_page);
202 	addr = blkaddr_in_node(raw_node) + ofs;
203 
204 	for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
205 		block_t blkaddr = le32_to_cpu(*addr);
206 		if (blkaddr == NULL_ADDR)
207 			continue;
208 
209 		update_extent_cache(NULL_ADDR, dn);
210 		invalidate_blocks(sbi, blkaddr);
211 		dec_valid_block_count(sbi, dn->inode, 1);
212 		nr_free++;
213 	}
214 	if (nr_free) {
215 		set_page_dirty(dn->node_page);
216 		sync_inode_page(dn);
217 	}
218 	dn->ofs_in_node = ofs;
219 	return nr_free;
220 }
221 
222 void truncate_data_blocks(struct dnode_of_data *dn)
223 {
224 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
225 }
226 
227 static void truncate_partial_data_page(struct inode *inode, u64 from)
228 {
229 	unsigned offset = from & (PAGE_CACHE_SIZE - 1);
230 	struct page *page;
231 
232 	if (!offset)
233 		return;
234 
235 	page = find_data_page(inode, from >> PAGE_CACHE_SHIFT);
236 	if (IS_ERR(page))
237 		return;
238 
239 	lock_page(page);
240 	wait_on_page_writeback(page);
241 	zero_user(page, offset, PAGE_CACHE_SIZE - offset);
242 	set_page_dirty(page);
243 	f2fs_put_page(page, 1);
244 }
245 
246 static int truncate_blocks(struct inode *inode, u64 from)
247 {
248 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
249 	unsigned int blocksize = inode->i_sb->s_blocksize;
250 	struct dnode_of_data dn;
251 	pgoff_t free_from;
252 	int count = 0;
253 	int err;
254 
255 	free_from = (pgoff_t)
256 			((from + blocksize - 1) >> (sbi->log_blocksize));
257 
258 	mutex_lock_op(sbi, DATA_TRUNC);
259 
260 	set_new_dnode(&dn, inode, NULL, NULL, 0);
261 	err = get_dnode_of_data(&dn, free_from, RDONLY_NODE);
262 	if (err) {
263 		if (err == -ENOENT)
264 			goto free_next;
265 		mutex_unlock_op(sbi, DATA_TRUNC);
266 		return err;
267 	}
268 
269 	if (IS_INODE(dn.node_page))
270 		count = ADDRS_PER_INODE;
271 	else
272 		count = ADDRS_PER_BLOCK;
273 
274 	count -= dn.ofs_in_node;
275 	BUG_ON(count < 0);
276 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
277 		truncate_data_blocks_range(&dn, count);
278 		free_from += count;
279 	}
280 
281 	f2fs_put_dnode(&dn);
282 free_next:
283 	err = truncate_inode_blocks(inode, free_from);
284 	mutex_unlock_op(sbi, DATA_TRUNC);
285 
286 	/* lastly zero out the first data page */
287 	truncate_partial_data_page(inode, from);
288 
289 	return err;
290 }
291 
292 void f2fs_truncate(struct inode *inode)
293 {
294 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
295 				S_ISLNK(inode->i_mode)))
296 		return;
297 
298 	if (!truncate_blocks(inode, i_size_read(inode))) {
299 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
300 		mark_inode_dirty(inode);
301 	}
302 }
303 
304 static int f2fs_getattr(struct vfsmount *mnt,
305 			 struct dentry *dentry, struct kstat *stat)
306 {
307 	struct inode *inode = dentry->d_inode;
308 	generic_fillattr(inode, stat);
309 	stat->blocks <<= 3;
310 	return 0;
311 }
312 
313 #ifdef CONFIG_F2FS_FS_POSIX_ACL
314 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
315 {
316 	struct f2fs_inode_info *fi = F2FS_I(inode);
317 	unsigned int ia_valid = attr->ia_valid;
318 
319 	if (ia_valid & ATTR_UID)
320 		inode->i_uid = attr->ia_uid;
321 	if (ia_valid & ATTR_GID)
322 		inode->i_gid = attr->ia_gid;
323 	if (ia_valid & ATTR_ATIME)
324 		inode->i_atime = timespec_trunc(attr->ia_atime,
325 						inode->i_sb->s_time_gran);
326 	if (ia_valid & ATTR_MTIME)
327 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
328 						inode->i_sb->s_time_gran);
329 	if (ia_valid & ATTR_CTIME)
330 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
331 						inode->i_sb->s_time_gran);
332 	if (ia_valid & ATTR_MODE) {
333 		umode_t mode = attr->ia_mode;
334 
335 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
336 			mode &= ~S_ISGID;
337 		set_acl_inode(fi, mode);
338 	}
339 }
340 #else
341 #define __setattr_copy setattr_copy
342 #endif
343 
344 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
345 {
346 	struct inode *inode = dentry->d_inode;
347 	struct f2fs_inode_info *fi = F2FS_I(inode);
348 	int err;
349 
350 	err = inode_change_ok(inode, attr);
351 	if (err)
352 		return err;
353 
354 	if ((attr->ia_valid & ATTR_SIZE) &&
355 			attr->ia_size != i_size_read(inode)) {
356 		truncate_setsize(inode, attr->ia_size);
357 		f2fs_truncate(inode);
358 		f2fs_balance_fs(F2FS_SB(inode->i_sb));
359 	}
360 
361 	__setattr_copy(inode, attr);
362 
363 	if (attr->ia_valid & ATTR_MODE) {
364 		err = f2fs_acl_chmod(inode);
365 		if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
366 			inode->i_mode = fi->i_acl_mode;
367 			clear_inode_flag(fi, FI_ACL_MODE);
368 		}
369 	}
370 
371 	mark_inode_dirty(inode);
372 	return err;
373 }
374 
375 const struct inode_operations f2fs_file_inode_operations = {
376 	.getattr	= f2fs_getattr,
377 	.setattr	= f2fs_setattr,
378 	.get_acl	= f2fs_get_acl,
379 #ifdef CONFIG_F2FS_FS_XATTR
380 	.setxattr	= generic_setxattr,
381 	.getxattr	= generic_getxattr,
382 	.listxattr	= f2fs_listxattr,
383 	.removexattr	= generic_removexattr,
384 #endif
385 };
386 
387 static void fill_zero(struct inode *inode, pgoff_t index,
388 					loff_t start, loff_t len)
389 {
390 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
391 	struct page *page;
392 
393 	if (!len)
394 		return;
395 
396 	f2fs_balance_fs(sbi);
397 
398 	mutex_lock_op(sbi, DATA_NEW);
399 	page = get_new_data_page(inode, index, false);
400 	mutex_unlock_op(sbi, DATA_NEW);
401 
402 	if (!IS_ERR(page)) {
403 		wait_on_page_writeback(page);
404 		zero_user(page, start, len);
405 		set_page_dirty(page);
406 		f2fs_put_page(page, 1);
407 	}
408 }
409 
410 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
411 {
412 	pgoff_t index;
413 	int err;
414 
415 	for (index = pg_start; index < pg_end; index++) {
416 		struct dnode_of_data dn;
417 		struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
418 
419 		f2fs_balance_fs(sbi);
420 
421 		mutex_lock_op(sbi, DATA_TRUNC);
422 		set_new_dnode(&dn, inode, NULL, NULL, 0);
423 		err = get_dnode_of_data(&dn, index, RDONLY_NODE);
424 		if (err) {
425 			mutex_unlock_op(sbi, DATA_TRUNC);
426 			if (err == -ENOENT)
427 				continue;
428 			return err;
429 		}
430 
431 		if (dn.data_blkaddr != NULL_ADDR)
432 			truncate_data_blocks_range(&dn, 1);
433 		f2fs_put_dnode(&dn);
434 		mutex_unlock_op(sbi, DATA_TRUNC);
435 	}
436 	return 0;
437 }
438 
439 static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
440 {
441 	pgoff_t pg_start, pg_end;
442 	loff_t off_start, off_end;
443 	int ret = 0;
444 
445 	pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
446 	pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
447 
448 	off_start = offset & (PAGE_CACHE_SIZE - 1);
449 	off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
450 
451 	if (pg_start == pg_end) {
452 		fill_zero(inode, pg_start, off_start,
453 						off_end - off_start);
454 	} else {
455 		if (off_start)
456 			fill_zero(inode, pg_start++, off_start,
457 					PAGE_CACHE_SIZE - off_start);
458 		if (off_end)
459 			fill_zero(inode, pg_end, 0, off_end);
460 
461 		if (pg_start < pg_end) {
462 			struct address_space *mapping = inode->i_mapping;
463 			loff_t blk_start, blk_end;
464 
465 			blk_start = pg_start << PAGE_CACHE_SHIFT;
466 			blk_end = pg_end << PAGE_CACHE_SHIFT;
467 			truncate_inode_pages_range(mapping, blk_start,
468 					blk_end - 1);
469 			ret = truncate_hole(inode, pg_start, pg_end);
470 		}
471 	}
472 
473 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
474 		i_size_read(inode) <= (offset + len)) {
475 		i_size_write(inode, offset);
476 		mark_inode_dirty(inode);
477 	}
478 
479 	return ret;
480 }
481 
482 static int expand_inode_data(struct inode *inode, loff_t offset,
483 					loff_t len, int mode)
484 {
485 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
486 	pgoff_t index, pg_start, pg_end;
487 	loff_t new_size = i_size_read(inode);
488 	loff_t off_start, off_end;
489 	int ret = 0;
490 
491 	ret = inode_newsize_ok(inode, (len + offset));
492 	if (ret)
493 		return ret;
494 
495 	pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
496 	pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
497 
498 	off_start = offset & (PAGE_CACHE_SIZE - 1);
499 	off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
500 
501 	for (index = pg_start; index <= pg_end; index++) {
502 		struct dnode_of_data dn;
503 
504 		mutex_lock_op(sbi, DATA_NEW);
505 
506 		set_new_dnode(&dn, inode, NULL, NULL, 0);
507 		ret = get_dnode_of_data(&dn, index, 0);
508 		if (ret) {
509 			mutex_unlock_op(sbi, DATA_NEW);
510 			break;
511 		}
512 
513 		if (dn.data_blkaddr == NULL_ADDR) {
514 			ret = reserve_new_block(&dn);
515 			if (ret) {
516 				f2fs_put_dnode(&dn);
517 				mutex_unlock_op(sbi, DATA_NEW);
518 				break;
519 			}
520 		}
521 		f2fs_put_dnode(&dn);
522 
523 		mutex_unlock_op(sbi, DATA_NEW);
524 
525 		if (pg_start == pg_end)
526 			new_size = offset + len;
527 		else if (index == pg_start && off_start)
528 			new_size = (index + 1) << PAGE_CACHE_SHIFT;
529 		else if (index == pg_end)
530 			new_size = (index << PAGE_CACHE_SHIFT) + off_end;
531 		else
532 			new_size += PAGE_CACHE_SIZE;
533 	}
534 
535 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
536 		i_size_read(inode) < new_size) {
537 		i_size_write(inode, new_size);
538 		mark_inode_dirty(inode);
539 	}
540 
541 	return ret;
542 }
543 
544 static long f2fs_fallocate(struct file *file, int mode,
545 				loff_t offset, loff_t len)
546 {
547 	struct inode *inode = file_inode(file);
548 	long ret;
549 
550 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
551 		return -EOPNOTSUPP;
552 
553 	if (mode & FALLOC_FL_PUNCH_HOLE)
554 		ret = punch_hole(inode, offset, len, mode);
555 	else
556 		ret = expand_inode_data(inode, offset, len, mode);
557 
558 	if (!ret) {
559 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
560 		mark_inode_dirty(inode);
561 	}
562 	return ret;
563 }
564 
565 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
566 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
567 
568 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
569 {
570 	if (S_ISDIR(mode))
571 		return flags;
572 	else if (S_ISREG(mode))
573 		return flags & F2FS_REG_FLMASK;
574 	else
575 		return flags & F2FS_OTHER_FLMASK;
576 }
577 
578 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
579 {
580 	struct inode *inode = file_inode(filp);
581 	struct f2fs_inode_info *fi = F2FS_I(inode);
582 	unsigned int flags;
583 	int ret;
584 
585 	switch (cmd) {
586 	case FS_IOC_GETFLAGS:
587 		flags = fi->i_flags & FS_FL_USER_VISIBLE;
588 		return put_user(flags, (int __user *) arg);
589 	case FS_IOC_SETFLAGS:
590 	{
591 		unsigned int oldflags;
592 
593 		ret = mnt_want_write(filp->f_path.mnt);
594 		if (ret)
595 			return ret;
596 
597 		if (!inode_owner_or_capable(inode)) {
598 			ret = -EACCES;
599 			goto out;
600 		}
601 
602 		if (get_user(flags, (int __user *) arg)) {
603 			ret = -EFAULT;
604 			goto out;
605 		}
606 
607 		flags = f2fs_mask_flags(inode->i_mode, flags);
608 
609 		mutex_lock(&inode->i_mutex);
610 
611 		oldflags = fi->i_flags;
612 
613 		if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
614 			if (!capable(CAP_LINUX_IMMUTABLE)) {
615 				mutex_unlock(&inode->i_mutex);
616 				ret = -EPERM;
617 				goto out;
618 			}
619 		}
620 
621 		flags = flags & FS_FL_USER_MODIFIABLE;
622 		flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
623 		fi->i_flags = flags;
624 		mutex_unlock(&inode->i_mutex);
625 
626 		f2fs_set_inode_flags(inode);
627 		inode->i_ctime = CURRENT_TIME;
628 		mark_inode_dirty(inode);
629 out:
630 		mnt_drop_write(filp->f_path.mnt);
631 		return ret;
632 	}
633 	default:
634 		return -ENOTTY;
635 	}
636 }
637 
638 #ifdef CONFIG_COMPAT
639 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
640 {
641 	switch (cmd) {
642 	case F2FS_IOC32_GETFLAGS:
643 		cmd = F2FS_IOC_GETFLAGS;
644 		break;
645 	case F2FS_IOC32_SETFLAGS:
646 		cmd = F2FS_IOC_SETFLAGS;
647 		break;
648 	default:
649 		return -ENOIOCTLCMD;
650 	}
651 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
652 }
653 #endif
654 
655 const struct file_operations f2fs_file_operations = {
656 	.llseek		= generic_file_llseek,
657 	.read		= do_sync_read,
658 	.write		= do_sync_write,
659 	.aio_read	= generic_file_aio_read,
660 	.aio_write	= generic_file_aio_write,
661 	.open		= generic_file_open,
662 	.mmap		= f2fs_file_mmap,
663 	.fsync		= f2fs_sync_file,
664 	.fallocate	= f2fs_fallocate,
665 	.unlocked_ioctl	= f2fs_ioctl,
666 #ifdef CONFIG_COMPAT
667 	.compat_ioctl	= f2fs_compat_ioctl,
668 #endif
669 	.splice_read	= generic_file_splice_read,
670 	.splice_write	= generic_file_splice_write,
671 };
672