1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "xattr.h" 29 #include "acl.h" 30 #include "gc.h" 31 #include "trace.h" 32 #include <trace/events/f2fs.h> 33 34 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 35 { 36 struct inode *inode = file_inode(vmf->vma->vm_file); 37 vm_fault_t ret; 38 39 down_read(&F2FS_I(inode)->i_mmap_sem); 40 ret = filemap_fault(vmf); 41 up_read(&F2FS_I(inode)->i_mmap_sem); 42 43 if (!ret) 44 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO, 45 F2FS_BLKSIZE); 46 47 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 48 49 return ret; 50 } 51 52 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 53 { 54 struct page *page = vmf->page; 55 struct inode *inode = file_inode(vmf->vma->vm_file); 56 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 57 struct dnode_of_data dn; 58 bool need_alloc = true; 59 int err = 0; 60 61 if (unlikely(f2fs_cp_error(sbi))) { 62 err = -EIO; 63 goto err; 64 } 65 66 if (!f2fs_is_checkpoint_ready(sbi)) { 67 err = -ENOSPC; 68 goto err; 69 } 70 71 #ifdef CONFIG_F2FS_FS_COMPRESSION 72 if (f2fs_compressed_file(inode)) { 73 int ret = f2fs_is_compressed_cluster(inode, page->index); 74 75 if (ret < 0) { 76 err = ret; 77 goto err; 78 } else if (ret) { 79 if (ret < F2FS_I(inode)->i_cluster_size) { 80 err = -EAGAIN; 81 goto err; 82 } 83 need_alloc = false; 84 } 85 } 86 #endif 87 /* should do out of any locked page */ 88 if (need_alloc) 89 f2fs_balance_fs(sbi, true); 90 91 sb_start_pagefault(inode->i_sb); 92 93 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 94 95 file_update_time(vmf->vma->vm_file); 96 down_read(&F2FS_I(inode)->i_mmap_sem); 97 lock_page(page); 98 if (unlikely(page->mapping != inode->i_mapping || 99 page_offset(page) > i_size_read(inode) || 100 !PageUptodate(page))) { 101 unlock_page(page); 102 err = -EFAULT; 103 goto out_sem; 104 } 105 106 if (need_alloc) { 107 /* block allocation */ 108 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 109 set_new_dnode(&dn, inode, NULL, NULL, 0); 110 err = f2fs_get_block(&dn, page->index); 111 f2fs_put_dnode(&dn); 112 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 113 } 114 115 #ifdef CONFIG_F2FS_FS_COMPRESSION 116 if (!need_alloc) { 117 set_new_dnode(&dn, inode, NULL, NULL, 0); 118 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 119 f2fs_put_dnode(&dn); 120 } 121 #endif 122 if (err) { 123 unlock_page(page); 124 goto out_sem; 125 } 126 127 f2fs_wait_on_page_writeback(page, DATA, false, true); 128 129 /* wait for GCed page writeback via META_MAPPING */ 130 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 131 132 /* 133 * check to see if the page is mapped already (no holes) 134 */ 135 if (PageMappedToDisk(page)) 136 goto out_sem; 137 138 /* page is wholly or partially inside EOF */ 139 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 140 i_size_read(inode)) { 141 loff_t offset; 142 143 offset = i_size_read(inode) & ~PAGE_MASK; 144 zero_user_segment(page, offset, PAGE_SIZE); 145 } 146 set_page_dirty(page); 147 if (!PageUptodate(page)) 148 SetPageUptodate(page); 149 150 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 151 f2fs_update_time(sbi, REQ_TIME); 152 153 trace_f2fs_vm_page_mkwrite(page, DATA); 154 out_sem: 155 up_read(&F2FS_I(inode)->i_mmap_sem); 156 157 sb_end_pagefault(inode->i_sb); 158 err: 159 return block_page_mkwrite_return(err); 160 } 161 162 static const struct vm_operations_struct f2fs_file_vm_ops = { 163 .fault = f2fs_filemap_fault, 164 .map_pages = filemap_map_pages, 165 .page_mkwrite = f2fs_vm_page_mkwrite, 166 }; 167 168 static int get_parent_ino(struct inode *inode, nid_t *pino) 169 { 170 struct dentry *dentry; 171 172 /* 173 * Make sure to get the non-deleted alias. The alias associated with 174 * the open file descriptor being fsync()'ed may be deleted already. 175 */ 176 dentry = d_find_alias(inode); 177 if (!dentry) 178 return 0; 179 180 *pino = parent_ino(dentry); 181 dput(dentry); 182 return 1; 183 } 184 185 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 186 { 187 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 188 enum cp_reason_type cp_reason = CP_NO_NEEDED; 189 190 if (!S_ISREG(inode->i_mode)) 191 cp_reason = CP_NON_REGULAR; 192 else if (f2fs_compressed_file(inode)) 193 cp_reason = CP_COMPRESSED; 194 else if (inode->i_nlink != 1) 195 cp_reason = CP_HARDLINK; 196 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 197 cp_reason = CP_SB_NEED_CP; 198 else if (file_wrong_pino(inode)) 199 cp_reason = CP_WRONG_PINO; 200 else if (!f2fs_space_for_roll_forward(sbi)) 201 cp_reason = CP_NO_SPC_ROLL; 202 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 203 cp_reason = CP_NODE_NEED_CP; 204 else if (test_opt(sbi, FASTBOOT)) 205 cp_reason = CP_FASTBOOT_MODE; 206 else if (F2FS_OPTION(sbi).active_logs == 2) 207 cp_reason = CP_SPEC_LOG_NUM; 208 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 209 f2fs_need_dentry_mark(sbi, inode->i_ino) && 210 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 211 TRANS_DIR_INO)) 212 cp_reason = CP_RECOVER_DIR; 213 214 return cp_reason; 215 } 216 217 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 218 { 219 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 220 bool ret = false; 221 /* But we need to avoid that there are some inode updates */ 222 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 223 ret = true; 224 f2fs_put_page(i, 0); 225 return ret; 226 } 227 228 static void try_to_fix_pino(struct inode *inode) 229 { 230 struct f2fs_inode_info *fi = F2FS_I(inode); 231 nid_t pino; 232 233 down_write(&fi->i_sem); 234 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 235 get_parent_ino(inode, &pino)) { 236 f2fs_i_pino_write(inode, pino); 237 file_got_pino(inode); 238 } 239 up_write(&fi->i_sem); 240 } 241 242 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 243 int datasync, bool atomic) 244 { 245 struct inode *inode = file->f_mapping->host; 246 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 247 nid_t ino = inode->i_ino; 248 int ret = 0; 249 enum cp_reason_type cp_reason = 0; 250 struct writeback_control wbc = { 251 .sync_mode = WB_SYNC_ALL, 252 .nr_to_write = LONG_MAX, 253 .for_reclaim = 0, 254 }; 255 unsigned int seq_id = 0; 256 257 if (unlikely(f2fs_readonly(inode->i_sb) || 258 is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 259 return 0; 260 261 trace_f2fs_sync_file_enter(inode); 262 263 if (S_ISDIR(inode->i_mode)) 264 goto go_write; 265 266 /* if fdatasync is triggered, let's do in-place-update */ 267 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 268 set_inode_flag(inode, FI_NEED_IPU); 269 ret = file_write_and_wait_range(file, start, end); 270 clear_inode_flag(inode, FI_NEED_IPU); 271 272 if (ret) { 273 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 274 return ret; 275 } 276 277 /* if the inode is dirty, let's recover all the time */ 278 if (!f2fs_skip_inode_update(inode, datasync)) { 279 f2fs_write_inode(inode, NULL); 280 goto go_write; 281 } 282 283 /* 284 * if there is no written data, don't waste time to write recovery info. 285 */ 286 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 287 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 288 289 /* it may call write_inode just prior to fsync */ 290 if (need_inode_page_update(sbi, ino)) 291 goto go_write; 292 293 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 294 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 295 goto flush_out; 296 goto out; 297 } 298 go_write: 299 /* 300 * Both of fdatasync() and fsync() are able to be recovered from 301 * sudden-power-off. 302 */ 303 down_read(&F2FS_I(inode)->i_sem); 304 cp_reason = need_do_checkpoint(inode); 305 up_read(&F2FS_I(inode)->i_sem); 306 307 if (cp_reason) { 308 /* all the dirty node pages should be flushed for POR */ 309 ret = f2fs_sync_fs(inode->i_sb, 1); 310 311 /* 312 * We've secured consistency through sync_fs. Following pino 313 * will be used only for fsynced inodes after checkpoint. 314 */ 315 try_to_fix_pino(inode); 316 clear_inode_flag(inode, FI_APPEND_WRITE); 317 clear_inode_flag(inode, FI_UPDATE_WRITE); 318 goto out; 319 } 320 sync_nodes: 321 atomic_inc(&sbi->wb_sync_req[NODE]); 322 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 323 atomic_dec(&sbi->wb_sync_req[NODE]); 324 if (ret) 325 goto out; 326 327 /* if cp_error was enabled, we should avoid infinite loop */ 328 if (unlikely(f2fs_cp_error(sbi))) { 329 ret = -EIO; 330 goto out; 331 } 332 333 if (f2fs_need_inode_block_update(sbi, ino)) { 334 f2fs_mark_inode_dirty_sync(inode, true); 335 f2fs_write_inode(inode, NULL); 336 goto sync_nodes; 337 } 338 339 /* 340 * If it's atomic_write, it's just fine to keep write ordering. So 341 * here we don't need to wait for node write completion, since we use 342 * node chain which serializes node blocks. If one of node writes are 343 * reordered, we can see simply broken chain, resulting in stopping 344 * roll-forward recovery. It means we'll recover all or none node blocks 345 * given fsync mark. 346 */ 347 if (!atomic) { 348 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 349 if (ret) 350 goto out; 351 } 352 353 /* once recovery info is written, don't need to tack this */ 354 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 355 clear_inode_flag(inode, FI_APPEND_WRITE); 356 flush_out: 357 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 358 ret = f2fs_issue_flush(sbi, inode->i_ino); 359 if (!ret) { 360 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 361 clear_inode_flag(inode, FI_UPDATE_WRITE); 362 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 363 } 364 f2fs_update_time(sbi, REQ_TIME); 365 out: 366 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 367 f2fs_trace_ios(NULL, 1); 368 return ret; 369 } 370 371 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 372 { 373 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 374 return -EIO; 375 return f2fs_do_sync_file(file, start, end, datasync, false); 376 } 377 378 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 379 pgoff_t pgofs, int whence) 380 { 381 struct page *page; 382 int nr_pages; 383 384 if (whence != SEEK_DATA) 385 return 0; 386 387 /* find first dirty page index */ 388 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY, 389 1, &page); 390 if (!nr_pages) 391 return ULONG_MAX; 392 pgofs = page->index; 393 put_page(page); 394 return pgofs; 395 } 396 397 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr, 398 pgoff_t dirty, pgoff_t pgofs, int whence) 399 { 400 switch (whence) { 401 case SEEK_DATA: 402 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 403 __is_valid_data_blkaddr(blkaddr)) 404 return true; 405 break; 406 case SEEK_HOLE: 407 if (blkaddr == NULL_ADDR) 408 return true; 409 break; 410 } 411 return false; 412 } 413 414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 415 { 416 struct inode *inode = file->f_mapping->host; 417 loff_t maxbytes = inode->i_sb->s_maxbytes; 418 struct dnode_of_data dn; 419 pgoff_t pgofs, end_offset, dirty; 420 loff_t data_ofs = offset; 421 loff_t isize; 422 int err = 0; 423 424 inode_lock(inode); 425 426 isize = i_size_read(inode); 427 if (offset >= isize) 428 goto fail; 429 430 /* handle inline data case */ 431 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 432 if (whence == SEEK_HOLE) 433 data_ofs = isize; 434 goto found; 435 } 436 437 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 438 439 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 440 441 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 442 set_new_dnode(&dn, inode, NULL, NULL, 0); 443 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 444 if (err && err != -ENOENT) { 445 goto fail; 446 } else if (err == -ENOENT) { 447 /* direct node does not exists */ 448 if (whence == SEEK_DATA) { 449 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 450 continue; 451 } else { 452 goto found; 453 } 454 } 455 456 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 457 458 /* find data/hole in dnode block */ 459 for (; dn.ofs_in_node < end_offset; 460 dn.ofs_in_node++, pgofs++, 461 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 462 block_t blkaddr; 463 464 blkaddr = f2fs_data_blkaddr(&dn); 465 466 if (__is_valid_data_blkaddr(blkaddr) && 467 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 468 blkaddr, DATA_GENERIC_ENHANCE)) { 469 f2fs_put_dnode(&dn); 470 goto fail; 471 } 472 473 if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty, 474 pgofs, whence)) { 475 f2fs_put_dnode(&dn); 476 goto found; 477 } 478 } 479 f2fs_put_dnode(&dn); 480 } 481 482 if (whence == SEEK_DATA) 483 goto fail; 484 found: 485 if (whence == SEEK_HOLE && data_ofs > isize) 486 data_ofs = isize; 487 inode_unlock(inode); 488 return vfs_setpos(file, data_ofs, maxbytes); 489 fail: 490 inode_unlock(inode); 491 return -ENXIO; 492 } 493 494 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 495 { 496 struct inode *inode = file->f_mapping->host; 497 loff_t maxbytes = inode->i_sb->s_maxbytes; 498 499 switch (whence) { 500 case SEEK_SET: 501 case SEEK_CUR: 502 case SEEK_END: 503 return generic_file_llseek_size(file, offset, whence, 504 maxbytes, i_size_read(inode)); 505 case SEEK_DATA: 506 case SEEK_HOLE: 507 if (offset < 0) 508 return -ENXIO; 509 return f2fs_seek_block(file, offset, whence); 510 } 511 512 return -EINVAL; 513 } 514 515 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 516 { 517 struct inode *inode = file_inode(file); 518 int err; 519 520 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 521 return -EIO; 522 523 if (!f2fs_is_compress_backend_ready(inode)) 524 return -EOPNOTSUPP; 525 526 /* we don't need to use inline_data strictly */ 527 err = f2fs_convert_inline_inode(inode); 528 if (err) 529 return err; 530 531 file_accessed(file); 532 vma->vm_ops = &f2fs_file_vm_ops; 533 set_inode_flag(inode, FI_MMAP_FILE); 534 return 0; 535 } 536 537 static int f2fs_file_open(struct inode *inode, struct file *filp) 538 { 539 int err = fscrypt_file_open(inode, filp); 540 541 if (err) 542 return err; 543 544 if (!f2fs_is_compress_backend_ready(inode)) 545 return -EOPNOTSUPP; 546 547 err = fsverity_file_open(inode, filp); 548 if (err) 549 return err; 550 551 filp->f_mode |= FMODE_NOWAIT; 552 553 return dquot_file_open(inode, filp); 554 } 555 556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 557 { 558 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 559 struct f2fs_node *raw_node; 560 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 561 __le32 *addr; 562 int base = 0; 563 bool compressed_cluster = false; 564 int cluster_index = 0, valid_blocks = 0; 565 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 566 bool released = !F2FS_I(dn->inode)->i_compr_blocks; 567 568 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 569 base = get_extra_isize(dn->inode); 570 571 raw_node = F2FS_NODE(dn->node_page); 572 addr = blkaddr_in_node(raw_node) + base + ofs; 573 574 /* Assumption: truncateion starts with cluster */ 575 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 576 block_t blkaddr = le32_to_cpu(*addr); 577 578 if (f2fs_compressed_file(dn->inode) && 579 !(cluster_index & (cluster_size - 1))) { 580 if (compressed_cluster) 581 f2fs_i_compr_blocks_update(dn->inode, 582 valid_blocks, false); 583 compressed_cluster = (blkaddr == COMPRESS_ADDR); 584 valid_blocks = 0; 585 } 586 587 if (blkaddr == NULL_ADDR) 588 continue; 589 590 dn->data_blkaddr = NULL_ADDR; 591 f2fs_set_data_blkaddr(dn); 592 593 if (__is_valid_data_blkaddr(blkaddr)) { 594 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 595 DATA_GENERIC_ENHANCE)) 596 continue; 597 if (compressed_cluster) 598 valid_blocks++; 599 } 600 601 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 602 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 603 604 f2fs_invalidate_blocks(sbi, blkaddr); 605 606 if (!released || blkaddr != COMPRESS_ADDR) 607 nr_free++; 608 } 609 610 if (compressed_cluster) 611 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 612 613 if (nr_free) { 614 pgoff_t fofs; 615 /* 616 * once we invalidate valid blkaddr in range [ofs, ofs + count], 617 * we will invalidate all blkaddr in the whole range. 618 */ 619 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 620 dn->inode) + ofs; 621 f2fs_update_extent_cache_range(dn, fofs, 0, len); 622 dec_valid_block_count(sbi, dn->inode, nr_free); 623 } 624 dn->ofs_in_node = ofs; 625 626 f2fs_update_time(sbi, REQ_TIME); 627 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 628 dn->ofs_in_node, nr_free); 629 } 630 631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 632 { 633 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 634 } 635 636 static int truncate_partial_data_page(struct inode *inode, u64 from, 637 bool cache_only) 638 { 639 loff_t offset = from & (PAGE_SIZE - 1); 640 pgoff_t index = from >> PAGE_SHIFT; 641 struct address_space *mapping = inode->i_mapping; 642 struct page *page; 643 644 if (!offset && !cache_only) 645 return 0; 646 647 if (cache_only) { 648 page = find_lock_page(mapping, index); 649 if (page && PageUptodate(page)) 650 goto truncate_out; 651 f2fs_put_page(page, 1); 652 return 0; 653 } 654 655 page = f2fs_get_lock_data_page(inode, index, true); 656 if (IS_ERR(page)) 657 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 658 truncate_out: 659 f2fs_wait_on_page_writeback(page, DATA, true, true); 660 zero_user(page, offset, PAGE_SIZE - offset); 661 662 /* An encrypted inode should have a key and truncate the last page. */ 663 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 664 if (!cache_only) 665 set_page_dirty(page); 666 f2fs_put_page(page, 1); 667 return 0; 668 } 669 670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 671 { 672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 673 struct dnode_of_data dn; 674 pgoff_t free_from; 675 int count = 0, err = 0; 676 struct page *ipage; 677 bool truncate_page = false; 678 679 trace_f2fs_truncate_blocks_enter(inode, from); 680 681 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 682 683 if (free_from >= sbi->max_file_blocks) 684 goto free_partial; 685 686 if (lock) 687 f2fs_lock_op(sbi); 688 689 ipage = f2fs_get_node_page(sbi, inode->i_ino); 690 if (IS_ERR(ipage)) { 691 err = PTR_ERR(ipage); 692 goto out; 693 } 694 695 if (f2fs_has_inline_data(inode)) { 696 f2fs_truncate_inline_inode(inode, ipage, from); 697 f2fs_put_page(ipage, 1); 698 truncate_page = true; 699 goto out; 700 } 701 702 set_new_dnode(&dn, inode, ipage, NULL, 0); 703 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 704 if (err) { 705 if (err == -ENOENT) 706 goto free_next; 707 goto out; 708 } 709 710 count = ADDRS_PER_PAGE(dn.node_page, inode); 711 712 count -= dn.ofs_in_node; 713 f2fs_bug_on(sbi, count < 0); 714 715 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 716 f2fs_truncate_data_blocks_range(&dn, count); 717 free_from += count; 718 } 719 720 f2fs_put_dnode(&dn); 721 free_next: 722 err = f2fs_truncate_inode_blocks(inode, free_from); 723 out: 724 if (lock) 725 f2fs_unlock_op(sbi); 726 free_partial: 727 /* lastly zero out the first data page */ 728 if (!err) 729 err = truncate_partial_data_page(inode, from, truncate_page); 730 731 trace_f2fs_truncate_blocks_exit(inode, err); 732 return err; 733 } 734 735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 736 { 737 u64 free_from = from; 738 int err; 739 740 #ifdef CONFIG_F2FS_FS_COMPRESSION 741 /* 742 * for compressed file, only support cluster size 743 * aligned truncation. 744 */ 745 if (f2fs_compressed_file(inode)) 746 free_from = round_up(from, 747 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 748 #endif 749 750 err = f2fs_do_truncate_blocks(inode, free_from, lock); 751 if (err) 752 return err; 753 754 #ifdef CONFIG_F2FS_FS_COMPRESSION 755 if (from != free_from) 756 err = f2fs_truncate_partial_cluster(inode, from, lock); 757 #endif 758 759 return err; 760 } 761 762 int f2fs_truncate(struct inode *inode) 763 { 764 int err; 765 766 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 767 return -EIO; 768 769 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 770 S_ISLNK(inode->i_mode))) 771 return 0; 772 773 trace_f2fs_truncate(inode); 774 775 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 776 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 777 return -EIO; 778 } 779 780 /* we should check inline_data size */ 781 if (!f2fs_may_inline_data(inode)) { 782 err = f2fs_convert_inline_inode(inode); 783 if (err) 784 return err; 785 } 786 787 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 788 if (err) 789 return err; 790 791 inode->i_mtime = inode->i_ctime = current_time(inode); 792 f2fs_mark_inode_dirty_sync(inode, false); 793 return 0; 794 } 795 796 int f2fs_getattr(const struct path *path, struct kstat *stat, 797 u32 request_mask, unsigned int query_flags) 798 { 799 struct inode *inode = d_inode(path->dentry); 800 struct f2fs_inode_info *fi = F2FS_I(inode); 801 struct f2fs_inode *ri; 802 unsigned int flags; 803 804 if (f2fs_has_extra_attr(inode) && 805 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 806 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 807 stat->result_mask |= STATX_BTIME; 808 stat->btime.tv_sec = fi->i_crtime.tv_sec; 809 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 810 } 811 812 flags = fi->i_flags; 813 if (flags & F2FS_COMPR_FL) 814 stat->attributes |= STATX_ATTR_COMPRESSED; 815 if (flags & F2FS_APPEND_FL) 816 stat->attributes |= STATX_ATTR_APPEND; 817 if (IS_ENCRYPTED(inode)) 818 stat->attributes |= STATX_ATTR_ENCRYPTED; 819 if (flags & F2FS_IMMUTABLE_FL) 820 stat->attributes |= STATX_ATTR_IMMUTABLE; 821 if (flags & F2FS_NODUMP_FL) 822 stat->attributes |= STATX_ATTR_NODUMP; 823 if (IS_VERITY(inode)) 824 stat->attributes |= STATX_ATTR_VERITY; 825 826 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 827 STATX_ATTR_APPEND | 828 STATX_ATTR_ENCRYPTED | 829 STATX_ATTR_IMMUTABLE | 830 STATX_ATTR_NODUMP | 831 STATX_ATTR_VERITY); 832 833 generic_fillattr(inode, stat); 834 835 /* we need to show initial sectors used for inline_data/dentries */ 836 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 837 f2fs_has_inline_dentry(inode)) 838 stat->blocks += (stat->size + 511) >> 9; 839 840 return 0; 841 } 842 843 #ifdef CONFIG_F2FS_FS_POSIX_ACL 844 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 845 { 846 unsigned int ia_valid = attr->ia_valid; 847 848 if (ia_valid & ATTR_UID) 849 inode->i_uid = attr->ia_uid; 850 if (ia_valid & ATTR_GID) 851 inode->i_gid = attr->ia_gid; 852 if (ia_valid & ATTR_ATIME) 853 inode->i_atime = attr->ia_atime; 854 if (ia_valid & ATTR_MTIME) 855 inode->i_mtime = attr->ia_mtime; 856 if (ia_valid & ATTR_CTIME) 857 inode->i_ctime = attr->ia_ctime; 858 if (ia_valid & ATTR_MODE) { 859 umode_t mode = attr->ia_mode; 860 861 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 862 mode &= ~S_ISGID; 863 set_acl_inode(inode, mode); 864 } 865 } 866 #else 867 #define __setattr_copy setattr_copy 868 #endif 869 870 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 871 { 872 struct inode *inode = d_inode(dentry); 873 int err; 874 875 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 876 return -EIO; 877 878 if ((attr->ia_valid & ATTR_SIZE) && 879 !f2fs_is_compress_backend_ready(inode)) 880 return -EOPNOTSUPP; 881 882 err = setattr_prepare(dentry, attr); 883 if (err) 884 return err; 885 886 err = fscrypt_prepare_setattr(dentry, attr); 887 if (err) 888 return err; 889 890 err = fsverity_prepare_setattr(dentry, attr); 891 if (err) 892 return err; 893 894 if (is_quota_modification(inode, attr)) { 895 err = dquot_initialize(inode); 896 if (err) 897 return err; 898 } 899 if ((attr->ia_valid & ATTR_UID && 900 !uid_eq(attr->ia_uid, inode->i_uid)) || 901 (attr->ia_valid & ATTR_GID && 902 !gid_eq(attr->ia_gid, inode->i_gid))) { 903 f2fs_lock_op(F2FS_I_SB(inode)); 904 err = dquot_transfer(inode, attr); 905 if (err) { 906 set_sbi_flag(F2FS_I_SB(inode), 907 SBI_QUOTA_NEED_REPAIR); 908 f2fs_unlock_op(F2FS_I_SB(inode)); 909 return err; 910 } 911 /* 912 * update uid/gid under lock_op(), so that dquot and inode can 913 * be updated atomically. 914 */ 915 if (attr->ia_valid & ATTR_UID) 916 inode->i_uid = attr->ia_uid; 917 if (attr->ia_valid & ATTR_GID) 918 inode->i_gid = attr->ia_gid; 919 f2fs_mark_inode_dirty_sync(inode, true); 920 f2fs_unlock_op(F2FS_I_SB(inode)); 921 } 922 923 if (attr->ia_valid & ATTR_SIZE) { 924 loff_t old_size = i_size_read(inode); 925 926 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 927 /* 928 * should convert inline inode before i_size_write to 929 * keep smaller than inline_data size with inline flag. 930 */ 931 err = f2fs_convert_inline_inode(inode); 932 if (err) 933 return err; 934 } 935 936 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 937 down_write(&F2FS_I(inode)->i_mmap_sem); 938 939 truncate_setsize(inode, attr->ia_size); 940 941 if (attr->ia_size <= old_size) 942 err = f2fs_truncate(inode); 943 /* 944 * do not trim all blocks after i_size if target size is 945 * larger than i_size. 946 */ 947 up_write(&F2FS_I(inode)->i_mmap_sem); 948 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 949 if (err) 950 return err; 951 952 spin_lock(&F2FS_I(inode)->i_size_lock); 953 inode->i_mtime = inode->i_ctime = current_time(inode); 954 F2FS_I(inode)->last_disk_size = i_size_read(inode); 955 spin_unlock(&F2FS_I(inode)->i_size_lock); 956 } 957 958 __setattr_copy(inode, attr); 959 960 if (attr->ia_valid & ATTR_MODE) { 961 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode)); 962 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 963 inode->i_mode = F2FS_I(inode)->i_acl_mode; 964 clear_inode_flag(inode, FI_ACL_MODE); 965 } 966 } 967 968 /* file size may changed here */ 969 f2fs_mark_inode_dirty_sync(inode, true); 970 971 /* inode change will produce dirty node pages flushed by checkpoint */ 972 f2fs_balance_fs(F2FS_I_SB(inode), true); 973 974 return err; 975 } 976 977 const struct inode_operations f2fs_file_inode_operations = { 978 .getattr = f2fs_getattr, 979 .setattr = f2fs_setattr, 980 .get_acl = f2fs_get_acl, 981 .set_acl = f2fs_set_acl, 982 .listxattr = f2fs_listxattr, 983 .fiemap = f2fs_fiemap, 984 }; 985 986 static int fill_zero(struct inode *inode, pgoff_t index, 987 loff_t start, loff_t len) 988 { 989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 990 struct page *page; 991 992 if (!len) 993 return 0; 994 995 f2fs_balance_fs(sbi, true); 996 997 f2fs_lock_op(sbi); 998 page = f2fs_get_new_data_page(inode, NULL, index, false); 999 f2fs_unlock_op(sbi); 1000 1001 if (IS_ERR(page)) 1002 return PTR_ERR(page); 1003 1004 f2fs_wait_on_page_writeback(page, DATA, true, true); 1005 zero_user(page, start, len); 1006 set_page_dirty(page); 1007 f2fs_put_page(page, 1); 1008 return 0; 1009 } 1010 1011 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1012 { 1013 int err; 1014 1015 while (pg_start < pg_end) { 1016 struct dnode_of_data dn; 1017 pgoff_t end_offset, count; 1018 1019 set_new_dnode(&dn, inode, NULL, NULL, 0); 1020 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1021 if (err) { 1022 if (err == -ENOENT) { 1023 pg_start = f2fs_get_next_page_offset(&dn, 1024 pg_start); 1025 continue; 1026 } 1027 return err; 1028 } 1029 1030 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1031 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1032 1033 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1034 1035 f2fs_truncate_data_blocks_range(&dn, count); 1036 f2fs_put_dnode(&dn); 1037 1038 pg_start += count; 1039 } 1040 return 0; 1041 } 1042 1043 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1044 { 1045 pgoff_t pg_start, pg_end; 1046 loff_t off_start, off_end; 1047 int ret; 1048 1049 ret = f2fs_convert_inline_inode(inode); 1050 if (ret) 1051 return ret; 1052 1053 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1054 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1055 1056 off_start = offset & (PAGE_SIZE - 1); 1057 off_end = (offset + len) & (PAGE_SIZE - 1); 1058 1059 if (pg_start == pg_end) { 1060 ret = fill_zero(inode, pg_start, off_start, 1061 off_end - off_start); 1062 if (ret) 1063 return ret; 1064 } else { 1065 if (off_start) { 1066 ret = fill_zero(inode, pg_start++, off_start, 1067 PAGE_SIZE - off_start); 1068 if (ret) 1069 return ret; 1070 } 1071 if (off_end) { 1072 ret = fill_zero(inode, pg_end, 0, off_end); 1073 if (ret) 1074 return ret; 1075 } 1076 1077 if (pg_start < pg_end) { 1078 struct address_space *mapping = inode->i_mapping; 1079 loff_t blk_start, blk_end; 1080 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1081 1082 f2fs_balance_fs(sbi, true); 1083 1084 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1085 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1086 1087 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1088 down_write(&F2FS_I(inode)->i_mmap_sem); 1089 1090 truncate_inode_pages_range(mapping, blk_start, 1091 blk_end - 1); 1092 1093 f2fs_lock_op(sbi); 1094 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1095 f2fs_unlock_op(sbi); 1096 1097 up_write(&F2FS_I(inode)->i_mmap_sem); 1098 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1099 } 1100 } 1101 1102 return ret; 1103 } 1104 1105 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1106 int *do_replace, pgoff_t off, pgoff_t len) 1107 { 1108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1109 struct dnode_of_data dn; 1110 int ret, done, i; 1111 1112 next_dnode: 1113 set_new_dnode(&dn, inode, NULL, NULL, 0); 1114 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1115 if (ret && ret != -ENOENT) { 1116 return ret; 1117 } else if (ret == -ENOENT) { 1118 if (dn.max_level == 0) 1119 return -ENOENT; 1120 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1121 dn.ofs_in_node, len); 1122 blkaddr += done; 1123 do_replace += done; 1124 goto next; 1125 } 1126 1127 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1128 dn.ofs_in_node, len); 1129 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1130 *blkaddr = f2fs_data_blkaddr(&dn); 1131 1132 if (__is_valid_data_blkaddr(*blkaddr) && 1133 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1134 DATA_GENERIC_ENHANCE)) { 1135 f2fs_put_dnode(&dn); 1136 return -EFSCORRUPTED; 1137 } 1138 1139 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1140 1141 if (f2fs_lfs_mode(sbi)) { 1142 f2fs_put_dnode(&dn); 1143 return -EOPNOTSUPP; 1144 } 1145 1146 /* do not invalidate this block address */ 1147 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1148 *do_replace = 1; 1149 } 1150 } 1151 f2fs_put_dnode(&dn); 1152 next: 1153 len -= done; 1154 off += done; 1155 if (len) 1156 goto next_dnode; 1157 return 0; 1158 } 1159 1160 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1161 int *do_replace, pgoff_t off, int len) 1162 { 1163 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1164 struct dnode_of_data dn; 1165 int ret, i; 1166 1167 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1168 if (*do_replace == 0) 1169 continue; 1170 1171 set_new_dnode(&dn, inode, NULL, NULL, 0); 1172 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1173 if (ret) { 1174 dec_valid_block_count(sbi, inode, 1); 1175 f2fs_invalidate_blocks(sbi, *blkaddr); 1176 } else { 1177 f2fs_update_data_blkaddr(&dn, *blkaddr); 1178 } 1179 f2fs_put_dnode(&dn); 1180 } 1181 return 0; 1182 } 1183 1184 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1185 block_t *blkaddr, int *do_replace, 1186 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1187 { 1188 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1189 pgoff_t i = 0; 1190 int ret; 1191 1192 while (i < len) { 1193 if (blkaddr[i] == NULL_ADDR && !full) { 1194 i++; 1195 continue; 1196 } 1197 1198 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1199 struct dnode_of_data dn; 1200 struct node_info ni; 1201 size_t new_size; 1202 pgoff_t ilen; 1203 1204 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1205 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1206 if (ret) 1207 return ret; 1208 1209 ret = f2fs_get_node_info(sbi, dn.nid, &ni); 1210 if (ret) { 1211 f2fs_put_dnode(&dn); 1212 return ret; 1213 } 1214 1215 ilen = min((pgoff_t) 1216 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1217 dn.ofs_in_node, len - i); 1218 do { 1219 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1220 f2fs_truncate_data_blocks_range(&dn, 1); 1221 1222 if (do_replace[i]) { 1223 f2fs_i_blocks_write(src_inode, 1224 1, false, false); 1225 f2fs_i_blocks_write(dst_inode, 1226 1, true, false); 1227 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1228 blkaddr[i], ni.version, true, false); 1229 1230 do_replace[i] = 0; 1231 } 1232 dn.ofs_in_node++; 1233 i++; 1234 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1235 if (dst_inode->i_size < new_size) 1236 f2fs_i_size_write(dst_inode, new_size); 1237 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1238 1239 f2fs_put_dnode(&dn); 1240 } else { 1241 struct page *psrc, *pdst; 1242 1243 psrc = f2fs_get_lock_data_page(src_inode, 1244 src + i, true); 1245 if (IS_ERR(psrc)) 1246 return PTR_ERR(psrc); 1247 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1248 true); 1249 if (IS_ERR(pdst)) { 1250 f2fs_put_page(psrc, 1); 1251 return PTR_ERR(pdst); 1252 } 1253 f2fs_copy_page(psrc, pdst); 1254 set_page_dirty(pdst); 1255 f2fs_put_page(pdst, 1); 1256 f2fs_put_page(psrc, 1); 1257 1258 ret = f2fs_truncate_hole(src_inode, 1259 src + i, src + i + 1); 1260 if (ret) 1261 return ret; 1262 i++; 1263 } 1264 } 1265 return 0; 1266 } 1267 1268 static int __exchange_data_block(struct inode *src_inode, 1269 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1270 pgoff_t len, bool full) 1271 { 1272 block_t *src_blkaddr; 1273 int *do_replace; 1274 pgoff_t olen; 1275 int ret; 1276 1277 while (len) { 1278 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1279 1280 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1281 array_size(olen, sizeof(block_t)), 1282 GFP_NOFS); 1283 if (!src_blkaddr) 1284 return -ENOMEM; 1285 1286 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1287 array_size(olen, sizeof(int)), 1288 GFP_NOFS); 1289 if (!do_replace) { 1290 kvfree(src_blkaddr); 1291 return -ENOMEM; 1292 } 1293 1294 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1295 do_replace, src, olen); 1296 if (ret) 1297 goto roll_back; 1298 1299 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1300 do_replace, src, dst, olen, full); 1301 if (ret) 1302 goto roll_back; 1303 1304 src += olen; 1305 dst += olen; 1306 len -= olen; 1307 1308 kvfree(src_blkaddr); 1309 kvfree(do_replace); 1310 } 1311 return 0; 1312 1313 roll_back: 1314 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1315 kvfree(src_blkaddr); 1316 kvfree(do_replace); 1317 return ret; 1318 } 1319 1320 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1321 { 1322 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1323 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1324 pgoff_t start = offset >> PAGE_SHIFT; 1325 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1326 int ret; 1327 1328 f2fs_balance_fs(sbi, true); 1329 1330 /* avoid gc operation during block exchange */ 1331 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1332 down_write(&F2FS_I(inode)->i_mmap_sem); 1333 1334 f2fs_lock_op(sbi); 1335 f2fs_drop_extent_tree(inode); 1336 truncate_pagecache(inode, offset); 1337 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1338 f2fs_unlock_op(sbi); 1339 1340 up_write(&F2FS_I(inode)->i_mmap_sem); 1341 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1342 return ret; 1343 } 1344 1345 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1346 { 1347 loff_t new_size; 1348 int ret; 1349 1350 if (offset + len >= i_size_read(inode)) 1351 return -EINVAL; 1352 1353 /* collapse range should be aligned to block size of f2fs. */ 1354 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1355 return -EINVAL; 1356 1357 ret = f2fs_convert_inline_inode(inode); 1358 if (ret) 1359 return ret; 1360 1361 /* write out all dirty pages from offset */ 1362 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1363 if (ret) 1364 return ret; 1365 1366 ret = f2fs_do_collapse(inode, offset, len); 1367 if (ret) 1368 return ret; 1369 1370 /* write out all moved pages, if possible */ 1371 down_write(&F2FS_I(inode)->i_mmap_sem); 1372 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1373 truncate_pagecache(inode, offset); 1374 1375 new_size = i_size_read(inode) - len; 1376 truncate_pagecache(inode, new_size); 1377 1378 ret = f2fs_truncate_blocks(inode, new_size, true); 1379 up_write(&F2FS_I(inode)->i_mmap_sem); 1380 if (!ret) 1381 f2fs_i_size_write(inode, new_size); 1382 return ret; 1383 } 1384 1385 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1386 pgoff_t end) 1387 { 1388 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1389 pgoff_t index = start; 1390 unsigned int ofs_in_node = dn->ofs_in_node; 1391 blkcnt_t count = 0; 1392 int ret; 1393 1394 for (; index < end; index++, dn->ofs_in_node++) { 1395 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1396 count++; 1397 } 1398 1399 dn->ofs_in_node = ofs_in_node; 1400 ret = f2fs_reserve_new_blocks(dn, count); 1401 if (ret) 1402 return ret; 1403 1404 dn->ofs_in_node = ofs_in_node; 1405 for (index = start; index < end; index++, dn->ofs_in_node++) { 1406 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1407 /* 1408 * f2fs_reserve_new_blocks will not guarantee entire block 1409 * allocation. 1410 */ 1411 if (dn->data_blkaddr == NULL_ADDR) { 1412 ret = -ENOSPC; 1413 break; 1414 } 1415 if (dn->data_blkaddr != NEW_ADDR) { 1416 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1417 dn->data_blkaddr = NEW_ADDR; 1418 f2fs_set_data_blkaddr(dn); 1419 } 1420 } 1421 1422 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1423 1424 return ret; 1425 } 1426 1427 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1428 int mode) 1429 { 1430 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1431 struct address_space *mapping = inode->i_mapping; 1432 pgoff_t index, pg_start, pg_end; 1433 loff_t new_size = i_size_read(inode); 1434 loff_t off_start, off_end; 1435 int ret = 0; 1436 1437 ret = inode_newsize_ok(inode, (len + offset)); 1438 if (ret) 1439 return ret; 1440 1441 ret = f2fs_convert_inline_inode(inode); 1442 if (ret) 1443 return ret; 1444 1445 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1446 if (ret) 1447 return ret; 1448 1449 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1450 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1451 1452 off_start = offset & (PAGE_SIZE - 1); 1453 off_end = (offset + len) & (PAGE_SIZE - 1); 1454 1455 if (pg_start == pg_end) { 1456 ret = fill_zero(inode, pg_start, off_start, 1457 off_end - off_start); 1458 if (ret) 1459 return ret; 1460 1461 new_size = max_t(loff_t, new_size, offset + len); 1462 } else { 1463 if (off_start) { 1464 ret = fill_zero(inode, pg_start++, off_start, 1465 PAGE_SIZE - off_start); 1466 if (ret) 1467 return ret; 1468 1469 new_size = max_t(loff_t, new_size, 1470 (loff_t)pg_start << PAGE_SHIFT); 1471 } 1472 1473 for (index = pg_start; index < pg_end;) { 1474 struct dnode_of_data dn; 1475 unsigned int end_offset; 1476 pgoff_t end; 1477 1478 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1479 down_write(&F2FS_I(inode)->i_mmap_sem); 1480 1481 truncate_pagecache_range(inode, 1482 (loff_t)index << PAGE_SHIFT, 1483 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1484 1485 f2fs_lock_op(sbi); 1486 1487 set_new_dnode(&dn, inode, NULL, NULL, 0); 1488 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1489 if (ret) { 1490 f2fs_unlock_op(sbi); 1491 up_write(&F2FS_I(inode)->i_mmap_sem); 1492 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1493 goto out; 1494 } 1495 1496 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1497 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1498 1499 ret = f2fs_do_zero_range(&dn, index, end); 1500 f2fs_put_dnode(&dn); 1501 1502 f2fs_unlock_op(sbi); 1503 up_write(&F2FS_I(inode)->i_mmap_sem); 1504 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1505 1506 f2fs_balance_fs(sbi, dn.node_changed); 1507 1508 if (ret) 1509 goto out; 1510 1511 index = end; 1512 new_size = max_t(loff_t, new_size, 1513 (loff_t)index << PAGE_SHIFT); 1514 } 1515 1516 if (off_end) { 1517 ret = fill_zero(inode, pg_end, 0, off_end); 1518 if (ret) 1519 goto out; 1520 1521 new_size = max_t(loff_t, new_size, offset + len); 1522 } 1523 } 1524 1525 out: 1526 if (new_size > i_size_read(inode)) { 1527 if (mode & FALLOC_FL_KEEP_SIZE) 1528 file_set_keep_isize(inode); 1529 else 1530 f2fs_i_size_write(inode, new_size); 1531 } 1532 return ret; 1533 } 1534 1535 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1536 { 1537 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1538 pgoff_t nr, pg_start, pg_end, delta, idx; 1539 loff_t new_size; 1540 int ret = 0; 1541 1542 new_size = i_size_read(inode) + len; 1543 ret = inode_newsize_ok(inode, new_size); 1544 if (ret) 1545 return ret; 1546 1547 if (offset >= i_size_read(inode)) 1548 return -EINVAL; 1549 1550 /* insert range should be aligned to block size of f2fs. */ 1551 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1552 return -EINVAL; 1553 1554 ret = f2fs_convert_inline_inode(inode); 1555 if (ret) 1556 return ret; 1557 1558 f2fs_balance_fs(sbi, true); 1559 1560 down_write(&F2FS_I(inode)->i_mmap_sem); 1561 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1562 up_write(&F2FS_I(inode)->i_mmap_sem); 1563 if (ret) 1564 return ret; 1565 1566 /* write out all dirty pages from offset */ 1567 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1568 if (ret) 1569 return ret; 1570 1571 pg_start = offset >> PAGE_SHIFT; 1572 pg_end = (offset + len) >> PAGE_SHIFT; 1573 delta = pg_end - pg_start; 1574 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1575 1576 /* avoid gc operation during block exchange */ 1577 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1578 down_write(&F2FS_I(inode)->i_mmap_sem); 1579 truncate_pagecache(inode, offset); 1580 1581 while (!ret && idx > pg_start) { 1582 nr = idx - pg_start; 1583 if (nr > delta) 1584 nr = delta; 1585 idx -= nr; 1586 1587 f2fs_lock_op(sbi); 1588 f2fs_drop_extent_tree(inode); 1589 1590 ret = __exchange_data_block(inode, inode, idx, 1591 idx + delta, nr, false); 1592 f2fs_unlock_op(sbi); 1593 } 1594 up_write(&F2FS_I(inode)->i_mmap_sem); 1595 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1596 1597 /* write out all moved pages, if possible */ 1598 down_write(&F2FS_I(inode)->i_mmap_sem); 1599 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1600 truncate_pagecache(inode, offset); 1601 up_write(&F2FS_I(inode)->i_mmap_sem); 1602 1603 if (!ret) 1604 f2fs_i_size_write(inode, new_size); 1605 return ret; 1606 } 1607 1608 static int expand_inode_data(struct inode *inode, loff_t offset, 1609 loff_t len, int mode) 1610 { 1611 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1612 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1613 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1614 .m_may_create = true }; 1615 pgoff_t pg_end; 1616 loff_t new_size = i_size_read(inode); 1617 loff_t off_end; 1618 int err; 1619 1620 err = inode_newsize_ok(inode, (len + offset)); 1621 if (err) 1622 return err; 1623 1624 err = f2fs_convert_inline_inode(inode); 1625 if (err) 1626 return err; 1627 1628 f2fs_balance_fs(sbi, true); 1629 1630 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1631 off_end = (offset + len) & (PAGE_SIZE - 1); 1632 1633 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1634 map.m_len = pg_end - map.m_lblk; 1635 if (off_end) 1636 map.m_len++; 1637 1638 if (!map.m_len) 1639 return 0; 1640 1641 if (f2fs_is_pinned_file(inode)) { 1642 block_t len = (map.m_len >> sbi->log_blocks_per_seg) << 1643 sbi->log_blocks_per_seg; 1644 block_t done = 0; 1645 1646 if (map.m_len % sbi->blocks_per_seg) 1647 len += sbi->blocks_per_seg; 1648 1649 map.m_len = sbi->blocks_per_seg; 1650 next_alloc: 1651 if (has_not_enough_free_secs(sbi, 0, 1652 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1653 down_write(&sbi->gc_lock); 1654 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1655 if (err && err != -ENODATA && err != -EAGAIN) 1656 goto out_err; 1657 } 1658 1659 down_write(&sbi->pin_sem); 1660 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1661 1662 f2fs_lock_op(sbi); 1663 f2fs_allocate_new_segments(sbi, CURSEG_COLD_DATA); 1664 f2fs_unlock_op(sbi); 1665 1666 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1667 up_write(&sbi->pin_sem); 1668 1669 done += map.m_len; 1670 len -= map.m_len; 1671 map.m_lblk += map.m_len; 1672 if (!err && len) 1673 goto next_alloc; 1674 1675 map.m_len = done; 1676 } else { 1677 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1678 } 1679 out_err: 1680 if (err) { 1681 pgoff_t last_off; 1682 1683 if (!map.m_len) 1684 return err; 1685 1686 last_off = map.m_lblk + map.m_len - 1; 1687 1688 /* update new size to the failed position */ 1689 new_size = (last_off == pg_end) ? offset + len : 1690 (loff_t)(last_off + 1) << PAGE_SHIFT; 1691 } else { 1692 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1693 } 1694 1695 if (new_size > i_size_read(inode)) { 1696 if (mode & FALLOC_FL_KEEP_SIZE) 1697 file_set_keep_isize(inode); 1698 else 1699 f2fs_i_size_write(inode, new_size); 1700 } 1701 1702 return err; 1703 } 1704 1705 static long f2fs_fallocate(struct file *file, int mode, 1706 loff_t offset, loff_t len) 1707 { 1708 struct inode *inode = file_inode(file); 1709 long ret = 0; 1710 1711 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1712 return -EIO; 1713 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1714 return -ENOSPC; 1715 if (!f2fs_is_compress_backend_ready(inode)) 1716 return -EOPNOTSUPP; 1717 1718 /* f2fs only support ->fallocate for regular file */ 1719 if (!S_ISREG(inode->i_mode)) 1720 return -EINVAL; 1721 1722 if (IS_ENCRYPTED(inode) && 1723 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1724 return -EOPNOTSUPP; 1725 1726 if (f2fs_compressed_file(inode) && 1727 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1728 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1729 return -EOPNOTSUPP; 1730 1731 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1732 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1733 FALLOC_FL_INSERT_RANGE)) 1734 return -EOPNOTSUPP; 1735 1736 inode_lock(inode); 1737 1738 if (mode & FALLOC_FL_PUNCH_HOLE) { 1739 if (offset >= inode->i_size) 1740 goto out; 1741 1742 ret = punch_hole(inode, offset, len); 1743 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1744 ret = f2fs_collapse_range(inode, offset, len); 1745 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1746 ret = f2fs_zero_range(inode, offset, len, mode); 1747 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1748 ret = f2fs_insert_range(inode, offset, len); 1749 } else { 1750 ret = expand_inode_data(inode, offset, len, mode); 1751 } 1752 1753 if (!ret) { 1754 inode->i_mtime = inode->i_ctime = current_time(inode); 1755 f2fs_mark_inode_dirty_sync(inode, false); 1756 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1757 } 1758 1759 out: 1760 inode_unlock(inode); 1761 1762 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1763 return ret; 1764 } 1765 1766 static int f2fs_release_file(struct inode *inode, struct file *filp) 1767 { 1768 /* 1769 * f2fs_relase_file is called at every close calls. So we should 1770 * not drop any inmemory pages by close called by other process. 1771 */ 1772 if (!(filp->f_mode & FMODE_WRITE) || 1773 atomic_read(&inode->i_writecount) != 1) 1774 return 0; 1775 1776 /* some remained atomic pages should discarded */ 1777 if (f2fs_is_atomic_file(inode)) 1778 f2fs_drop_inmem_pages(inode); 1779 if (f2fs_is_volatile_file(inode)) { 1780 set_inode_flag(inode, FI_DROP_CACHE); 1781 filemap_fdatawrite(inode->i_mapping); 1782 clear_inode_flag(inode, FI_DROP_CACHE); 1783 clear_inode_flag(inode, FI_VOLATILE_FILE); 1784 stat_dec_volatile_write(inode); 1785 } 1786 return 0; 1787 } 1788 1789 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1790 { 1791 struct inode *inode = file_inode(file); 1792 1793 /* 1794 * If the process doing a transaction is crashed, we should do 1795 * roll-back. Otherwise, other reader/write can see corrupted database 1796 * until all the writers close its file. Since this should be done 1797 * before dropping file lock, it needs to do in ->flush. 1798 */ 1799 if (f2fs_is_atomic_file(inode) && 1800 F2FS_I(inode)->inmem_task == current) 1801 f2fs_drop_inmem_pages(inode); 1802 return 0; 1803 } 1804 1805 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1806 { 1807 struct f2fs_inode_info *fi = F2FS_I(inode); 1808 u32 masked_flags = fi->i_flags & mask; 1809 1810 f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask)); 1811 1812 /* Is it quota file? Do not allow user to mess with it */ 1813 if (IS_NOQUOTA(inode)) 1814 return -EPERM; 1815 1816 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1817 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1818 return -EOPNOTSUPP; 1819 if (!f2fs_empty_dir(inode)) 1820 return -ENOTEMPTY; 1821 } 1822 1823 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1824 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1825 return -EOPNOTSUPP; 1826 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1827 return -EINVAL; 1828 } 1829 1830 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1831 if (masked_flags & F2FS_COMPR_FL) { 1832 if (f2fs_disable_compressed_file(inode)) 1833 return -EINVAL; 1834 } 1835 if (iflags & F2FS_NOCOMP_FL) 1836 return -EINVAL; 1837 if (iflags & F2FS_COMPR_FL) { 1838 if (!f2fs_may_compress(inode)) 1839 return -EINVAL; 1840 1841 set_compress_context(inode); 1842 } 1843 } 1844 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) { 1845 if (masked_flags & F2FS_COMPR_FL) 1846 return -EINVAL; 1847 } 1848 1849 fi->i_flags = iflags | (fi->i_flags & ~mask); 1850 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1851 (fi->i_flags & F2FS_NOCOMP_FL)); 1852 1853 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1854 set_inode_flag(inode, FI_PROJ_INHERIT); 1855 else 1856 clear_inode_flag(inode, FI_PROJ_INHERIT); 1857 1858 inode->i_ctime = current_time(inode); 1859 f2fs_set_inode_flags(inode); 1860 f2fs_mark_inode_dirty_sync(inode, true); 1861 return 0; 1862 } 1863 1864 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */ 1865 1866 /* 1867 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1868 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1869 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1870 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1871 */ 1872 1873 static const struct { 1874 u32 iflag; 1875 u32 fsflag; 1876 } f2fs_fsflags_map[] = { 1877 { F2FS_COMPR_FL, FS_COMPR_FL }, 1878 { F2FS_SYNC_FL, FS_SYNC_FL }, 1879 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1880 { F2FS_APPEND_FL, FS_APPEND_FL }, 1881 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1882 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1883 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1884 { F2FS_INDEX_FL, FS_INDEX_FL }, 1885 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1886 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1887 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1888 }; 1889 1890 #define F2FS_GETTABLE_FS_FL ( \ 1891 FS_COMPR_FL | \ 1892 FS_SYNC_FL | \ 1893 FS_IMMUTABLE_FL | \ 1894 FS_APPEND_FL | \ 1895 FS_NODUMP_FL | \ 1896 FS_NOATIME_FL | \ 1897 FS_NOCOMP_FL | \ 1898 FS_INDEX_FL | \ 1899 FS_DIRSYNC_FL | \ 1900 FS_PROJINHERIT_FL | \ 1901 FS_ENCRYPT_FL | \ 1902 FS_INLINE_DATA_FL | \ 1903 FS_NOCOW_FL | \ 1904 FS_VERITY_FL | \ 1905 FS_CASEFOLD_FL) 1906 1907 #define F2FS_SETTABLE_FS_FL ( \ 1908 FS_COMPR_FL | \ 1909 FS_SYNC_FL | \ 1910 FS_IMMUTABLE_FL | \ 1911 FS_APPEND_FL | \ 1912 FS_NODUMP_FL | \ 1913 FS_NOATIME_FL | \ 1914 FS_NOCOMP_FL | \ 1915 FS_DIRSYNC_FL | \ 1916 FS_PROJINHERIT_FL | \ 1917 FS_CASEFOLD_FL) 1918 1919 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1920 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1921 { 1922 u32 fsflags = 0; 1923 int i; 1924 1925 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1926 if (iflags & f2fs_fsflags_map[i].iflag) 1927 fsflags |= f2fs_fsflags_map[i].fsflag; 1928 1929 return fsflags; 1930 } 1931 1932 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1933 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1934 { 1935 u32 iflags = 0; 1936 int i; 1937 1938 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1939 if (fsflags & f2fs_fsflags_map[i].fsflag) 1940 iflags |= f2fs_fsflags_map[i].iflag; 1941 1942 return iflags; 1943 } 1944 1945 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1946 { 1947 struct inode *inode = file_inode(filp); 1948 struct f2fs_inode_info *fi = F2FS_I(inode); 1949 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1950 1951 if (IS_ENCRYPTED(inode)) 1952 fsflags |= FS_ENCRYPT_FL; 1953 if (IS_VERITY(inode)) 1954 fsflags |= FS_VERITY_FL; 1955 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 1956 fsflags |= FS_INLINE_DATA_FL; 1957 if (is_inode_flag_set(inode, FI_PIN_FILE)) 1958 fsflags |= FS_NOCOW_FL; 1959 1960 fsflags &= F2FS_GETTABLE_FS_FL; 1961 1962 return put_user(fsflags, (int __user *)arg); 1963 } 1964 1965 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1966 { 1967 struct inode *inode = file_inode(filp); 1968 struct f2fs_inode_info *fi = F2FS_I(inode); 1969 u32 fsflags, old_fsflags; 1970 u32 iflags; 1971 int ret; 1972 1973 if (!inode_owner_or_capable(inode)) 1974 return -EACCES; 1975 1976 if (get_user(fsflags, (int __user *)arg)) 1977 return -EFAULT; 1978 1979 if (fsflags & ~F2FS_GETTABLE_FS_FL) 1980 return -EOPNOTSUPP; 1981 fsflags &= F2FS_SETTABLE_FS_FL; 1982 1983 iflags = f2fs_fsflags_to_iflags(fsflags); 1984 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 1985 return -EOPNOTSUPP; 1986 1987 ret = mnt_want_write_file(filp); 1988 if (ret) 1989 return ret; 1990 1991 inode_lock(inode); 1992 1993 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1994 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 1995 if (ret) 1996 goto out; 1997 1998 ret = f2fs_setflags_common(inode, iflags, 1999 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL)); 2000 out: 2001 inode_unlock(inode); 2002 mnt_drop_write_file(filp); 2003 return ret; 2004 } 2005 2006 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2007 { 2008 struct inode *inode = file_inode(filp); 2009 2010 return put_user(inode->i_generation, (int __user *)arg); 2011 } 2012 2013 static int f2fs_ioc_start_atomic_write(struct file *filp) 2014 { 2015 struct inode *inode = file_inode(filp); 2016 struct f2fs_inode_info *fi = F2FS_I(inode); 2017 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2018 int ret; 2019 2020 if (!inode_owner_or_capable(inode)) 2021 return -EACCES; 2022 2023 if (!S_ISREG(inode->i_mode)) 2024 return -EINVAL; 2025 2026 if (filp->f_flags & O_DIRECT) 2027 return -EINVAL; 2028 2029 ret = mnt_want_write_file(filp); 2030 if (ret) 2031 return ret; 2032 2033 inode_lock(inode); 2034 2035 f2fs_disable_compressed_file(inode); 2036 2037 if (f2fs_is_atomic_file(inode)) { 2038 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) 2039 ret = -EINVAL; 2040 goto out; 2041 } 2042 2043 ret = f2fs_convert_inline_inode(inode); 2044 if (ret) 2045 goto out; 2046 2047 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2048 2049 /* 2050 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2051 * f2fs_is_atomic_file. 2052 */ 2053 if (get_dirty_pages(inode)) 2054 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2055 inode->i_ino, get_dirty_pages(inode)); 2056 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2057 if (ret) { 2058 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2059 goto out; 2060 } 2061 2062 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 2063 if (list_empty(&fi->inmem_ilist)) 2064 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 2065 sbi->atomic_files++; 2066 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 2067 2068 /* add inode in inmem_list first and set atomic_file */ 2069 set_inode_flag(inode, FI_ATOMIC_FILE); 2070 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2071 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2072 2073 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2074 F2FS_I(inode)->inmem_task = current; 2075 stat_update_max_atomic_write(inode); 2076 out: 2077 inode_unlock(inode); 2078 mnt_drop_write_file(filp); 2079 return ret; 2080 } 2081 2082 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2083 { 2084 struct inode *inode = file_inode(filp); 2085 int ret; 2086 2087 if (!inode_owner_or_capable(inode)) 2088 return -EACCES; 2089 2090 ret = mnt_want_write_file(filp); 2091 if (ret) 2092 return ret; 2093 2094 f2fs_balance_fs(F2FS_I_SB(inode), true); 2095 2096 inode_lock(inode); 2097 2098 if (f2fs_is_volatile_file(inode)) { 2099 ret = -EINVAL; 2100 goto err_out; 2101 } 2102 2103 if (f2fs_is_atomic_file(inode)) { 2104 ret = f2fs_commit_inmem_pages(inode); 2105 if (ret) 2106 goto err_out; 2107 2108 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2109 if (!ret) 2110 f2fs_drop_inmem_pages(inode); 2111 } else { 2112 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2113 } 2114 err_out: 2115 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2116 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2117 ret = -EINVAL; 2118 } 2119 inode_unlock(inode); 2120 mnt_drop_write_file(filp); 2121 return ret; 2122 } 2123 2124 static int f2fs_ioc_start_volatile_write(struct file *filp) 2125 { 2126 struct inode *inode = file_inode(filp); 2127 int ret; 2128 2129 if (!inode_owner_or_capable(inode)) 2130 return -EACCES; 2131 2132 if (!S_ISREG(inode->i_mode)) 2133 return -EINVAL; 2134 2135 ret = mnt_want_write_file(filp); 2136 if (ret) 2137 return ret; 2138 2139 inode_lock(inode); 2140 2141 if (f2fs_is_volatile_file(inode)) 2142 goto out; 2143 2144 ret = f2fs_convert_inline_inode(inode); 2145 if (ret) 2146 goto out; 2147 2148 stat_inc_volatile_write(inode); 2149 stat_update_max_volatile_write(inode); 2150 2151 set_inode_flag(inode, FI_VOLATILE_FILE); 2152 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2153 out: 2154 inode_unlock(inode); 2155 mnt_drop_write_file(filp); 2156 return ret; 2157 } 2158 2159 static int f2fs_ioc_release_volatile_write(struct file *filp) 2160 { 2161 struct inode *inode = file_inode(filp); 2162 int ret; 2163 2164 if (!inode_owner_or_capable(inode)) 2165 return -EACCES; 2166 2167 ret = mnt_want_write_file(filp); 2168 if (ret) 2169 return ret; 2170 2171 inode_lock(inode); 2172 2173 if (!f2fs_is_volatile_file(inode)) 2174 goto out; 2175 2176 if (!f2fs_is_first_block_written(inode)) { 2177 ret = truncate_partial_data_page(inode, 0, true); 2178 goto out; 2179 } 2180 2181 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 2182 out: 2183 inode_unlock(inode); 2184 mnt_drop_write_file(filp); 2185 return ret; 2186 } 2187 2188 static int f2fs_ioc_abort_volatile_write(struct file *filp) 2189 { 2190 struct inode *inode = file_inode(filp); 2191 int ret; 2192 2193 if (!inode_owner_or_capable(inode)) 2194 return -EACCES; 2195 2196 ret = mnt_want_write_file(filp); 2197 if (ret) 2198 return ret; 2199 2200 inode_lock(inode); 2201 2202 if (f2fs_is_atomic_file(inode)) 2203 f2fs_drop_inmem_pages(inode); 2204 if (f2fs_is_volatile_file(inode)) { 2205 clear_inode_flag(inode, FI_VOLATILE_FILE); 2206 stat_dec_volatile_write(inode); 2207 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2208 } 2209 2210 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2211 2212 inode_unlock(inode); 2213 2214 mnt_drop_write_file(filp); 2215 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2216 return ret; 2217 } 2218 2219 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2220 { 2221 struct inode *inode = file_inode(filp); 2222 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2223 struct super_block *sb = sbi->sb; 2224 __u32 in; 2225 int ret = 0; 2226 2227 if (!capable(CAP_SYS_ADMIN)) 2228 return -EPERM; 2229 2230 if (get_user(in, (__u32 __user *)arg)) 2231 return -EFAULT; 2232 2233 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2234 ret = mnt_want_write_file(filp); 2235 if (ret) { 2236 if (ret == -EROFS) { 2237 ret = 0; 2238 f2fs_stop_checkpoint(sbi, false); 2239 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2240 trace_f2fs_shutdown(sbi, in, ret); 2241 } 2242 return ret; 2243 } 2244 } 2245 2246 switch (in) { 2247 case F2FS_GOING_DOWN_FULLSYNC: 2248 sb = freeze_bdev(sb->s_bdev); 2249 if (IS_ERR(sb)) { 2250 ret = PTR_ERR(sb); 2251 goto out; 2252 } 2253 if (sb) { 2254 f2fs_stop_checkpoint(sbi, false); 2255 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2256 thaw_bdev(sb->s_bdev, sb); 2257 } 2258 break; 2259 case F2FS_GOING_DOWN_METASYNC: 2260 /* do checkpoint only */ 2261 ret = f2fs_sync_fs(sb, 1); 2262 if (ret) 2263 goto out; 2264 f2fs_stop_checkpoint(sbi, false); 2265 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2266 break; 2267 case F2FS_GOING_DOWN_NOSYNC: 2268 f2fs_stop_checkpoint(sbi, false); 2269 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2270 break; 2271 case F2FS_GOING_DOWN_METAFLUSH: 2272 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2273 f2fs_stop_checkpoint(sbi, false); 2274 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2275 break; 2276 case F2FS_GOING_DOWN_NEED_FSCK: 2277 set_sbi_flag(sbi, SBI_NEED_FSCK); 2278 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2279 set_sbi_flag(sbi, SBI_IS_DIRTY); 2280 /* do checkpoint only */ 2281 ret = f2fs_sync_fs(sb, 1); 2282 goto out; 2283 default: 2284 ret = -EINVAL; 2285 goto out; 2286 } 2287 2288 f2fs_stop_gc_thread(sbi); 2289 f2fs_stop_discard_thread(sbi); 2290 2291 f2fs_drop_discard_cmd(sbi); 2292 clear_opt(sbi, DISCARD); 2293 2294 f2fs_update_time(sbi, REQ_TIME); 2295 out: 2296 if (in != F2FS_GOING_DOWN_FULLSYNC) 2297 mnt_drop_write_file(filp); 2298 2299 trace_f2fs_shutdown(sbi, in, ret); 2300 2301 return ret; 2302 } 2303 2304 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2305 { 2306 struct inode *inode = file_inode(filp); 2307 struct super_block *sb = inode->i_sb; 2308 struct request_queue *q = bdev_get_queue(sb->s_bdev); 2309 struct fstrim_range range; 2310 int ret; 2311 2312 if (!capable(CAP_SYS_ADMIN)) 2313 return -EPERM; 2314 2315 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2316 return -EOPNOTSUPP; 2317 2318 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2319 sizeof(range))) 2320 return -EFAULT; 2321 2322 ret = mnt_want_write_file(filp); 2323 if (ret) 2324 return ret; 2325 2326 range.minlen = max((unsigned int)range.minlen, 2327 q->limits.discard_granularity); 2328 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2329 mnt_drop_write_file(filp); 2330 if (ret < 0) 2331 return ret; 2332 2333 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2334 sizeof(range))) 2335 return -EFAULT; 2336 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2337 return 0; 2338 } 2339 2340 static bool uuid_is_nonzero(__u8 u[16]) 2341 { 2342 int i; 2343 2344 for (i = 0; i < 16; i++) 2345 if (u[i]) 2346 return true; 2347 return false; 2348 } 2349 2350 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2351 { 2352 struct inode *inode = file_inode(filp); 2353 2354 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2355 return -EOPNOTSUPP; 2356 2357 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2358 2359 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2360 } 2361 2362 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2363 { 2364 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2365 return -EOPNOTSUPP; 2366 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2367 } 2368 2369 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2370 { 2371 struct inode *inode = file_inode(filp); 2372 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2373 int err; 2374 2375 if (!f2fs_sb_has_encrypt(sbi)) 2376 return -EOPNOTSUPP; 2377 2378 err = mnt_want_write_file(filp); 2379 if (err) 2380 return err; 2381 2382 down_write(&sbi->sb_lock); 2383 2384 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2385 goto got_it; 2386 2387 /* update superblock with uuid */ 2388 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2389 2390 err = f2fs_commit_super(sbi, false); 2391 if (err) { 2392 /* undo new data */ 2393 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2394 goto out_err; 2395 } 2396 got_it: 2397 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2398 16)) 2399 err = -EFAULT; 2400 out_err: 2401 up_write(&sbi->sb_lock); 2402 mnt_drop_write_file(filp); 2403 return err; 2404 } 2405 2406 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2407 unsigned long arg) 2408 { 2409 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2410 return -EOPNOTSUPP; 2411 2412 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2413 } 2414 2415 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2416 { 2417 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2418 return -EOPNOTSUPP; 2419 2420 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2421 } 2422 2423 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2424 { 2425 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2426 return -EOPNOTSUPP; 2427 2428 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2429 } 2430 2431 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2432 unsigned long arg) 2433 { 2434 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2435 return -EOPNOTSUPP; 2436 2437 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2438 } 2439 2440 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2441 unsigned long arg) 2442 { 2443 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2444 return -EOPNOTSUPP; 2445 2446 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2447 } 2448 2449 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2450 { 2451 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2452 return -EOPNOTSUPP; 2453 2454 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2455 } 2456 2457 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2458 { 2459 struct inode *inode = file_inode(filp); 2460 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2461 __u32 sync; 2462 int ret; 2463 2464 if (!capable(CAP_SYS_ADMIN)) 2465 return -EPERM; 2466 2467 if (get_user(sync, (__u32 __user *)arg)) 2468 return -EFAULT; 2469 2470 if (f2fs_readonly(sbi->sb)) 2471 return -EROFS; 2472 2473 ret = mnt_want_write_file(filp); 2474 if (ret) 2475 return ret; 2476 2477 if (!sync) { 2478 if (!down_write_trylock(&sbi->gc_lock)) { 2479 ret = -EBUSY; 2480 goto out; 2481 } 2482 } else { 2483 down_write(&sbi->gc_lock); 2484 } 2485 2486 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO); 2487 out: 2488 mnt_drop_write_file(filp); 2489 return ret; 2490 } 2491 2492 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2493 { 2494 struct inode *inode = file_inode(filp); 2495 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2496 struct f2fs_gc_range range; 2497 u64 end; 2498 int ret; 2499 2500 if (!capable(CAP_SYS_ADMIN)) 2501 return -EPERM; 2502 2503 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2504 sizeof(range))) 2505 return -EFAULT; 2506 2507 if (f2fs_readonly(sbi->sb)) 2508 return -EROFS; 2509 2510 end = range.start + range.len; 2511 if (end < range.start || range.start < MAIN_BLKADDR(sbi) || 2512 end >= MAX_BLKADDR(sbi)) 2513 return -EINVAL; 2514 2515 ret = mnt_want_write_file(filp); 2516 if (ret) 2517 return ret; 2518 2519 do_more: 2520 if (!range.sync) { 2521 if (!down_write_trylock(&sbi->gc_lock)) { 2522 ret = -EBUSY; 2523 goto out; 2524 } 2525 } else { 2526 down_write(&sbi->gc_lock); 2527 } 2528 2529 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start)); 2530 range.start += BLKS_PER_SEC(sbi); 2531 if (range.start <= end) 2532 goto do_more; 2533 out: 2534 mnt_drop_write_file(filp); 2535 return ret; 2536 } 2537 2538 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2539 { 2540 struct inode *inode = file_inode(filp); 2541 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2542 int ret; 2543 2544 if (!capable(CAP_SYS_ADMIN)) 2545 return -EPERM; 2546 2547 if (f2fs_readonly(sbi->sb)) 2548 return -EROFS; 2549 2550 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2551 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2552 return -EINVAL; 2553 } 2554 2555 ret = mnt_want_write_file(filp); 2556 if (ret) 2557 return ret; 2558 2559 ret = f2fs_sync_fs(sbi->sb, 1); 2560 2561 mnt_drop_write_file(filp); 2562 return ret; 2563 } 2564 2565 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2566 struct file *filp, 2567 struct f2fs_defragment *range) 2568 { 2569 struct inode *inode = file_inode(filp); 2570 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2571 .m_seg_type = NO_CHECK_TYPE , 2572 .m_may_create = false }; 2573 struct extent_info ei = {0, 0, 0}; 2574 pgoff_t pg_start, pg_end, next_pgofs; 2575 unsigned int blk_per_seg = sbi->blocks_per_seg; 2576 unsigned int total = 0, sec_num; 2577 block_t blk_end = 0; 2578 bool fragmented = false; 2579 int err; 2580 2581 /* if in-place-update policy is enabled, don't waste time here */ 2582 if (f2fs_should_update_inplace(inode, NULL)) 2583 return -EINVAL; 2584 2585 pg_start = range->start >> PAGE_SHIFT; 2586 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2587 2588 f2fs_balance_fs(sbi, true); 2589 2590 inode_lock(inode); 2591 2592 /* writeback all dirty pages in the range */ 2593 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2594 range->start + range->len - 1); 2595 if (err) 2596 goto out; 2597 2598 /* 2599 * lookup mapping info in extent cache, skip defragmenting if physical 2600 * block addresses are continuous. 2601 */ 2602 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2603 if (ei.fofs + ei.len >= pg_end) 2604 goto out; 2605 } 2606 2607 map.m_lblk = pg_start; 2608 map.m_next_pgofs = &next_pgofs; 2609 2610 /* 2611 * lookup mapping info in dnode page cache, skip defragmenting if all 2612 * physical block addresses are continuous even if there are hole(s) 2613 * in logical blocks. 2614 */ 2615 while (map.m_lblk < pg_end) { 2616 map.m_len = pg_end - map.m_lblk; 2617 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2618 if (err) 2619 goto out; 2620 2621 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2622 map.m_lblk = next_pgofs; 2623 continue; 2624 } 2625 2626 if (blk_end && blk_end != map.m_pblk) 2627 fragmented = true; 2628 2629 /* record total count of block that we're going to move */ 2630 total += map.m_len; 2631 2632 blk_end = map.m_pblk + map.m_len; 2633 2634 map.m_lblk += map.m_len; 2635 } 2636 2637 if (!fragmented) { 2638 total = 0; 2639 goto out; 2640 } 2641 2642 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi)); 2643 2644 /* 2645 * make sure there are enough free section for LFS allocation, this can 2646 * avoid defragment running in SSR mode when free section are allocated 2647 * intensively 2648 */ 2649 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2650 err = -EAGAIN; 2651 goto out; 2652 } 2653 2654 map.m_lblk = pg_start; 2655 map.m_len = pg_end - pg_start; 2656 total = 0; 2657 2658 while (map.m_lblk < pg_end) { 2659 pgoff_t idx; 2660 int cnt = 0; 2661 2662 do_map: 2663 map.m_len = pg_end - map.m_lblk; 2664 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2665 if (err) 2666 goto clear_out; 2667 2668 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2669 map.m_lblk = next_pgofs; 2670 goto check; 2671 } 2672 2673 set_inode_flag(inode, FI_DO_DEFRAG); 2674 2675 idx = map.m_lblk; 2676 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2677 struct page *page; 2678 2679 page = f2fs_get_lock_data_page(inode, idx, true); 2680 if (IS_ERR(page)) { 2681 err = PTR_ERR(page); 2682 goto clear_out; 2683 } 2684 2685 set_page_dirty(page); 2686 f2fs_put_page(page, 1); 2687 2688 idx++; 2689 cnt++; 2690 total++; 2691 } 2692 2693 map.m_lblk = idx; 2694 check: 2695 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2696 goto do_map; 2697 2698 clear_inode_flag(inode, FI_DO_DEFRAG); 2699 2700 err = filemap_fdatawrite(inode->i_mapping); 2701 if (err) 2702 goto out; 2703 } 2704 clear_out: 2705 clear_inode_flag(inode, FI_DO_DEFRAG); 2706 out: 2707 inode_unlock(inode); 2708 if (!err) 2709 range->len = (u64)total << PAGE_SHIFT; 2710 return err; 2711 } 2712 2713 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2714 { 2715 struct inode *inode = file_inode(filp); 2716 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2717 struct f2fs_defragment range; 2718 int err; 2719 2720 if (!capable(CAP_SYS_ADMIN)) 2721 return -EPERM; 2722 2723 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2724 return -EINVAL; 2725 2726 if (f2fs_readonly(sbi->sb)) 2727 return -EROFS; 2728 2729 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2730 sizeof(range))) 2731 return -EFAULT; 2732 2733 /* verify alignment of offset & size */ 2734 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2735 return -EINVAL; 2736 2737 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2738 sbi->max_file_blocks)) 2739 return -EINVAL; 2740 2741 err = mnt_want_write_file(filp); 2742 if (err) 2743 return err; 2744 2745 err = f2fs_defragment_range(sbi, filp, &range); 2746 mnt_drop_write_file(filp); 2747 2748 f2fs_update_time(sbi, REQ_TIME); 2749 if (err < 0) 2750 return err; 2751 2752 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2753 sizeof(range))) 2754 return -EFAULT; 2755 2756 return 0; 2757 } 2758 2759 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2760 struct file *file_out, loff_t pos_out, size_t len) 2761 { 2762 struct inode *src = file_inode(file_in); 2763 struct inode *dst = file_inode(file_out); 2764 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2765 size_t olen = len, dst_max_i_size = 0; 2766 size_t dst_osize; 2767 int ret; 2768 2769 if (file_in->f_path.mnt != file_out->f_path.mnt || 2770 src->i_sb != dst->i_sb) 2771 return -EXDEV; 2772 2773 if (unlikely(f2fs_readonly(src->i_sb))) 2774 return -EROFS; 2775 2776 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2777 return -EINVAL; 2778 2779 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2780 return -EOPNOTSUPP; 2781 2782 if (src == dst) { 2783 if (pos_in == pos_out) 2784 return 0; 2785 if (pos_out > pos_in && pos_out < pos_in + len) 2786 return -EINVAL; 2787 } 2788 2789 inode_lock(src); 2790 if (src != dst) { 2791 ret = -EBUSY; 2792 if (!inode_trylock(dst)) 2793 goto out; 2794 } 2795 2796 ret = -EINVAL; 2797 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2798 goto out_unlock; 2799 if (len == 0) 2800 olen = len = src->i_size - pos_in; 2801 if (pos_in + len == src->i_size) 2802 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2803 if (len == 0) { 2804 ret = 0; 2805 goto out_unlock; 2806 } 2807 2808 dst_osize = dst->i_size; 2809 if (pos_out + olen > dst->i_size) 2810 dst_max_i_size = pos_out + olen; 2811 2812 /* verify the end result is block aligned */ 2813 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2814 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2815 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2816 goto out_unlock; 2817 2818 ret = f2fs_convert_inline_inode(src); 2819 if (ret) 2820 goto out_unlock; 2821 2822 ret = f2fs_convert_inline_inode(dst); 2823 if (ret) 2824 goto out_unlock; 2825 2826 /* write out all dirty pages from offset */ 2827 ret = filemap_write_and_wait_range(src->i_mapping, 2828 pos_in, pos_in + len); 2829 if (ret) 2830 goto out_unlock; 2831 2832 ret = filemap_write_and_wait_range(dst->i_mapping, 2833 pos_out, pos_out + len); 2834 if (ret) 2835 goto out_unlock; 2836 2837 f2fs_balance_fs(sbi, true); 2838 2839 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2840 if (src != dst) { 2841 ret = -EBUSY; 2842 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2843 goto out_src; 2844 } 2845 2846 f2fs_lock_op(sbi); 2847 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2848 pos_out >> F2FS_BLKSIZE_BITS, 2849 len >> F2FS_BLKSIZE_BITS, false); 2850 2851 if (!ret) { 2852 if (dst_max_i_size) 2853 f2fs_i_size_write(dst, dst_max_i_size); 2854 else if (dst_osize != dst->i_size) 2855 f2fs_i_size_write(dst, dst_osize); 2856 } 2857 f2fs_unlock_op(sbi); 2858 2859 if (src != dst) 2860 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2861 out_src: 2862 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2863 out_unlock: 2864 if (src != dst) 2865 inode_unlock(dst); 2866 out: 2867 inode_unlock(src); 2868 return ret; 2869 } 2870 2871 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2872 { 2873 struct f2fs_move_range range; 2874 struct fd dst; 2875 int err; 2876 2877 if (!(filp->f_mode & FMODE_READ) || 2878 !(filp->f_mode & FMODE_WRITE)) 2879 return -EBADF; 2880 2881 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2882 sizeof(range))) 2883 return -EFAULT; 2884 2885 dst = fdget(range.dst_fd); 2886 if (!dst.file) 2887 return -EBADF; 2888 2889 if (!(dst.file->f_mode & FMODE_WRITE)) { 2890 err = -EBADF; 2891 goto err_out; 2892 } 2893 2894 err = mnt_want_write_file(filp); 2895 if (err) 2896 goto err_out; 2897 2898 err = f2fs_move_file_range(filp, range.pos_in, dst.file, 2899 range.pos_out, range.len); 2900 2901 mnt_drop_write_file(filp); 2902 if (err) 2903 goto err_out; 2904 2905 if (copy_to_user((struct f2fs_move_range __user *)arg, 2906 &range, sizeof(range))) 2907 err = -EFAULT; 2908 err_out: 2909 fdput(dst); 2910 return err; 2911 } 2912 2913 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2914 { 2915 struct inode *inode = file_inode(filp); 2916 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2917 struct sit_info *sm = SIT_I(sbi); 2918 unsigned int start_segno = 0, end_segno = 0; 2919 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2920 struct f2fs_flush_device range; 2921 int ret; 2922 2923 if (!capable(CAP_SYS_ADMIN)) 2924 return -EPERM; 2925 2926 if (f2fs_readonly(sbi->sb)) 2927 return -EROFS; 2928 2929 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2930 return -EINVAL; 2931 2932 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2933 sizeof(range))) 2934 return -EFAULT; 2935 2936 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2937 __is_large_section(sbi)) { 2938 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2939 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2940 return -EINVAL; 2941 } 2942 2943 ret = mnt_want_write_file(filp); 2944 if (ret) 2945 return ret; 2946 2947 if (range.dev_num != 0) 2948 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2949 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2950 2951 start_segno = sm->last_victim[FLUSH_DEVICE]; 2952 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2953 start_segno = dev_start_segno; 2954 end_segno = min(start_segno + range.segments, dev_end_segno); 2955 2956 while (start_segno < end_segno) { 2957 if (!down_write_trylock(&sbi->gc_lock)) { 2958 ret = -EBUSY; 2959 goto out; 2960 } 2961 sm->last_victim[GC_CB] = end_segno + 1; 2962 sm->last_victim[GC_GREEDY] = end_segno + 1; 2963 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2964 ret = f2fs_gc(sbi, true, true, start_segno); 2965 if (ret == -EAGAIN) 2966 ret = 0; 2967 else if (ret < 0) 2968 break; 2969 start_segno++; 2970 } 2971 out: 2972 mnt_drop_write_file(filp); 2973 return ret; 2974 } 2975 2976 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2977 { 2978 struct inode *inode = file_inode(filp); 2979 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2980 2981 /* Must validate to set it with SQLite behavior in Android. */ 2982 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2983 2984 return put_user(sb_feature, (u32 __user *)arg); 2985 } 2986 2987 #ifdef CONFIG_QUOTA 2988 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2989 { 2990 struct dquot *transfer_to[MAXQUOTAS] = {}; 2991 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2992 struct super_block *sb = sbi->sb; 2993 int err = 0; 2994 2995 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2996 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2997 err = __dquot_transfer(inode, transfer_to); 2998 if (err) 2999 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3000 dqput(transfer_to[PRJQUOTA]); 3001 } 3002 return err; 3003 } 3004 3005 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 3006 { 3007 struct inode *inode = file_inode(filp); 3008 struct f2fs_inode_info *fi = F2FS_I(inode); 3009 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3010 struct page *ipage; 3011 kprojid_t kprojid; 3012 int err; 3013 3014 if (!f2fs_sb_has_project_quota(sbi)) { 3015 if (projid != F2FS_DEF_PROJID) 3016 return -EOPNOTSUPP; 3017 else 3018 return 0; 3019 } 3020 3021 if (!f2fs_has_extra_attr(inode)) 3022 return -EOPNOTSUPP; 3023 3024 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3025 3026 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 3027 return 0; 3028 3029 err = -EPERM; 3030 /* Is it quota file? Do not allow user to mess with it */ 3031 if (IS_NOQUOTA(inode)) 3032 return err; 3033 3034 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3035 if (IS_ERR(ipage)) 3036 return PTR_ERR(ipage); 3037 3038 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 3039 i_projid)) { 3040 err = -EOVERFLOW; 3041 f2fs_put_page(ipage, 1); 3042 return err; 3043 } 3044 f2fs_put_page(ipage, 1); 3045 3046 err = dquot_initialize(inode); 3047 if (err) 3048 return err; 3049 3050 f2fs_lock_op(sbi); 3051 err = f2fs_transfer_project_quota(inode, kprojid); 3052 if (err) 3053 goto out_unlock; 3054 3055 F2FS_I(inode)->i_projid = kprojid; 3056 inode->i_ctime = current_time(inode); 3057 f2fs_mark_inode_dirty_sync(inode, true); 3058 out_unlock: 3059 f2fs_unlock_op(sbi); 3060 return err; 3061 } 3062 #else 3063 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3064 { 3065 return 0; 3066 } 3067 3068 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 3069 { 3070 if (projid != F2FS_DEF_PROJID) 3071 return -EOPNOTSUPP; 3072 return 0; 3073 } 3074 #endif 3075 3076 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */ 3077 3078 /* 3079 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable 3080 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its 3081 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS. 3082 */ 3083 3084 static const struct { 3085 u32 iflag; 3086 u32 xflag; 3087 } f2fs_xflags_map[] = { 3088 { F2FS_SYNC_FL, FS_XFLAG_SYNC }, 3089 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE }, 3090 { F2FS_APPEND_FL, FS_XFLAG_APPEND }, 3091 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP }, 3092 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME }, 3093 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT }, 3094 }; 3095 3096 #define F2FS_SUPPORTED_XFLAGS ( \ 3097 FS_XFLAG_SYNC | \ 3098 FS_XFLAG_IMMUTABLE | \ 3099 FS_XFLAG_APPEND | \ 3100 FS_XFLAG_NODUMP | \ 3101 FS_XFLAG_NOATIME | \ 3102 FS_XFLAG_PROJINHERIT) 3103 3104 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */ 3105 static inline u32 f2fs_iflags_to_xflags(u32 iflags) 3106 { 3107 u32 xflags = 0; 3108 int i; 3109 3110 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 3111 if (iflags & f2fs_xflags_map[i].iflag) 3112 xflags |= f2fs_xflags_map[i].xflag; 3113 3114 return xflags; 3115 } 3116 3117 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */ 3118 static inline u32 f2fs_xflags_to_iflags(u32 xflags) 3119 { 3120 u32 iflags = 0; 3121 int i; 3122 3123 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 3124 if (xflags & f2fs_xflags_map[i].xflag) 3125 iflags |= f2fs_xflags_map[i].iflag; 3126 3127 return iflags; 3128 } 3129 3130 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa) 3131 { 3132 struct f2fs_inode_info *fi = F2FS_I(inode); 3133 3134 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags)); 3135 3136 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3137 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3138 } 3139 3140 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg) 3141 { 3142 struct inode *inode = file_inode(filp); 3143 struct fsxattr fa; 3144 3145 f2fs_fill_fsxattr(inode, &fa); 3146 3147 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa))) 3148 return -EFAULT; 3149 return 0; 3150 } 3151 3152 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg) 3153 { 3154 struct inode *inode = file_inode(filp); 3155 struct fsxattr fa, old_fa; 3156 u32 iflags; 3157 int err; 3158 3159 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa))) 3160 return -EFAULT; 3161 3162 /* Make sure caller has proper permission */ 3163 if (!inode_owner_or_capable(inode)) 3164 return -EACCES; 3165 3166 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS) 3167 return -EOPNOTSUPP; 3168 3169 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags); 3170 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3171 return -EOPNOTSUPP; 3172 3173 err = mnt_want_write_file(filp); 3174 if (err) 3175 return err; 3176 3177 inode_lock(inode); 3178 3179 f2fs_fill_fsxattr(inode, &old_fa); 3180 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 3181 if (err) 3182 goto out; 3183 3184 err = f2fs_setflags_common(inode, iflags, 3185 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS)); 3186 if (err) 3187 goto out; 3188 3189 err = f2fs_ioc_setproject(filp, fa.fsx_projid); 3190 out: 3191 inode_unlock(inode); 3192 mnt_drop_write_file(filp); 3193 return err; 3194 } 3195 3196 int f2fs_pin_file_control(struct inode *inode, bool inc) 3197 { 3198 struct f2fs_inode_info *fi = F2FS_I(inode); 3199 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3200 3201 /* Use i_gc_failures for normal file as a risk signal. */ 3202 if (inc) 3203 f2fs_i_gc_failures_write(inode, 3204 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3205 3206 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3207 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3208 __func__, inode->i_ino, 3209 fi->i_gc_failures[GC_FAILURE_PIN]); 3210 clear_inode_flag(inode, FI_PIN_FILE); 3211 return -EAGAIN; 3212 } 3213 return 0; 3214 } 3215 3216 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3217 { 3218 struct inode *inode = file_inode(filp); 3219 __u32 pin; 3220 int ret = 0; 3221 3222 if (get_user(pin, (__u32 __user *)arg)) 3223 return -EFAULT; 3224 3225 if (!S_ISREG(inode->i_mode)) 3226 return -EINVAL; 3227 3228 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3229 return -EROFS; 3230 3231 ret = mnt_want_write_file(filp); 3232 if (ret) 3233 return ret; 3234 3235 inode_lock(inode); 3236 3237 if (f2fs_should_update_outplace(inode, NULL)) { 3238 ret = -EINVAL; 3239 goto out; 3240 } 3241 3242 if (!pin) { 3243 clear_inode_flag(inode, FI_PIN_FILE); 3244 f2fs_i_gc_failures_write(inode, 0); 3245 goto done; 3246 } 3247 3248 if (f2fs_pin_file_control(inode, false)) { 3249 ret = -EAGAIN; 3250 goto out; 3251 } 3252 3253 ret = f2fs_convert_inline_inode(inode); 3254 if (ret) 3255 goto out; 3256 3257 if (f2fs_disable_compressed_file(inode)) { 3258 ret = -EOPNOTSUPP; 3259 goto out; 3260 } 3261 3262 set_inode_flag(inode, FI_PIN_FILE); 3263 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3264 done: 3265 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3266 out: 3267 inode_unlock(inode); 3268 mnt_drop_write_file(filp); 3269 return ret; 3270 } 3271 3272 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3273 { 3274 struct inode *inode = file_inode(filp); 3275 __u32 pin = 0; 3276 3277 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3278 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3279 return put_user(pin, (u32 __user *)arg); 3280 } 3281 3282 int f2fs_precache_extents(struct inode *inode) 3283 { 3284 struct f2fs_inode_info *fi = F2FS_I(inode); 3285 struct f2fs_map_blocks map; 3286 pgoff_t m_next_extent; 3287 loff_t end; 3288 int err; 3289 3290 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3291 return -EOPNOTSUPP; 3292 3293 map.m_lblk = 0; 3294 map.m_next_pgofs = NULL; 3295 map.m_next_extent = &m_next_extent; 3296 map.m_seg_type = NO_CHECK_TYPE; 3297 map.m_may_create = false; 3298 end = F2FS_I_SB(inode)->max_file_blocks; 3299 3300 while (map.m_lblk < end) { 3301 map.m_len = end - map.m_lblk; 3302 3303 down_write(&fi->i_gc_rwsem[WRITE]); 3304 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3305 up_write(&fi->i_gc_rwsem[WRITE]); 3306 if (err) 3307 return err; 3308 3309 map.m_lblk = m_next_extent; 3310 } 3311 3312 return err; 3313 } 3314 3315 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3316 { 3317 return f2fs_precache_extents(file_inode(filp)); 3318 } 3319 3320 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3321 { 3322 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3323 __u64 block_count; 3324 3325 if (!capable(CAP_SYS_ADMIN)) 3326 return -EPERM; 3327 3328 if (f2fs_readonly(sbi->sb)) 3329 return -EROFS; 3330 3331 if (copy_from_user(&block_count, (void __user *)arg, 3332 sizeof(block_count))) 3333 return -EFAULT; 3334 3335 return f2fs_resize_fs(sbi, block_count); 3336 } 3337 3338 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3339 { 3340 struct inode *inode = file_inode(filp); 3341 3342 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3343 3344 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3345 f2fs_warn(F2FS_I_SB(inode), 3346 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n", 3347 inode->i_ino); 3348 return -EOPNOTSUPP; 3349 } 3350 3351 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3352 } 3353 3354 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3355 { 3356 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3357 return -EOPNOTSUPP; 3358 3359 return fsverity_ioctl_measure(filp, (void __user *)arg); 3360 } 3361 3362 static int f2fs_get_volume_name(struct file *filp, unsigned long arg) 3363 { 3364 struct inode *inode = file_inode(filp); 3365 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3366 char *vbuf; 3367 int count; 3368 int err = 0; 3369 3370 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3371 if (!vbuf) 3372 return -ENOMEM; 3373 3374 down_read(&sbi->sb_lock); 3375 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3376 ARRAY_SIZE(sbi->raw_super->volume_name), 3377 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3378 up_read(&sbi->sb_lock); 3379 3380 if (copy_to_user((char __user *)arg, vbuf, 3381 min(FSLABEL_MAX, count))) 3382 err = -EFAULT; 3383 3384 kvfree(vbuf); 3385 return err; 3386 } 3387 3388 static int f2fs_set_volume_name(struct file *filp, unsigned long arg) 3389 { 3390 struct inode *inode = file_inode(filp); 3391 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3392 char *vbuf; 3393 int err = 0; 3394 3395 if (!capable(CAP_SYS_ADMIN)) 3396 return -EPERM; 3397 3398 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3399 if (IS_ERR(vbuf)) 3400 return PTR_ERR(vbuf); 3401 3402 err = mnt_want_write_file(filp); 3403 if (err) 3404 goto out; 3405 3406 down_write(&sbi->sb_lock); 3407 3408 memset(sbi->raw_super->volume_name, 0, 3409 sizeof(sbi->raw_super->volume_name)); 3410 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3411 sbi->raw_super->volume_name, 3412 ARRAY_SIZE(sbi->raw_super->volume_name)); 3413 3414 err = f2fs_commit_super(sbi, false); 3415 3416 up_write(&sbi->sb_lock); 3417 3418 mnt_drop_write_file(filp); 3419 out: 3420 kfree(vbuf); 3421 return err; 3422 } 3423 3424 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3425 { 3426 struct inode *inode = file_inode(filp); 3427 __u64 blocks; 3428 3429 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3430 return -EOPNOTSUPP; 3431 3432 if (!f2fs_compressed_file(inode)) 3433 return -EINVAL; 3434 3435 blocks = F2FS_I(inode)->i_compr_blocks; 3436 return put_user(blocks, (u64 __user *)arg); 3437 } 3438 3439 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3440 { 3441 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3442 unsigned int released_blocks = 0; 3443 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3444 block_t blkaddr; 3445 int i; 3446 3447 for (i = 0; i < count; i++) { 3448 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3449 dn->ofs_in_node + i); 3450 3451 if (!__is_valid_data_blkaddr(blkaddr)) 3452 continue; 3453 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3454 DATA_GENERIC_ENHANCE))) 3455 return -EFSCORRUPTED; 3456 } 3457 3458 while (count) { 3459 int compr_blocks = 0; 3460 3461 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3462 blkaddr = f2fs_data_blkaddr(dn); 3463 3464 if (i == 0) { 3465 if (blkaddr == COMPRESS_ADDR) 3466 continue; 3467 dn->ofs_in_node += cluster_size; 3468 goto next; 3469 } 3470 3471 if (__is_valid_data_blkaddr(blkaddr)) 3472 compr_blocks++; 3473 3474 if (blkaddr != NEW_ADDR) 3475 continue; 3476 3477 dn->data_blkaddr = NULL_ADDR; 3478 f2fs_set_data_blkaddr(dn); 3479 } 3480 3481 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3482 dec_valid_block_count(sbi, dn->inode, 3483 cluster_size - compr_blocks); 3484 3485 released_blocks += cluster_size - compr_blocks; 3486 next: 3487 count -= cluster_size; 3488 } 3489 3490 return released_blocks; 3491 } 3492 3493 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3494 { 3495 struct inode *inode = file_inode(filp); 3496 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3497 pgoff_t page_idx = 0, last_idx; 3498 unsigned int released_blocks = 0; 3499 int ret; 3500 int writecount; 3501 3502 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3503 return -EOPNOTSUPP; 3504 3505 if (!f2fs_compressed_file(inode)) 3506 return -EINVAL; 3507 3508 if (f2fs_readonly(sbi->sb)) 3509 return -EROFS; 3510 3511 ret = mnt_want_write_file(filp); 3512 if (ret) 3513 return ret; 3514 3515 f2fs_balance_fs(F2FS_I_SB(inode), true); 3516 3517 inode_lock(inode); 3518 3519 writecount = atomic_read(&inode->i_writecount); 3520 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || writecount) { 3521 ret = -EBUSY; 3522 goto out; 3523 } 3524 3525 if (IS_IMMUTABLE(inode)) { 3526 ret = -EINVAL; 3527 goto out; 3528 } 3529 3530 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3531 if (ret) 3532 goto out; 3533 3534 if (!F2FS_I(inode)->i_compr_blocks) 3535 goto out; 3536 3537 F2FS_I(inode)->i_flags |= F2FS_IMMUTABLE_FL; 3538 f2fs_set_inode_flags(inode); 3539 inode->i_ctime = current_time(inode); 3540 f2fs_mark_inode_dirty_sync(inode, true); 3541 3542 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3543 down_write(&F2FS_I(inode)->i_mmap_sem); 3544 3545 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3546 3547 while (page_idx < last_idx) { 3548 struct dnode_of_data dn; 3549 pgoff_t end_offset, count; 3550 3551 set_new_dnode(&dn, inode, NULL, NULL, 0); 3552 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3553 if (ret) { 3554 if (ret == -ENOENT) { 3555 page_idx = f2fs_get_next_page_offset(&dn, 3556 page_idx); 3557 ret = 0; 3558 continue; 3559 } 3560 break; 3561 } 3562 3563 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3564 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3565 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3566 3567 ret = release_compress_blocks(&dn, count); 3568 3569 f2fs_put_dnode(&dn); 3570 3571 if (ret < 0) 3572 break; 3573 3574 page_idx += count; 3575 released_blocks += ret; 3576 } 3577 3578 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3579 up_write(&F2FS_I(inode)->i_mmap_sem); 3580 out: 3581 inode_unlock(inode); 3582 3583 mnt_drop_write_file(filp); 3584 3585 if (ret >= 0) { 3586 ret = put_user(released_blocks, (u64 __user *)arg); 3587 } else if (released_blocks && F2FS_I(inode)->i_compr_blocks) { 3588 set_sbi_flag(sbi, SBI_NEED_FSCK); 3589 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3590 "iblocks=%llu, released=%u, compr_blocks=%llu, " 3591 "run fsck to fix.", 3592 __func__, inode->i_ino, inode->i_blocks, 3593 released_blocks, 3594 F2FS_I(inode)->i_compr_blocks); 3595 } 3596 3597 return ret; 3598 } 3599 3600 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3601 { 3602 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3603 unsigned int reserved_blocks = 0; 3604 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3605 block_t blkaddr; 3606 int i; 3607 3608 for (i = 0; i < count; i++) { 3609 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3610 dn->ofs_in_node + i); 3611 3612 if (!__is_valid_data_blkaddr(blkaddr)) 3613 continue; 3614 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3615 DATA_GENERIC_ENHANCE))) 3616 return -EFSCORRUPTED; 3617 } 3618 3619 while (count) { 3620 int compr_blocks = 0; 3621 blkcnt_t reserved; 3622 int ret; 3623 3624 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3625 blkaddr = f2fs_data_blkaddr(dn); 3626 3627 if (i == 0) { 3628 if (blkaddr == COMPRESS_ADDR) 3629 continue; 3630 dn->ofs_in_node += cluster_size; 3631 goto next; 3632 } 3633 3634 if (__is_valid_data_blkaddr(blkaddr)) { 3635 compr_blocks++; 3636 continue; 3637 } 3638 3639 dn->data_blkaddr = NEW_ADDR; 3640 f2fs_set_data_blkaddr(dn); 3641 } 3642 3643 reserved = cluster_size - compr_blocks; 3644 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3645 if (ret) 3646 return ret; 3647 3648 if (reserved != cluster_size - compr_blocks) 3649 return -ENOSPC; 3650 3651 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3652 3653 reserved_blocks += reserved; 3654 next: 3655 count -= cluster_size; 3656 } 3657 3658 return reserved_blocks; 3659 } 3660 3661 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3662 { 3663 struct inode *inode = file_inode(filp); 3664 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3665 pgoff_t page_idx = 0, last_idx; 3666 unsigned int reserved_blocks = 0; 3667 int ret; 3668 3669 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3670 return -EOPNOTSUPP; 3671 3672 if (!f2fs_compressed_file(inode)) 3673 return -EINVAL; 3674 3675 if (f2fs_readonly(sbi->sb)) 3676 return -EROFS; 3677 3678 ret = mnt_want_write_file(filp); 3679 if (ret) 3680 return ret; 3681 3682 if (F2FS_I(inode)->i_compr_blocks) 3683 goto out; 3684 3685 f2fs_balance_fs(F2FS_I_SB(inode), true); 3686 3687 inode_lock(inode); 3688 3689 if (!IS_IMMUTABLE(inode)) { 3690 ret = -EINVAL; 3691 goto unlock_inode; 3692 } 3693 3694 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3695 down_write(&F2FS_I(inode)->i_mmap_sem); 3696 3697 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3698 3699 while (page_idx < last_idx) { 3700 struct dnode_of_data dn; 3701 pgoff_t end_offset, count; 3702 3703 set_new_dnode(&dn, inode, NULL, NULL, 0); 3704 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3705 if (ret) { 3706 if (ret == -ENOENT) { 3707 page_idx = f2fs_get_next_page_offset(&dn, 3708 page_idx); 3709 ret = 0; 3710 continue; 3711 } 3712 break; 3713 } 3714 3715 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3716 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3717 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3718 3719 ret = reserve_compress_blocks(&dn, count); 3720 3721 f2fs_put_dnode(&dn); 3722 3723 if (ret < 0) 3724 break; 3725 3726 page_idx += count; 3727 reserved_blocks += ret; 3728 } 3729 3730 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3731 up_write(&F2FS_I(inode)->i_mmap_sem); 3732 3733 if (ret >= 0) { 3734 F2FS_I(inode)->i_flags &= ~F2FS_IMMUTABLE_FL; 3735 f2fs_set_inode_flags(inode); 3736 inode->i_ctime = current_time(inode); 3737 f2fs_mark_inode_dirty_sync(inode, true); 3738 } 3739 unlock_inode: 3740 inode_unlock(inode); 3741 out: 3742 mnt_drop_write_file(filp); 3743 3744 if (ret >= 0) { 3745 ret = put_user(reserved_blocks, (u64 __user *)arg); 3746 } else if (reserved_blocks && F2FS_I(inode)->i_compr_blocks) { 3747 set_sbi_flag(sbi, SBI_NEED_FSCK); 3748 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3749 "iblocks=%llu, reserved=%u, compr_blocks=%llu, " 3750 "run fsck to fix.", 3751 __func__, inode->i_ino, inode->i_blocks, 3752 reserved_blocks, 3753 F2FS_I(inode)->i_compr_blocks); 3754 } 3755 3756 return ret; 3757 } 3758 3759 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 3760 { 3761 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 3762 return -EIO; 3763 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 3764 return -ENOSPC; 3765 3766 switch (cmd) { 3767 case F2FS_IOC_GETFLAGS: 3768 return f2fs_ioc_getflags(filp, arg); 3769 case F2FS_IOC_SETFLAGS: 3770 return f2fs_ioc_setflags(filp, arg); 3771 case F2FS_IOC_GETVERSION: 3772 return f2fs_ioc_getversion(filp, arg); 3773 case F2FS_IOC_START_ATOMIC_WRITE: 3774 return f2fs_ioc_start_atomic_write(filp); 3775 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3776 return f2fs_ioc_commit_atomic_write(filp); 3777 case F2FS_IOC_START_VOLATILE_WRITE: 3778 return f2fs_ioc_start_volatile_write(filp); 3779 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3780 return f2fs_ioc_release_volatile_write(filp); 3781 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3782 return f2fs_ioc_abort_volatile_write(filp); 3783 case F2FS_IOC_SHUTDOWN: 3784 return f2fs_ioc_shutdown(filp, arg); 3785 case FITRIM: 3786 return f2fs_ioc_fitrim(filp, arg); 3787 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3788 return f2fs_ioc_set_encryption_policy(filp, arg); 3789 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3790 return f2fs_ioc_get_encryption_policy(filp, arg); 3791 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3792 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 3793 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 3794 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 3795 case FS_IOC_ADD_ENCRYPTION_KEY: 3796 return f2fs_ioc_add_encryption_key(filp, arg); 3797 case FS_IOC_REMOVE_ENCRYPTION_KEY: 3798 return f2fs_ioc_remove_encryption_key(filp, arg); 3799 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 3800 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 3801 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 3802 return f2fs_ioc_get_encryption_key_status(filp, arg); 3803 case FS_IOC_GET_ENCRYPTION_NONCE: 3804 return f2fs_ioc_get_encryption_nonce(filp, arg); 3805 case F2FS_IOC_GARBAGE_COLLECT: 3806 return f2fs_ioc_gc(filp, arg); 3807 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3808 return f2fs_ioc_gc_range(filp, arg); 3809 case F2FS_IOC_WRITE_CHECKPOINT: 3810 return f2fs_ioc_write_checkpoint(filp, arg); 3811 case F2FS_IOC_DEFRAGMENT: 3812 return f2fs_ioc_defragment(filp, arg); 3813 case F2FS_IOC_MOVE_RANGE: 3814 return f2fs_ioc_move_range(filp, arg); 3815 case F2FS_IOC_FLUSH_DEVICE: 3816 return f2fs_ioc_flush_device(filp, arg); 3817 case F2FS_IOC_GET_FEATURES: 3818 return f2fs_ioc_get_features(filp, arg); 3819 case F2FS_IOC_FSGETXATTR: 3820 return f2fs_ioc_fsgetxattr(filp, arg); 3821 case F2FS_IOC_FSSETXATTR: 3822 return f2fs_ioc_fssetxattr(filp, arg); 3823 case F2FS_IOC_GET_PIN_FILE: 3824 return f2fs_ioc_get_pin_file(filp, arg); 3825 case F2FS_IOC_SET_PIN_FILE: 3826 return f2fs_ioc_set_pin_file(filp, arg); 3827 case F2FS_IOC_PRECACHE_EXTENTS: 3828 return f2fs_ioc_precache_extents(filp, arg); 3829 case F2FS_IOC_RESIZE_FS: 3830 return f2fs_ioc_resize_fs(filp, arg); 3831 case FS_IOC_ENABLE_VERITY: 3832 return f2fs_ioc_enable_verity(filp, arg); 3833 case FS_IOC_MEASURE_VERITY: 3834 return f2fs_ioc_measure_verity(filp, arg); 3835 case F2FS_IOC_GET_VOLUME_NAME: 3836 return f2fs_get_volume_name(filp, arg); 3837 case F2FS_IOC_SET_VOLUME_NAME: 3838 return f2fs_set_volume_name(filp, arg); 3839 case F2FS_IOC_GET_COMPRESS_BLOCKS: 3840 return f2fs_get_compress_blocks(filp, arg); 3841 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 3842 return f2fs_release_compress_blocks(filp, arg); 3843 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 3844 return f2fs_reserve_compress_blocks(filp, arg); 3845 default: 3846 return -ENOTTY; 3847 } 3848 } 3849 3850 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 3851 { 3852 struct file *file = iocb->ki_filp; 3853 struct inode *inode = file_inode(file); 3854 int ret; 3855 3856 if (!f2fs_is_compress_backend_ready(inode)) 3857 return -EOPNOTSUPP; 3858 3859 ret = generic_file_read_iter(iocb, iter); 3860 3861 if (ret > 0) 3862 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret); 3863 3864 return ret; 3865 } 3866 3867 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3868 { 3869 struct file *file = iocb->ki_filp; 3870 struct inode *inode = file_inode(file); 3871 ssize_t ret; 3872 3873 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 3874 ret = -EIO; 3875 goto out; 3876 } 3877 3878 if (!f2fs_is_compress_backend_ready(inode)) { 3879 ret = -EOPNOTSUPP; 3880 goto out; 3881 } 3882 3883 if (iocb->ki_flags & IOCB_NOWAIT) { 3884 if (!inode_trylock(inode)) { 3885 ret = -EAGAIN; 3886 goto out; 3887 } 3888 } else { 3889 inode_lock(inode); 3890 } 3891 3892 ret = generic_write_checks(iocb, from); 3893 if (ret > 0) { 3894 bool preallocated = false; 3895 size_t target_size = 0; 3896 int err; 3897 3898 if (iov_iter_fault_in_readable(from, iov_iter_count(from))) 3899 set_inode_flag(inode, FI_NO_PREALLOC); 3900 3901 if ((iocb->ki_flags & IOCB_NOWAIT)) { 3902 if (!f2fs_overwrite_io(inode, iocb->ki_pos, 3903 iov_iter_count(from)) || 3904 f2fs_has_inline_data(inode) || 3905 f2fs_force_buffered_io(inode, iocb, from)) { 3906 clear_inode_flag(inode, FI_NO_PREALLOC); 3907 inode_unlock(inode); 3908 ret = -EAGAIN; 3909 goto out; 3910 } 3911 goto write; 3912 } 3913 3914 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 3915 goto write; 3916 3917 if (iocb->ki_flags & IOCB_DIRECT) { 3918 /* 3919 * Convert inline data for Direct I/O before entering 3920 * f2fs_direct_IO(). 3921 */ 3922 err = f2fs_convert_inline_inode(inode); 3923 if (err) 3924 goto out_err; 3925 /* 3926 * If force_buffere_io() is true, we have to allocate 3927 * blocks all the time, since f2fs_direct_IO will fall 3928 * back to buffered IO. 3929 */ 3930 if (!f2fs_force_buffered_io(inode, iocb, from) && 3931 allow_outplace_dio(inode, iocb, from)) 3932 goto write; 3933 } 3934 preallocated = true; 3935 target_size = iocb->ki_pos + iov_iter_count(from); 3936 3937 err = f2fs_preallocate_blocks(iocb, from); 3938 if (err) { 3939 out_err: 3940 clear_inode_flag(inode, FI_NO_PREALLOC); 3941 inode_unlock(inode); 3942 ret = err; 3943 goto out; 3944 } 3945 write: 3946 ret = __generic_file_write_iter(iocb, from); 3947 clear_inode_flag(inode, FI_NO_PREALLOC); 3948 3949 /* if we couldn't write data, we should deallocate blocks. */ 3950 if (preallocated && i_size_read(inode) < target_size) 3951 f2fs_truncate(inode); 3952 3953 if (ret > 0) 3954 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); 3955 } 3956 inode_unlock(inode); 3957 out: 3958 trace_f2fs_file_write_iter(inode, iocb->ki_pos, 3959 iov_iter_count(from), ret); 3960 if (ret > 0) 3961 ret = generic_write_sync(iocb, ret); 3962 return ret; 3963 } 3964 3965 #ifdef CONFIG_COMPAT 3966 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3967 { 3968 switch (cmd) { 3969 case F2FS_IOC32_GETFLAGS: 3970 cmd = F2FS_IOC_GETFLAGS; 3971 break; 3972 case F2FS_IOC32_SETFLAGS: 3973 cmd = F2FS_IOC_SETFLAGS; 3974 break; 3975 case F2FS_IOC32_GETVERSION: 3976 cmd = F2FS_IOC_GETVERSION; 3977 break; 3978 case F2FS_IOC_START_ATOMIC_WRITE: 3979 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3980 case F2FS_IOC_START_VOLATILE_WRITE: 3981 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3982 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3983 case F2FS_IOC_SHUTDOWN: 3984 case FITRIM: 3985 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3986 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3987 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3988 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 3989 case FS_IOC_ADD_ENCRYPTION_KEY: 3990 case FS_IOC_REMOVE_ENCRYPTION_KEY: 3991 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 3992 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 3993 case FS_IOC_GET_ENCRYPTION_NONCE: 3994 case F2FS_IOC_GARBAGE_COLLECT: 3995 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3996 case F2FS_IOC_WRITE_CHECKPOINT: 3997 case F2FS_IOC_DEFRAGMENT: 3998 case F2FS_IOC_MOVE_RANGE: 3999 case F2FS_IOC_FLUSH_DEVICE: 4000 case F2FS_IOC_GET_FEATURES: 4001 case F2FS_IOC_FSGETXATTR: 4002 case F2FS_IOC_FSSETXATTR: 4003 case F2FS_IOC_GET_PIN_FILE: 4004 case F2FS_IOC_SET_PIN_FILE: 4005 case F2FS_IOC_PRECACHE_EXTENTS: 4006 case F2FS_IOC_RESIZE_FS: 4007 case FS_IOC_ENABLE_VERITY: 4008 case FS_IOC_MEASURE_VERITY: 4009 case F2FS_IOC_GET_VOLUME_NAME: 4010 case F2FS_IOC_SET_VOLUME_NAME: 4011 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4012 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4013 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4014 break; 4015 default: 4016 return -ENOIOCTLCMD; 4017 } 4018 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4019 } 4020 #endif 4021 4022 const struct file_operations f2fs_file_operations = { 4023 .llseek = f2fs_llseek, 4024 .read_iter = f2fs_file_read_iter, 4025 .write_iter = f2fs_file_write_iter, 4026 .open = f2fs_file_open, 4027 .release = f2fs_release_file, 4028 .mmap = f2fs_file_mmap, 4029 .flush = f2fs_file_flush, 4030 .fsync = f2fs_sync_file, 4031 .fallocate = f2fs_fallocate, 4032 .unlocked_ioctl = f2fs_ioctl, 4033 #ifdef CONFIG_COMPAT 4034 .compat_ioctl = f2fs_compat_ioctl, 4035 #endif 4036 .splice_read = generic_file_splice_read, 4037 .splice_write = iter_file_splice_write, 4038 }; 4039