xref: /openbmc/linux/fs/f2fs/file.c (revision 94d964e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (!ret)
46 		f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
47 							F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
117 		set_new_dnode(&dn, inode, NULL, NULL, 0);
118 		err = f2fs_get_block(&dn, page->index);
119 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
120 	}
121 
122 #ifdef CONFIG_F2FS_FS_COMPRESSION
123 	if (!need_alloc) {
124 		set_new_dnode(&dn, inode, NULL, NULL, 0);
125 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
126 		f2fs_put_dnode(&dn);
127 	}
128 #endif
129 	if (err) {
130 		unlock_page(page);
131 		goto out_sem;
132 	}
133 
134 	f2fs_wait_on_page_writeback(page, DATA, false, true);
135 
136 	/* wait for GCed page writeback via META_MAPPING */
137 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
138 
139 	/*
140 	 * check to see if the page is mapped already (no holes)
141 	 */
142 	if (PageMappedToDisk(page))
143 		goto out_sem;
144 
145 	/* page is wholly or partially inside EOF */
146 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
147 						i_size_read(inode)) {
148 		loff_t offset;
149 
150 		offset = i_size_read(inode) & ~PAGE_MASK;
151 		zero_user_segment(page, offset, PAGE_SIZE);
152 	}
153 	set_page_dirty(page);
154 	if (!PageUptodate(page))
155 		SetPageUptodate(page);
156 
157 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
158 	f2fs_update_time(sbi, REQ_TIME);
159 
160 	trace_f2fs_vm_page_mkwrite(page, DATA);
161 out_sem:
162 	filemap_invalidate_unlock_shared(inode->i_mapping);
163 
164 	sb_end_pagefault(inode->i_sb);
165 err:
166 	return block_page_mkwrite_return(err);
167 }
168 
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170 	.fault		= f2fs_filemap_fault,
171 	.map_pages	= filemap_map_pages,
172 	.page_mkwrite	= f2fs_vm_page_mkwrite,
173 };
174 
175 static int get_parent_ino(struct inode *inode, nid_t *pino)
176 {
177 	struct dentry *dentry;
178 
179 	/*
180 	 * Make sure to get the non-deleted alias.  The alias associated with
181 	 * the open file descriptor being fsync()'ed may be deleted already.
182 	 */
183 	dentry = d_find_alias(inode);
184 	if (!dentry)
185 		return 0;
186 
187 	*pino = parent_ino(dentry);
188 	dput(dentry);
189 	return 1;
190 }
191 
192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
193 {
194 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
196 
197 	if (!S_ISREG(inode->i_mode))
198 		cp_reason = CP_NON_REGULAR;
199 	else if (f2fs_compressed_file(inode))
200 		cp_reason = CP_COMPRESSED;
201 	else if (inode->i_nlink != 1)
202 		cp_reason = CP_HARDLINK;
203 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204 		cp_reason = CP_SB_NEED_CP;
205 	else if (file_wrong_pino(inode))
206 		cp_reason = CP_WRONG_PINO;
207 	else if (!f2fs_space_for_roll_forward(sbi))
208 		cp_reason = CP_NO_SPC_ROLL;
209 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210 		cp_reason = CP_NODE_NEED_CP;
211 	else if (test_opt(sbi, FASTBOOT))
212 		cp_reason = CP_FASTBOOT_MODE;
213 	else if (F2FS_OPTION(sbi).active_logs == 2)
214 		cp_reason = CP_SPEC_LOG_NUM;
215 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
218 							TRANS_DIR_INO))
219 		cp_reason = CP_RECOVER_DIR;
220 
221 	return cp_reason;
222 }
223 
224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
225 {
226 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
227 	bool ret = false;
228 	/* But we need to avoid that there are some inode updates */
229 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
230 		ret = true;
231 	f2fs_put_page(i, 0);
232 	return ret;
233 }
234 
235 static void try_to_fix_pino(struct inode *inode)
236 {
237 	struct f2fs_inode_info *fi = F2FS_I(inode);
238 	nid_t pino;
239 
240 	down_write(&fi->i_sem);
241 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
242 			get_parent_ino(inode, &pino)) {
243 		f2fs_i_pino_write(inode, pino);
244 		file_got_pino(inode);
245 	}
246 	up_write(&fi->i_sem);
247 }
248 
249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
250 						int datasync, bool atomic)
251 {
252 	struct inode *inode = file->f_mapping->host;
253 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
254 	nid_t ino = inode->i_ino;
255 	int ret = 0;
256 	enum cp_reason_type cp_reason = 0;
257 	struct writeback_control wbc = {
258 		.sync_mode = WB_SYNC_ALL,
259 		.nr_to_write = LONG_MAX,
260 		.for_reclaim = 0,
261 	};
262 	unsigned int seq_id = 0;
263 
264 	if (unlikely(f2fs_readonly(inode->i_sb)))
265 		return 0;
266 
267 	trace_f2fs_sync_file_enter(inode);
268 
269 	if (S_ISDIR(inode->i_mode))
270 		goto go_write;
271 
272 	/* if fdatasync is triggered, let's do in-place-update */
273 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
274 		set_inode_flag(inode, FI_NEED_IPU);
275 	ret = file_write_and_wait_range(file, start, end);
276 	clear_inode_flag(inode, FI_NEED_IPU);
277 
278 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
279 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
280 		return ret;
281 	}
282 
283 	/* if the inode is dirty, let's recover all the time */
284 	if (!f2fs_skip_inode_update(inode, datasync)) {
285 		f2fs_write_inode(inode, NULL);
286 		goto go_write;
287 	}
288 
289 	/*
290 	 * if there is no written data, don't waste time to write recovery info.
291 	 */
292 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
293 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
294 
295 		/* it may call write_inode just prior to fsync */
296 		if (need_inode_page_update(sbi, ino))
297 			goto go_write;
298 
299 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
300 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
301 			goto flush_out;
302 		goto out;
303 	} else {
304 		/*
305 		 * for OPU case, during fsync(), node can be persisted before
306 		 * data when lower device doesn't support write barrier, result
307 		 * in data corruption after SPO.
308 		 * So for strict fsync mode, force to use atomic write sematics
309 		 * to keep write order in between data/node and last node to
310 		 * avoid potential data corruption.
311 		 */
312 		if (F2FS_OPTION(sbi).fsync_mode ==
313 				FSYNC_MODE_STRICT && !atomic)
314 			atomic = true;
315 	}
316 go_write:
317 	/*
318 	 * Both of fdatasync() and fsync() are able to be recovered from
319 	 * sudden-power-off.
320 	 */
321 	down_read(&F2FS_I(inode)->i_sem);
322 	cp_reason = need_do_checkpoint(inode);
323 	up_read(&F2FS_I(inode)->i_sem);
324 
325 	if (cp_reason) {
326 		/* all the dirty node pages should be flushed for POR */
327 		ret = f2fs_sync_fs(inode->i_sb, 1);
328 
329 		/*
330 		 * We've secured consistency through sync_fs. Following pino
331 		 * will be used only for fsynced inodes after checkpoint.
332 		 */
333 		try_to_fix_pino(inode);
334 		clear_inode_flag(inode, FI_APPEND_WRITE);
335 		clear_inode_flag(inode, FI_UPDATE_WRITE);
336 		goto out;
337 	}
338 sync_nodes:
339 	atomic_inc(&sbi->wb_sync_req[NODE]);
340 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
341 	atomic_dec(&sbi->wb_sync_req[NODE]);
342 	if (ret)
343 		goto out;
344 
345 	/* if cp_error was enabled, we should avoid infinite loop */
346 	if (unlikely(f2fs_cp_error(sbi))) {
347 		ret = -EIO;
348 		goto out;
349 	}
350 
351 	if (f2fs_need_inode_block_update(sbi, ino)) {
352 		f2fs_mark_inode_dirty_sync(inode, true);
353 		f2fs_write_inode(inode, NULL);
354 		goto sync_nodes;
355 	}
356 
357 	/*
358 	 * If it's atomic_write, it's just fine to keep write ordering. So
359 	 * here we don't need to wait for node write completion, since we use
360 	 * node chain which serializes node blocks. If one of node writes are
361 	 * reordered, we can see simply broken chain, resulting in stopping
362 	 * roll-forward recovery. It means we'll recover all or none node blocks
363 	 * given fsync mark.
364 	 */
365 	if (!atomic) {
366 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
367 		if (ret)
368 			goto out;
369 	}
370 
371 	/* once recovery info is written, don't need to tack this */
372 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
373 	clear_inode_flag(inode, FI_APPEND_WRITE);
374 flush_out:
375 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
376 		ret = f2fs_issue_flush(sbi, inode->i_ino);
377 	if (!ret) {
378 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
379 		clear_inode_flag(inode, FI_UPDATE_WRITE);
380 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
381 	}
382 	f2fs_update_time(sbi, REQ_TIME);
383 out:
384 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
385 	return ret;
386 }
387 
388 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
389 {
390 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
391 		return -EIO;
392 	return f2fs_do_sync_file(file, start, end, datasync, false);
393 }
394 
395 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
396 				pgoff_t index, int whence)
397 {
398 	switch (whence) {
399 	case SEEK_DATA:
400 		if (__is_valid_data_blkaddr(blkaddr))
401 			return true;
402 		if (blkaddr == NEW_ADDR &&
403 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
404 			return true;
405 		break;
406 	case SEEK_HOLE:
407 		if (blkaddr == NULL_ADDR)
408 			return true;
409 		break;
410 	}
411 	return false;
412 }
413 
414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
415 {
416 	struct inode *inode = file->f_mapping->host;
417 	loff_t maxbytes = inode->i_sb->s_maxbytes;
418 	struct dnode_of_data dn;
419 	pgoff_t pgofs, end_offset;
420 	loff_t data_ofs = offset;
421 	loff_t isize;
422 	int err = 0;
423 
424 	inode_lock(inode);
425 
426 	isize = i_size_read(inode);
427 	if (offset >= isize)
428 		goto fail;
429 
430 	/* handle inline data case */
431 	if (f2fs_has_inline_data(inode)) {
432 		if (whence == SEEK_HOLE) {
433 			data_ofs = isize;
434 			goto found;
435 		} else if (whence == SEEK_DATA) {
436 			data_ofs = offset;
437 			goto found;
438 		}
439 	}
440 
441 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
442 
443 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
444 		set_new_dnode(&dn, inode, NULL, NULL, 0);
445 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
446 		if (err && err != -ENOENT) {
447 			goto fail;
448 		} else if (err == -ENOENT) {
449 			/* direct node does not exists */
450 			if (whence == SEEK_DATA) {
451 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
452 				continue;
453 			} else {
454 				goto found;
455 			}
456 		}
457 
458 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
459 
460 		/* find data/hole in dnode block */
461 		for (; dn.ofs_in_node < end_offset;
462 				dn.ofs_in_node++, pgofs++,
463 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
464 			block_t blkaddr;
465 
466 			blkaddr = f2fs_data_blkaddr(&dn);
467 
468 			if (__is_valid_data_blkaddr(blkaddr) &&
469 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
470 					blkaddr, DATA_GENERIC_ENHANCE)) {
471 				f2fs_put_dnode(&dn);
472 				goto fail;
473 			}
474 
475 			if (__found_offset(file->f_mapping, blkaddr,
476 							pgofs, whence)) {
477 				f2fs_put_dnode(&dn);
478 				goto found;
479 			}
480 		}
481 		f2fs_put_dnode(&dn);
482 	}
483 
484 	if (whence == SEEK_DATA)
485 		goto fail;
486 found:
487 	if (whence == SEEK_HOLE && data_ofs > isize)
488 		data_ofs = isize;
489 	inode_unlock(inode);
490 	return vfs_setpos(file, data_ofs, maxbytes);
491 fail:
492 	inode_unlock(inode);
493 	return -ENXIO;
494 }
495 
496 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
497 {
498 	struct inode *inode = file->f_mapping->host;
499 	loff_t maxbytes = inode->i_sb->s_maxbytes;
500 
501 	if (f2fs_compressed_file(inode))
502 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
503 
504 	switch (whence) {
505 	case SEEK_SET:
506 	case SEEK_CUR:
507 	case SEEK_END:
508 		return generic_file_llseek_size(file, offset, whence,
509 						maxbytes, i_size_read(inode));
510 	case SEEK_DATA:
511 	case SEEK_HOLE:
512 		if (offset < 0)
513 			return -ENXIO;
514 		return f2fs_seek_block(file, offset, whence);
515 	}
516 
517 	return -EINVAL;
518 }
519 
520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
521 {
522 	struct inode *inode = file_inode(file);
523 
524 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
525 		return -EIO;
526 
527 	if (!f2fs_is_compress_backend_ready(inode))
528 		return -EOPNOTSUPP;
529 
530 	file_accessed(file);
531 	vma->vm_ops = &f2fs_file_vm_ops;
532 	set_inode_flag(inode, FI_MMAP_FILE);
533 	return 0;
534 }
535 
536 static int f2fs_file_open(struct inode *inode, struct file *filp)
537 {
538 	int err = fscrypt_file_open(inode, filp);
539 
540 	if (err)
541 		return err;
542 
543 	if (!f2fs_is_compress_backend_ready(inode))
544 		return -EOPNOTSUPP;
545 
546 	err = fsverity_file_open(inode, filp);
547 	if (err)
548 		return err;
549 
550 	filp->f_mode |= FMODE_NOWAIT;
551 
552 	return dquot_file_open(inode, filp);
553 }
554 
555 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
556 {
557 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
558 	struct f2fs_node *raw_node;
559 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
560 	__le32 *addr;
561 	int base = 0;
562 	bool compressed_cluster = false;
563 	int cluster_index = 0, valid_blocks = 0;
564 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
565 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
566 
567 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
568 		base = get_extra_isize(dn->inode);
569 
570 	raw_node = F2FS_NODE(dn->node_page);
571 	addr = blkaddr_in_node(raw_node) + base + ofs;
572 
573 	/* Assumption: truncateion starts with cluster */
574 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
575 		block_t blkaddr = le32_to_cpu(*addr);
576 
577 		if (f2fs_compressed_file(dn->inode) &&
578 					!(cluster_index & (cluster_size - 1))) {
579 			if (compressed_cluster)
580 				f2fs_i_compr_blocks_update(dn->inode,
581 							valid_blocks, false);
582 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
583 			valid_blocks = 0;
584 		}
585 
586 		if (blkaddr == NULL_ADDR)
587 			continue;
588 
589 		dn->data_blkaddr = NULL_ADDR;
590 		f2fs_set_data_blkaddr(dn);
591 
592 		if (__is_valid_data_blkaddr(blkaddr)) {
593 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
594 					DATA_GENERIC_ENHANCE))
595 				continue;
596 			if (compressed_cluster)
597 				valid_blocks++;
598 		}
599 
600 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
601 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
602 
603 		f2fs_invalidate_blocks(sbi, blkaddr);
604 
605 		if (!released || blkaddr != COMPRESS_ADDR)
606 			nr_free++;
607 	}
608 
609 	if (compressed_cluster)
610 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
611 
612 	if (nr_free) {
613 		pgoff_t fofs;
614 		/*
615 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
616 		 * we will invalidate all blkaddr in the whole range.
617 		 */
618 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
619 							dn->inode) + ofs;
620 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
621 		dec_valid_block_count(sbi, dn->inode, nr_free);
622 	}
623 	dn->ofs_in_node = ofs;
624 
625 	f2fs_update_time(sbi, REQ_TIME);
626 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
627 					 dn->ofs_in_node, nr_free);
628 }
629 
630 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
631 {
632 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
633 }
634 
635 static int truncate_partial_data_page(struct inode *inode, u64 from,
636 								bool cache_only)
637 {
638 	loff_t offset = from & (PAGE_SIZE - 1);
639 	pgoff_t index = from >> PAGE_SHIFT;
640 	struct address_space *mapping = inode->i_mapping;
641 	struct page *page;
642 
643 	if (!offset && !cache_only)
644 		return 0;
645 
646 	if (cache_only) {
647 		page = find_lock_page(mapping, index);
648 		if (page && PageUptodate(page))
649 			goto truncate_out;
650 		f2fs_put_page(page, 1);
651 		return 0;
652 	}
653 
654 	page = f2fs_get_lock_data_page(inode, index, true);
655 	if (IS_ERR(page))
656 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
657 truncate_out:
658 	f2fs_wait_on_page_writeback(page, DATA, true, true);
659 	zero_user(page, offset, PAGE_SIZE - offset);
660 
661 	/* An encrypted inode should have a key and truncate the last page. */
662 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
663 	if (!cache_only)
664 		set_page_dirty(page);
665 	f2fs_put_page(page, 1);
666 	return 0;
667 }
668 
669 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
670 {
671 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
672 	struct dnode_of_data dn;
673 	pgoff_t free_from;
674 	int count = 0, err = 0;
675 	struct page *ipage;
676 	bool truncate_page = false;
677 
678 	trace_f2fs_truncate_blocks_enter(inode, from);
679 
680 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
681 
682 	if (free_from >= max_file_blocks(inode))
683 		goto free_partial;
684 
685 	if (lock)
686 		f2fs_lock_op(sbi);
687 
688 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
689 	if (IS_ERR(ipage)) {
690 		err = PTR_ERR(ipage);
691 		goto out;
692 	}
693 
694 	if (f2fs_has_inline_data(inode)) {
695 		f2fs_truncate_inline_inode(inode, ipage, from);
696 		f2fs_put_page(ipage, 1);
697 		truncate_page = true;
698 		goto out;
699 	}
700 
701 	set_new_dnode(&dn, inode, ipage, NULL, 0);
702 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
703 	if (err) {
704 		if (err == -ENOENT)
705 			goto free_next;
706 		goto out;
707 	}
708 
709 	count = ADDRS_PER_PAGE(dn.node_page, inode);
710 
711 	count -= dn.ofs_in_node;
712 	f2fs_bug_on(sbi, count < 0);
713 
714 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
715 		f2fs_truncate_data_blocks_range(&dn, count);
716 		free_from += count;
717 	}
718 
719 	f2fs_put_dnode(&dn);
720 free_next:
721 	err = f2fs_truncate_inode_blocks(inode, free_from);
722 out:
723 	if (lock)
724 		f2fs_unlock_op(sbi);
725 free_partial:
726 	/* lastly zero out the first data page */
727 	if (!err)
728 		err = truncate_partial_data_page(inode, from, truncate_page);
729 
730 	trace_f2fs_truncate_blocks_exit(inode, err);
731 	return err;
732 }
733 
734 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
735 {
736 	u64 free_from = from;
737 	int err;
738 
739 #ifdef CONFIG_F2FS_FS_COMPRESSION
740 	/*
741 	 * for compressed file, only support cluster size
742 	 * aligned truncation.
743 	 */
744 	if (f2fs_compressed_file(inode))
745 		free_from = round_up(from,
746 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
747 #endif
748 
749 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
750 	if (err)
751 		return err;
752 
753 #ifdef CONFIG_F2FS_FS_COMPRESSION
754 	/*
755 	 * For compressed file, after release compress blocks, don't allow write
756 	 * direct, but we should allow write direct after truncate to zero.
757 	 */
758 	if (f2fs_compressed_file(inode) && !free_from
759 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
760 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
761 
762 	if (from != free_from) {
763 		err = f2fs_truncate_partial_cluster(inode, from, lock);
764 		if (err)
765 			return err;
766 	}
767 #endif
768 
769 	return 0;
770 }
771 
772 int f2fs_truncate(struct inode *inode)
773 {
774 	int err;
775 
776 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
777 		return -EIO;
778 
779 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
780 				S_ISLNK(inode->i_mode)))
781 		return 0;
782 
783 	trace_f2fs_truncate(inode);
784 
785 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
786 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
787 		return -EIO;
788 	}
789 
790 	err = f2fs_dquot_initialize(inode);
791 	if (err)
792 		return err;
793 
794 	/* we should check inline_data size */
795 	if (!f2fs_may_inline_data(inode)) {
796 		err = f2fs_convert_inline_inode(inode);
797 		if (err)
798 			return err;
799 	}
800 
801 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
802 	if (err)
803 		return err;
804 
805 	inode->i_mtime = inode->i_ctime = current_time(inode);
806 	f2fs_mark_inode_dirty_sync(inode, false);
807 	return 0;
808 }
809 
810 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
811 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
812 {
813 	struct inode *inode = d_inode(path->dentry);
814 	struct f2fs_inode_info *fi = F2FS_I(inode);
815 	struct f2fs_inode *ri;
816 	unsigned int flags;
817 
818 	if (f2fs_has_extra_attr(inode) &&
819 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
820 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
821 		stat->result_mask |= STATX_BTIME;
822 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
823 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
824 	}
825 
826 	flags = fi->i_flags;
827 	if (flags & F2FS_COMPR_FL)
828 		stat->attributes |= STATX_ATTR_COMPRESSED;
829 	if (flags & F2FS_APPEND_FL)
830 		stat->attributes |= STATX_ATTR_APPEND;
831 	if (IS_ENCRYPTED(inode))
832 		stat->attributes |= STATX_ATTR_ENCRYPTED;
833 	if (flags & F2FS_IMMUTABLE_FL)
834 		stat->attributes |= STATX_ATTR_IMMUTABLE;
835 	if (flags & F2FS_NODUMP_FL)
836 		stat->attributes |= STATX_ATTR_NODUMP;
837 	if (IS_VERITY(inode))
838 		stat->attributes |= STATX_ATTR_VERITY;
839 
840 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
841 				  STATX_ATTR_APPEND |
842 				  STATX_ATTR_ENCRYPTED |
843 				  STATX_ATTR_IMMUTABLE |
844 				  STATX_ATTR_NODUMP |
845 				  STATX_ATTR_VERITY);
846 
847 	generic_fillattr(&init_user_ns, inode, stat);
848 
849 	/* we need to show initial sectors used for inline_data/dentries */
850 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
851 					f2fs_has_inline_dentry(inode))
852 		stat->blocks += (stat->size + 511) >> 9;
853 
854 	return 0;
855 }
856 
857 #ifdef CONFIG_F2FS_FS_POSIX_ACL
858 static void __setattr_copy(struct user_namespace *mnt_userns,
859 			   struct inode *inode, const struct iattr *attr)
860 {
861 	unsigned int ia_valid = attr->ia_valid;
862 
863 	if (ia_valid & ATTR_UID)
864 		inode->i_uid = attr->ia_uid;
865 	if (ia_valid & ATTR_GID)
866 		inode->i_gid = attr->ia_gid;
867 	if (ia_valid & ATTR_ATIME)
868 		inode->i_atime = attr->ia_atime;
869 	if (ia_valid & ATTR_MTIME)
870 		inode->i_mtime = attr->ia_mtime;
871 	if (ia_valid & ATTR_CTIME)
872 		inode->i_ctime = attr->ia_ctime;
873 	if (ia_valid & ATTR_MODE) {
874 		umode_t mode = attr->ia_mode;
875 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
876 
877 		if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
878 			mode &= ~S_ISGID;
879 		set_acl_inode(inode, mode);
880 	}
881 }
882 #else
883 #define __setattr_copy setattr_copy
884 #endif
885 
886 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
887 		 struct iattr *attr)
888 {
889 	struct inode *inode = d_inode(dentry);
890 	int err;
891 
892 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
893 		return -EIO;
894 
895 	if (unlikely(IS_IMMUTABLE(inode)))
896 		return -EPERM;
897 
898 	if (unlikely(IS_APPEND(inode) &&
899 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
900 				  ATTR_GID | ATTR_TIMES_SET))))
901 		return -EPERM;
902 
903 	if ((attr->ia_valid & ATTR_SIZE) &&
904 		!f2fs_is_compress_backend_ready(inode))
905 		return -EOPNOTSUPP;
906 
907 	err = setattr_prepare(&init_user_ns, dentry, attr);
908 	if (err)
909 		return err;
910 
911 	err = fscrypt_prepare_setattr(dentry, attr);
912 	if (err)
913 		return err;
914 
915 	err = fsverity_prepare_setattr(dentry, attr);
916 	if (err)
917 		return err;
918 
919 	if (is_quota_modification(inode, attr)) {
920 		err = f2fs_dquot_initialize(inode);
921 		if (err)
922 			return err;
923 	}
924 	if ((attr->ia_valid & ATTR_UID &&
925 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
926 		(attr->ia_valid & ATTR_GID &&
927 		!gid_eq(attr->ia_gid, inode->i_gid))) {
928 		f2fs_lock_op(F2FS_I_SB(inode));
929 		err = dquot_transfer(inode, attr);
930 		if (err) {
931 			set_sbi_flag(F2FS_I_SB(inode),
932 					SBI_QUOTA_NEED_REPAIR);
933 			f2fs_unlock_op(F2FS_I_SB(inode));
934 			return err;
935 		}
936 		/*
937 		 * update uid/gid under lock_op(), so that dquot and inode can
938 		 * be updated atomically.
939 		 */
940 		if (attr->ia_valid & ATTR_UID)
941 			inode->i_uid = attr->ia_uid;
942 		if (attr->ia_valid & ATTR_GID)
943 			inode->i_gid = attr->ia_gid;
944 		f2fs_mark_inode_dirty_sync(inode, true);
945 		f2fs_unlock_op(F2FS_I_SB(inode));
946 	}
947 
948 	if (attr->ia_valid & ATTR_SIZE) {
949 		loff_t old_size = i_size_read(inode);
950 
951 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
952 			/*
953 			 * should convert inline inode before i_size_write to
954 			 * keep smaller than inline_data size with inline flag.
955 			 */
956 			err = f2fs_convert_inline_inode(inode);
957 			if (err)
958 				return err;
959 		}
960 
961 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
962 		filemap_invalidate_lock(inode->i_mapping);
963 
964 		truncate_setsize(inode, attr->ia_size);
965 
966 		if (attr->ia_size <= old_size)
967 			err = f2fs_truncate(inode);
968 		/*
969 		 * do not trim all blocks after i_size if target size is
970 		 * larger than i_size.
971 		 */
972 		filemap_invalidate_unlock(inode->i_mapping);
973 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
974 		if (err)
975 			return err;
976 
977 		spin_lock(&F2FS_I(inode)->i_size_lock);
978 		inode->i_mtime = inode->i_ctime = current_time(inode);
979 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
980 		spin_unlock(&F2FS_I(inode)->i_size_lock);
981 	}
982 
983 	__setattr_copy(&init_user_ns, inode, attr);
984 
985 	if (attr->ia_valid & ATTR_MODE) {
986 		err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode));
987 
988 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
989 			if (!err)
990 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
991 			clear_inode_flag(inode, FI_ACL_MODE);
992 		}
993 	}
994 
995 	/* file size may changed here */
996 	f2fs_mark_inode_dirty_sync(inode, true);
997 
998 	/* inode change will produce dirty node pages flushed by checkpoint */
999 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1000 
1001 	return err;
1002 }
1003 
1004 const struct inode_operations f2fs_file_inode_operations = {
1005 	.getattr	= f2fs_getattr,
1006 	.setattr	= f2fs_setattr,
1007 	.get_acl	= f2fs_get_acl,
1008 	.set_acl	= f2fs_set_acl,
1009 	.listxattr	= f2fs_listxattr,
1010 	.fiemap		= f2fs_fiemap,
1011 	.fileattr_get	= f2fs_fileattr_get,
1012 	.fileattr_set	= f2fs_fileattr_set,
1013 };
1014 
1015 static int fill_zero(struct inode *inode, pgoff_t index,
1016 					loff_t start, loff_t len)
1017 {
1018 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1019 	struct page *page;
1020 
1021 	if (!len)
1022 		return 0;
1023 
1024 	f2fs_balance_fs(sbi, true);
1025 
1026 	f2fs_lock_op(sbi);
1027 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1028 	f2fs_unlock_op(sbi);
1029 
1030 	if (IS_ERR(page))
1031 		return PTR_ERR(page);
1032 
1033 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1034 	zero_user(page, start, len);
1035 	set_page_dirty(page);
1036 	f2fs_put_page(page, 1);
1037 	return 0;
1038 }
1039 
1040 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1041 {
1042 	int err;
1043 
1044 	while (pg_start < pg_end) {
1045 		struct dnode_of_data dn;
1046 		pgoff_t end_offset, count;
1047 
1048 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1049 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1050 		if (err) {
1051 			if (err == -ENOENT) {
1052 				pg_start = f2fs_get_next_page_offset(&dn,
1053 								pg_start);
1054 				continue;
1055 			}
1056 			return err;
1057 		}
1058 
1059 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1060 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1061 
1062 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1063 
1064 		f2fs_truncate_data_blocks_range(&dn, count);
1065 		f2fs_put_dnode(&dn);
1066 
1067 		pg_start += count;
1068 	}
1069 	return 0;
1070 }
1071 
1072 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1073 {
1074 	pgoff_t pg_start, pg_end;
1075 	loff_t off_start, off_end;
1076 	int ret;
1077 
1078 	ret = f2fs_convert_inline_inode(inode);
1079 	if (ret)
1080 		return ret;
1081 
1082 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1083 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1084 
1085 	off_start = offset & (PAGE_SIZE - 1);
1086 	off_end = (offset + len) & (PAGE_SIZE - 1);
1087 
1088 	if (pg_start == pg_end) {
1089 		ret = fill_zero(inode, pg_start, off_start,
1090 						off_end - off_start);
1091 		if (ret)
1092 			return ret;
1093 	} else {
1094 		if (off_start) {
1095 			ret = fill_zero(inode, pg_start++, off_start,
1096 						PAGE_SIZE - off_start);
1097 			if (ret)
1098 				return ret;
1099 		}
1100 		if (off_end) {
1101 			ret = fill_zero(inode, pg_end, 0, off_end);
1102 			if (ret)
1103 				return ret;
1104 		}
1105 
1106 		if (pg_start < pg_end) {
1107 			loff_t blk_start, blk_end;
1108 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1109 
1110 			f2fs_balance_fs(sbi, true);
1111 
1112 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1113 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1114 
1115 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1116 			filemap_invalidate_lock(inode->i_mapping);
1117 
1118 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1119 
1120 			f2fs_lock_op(sbi);
1121 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1122 			f2fs_unlock_op(sbi);
1123 
1124 			filemap_invalidate_unlock(inode->i_mapping);
1125 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1126 		}
1127 	}
1128 
1129 	return ret;
1130 }
1131 
1132 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1133 				int *do_replace, pgoff_t off, pgoff_t len)
1134 {
1135 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136 	struct dnode_of_data dn;
1137 	int ret, done, i;
1138 
1139 next_dnode:
1140 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1141 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1142 	if (ret && ret != -ENOENT) {
1143 		return ret;
1144 	} else if (ret == -ENOENT) {
1145 		if (dn.max_level == 0)
1146 			return -ENOENT;
1147 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1148 						dn.ofs_in_node, len);
1149 		blkaddr += done;
1150 		do_replace += done;
1151 		goto next;
1152 	}
1153 
1154 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1155 							dn.ofs_in_node, len);
1156 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1157 		*blkaddr = f2fs_data_blkaddr(&dn);
1158 
1159 		if (__is_valid_data_blkaddr(*blkaddr) &&
1160 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1161 					DATA_GENERIC_ENHANCE)) {
1162 			f2fs_put_dnode(&dn);
1163 			return -EFSCORRUPTED;
1164 		}
1165 
1166 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1167 
1168 			if (f2fs_lfs_mode(sbi)) {
1169 				f2fs_put_dnode(&dn);
1170 				return -EOPNOTSUPP;
1171 			}
1172 
1173 			/* do not invalidate this block address */
1174 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1175 			*do_replace = 1;
1176 		}
1177 	}
1178 	f2fs_put_dnode(&dn);
1179 next:
1180 	len -= done;
1181 	off += done;
1182 	if (len)
1183 		goto next_dnode;
1184 	return 0;
1185 }
1186 
1187 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1188 				int *do_replace, pgoff_t off, int len)
1189 {
1190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1191 	struct dnode_of_data dn;
1192 	int ret, i;
1193 
1194 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1195 		if (*do_replace == 0)
1196 			continue;
1197 
1198 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1199 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1200 		if (ret) {
1201 			dec_valid_block_count(sbi, inode, 1);
1202 			f2fs_invalidate_blocks(sbi, *blkaddr);
1203 		} else {
1204 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1205 		}
1206 		f2fs_put_dnode(&dn);
1207 	}
1208 	return 0;
1209 }
1210 
1211 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1212 			block_t *blkaddr, int *do_replace,
1213 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1214 {
1215 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1216 	pgoff_t i = 0;
1217 	int ret;
1218 
1219 	while (i < len) {
1220 		if (blkaddr[i] == NULL_ADDR && !full) {
1221 			i++;
1222 			continue;
1223 		}
1224 
1225 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1226 			struct dnode_of_data dn;
1227 			struct node_info ni;
1228 			size_t new_size;
1229 			pgoff_t ilen;
1230 
1231 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1232 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1233 			if (ret)
1234 				return ret;
1235 
1236 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1237 			if (ret) {
1238 				f2fs_put_dnode(&dn);
1239 				return ret;
1240 			}
1241 
1242 			ilen = min((pgoff_t)
1243 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1244 						dn.ofs_in_node, len - i);
1245 			do {
1246 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1247 				f2fs_truncate_data_blocks_range(&dn, 1);
1248 
1249 				if (do_replace[i]) {
1250 					f2fs_i_blocks_write(src_inode,
1251 							1, false, false);
1252 					f2fs_i_blocks_write(dst_inode,
1253 							1, true, false);
1254 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1255 					blkaddr[i], ni.version, true, false);
1256 
1257 					do_replace[i] = 0;
1258 				}
1259 				dn.ofs_in_node++;
1260 				i++;
1261 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1262 				if (dst_inode->i_size < new_size)
1263 					f2fs_i_size_write(dst_inode, new_size);
1264 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1265 
1266 			f2fs_put_dnode(&dn);
1267 		} else {
1268 			struct page *psrc, *pdst;
1269 
1270 			psrc = f2fs_get_lock_data_page(src_inode,
1271 							src + i, true);
1272 			if (IS_ERR(psrc))
1273 				return PTR_ERR(psrc);
1274 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1275 								true);
1276 			if (IS_ERR(pdst)) {
1277 				f2fs_put_page(psrc, 1);
1278 				return PTR_ERR(pdst);
1279 			}
1280 			f2fs_copy_page(psrc, pdst);
1281 			set_page_dirty(pdst);
1282 			f2fs_put_page(pdst, 1);
1283 			f2fs_put_page(psrc, 1);
1284 
1285 			ret = f2fs_truncate_hole(src_inode,
1286 						src + i, src + i + 1);
1287 			if (ret)
1288 				return ret;
1289 			i++;
1290 		}
1291 	}
1292 	return 0;
1293 }
1294 
1295 static int __exchange_data_block(struct inode *src_inode,
1296 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1297 			pgoff_t len, bool full)
1298 {
1299 	block_t *src_blkaddr;
1300 	int *do_replace;
1301 	pgoff_t olen;
1302 	int ret;
1303 
1304 	while (len) {
1305 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1306 
1307 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1308 					array_size(olen, sizeof(block_t)),
1309 					GFP_NOFS);
1310 		if (!src_blkaddr)
1311 			return -ENOMEM;
1312 
1313 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1314 					array_size(olen, sizeof(int)),
1315 					GFP_NOFS);
1316 		if (!do_replace) {
1317 			kvfree(src_blkaddr);
1318 			return -ENOMEM;
1319 		}
1320 
1321 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1322 					do_replace, src, olen);
1323 		if (ret)
1324 			goto roll_back;
1325 
1326 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1327 					do_replace, src, dst, olen, full);
1328 		if (ret)
1329 			goto roll_back;
1330 
1331 		src += olen;
1332 		dst += olen;
1333 		len -= olen;
1334 
1335 		kvfree(src_blkaddr);
1336 		kvfree(do_replace);
1337 	}
1338 	return 0;
1339 
1340 roll_back:
1341 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1342 	kvfree(src_blkaddr);
1343 	kvfree(do_replace);
1344 	return ret;
1345 }
1346 
1347 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1348 {
1349 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1350 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1351 	pgoff_t start = offset >> PAGE_SHIFT;
1352 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1353 	int ret;
1354 
1355 	f2fs_balance_fs(sbi, true);
1356 
1357 	/* avoid gc operation during block exchange */
1358 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1359 	filemap_invalidate_lock(inode->i_mapping);
1360 
1361 	f2fs_lock_op(sbi);
1362 	f2fs_drop_extent_tree(inode);
1363 	truncate_pagecache(inode, offset);
1364 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1365 	f2fs_unlock_op(sbi);
1366 
1367 	filemap_invalidate_unlock(inode->i_mapping);
1368 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1369 	return ret;
1370 }
1371 
1372 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1373 {
1374 	loff_t new_size;
1375 	int ret;
1376 
1377 	if (offset + len >= i_size_read(inode))
1378 		return -EINVAL;
1379 
1380 	/* collapse range should be aligned to block size of f2fs. */
1381 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1382 		return -EINVAL;
1383 
1384 	ret = f2fs_convert_inline_inode(inode);
1385 	if (ret)
1386 		return ret;
1387 
1388 	/* write out all dirty pages from offset */
1389 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1390 	if (ret)
1391 		return ret;
1392 
1393 	ret = f2fs_do_collapse(inode, offset, len);
1394 	if (ret)
1395 		return ret;
1396 
1397 	/* write out all moved pages, if possible */
1398 	filemap_invalidate_lock(inode->i_mapping);
1399 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1400 	truncate_pagecache(inode, offset);
1401 
1402 	new_size = i_size_read(inode) - len;
1403 	ret = f2fs_truncate_blocks(inode, new_size, true);
1404 	filemap_invalidate_unlock(inode->i_mapping);
1405 	if (!ret)
1406 		f2fs_i_size_write(inode, new_size);
1407 	return ret;
1408 }
1409 
1410 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1411 								pgoff_t end)
1412 {
1413 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1414 	pgoff_t index = start;
1415 	unsigned int ofs_in_node = dn->ofs_in_node;
1416 	blkcnt_t count = 0;
1417 	int ret;
1418 
1419 	for (; index < end; index++, dn->ofs_in_node++) {
1420 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1421 			count++;
1422 	}
1423 
1424 	dn->ofs_in_node = ofs_in_node;
1425 	ret = f2fs_reserve_new_blocks(dn, count);
1426 	if (ret)
1427 		return ret;
1428 
1429 	dn->ofs_in_node = ofs_in_node;
1430 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1431 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1432 		/*
1433 		 * f2fs_reserve_new_blocks will not guarantee entire block
1434 		 * allocation.
1435 		 */
1436 		if (dn->data_blkaddr == NULL_ADDR) {
1437 			ret = -ENOSPC;
1438 			break;
1439 		}
1440 		if (dn->data_blkaddr != NEW_ADDR) {
1441 			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1442 			dn->data_blkaddr = NEW_ADDR;
1443 			f2fs_set_data_blkaddr(dn);
1444 		}
1445 	}
1446 
1447 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1448 
1449 	return ret;
1450 }
1451 
1452 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1453 								int mode)
1454 {
1455 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1456 	struct address_space *mapping = inode->i_mapping;
1457 	pgoff_t index, pg_start, pg_end;
1458 	loff_t new_size = i_size_read(inode);
1459 	loff_t off_start, off_end;
1460 	int ret = 0;
1461 
1462 	ret = inode_newsize_ok(inode, (len + offset));
1463 	if (ret)
1464 		return ret;
1465 
1466 	ret = f2fs_convert_inline_inode(inode);
1467 	if (ret)
1468 		return ret;
1469 
1470 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1471 	if (ret)
1472 		return ret;
1473 
1474 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1475 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1476 
1477 	off_start = offset & (PAGE_SIZE - 1);
1478 	off_end = (offset + len) & (PAGE_SIZE - 1);
1479 
1480 	if (pg_start == pg_end) {
1481 		ret = fill_zero(inode, pg_start, off_start,
1482 						off_end - off_start);
1483 		if (ret)
1484 			return ret;
1485 
1486 		new_size = max_t(loff_t, new_size, offset + len);
1487 	} else {
1488 		if (off_start) {
1489 			ret = fill_zero(inode, pg_start++, off_start,
1490 						PAGE_SIZE - off_start);
1491 			if (ret)
1492 				return ret;
1493 
1494 			new_size = max_t(loff_t, new_size,
1495 					(loff_t)pg_start << PAGE_SHIFT);
1496 		}
1497 
1498 		for (index = pg_start; index < pg_end;) {
1499 			struct dnode_of_data dn;
1500 			unsigned int end_offset;
1501 			pgoff_t end;
1502 
1503 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1504 			filemap_invalidate_lock(mapping);
1505 
1506 			truncate_pagecache_range(inode,
1507 				(loff_t)index << PAGE_SHIFT,
1508 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1509 
1510 			f2fs_lock_op(sbi);
1511 
1512 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1513 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1514 			if (ret) {
1515 				f2fs_unlock_op(sbi);
1516 				filemap_invalidate_unlock(mapping);
1517 				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1518 				goto out;
1519 			}
1520 
1521 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1522 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1523 
1524 			ret = f2fs_do_zero_range(&dn, index, end);
1525 			f2fs_put_dnode(&dn);
1526 
1527 			f2fs_unlock_op(sbi);
1528 			filemap_invalidate_unlock(mapping);
1529 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1530 
1531 			f2fs_balance_fs(sbi, dn.node_changed);
1532 
1533 			if (ret)
1534 				goto out;
1535 
1536 			index = end;
1537 			new_size = max_t(loff_t, new_size,
1538 					(loff_t)index << PAGE_SHIFT);
1539 		}
1540 
1541 		if (off_end) {
1542 			ret = fill_zero(inode, pg_end, 0, off_end);
1543 			if (ret)
1544 				goto out;
1545 
1546 			new_size = max_t(loff_t, new_size, offset + len);
1547 		}
1548 	}
1549 
1550 out:
1551 	if (new_size > i_size_read(inode)) {
1552 		if (mode & FALLOC_FL_KEEP_SIZE)
1553 			file_set_keep_isize(inode);
1554 		else
1555 			f2fs_i_size_write(inode, new_size);
1556 	}
1557 	return ret;
1558 }
1559 
1560 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1561 {
1562 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1563 	struct address_space *mapping = inode->i_mapping;
1564 	pgoff_t nr, pg_start, pg_end, delta, idx;
1565 	loff_t new_size;
1566 	int ret = 0;
1567 
1568 	new_size = i_size_read(inode) + len;
1569 	ret = inode_newsize_ok(inode, new_size);
1570 	if (ret)
1571 		return ret;
1572 
1573 	if (offset >= i_size_read(inode))
1574 		return -EINVAL;
1575 
1576 	/* insert range should be aligned to block size of f2fs. */
1577 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1578 		return -EINVAL;
1579 
1580 	ret = f2fs_convert_inline_inode(inode);
1581 	if (ret)
1582 		return ret;
1583 
1584 	f2fs_balance_fs(sbi, true);
1585 
1586 	filemap_invalidate_lock(mapping);
1587 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1588 	filemap_invalidate_unlock(mapping);
1589 	if (ret)
1590 		return ret;
1591 
1592 	/* write out all dirty pages from offset */
1593 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1594 	if (ret)
1595 		return ret;
1596 
1597 	pg_start = offset >> PAGE_SHIFT;
1598 	pg_end = (offset + len) >> PAGE_SHIFT;
1599 	delta = pg_end - pg_start;
1600 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1601 
1602 	/* avoid gc operation during block exchange */
1603 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1604 	filemap_invalidate_lock(mapping);
1605 	truncate_pagecache(inode, offset);
1606 
1607 	while (!ret && idx > pg_start) {
1608 		nr = idx - pg_start;
1609 		if (nr > delta)
1610 			nr = delta;
1611 		idx -= nr;
1612 
1613 		f2fs_lock_op(sbi);
1614 		f2fs_drop_extent_tree(inode);
1615 
1616 		ret = __exchange_data_block(inode, inode, idx,
1617 					idx + delta, nr, false);
1618 		f2fs_unlock_op(sbi);
1619 	}
1620 	filemap_invalidate_unlock(mapping);
1621 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1622 
1623 	/* write out all moved pages, if possible */
1624 	filemap_invalidate_lock(mapping);
1625 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1626 	truncate_pagecache(inode, offset);
1627 	filemap_invalidate_unlock(mapping);
1628 
1629 	if (!ret)
1630 		f2fs_i_size_write(inode, new_size);
1631 	return ret;
1632 }
1633 
1634 static int expand_inode_data(struct inode *inode, loff_t offset,
1635 					loff_t len, int mode)
1636 {
1637 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1638 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1639 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1640 			.m_may_create = true };
1641 	pgoff_t pg_start, pg_end;
1642 	loff_t new_size = i_size_read(inode);
1643 	loff_t off_end;
1644 	block_t expanded = 0;
1645 	int err;
1646 
1647 	err = inode_newsize_ok(inode, (len + offset));
1648 	if (err)
1649 		return err;
1650 
1651 	err = f2fs_convert_inline_inode(inode);
1652 	if (err)
1653 		return err;
1654 
1655 	f2fs_balance_fs(sbi, true);
1656 
1657 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1658 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1659 	off_end = (offset + len) & (PAGE_SIZE - 1);
1660 
1661 	map.m_lblk = pg_start;
1662 	map.m_len = pg_end - pg_start;
1663 	if (off_end)
1664 		map.m_len++;
1665 
1666 	if (!map.m_len)
1667 		return 0;
1668 
1669 	if (f2fs_is_pinned_file(inode)) {
1670 		block_t sec_blks = BLKS_PER_SEC(sbi);
1671 		block_t sec_len = roundup(map.m_len, sec_blks);
1672 
1673 		map.m_len = sec_blks;
1674 next_alloc:
1675 		if (has_not_enough_free_secs(sbi, 0,
1676 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1677 			down_write(&sbi->gc_lock);
1678 			err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1679 			if (err && err != -ENODATA && err != -EAGAIN)
1680 				goto out_err;
1681 		}
1682 
1683 		down_write(&sbi->pin_sem);
1684 
1685 		f2fs_lock_op(sbi);
1686 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1687 		f2fs_unlock_op(sbi);
1688 
1689 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1690 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1691 		file_dont_truncate(inode);
1692 
1693 		up_write(&sbi->pin_sem);
1694 
1695 		expanded += map.m_len;
1696 		sec_len -= map.m_len;
1697 		map.m_lblk += map.m_len;
1698 		if (!err && sec_len)
1699 			goto next_alloc;
1700 
1701 		map.m_len = expanded;
1702 	} else {
1703 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1704 		expanded = map.m_len;
1705 	}
1706 out_err:
1707 	if (err) {
1708 		pgoff_t last_off;
1709 
1710 		if (!expanded)
1711 			return err;
1712 
1713 		last_off = pg_start + expanded - 1;
1714 
1715 		/* update new size to the failed position */
1716 		new_size = (last_off == pg_end) ? offset + len :
1717 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1718 	} else {
1719 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1720 	}
1721 
1722 	if (new_size > i_size_read(inode)) {
1723 		if (mode & FALLOC_FL_KEEP_SIZE)
1724 			file_set_keep_isize(inode);
1725 		else
1726 			f2fs_i_size_write(inode, new_size);
1727 	}
1728 
1729 	return err;
1730 }
1731 
1732 static long f2fs_fallocate(struct file *file, int mode,
1733 				loff_t offset, loff_t len)
1734 {
1735 	struct inode *inode = file_inode(file);
1736 	long ret = 0;
1737 
1738 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1739 		return -EIO;
1740 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1741 		return -ENOSPC;
1742 	if (!f2fs_is_compress_backend_ready(inode))
1743 		return -EOPNOTSUPP;
1744 
1745 	/* f2fs only support ->fallocate for regular file */
1746 	if (!S_ISREG(inode->i_mode))
1747 		return -EINVAL;
1748 
1749 	if (IS_ENCRYPTED(inode) &&
1750 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1751 		return -EOPNOTSUPP;
1752 
1753 	/*
1754 	 * Pinned file should not support partial trucation since the block
1755 	 * can be used by applications.
1756 	 */
1757 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1758 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1759 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1760 		return -EOPNOTSUPP;
1761 
1762 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1763 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1764 			FALLOC_FL_INSERT_RANGE))
1765 		return -EOPNOTSUPP;
1766 
1767 	inode_lock(inode);
1768 
1769 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1770 		if (offset >= inode->i_size)
1771 			goto out;
1772 
1773 		ret = punch_hole(inode, offset, len);
1774 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1775 		ret = f2fs_collapse_range(inode, offset, len);
1776 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1777 		ret = f2fs_zero_range(inode, offset, len, mode);
1778 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1779 		ret = f2fs_insert_range(inode, offset, len);
1780 	} else {
1781 		ret = expand_inode_data(inode, offset, len, mode);
1782 	}
1783 
1784 	if (!ret) {
1785 		inode->i_mtime = inode->i_ctime = current_time(inode);
1786 		f2fs_mark_inode_dirty_sync(inode, false);
1787 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1788 	}
1789 
1790 out:
1791 	inode_unlock(inode);
1792 
1793 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1794 	return ret;
1795 }
1796 
1797 static int f2fs_release_file(struct inode *inode, struct file *filp)
1798 {
1799 	/*
1800 	 * f2fs_relase_file is called at every close calls. So we should
1801 	 * not drop any inmemory pages by close called by other process.
1802 	 */
1803 	if (!(filp->f_mode & FMODE_WRITE) ||
1804 			atomic_read(&inode->i_writecount) != 1)
1805 		return 0;
1806 
1807 	/* some remained atomic pages should discarded */
1808 	if (f2fs_is_atomic_file(inode))
1809 		f2fs_drop_inmem_pages(inode);
1810 	if (f2fs_is_volatile_file(inode)) {
1811 		set_inode_flag(inode, FI_DROP_CACHE);
1812 		filemap_fdatawrite(inode->i_mapping);
1813 		clear_inode_flag(inode, FI_DROP_CACHE);
1814 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1815 		stat_dec_volatile_write(inode);
1816 	}
1817 	return 0;
1818 }
1819 
1820 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1821 {
1822 	struct inode *inode = file_inode(file);
1823 
1824 	/*
1825 	 * If the process doing a transaction is crashed, we should do
1826 	 * roll-back. Otherwise, other reader/write can see corrupted database
1827 	 * until all the writers close its file. Since this should be done
1828 	 * before dropping file lock, it needs to do in ->flush.
1829 	 */
1830 	if (f2fs_is_atomic_file(inode) &&
1831 			F2FS_I(inode)->inmem_task == current)
1832 		f2fs_drop_inmem_pages(inode);
1833 	return 0;
1834 }
1835 
1836 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1837 {
1838 	struct f2fs_inode_info *fi = F2FS_I(inode);
1839 	u32 masked_flags = fi->i_flags & mask;
1840 
1841 	/* mask can be shrunk by flags_valid selector */
1842 	iflags &= mask;
1843 
1844 	/* Is it quota file? Do not allow user to mess with it */
1845 	if (IS_NOQUOTA(inode))
1846 		return -EPERM;
1847 
1848 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1849 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1850 			return -EOPNOTSUPP;
1851 		if (!f2fs_empty_dir(inode))
1852 			return -ENOTEMPTY;
1853 	}
1854 
1855 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1856 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1857 			return -EOPNOTSUPP;
1858 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1859 			return -EINVAL;
1860 	}
1861 
1862 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1863 		if (masked_flags & F2FS_COMPR_FL) {
1864 			if (!f2fs_disable_compressed_file(inode))
1865 				return -EINVAL;
1866 		}
1867 		if (iflags & F2FS_NOCOMP_FL)
1868 			return -EINVAL;
1869 		if (iflags & F2FS_COMPR_FL) {
1870 			if (!f2fs_may_compress(inode))
1871 				return -EINVAL;
1872 			if (S_ISREG(inode->i_mode) && inode->i_size)
1873 				return -EINVAL;
1874 
1875 			set_compress_context(inode);
1876 		}
1877 	}
1878 	if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1879 		if (masked_flags & F2FS_COMPR_FL)
1880 			return -EINVAL;
1881 	}
1882 
1883 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1884 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1885 					(fi->i_flags & F2FS_NOCOMP_FL));
1886 
1887 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1888 		set_inode_flag(inode, FI_PROJ_INHERIT);
1889 	else
1890 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1891 
1892 	inode->i_ctime = current_time(inode);
1893 	f2fs_set_inode_flags(inode);
1894 	f2fs_mark_inode_dirty_sync(inode, true);
1895 	return 0;
1896 }
1897 
1898 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1899 
1900 /*
1901  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1902  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1903  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1904  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1905  *
1906  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1907  * FS_IOC_FSSETXATTR is done by the VFS.
1908  */
1909 
1910 static const struct {
1911 	u32 iflag;
1912 	u32 fsflag;
1913 } f2fs_fsflags_map[] = {
1914 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1915 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1916 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1917 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1918 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1919 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1920 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1921 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1922 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1923 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1924 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1925 };
1926 
1927 #define F2FS_GETTABLE_FS_FL (		\
1928 		FS_COMPR_FL |		\
1929 		FS_SYNC_FL |		\
1930 		FS_IMMUTABLE_FL |	\
1931 		FS_APPEND_FL |		\
1932 		FS_NODUMP_FL |		\
1933 		FS_NOATIME_FL |		\
1934 		FS_NOCOMP_FL |		\
1935 		FS_INDEX_FL |		\
1936 		FS_DIRSYNC_FL |		\
1937 		FS_PROJINHERIT_FL |	\
1938 		FS_ENCRYPT_FL |		\
1939 		FS_INLINE_DATA_FL |	\
1940 		FS_NOCOW_FL |		\
1941 		FS_VERITY_FL |		\
1942 		FS_CASEFOLD_FL)
1943 
1944 #define F2FS_SETTABLE_FS_FL (		\
1945 		FS_COMPR_FL |		\
1946 		FS_SYNC_FL |		\
1947 		FS_IMMUTABLE_FL |	\
1948 		FS_APPEND_FL |		\
1949 		FS_NODUMP_FL |		\
1950 		FS_NOATIME_FL |		\
1951 		FS_NOCOMP_FL |		\
1952 		FS_DIRSYNC_FL |		\
1953 		FS_PROJINHERIT_FL |	\
1954 		FS_CASEFOLD_FL)
1955 
1956 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1957 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1958 {
1959 	u32 fsflags = 0;
1960 	int i;
1961 
1962 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1963 		if (iflags & f2fs_fsflags_map[i].iflag)
1964 			fsflags |= f2fs_fsflags_map[i].fsflag;
1965 
1966 	return fsflags;
1967 }
1968 
1969 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1970 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1971 {
1972 	u32 iflags = 0;
1973 	int i;
1974 
1975 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1976 		if (fsflags & f2fs_fsflags_map[i].fsflag)
1977 			iflags |= f2fs_fsflags_map[i].iflag;
1978 
1979 	return iflags;
1980 }
1981 
1982 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1983 {
1984 	struct inode *inode = file_inode(filp);
1985 
1986 	return put_user(inode->i_generation, (int __user *)arg);
1987 }
1988 
1989 static int f2fs_ioc_start_atomic_write(struct file *filp)
1990 {
1991 	struct inode *inode = file_inode(filp);
1992 	struct f2fs_inode_info *fi = F2FS_I(inode);
1993 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1994 	int ret;
1995 
1996 	if (!inode_owner_or_capable(&init_user_ns, inode))
1997 		return -EACCES;
1998 
1999 	if (!S_ISREG(inode->i_mode))
2000 		return -EINVAL;
2001 
2002 	if (filp->f_flags & O_DIRECT)
2003 		return -EINVAL;
2004 
2005 	ret = mnt_want_write_file(filp);
2006 	if (ret)
2007 		return ret;
2008 
2009 	inode_lock(inode);
2010 
2011 	f2fs_disable_compressed_file(inode);
2012 
2013 	if (f2fs_is_atomic_file(inode)) {
2014 		if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2015 			ret = -EINVAL;
2016 		goto out;
2017 	}
2018 
2019 	ret = f2fs_convert_inline_inode(inode);
2020 	if (ret)
2021 		goto out;
2022 
2023 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2024 
2025 	/*
2026 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2027 	 * f2fs_is_atomic_file.
2028 	 */
2029 	if (get_dirty_pages(inode))
2030 		f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2031 			  inode->i_ino, get_dirty_pages(inode));
2032 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2033 	if (ret) {
2034 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2035 		goto out;
2036 	}
2037 
2038 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2039 	if (list_empty(&fi->inmem_ilist))
2040 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2041 	sbi->atomic_files++;
2042 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2043 
2044 	/* add inode in inmem_list first and set atomic_file */
2045 	set_inode_flag(inode, FI_ATOMIC_FILE);
2046 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2047 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2048 
2049 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2050 	F2FS_I(inode)->inmem_task = current;
2051 	stat_update_max_atomic_write(inode);
2052 out:
2053 	inode_unlock(inode);
2054 	mnt_drop_write_file(filp);
2055 	return ret;
2056 }
2057 
2058 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2059 {
2060 	struct inode *inode = file_inode(filp);
2061 	int ret;
2062 
2063 	if (!inode_owner_or_capable(&init_user_ns, inode))
2064 		return -EACCES;
2065 
2066 	ret = mnt_want_write_file(filp);
2067 	if (ret)
2068 		return ret;
2069 
2070 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2071 
2072 	inode_lock(inode);
2073 
2074 	if (f2fs_is_volatile_file(inode)) {
2075 		ret = -EINVAL;
2076 		goto err_out;
2077 	}
2078 
2079 	if (f2fs_is_atomic_file(inode)) {
2080 		ret = f2fs_commit_inmem_pages(inode);
2081 		if (ret)
2082 			goto err_out;
2083 
2084 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2085 		if (!ret)
2086 			f2fs_drop_inmem_pages(inode);
2087 	} else {
2088 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2089 	}
2090 err_out:
2091 	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2092 		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2093 		ret = -EINVAL;
2094 	}
2095 	inode_unlock(inode);
2096 	mnt_drop_write_file(filp);
2097 	return ret;
2098 }
2099 
2100 static int f2fs_ioc_start_volatile_write(struct file *filp)
2101 {
2102 	struct inode *inode = file_inode(filp);
2103 	int ret;
2104 
2105 	if (!inode_owner_or_capable(&init_user_ns, inode))
2106 		return -EACCES;
2107 
2108 	if (!S_ISREG(inode->i_mode))
2109 		return -EINVAL;
2110 
2111 	ret = mnt_want_write_file(filp);
2112 	if (ret)
2113 		return ret;
2114 
2115 	inode_lock(inode);
2116 
2117 	if (f2fs_is_volatile_file(inode))
2118 		goto out;
2119 
2120 	ret = f2fs_convert_inline_inode(inode);
2121 	if (ret)
2122 		goto out;
2123 
2124 	stat_inc_volatile_write(inode);
2125 	stat_update_max_volatile_write(inode);
2126 
2127 	set_inode_flag(inode, FI_VOLATILE_FILE);
2128 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2129 out:
2130 	inode_unlock(inode);
2131 	mnt_drop_write_file(filp);
2132 	return ret;
2133 }
2134 
2135 static int f2fs_ioc_release_volatile_write(struct file *filp)
2136 {
2137 	struct inode *inode = file_inode(filp);
2138 	int ret;
2139 
2140 	if (!inode_owner_or_capable(&init_user_ns, inode))
2141 		return -EACCES;
2142 
2143 	ret = mnt_want_write_file(filp);
2144 	if (ret)
2145 		return ret;
2146 
2147 	inode_lock(inode);
2148 
2149 	if (!f2fs_is_volatile_file(inode))
2150 		goto out;
2151 
2152 	if (!f2fs_is_first_block_written(inode)) {
2153 		ret = truncate_partial_data_page(inode, 0, true);
2154 		goto out;
2155 	}
2156 
2157 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2158 out:
2159 	inode_unlock(inode);
2160 	mnt_drop_write_file(filp);
2161 	return ret;
2162 }
2163 
2164 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2165 {
2166 	struct inode *inode = file_inode(filp);
2167 	int ret;
2168 
2169 	if (!inode_owner_or_capable(&init_user_ns, inode))
2170 		return -EACCES;
2171 
2172 	ret = mnt_want_write_file(filp);
2173 	if (ret)
2174 		return ret;
2175 
2176 	inode_lock(inode);
2177 
2178 	if (f2fs_is_atomic_file(inode))
2179 		f2fs_drop_inmem_pages(inode);
2180 	if (f2fs_is_volatile_file(inode)) {
2181 		clear_inode_flag(inode, FI_VOLATILE_FILE);
2182 		stat_dec_volatile_write(inode);
2183 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2184 	}
2185 
2186 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2187 
2188 	inode_unlock(inode);
2189 
2190 	mnt_drop_write_file(filp);
2191 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2192 	return ret;
2193 }
2194 
2195 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2196 {
2197 	struct inode *inode = file_inode(filp);
2198 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2199 	struct super_block *sb = sbi->sb;
2200 	__u32 in;
2201 	int ret = 0;
2202 
2203 	if (!capable(CAP_SYS_ADMIN))
2204 		return -EPERM;
2205 
2206 	if (get_user(in, (__u32 __user *)arg))
2207 		return -EFAULT;
2208 
2209 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2210 		ret = mnt_want_write_file(filp);
2211 		if (ret) {
2212 			if (ret == -EROFS) {
2213 				ret = 0;
2214 				f2fs_stop_checkpoint(sbi, false);
2215 				set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2216 				trace_f2fs_shutdown(sbi, in, ret);
2217 			}
2218 			return ret;
2219 		}
2220 	}
2221 
2222 	switch (in) {
2223 	case F2FS_GOING_DOWN_FULLSYNC:
2224 		ret = freeze_bdev(sb->s_bdev);
2225 		if (ret)
2226 			goto out;
2227 		f2fs_stop_checkpoint(sbi, false);
2228 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2229 		thaw_bdev(sb->s_bdev);
2230 		break;
2231 	case F2FS_GOING_DOWN_METASYNC:
2232 		/* do checkpoint only */
2233 		ret = f2fs_sync_fs(sb, 1);
2234 		if (ret)
2235 			goto out;
2236 		f2fs_stop_checkpoint(sbi, false);
2237 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2238 		break;
2239 	case F2FS_GOING_DOWN_NOSYNC:
2240 		f2fs_stop_checkpoint(sbi, false);
2241 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2242 		break;
2243 	case F2FS_GOING_DOWN_METAFLUSH:
2244 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2245 		f2fs_stop_checkpoint(sbi, false);
2246 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2247 		break;
2248 	case F2FS_GOING_DOWN_NEED_FSCK:
2249 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2250 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2251 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2252 		/* do checkpoint only */
2253 		ret = f2fs_sync_fs(sb, 1);
2254 		goto out;
2255 	default:
2256 		ret = -EINVAL;
2257 		goto out;
2258 	}
2259 
2260 	f2fs_stop_gc_thread(sbi);
2261 	f2fs_stop_discard_thread(sbi);
2262 
2263 	f2fs_drop_discard_cmd(sbi);
2264 	clear_opt(sbi, DISCARD);
2265 
2266 	f2fs_update_time(sbi, REQ_TIME);
2267 out:
2268 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2269 		mnt_drop_write_file(filp);
2270 
2271 	trace_f2fs_shutdown(sbi, in, ret);
2272 
2273 	return ret;
2274 }
2275 
2276 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2277 {
2278 	struct inode *inode = file_inode(filp);
2279 	struct super_block *sb = inode->i_sb;
2280 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
2281 	struct fstrim_range range;
2282 	int ret;
2283 
2284 	if (!capable(CAP_SYS_ADMIN))
2285 		return -EPERM;
2286 
2287 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2288 		return -EOPNOTSUPP;
2289 
2290 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2291 				sizeof(range)))
2292 		return -EFAULT;
2293 
2294 	ret = mnt_want_write_file(filp);
2295 	if (ret)
2296 		return ret;
2297 
2298 	range.minlen = max((unsigned int)range.minlen,
2299 				q->limits.discard_granularity);
2300 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2301 	mnt_drop_write_file(filp);
2302 	if (ret < 0)
2303 		return ret;
2304 
2305 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2306 				sizeof(range)))
2307 		return -EFAULT;
2308 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2309 	return 0;
2310 }
2311 
2312 static bool uuid_is_nonzero(__u8 u[16])
2313 {
2314 	int i;
2315 
2316 	for (i = 0; i < 16; i++)
2317 		if (u[i])
2318 			return true;
2319 	return false;
2320 }
2321 
2322 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2323 {
2324 	struct inode *inode = file_inode(filp);
2325 
2326 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2327 		return -EOPNOTSUPP;
2328 
2329 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2330 
2331 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2332 }
2333 
2334 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2335 {
2336 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2337 		return -EOPNOTSUPP;
2338 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2339 }
2340 
2341 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2342 {
2343 	struct inode *inode = file_inode(filp);
2344 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2345 	int err;
2346 
2347 	if (!f2fs_sb_has_encrypt(sbi))
2348 		return -EOPNOTSUPP;
2349 
2350 	err = mnt_want_write_file(filp);
2351 	if (err)
2352 		return err;
2353 
2354 	down_write(&sbi->sb_lock);
2355 
2356 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2357 		goto got_it;
2358 
2359 	/* update superblock with uuid */
2360 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2361 
2362 	err = f2fs_commit_super(sbi, false);
2363 	if (err) {
2364 		/* undo new data */
2365 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2366 		goto out_err;
2367 	}
2368 got_it:
2369 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2370 									16))
2371 		err = -EFAULT;
2372 out_err:
2373 	up_write(&sbi->sb_lock);
2374 	mnt_drop_write_file(filp);
2375 	return err;
2376 }
2377 
2378 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2379 					     unsigned long arg)
2380 {
2381 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2382 		return -EOPNOTSUPP;
2383 
2384 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2385 }
2386 
2387 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2388 {
2389 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2390 		return -EOPNOTSUPP;
2391 
2392 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2393 }
2394 
2395 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2396 {
2397 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2398 		return -EOPNOTSUPP;
2399 
2400 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2401 }
2402 
2403 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2404 						    unsigned long arg)
2405 {
2406 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2407 		return -EOPNOTSUPP;
2408 
2409 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2410 }
2411 
2412 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2413 					      unsigned long arg)
2414 {
2415 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2416 		return -EOPNOTSUPP;
2417 
2418 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2419 }
2420 
2421 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2422 {
2423 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2424 		return -EOPNOTSUPP;
2425 
2426 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2427 }
2428 
2429 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2430 {
2431 	struct inode *inode = file_inode(filp);
2432 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2433 	__u32 sync;
2434 	int ret;
2435 
2436 	if (!capable(CAP_SYS_ADMIN))
2437 		return -EPERM;
2438 
2439 	if (get_user(sync, (__u32 __user *)arg))
2440 		return -EFAULT;
2441 
2442 	if (f2fs_readonly(sbi->sb))
2443 		return -EROFS;
2444 
2445 	ret = mnt_want_write_file(filp);
2446 	if (ret)
2447 		return ret;
2448 
2449 	if (!sync) {
2450 		if (!down_write_trylock(&sbi->gc_lock)) {
2451 			ret = -EBUSY;
2452 			goto out;
2453 		}
2454 	} else {
2455 		down_write(&sbi->gc_lock);
2456 	}
2457 
2458 	ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2459 out:
2460 	mnt_drop_write_file(filp);
2461 	return ret;
2462 }
2463 
2464 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2465 {
2466 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2467 	u64 end;
2468 	int ret;
2469 
2470 	if (!capable(CAP_SYS_ADMIN))
2471 		return -EPERM;
2472 	if (f2fs_readonly(sbi->sb))
2473 		return -EROFS;
2474 
2475 	end = range->start + range->len;
2476 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2477 					end >= MAX_BLKADDR(sbi))
2478 		return -EINVAL;
2479 
2480 	ret = mnt_want_write_file(filp);
2481 	if (ret)
2482 		return ret;
2483 
2484 do_more:
2485 	if (!range->sync) {
2486 		if (!down_write_trylock(&sbi->gc_lock)) {
2487 			ret = -EBUSY;
2488 			goto out;
2489 		}
2490 	} else {
2491 		down_write(&sbi->gc_lock);
2492 	}
2493 
2494 	ret = f2fs_gc(sbi, range->sync, true, false,
2495 				GET_SEGNO(sbi, range->start));
2496 	if (ret) {
2497 		if (ret == -EBUSY)
2498 			ret = -EAGAIN;
2499 		goto out;
2500 	}
2501 	range->start += BLKS_PER_SEC(sbi);
2502 	if (range->start <= end)
2503 		goto do_more;
2504 out:
2505 	mnt_drop_write_file(filp);
2506 	return ret;
2507 }
2508 
2509 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2510 {
2511 	struct f2fs_gc_range range;
2512 
2513 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2514 							sizeof(range)))
2515 		return -EFAULT;
2516 	return __f2fs_ioc_gc_range(filp, &range);
2517 }
2518 
2519 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2520 {
2521 	struct inode *inode = file_inode(filp);
2522 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2523 	int ret;
2524 
2525 	if (!capable(CAP_SYS_ADMIN))
2526 		return -EPERM;
2527 
2528 	if (f2fs_readonly(sbi->sb))
2529 		return -EROFS;
2530 
2531 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2532 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2533 		return -EINVAL;
2534 	}
2535 
2536 	ret = mnt_want_write_file(filp);
2537 	if (ret)
2538 		return ret;
2539 
2540 	ret = f2fs_sync_fs(sbi->sb, 1);
2541 
2542 	mnt_drop_write_file(filp);
2543 	return ret;
2544 }
2545 
2546 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2547 					struct file *filp,
2548 					struct f2fs_defragment *range)
2549 {
2550 	struct inode *inode = file_inode(filp);
2551 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2552 					.m_seg_type = NO_CHECK_TYPE,
2553 					.m_may_create = false };
2554 	struct extent_info ei = {0, 0, 0};
2555 	pgoff_t pg_start, pg_end, next_pgofs;
2556 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2557 	unsigned int total = 0, sec_num;
2558 	block_t blk_end = 0;
2559 	bool fragmented = false;
2560 	int err;
2561 
2562 	/* if in-place-update policy is enabled, don't waste time here */
2563 	if (f2fs_should_update_inplace(inode, NULL))
2564 		return -EINVAL;
2565 
2566 	pg_start = range->start >> PAGE_SHIFT;
2567 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2568 
2569 	f2fs_balance_fs(sbi, true);
2570 
2571 	inode_lock(inode);
2572 
2573 	/* writeback all dirty pages in the range */
2574 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2575 						range->start + range->len - 1);
2576 	if (err)
2577 		goto out;
2578 
2579 	/*
2580 	 * lookup mapping info in extent cache, skip defragmenting if physical
2581 	 * block addresses are continuous.
2582 	 */
2583 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2584 		if (ei.fofs + ei.len >= pg_end)
2585 			goto out;
2586 	}
2587 
2588 	map.m_lblk = pg_start;
2589 	map.m_next_pgofs = &next_pgofs;
2590 
2591 	/*
2592 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2593 	 * physical block addresses are continuous even if there are hole(s)
2594 	 * in logical blocks.
2595 	 */
2596 	while (map.m_lblk < pg_end) {
2597 		map.m_len = pg_end - map.m_lblk;
2598 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2599 		if (err)
2600 			goto out;
2601 
2602 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2603 			map.m_lblk = next_pgofs;
2604 			continue;
2605 		}
2606 
2607 		if (blk_end && blk_end != map.m_pblk)
2608 			fragmented = true;
2609 
2610 		/* record total count of block that we're going to move */
2611 		total += map.m_len;
2612 
2613 		blk_end = map.m_pblk + map.m_len;
2614 
2615 		map.m_lblk += map.m_len;
2616 	}
2617 
2618 	if (!fragmented) {
2619 		total = 0;
2620 		goto out;
2621 	}
2622 
2623 	sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2624 
2625 	/*
2626 	 * make sure there are enough free section for LFS allocation, this can
2627 	 * avoid defragment running in SSR mode when free section are allocated
2628 	 * intensively
2629 	 */
2630 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2631 		err = -EAGAIN;
2632 		goto out;
2633 	}
2634 
2635 	map.m_lblk = pg_start;
2636 	map.m_len = pg_end - pg_start;
2637 	total = 0;
2638 
2639 	while (map.m_lblk < pg_end) {
2640 		pgoff_t idx;
2641 		int cnt = 0;
2642 
2643 do_map:
2644 		map.m_len = pg_end - map.m_lblk;
2645 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2646 		if (err)
2647 			goto clear_out;
2648 
2649 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2650 			map.m_lblk = next_pgofs;
2651 			goto check;
2652 		}
2653 
2654 		set_inode_flag(inode, FI_DO_DEFRAG);
2655 
2656 		idx = map.m_lblk;
2657 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2658 			struct page *page;
2659 
2660 			page = f2fs_get_lock_data_page(inode, idx, true);
2661 			if (IS_ERR(page)) {
2662 				err = PTR_ERR(page);
2663 				goto clear_out;
2664 			}
2665 
2666 			set_page_dirty(page);
2667 			f2fs_put_page(page, 1);
2668 
2669 			idx++;
2670 			cnt++;
2671 			total++;
2672 		}
2673 
2674 		map.m_lblk = idx;
2675 check:
2676 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2677 			goto do_map;
2678 
2679 		clear_inode_flag(inode, FI_DO_DEFRAG);
2680 
2681 		err = filemap_fdatawrite(inode->i_mapping);
2682 		if (err)
2683 			goto out;
2684 	}
2685 clear_out:
2686 	clear_inode_flag(inode, FI_DO_DEFRAG);
2687 out:
2688 	inode_unlock(inode);
2689 	if (!err)
2690 		range->len = (u64)total << PAGE_SHIFT;
2691 	return err;
2692 }
2693 
2694 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2695 {
2696 	struct inode *inode = file_inode(filp);
2697 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2698 	struct f2fs_defragment range;
2699 	int err;
2700 
2701 	if (!capable(CAP_SYS_ADMIN))
2702 		return -EPERM;
2703 
2704 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2705 		return -EINVAL;
2706 
2707 	if (f2fs_readonly(sbi->sb))
2708 		return -EROFS;
2709 
2710 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2711 							sizeof(range)))
2712 		return -EFAULT;
2713 
2714 	/* verify alignment of offset & size */
2715 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2716 		return -EINVAL;
2717 
2718 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2719 					max_file_blocks(inode)))
2720 		return -EINVAL;
2721 
2722 	err = mnt_want_write_file(filp);
2723 	if (err)
2724 		return err;
2725 
2726 	err = f2fs_defragment_range(sbi, filp, &range);
2727 	mnt_drop_write_file(filp);
2728 
2729 	f2fs_update_time(sbi, REQ_TIME);
2730 	if (err < 0)
2731 		return err;
2732 
2733 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2734 							sizeof(range)))
2735 		return -EFAULT;
2736 
2737 	return 0;
2738 }
2739 
2740 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2741 			struct file *file_out, loff_t pos_out, size_t len)
2742 {
2743 	struct inode *src = file_inode(file_in);
2744 	struct inode *dst = file_inode(file_out);
2745 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2746 	size_t olen = len, dst_max_i_size = 0;
2747 	size_t dst_osize;
2748 	int ret;
2749 
2750 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2751 				src->i_sb != dst->i_sb)
2752 		return -EXDEV;
2753 
2754 	if (unlikely(f2fs_readonly(src->i_sb)))
2755 		return -EROFS;
2756 
2757 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2758 		return -EINVAL;
2759 
2760 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2761 		return -EOPNOTSUPP;
2762 
2763 	if (pos_out < 0 || pos_in < 0)
2764 		return -EINVAL;
2765 
2766 	if (src == dst) {
2767 		if (pos_in == pos_out)
2768 			return 0;
2769 		if (pos_out > pos_in && pos_out < pos_in + len)
2770 			return -EINVAL;
2771 	}
2772 
2773 	inode_lock(src);
2774 	if (src != dst) {
2775 		ret = -EBUSY;
2776 		if (!inode_trylock(dst))
2777 			goto out;
2778 	}
2779 
2780 	ret = -EINVAL;
2781 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2782 		goto out_unlock;
2783 	if (len == 0)
2784 		olen = len = src->i_size - pos_in;
2785 	if (pos_in + len == src->i_size)
2786 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2787 	if (len == 0) {
2788 		ret = 0;
2789 		goto out_unlock;
2790 	}
2791 
2792 	dst_osize = dst->i_size;
2793 	if (pos_out + olen > dst->i_size)
2794 		dst_max_i_size = pos_out + olen;
2795 
2796 	/* verify the end result is block aligned */
2797 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2798 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2799 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2800 		goto out_unlock;
2801 
2802 	ret = f2fs_convert_inline_inode(src);
2803 	if (ret)
2804 		goto out_unlock;
2805 
2806 	ret = f2fs_convert_inline_inode(dst);
2807 	if (ret)
2808 		goto out_unlock;
2809 
2810 	/* write out all dirty pages from offset */
2811 	ret = filemap_write_and_wait_range(src->i_mapping,
2812 					pos_in, pos_in + len);
2813 	if (ret)
2814 		goto out_unlock;
2815 
2816 	ret = filemap_write_and_wait_range(dst->i_mapping,
2817 					pos_out, pos_out + len);
2818 	if (ret)
2819 		goto out_unlock;
2820 
2821 	f2fs_balance_fs(sbi, true);
2822 
2823 	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2824 	if (src != dst) {
2825 		ret = -EBUSY;
2826 		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2827 			goto out_src;
2828 	}
2829 
2830 	f2fs_lock_op(sbi);
2831 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2832 				pos_out >> F2FS_BLKSIZE_BITS,
2833 				len >> F2FS_BLKSIZE_BITS, false);
2834 
2835 	if (!ret) {
2836 		if (dst_max_i_size)
2837 			f2fs_i_size_write(dst, dst_max_i_size);
2838 		else if (dst_osize != dst->i_size)
2839 			f2fs_i_size_write(dst, dst_osize);
2840 	}
2841 	f2fs_unlock_op(sbi);
2842 
2843 	if (src != dst)
2844 		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2845 out_src:
2846 	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2847 out_unlock:
2848 	if (src != dst)
2849 		inode_unlock(dst);
2850 out:
2851 	inode_unlock(src);
2852 	return ret;
2853 }
2854 
2855 static int __f2fs_ioc_move_range(struct file *filp,
2856 				struct f2fs_move_range *range)
2857 {
2858 	struct fd dst;
2859 	int err;
2860 
2861 	if (!(filp->f_mode & FMODE_READ) ||
2862 			!(filp->f_mode & FMODE_WRITE))
2863 		return -EBADF;
2864 
2865 	dst = fdget(range->dst_fd);
2866 	if (!dst.file)
2867 		return -EBADF;
2868 
2869 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2870 		err = -EBADF;
2871 		goto err_out;
2872 	}
2873 
2874 	err = mnt_want_write_file(filp);
2875 	if (err)
2876 		goto err_out;
2877 
2878 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2879 					range->pos_out, range->len);
2880 
2881 	mnt_drop_write_file(filp);
2882 err_out:
2883 	fdput(dst);
2884 	return err;
2885 }
2886 
2887 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2888 {
2889 	struct f2fs_move_range range;
2890 
2891 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2892 							sizeof(range)))
2893 		return -EFAULT;
2894 	return __f2fs_ioc_move_range(filp, &range);
2895 }
2896 
2897 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2898 {
2899 	struct inode *inode = file_inode(filp);
2900 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2901 	struct sit_info *sm = SIT_I(sbi);
2902 	unsigned int start_segno = 0, end_segno = 0;
2903 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2904 	struct f2fs_flush_device range;
2905 	int ret;
2906 
2907 	if (!capable(CAP_SYS_ADMIN))
2908 		return -EPERM;
2909 
2910 	if (f2fs_readonly(sbi->sb))
2911 		return -EROFS;
2912 
2913 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2914 		return -EINVAL;
2915 
2916 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2917 							sizeof(range)))
2918 		return -EFAULT;
2919 
2920 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2921 			__is_large_section(sbi)) {
2922 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2923 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2924 		return -EINVAL;
2925 	}
2926 
2927 	ret = mnt_want_write_file(filp);
2928 	if (ret)
2929 		return ret;
2930 
2931 	if (range.dev_num != 0)
2932 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2933 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2934 
2935 	start_segno = sm->last_victim[FLUSH_DEVICE];
2936 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2937 		start_segno = dev_start_segno;
2938 	end_segno = min(start_segno + range.segments, dev_end_segno);
2939 
2940 	while (start_segno < end_segno) {
2941 		if (!down_write_trylock(&sbi->gc_lock)) {
2942 			ret = -EBUSY;
2943 			goto out;
2944 		}
2945 		sm->last_victim[GC_CB] = end_segno + 1;
2946 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2947 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2948 		ret = f2fs_gc(sbi, true, true, true, start_segno);
2949 		if (ret == -EAGAIN)
2950 			ret = 0;
2951 		else if (ret < 0)
2952 			break;
2953 		start_segno++;
2954 	}
2955 out:
2956 	mnt_drop_write_file(filp);
2957 	return ret;
2958 }
2959 
2960 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2961 {
2962 	struct inode *inode = file_inode(filp);
2963 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2964 
2965 	/* Must validate to set it with SQLite behavior in Android. */
2966 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2967 
2968 	return put_user(sb_feature, (u32 __user *)arg);
2969 }
2970 
2971 #ifdef CONFIG_QUOTA
2972 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2973 {
2974 	struct dquot *transfer_to[MAXQUOTAS] = {};
2975 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2976 	struct super_block *sb = sbi->sb;
2977 	int err = 0;
2978 
2979 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2980 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2981 		err = __dquot_transfer(inode, transfer_to);
2982 		if (err)
2983 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2984 		dqput(transfer_to[PRJQUOTA]);
2985 	}
2986 	return err;
2987 }
2988 
2989 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2990 {
2991 	struct f2fs_inode_info *fi = F2FS_I(inode);
2992 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2993 	struct page *ipage;
2994 	kprojid_t kprojid;
2995 	int err;
2996 
2997 	if (!f2fs_sb_has_project_quota(sbi)) {
2998 		if (projid != F2FS_DEF_PROJID)
2999 			return -EOPNOTSUPP;
3000 		else
3001 			return 0;
3002 	}
3003 
3004 	if (!f2fs_has_extra_attr(inode))
3005 		return -EOPNOTSUPP;
3006 
3007 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3008 
3009 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3010 		return 0;
3011 
3012 	err = -EPERM;
3013 	/* Is it quota file? Do not allow user to mess with it */
3014 	if (IS_NOQUOTA(inode))
3015 		return err;
3016 
3017 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3018 	if (IS_ERR(ipage))
3019 		return PTR_ERR(ipage);
3020 
3021 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3022 								i_projid)) {
3023 		err = -EOVERFLOW;
3024 		f2fs_put_page(ipage, 1);
3025 		return err;
3026 	}
3027 	f2fs_put_page(ipage, 1);
3028 
3029 	err = f2fs_dquot_initialize(inode);
3030 	if (err)
3031 		return err;
3032 
3033 	f2fs_lock_op(sbi);
3034 	err = f2fs_transfer_project_quota(inode, kprojid);
3035 	if (err)
3036 		goto out_unlock;
3037 
3038 	F2FS_I(inode)->i_projid = kprojid;
3039 	inode->i_ctime = current_time(inode);
3040 	f2fs_mark_inode_dirty_sync(inode, true);
3041 out_unlock:
3042 	f2fs_unlock_op(sbi);
3043 	return err;
3044 }
3045 #else
3046 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3047 {
3048 	return 0;
3049 }
3050 
3051 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3052 {
3053 	if (projid != F2FS_DEF_PROJID)
3054 		return -EOPNOTSUPP;
3055 	return 0;
3056 }
3057 #endif
3058 
3059 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3060 {
3061 	struct inode *inode = d_inode(dentry);
3062 	struct f2fs_inode_info *fi = F2FS_I(inode);
3063 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3064 
3065 	if (IS_ENCRYPTED(inode))
3066 		fsflags |= FS_ENCRYPT_FL;
3067 	if (IS_VERITY(inode))
3068 		fsflags |= FS_VERITY_FL;
3069 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3070 		fsflags |= FS_INLINE_DATA_FL;
3071 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3072 		fsflags |= FS_NOCOW_FL;
3073 
3074 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3075 
3076 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3077 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3078 
3079 	return 0;
3080 }
3081 
3082 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3083 		      struct dentry *dentry, struct fileattr *fa)
3084 {
3085 	struct inode *inode = d_inode(dentry);
3086 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3087 	u32 iflags;
3088 	int err;
3089 
3090 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3091 		return -EIO;
3092 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3093 		return -ENOSPC;
3094 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3095 		return -EOPNOTSUPP;
3096 	fsflags &= F2FS_SETTABLE_FS_FL;
3097 	if (!fa->flags_valid)
3098 		mask &= FS_COMMON_FL;
3099 
3100 	iflags = f2fs_fsflags_to_iflags(fsflags);
3101 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3102 		return -EOPNOTSUPP;
3103 
3104 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3105 	if (!err)
3106 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3107 
3108 	return err;
3109 }
3110 
3111 int f2fs_pin_file_control(struct inode *inode, bool inc)
3112 {
3113 	struct f2fs_inode_info *fi = F2FS_I(inode);
3114 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3115 
3116 	/* Use i_gc_failures for normal file as a risk signal. */
3117 	if (inc)
3118 		f2fs_i_gc_failures_write(inode,
3119 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3120 
3121 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3122 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3123 			  __func__, inode->i_ino,
3124 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3125 		clear_inode_flag(inode, FI_PIN_FILE);
3126 		return -EAGAIN;
3127 	}
3128 	return 0;
3129 }
3130 
3131 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3132 {
3133 	struct inode *inode = file_inode(filp);
3134 	__u32 pin;
3135 	int ret = 0;
3136 
3137 	if (get_user(pin, (__u32 __user *)arg))
3138 		return -EFAULT;
3139 
3140 	if (!S_ISREG(inode->i_mode))
3141 		return -EINVAL;
3142 
3143 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3144 		return -EROFS;
3145 
3146 	ret = mnt_want_write_file(filp);
3147 	if (ret)
3148 		return ret;
3149 
3150 	inode_lock(inode);
3151 
3152 	if (!pin) {
3153 		clear_inode_flag(inode, FI_PIN_FILE);
3154 		f2fs_i_gc_failures_write(inode, 0);
3155 		goto done;
3156 	}
3157 
3158 	if (f2fs_should_update_outplace(inode, NULL)) {
3159 		ret = -EINVAL;
3160 		goto out;
3161 	}
3162 
3163 	if (f2fs_pin_file_control(inode, false)) {
3164 		ret = -EAGAIN;
3165 		goto out;
3166 	}
3167 
3168 	ret = f2fs_convert_inline_inode(inode);
3169 	if (ret)
3170 		goto out;
3171 
3172 	if (!f2fs_disable_compressed_file(inode)) {
3173 		ret = -EOPNOTSUPP;
3174 		goto out;
3175 	}
3176 
3177 	set_inode_flag(inode, FI_PIN_FILE);
3178 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3179 done:
3180 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3181 out:
3182 	inode_unlock(inode);
3183 	mnt_drop_write_file(filp);
3184 	return ret;
3185 }
3186 
3187 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3188 {
3189 	struct inode *inode = file_inode(filp);
3190 	__u32 pin = 0;
3191 
3192 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3193 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3194 	return put_user(pin, (u32 __user *)arg);
3195 }
3196 
3197 int f2fs_precache_extents(struct inode *inode)
3198 {
3199 	struct f2fs_inode_info *fi = F2FS_I(inode);
3200 	struct f2fs_map_blocks map;
3201 	pgoff_t m_next_extent;
3202 	loff_t end;
3203 	int err;
3204 
3205 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3206 		return -EOPNOTSUPP;
3207 
3208 	map.m_lblk = 0;
3209 	map.m_next_pgofs = NULL;
3210 	map.m_next_extent = &m_next_extent;
3211 	map.m_seg_type = NO_CHECK_TYPE;
3212 	map.m_may_create = false;
3213 	end = max_file_blocks(inode);
3214 
3215 	while (map.m_lblk < end) {
3216 		map.m_len = end - map.m_lblk;
3217 
3218 		down_write(&fi->i_gc_rwsem[WRITE]);
3219 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3220 		up_write(&fi->i_gc_rwsem[WRITE]);
3221 		if (err)
3222 			return err;
3223 
3224 		map.m_lblk = m_next_extent;
3225 	}
3226 
3227 	return 0;
3228 }
3229 
3230 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3231 {
3232 	return f2fs_precache_extents(file_inode(filp));
3233 }
3234 
3235 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3236 {
3237 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3238 	__u64 block_count;
3239 
3240 	if (!capable(CAP_SYS_ADMIN))
3241 		return -EPERM;
3242 
3243 	if (f2fs_readonly(sbi->sb))
3244 		return -EROFS;
3245 
3246 	if (copy_from_user(&block_count, (void __user *)arg,
3247 			   sizeof(block_count)))
3248 		return -EFAULT;
3249 
3250 	return f2fs_resize_fs(sbi, block_count);
3251 }
3252 
3253 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3254 {
3255 	struct inode *inode = file_inode(filp);
3256 
3257 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3258 
3259 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3260 		f2fs_warn(F2FS_I_SB(inode),
3261 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3262 			  inode->i_ino);
3263 		return -EOPNOTSUPP;
3264 	}
3265 
3266 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3267 }
3268 
3269 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3270 {
3271 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3272 		return -EOPNOTSUPP;
3273 
3274 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3275 }
3276 
3277 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3278 {
3279 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3280 		return -EOPNOTSUPP;
3281 
3282 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3283 }
3284 
3285 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3286 {
3287 	struct inode *inode = file_inode(filp);
3288 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3289 	char *vbuf;
3290 	int count;
3291 	int err = 0;
3292 
3293 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3294 	if (!vbuf)
3295 		return -ENOMEM;
3296 
3297 	down_read(&sbi->sb_lock);
3298 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3299 			ARRAY_SIZE(sbi->raw_super->volume_name),
3300 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3301 	up_read(&sbi->sb_lock);
3302 
3303 	if (copy_to_user((char __user *)arg, vbuf,
3304 				min(FSLABEL_MAX, count)))
3305 		err = -EFAULT;
3306 
3307 	kfree(vbuf);
3308 	return err;
3309 }
3310 
3311 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3312 {
3313 	struct inode *inode = file_inode(filp);
3314 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3315 	char *vbuf;
3316 	int err = 0;
3317 
3318 	if (!capable(CAP_SYS_ADMIN))
3319 		return -EPERM;
3320 
3321 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3322 	if (IS_ERR(vbuf))
3323 		return PTR_ERR(vbuf);
3324 
3325 	err = mnt_want_write_file(filp);
3326 	if (err)
3327 		goto out;
3328 
3329 	down_write(&sbi->sb_lock);
3330 
3331 	memset(sbi->raw_super->volume_name, 0,
3332 			sizeof(sbi->raw_super->volume_name));
3333 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3334 			sbi->raw_super->volume_name,
3335 			ARRAY_SIZE(sbi->raw_super->volume_name));
3336 
3337 	err = f2fs_commit_super(sbi, false);
3338 
3339 	up_write(&sbi->sb_lock);
3340 
3341 	mnt_drop_write_file(filp);
3342 out:
3343 	kfree(vbuf);
3344 	return err;
3345 }
3346 
3347 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3348 {
3349 	struct inode *inode = file_inode(filp);
3350 	__u64 blocks;
3351 
3352 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3353 		return -EOPNOTSUPP;
3354 
3355 	if (!f2fs_compressed_file(inode))
3356 		return -EINVAL;
3357 
3358 	blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3359 	return put_user(blocks, (u64 __user *)arg);
3360 }
3361 
3362 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3363 {
3364 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3365 	unsigned int released_blocks = 0;
3366 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3367 	block_t blkaddr;
3368 	int i;
3369 
3370 	for (i = 0; i < count; i++) {
3371 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3372 						dn->ofs_in_node + i);
3373 
3374 		if (!__is_valid_data_blkaddr(blkaddr))
3375 			continue;
3376 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3377 					DATA_GENERIC_ENHANCE)))
3378 			return -EFSCORRUPTED;
3379 	}
3380 
3381 	while (count) {
3382 		int compr_blocks = 0;
3383 
3384 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3385 			blkaddr = f2fs_data_blkaddr(dn);
3386 
3387 			if (i == 0) {
3388 				if (blkaddr == COMPRESS_ADDR)
3389 					continue;
3390 				dn->ofs_in_node += cluster_size;
3391 				goto next;
3392 			}
3393 
3394 			if (__is_valid_data_blkaddr(blkaddr))
3395 				compr_blocks++;
3396 
3397 			if (blkaddr != NEW_ADDR)
3398 				continue;
3399 
3400 			dn->data_blkaddr = NULL_ADDR;
3401 			f2fs_set_data_blkaddr(dn);
3402 		}
3403 
3404 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3405 		dec_valid_block_count(sbi, dn->inode,
3406 					cluster_size - compr_blocks);
3407 
3408 		released_blocks += cluster_size - compr_blocks;
3409 next:
3410 		count -= cluster_size;
3411 	}
3412 
3413 	return released_blocks;
3414 }
3415 
3416 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3417 {
3418 	struct inode *inode = file_inode(filp);
3419 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3420 	pgoff_t page_idx = 0, last_idx;
3421 	unsigned int released_blocks = 0;
3422 	int ret;
3423 	int writecount;
3424 
3425 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3426 		return -EOPNOTSUPP;
3427 
3428 	if (!f2fs_compressed_file(inode))
3429 		return -EINVAL;
3430 
3431 	if (f2fs_readonly(sbi->sb))
3432 		return -EROFS;
3433 
3434 	ret = mnt_want_write_file(filp);
3435 	if (ret)
3436 		return ret;
3437 
3438 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3439 
3440 	inode_lock(inode);
3441 
3442 	writecount = atomic_read(&inode->i_writecount);
3443 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3444 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3445 		ret = -EBUSY;
3446 		goto out;
3447 	}
3448 
3449 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3450 		ret = -EINVAL;
3451 		goto out;
3452 	}
3453 
3454 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3455 	if (ret)
3456 		goto out;
3457 
3458 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3459 	inode->i_ctime = current_time(inode);
3460 	f2fs_mark_inode_dirty_sync(inode, true);
3461 
3462 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3463 		goto out;
3464 
3465 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3466 	filemap_invalidate_lock(inode->i_mapping);
3467 
3468 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3469 
3470 	while (page_idx < last_idx) {
3471 		struct dnode_of_data dn;
3472 		pgoff_t end_offset, count;
3473 
3474 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3475 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3476 		if (ret) {
3477 			if (ret == -ENOENT) {
3478 				page_idx = f2fs_get_next_page_offset(&dn,
3479 								page_idx);
3480 				ret = 0;
3481 				continue;
3482 			}
3483 			break;
3484 		}
3485 
3486 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3487 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3488 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3489 
3490 		ret = release_compress_blocks(&dn, count);
3491 
3492 		f2fs_put_dnode(&dn);
3493 
3494 		if (ret < 0)
3495 			break;
3496 
3497 		page_idx += count;
3498 		released_blocks += ret;
3499 	}
3500 
3501 	filemap_invalidate_unlock(inode->i_mapping);
3502 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3503 out:
3504 	inode_unlock(inode);
3505 
3506 	mnt_drop_write_file(filp);
3507 
3508 	if (ret >= 0) {
3509 		ret = put_user(released_blocks, (u64 __user *)arg);
3510 	} else if (released_blocks &&
3511 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3512 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3513 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3514 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3515 			"run fsck to fix.",
3516 			__func__, inode->i_ino, inode->i_blocks,
3517 			released_blocks,
3518 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3519 	}
3520 
3521 	return ret;
3522 }
3523 
3524 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3525 {
3526 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3527 	unsigned int reserved_blocks = 0;
3528 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3529 	block_t blkaddr;
3530 	int i;
3531 
3532 	for (i = 0; i < count; i++) {
3533 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3534 						dn->ofs_in_node + i);
3535 
3536 		if (!__is_valid_data_blkaddr(blkaddr))
3537 			continue;
3538 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3539 					DATA_GENERIC_ENHANCE)))
3540 			return -EFSCORRUPTED;
3541 	}
3542 
3543 	while (count) {
3544 		int compr_blocks = 0;
3545 		blkcnt_t reserved;
3546 		int ret;
3547 
3548 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3549 			blkaddr = f2fs_data_blkaddr(dn);
3550 
3551 			if (i == 0) {
3552 				if (blkaddr == COMPRESS_ADDR)
3553 					continue;
3554 				dn->ofs_in_node += cluster_size;
3555 				goto next;
3556 			}
3557 
3558 			if (__is_valid_data_blkaddr(blkaddr)) {
3559 				compr_blocks++;
3560 				continue;
3561 			}
3562 
3563 			dn->data_blkaddr = NEW_ADDR;
3564 			f2fs_set_data_blkaddr(dn);
3565 		}
3566 
3567 		reserved = cluster_size - compr_blocks;
3568 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3569 		if (ret)
3570 			return ret;
3571 
3572 		if (reserved != cluster_size - compr_blocks)
3573 			return -ENOSPC;
3574 
3575 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3576 
3577 		reserved_blocks += reserved;
3578 next:
3579 		count -= cluster_size;
3580 	}
3581 
3582 	return reserved_blocks;
3583 }
3584 
3585 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3586 {
3587 	struct inode *inode = file_inode(filp);
3588 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3589 	pgoff_t page_idx = 0, last_idx;
3590 	unsigned int reserved_blocks = 0;
3591 	int ret;
3592 
3593 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3594 		return -EOPNOTSUPP;
3595 
3596 	if (!f2fs_compressed_file(inode))
3597 		return -EINVAL;
3598 
3599 	if (f2fs_readonly(sbi->sb))
3600 		return -EROFS;
3601 
3602 	ret = mnt_want_write_file(filp);
3603 	if (ret)
3604 		return ret;
3605 
3606 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3607 		goto out;
3608 
3609 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3610 
3611 	inode_lock(inode);
3612 
3613 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3614 		ret = -EINVAL;
3615 		goto unlock_inode;
3616 	}
3617 
3618 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3619 	filemap_invalidate_lock(inode->i_mapping);
3620 
3621 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3622 
3623 	while (page_idx < last_idx) {
3624 		struct dnode_of_data dn;
3625 		pgoff_t end_offset, count;
3626 
3627 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3628 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3629 		if (ret) {
3630 			if (ret == -ENOENT) {
3631 				page_idx = f2fs_get_next_page_offset(&dn,
3632 								page_idx);
3633 				ret = 0;
3634 				continue;
3635 			}
3636 			break;
3637 		}
3638 
3639 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3640 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3641 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3642 
3643 		ret = reserve_compress_blocks(&dn, count);
3644 
3645 		f2fs_put_dnode(&dn);
3646 
3647 		if (ret < 0)
3648 			break;
3649 
3650 		page_idx += count;
3651 		reserved_blocks += ret;
3652 	}
3653 
3654 	filemap_invalidate_unlock(inode->i_mapping);
3655 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3656 
3657 	if (ret >= 0) {
3658 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3659 		inode->i_ctime = current_time(inode);
3660 		f2fs_mark_inode_dirty_sync(inode, true);
3661 	}
3662 unlock_inode:
3663 	inode_unlock(inode);
3664 out:
3665 	mnt_drop_write_file(filp);
3666 
3667 	if (ret >= 0) {
3668 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3669 	} else if (reserved_blocks &&
3670 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3671 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3672 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3673 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3674 			"run fsck to fix.",
3675 			__func__, inode->i_ino, inode->i_blocks,
3676 			reserved_blocks,
3677 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3678 	}
3679 
3680 	return ret;
3681 }
3682 
3683 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3684 		pgoff_t off, block_t block, block_t len, u32 flags)
3685 {
3686 	struct request_queue *q = bdev_get_queue(bdev);
3687 	sector_t sector = SECTOR_FROM_BLOCK(block);
3688 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3689 	int ret = 0;
3690 
3691 	if (!q)
3692 		return -ENXIO;
3693 
3694 	if (flags & F2FS_TRIM_FILE_DISCARD)
3695 		ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3696 						blk_queue_secure_erase(q) ?
3697 						BLKDEV_DISCARD_SECURE : 0);
3698 
3699 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3700 		if (IS_ENCRYPTED(inode))
3701 			ret = fscrypt_zeroout_range(inode, off, block, len);
3702 		else
3703 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3704 					GFP_NOFS, 0);
3705 	}
3706 
3707 	return ret;
3708 }
3709 
3710 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3711 {
3712 	struct inode *inode = file_inode(filp);
3713 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3714 	struct address_space *mapping = inode->i_mapping;
3715 	struct block_device *prev_bdev = NULL;
3716 	struct f2fs_sectrim_range range;
3717 	pgoff_t index, pg_end, prev_index = 0;
3718 	block_t prev_block = 0, len = 0;
3719 	loff_t end_addr;
3720 	bool to_end = false;
3721 	int ret = 0;
3722 
3723 	if (!(filp->f_mode & FMODE_WRITE))
3724 		return -EBADF;
3725 
3726 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3727 				sizeof(range)))
3728 		return -EFAULT;
3729 
3730 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3731 			!S_ISREG(inode->i_mode))
3732 		return -EINVAL;
3733 
3734 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3735 			!f2fs_hw_support_discard(sbi)) ||
3736 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3737 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3738 		return -EOPNOTSUPP;
3739 
3740 	file_start_write(filp);
3741 	inode_lock(inode);
3742 
3743 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3744 			range.start >= inode->i_size) {
3745 		ret = -EINVAL;
3746 		goto err;
3747 	}
3748 
3749 	if (range.len == 0)
3750 		goto err;
3751 
3752 	if (inode->i_size - range.start > range.len) {
3753 		end_addr = range.start + range.len;
3754 	} else {
3755 		end_addr = range.len == (u64)-1 ?
3756 			sbi->sb->s_maxbytes : inode->i_size;
3757 		to_end = true;
3758 	}
3759 
3760 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3761 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3762 		ret = -EINVAL;
3763 		goto err;
3764 	}
3765 
3766 	index = F2FS_BYTES_TO_BLK(range.start);
3767 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3768 
3769 	ret = f2fs_convert_inline_inode(inode);
3770 	if (ret)
3771 		goto err;
3772 
3773 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3774 	filemap_invalidate_lock(mapping);
3775 
3776 	ret = filemap_write_and_wait_range(mapping, range.start,
3777 			to_end ? LLONG_MAX : end_addr - 1);
3778 	if (ret)
3779 		goto out;
3780 
3781 	truncate_inode_pages_range(mapping, range.start,
3782 			to_end ? -1 : end_addr - 1);
3783 
3784 	while (index < pg_end) {
3785 		struct dnode_of_data dn;
3786 		pgoff_t end_offset, count;
3787 		int i;
3788 
3789 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3790 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3791 		if (ret) {
3792 			if (ret == -ENOENT) {
3793 				index = f2fs_get_next_page_offset(&dn, index);
3794 				continue;
3795 			}
3796 			goto out;
3797 		}
3798 
3799 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3800 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3801 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3802 			struct block_device *cur_bdev;
3803 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3804 
3805 			if (!__is_valid_data_blkaddr(blkaddr))
3806 				continue;
3807 
3808 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3809 						DATA_GENERIC_ENHANCE)) {
3810 				ret = -EFSCORRUPTED;
3811 				f2fs_put_dnode(&dn);
3812 				goto out;
3813 			}
3814 
3815 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3816 			if (f2fs_is_multi_device(sbi)) {
3817 				int di = f2fs_target_device_index(sbi, blkaddr);
3818 
3819 				blkaddr -= FDEV(di).start_blk;
3820 			}
3821 
3822 			if (len) {
3823 				if (prev_bdev == cur_bdev &&
3824 						index == prev_index + len &&
3825 						blkaddr == prev_block + len) {
3826 					len++;
3827 				} else {
3828 					ret = f2fs_secure_erase(prev_bdev,
3829 						inode, prev_index, prev_block,
3830 						len, range.flags);
3831 					if (ret) {
3832 						f2fs_put_dnode(&dn);
3833 						goto out;
3834 					}
3835 
3836 					len = 0;
3837 				}
3838 			}
3839 
3840 			if (!len) {
3841 				prev_bdev = cur_bdev;
3842 				prev_index = index;
3843 				prev_block = blkaddr;
3844 				len = 1;
3845 			}
3846 		}
3847 
3848 		f2fs_put_dnode(&dn);
3849 
3850 		if (fatal_signal_pending(current)) {
3851 			ret = -EINTR;
3852 			goto out;
3853 		}
3854 		cond_resched();
3855 	}
3856 
3857 	if (len)
3858 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3859 				prev_block, len, range.flags);
3860 out:
3861 	filemap_invalidate_unlock(mapping);
3862 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3863 err:
3864 	inode_unlock(inode);
3865 	file_end_write(filp);
3866 
3867 	return ret;
3868 }
3869 
3870 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3871 {
3872 	struct inode *inode = file_inode(filp);
3873 	struct f2fs_comp_option option;
3874 
3875 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3876 		return -EOPNOTSUPP;
3877 
3878 	inode_lock_shared(inode);
3879 
3880 	if (!f2fs_compressed_file(inode)) {
3881 		inode_unlock_shared(inode);
3882 		return -ENODATA;
3883 	}
3884 
3885 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3886 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3887 
3888 	inode_unlock_shared(inode);
3889 
3890 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3891 				sizeof(option)))
3892 		return -EFAULT;
3893 
3894 	return 0;
3895 }
3896 
3897 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3898 {
3899 	struct inode *inode = file_inode(filp);
3900 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3901 	struct f2fs_comp_option option;
3902 	int ret = 0;
3903 
3904 	if (!f2fs_sb_has_compression(sbi))
3905 		return -EOPNOTSUPP;
3906 
3907 	if (!(filp->f_mode & FMODE_WRITE))
3908 		return -EBADF;
3909 
3910 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3911 				sizeof(option)))
3912 		return -EFAULT;
3913 
3914 	if (!f2fs_compressed_file(inode) ||
3915 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3916 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3917 			option.algorithm >= COMPRESS_MAX)
3918 		return -EINVAL;
3919 
3920 	file_start_write(filp);
3921 	inode_lock(inode);
3922 
3923 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3924 		ret = -EBUSY;
3925 		goto out;
3926 	}
3927 
3928 	if (inode->i_size != 0) {
3929 		ret = -EFBIG;
3930 		goto out;
3931 	}
3932 
3933 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3934 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3935 	F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3936 	f2fs_mark_inode_dirty_sync(inode, true);
3937 
3938 	if (!f2fs_is_compress_backend_ready(inode))
3939 		f2fs_warn(sbi, "compression algorithm is successfully set, "
3940 			"but current kernel doesn't support this algorithm.");
3941 out:
3942 	inode_unlock(inode);
3943 	file_end_write(filp);
3944 
3945 	return ret;
3946 }
3947 
3948 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3949 {
3950 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3951 	struct address_space *mapping = inode->i_mapping;
3952 	struct page *page;
3953 	pgoff_t redirty_idx = page_idx;
3954 	int i, page_len = 0, ret = 0;
3955 
3956 	page_cache_ra_unbounded(&ractl, len, 0);
3957 
3958 	for (i = 0; i < len; i++, page_idx++) {
3959 		page = read_cache_page(mapping, page_idx, NULL, NULL);
3960 		if (IS_ERR(page)) {
3961 			ret = PTR_ERR(page);
3962 			break;
3963 		}
3964 		page_len++;
3965 	}
3966 
3967 	for (i = 0; i < page_len; i++, redirty_idx++) {
3968 		page = find_lock_page(mapping, redirty_idx);
3969 		if (!page) {
3970 			ret = -ENOMEM;
3971 			break;
3972 		}
3973 		set_page_dirty(page);
3974 		f2fs_put_page(page, 1);
3975 		f2fs_put_page(page, 0);
3976 	}
3977 
3978 	return ret;
3979 }
3980 
3981 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3982 {
3983 	struct inode *inode = file_inode(filp);
3984 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3985 	struct f2fs_inode_info *fi = F2FS_I(inode);
3986 	pgoff_t page_idx = 0, last_idx;
3987 	unsigned int blk_per_seg = sbi->blocks_per_seg;
3988 	int cluster_size = F2FS_I(inode)->i_cluster_size;
3989 	int count, ret;
3990 
3991 	if (!f2fs_sb_has_compression(sbi) ||
3992 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3993 		return -EOPNOTSUPP;
3994 
3995 	if (!(filp->f_mode & FMODE_WRITE))
3996 		return -EBADF;
3997 
3998 	if (!f2fs_compressed_file(inode))
3999 		return -EINVAL;
4000 
4001 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4002 
4003 	file_start_write(filp);
4004 	inode_lock(inode);
4005 
4006 	if (!f2fs_is_compress_backend_ready(inode)) {
4007 		ret = -EOPNOTSUPP;
4008 		goto out;
4009 	}
4010 
4011 	if (f2fs_is_mmap_file(inode)) {
4012 		ret = -EBUSY;
4013 		goto out;
4014 	}
4015 
4016 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4017 	if (ret)
4018 		goto out;
4019 
4020 	if (!atomic_read(&fi->i_compr_blocks))
4021 		goto out;
4022 
4023 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4024 
4025 	count = last_idx - page_idx;
4026 	while (count) {
4027 		int len = min(cluster_size, count);
4028 
4029 		ret = redirty_blocks(inode, page_idx, len);
4030 		if (ret < 0)
4031 			break;
4032 
4033 		if (get_dirty_pages(inode) >= blk_per_seg)
4034 			filemap_fdatawrite(inode->i_mapping);
4035 
4036 		count -= len;
4037 		page_idx += len;
4038 	}
4039 
4040 	if (!ret)
4041 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4042 							LLONG_MAX);
4043 
4044 	if (ret)
4045 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4046 			  __func__, ret);
4047 out:
4048 	inode_unlock(inode);
4049 	file_end_write(filp);
4050 
4051 	return ret;
4052 }
4053 
4054 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4055 {
4056 	struct inode *inode = file_inode(filp);
4057 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4058 	pgoff_t page_idx = 0, last_idx;
4059 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4060 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4061 	int count, ret;
4062 
4063 	if (!f2fs_sb_has_compression(sbi) ||
4064 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4065 		return -EOPNOTSUPP;
4066 
4067 	if (!(filp->f_mode & FMODE_WRITE))
4068 		return -EBADF;
4069 
4070 	if (!f2fs_compressed_file(inode))
4071 		return -EINVAL;
4072 
4073 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4074 
4075 	file_start_write(filp);
4076 	inode_lock(inode);
4077 
4078 	if (!f2fs_is_compress_backend_ready(inode)) {
4079 		ret = -EOPNOTSUPP;
4080 		goto out;
4081 	}
4082 
4083 	if (f2fs_is_mmap_file(inode)) {
4084 		ret = -EBUSY;
4085 		goto out;
4086 	}
4087 
4088 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4089 	if (ret)
4090 		goto out;
4091 
4092 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4093 
4094 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4095 
4096 	count = last_idx - page_idx;
4097 	while (count) {
4098 		int len = min(cluster_size, count);
4099 
4100 		ret = redirty_blocks(inode, page_idx, len);
4101 		if (ret < 0)
4102 			break;
4103 
4104 		if (get_dirty_pages(inode) >= blk_per_seg)
4105 			filemap_fdatawrite(inode->i_mapping);
4106 
4107 		count -= len;
4108 		page_idx += len;
4109 	}
4110 
4111 	if (!ret)
4112 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4113 							LLONG_MAX);
4114 
4115 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4116 
4117 	if (ret)
4118 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4119 			  __func__, ret);
4120 out:
4121 	inode_unlock(inode);
4122 	file_end_write(filp);
4123 
4124 	return ret;
4125 }
4126 
4127 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4128 {
4129 	switch (cmd) {
4130 	case FS_IOC_GETVERSION:
4131 		return f2fs_ioc_getversion(filp, arg);
4132 	case F2FS_IOC_START_ATOMIC_WRITE:
4133 		return f2fs_ioc_start_atomic_write(filp);
4134 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4135 		return f2fs_ioc_commit_atomic_write(filp);
4136 	case F2FS_IOC_START_VOLATILE_WRITE:
4137 		return f2fs_ioc_start_volatile_write(filp);
4138 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4139 		return f2fs_ioc_release_volatile_write(filp);
4140 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
4141 		return f2fs_ioc_abort_volatile_write(filp);
4142 	case F2FS_IOC_SHUTDOWN:
4143 		return f2fs_ioc_shutdown(filp, arg);
4144 	case FITRIM:
4145 		return f2fs_ioc_fitrim(filp, arg);
4146 	case FS_IOC_SET_ENCRYPTION_POLICY:
4147 		return f2fs_ioc_set_encryption_policy(filp, arg);
4148 	case FS_IOC_GET_ENCRYPTION_POLICY:
4149 		return f2fs_ioc_get_encryption_policy(filp, arg);
4150 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4151 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4152 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4153 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4154 	case FS_IOC_ADD_ENCRYPTION_KEY:
4155 		return f2fs_ioc_add_encryption_key(filp, arg);
4156 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4157 		return f2fs_ioc_remove_encryption_key(filp, arg);
4158 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4159 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4160 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4161 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4162 	case FS_IOC_GET_ENCRYPTION_NONCE:
4163 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4164 	case F2FS_IOC_GARBAGE_COLLECT:
4165 		return f2fs_ioc_gc(filp, arg);
4166 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4167 		return f2fs_ioc_gc_range(filp, arg);
4168 	case F2FS_IOC_WRITE_CHECKPOINT:
4169 		return f2fs_ioc_write_checkpoint(filp, arg);
4170 	case F2FS_IOC_DEFRAGMENT:
4171 		return f2fs_ioc_defragment(filp, arg);
4172 	case F2FS_IOC_MOVE_RANGE:
4173 		return f2fs_ioc_move_range(filp, arg);
4174 	case F2FS_IOC_FLUSH_DEVICE:
4175 		return f2fs_ioc_flush_device(filp, arg);
4176 	case F2FS_IOC_GET_FEATURES:
4177 		return f2fs_ioc_get_features(filp, arg);
4178 	case F2FS_IOC_GET_PIN_FILE:
4179 		return f2fs_ioc_get_pin_file(filp, arg);
4180 	case F2FS_IOC_SET_PIN_FILE:
4181 		return f2fs_ioc_set_pin_file(filp, arg);
4182 	case F2FS_IOC_PRECACHE_EXTENTS:
4183 		return f2fs_ioc_precache_extents(filp, arg);
4184 	case F2FS_IOC_RESIZE_FS:
4185 		return f2fs_ioc_resize_fs(filp, arg);
4186 	case FS_IOC_ENABLE_VERITY:
4187 		return f2fs_ioc_enable_verity(filp, arg);
4188 	case FS_IOC_MEASURE_VERITY:
4189 		return f2fs_ioc_measure_verity(filp, arg);
4190 	case FS_IOC_READ_VERITY_METADATA:
4191 		return f2fs_ioc_read_verity_metadata(filp, arg);
4192 	case FS_IOC_GETFSLABEL:
4193 		return f2fs_ioc_getfslabel(filp, arg);
4194 	case FS_IOC_SETFSLABEL:
4195 		return f2fs_ioc_setfslabel(filp, arg);
4196 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4197 		return f2fs_get_compress_blocks(filp, arg);
4198 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4199 		return f2fs_release_compress_blocks(filp, arg);
4200 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4201 		return f2fs_reserve_compress_blocks(filp, arg);
4202 	case F2FS_IOC_SEC_TRIM_FILE:
4203 		return f2fs_sec_trim_file(filp, arg);
4204 	case F2FS_IOC_GET_COMPRESS_OPTION:
4205 		return f2fs_ioc_get_compress_option(filp, arg);
4206 	case F2FS_IOC_SET_COMPRESS_OPTION:
4207 		return f2fs_ioc_set_compress_option(filp, arg);
4208 	case F2FS_IOC_DECOMPRESS_FILE:
4209 		return f2fs_ioc_decompress_file(filp, arg);
4210 	case F2FS_IOC_COMPRESS_FILE:
4211 		return f2fs_ioc_compress_file(filp, arg);
4212 	default:
4213 		return -ENOTTY;
4214 	}
4215 }
4216 
4217 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4218 {
4219 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4220 		return -EIO;
4221 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4222 		return -ENOSPC;
4223 
4224 	return __f2fs_ioctl(filp, cmd, arg);
4225 }
4226 
4227 /*
4228  * Return %true if the given read or write request should use direct I/O, or
4229  * %false if it should use buffered I/O.
4230  */
4231 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4232 				struct iov_iter *iter)
4233 {
4234 	unsigned int align;
4235 
4236 	if (!(iocb->ki_flags & IOCB_DIRECT))
4237 		return false;
4238 
4239 	if (f2fs_force_buffered_io(inode, iocb, iter))
4240 		return false;
4241 
4242 	/*
4243 	 * Direct I/O not aligned to the disk's logical_block_size will be
4244 	 * attempted, but will fail with -EINVAL.
4245 	 *
4246 	 * f2fs additionally requires that direct I/O be aligned to the
4247 	 * filesystem block size, which is often a stricter requirement.
4248 	 * However, f2fs traditionally falls back to buffered I/O on requests
4249 	 * that are logical_block_size-aligned but not fs-block aligned.
4250 	 *
4251 	 * The below logic implements this behavior.
4252 	 */
4253 	align = iocb->ki_pos | iov_iter_alignment(iter);
4254 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4255 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4256 		return false;
4257 
4258 	return true;
4259 }
4260 
4261 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4262 				unsigned int flags)
4263 {
4264 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4265 
4266 	dec_page_count(sbi, F2FS_DIO_READ);
4267 	if (error)
4268 		return error;
4269 	f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, size);
4270 	return 0;
4271 }
4272 
4273 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4274 	.end_io = f2fs_dio_read_end_io,
4275 };
4276 
4277 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4278 {
4279 	struct file *file = iocb->ki_filp;
4280 	struct inode *inode = file_inode(file);
4281 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4282 	struct f2fs_inode_info *fi = F2FS_I(inode);
4283 	const loff_t pos = iocb->ki_pos;
4284 	const size_t count = iov_iter_count(to);
4285 	struct iomap_dio *dio;
4286 	ssize_t ret;
4287 
4288 	if (count == 0)
4289 		return 0; /* skip atime update */
4290 
4291 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4292 
4293 	if (iocb->ki_flags & IOCB_NOWAIT) {
4294 		if (!down_read_trylock(&fi->i_gc_rwsem[READ])) {
4295 			ret = -EAGAIN;
4296 			goto out;
4297 		}
4298 	} else {
4299 		down_read(&fi->i_gc_rwsem[READ]);
4300 	}
4301 
4302 	/*
4303 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4304 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4305 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4306 	 */
4307 	inc_page_count(sbi, F2FS_DIO_READ);
4308 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4309 			     &f2fs_iomap_dio_read_ops, 0, 0);
4310 	if (IS_ERR_OR_NULL(dio)) {
4311 		ret = PTR_ERR_OR_ZERO(dio);
4312 		if (ret != -EIOCBQUEUED)
4313 			dec_page_count(sbi, F2FS_DIO_READ);
4314 	} else {
4315 		ret = iomap_dio_complete(dio);
4316 	}
4317 
4318 	up_read(&fi->i_gc_rwsem[READ]);
4319 
4320 	file_accessed(file);
4321 out:
4322 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4323 	return ret;
4324 }
4325 
4326 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4327 {
4328 	struct inode *inode = file_inode(iocb->ki_filp);
4329 	ssize_t ret;
4330 
4331 	if (!f2fs_is_compress_backend_ready(inode))
4332 		return -EOPNOTSUPP;
4333 
4334 	if (f2fs_should_use_dio(inode, iocb, to))
4335 		return f2fs_dio_read_iter(iocb, to);
4336 
4337 	ret = filemap_read(iocb, to, 0);
4338 	if (ret > 0)
4339 		f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_READ_IO, ret);
4340 	return ret;
4341 }
4342 
4343 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4344 {
4345 	struct file *file = iocb->ki_filp;
4346 	struct inode *inode = file_inode(file);
4347 	ssize_t count;
4348 	int err;
4349 
4350 	if (IS_IMMUTABLE(inode))
4351 		return -EPERM;
4352 
4353 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4354 		return -EPERM;
4355 
4356 	count = generic_write_checks(iocb, from);
4357 	if (count <= 0)
4358 		return count;
4359 
4360 	err = file_modified(file);
4361 	if (err)
4362 		return err;
4363 	return count;
4364 }
4365 
4366 /*
4367  * Preallocate blocks for a write request, if it is possible and helpful to do
4368  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4369  * blocks were preallocated, or a negative errno value if something went
4370  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4371  * requested blocks (not just some of them) have been allocated.
4372  */
4373 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4374 				   bool dio)
4375 {
4376 	struct inode *inode = file_inode(iocb->ki_filp);
4377 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4378 	const loff_t pos = iocb->ki_pos;
4379 	const size_t count = iov_iter_count(iter);
4380 	struct f2fs_map_blocks map = {};
4381 	int flag;
4382 	int ret;
4383 
4384 	/* If it will be an out-of-place direct write, don't bother. */
4385 	if (dio && f2fs_lfs_mode(sbi))
4386 		return 0;
4387 	/*
4388 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4389 	 * buffered IO, if DIO meets any holes.
4390 	 */
4391 	if (dio && i_size_read(inode) &&
4392 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4393 		return 0;
4394 
4395 	/* No-wait I/O can't allocate blocks. */
4396 	if (iocb->ki_flags & IOCB_NOWAIT)
4397 		return 0;
4398 
4399 	/* If it will be a short write, don't bother. */
4400 	if (fault_in_iov_iter_readable(iter, count))
4401 		return 0;
4402 
4403 	if (f2fs_has_inline_data(inode)) {
4404 		/* If the data will fit inline, don't bother. */
4405 		if (pos + count <= MAX_INLINE_DATA(inode))
4406 			return 0;
4407 		ret = f2fs_convert_inline_inode(inode);
4408 		if (ret)
4409 			return ret;
4410 	}
4411 
4412 	/* Do not preallocate blocks that will be written partially in 4KB. */
4413 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4414 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4415 	if (map.m_len > map.m_lblk)
4416 		map.m_len -= map.m_lblk;
4417 	else
4418 		map.m_len = 0;
4419 	map.m_may_create = true;
4420 	if (dio) {
4421 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4422 		flag = F2FS_GET_BLOCK_PRE_DIO;
4423 	} else {
4424 		map.m_seg_type = NO_CHECK_TYPE;
4425 		flag = F2FS_GET_BLOCK_PRE_AIO;
4426 	}
4427 
4428 	ret = f2fs_map_blocks(inode, &map, 1, flag);
4429 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4430 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4431 		return ret;
4432 	if (ret == 0)
4433 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4434 	return map.m_len;
4435 }
4436 
4437 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4438 					struct iov_iter *from)
4439 {
4440 	struct file *file = iocb->ki_filp;
4441 	struct inode *inode = file_inode(file);
4442 	ssize_t ret;
4443 
4444 	if (iocb->ki_flags & IOCB_NOWAIT)
4445 		return -EOPNOTSUPP;
4446 
4447 	current->backing_dev_info = inode_to_bdi(inode);
4448 	ret = generic_perform_write(file, from, iocb->ki_pos);
4449 	current->backing_dev_info = NULL;
4450 
4451 	if (ret > 0) {
4452 		iocb->ki_pos += ret;
4453 		f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_IO, ret);
4454 	}
4455 	return ret;
4456 }
4457 
4458 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4459 				 unsigned int flags)
4460 {
4461 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4462 
4463 	dec_page_count(sbi, F2FS_DIO_WRITE);
4464 	if (error)
4465 		return error;
4466 	f2fs_update_iostat(sbi, APP_DIRECT_IO, size);
4467 	return 0;
4468 }
4469 
4470 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4471 	.end_io = f2fs_dio_write_end_io,
4472 };
4473 
4474 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4475 				   bool *may_need_sync)
4476 {
4477 	struct file *file = iocb->ki_filp;
4478 	struct inode *inode = file_inode(file);
4479 	struct f2fs_inode_info *fi = F2FS_I(inode);
4480 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4481 	const bool do_opu = f2fs_lfs_mode(sbi);
4482 	const int whint_mode = F2FS_OPTION(sbi).whint_mode;
4483 	const loff_t pos = iocb->ki_pos;
4484 	const ssize_t count = iov_iter_count(from);
4485 	const enum rw_hint hint = iocb->ki_hint;
4486 	unsigned int dio_flags;
4487 	struct iomap_dio *dio;
4488 	ssize_t ret;
4489 
4490 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4491 
4492 	if (iocb->ki_flags & IOCB_NOWAIT) {
4493 		/* f2fs_convert_inline_inode() and block allocation can block */
4494 		if (f2fs_has_inline_data(inode) ||
4495 		    !f2fs_overwrite_io(inode, pos, count)) {
4496 			ret = -EAGAIN;
4497 			goto out;
4498 		}
4499 
4500 		if (!down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4501 			ret = -EAGAIN;
4502 			goto out;
4503 		}
4504 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
4505 			up_read(&fi->i_gc_rwsem[WRITE]);
4506 			ret = -EAGAIN;
4507 			goto out;
4508 		}
4509 	} else {
4510 		ret = f2fs_convert_inline_inode(inode);
4511 		if (ret)
4512 			goto out;
4513 
4514 		down_read(&fi->i_gc_rwsem[WRITE]);
4515 		if (do_opu)
4516 			down_read(&fi->i_gc_rwsem[READ]);
4517 	}
4518 	if (whint_mode == WHINT_MODE_OFF)
4519 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
4520 
4521 	/*
4522 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4523 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4524 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4525 	 */
4526 	inc_page_count(sbi, F2FS_DIO_WRITE);
4527 	dio_flags = 0;
4528 	if (pos + count > inode->i_size)
4529 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4530 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4531 			     &f2fs_iomap_dio_write_ops, dio_flags, 0);
4532 	if (IS_ERR_OR_NULL(dio)) {
4533 		ret = PTR_ERR_OR_ZERO(dio);
4534 		if (ret == -ENOTBLK)
4535 			ret = 0;
4536 		if (ret != -EIOCBQUEUED)
4537 			dec_page_count(sbi, F2FS_DIO_WRITE);
4538 	} else {
4539 		ret = iomap_dio_complete(dio);
4540 	}
4541 
4542 	if (whint_mode == WHINT_MODE_OFF)
4543 		iocb->ki_hint = hint;
4544 	if (do_opu)
4545 		up_read(&fi->i_gc_rwsem[READ]);
4546 	up_read(&fi->i_gc_rwsem[WRITE]);
4547 
4548 	if (ret < 0)
4549 		goto out;
4550 	if (pos + ret > inode->i_size)
4551 		f2fs_i_size_write(inode, pos + ret);
4552 	if (!do_opu)
4553 		set_inode_flag(inode, FI_UPDATE_WRITE);
4554 
4555 	if (iov_iter_count(from)) {
4556 		ssize_t ret2;
4557 		loff_t bufio_start_pos = iocb->ki_pos;
4558 
4559 		/*
4560 		 * The direct write was partial, so we need to fall back to a
4561 		 * buffered write for the remainder.
4562 		 */
4563 
4564 		ret2 = f2fs_buffered_write_iter(iocb, from);
4565 		if (iov_iter_count(from))
4566 			f2fs_write_failed(inode, iocb->ki_pos);
4567 		if (ret2 < 0)
4568 			goto out;
4569 
4570 		/*
4571 		 * Ensure that the pagecache pages are written to disk and
4572 		 * invalidated to preserve the expected O_DIRECT semantics.
4573 		 */
4574 		if (ret2 > 0) {
4575 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4576 
4577 			ret += ret2;
4578 
4579 			ret2 = filemap_write_and_wait_range(file->f_mapping,
4580 							    bufio_start_pos,
4581 							    bufio_end_pos);
4582 			if (ret2 < 0)
4583 				goto out;
4584 			invalidate_mapping_pages(file->f_mapping,
4585 						 bufio_start_pos >> PAGE_SHIFT,
4586 						 bufio_end_pos >> PAGE_SHIFT);
4587 		}
4588 	} else {
4589 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4590 		*may_need_sync = false;
4591 	}
4592 out:
4593 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4594 	return ret;
4595 }
4596 
4597 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4598 {
4599 	struct inode *inode = file_inode(iocb->ki_filp);
4600 	const loff_t orig_pos = iocb->ki_pos;
4601 	const size_t orig_count = iov_iter_count(from);
4602 	loff_t target_size;
4603 	bool dio;
4604 	bool may_need_sync = true;
4605 	int preallocated;
4606 	ssize_t ret;
4607 
4608 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4609 		ret = -EIO;
4610 		goto out;
4611 	}
4612 
4613 	if (!f2fs_is_compress_backend_ready(inode)) {
4614 		ret = -EOPNOTSUPP;
4615 		goto out;
4616 	}
4617 
4618 	if (iocb->ki_flags & IOCB_NOWAIT) {
4619 		if (!inode_trylock(inode)) {
4620 			ret = -EAGAIN;
4621 			goto out;
4622 		}
4623 	} else {
4624 		inode_lock(inode);
4625 	}
4626 
4627 	ret = f2fs_write_checks(iocb, from);
4628 	if (ret <= 0)
4629 		goto out_unlock;
4630 
4631 	/* Determine whether we will do a direct write or a buffered write. */
4632 	dio = f2fs_should_use_dio(inode, iocb, from);
4633 
4634 	/* Possibly preallocate the blocks for the write. */
4635 	target_size = iocb->ki_pos + iov_iter_count(from);
4636 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4637 	if (preallocated < 0)
4638 		ret = preallocated;
4639 	else
4640 		/* Do the actual write. */
4641 		ret = dio ?
4642 			f2fs_dio_write_iter(iocb, from, &may_need_sync):
4643 			f2fs_buffered_write_iter(iocb, from);
4644 
4645 	/* Don't leave any preallocated blocks around past i_size. */
4646 	if (preallocated && i_size_read(inode) < target_size) {
4647 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4648 		filemap_invalidate_lock(inode->i_mapping);
4649 		if (!f2fs_truncate(inode))
4650 			file_dont_truncate(inode);
4651 		filemap_invalidate_unlock(inode->i_mapping);
4652 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4653 	} else {
4654 		file_dont_truncate(inode);
4655 	}
4656 
4657 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4658 out_unlock:
4659 	inode_unlock(inode);
4660 out:
4661 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4662 	if (ret > 0 && may_need_sync)
4663 		ret = generic_write_sync(iocb, ret);
4664 	return ret;
4665 }
4666 
4667 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4668 		int advice)
4669 {
4670 	struct address_space *mapping;
4671 	struct backing_dev_info *bdi;
4672 	struct inode *inode = file_inode(filp);
4673 	int err;
4674 
4675 	if (advice == POSIX_FADV_SEQUENTIAL) {
4676 		if (S_ISFIFO(inode->i_mode))
4677 			return -ESPIPE;
4678 
4679 		mapping = filp->f_mapping;
4680 		if (!mapping || len < 0)
4681 			return -EINVAL;
4682 
4683 		bdi = inode_to_bdi(mapping->host);
4684 		filp->f_ra.ra_pages = bdi->ra_pages *
4685 			F2FS_I_SB(inode)->seq_file_ra_mul;
4686 		spin_lock(&filp->f_lock);
4687 		filp->f_mode &= ~FMODE_RANDOM;
4688 		spin_unlock(&filp->f_lock);
4689 		return 0;
4690 	}
4691 
4692 	err = generic_fadvise(filp, offset, len, advice);
4693 	if (!err && advice == POSIX_FADV_DONTNEED &&
4694 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4695 		f2fs_compressed_file(inode))
4696 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4697 
4698 	return err;
4699 }
4700 
4701 #ifdef CONFIG_COMPAT
4702 struct compat_f2fs_gc_range {
4703 	u32 sync;
4704 	compat_u64 start;
4705 	compat_u64 len;
4706 };
4707 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4708 						struct compat_f2fs_gc_range)
4709 
4710 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4711 {
4712 	struct compat_f2fs_gc_range __user *urange;
4713 	struct f2fs_gc_range range;
4714 	int err;
4715 
4716 	urange = compat_ptr(arg);
4717 	err = get_user(range.sync, &urange->sync);
4718 	err |= get_user(range.start, &urange->start);
4719 	err |= get_user(range.len, &urange->len);
4720 	if (err)
4721 		return -EFAULT;
4722 
4723 	return __f2fs_ioc_gc_range(file, &range);
4724 }
4725 
4726 struct compat_f2fs_move_range {
4727 	u32 dst_fd;
4728 	compat_u64 pos_in;
4729 	compat_u64 pos_out;
4730 	compat_u64 len;
4731 };
4732 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4733 					struct compat_f2fs_move_range)
4734 
4735 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4736 {
4737 	struct compat_f2fs_move_range __user *urange;
4738 	struct f2fs_move_range range;
4739 	int err;
4740 
4741 	urange = compat_ptr(arg);
4742 	err = get_user(range.dst_fd, &urange->dst_fd);
4743 	err |= get_user(range.pos_in, &urange->pos_in);
4744 	err |= get_user(range.pos_out, &urange->pos_out);
4745 	err |= get_user(range.len, &urange->len);
4746 	if (err)
4747 		return -EFAULT;
4748 
4749 	return __f2fs_ioc_move_range(file, &range);
4750 }
4751 
4752 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4753 {
4754 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4755 		return -EIO;
4756 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4757 		return -ENOSPC;
4758 
4759 	switch (cmd) {
4760 	case FS_IOC32_GETVERSION:
4761 		cmd = FS_IOC_GETVERSION;
4762 		break;
4763 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4764 		return f2fs_compat_ioc_gc_range(file, arg);
4765 	case F2FS_IOC32_MOVE_RANGE:
4766 		return f2fs_compat_ioc_move_range(file, arg);
4767 	case F2FS_IOC_START_ATOMIC_WRITE:
4768 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4769 	case F2FS_IOC_START_VOLATILE_WRITE:
4770 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4771 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
4772 	case F2FS_IOC_SHUTDOWN:
4773 	case FITRIM:
4774 	case FS_IOC_SET_ENCRYPTION_POLICY:
4775 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4776 	case FS_IOC_GET_ENCRYPTION_POLICY:
4777 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4778 	case FS_IOC_ADD_ENCRYPTION_KEY:
4779 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4780 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4781 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4782 	case FS_IOC_GET_ENCRYPTION_NONCE:
4783 	case F2FS_IOC_GARBAGE_COLLECT:
4784 	case F2FS_IOC_WRITE_CHECKPOINT:
4785 	case F2FS_IOC_DEFRAGMENT:
4786 	case F2FS_IOC_FLUSH_DEVICE:
4787 	case F2FS_IOC_GET_FEATURES:
4788 	case F2FS_IOC_GET_PIN_FILE:
4789 	case F2FS_IOC_SET_PIN_FILE:
4790 	case F2FS_IOC_PRECACHE_EXTENTS:
4791 	case F2FS_IOC_RESIZE_FS:
4792 	case FS_IOC_ENABLE_VERITY:
4793 	case FS_IOC_MEASURE_VERITY:
4794 	case FS_IOC_READ_VERITY_METADATA:
4795 	case FS_IOC_GETFSLABEL:
4796 	case FS_IOC_SETFSLABEL:
4797 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4798 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4799 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4800 	case F2FS_IOC_SEC_TRIM_FILE:
4801 	case F2FS_IOC_GET_COMPRESS_OPTION:
4802 	case F2FS_IOC_SET_COMPRESS_OPTION:
4803 	case F2FS_IOC_DECOMPRESS_FILE:
4804 	case F2FS_IOC_COMPRESS_FILE:
4805 		break;
4806 	default:
4807 		return -ENOIOCTLCMD;
4808 	}
4809 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4810 }
4811 #endif
4812 
4813 const struct file_operations f2fs_file_operations = {
4814 	.llseek		= f2fs_llseek,
4815 	.read_iter	= f2fs_file_read_iter,
4816 	.write_iter	= f2fs_file_write_iter,
4817 	.open		= f2fs_file_open,
4818 	.release	= f2fs_release_file,
4819 	.mmap		= f2fs_file_mmap,
4820 	.flush		= f2fs_file_flush,
4821 	.fsync		= f2fs_sync_file,
4822 	.fallocate	= f2fs_fallocate,
4823 	.unlocked_ioctl	= f2fs_ioctl,
4824 #ifdef CONFIG_COMPAT
4825 	.compat_ioctl	= f2fs_compat_ioctl,
4826 #endif
4827 	.splice_read	= generic_file_splice_read,
4828 	.splice_write	= iter_file_splice_write,
4829 	.fadvise	= f2fs_file_fadvise,
4830 };
4831