xref: /openbmc/linux/fs/f2fs/file.c (revision 869b6ca39c08c5b10eeb29d4b3c4bc433bf8ba5e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "acl.h"
33 #include "gc.h"
34 #include "iostat.h"
35 #include <trace/events/f2fs.h>
36 #include <uapi/linux/f2fs.h>
37 
38 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
39 {
40 	struct inode *inode = file_inode(vmf->vma->vm_file);
41 	vm_fault_t ret;
42 
43 	ret = filemap_fault(vmf);
44 	if (!ret)
45 		f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
46 							F2FS_BLKSIZE);
47 
48 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
49 
50 	return ret;
51 }
52 
53 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
54 {
55 	struct page *page = vmf->page;
56 	struct inode *inode = file_inode(vmf->vma->vm_file);
57 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
58 	struct dnode_of_data dn;
59 	bool need_alloc = true;
60 	int err = 0;
61 
62 	if (unlikely(IS_IMMUTABLE(inode)))
63 		return VM_FAULT_SIGBUS;
64 
65 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
66 		return VM_FAULT_SIGBUS;
67 
68 	if (unlikely(f2fs_cp_error(sbi))) {
69 		err = -EIO;
70 		goto err;
71 	}
72 
73 	if (!f2fs_is_checkpoint_ready(sbi)) {
74 		err = -ENOSPC;
75 		goto err;
76 	}
77 
78 	err = f2fs_convert_inline_inode(inode);
79 	if (err)
80 		goto err;
81 
82 #ifdef CONFIG_F2FS_FS_COMPRESSION
83 	if (f2fs_compressed_file(inode)) {
84 		int ret = f2fs_is_compressed_cluster(inode, page->index);
85 
86 		if (ret < 0) {
87 			err = ret;
88 			goto err;
89 		} else if (ret) {
90 			need_alloc = false;
91 		}
92 	}
93 #endif
94 	/* should do out of any locked page */
95 	if (need_alloc)
96 		f2fs_balance_fs(sbi, true);
97 
98 	sb_start_pagefault(inode->i_sb);
99 
100 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
101 
102 	file_update_time(vmf->vma->vm_file);
103 	filemap_invalidate_lock_shared(inode->i_mapping);
104 	lock_page(page);
105 	if (unlikely(page->mapping != inode->i_mapping ||
106 			page_offset(page) > i_size_read(inode) ||
107 			!PageUptodate(page))) {
108 		unlock_page(page);
109 		err = -EFAULT;
110 		goto out_sem;
111 	}
112 
113 	if (need_alloc) {
114 		/* block allocation */
115 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
116 		set_new_dnode(&dn, inode, NULL, NULL, 0);
117 		err = f2fs_get_block(&dn, page->index);
118 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
119 	}
120 
121 #ifdef CONFIG_F2FS_FS_COMPRESSION
122 	if (!need_alloc) {
123 		set_new_dnode(&dn, inode, NULL, NULL, 0);
124 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
125 		f2fs_put_dnode(&dn);
126 	}
127 #endif
128 	if (err) {
129 		unlock_page(page);
130 		goto out_sem;
131 	}
132 
133 	f2fs_wait_on_page_writeback(page, DATA, false, true);
134 
135 	/* wait for GCed page writeback via META_MAPPING */
136 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
137 
138 	/*
139 	 * check to see if the page is mapped already (no holes)
140 	 */
141 	if (PageMappedToDisk(page))
142 		goto out_sem;
143 
144 	/* page is wholly or partially inside EOF */
145 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
146 						i_size_read(inode)) {
147 		loff_t offset;
148 
149 		offset = i_size_read(inode) & ~PAGE_MASK;
150 		zero_user_segment(page, offset, PAGE_SIZE);
151 	}
152 	set_page_dirty(page);
153 	if (!PageUptodate(page))
154 		SetPageUptodate(page);
155 
156 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
157 	f2fs_update_time(sbi, REQ_TIME);
158 
159 	trace_f2fs_vm_page_mkwrite(page, DATA);
160 out_sem:
161 	filemap_invalidate_unlock_shared(inode->i_mapping);
162 
163 	sb_end_pagefault(inode->i_sb);
164 err:
165 	return block_page_mkwrite_return(err);
166 }
167 
168 static const struct vm_operations_struct f2fs_file_vm_ops = {
169 	.fault		= f2fs_filemap_fault,
170 	.map_pages	= filemap_map_pages,
171 	.page_mkwrite	= f2fs_vm_page_mkwrite,
172 };
173 
174 static int get_parent_ino(struct inode *inode, nid_t *pino)
175 {
176 	struct dentry *dentry;
177 
178 	/*
179 	 * Make sure to get the non-deleted alias.  The alias associated with
180 	 * the open file descriptor being fsync()'ed may be deleted already.
181 	 */
182 	dentry = d_find_alias(inode);
183 	if (!dentry)
184 		return 0;
185 
186 	*pino = parent_ino(dentry);
187 	dput(dentry);
188 	return 1;
189 }
190 
191 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
192 {
193 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
194 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
195 
196 	if (!S_ISREG(inode->i_mode))
197 		cp_reason = CP_NON_REGULAR;
198 	else if (f2fs_compressed_file(inode))
199 		cp_reason = CP_COMPRESSED;
200 	else if (inode->i_nlink != 1)
201 		cp_reason = CP_HARDLINK;
202 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
203 		cp_reason = CP_SB_NEED_CP;
204 	else if (file_wrong_pino(inode))
205 		cp_reason = CP_WRONG_PINO;
206 	else if (!f2fs_space_for_roll_forward(sbi))
207 		cp_reason = CP_NO_SPC_ROLL;
208 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
209 		cp_reason = CP_NODE_NEED_CP;
210 	else if (test_opt(sbi, FASTBOOT))
211 		cp_reason = CP_FASTBOOT_MODE;
212 	else if (F2FS_OPTION(sbi).active_logs == 2)
213 		cp_reason = CP_SPEC_LOG_NUM;
214 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
215 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
216 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
217 							TRANS_DIR_INO))
218 		cp_reason = CP_RECOVER_DIR;
219 
220 	return cp_reason;
221 }
222 
223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
224 {
225 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
226 	bool ret = false;
227 	/* But we need to avoid that there are some inode updates */
228 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
229 		ret = true;
230 	f2fs_put_page(i, 0);
231 	return ret;
232 }
233 
234 static void try_to_fix_pino(struct inode *inode)
235 {
236 	struct f2fs_inode_info *fi = F2FS_I(inode);
237 	nid_t pino;
238 
239 	down_write(&fi->i_sem);
240 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
241 			get_parent_ino(inode, &pino)) {
242 		f2fs_i_pino_write(inode, pino);
243 		file_got_pino(inode);
244 	}
245 	up_write(&fi->i_sem);
246 }
247 
248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
249 						int datasync, bool atomic)
250 {
251 	struct inode *inode = file->f_mapping->host;
252 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
253 	nid_t ino = inode->i_ino;
254 	int ret = 0;
255 	enum cp_reason_type cp_reason = 0;
256 	struct writeback_control wbc = {
257 		.sync_mode = WB_SYNC_ALL,
258 		.nr_to_write = LONG_MAX,
259 		.for_reclaim = 0,
260 	};
261 	unsigned int seq_id = 0;
262 
263 	if (unlikely(f2fs_readonly(inode->i_sb)))
264 		return 0;
265 
266 	trace_f2fs_sync_file_enter(inode);
267 
268 	if (S_ISDIR(inode->i_mode))
269 		goto go_write;
270 
271 	/* if fdatasync is triggered, let's do in-place-update */
272 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
273 		set_inode_flag(inode, FI_NEED_IPU);
274 	ret = file_write_and_wait_range(file, start, end);
275 	clear_inode_flag(inode, FI_NEED_IPU);
276 
277 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
278 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
279 		return ret;
280 	}
281 
282 	/* if the inode is dirty, let's recover all the time */
283 	if (!f2fs_skip_inode_update(inode, datasync)) {
284 		f2fs_write_inode(inode, NULL);
285 		goto go_write;
286 	}
287 
288 	/*
289 	 * if there is no written data, don't waste time to write recovery info.
290 	 */
291 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
292 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
293 
294 		/* it may call write_inode just prior to fsync */
295 		if (need_inode_page_update(sbi, ino))
296 			goto go_write;
297 
298 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
299 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
300 			goto flush_out;
301 		goto out;
302 	} else {
303 		/*
304 		 * for OPU case, during fsync(), node can be persisted before
305 		 * data when lower device doesn't support write barrier, result
306 		 * in data corruption after SPO.
307 		 * So for strict fsync mode, force to use atomic write sematics
308 		 * to keep write order in between data/node and last node to
309 		 * avoid potential data corruption.
310 		 */
311 		if (F2FS_OPTION(sbi).fsync_mode ==
312 				FSYNC_MODE_STRICT && !atomic)
313 			atomic = true;
314 	}
315 go_write:
316 	/*
317 	 * Both of fdatasync() and fsync() are able to be recovered from
318 	 * sudden-power-off.
319 	 */
320 	down_read(&F2FS_I(inode)->i_sem);
321 	cp_reason = need_do_checkpoint(inode);
322 	up_read(&F2FS_I(inode)->i_sem);
323 
324 	if (cp_reason) {
325 		/* all the dirty node pages should be flushed for POR */
326 		ret = f2fs_sync_fs(inode->i_sb, 1);
327 
328 		/*
329 		 * We've secured consistency through sync_fs. Following pino
330 		 * will be used only for fsynced inodes after checkpoint.
331 		 */
332 		try_to_fix_pino(inode);
333 		clear_inode_flag(inode, FI_APPEND_WRITE);
334 		clear_inode_flag(inode, FI_UPDATE_WRITE);
335 		goto out;
336 	}
337 sync_nodes:
338 	atomic_inc(&sbi->wb_sync_req[NODE]);
339 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
340 	atomic_dec(&sbi->wb_sync_req[NODE]);
341 	if (ret)
342 		goto out;
343 
344 	/* if cp_error was enabled, we should avoid infinite loop */
345 	if (unlikely(f2fs_cp_error(sbi))) {
346 		ret = -EIO;
347 		goto out;
348 	}
349 
350 	if (f2fs_need_inode_block_update(sbi, ino)) {
351 		f2fs_mark_inode_dirty_sync(inode, true);
352 		f2fs_write_inode(inode, NULL);
353 		goto sync_nodes;
354 	}
355 
356 	/*
357 	 * If it's atomic_write, it's just fine to keep write ordering. So
358 	 * here we don't need to wait for node write completion, since we use
359 	 * node chain which serializes node blocks. If one of node writes are
360 	 * reordered, we can see simply broken chain, resulting in stopping
361 	 * roll-forward recovery. It means we'll recover all or none node blocks
362 	 * given fsync mark.
363 	 */
364 	if (!atomic) {
365 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
366 		if (ret)
367 			goto out;
368 	}
369 
370 	/* once recovery info is written, don't need to tack this */
371 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
372 	clear_inode_flag(inode, FI_APPEND_WRITE);
373 flush_out:
374 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
375 		ret = f2fs_issue_flush(sbi, inode->i_ino);
376 	if (!ret) {
377 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
378 		clear_inode_flag(inode, FI_UPDATE_WRITE);
379 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
380 	}
381 	f2fs_update_time(sbi, REQ_TIME);
382 out:
383 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
384 	return ret;
385 }
386 
387 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
388 {
389 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
390 		return -EIO;
391 	return f2fs_do_sync_file(file, start, end, datasync, false);
392 }
393 
394 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
395 				pgoff_t index, int whence)
396 {
397 	switch (whence) {
398 	case SEEK_DATA:
399 		if (__is_valid_data_blkaddr(blkaddr))
400 			return true;
401 		if (blkaddr == NEW_ADDR &&
402 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
403 			return true;
404 		break;
405 	case SEEK_HOLE:
406 		if (blkaddr == NULL_ADDR)
407 			return true;
408 		break;
409 	}
410 	return false;
411 }
412 
413 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
414 {
415 	struct inode *inode = file->f_mapping->host;
416 	loff_t maxbytes = inode->i_sb->s_maxbytes;
417 	struct dnode_of_data dn;
418 	pgoff_t pgofs, end_offset;
419 	loff_t data_ofs = offset;
420 	loff_t isize;
421 	int err = 0;
422 
423 	inode_lock(inode);
424 
425 	isize = i_size_read(inode);
426 	if (offset >= isize)
427 		goto fail;
428 
429 	/* handle inline data case */
430 	if (f2fs_has_inline_data(inode)) {
431 		if (whence == SEEK_HOLE) {
432 			data_ofs = isize;
433 			goto found;
434 		} else if (whence == SEEK_DATA) {
435 			data_ofs = offset;
436 			goto found;
437 		}
438 	}
439 
440 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
441 
442 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
443 		set_new_dnode(&dn, inode, NULL, NULL, 0);
444 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
445 		if (err && err != -ENOENT) {
446 			goto fail;
447 		} else if (err == -ENOENT) {
448 			/* direct node does not exists */
449 			if (whence == SEEK_DATA) {
450 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
451 				continue;
452 			} else {
453 				goto found;
454 			}
455 		}
456 
457 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
458 
459 		/* find data/hole in dnode block */
460 		for (; dn.ofs_in_node < end_offset;
461 				dn.ofs_in_node++, pgofs++,
462 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
463 			block_t blkaddr;
464 
465 			blkaddr = f2fs_data_blkaddr(&dn);
466 
467 			if (__is_valid_data_blkaddr(blkaddr) &&
468 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
469 					blkaddr, DATA_GENERIC_ENHANCE)) {
470 				f2fs_put_dnode(&dn);
471 				goto fail;
472 			}
473 
474 			if (__found_offset(file->f_mapping, blkaddr,
475 							pgofs, whence)) {
476 				f2fs_put_dnode(&dn);
477 				goto found;
478 			}
479 		}
480 		f2fs_put_dnode(&dn);
481 	}
482 
483 	if (whence == SEEK_DATA)
484 		goto fail;
485 found:
486 	if (whence == SEEK_HOLE && data_ofs > isize)
487 		data_ofs = isize;
488 	inode_unlock(inode);
489 	return vfs_setpos(file, data_ofs, maxbytes);
490 fail:
491 	inode_unlock(inode);
492 	return -ENXIO;
493 }
494 
495 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
496 {
497 	struct inode *inode = file->f_mapping->host;
498 	loff_t maxbytes = inode->i_sb->s_maxbytes;
499 
500 	if (f2fs_compressed_file(inode))
501 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
502 
503 	switch (whence) {
504 	case SEEK_SET:
505 	case SEEK_CUR:
506 	case SEEK_END:
507 		return generic_file_llseek_size(file, offset, whence,
508 						maxbytes, i_size_read(inode));
509 	case SEEK_DATA:
510 	case SEEK_HOLE:
511 		if (offset < 0)
512 			return -ENXIO;
513 		return f2fs_seek_block(file, offset, whence);
514 	}
515 
516 	return -EINVAL;
517 }
518 
519 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
520 {
521 	struct inode *inode = file_inode(file);
522 
523 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
524 		return -EIO;
525 
526 	if (!f2fs_is_compress_backend_ready(inode))
527 		return -EOPNOTSUPP;
528 
529 	file_accessed(file);
530 	vma->vm_ops = &f2fs_file_vm_ops;
531 	set_inode_flag(inode, FI_MMAP_FILE);
532 	return 0;
533 }
534 
535 static int f2fs_file_open(struct inode *inode, struct file *filp)
536 {
537 	int err = fscrypt_file_open(inode, filp);
538 
539 	if (err)
540 		return err;
541 
542 	if (!f2fs_is_compress_backend_ready(inode))
543 		return -EOPNOTSUPP;
544 
545 	err = fsverity_file_open(inode, filp);
546 	if (err)
547 		return err;
548 
549 	filp->f_mode |= FMODE_NOWAIT;
550 
551 	return dquot_file_open(inode, filp);
552 }
553 
554 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
555 {
556 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
557 	struct f2fs_node *raw_node;
558 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
559 	__le32 *addr;
560 	int base = 0;
561 	bool compressed_cluster = false;
562 	int cluster_index = 0, valid_blocks = 0;
563 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
564 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
565 
566 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
567 		base = get_extra_isize(dn->inode);
568 
569 	raw_node = F2FS_NODE(dn->node_page);
570 	addr = blkaddr_in_node(raw_node) + base + ofs;
571 
572 	/* Assumption: truncateion starts with cluster */
573 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
574 		block_t blkaddr = le32_to_cpu(*addr);
575 
576 		if (f2fs_compressed_file(dn->inode) &&
577 					!(cluster_index & (cluster_size - 1))) {
578 			if (compressed_cluster)
579 				f2fs_i_compr_blocks_update(dn->inode,
580 							valid_blocks, false);
581 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
582 			valid_blocks = 0;
583 		}
584 
585 		if (blkaddr == NULL_ADDR)
586 			continue;
587 
588 		dn->data_blkaddr = NULL_ADDR;
589 		f2fs_set_data_blkaddr(dn);
590 
591 		if (__is_valid_data_blkaddr(blkaddr)) {
592 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
593 					DATA_GENERIC_ENHANCE))
594 				continue;
595 			if (compressed_cluster)
596 				valid_blocks++;
597 		}
598 
599 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
600 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
601 
602 		f2fs_invalidate_blocks(sbi, blkaddr);
603 
604 		if (!released || blkaddr != COMPRESS_ADDR)
605 			nr_free++;
606 	}
607 
608 	if (compressed_cluster)
609 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
610 
611 	if (nr_free) {
612 		pgoff_t fofs;
613 		/*
614 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
615 		 * we will invalidate all blkaddr in the whole range.
616 		 */
617 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
618 							dn->inode) + ofs;
619 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
620 		dec_valid_block_count(sbi, dn->inode, nr_free);
621 	}
622 	dn->ofs_in_node = ofs;
623 
624 	f2fs_update_time(sbi, REQ_TIME);
625 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
626 					 dn->ofs_in_node, nr_free);
627 }
628 
629 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
630 {
631 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
632 }
633 
634 static int truncate_partial_data_page(struct inode *inode, u64 from,
635 								bool cache_only)
636 {
637 	loff_t offset = from & (PAGE_SIZE - 1);
638 	pgoff_t index = from >> PAGE_SHIFT;
639 	struct address_space *mapping = inode->i_mapping;
640 	struct page *page;
641 
642 	if (!offset && !cache_only)
643 		return 0;
644 
645 	if (cache_only) {
646 		page = find_lock_page(mapping, index);
647 		if (page && PageUptodate(page))
648 			goto truncate_out;
649 		f2fs_put_page(page, 1);
650 		return 0;
651 	}
652 
653 	page = f2fs_get_lock_data_page(inode, index, true);
654 	if (IS_ERR(page))
655 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
656 truncate_out:
657 	f2fs_wait_on_page_writeback(page, DATA, true, true);
658 	zero_user(page, offset, PAGE_SIZE - offset);
659 
660 	/* An encrypted inode should have a key and truncate the last page. */
661 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
662 	if (!cache_only)
663 		set_page_dirty(page);
664 	f2fs_put_page(page, 1);
665 	return 0;
666 }
667 
668 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
669 {
670 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
671 	struct dnode_of_data dn;
672 	pgoff_t free_from;
673 	int count = 0, err = 0;
674 	struct page *ipage;
675 	bool truncate_page = false;
676 
677 	trace_f2fs_truncate_blocks_enter(inode, from);
678 
679 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
680 
681 	if (free_from >= max_file_blocks(inode))
682 		goto free_partial;
683 
684 	if (lock)
685 		f2fs_lock_op(sbi);
686 
687 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
688 	if (IS_ERR(ipage)) {
689 		err = PTR_ERR(ipage);
690 		goto out;
691 	}
692 
693 	if (f2fs_has_inline_data(inode)) {
694 		f2fs_truncate_inline_inode(inode, ipage, from);
695 		f2fs_put_page(ipage, 1);
696 		truncate_page = true;
697 		goto out;
698 	}
699 
700 	set_new_dnode(&dn, inode, ipage, NULL, 0);
701 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
702 	if (err) {
703 		if (err == -ENOENT)
704 			goto free_next;
705 		goto out;
706 	}
707 
708 	count = ADDRS_PER_PAGE(dn.node_page, inode);
709 
710 	count -= dn.ofs_in_node;
711 	f2fs_bug_on(sbi, count < 0);
712 
713 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
714 		f2fs_truncate_data_blocks_range(&dn, count);
715 		free_from += count;
716 	}
717 
718 	f2fs_put_dnode(&dn);
719 free_next:
720 	err = f2fs_truncate_inode_blocks(inode, free_from);
721 out:
722 	if (lock)
723 		f2fs_unlock_op(sbi);
724 free_partial:
725 	/* lastly zero out the first data page */
726 	if (!err)
727 		err = truncate_partial_data_page(inode, from, truncate_page);
728 
729 	trace_f2fs_truncate_blocks_exit(inode, err);
730 	return err;
731 }
732 
733 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
734 {
735 	u64 free_from = from;
736 	int err;
737 
738 #ifdef CONFIG_F2FS_FS_COMPRESSION
739 	/*
740 	 * for compressed file, only support cluster size
741 	 * aligned truncation.
742 	 */
743 	if (f2fs_compressed_file(inode))
744 		free_from = round_up(from,
745 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
746 #endif
747 
748 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
749 	if (err)
750 		return err;
751 
752 #ifdef CONFIG_F2FS_FS_COMPRESSION
753 	/*
754 	 * For compressed file, after release compress blocks, don't allow write
755 	 * direct, but we should allow write direct after truncate to zero.
756 	 */
757 	if (f2fs_compressed_file(inode) && !free_from
758 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
759 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
760 
761 	if (from != free_from) {
762 		err = f2fs_truncate_partial_cluster(inode, from, lock);
763 		if (err)
764 			return err;
765 	}
766 #endif
767 
768 	return 0;
769 }
770 
771 int f2fs_truncate(struct inode *inode)
772 {
773 	int err;
774 
775 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
776 		return -EIO;
777 
778 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
779 				S_ISLNK(inode->i_mode)))
780 		return 0;
781 
782 	trace_f2fs_truncate(inode);
783 
784 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
785 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
786 		return -EIO;
787 	}
788 
789 	err = f2fs_dquot_initialize(inode);
790 	if (err)
791 		return err;
792 
793 	/* we should check inline_data size */
794 	if (!f2fs_may_inline_data(inode)) {
795 		err = f2fs_convert_inline_inode(inode);
796 		if (err)
797 			return err;
798 	}
799 
800 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
801 	if (err)
802 		return err;
803 
804 	inode->i_mtime = inode->i_ctime = current_time(inode);
805 	f2fs_mark_inode_dirty_sync(inode, false);
806 	return 0;
807 }
808 
809 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
810 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
811 {
812 	struct inode *inode = d_inode(path->dentry);
813 	struct f2fs_inode_info *fi = F2FS_I(inode);
814 	struct f2fs_inode *ri;
815 	unsigned int flags;
816 
817 	if (f2fs_has_extra_attr(inode) &&
818 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
819 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
820 		stat->result_mask |= STATX_BTIME;
821 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
822 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
823 	}
824 
825 	flags = fi->i_flags;
826 	if (flags & F2FS_COMPR_FL)
827 		stat->attributes |= STATX_ATTR_COMPRESSED;
828 	if (flags & F2FS_APPEND_FL)
829 		stat->attributes |= STATX_ATTR_APPEND;
830 	if (IS_ENCRYPTED(inode))
831 		stat->attributes |= STATX_ATTR_ENCRYPTED;
832 	if (flags & F2FS_IMMUTABLE_FL)
833 		stat->attributes |= STATX_ATTR_IMMUTABLE;
834 	if (flags & F2FS_NODUMP_FL)
835 		stat->attributes |= STATX_ATTR_NODUMP;
836 	if (IS_VERITY(inode))
837 		stat->attributes |= STATX_ATTR_VERITY;
838 
839 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
840 				  STATX_ATTR_APPEND |
841 				  STATX_ATTR_ENCRYPTED |
842 				  STATX_ATTR_IMMUTABLE |
843 				  STATX_ATTR_NODUMP |
844 				  STATX_ATTR_VERITY);
845 
846 	generic_fillattr(&init_user_ns, inode, stat);
847 
848 	/* we need to show initial sectors used for inline_data/dentries */
849 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
850 					f2fs_has_inline_dentry(inode))
851 		stat->blocks += (stat->size + 511) >> 9;
852 
853 	return 0;
854 }
855 
856 #ifdef CONFIG_F2FS_FS_POSIX_ACL
857 static void __setattr_copy(struct user_namespace *mnt_userns,
858 			   struct inode *inode, const struct iattr *attr)
859 {
860 	unsigned int ia_valid = attr->ia_valid;
861 
862 	if (ia_valid & ATTR_UID)
863 		inode->i_uid = attr->ia_uid;
864 	if (ia_valid & ATTR_GID)
865 		inode->i_gid = attr->ia_gid;
866 	if (ia_valid & ATTR_ATIME)
867 		inode->i_atime = attr->ia_atime;
868 	if (ia_valid & ATTR_MTIME)
869 		inode->i_mtime = attr->ia_mtime;
870 	if (ia_valid & ATTR_CTIME)
871 		inode->i_ctime = attr->ia_ctime;
872 	if (ia_valid & ATTR_MODE) {
873 		umode_t mode = attr->ia_mode;
874 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
875 
876 		if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
877 			mode &= ~S_ISGID;
878 		set_acl_inode(inode, mode);
879 	}
880 }
881 #else
882 #define __setattr_copy setattr_copy
883 #endif
884 
885 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
886 		 struct iattr *attr)
887 {
888 	struct inode *inode = d_inode(dentry);
889 	int err;
890 
891 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
892 		return -EIO;
893 
894 	if (unlikely(IS_IMMUTABLE(inode)))
895 		return -EPERM;
896 
897 	if (unlikely(IS_APPEND(inode) &&
898 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
899 				  ATTR_GID | ATTR_TIMES_SET))))
900 		return -EPERM;
901 
902 	if ((attr->ia_valid & ATTR_SIZE) &&
903 		!f2fs_is_compress_backend_ready(inode))
904 		return -EOPNOTSUPP;
905 
906 	err = setattr_prepare(&init_user_ns, dentry, attr);
907 	if (err)
908 		return err;
909 
910 	err = fscrypt_prepare_setattr(dentry, attr);
911 	if (err)
912 		return err;
913 
914 	err = fsverity_prepare_setattr(dentry, attr);
915 	if (err)
916 		return err;
917 
918 	if (is_quota_modification(inode, attr)) {
919 		err = f2fs_dquot_initialize(inode);
920 		if (err)
921 			return err;
922 	}
923 	if ((attr->ia_valid & ATTR_UID &&
924 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
925 		(attr->ia_valid & ATTR_GID &&
926 		!gid_eq(attr->ia_gid, inode->i_gid))) {
927 		f2fs_lock_op(F2FS_I_SB(inode));
928 		err = dquot_transfer(inode, attr);
929 		if (err) {
930 			set_sbi_flag(F2FS_I_SB(inode),
931 					SBI_QUOTA_NEED_REPAIR);
932 			f2fs_unlock_op(F2FS_I_SB(inode));
933 			return err;
934 		}
935 		/*
936 		 * update uid/gid under lock_op(), so that dquot and inode can
937 		 * be updated atomically.
938 		 */
939 		if (attr->ia_valid & ATTR_UID)
940 			inode->i_uid = attr->ia_uid;
941 		if (attr->ia_valid & ATTR_GID)
942 			inode->i_gid = attr->ia_gid;
943 		f2fs_mark_inode_dirty_sync(inode, true);
944 		f2fs_unlock_op(F2FS_I_SB(inode));
945 	}
946 
947 	if (attr->ia_valid & ATTR_SIZE) {
948 		loff_t old_size = i_size_read(inode);
949 
950 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
951 			/*
952 			 * should convert inline inode before i_size_write to
953 			 * keep smaller than inline_data size with inline flag.
954 			 */
955 			err = f2fs_convert_inline_inode(inode);
956 			if (err)
957 				return err;
958 		}
959 
960 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
961 		filemap_invalidate_lock(inode->i_mapping);
962 
963 		truncate_setsize(inode, attr->ia_size);
964 
965 		if (attr->ia_size <= old_size)
966 			err = f2fs_truncate(inode);
967 		/*
968 		 * do not trim all blocks after i_size if target size is
969 		 * larger than i_size.
970 		 */
971 		filemap_invalidate_unlock(inode->i_mapping);
972 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
973 		if (err)
974 			return err;
975 
976 		spin_lock(&F2FS_I(inode)->i_size_lock);
977 		inode->i_mtime = inode->i_ctime = current_time(inode);
978 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
979 		spin_unlock(&F2FS_I(inode)->i_size_lock);
980 	}
981 
982 	__setattr_copy(&init_user_ns, inode, attr);
983 
984 	if (attr->ia_valid & ATTR_MODE) {
985 		err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode));
986 
987 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
988 			if (!err)
989 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
990 			clear_inode_flag(inode, FI_ACL_MODE);
991 		}
992 	}
993 
994 	/* file size may changed here */
995 	f2fs_mark_inode_dirty_sync(inode, true);
996 
997 	/* inode change will produce dirty node pages flushed by checkpoint */
998 	f2fs_balance_fs(F2FS_I_SB(inode), true);
999 
1000 	return err;
1001 }
1002 
1003 const struct inode_operations f2fs_file_inode_operations = {
1004 	.getattr	= f2fs_getattr,
1005 	.setattr	= f2fs_setattr,
1006 	.get_acl	= f2fs_get_acl,
1007 	.set_acl	= f2fs_set_acl,
1008 	.listxattr	= f2fs_listxattr,
1009 	.fiemap		= f2fs_fiemap,
1010 	.fileattr_get	= f2fs_fileattr_get,
1011 	.fileattr_set	= f2fs_fileattr_set,
1012 };
1013 
1014 static int fill_zero(struct inode *inode, pgoff_t index,
1015 					loff_t start, loff_t len)
1016 {
1017 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1018 	struct page *page;
1019 
1020 	if (!len)
1021 		return 0;
1022 
1023 	f2fs_balance_fs(sbi, true);
1024 
1025 	f2fs_lock_op(sbi);
1026 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1027 	f2fs_unlock_op(sbi);
1028 
1029 	if (IS_ERR(page))
1030 		return PTR_ERR(page);
1031 
1032 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1033 	zero_user(page, start, len);
1034 	set_page_dirty(page);
1035 	f2fs_put_page(page, 1);
1036 	return 0;
1037 }
1038 
1039 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1040 {
1041 	int err;
1042 
1043 	while (pg_start < pg_end) {
1044 		struct dnode_of_data dn;
1045 		pgoff_t end_offset, count;
1046 
1047 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1048 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1049 		if (err) {
1050 			if (err == -ENOENT) {
1051 				pg_start = f2fs_get_next_page_offset(&dn,
1052 								pg_start);
1053 				continue;
1054 			}
1055 			return err;
1056 		}
1057 
1058 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1059 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1060 
1061 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1062 
1063 		f2fs_truncate_data_blocks_range(&dn, count);
1064 		f2fs_put_dnode(&dn);
1065 
1066 		pg_start += count;
1067 	}
1068 	return 0;
1069 }
1070 
1071 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1072 {
1073 	pgoff_t pg_start, pg_end;
1074 	loff_t off_start, off_end;
1075 	int ret;
1076 
1077 	ret = f2fs_convert_inline_inode(inode);
1078 	if (ret)
1079 		return ret;
1080 
1081 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1082 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1083 
1084 	off_start = offset & (PAGE_SIZE - 1);
1085 	off_end = (offset + len) & (PAGE_SIZE - 1);
1086 
1087 	if (pg_start == pg_end) {
1088 		ret = fill_zero(inode, pg_start, off_start,
1089 						off_end - off_start);
1090 		if (ret)
1091 			return ret;
1092 	} else {
1093 		if (off_start) {
1094 			ret = fill_zero(inode, pg_start++, off_start,
1095 						PAGE_SIZE - off_start);
1096 			if (ret)
1097 				return ret;
1098 		}
1099 		if (off_end) {
1100 			ret = fill_zero(inode, pg_end, 0, off_end);
1101 			if (ret)
1102 				return ret;
1103 		}
1104 
1105 		if (pg_start < pg_end) {
1106 			loff_t blk_start, blk_end;
1107 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1108 
1109 			f2fs_balance_fs(sbi, true);
1110 
1111 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1112 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1113 
1114 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1115 			filemap_invalidate_lock(inode->i_mapping);
1116 
1117 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1118 
1119 			f2fs_lock_op(sbi);
1120 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1121 			f2fs_unlock_op(sbi);
1122 
1123 			filemap_invalidate_unlock(inode->i_mapping);
1124 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1125 		}
1126 	}
1127 
1128 	return ret;
1129 }
1130 
1131 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1132 				int *do_replace, pgoff_t off, pgoff_t len)
1133 {
1134 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135 	struct dnode_of_data dn;
1136 	int ret, done, i;
1137 
1138 next_dnode:
1139 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1140 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1141 	if (ret && ret != -ENOENT) {
1142 		return ret;
1143 	} else if (ret == -ENOENT) {
1144 		if (dn.max_level == 0)
1145 			return -ENOENT;
1146 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1147 						dn.ofs_in_node, len);
1148 		blkaddr += done;
1149 		do_replace += done;
1150 		goto next;
1151 	}
1152 
1153 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1154 							dn.ofs_in_node, len);
1155 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1156 		*blkaddr = f2fs_data_blkaddr(&dn);
1157 
1158 		if (__is_valid_data_blkaddr(*blkaddr) &&
1159 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1160 					DATA_GENERIC_ENHANCE)) {
1161 			f2fs_put_dnode(&dn);
1162 			return -EFSCORRUPTED;
1163 		}
1164 
1165 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1166 
1167 			if (f2fs_lfs_mode(sbi)) {
1168 				f2fs_put_dnode(&dn);
1169 				return -EOPNOTSUPP;
1170 			}
1171 
1172 			/* do not invalidate this block address */
1173 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1174 			*do_replace = 1;
1175 		}
1176 	}
1177 	f2fs_put_dnode(&dn);
1178 next:
1179 	len -= done;
1180 	off += done;
1181 	if (len)
1182 		goto next_dnode;
1183 	return 0;
1184 }
1185 
1186 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1187 				int *do_replace, pgoff_t off, int len)
1188 {
1189 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1190 	struct dnode_of_data dn;
1191 	int ret, i;
1192 
1193 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1194 		if (*do_replace == 0)
1195 			continue;
1196 
1197 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1198 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1199 		if (ret) {
1200 			dec_valid_block_count(sbi, inode, 1);
1201 			f2fs_invalidate_blocks(sbi, *blkaddr);
1202 		} else {
1203 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1204 		}
1205 		f2fs_put_dnode(&dn);
1206 	}
1207 	return 0;
1208 }
1209 
1210 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1211 			block_t *blkaddr, int *do_replace,
1212 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1213 {
1214 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1215 	pgoff_t i = 0;
1216 	int ret;
1217 
1218 	while (i < len) {
1219 		if (blkaddr[i] == NULL_ADDR && !full) {
1220 			i++;
1221 			continue;
1222 		}
1223 
1224 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1225 			struct dnode_of_data dn;
1226 			struct node_info ni;
1227 			size_t new_size;
1228 			pgoff_t ilen;
1229 
1230 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1231 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1232 			if (ret)
1233 				return ret;
1234 
1235 			ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1236 			if (ret) {
1237 				f2fs_put_dnode(&dn);
1238 				return ret;
1239 			}
1240 
1241 			ilen = min((pgoff_t)
1242 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1243 						dn.ofs_in_node, len - i);
1244 			do {
1245 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1246 				f2fs_truncate_data_blocks_range(&dn, 1);
1247 
1248 				if (do_replace[i]) {
1249 					f2fs_i_blocks_write(src_inode,
1250 							1, false, false);
1251 					f2fs_i_blocks_write(dst_inode,
1252 							1, true, false);
1253 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1254 					blkaddr[i], ni.version, true, false);
1255 
1256 					do_replace[i] = 0;
1257 				}
1258 				dn.ofs_in_node++;
1259 				i++;
1260 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1261 				if (dst_inode->i_size < new_size)
1262 					f2fs_i_size_write(dst_inode, new_size);
1263 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1264 
1265 			f2fs_put_dnode(&dn);
1266 		} else {
1267 			struct page *psrc, *pdst;
1268 
1269 			psrc = f2fs_get_lock_data_page(src_inode,
1270 							src + i, true);
1271 			if (IS_ERR(psrc))
1272 				return PTR_ERR(psrc);
1273 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1274 								true);
1275 			if (IS_ERR(pdst)) {
1276 				f2fs_put_page(psrc, 1);
1277 				return PTR_ERR(pdst);
1278 			}
1279 			f2fs_copy_page(psrc, pdst);
1280 			set_page_dirty(pdst);
1281 			f2fs_put_page(pdst, 1);
1282 			f2fs_put_page(psrc, 1);
1283 
1284 			ret = f2fs_truncate_hole(src_inode,
1285 						src + i, src + i + 1);
1286 			if (ret)
1287 				return ret;
1288 			i++;
1289 		}
1290 	}
1291 	return 0;
1292 }
1293 
1294 static int __exchange_data_block(struct inode *src_inode,
1295 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1296 			pgoff_t len, bool full)
1297 {
1298 	block_t *src_blkaddr;
1299 	int *do_replace;
1300 	pgoff_t olen;
1301 	int ret;
1302 
1303 	while (len) {
1304 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1305 
1306 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1307 					array_size(olen, sizeof(block_t)),
1308 					GFP_NOFS);
1309 		if (!src_blkaddr)
1310 			return -ENOMEM;
1311 
1312 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1313 					array_size(olen, sizeof(int)),
1314 					GFP_NOFS);
1315 		if (!do_replace) {
1316 			kvfree(src_blkaddr);
1317 			return -ENOMEM;
1318 		}
1319 
1320 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1321 					do_replace, src, olen);
1322 		if (ret)
1323 			goto roll_back;
1324 
1325 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1326 					do_replace, src, dst, olen, full);
1327 		if (ret)
1328 			goto roll_back;
1329 
1330 		src += olen;
1331 		dst += olen;
1332 		len -= olen;
1333 
1334 		kvfree(src_blkaddr);
1335 		kvfree(do_replace);
1336 	}
1337 	return 0;
1338 
1339 roll_back:
1340 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1341 	kvfree(src_blkaddr);
1342 	kvfree(do_replace);
1343 	return ret;
1344 }
1345 
1346 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1347 {
1348 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1349 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1350 	pgoff_t start = offset >> PAGE_SHIFT;
1351 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1352 	int ret;
1353 
1354 	f2fs_balance_fs(sbi, true);
1355 
1356 	/* avoid gc operation during block exchange */
1357 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1358 	filemap_invalidate_lock(inode->i_mapping);
1359 
1360 	f2fs_lock_op(sbi);
1361 	f2fs_drop_extent_tree(inode);
1362 	truncate_pagecache(inode, offset);
1363 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1364 	f2fs_unlock_op(sbi);
1365 
1366 	filemap_invalidate_unlock(inode->i_mapping);
1367 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1368 	return ret;
1369 }
1370 
1371 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1372 {
1373 	loff_t new_size;
1374 	int ret;
1375 
1376 	if (offset + len >= i_size_read(inode))
1377 		return -EINVAL;
1378 
1379 	/* collapse range should be aligned to block size of f2fs. */
1380 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1381 		return -EINVAL;
1382 
1383 	ret = f2fs_convert_inline_inode(inode);
1384 	if (ret)
1385 		return ret;
1386 
1387 	/* write out all dirty pages from offset */
1388 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1389 	if (ret)
1390 		return ret;
1391 
1392 	ret = f2fs_do_collapse(inode, offset, len);
1393 	if (ret)
1394 		return ret;
1395 
1396 	/* write out all moved pages, if possible */
1397 	filemap_invalidate_lock(inode->i_mapping);
1398 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1399 	truncate_pagecache(inode, offset);
1400 
1401 	new_size = i_size_read(inode) - len;
1402 	ret = f2fs_truncate_blocks(inode, new_size, true);
1403 	filemap_invalidate_unlock(inode->i_mapping);
1404 	if (!ret)
1405 		f2fs_i_size_write(inode, new_size);
1406 	return ret;
1407 }
1408 
1409 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1410 								pgoff_t end)
1411 {
1412 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1413 	pgoff_t index = start;
1414 	unsigned int ofs_in_node = dn->ofs_in_node;
1415 	blkcnt_t count = 0;
1416 	int ret;
1417 
1418 	for (; index < end; index++, dn->ofs_in_node++) {
1419 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1420 			count++;
1421 	}
1422 
1423 	dn->ofs_in_node = ofs_in_node;
1424 	ret = f2fs_reserve_new_blocks(dn, count);
1425 	if (ret)
1426 		return ret;
1427 
1428 	dn->ofs_in_node = ofs_in_node;
1429 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1430 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1431 		/*
1432 		 * f2fs_reserve_new_blocks will not guarantee entire block
1433 		 * allocation.
1434 		 */
1435 		if (dn->data_blkaddr == NULL_ADDR) {
1436 			ret = -ENOSPC;
1437 			break;
1438 		}
1439 		if (dn->data_blkaddr != NEW_ADDR) {
1440 			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1441 			dn->data_blkaddr = NEW_ADDR;
1442 			f2fs_set_data_blkaddr(dn);
1443 		}
1444 	}
1445 
1446 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1447 
1448 	return ret;
1449 }
1450 
1451 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1452 								int mode)
1453 {
1454 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1455 	struct address_space *mapping = inode->i_mapping;
1456 	pgoff_t index, pg_start, pg_end;
1457 	loff_t new_size = i_size_read(inode);
1458 	loff_t off_start, off_end;
1459 	int ret = 0;
1460 
1461 	ret = inode_newsize_ok(inode, (len + offset));
1462 	if (ret)
1463 		return ret;
1464 
1465 	ret = f2fs_convert_inline_inode(inode);
1466 	if (ret)
1467 		return ret;
1468 
1469 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1470 	if (ret)
1471 		return ret;
1472 
1473 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1474 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1475 
1476 	off_start = offset & (PAGE_SIZE - 1);
1477 	off_end = (offset + len) & (PAGE_SIZE - 1);
1478 
1479 	if (pg_start == pg_end) {
1480 		ret = fill_zero(inode, pg_start, off_start,
1481 						off_end - off_start);
1482 		if (ret)
1483 			return ret;
1484 
1485 		new_size = max_t(loff_t, new_size, offset + len);
1486 	} else {
1487 		if (off_start) {
1488 			ret = fill_zero(inode, pg_start++, off_start,
1489 						PAGE_SIZE - off_start);
1490 			if (ret)
1491 				return ret;
1492 
1493 			new_size = max_t(loff_t, new_size,
1494 					(loff_t)pg_start << PAGE_SHIFT);
1495 		}
1496 
1497 		for (index = pg_start; index < pg_end;) {
1498 			struct dnode_of_data dn;
1499 			unsigned int end_offset;
1500 			pgoff_t end;
1501 
1502 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1503 			filemap_invalidate_lock(mapping);
1504 
1505 			truncate_pagecache_range(inode,
1506 				(loff_t)index << PAGE_SHIFT,
1507 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1508 
1509 			f2fs_lock_op(sbi);
1510 
1511 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1512 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1513 			if (ret) {
1514 				f2fs_unlock_op(sbi);
1515 				filemap_invalidate_unlock(mapping);
1516 				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1517 				goto out;
1518 			}
1519 
1520 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1521 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1522 
1523 			ret = f2fs_do_zero_range(&dn, index, end);
1524 			f2fs_put_dnode(&dn);
1525 
1526 			f2fs_unlock_op(sbi);
1527 			filemap_invalidate_unlock(mapping);
1528 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1529 
1530 			f2fs_balance_fs(sbi, dn.node_changed);
1531 
1532 			if (ret)
1533 				goto out;
1534 
1535 			index = end;
1536 			new_size = max_t(loff_t, new_size,
1537 					(loff_t)index << PAGE_SHIFT);
1538 		}
1539 
1540 		if (off_end) {
1541 			ret = fill_zero(inode, pg_end, 0, off_end);
1542 			if (ret)
1543 				goto out;
1544 
1545 			new_size = max_t(loff_t, new_size, offset + len);
1546 		}
1547 	}
1548 
1549 out:
1550 	if (new_size > i_size_read(inode)) {
1551 		if (mode & FALLOC_FL_KEEP_SIZE)
1552 			file_set_keep_isize(inode);
1553 		else
1554 			f2fs_i_size_write(inode, new_size);
1555 	}
1556 	return ret;
1557 }
1558 
1559 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1560 {
1561 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1562 	struct address_space *mapping = inode->i_mapping;
1563 	pgoff_t nr, pg_start, pg_end, delta, idx;
1564 	loff_t new_size;
1565 	int ret = 0;
1566 
1567 	new_size = i_size_read(inode) + len;
1568 	ret = inode_newsize_ok(inode, new_size);
1569 	if (ret)
1570 		return ret;
1571 
1572 	if (offset >= i_size_read(inode))
1573 		return -EINVAL;
1574 
1575 	/* insert range should be aligned to block size of f2fs. */
1576 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1577 		return -EINVAL;
1578 
1579 	ret = f2fs_convert_inline_inode(inode);
1580 	if (ret)
1581 		return ret;
1582 
1583 	f2fs_balance_fs(sbi, true);
1584 
1585 	filemap_invalidate_lock(mapping);
1586 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1587 	filemap_invalidate_unlock(mapping);
1588 	if (ret)
1589 		return ret;
1590 
1591 	/* write out all dirty pages from offset */
1592 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1593 	if (ret)
1594 		return ret;
1595 
1596 	pg_start = offset >> PAGE_SHIFT;
1597 	pg_end = (offset + len) >> PAGE_SHIFT;
1598 	delta = pg_end - pg_start;
1599 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1600 
1601 	/* avoid gc operation during block exchange */
1602 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1603 	filemap_invalidate_lock(mapping);
1604 	truncate_pagecache(inode, offset);
1605 
1606 	while (!ret && idx > pg_start) {
1607 		nr = idx - pg_start;
1608 		if (nr > delta)
1609 			nr = delta;
1610 		idx -= nr;
1611 
1612 		f2fs_lock_op(sbi);
1613 		f2fs_drop_extent_tree(inode);
1614 
1615 		ret = __exchange_data_block(inode, inode, idx,
1616 					idx + delta, nr, false);
1617 		f2fs_unlock_op(sbi);
1618 	}
1619 	filemap_invalidate_unlock(mapping);
1620 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1621 
1622 	/* write out all moved pages, if possible */
1623 	filemap_invalidate_lock(mapping);
1624 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1625 	truncate_pagecache(inode, offset);
1626 	filemap_invalidate_unlock(mapping);
1627 
1628 	if (!ret)
1629 		f2fs_i_size_write(inode, new_size);
1630 	return ret;
1631 }
1632 
1633 static int expand_inode_data(struct inode *inode, loff_t offset,
1634 					loff_t len, int mode)
1635 {
1636 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1637 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1638 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1639 			.m_may_create = true };
1640 	pgoff_t pg_start, pg_end;
1641 	loff_t new_size = i_size_read(inode);
1642 	loff_t off_end;
1643 	block_t expanded = 0;
1644 	int err;
1645 
1646 	err = inode_newsize_ok(inode, (len + offset));
1647 	if (err)
1648 		return err;
1649 
1650 	err = f2fs_convert_inline_inode(inode);
1651 	if (err)
1652 		return err;
1653 
1654 	f2fs_balance_fs(sbi, true);
1655 
1656 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1657 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1658 	off_end = (offset + len) & (PAGE_SIZE - 1);
1659 
1660 	map.m_lblk = pg_start;
1661 	map.m_len = pg_end - pg_start;
1662 	if (off_end)
1663 		map.m_len++;
1664 
1665 	if (!map.m_len)
1666 		return 0;
1667 
1668 	if (f2fs_is_pinned_file(inode)) {
1669 		block_t sec_blks = BLKS_PER_SEC(sbi);
1670 		block_t sec_len = roundup(map.m_len, sec_blks);
1671 
1672 		map.m_len = sec_blks;
1673 next_alloc:
1674 		if (has_not_enough_free_secs(sbi, 0,
1675 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1676 			down_write(&sbi->gc_lock);
1677 			err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1678 			if (err && err != -ENODATA && err != -EAGAIN)
1679 				goto out_err;
1680 		}
1681 
1682 		down_write(&sbi->pin_sem);
1683 
1684 		f2fs_lock_op(sbi);
1685 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1686 		f2fs_unlock_op(sbi);
1687 
1688 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1689 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1690 
1691 		up_write(&sbi->pin_sem);
1692 
1693 		expanded += map.m_len;
1694 		sec_len -= map.m_len;
1695 		map.m_lblk += map.m_len;
1696 		if (!err && sec_len)
1697 			goto next_alloc;
1698 
1699 		map.m_len = expanded;
1700 	} else {
1701 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1702 		expanded = map.m_len;
1703 	}
1704 out_err:
1705 	if (err) {
1706 		pgoff_t last_off;
1707 
1708 		if (!expanded)
1709 			return err;
1710 
1711 		last_off = pg_start + expanded - 1;
1712 
1713 		/* update new size to the failed position */
1714 		new_size = (last_off == pg_end) ? offset + len :
1715 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1716 	} else {
1717 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1718 	}
1719 
1720 	if (new_size > i_size_read(inode)) {
1721 		if (mode & FALLOC_FL_KEEP_SIZE)
1722 			file_set_keep_isize(inode);
1723 		else
1724 			f2fs_i_size_write(inode, new_size);
1725 	}
1726 
1727 	return err;
1728 }
1729 
1730 static long f2fs_fallocate(struct file *file, int mode,
1731 				loff_t offset, loff_t len)
1732 {
1733 	struct inode *inode = file_inode(file);
1734 	long ret = 0;
1735 
1736 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1737 		return -EIO;
1738 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1739 		return -ENOSPC;
1740 	if (!f2fs_is_compress_backend_ready(inode))
1741 		return -EOPNOTSUPP;
1742 
1743 	/* f2fs only support ->fallocate for regular file */
1744 	if (!S_ISREG(inode->i_mode))
1745 		return -EINVAL;
1746 
1747 	if (IS_ENCRYPTED(inode) &&
1748 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1749 		return -EOPNOTSUPP;
1750 
1751 	if (f2fs_compressed_file(inode) &&
1752 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1753 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1754 		return -EOPNOTSUPP;
1755 
1756 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1757 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1758 			FALLOC_FL_INSERT_RANGE))
1759 		return -EOPNOTSUPP;
1760 
1761 	inode_lock(inode);
1762 
1763 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1764 		if (offset >= inode->i_size)
1765 			goto out;
1766 
1767 		ret = punch_hole(inode, offset, len);
1768 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1769 		ret = f2fs_collapse_range(inode, offset, len);
1770 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1771 		ret = f2fs_zero_range(inode, offset, len, mode);
1772 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1773 		ret = f2fs_insert_range(inode, offset, len);
1774 	} else {
1775 		ret = expand_inode_data(inode, offset, len, mode);
1776 	}
1777 
1778 	if (!ret) {
1779 		inode->i_mtime = inode->i_ctime = current_time(inode);
1780 		f2fs_mark_inode_dirty_sync(inode, false);
1781 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1782 	}
1783 
1784 out:
1785 	inode_unlock(inode);
1786 
1787 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1788 	return ret;
1789 }
1790 
1791 static int f2fs_release_file(struct inode *inode, struct file *filp)
1792 {
1793 	/*
1794 	 * f2fs_relase_file is called at every close calls. So we should
1795 	 * not drop any inmemory pages by close called by other process.
1796 	 */
1797 	if (!(filp->f_mode & FMODE_WRITE) ||
1798 			atomic_read(&inode->i_writecount) != 1)
1799 		return 0;
1800 
1801 	/* some remained atomic pages should discarded */
1802 	if (f2fs_is_atomic_file(inode))
1803 		f2fs_drop_inmem_pages(inode);
1804 	if (f2fs_is_volatile_file(inode)) {
1805 		set_inode_flag(inode, FI_DROP_CACHE);
1806 		filemap_fdatawrite(inode->i_mapping);
1807 		clear_inode_flag(inode, FI_DROP_CACHE);
1808 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1809 		stat_dec_volatile_write(inode);
1810 	}
1811 	return 0;
1812 }
1813 
1814 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1815 {
1816 	struct inode *inode = file_inode(file);
1817 
1818 	/*
1819 	 * If the process doing a transaction is crashed, we should do
1820 	 * roll-back. Otherwise, other reader/write can see corrupted database
1821 	 * until all the writers close its file. Since this should be done
1822 	 * before dropping file lock, it needs to do in ->flush.
1823 	 */
1824 	if (f2fs_is_atomic_file(inode) &&
1825 			F2FS_I(inode)->inmem_task == current)
1826 		f2fs_drop_inmem_pages(inode);
1827 	return 0;
1828 }
1829 
1830 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1831 {
1832 	struct f2fs_inode_info *fi = F2FS_I(inode);
1833 	u32 masked_flags = fi->i_flags & mask;
1834 
1835 	/* mask can be shrunk by flags_valid selector */
1836 	iflags &= mask;
1837 
1838 	/* Is it quota file? Do not allow user to mess with it */
1839 	if (IS_NOQUOTA(inode))
1840 		return -EPERM;
1841 
1842 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1843 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1844 			return -EOPNOTSUPP;
1845 		if (!f2fs_empty_dir(inode))
1846 			return -ENOTEMPTY;
1847 	}
1848 
1849 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1850 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1851 			return -EOPNOTSUPP;
1852 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1853 			return -EINVAL;
1854 	}
1855 
1856 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1857 		if (masked_flags & F2FS_COMPR_FL) {
1858 			if (!f2fs_disable_compressed_file(inode))
1859 				return -EINVAL;
1860 		}
1861 		if (iflags & F2FS_NOCOMP_FL)
1862 			return -EINVAL;
1863 		if (iflags & F2FS_COMPR_FL) {
1864 			if (!f2fs_may_compress(inode))
1865 				return -EINVAL;
1866 			if (S_ISREG(inode->i_mode) && inode->i_size)
1867 				return -EINVAL;
1868 
1869 			set_compress_context(inode);
1870 		}
1871 	}
1872 	if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1873 		if (masked_flags & F2FS_COMPR_FL)
1874 			return -EINVAL;
1875 	}
1876 
1877 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1878 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1879 					(fi->i_flags & F2FS_NOCOMP_FL));
1880 
1881 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1882 		set_inode_flag(inode, FI_PROJ_INHERIT);
1883 	else
1884 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1885 
1886 	inode->i_ctime = current_time(inode);
1887 	f2fs_set_inode_flags(inode);
1888 	f2fs_mark_inode_dirty_sync(inode, true);
1889 	return 0;
1890 }
1891 
1892 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1893 
1894 /*
1895  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1896  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1897  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1898  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1899  *
1900  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1901  * FS_IOC_FSSETXATTR is done by the VFS.
1902  */
1903 
1904 static const struct {
1905 	u32 iflag;
1906 	u32 fsflag;
1907 } f2fs_fsflags_map[] = {
1908 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1909 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1910 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1911 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1912 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1913 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1914 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1915 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1916 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1917 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1918 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1919 };
1920 
1921 #define F2FS_GETTABLE_FS_FL (		\
1922 		FS_COMPR_FL |		\
1923 		FS_SYNC_FL |		\
1924 		FS_IMMUTABLE_FL |	\
1925 		FS_APPEND_FL |		\
1926 		FS_NODUMP_FL |		\
1927 		FS_NOATIME_FL |		\
1928 		FS_NOCOMP_FL |		\
1929 		FS_INDEX_FL |		\
1930 		FS_DIRSYNC_FL |		\
1931 		FS_PROJINHERIT_FL |	\
1932 		FS_ENCRYPT_FL |		\
1933 		FS_INLINE_DATA_FL |	\
1934 		FS_NOCOW_FL |		\
1935 		FS_VERITY_FL |		\
1936 		FS_CASEFOLD_FL)
1937 
1938 #define F2FS_SETTABLE_FS_FL (		\
1939 		FS_COMPR_FL |		\
1940 		FS_SYNC_FL |		\
1941 		FS_IMMUTABLE_FL |	\
1942 		FS_APPEND_FL |		\
1943 		FS_NODUMP_FL |		\
1944 		FS_NOATIME_FL |		\
1945 		FS_NOCOMP_FL |		\
1946 		FS_DIRSYNC_FL |		\
1947 		FS_PROJINHERIT_FL |	\
1948 		FS_CASEFOLD_FL)
1949 
1950 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1951 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1952 {
1953 	u32 fsflags = 0;
1954 	int i;
1955 
1956 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1957 		if (iflags & f2fs_fsflags_map[i].iflag)
1958 			fsflags |= f2fs_fsflags_map[i].fsflag;
1959 
1960 	return fsflags;
1961 }
1962 
1963 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1964 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1965 {
1966 	u32 iflags = 0;
1967 	int i;
1968 
1969 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1970 		if (fsflags & f2fs_fsflags_map[i].fsflag)
1971 			iflags |= f2fs_fsflags_map[i].iflag;
1972 
1973 	return iflags;
1974 }
1975 
1976 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1977 {
1978 	struct inode *inode = file_inode(filp);
1979 
1980 	return put_user(inode->i_generation, (int __user *)arg);
1981 }
1982 
1983 static int f2fs_ioc_start_atomic_write(struct file *filp)
1984 {
1985 	struct inode *inode = file_inode(filp);
1986 	struct f2fs_inode_info *fi = F2FS_I(inode);
1987 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1988 	int ret;
1989 
1990 	if (!inode_owner_or_capable(&init_user_ns, inode))
1991 		return -EACCES;
1992 
1993 	if (!S_ISREG(inode->i_mode))
1994 		return -EINVAL;
1995 
1996 	if (filp->f_flags & O_DIRECT)
1997 		return -EINVAL;
1998 
1999 	ret = mnt_want_write_file(filp);
2000 	if (ret)
2001 		return ret;
2002 
2003 	inode_lock(inode);
2004 
2005 	f2fs_disable_compressed_file(inode);
2006 
2007 	if (f2fs_is_atomic_file(inode)) {
2008 		if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2009 			ret = -EINVAL;
2010 		goto out;
2011 	}
2012 
2013 	ret = f2fs_convert_inline_inode(inode);
2014 	if (ret)
2015 		goto out;
2016 
2017 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2018 
2019 	/*
2020 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2021 	 * f2fs_is_atomic_file.
2022 	 */
2023 	if (get_dirty_pages(inode))
2024 		f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2025 			  inode->i_ino, get_dirty_pages(inode));
2026 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2027 	if (ret) {
2028 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2029 		goto out;
2030 	}
2031 
2032 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2033 	if (list_empty(&fi->inmem_ilist))
2034 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2035 	sbi->atomic_files++;
2036 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2037 
2038 	/* add inode in inmem_list first and set atomic_file */
2039 	set_inode_flag(inode, FI_ATOMIC_FILE);
2040 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2041 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2042 
2043 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2044 	F2FS_I(inode)->inmem_task = current;
2045 	stat_update_max_atomic_write(inode);
2046 out:
2047 	inode_unlock(inode);
2048 	mnt_drop_write_file(filp);
2049 	return ret;
2050 }
2051 
2052 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2053 {
2054 	struct inode *inode = file_inode(filp);
2055 	int ret;
2056 
2057 	if (!inode_owner_or_capable(&init_user_ns, inode))
2058 		return -EACCES;
2059 
2060 	ret = mnt_want_write_file(filp);
2061 	if (ret)
2062 		return ret;
2063 
2064 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2065 
2066 	inode_lock(inode);
2067 
2068 	if (f2fs_is_volatile_file(inode)) {
2069 		ret = -EINVAL;
2070 		goto err_out;
2071 	}
2072 
2073 	if (f2fs_is_atomic_file(inode)) {
2074 		ret = f2fs_commit_inmem_pages(inode);
2075 		if (ret)
2076 			goto err_out;
2077 
2078 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2079 		if (!ret)
2080 			f2fs_drop_inmem_pages(inode);
2081 	} else {
2082 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2083 	}
2084 err_out:
2085 	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2086 		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2087 		ret = -EINVAL;
2088 	}
2089 	inode_unlock(inode);
2090 	mnt_drop_write_file(filp);
2091 	return ret;
2092 }
2093 
2094 static int f2fs_ioc_start_volatile_write(struct file *filp)
2095 {
2096 	struct inode *inode = file_inode(filp);
2097 	int ret;
2098 
2099 	if (!inode_owner_or_capable(&init_user_ns, inode))
2100 		return -EACCES;
2101 
2102 	if (!S_ISREG(inode->i_mode))
2103 		return -EINVAL;
2104 
2105 	ret = mnt_want_write_file(filp);
2106 	if (ret)
2107 		return ret;
2108 
2109 	inode_lock(inode);
2110 
2111 	if (f2fs_is_volatile_file(inode))
2112 		goto out;
2113 
2114 	ret = f2fs_convert_inline_inode(inode);
2115 	if (ret)
2116 		goto out;
2117 
2118 	stat_inc_volatile_write(inode);
2119 	stat_update_max_volatile_write(inode);
2120 
2121 	set_inode_flag(inode, FI_VOLATILE_FILE);
2122 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2123 out:
2124 	inode_unlock(inode);
2125 	mnt_drop_write_file(filp);
2126 	return ret;
2127 }
2128 
2129 static int f2fs_ioc_release_volatile_write(struct file *filp)
2130 {
2131 	struct inode *inode = file_inode(filp);
2132 	int ret;
2133 
2134 	if (!inode_owner_or_capable(&init_user_ns, inode))
2135 		return -EACCES;
2136 
2137 	ret = mnt_want_write_file(filp);
2138 	if (ret)
2139 		return ret;
2140 
2141 	inode_lock(inode);
2142 
2143 	if (!f2fs_is_volatile_file(inode))
2144 		goto out;
2145 
2146 	if (!f2fs_is_first_block_written(inode)) {
2147 		ret = truncate_partial_data_page(inode, 0, true);
2148 		goto out;
2149 	}
2150 
2151 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2152 out:
2153 	inode_unlock(inode);
2154 	mnt_drop_write_file(filp);
2155 	return ret;
2156 }
2157 
2158 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2159 {
2160 	struct inode *inode = file_inode(filp);
2161 	int ret;
2162 
2163 	if (!inode_owner_or_capable(&init_user_ns, inode))
2164 		return -EACCES;
2165 
2166 	ret = mnt_want_write_file(filp);
2167 	if (ret)
2168 		return ret;
2169 
2170 	inode_lock(inode);
2171 
2172 	if (f2fs_is_atomic_file(inode))
2173 		f2fs_drop_inmem_pages(inode);
2174 	if (f2fs_is_volatile_file(inode)) {
2175 		clear_inode_flag(inode, FI_VOLATILE_FILE);
2176 		stat_dec_volatile_write(inode);
2177 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2178 	}
2179 
2180 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2181 
2182 	inode_unlock(inode);
2183 
2184 	mnt_drop_write_file(filp);
2185 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2186 	return ret;
2187 }
2188 
2189 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2190 {
2191 	struct inode *inode = file_inode(filp);
2192 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2193 	struct super_block *sb = sbi->sb;
2194 	__u32 in;
2195 	int ret = 0;
2196 
2197 	if (!capable(CAP_SYS_ADMIN))
2198 		return -EPERM;
2199 
2200 	if (get_user(in, (__u32 __user *)arg))
2201 		return -EFAULT;
2202 
2203 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2204 		ret = mnt_want_write_file(filp);
2205 		if (ret) {
2206 			if (ret == -EROFS) {
2207 				ret = 0;
2208 				f2fs_stop_checkpoint(sbi, false);
2209 				set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2210 				trace_f2fs_shutdown(sbi, in, ret);
2211 			}
2212 			return ret;
2213 		}
2214 	}
2215 
2216 	switch (in) {
2217 	case F2FS_GOING_DOWN_FULLSYNC:
2218 		ret = freeze_bdev(sb->s_bdev);
2219 		if (ret)
2220 			goto out;
2221 		f2fs_stop_checkpoint(sbi, false);
2222 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2223 		thaw_bdev(sb->s_bdev);
2224 		break;
2225 	case F2FS_GOING_DOWN_METASYNC:
2226 		/* do checkpoint only */
2227 		ret = f2fs_sync_fs(sb, 1);
2228 		if (ret)
2229 			goto out;
2230 		f2fs_stop_checkpoint(sbi, false);
2231 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2232 		break;
2233 	case F2FS_GOING_DOWN_NOSYNC:
2234 		f2fs_stop_checkpoint(sbi, false);
2235 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2236 		break;
2237 	case F2FS_GOING_DOWN_METAFLUSH:
2238 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2239 		f2fs_stop_checkpoint(sbi, false);
2240 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2241 		break;
2242 	case F2FS_GOING_DOWN_NEED_FSCK:
2243 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2244 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2245 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2246 		/* do checkpoint only */
2247 		ret = f2fs_sync_fs(sb, 1);
2248 		goto out;
2249 	default:
2250 		ret = -EINVAL;
2251 		goto out;
2252 	}
2253 
2254 	f2fs_stop_gc_thread(sbi);
2255 	f2fs_stop_discard_thread(sbi);
2256 
2257 	f2fs_drop_discard_cmd(sbi);
2258 	clear_opt(sbi, DISCARD);
2259 
2260 	f2fs_update_time(sbi, REQ_TIME);
2261 out:
2262 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2263 		mnt_drop_write_file(filp);
2264 
2265 	trace_f2fs_shutdown(sbi, in, ret);
2266 
2267 	return ret;
2268 }
2269 
2270 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2271 {
2272 	struct inode *inode = file_inode(filp);
2273 	struct super_block *sb = inode->i_sb;
2274 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
2275 	struct fstrim_range range;
2276 	int ret;
2277 
2278 	if (!capable(CAP_SYS_ADMIN))
2279 		return -EPERM;
2280 
2281 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2282 		return -EOPNOTSUPP;
2283 
2284 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2285 				sizeof(range)))
2286 		return -EFAULT;
2287 
2288 	ret = mnt_want_write_file(filp);
2289 	if (ret)
2290 		return ret;
2291 
2292 	range.minlen = max((unsigned int)range.minlen,
2293 				q->limits.discard_granularity);
2294 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2295 	mnt_drop_write_file(filp);
2296 	if (ret < 0)
2297 		return ret;
2298 
2299 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2300 				sizeof(range)))
2301 		return -EFAULT;
2302 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2303 	return 0;
2304 }
2305 
2306 static bool uuid_is_nonzero(__u8 u[16])
2307 {
2308 	int i;
2309 
2310 	for (i = 0; i < 16; i++)
2311 		if (u[i])
2312 			return true;
2313 	return false;
2314 }
2315 
2316 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2317 {
2318 	struct inode *inode = file_inode(filp);
2319 
2320 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2321 		return -EOPNOTSUPP;
2322 
2323 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2324 
2325 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2326 }
2327 
2328 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2329 {
2330 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2331 		return -EOPNOTSUPP;
2332 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2333 }
2334 
2335 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2336 {
2337 	struct inode *inode = file_inode(filp);
2338 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2339 	int err;
2340 
2341 	if (!f2fs_sb_has_encrypt(sbi))
2342 		return -EOPNOTSUPP;
2343 
2344 	err = mnt_want_write_file(filp);
2345 	if (err)
2346 		return err;
2347 
2348 	down_write(&sbi->sb_lock);
2349 
2350 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2351 		goto got_it;
2352 
2353 	/* update superblock with uuid */
2354 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2355 
2356 	err = f2fs_commit_super(sbi, false);
2357 	if (err) {
2358 		/* undo new data */
2359 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2360 		goto out_err;
2361 	}
2362 got_it:
2363 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2364 									16))
2365 		err = -EFAULT;
2366 out_err:
2367 	up_write(&sbi->sb_lock);
2368 	mnt_drop_write_file(filp);
2369 	return err;
2370 }
2371 
2372 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2373 					     unsigned long arg)
2374 {
2375 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2376 		return -EOPNOTSUPP;
2377 
2378 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2379 }
2380 
2381 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2382 {
2383 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2384 		return -EOPNOTSUPP;
2385 
2386 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2387 }
2388 
2389 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2390 {
2391 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2392 		return -EOPNOTSUPP;
2393 
2394 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2395 }
2396 
2397 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2398 						    unsigned long arg)
2399 {
2400 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2401 		return -EOPNOTSUPP;
2402 
2403 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2404 }
2405 
2406 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2407 					      unsigned long arg)
2408 {
2409 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2410 		return -EOPNOTSUPP;
2411 
2412 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2413 }
2414 
2415 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2416 {
2417 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2418 		return -EOPNOTSUPP;
2419 
2420 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2421 }
2422 
2423 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2424 {
2425 	struct inode *inode = file_inode(filp);
2426 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2427 	__u32 sync;
2428 	int ret;
2429 
2430 	if (!capable(CAP_SYS_ADMIN))
2431 		return -EPERM;
2432 
2433 	if (get_user(sync, (__u32 __user *)arg))
2434 		return -EFAULT;
2435 
2436 	if (f2fs_readonly(sbi->sb))
2437 		return -EROFS;
2438 
2439 	ret = mnt_want_write_file(filp);
2440 	if (ret)
2441 		return ret;
2442 
2443 	if (!sync) {
2444 		if (!down_write_trylock(&sbi->gc_lock)) {
2445 			ret = -EBUSY;
2446 			goto out;
2447 		}
2448 	} else {
2449 		down_write(&sbi->gc_lock);
2450 	}
2451 
2452 	ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2453 out:
2454 	mnt_drop_write_file(filp);
2455 	return ret;
2456 }
2457 
2458 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2459 {
2460 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2461 	u64 end;
2462 	int ret;
2463 
2464 	if (!capable(CAP_SYS_ADMIN))
2465 		return -EPERM;
2466 	if (f2fs_readonly(sbi->sb))
2467 		return -EROFS;
2468 
2469 	end = range->start + range->len;
2470 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2471 					end >= MAX_BLKADDR(sbi))
2472 		return -EINVAL;
2473 
2474 	ret = mnt_want_write_file(filp);
2475 	if (ret)
2476 		return ret;
2477 
2478 do_more:
2479 	if (!range->sync) {
2480 		if (!down_write_trylock(&sbi->gc_lock)) {
2481 			ret = -EBUSY;
2482 			goto out;
2483 		}
2484 	} else {
2485 		down_write(&sbi->gc_lock);
2486 	}
2487 
2488 	ret = f2fs_gc(sbi, range->sync, true, false,
2489 				GET_SEGNO(sbi, range->start));
2490 	if (ret) {
2491 		if (ret == -EBUSY)
2492 			ret = -EAGAIN;
2493 		goto out;
2494 	}
2495 	range->start += BLKS_PER_SEC(sbi);
2496 	if (range->start <= end)
2497 		goto do_more;
2498 out:
2499 	mnt_drop_write_file(filp);
2500 	return ret;
2501 }
2502 
2503 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2504 {
2505 	struct f2fs_gc_range range;
2506 
2507 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2508 							sizeof(range)))
2509 		return -EFAULT;
2510 	return __f2fs_ioc_gc_range(filp, &range);
2511 }
2512 
2513 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2514 {
2515 	struct inode *inode = file_inode(filp);
2516 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2517 	int ret;
2518 
2519 	if (!capable(CAP_SYS_ADMIN))
2520 		return -EPERM;
2521 
2522 	if (f2fs_readonly(sbi->sb))
2523 		return -EROFS;
2524 
2525 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2526 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2527 		return -EINVAL;
2528 	}
2529 
2530 	ret = mnt_want_write_file(filp);
2531 	if (ret)
2532 		return ret;
2533 
2534 	ret = f2fs_sync_fs(sbi->sb, 1);
2535 
2536 	mnt_drop_write_file(filp);
2537 	return ret;
2538 }
2539 
2540 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2541 					struct file *filp,
2542 					struct f2fs_defragment *range)
2543 {
2544 	struct inode *inode = file_inode(filp);
2545 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2546 					.m_seg_type = NO_CHECK_TYPE,
2547 					.m_may_create = false };
2548 	struct extent_info ei = {0, 0, 0};
2549 	pgoff_t pg_start, pg_end, next_pgofs;
2550 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2551 	unsigned int total = 0, sec_num;
2552 	block_t blk_end = 0;
2553 	bool fragmented = false;
2554 	int err;
2555 
2556 	/* if in-place-update policy is enabled, don't waste time here */
2557 	if (f2fs_should_update_inplace(inode, NULL))
2558 		return -EINVAL;
2559 
2560 	pg_start = range->start >> PAGE_SHIFT;
2561 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2562 
2563 	f2fs_balance_fs(sbi, true);
2564 
2565 	inode_lock(inode);
2566 
2567 	/* writeback all dirty pages in the range */
2568 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2569 						range->start + range->len - 1);
2570 	if (err)
2571 		goto out;
2572 
2573 	/*
2574 	 * lookup mapping info in extent cache, skip defragmenting if physical
2575 	 * block addresses are continuous.
2576 	 */
2577 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2578 		if (ei.fofs + ei.len >= pg_end)
2579 			goto out;
2580 	}
2581 
2582 	map.m_lblk = pg_start;
2583 	map.m_next_pgofs = &next_pgofs;
2584 
2585 	/*
2586 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2587 	 * physical block addresses are continuous even if there are hole(s)
2588 	 * in logical blocks.
2589 	 */
2590 	while (map.m_lblk < pg_end) {
2591 		map.m_len = pg_end - map.m_lblk;
2592 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2593 		if (err)
2594 			goto out;
2595 
2596 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2597 			map.m_lblk = next_pgofs;
2598 			continue;
2599 		}
2600 
2601 		if (blk_end && blk_end != map.m_pblk)
2602 			fragmented = true;
2603 
2604 		/* record total count of block that we're going to move */
2605 		total += map.m_len;
2606 
2607 		blk_end = map.m_pblk + map.m_len;
2608 
2609 		map.m_lblk += map.m_len;
2610 	}
2611 
2612 	if (!fragmented) {
2613 		total = 0;
2614 		goto out;
2615 	}
2616 
2617 	sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2618 
2619 	/*
2620 	 * make sure there are enough free section for LFS allocation, this can
2621 	 * avoid defragment running in SSR mode when free section are allocated
2622 	 * intensively
2623 	 */
2624 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2625 		err = -EAGAIN;
2626 		goto out;
2627 	}
2628 
2629 	map.m_lblk = pg_start;
2630 	map.m_len = pg_end - pg_start;
2631 	total = 0;
2632 
2633 	while (map.m_lblk < pg_end) {
2634 		pgoff_t idx;
2635 		int cnt = 0;
2636 
2637 do_map:
2638 		map.m_len = pg_end - map.m_lblk;
2639 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2640 		if (err)
2641 			goto clear_out;
2642 
2643 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2644 			map.m_lblk = next_pgofs;
2645 			goto check;
2646 		}
2647 
2648 		set_inode_flag(inode, FI_DO_DEFRAG);
2649 
2650 		idx = map.m_lblk;
2651 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2652 			struct page *page;
2653 
2654 			page = f2fs_get_lock_data_page(inode, idx, true);
2655 			if (IS_ERR(page)) {
2656 				err = PTR_ERR(page);
2657 				goto clear_out;
2658 			}
2659 
2660 			set_page_dirty(page);
2661 			f2fs_put_page(page, 1);
2662 
2663 			idx++;
2664 			cnt++;
2665 			total++;
2666 		}
2667 
2668 		map.m_lblk = idx;
2669 check:
2670 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2671 			goto do_map;
2672 
2673 		clear_inode_flag(inode, FI_DO_DEFRAG);
2674 
2675 		err = filemap_fdatawrite(inode->i_mapping);
2676 		if (err)
2677 			goto out;
2678 	}
2679 clear_out:
2680 	clear_inode_flag(inode, FI_DO_DEFRAG);
2681 out:
2682 	inode_unlock(inode);
2683 	if (!err)
2684 		range->len = (u64)total << PAGE_SHIFT;
2685 	return err;
2686 }
2687 
2688 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2689 {
2690 	struct inode *inode = file_inode(filp);
2691 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2692 	struct f2fs_defragment range;
2693 	int err;
2694 
2695 	if (!capable(CAP_SYS_ADMIN))
2696 		return -EPERM;
2697 
2698 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2699 		return -EINVAL;
2700 
2701 	if (f2fs_readonly(sbi->sb))
2702 		return -EROFS;
2703 
2704 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2705 							sizeof(range)))
2706 		return -EFAULT;
2707 
2708 	/* verify alignment of offset & size */
2709 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2710 		return -EINVAL;
2711 
2712 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2713 					max_file_blocks(inode)))
2714 		return -EINVAL;
2715 
2716 	err = mnt_want_write_file(filp);
2717 	if (err)
2718 		return err;
2719 
2720 	err = f2fs_defragment_range(sbi, filp, &range);
2721 	mnt_drop_write_file(filp);
2722 
2723 	f2fs_update_time(sbi, REQ_TIME);
2724 	if (err < 0)
2725 		return err;
2726 
2727 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2728 							sizeof(range)))
2729 		return -EFAULT;
2730 
2731 	return 0;
2732 }
2733 
2734 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2735 			struct file *file_out, loff_t pos_out, size_t len)
2736 {
2737 	struct inode *src = file_inode(file_in);
2738 	struct inode *dst = file_inode(file_out);
2739 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2740 	size_t olen = len, dst_max_i_size = 0;
2741 	size_t dst_osize;
2742 	int ret;
2743 
2744 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2745 				src->i_sb != dst->i_sb)
2746 		return -EXDEV;
2747 
2748 	if (unlikely(f2fs_readonly(src->i_sb)))
2749 		return -EROFS;
2750 
2751 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2752 		return -EINVAL;
2753 
2754 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2755 		return -EOPNOTSUPP;
2756 
2757 	if (pos_out < 0 || pos_in < 0)
2758 		return -EINVAL;
2759 
2760 	if (src == dst) {
2761 		if (pos_in == pos_out)
2762 			return 0;
2763 		if (pos_out > pos_in && pos_out < pos_in + len)
2764 			return -EINVAL;
2765 	}
2766 
2767 	inode_lock(src);
2768 	if (src != dst) {
2769 		ret = -EBUSY;
2770 		if (!inode_trylock(dst))
2771 			goto out;
2772 	}
2773 
2774 	ret = -EINVAL;
2775 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2776 		goto out_unlock;
2777 	if (len == 0)
2778 		olen = len = src->i_size - pos_in;
2779 	if (pos_in + len == src->i_size)
2780 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2781 	if (len == 0) {
2782 		ret = 0;
2783 		goto out_unlock;
2784 	}
2785 
2786 	dst_osize = dst->i_size;
2787 	if (pos_out + olen > dst->i_size)
2788 		dst_max_i_size = pos_out + olen;
2789 
2790 	/* verify the end result is block aligned */
2791 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2792 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2793 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2794 		goto out_unlock;
2795 
2796 	ret = f2fs_convert_inline_inode(src);
2797 	if (ret)
2798 		goto out_unlock;
2799 
2800 	ret = f2fs_convert_inline_inode(dst);
2801 	if (ret)
2802 		goto out_unlock;
2803 
2804 	/* write out all dirty pages from offset */
2805 	ret = filemap_write_and_wait_range(src->i_mapping,
2806 					pos_in, pos_in + len);
2807 	if (ret)
2808 		goto out_unlock;
2809 
2810 	ret = filemap_write_and_wait_range(dst->i_mapping,
2811 					pos_out, pos_out + len);
2812 	if (ret)
2813 		goto out_unlock;
2814 
2815 	f2fs_balance_fs(sbi, true);
2816 
2817 	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2818 	if (src != dst) {
2819 		ret = -EBUSY;
2820 		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2821 			goto out_src;
2822 	}
2823 
2824 	f2fs_lock_op(sbi);
2825 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2826 				pos_out >> F2FS_BLKSIZE_BITS,
2827 				len >> F2FS_BLKSIZE_BITS, false);
2828 
2829 	if (!ret) {
2830 		if (dst_max_i_size)
2831 			f2fs_i_size_write(dst, dst_max_i_size);
2832 		else if (dst_osize != dst->i_size)
2833 			f2fs_i_size_write(dst, dst_osize);
2834 	}
2835 	f2fs_unlock_op(sbi);
2836 
2837 	if (src != dst)
2838 		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2839 out_src:
2840 	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2841 out_unlock:
2842 	if (src != dst)
2843 		inode_unlock(dst);
2844 out:
2845 	inode_unlock(src);
2846 	return ret;
2847 }
2848 
2849 static int __f2fs_ioc_move_range(struct file *filp,
2850 				struct f2fs_move_range *range)
2851 {
2852 	struct fd dst;
2853 	int err;
2854 
2855 	if (!(filp->f_mode & FMODE_READ) ||
2856 			!(filp->f_mode & FMODE_WRITE))
2857 		return -EBADF;
2858 
2859 	dst = fdget(range->dst_fd);
2860 	if (!dst.file)
2861 		return -EBADF;
2862 
2863 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2864 		err = -EBADF;
2865 		goto err_out;
2866 	}
2867 
2868 	err = mnt_want_write_file(filp);
2869 	if (err)
2870 		goto err_out;
2871 
2872 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2873 					range->pos_out, range->len);
2874 
2875 	mnt_drop_write_file(filp);
2876 err_out:
2877 	fdput(dst);
2878 	return err;
2879 }
2880 
2881 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2882 {
2883 	struct f2fs_move_range range;
2884 
2885 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2886 							sizeof(range)))
2887 		return -EFAULT;
2888 	return __f2fs_ioc_move_range(filp, &range);
2889 }
2890 
2891 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2892 {
2893 	struct inode *inode = file_inode(filp);
2894 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2895 	struct sit_info *sm = SIT_I(sbi);
2896 	unsigned int start_segno = 0, end_segno = 0;
2897 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2898 	struct f2fs_flush_device range;
2899 	int ret;
2900 
2901 	if (!capable(CAP_SYS_ADMIN))
2902 		return -EPERM;
2903 
2904 	if (f2fs_readonly(sbi->sb))
2905 		return -EROFS;
2906 
2907 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2908 		return -EINVAL;
2909 
2910 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2911 							sizeof(range)))
2912 		return -EFAULT;
2913 
2914 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2915 			__is_large_section(sbi)) {
2916 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2917 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2918 		return -EINVAL;
2919 	}
2920 
2921 	ret = mnt_want_write_file(filp);
2922 	if (ret)
2923 		return ret;
2924 
2925 	if (range.dev_num != 0)
2926 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2927 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2928 
2929 	start_segno = sm->last_victim[FLUSH_DEVICE];
2930 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2931 		start_segno = dev_start_segno;
2932 	end_segno = min(start_segno + range.segments, dev_end_segno);
2933 
2934 	while (start_segno < end_segno) {
2935 		if (!down_write_trylock(&sbi->gc_lock)) {
2936 			ret = -EBUSY;
2937 			goto out;
2938 		}
2939 		sm->last_victim[GC_CB] = end_segno + 1;
2940 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2941 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2942 		ret = f2fs_gc(sbi, true, true, true, start_segno);
2943 		if (ret == -EAGAIN)
2944 			ret = 0;
2945 		else if (ret < 0)
2946 			break;
2947 		start_segno++;
2948 	}
2949 out:
2950 	mnt_drop_write_file(filp);
2951 	return ret;
2952 }
2953 
2954 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2955 {
2956 	struct inode *inode = file_inode(filp);
2957 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2958 
2959 	/* Must validate to set it with SQLite behavior in Android. */
2960 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2961 
2962 	return put_user(sb_feature, (u32 __user *)arg);
2963 }
2964 
2965 #ifdef CONFIG_QUOTA
2966 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2967 {
2968 	struct dquot *transfer_to[MAXQUOTAS] = {};
2969 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2970 	struct super_block *sb = sbi->sb;
2971 	int err = 0;
2972 
2973 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2974 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2975 		err = __dquot_transfer(inode, transfer_to);
2976 		if (err)
2977 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2978 		dqput(transfer_to[PRJQUOTA]);
2979 	}
2980 	return err;
2981 }
2982 
2983 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2984 {
2985 	struct f2fs_inode_info *fi = F2FS_I(inode);
2986 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2987 	struct page *ipage;
2988 	kprojid_t kprojid;
2989 	int err;
2990 
2991 	if (!f2fs_sb_has_project_quota(sbi)) {
2992 		if (projid != F2FS_DEF_PROJID)
2993 			return -EOPNOTSUPP;
2994 		else
2995 			return 0;
2996 	}
2997 
2998 	if (!f2fs_has_extra_attr(inode))
2999 		return -EOPNOTSUPP;
3000 
3001 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3002 
3003 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3004 		return 0;
3005 
3006 	err = -EPERM;
3007 	/* Is it quota file? Do not allow user to mess with it */
3008 	if (IS_NOQUOTA(inode))
3009 		return err;
3010 
3011 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3012 	if (IS_ERR(ipage))
3013 		return PTR_ERR(ipage);
3014 
3015 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3016 								i_projid)) {
3017 		err = -EOVERFLOW;
3018 		f2fs_put_page(ipage, 1);
3019 		return err;
3020 	}
3021 	f2fs_put_page(ipage, 1);
3022 
3023 	err = f2fs_dquot_initialize(inode);
3024 	if (err)
3025 		return err;
3026 
3027 	f2fs_lock_op(sbi);
3028 	err = f2fs_transfer_project_quota(inode, kprojid);
3029 	if (err)
3030 		goto out_unlock;
3031 
3032 	F2FS_I(inode)->i_projid = kprojid;
3033 	inode->i_ctime = current_time(inode);
3034 	f2fs_mark_inode_dirty_sync(inode, true);
3035 out_unlock:
3036 	f2fs_unlock_op(sbi);
3037 	return err;
3038 }
3039 #else
3040 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3041 {
3042 	return 0;
3043 }
3044 
3045 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3046 {
3047 	if (projid != F2FS_DEF_PROJID)
3048 		return -EOPNOTSUPP;
3049 	return 0;
3050 }
3051 #endif
3052 
3053 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3054 {
3055 	struct inode *inode = d_inode(dentry);
3056 	struct f2fs_inode_info *fi = F2FS_I(inode);
3057 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3058 
3059 	if (IS_ENCRYPTED(inode))
3060 		fsflags |= FS_ENCRYPT_FL;
3061 	if (IS_VERITY(inode))
3062 		fsflags |= FS_VERITY_FL;
3063 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3064 		fsflags |= FS_INLINE_DATA_FL;
3065 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3066 		fsflags |= FS_NOCOW_FL;
3067 
3068 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3069 
3070 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3071 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3072 
3073 	return 0;
3074 }
3075 
3076 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3077 		      struct dentry *dentry, struct fileattr *fa)
3078 {
3079 	struct inode *inode = d_inode(dentry);
3080 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3081 	u32 iflags;
3082 	int err;
3083 
3084 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3085 		return -EIO;
3086 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3087 		return -ENOSPC;
3088 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3089 		return -EOPNOTSUPP;
3090 	fsflags &= F2FS_SETTABLE_FS_FL;
3091 	if (!fa->flags_valid)
3092 		mask &= FS_COMMON_FL;
3093 
3094 	iflags = f2fs_fsflags_to_iflags(fsflags);
3095 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3096 		return -EOPNOTSUPP;
3097 
3098 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3099 	if (!err)
3100 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3101 
3102 	return err;
3103 }
3104 
3105 int f2fs_pin_file_control(struct inode *inode, bool inc)
3106 {
3107 	struct f2fs_inode_info *fi = F2FS_I(inode);
3108 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3109 
3110 	/* Use i_gc_failures for normal file as a risk signal. */
3111 	if (inc)
3112 		f2fs_i_gc_failures_write(inode,
3113 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3114 
3115 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3116 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3117 			  __func__, inode->i_ino,
3118 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3119 		clear_inode_flag(inode, FI_PIN_FILE);
3120 		return -EAGAIN;
3121 	}
3122 	return 0;
3123 }
3124 
3125 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3126 {
3127 	struct inode *inode = file_inode(filp);
3128 	__u32 pin;
3129 	int ret = 0;
3130 
3131 	if (get_user(pin, (__u32 __user *)arg))
3132 		return -EFAULT;
3133 
3134 	if (!S_ISREG(inode->i_mode))
3135 		return -EINVAL;
3136 
3137 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3138 		return -EROFS;
3139 
3140 	ret = mnt_want_write_file(filp);
3141 	if (ret)
3142 		return ret;
3143 
3144 	inode_lock(inode);
3145 
3146 	if (f2fs_should_update_outplace(inode, NULL)) {
3147 		ret = -EINVAL;
3148 		goto out;
3149 	}
3150 
3151 	if (!pin) {
3152 		clear_inode_flag(inode, FI_PIN_FILE);
3153 		f2fs_i_gc_failures_write(inode, 0);
3154 		goto done;
3155 	}
3156 
3157 	if (f2fs_pin_file_control(inode, false)) {
3158 		ret = -EAGAIN;
3159 		goto out;
3160 	}
3161 
3162 	ret = f2fs_convert_inline_inode(inode);
3163 	if (ret)
3164 		goto out;
3165 
3166 	if (!f2fs_disable_compressed_file(inode)) {
3167 		ret = -EOPNOTSUPP;
3168 		goto out;
3169 	}
3170 
3171 	set_inode_flag(inode, FI_PIN_FILE);
3172 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3173 done:
3174 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3175 out:
3176 	inode_unlock(inode);
3177 	mnt_drop_write_file(filp);
3178 	return ret;
3179 }
3180 
3181 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3182 {
3183 	struct inode *inode = file_inode(filp);
3184 	__u32 pin = 0;
3185 
3186 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3187 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3188 	return put_user(pin, (u32 __user *)arg);
3189 }
3190 
3191 int f2fs_precache_extents(struct inode *inode)
3192 {
3193 	struct f2fs_inode_info *fi = F2FS_I(inode);
3194 	struct f2fs_map_blocks map;
3195 	pgoff_t m_next_extent;
3196 	loff_t end;
3197 	int err;
3198 
3199 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3200 		return -EOPNOTSUPP;
3201 
3202 	map.m_lblk = 0;
3203 	map.m_next_pgofs = NULL;
3204 	map.m_next_extent = &m_next_extent;
3205 	map.m_seg_type = NO_CHECK_TYPE;
3206 	map.m_may_create = false;
3207 	end = max_file_blocks(inode);
3208 
3209 	while (map.m_lblk < end) {
3210 		map.m_len = end - map.m_lblk;
3211 
3212 		down_write(&fi->i_gc_rwsem[WRITE]);
3213 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3214 		up_write(&fi->i_gc_rwsem[WRITE]);
3215 		if (err)
3216 			return err;
3217 
3218 		map.m_lblk = m_next_extent;
3219 	}
3220 
3221 	return 0;
3222 }
3223 
3224 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3225 {
3226 	return f2fs_precache_extents(file_inode(filp));
3227 }
3228 
3229 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3230 {
3231 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3232 	__u64 block_count;
3233 
3234 	if (!capable(CAP_SYS_ADMIN))
3235 		return -EPERM;
3236 
3237 	if (f2fs_readonly(sbi->sb))
3238 		return -EROFS;
3239 
3240 	if (copy_from_user(&block_count, (void __user *)arg,
3241 			   sizeof(block_count)))
3242 		return -EFAULT;
3243 
3244 	return f2fs_resize_fs(sbi, block_count);
3245 }
3246 
3247 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3248 {
3249 	struct inode *inode = file_inode(filp);
3250 
3251 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3252 
3253 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3254 		f2fs_warn(F2FS_I_SB(inode),
3255 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3256 			  inode->i_ino);
3257 		return -EOPNOTSUPP;
3258 	}
3259 
3260 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3261 }
3262 
3263 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3264 {
3265 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3266 		return -EOPNOTSUPP;
3267 
3268 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3269 }
3270 
3271 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3272 {
3273 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3274 		return -EOPNOTSUPP;
3275 
3276 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3277 }
3278 
3279 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3280 {
3281 	struct inode *inode = file_inode(filp);
3282 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3283 	char *vbuf;
3284 	int count;
3285 	int err = 0;
3286 
3287 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3288 	if (!vbuf)
3289 		return -ENOMEM;
3290 
3291 	down_read(&sbi->sb_lock);
3292 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3293 			ARRAY_SIZE(sbi->raw_super->volume_name),
3294 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3295 	up_read(&sbi->sb_lock);
3296 
3297 	if (copy_to_user((char __user *)arg, vbuf,
3298 				min(FSLABEL_MAX, count)))
3299 		err = -EFAULT;
3300 
3301 	kfree(vbuf);
3302 	return err;
3303 }
3304 
3305 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3306 {
3307 	struct inode *inode = file_inode(filp);
3308 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3309 	char *vbuf;
3310 	int err = 0;
3311 
3312 	if (!capable(CAP_SYS_ADMIN))
3313 		return -EPERM;
3314 
3315 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3316 	if (IS_ERR(vbuf))
3317 		return PTR_ERR(vbuf);
3318 
3319 	err = mnt_want_write_file(filp);
3320 	if (err)
3321 		goto out;
3322 
3323 	down_write(&sbi->sb_lock);
3324 
3325 	memset(sbi->raw_super->volume_name, 0,
3326 			sizeof(sbi->raw_super->volume_name));
3327 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3328 			sbi->raw_super->volume_name,
3329 			ARRAY_SIZE(sbi->raw_super->volume_name));
3330 
3331 	err = f2fs_commit_super(sbi, false);
3332 
3333 	up_write(&sbi->sb_lock);
3334 
3335 	mnt_drop_write_file(filp);
3336 out:
3337 	kfree(vbuf);
3338 	return err;
3339 }
3340 
3341 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3342 {
3343 	struct inode *inode = file_inode(filp);
3344 	__u64 blocks;
3345 
3346 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3347 		return -EOPNOTSUPP;
3348 
3349 	if (!f2fs_compressed_file(inode))
3350 		return -EINVAL;
3351 
3352 	blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3353 	return put_user(blocks, (u64 __user *)arg);
3354 }
3355 
3356 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3357 {
3358 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3359 	unsigned int released_blocks = 0;
3360 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3361 	block_t blkaddr;
3362 	int i;
3363 
3364 	for (i = 0; i < count; i++) {
3365 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3366 						dn->ofs_in_node + i);
3367 
3368 		if (!__is_valid_data_blkaddr(blkaddr))
3369 			continue;
3370 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3371 					DATA_GENERIC_ENHANCE)))
3372 			return -EFSCORRUPTED;
3373 	}
3374 
3375 	while (count) {
3376 		int compr_blocks = 0;
3377 
3378 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3379 			blkaddr = f2fs_data_blkaddr(dn);
3380 
3381 			if (i == 0) {
3382 				if (blkaddr == COMPRESS_ADDR)
3383 					continue;
3384 				dn->ofs_in_node += cluster_size;
3385 				goto next;
3386 			}
3387 
3388 			if (__is_valid_data_blkaddr(blkaddr))
3389 				compr_blocks++;
3390 
3391 			if (blkaddr != NEW_ADDR)
3392 				continue;
3393 
3394 			dn->data_blkaddr = NULL_ADDR;
3395 			f2fs_set_data_blkaddr(dn);
3396 		}
3397 
3398 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3399 		dec_valid_block_count(sbi, dn->inode,
3400 					cluster_size - compr_blocks);
3401 
3402 		released_blocks += cluster_size - compr_blocks;
3403 next:
3404 		count -= cluster_size;
3405 	}
3406 
3407 	return released_blocks;
3408 }
3409 
3410 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3411 {
3412 	struct inode *inode = file_inode(filp);
3413 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3414 	pgoff_t page_idx = 0, last_idx;
3415 	unsigned int released_blocks = 0;
3416 	int ret;
3417 	int writecount;
3418 
3419 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3420 		return -EOPNOTSUPP;
3421 
3422 	if (!f2fs_compressed_file(inode))
3423 		return -EINVAL;
3424 
3425 	if (f2fs_readonly(sbi->sb))
3426 		return -EROFS;
3427 
3428 	ret = mnt_want_write_file(filp);
3429 	if (ret)
3430 		return ret;
3431 
3432 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3433 
3434 	inode_lock(inode);
3435 
3436 	writecount = atomic_read(&inode->i_writecount);
3437 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3438 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3439 		ret = -EBUSY;
3440 		goto out;
3441 	}
3442 
3443 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3444 		ret = -EINVAL;
3445 		goto out;
3446 	}
3447 
3448 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3449 	if (ret)
3450 		goto out;
3451 
3452 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3453 	inode->i_ctime = current_time(inode);
3454 	f2fs_mark_inode_dirty_sync(inode, true);
3455 
3456 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3457 		goto out;
3458 
3459 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3460 	filemap_invalidate_lock(inode->i_mapping);
3461 
3462 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3463 
3464 	while (page_idx < last_idx) {
3465 		struct dnode_of_data dn;
3466 		pgoff_t end_offset, count;
3467 
3468 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3469 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3470 		if (ret) {
3471 			if (ret == -ENOENT) {
3472 				page_idx = f2fs_get_next_page_offset(&dn,
3473 								page_idx);
3474 				ret = 0;
3475 				continue;
3476 			}
3477 			break;
3478 		}
3479 
3480 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3481 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3482 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3483 
3484 		ret = release_compress_blocks(&dn, count);
3485 
3486 		f2fs_put_dnode(&dn);
3487 
3488 		if (ret < 0)
3489 			break;
3490 
3491 		page_idx += count;
3492 		released_blocks += ret;
3493 	}
3494 
3495 	filemap_invalidate_unlock(inode->i_mapping);
3496 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3497 out:
3498 	inode_unlock(inode);
3499 
3500 	mnt_drop_write_file(filp);
3501 
3502 	if (ret >= 0) {
3503 		ret = put_user(released_blocks, (u64 __user *)arg);
3504 	} else if (released_blocks &&
3505 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3506 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3507 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3508 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3509 			"run fsck to fix.",
3510 			__func__, inode->i_ino, inode->i_blocks,
3511 			released_blocks,
3512 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3513 	}
3514 
3515 	return ret;
3516 }
3517 
3518 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3519 {
3520 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3521 	unsigned int reserved_blocks = 0;
3522 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3523 	block_t blkaddr;
3524 	int i;
3525 
3526 	for (i = 0; i < count; i++) {
3527 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3528 						dn->ofs_in_node + i);
3529 
3530 		if (!__is_valid_data_blkaddr(blkaddr))
3531 			continue;
3532 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3533 					DATA_GENERIC_ENHANCE)))
3534 			return -EFSCORRUPTED;
3535 	}
3536 
3537 	while (count) {
3538 		int compr_blocks = 0;
3539 		blkcnt_t reserved;
3540 		int ret;
3541 
3542 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3543 			blkaddr = f2fs_data_blkaddr(dn);
3544 
3545 			if (i == 0) {
3546 				if (blkaddr == COMPRESS_ADDR)
3547 					continue;
3548 				dn->ofs_in_node += cluster_size;
3549 				goto next;
3550 			}
3551 
3552 			if (__is_valid_data_blkaddr(blkaddr)) {
3553 				compr_blocks++;
3554 				continue;
3555 			}
3556 
3557 			dn->data_blkaddr = NEW_ADDR;
3558 			f2fs_set_data_blkaddr(dn);
3559 		}
3560 
3561 		reserved = cluster_size - compr_blocks;
3562 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3563 		if (ret)
3564 			return ret;
3565 
3566 		if (reserved != cluster_size - compr_blocks)
3567 			return -ENOSPC;
3568 
3569 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3570 
3571 		reserved_blocks += reserved;
3572 next:
3573 		count -= cluster_size;
3574 	}
3575 
3576 	return reserved_blocks;
3577 }
3578 
3579 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3580 {
3581 	struct inode *inode = file_inode(filp);
3582 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3583 	pgoff_t page_idx = 0, last_idx;
3584 	unsigned int reserved_blocks = 0;
3585 	int ret;
3586 
3587 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3588 		return -EOPNOTSUPP;
3589 
3590 	if (!f2fs_compressed_file(inode))
3591 		return -EINVAL;
3592 
3593 	if (f2fs_readonly(sbi->sb))
3594 		return -EROFS;
3595 
3596 	ret = mnt_want_write_file(filp);
3597 	if (ret)
3598 		return ret;
3599 
3600 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3601 		goto out;
3602 
3603 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3604 
3605 	inode_lock(inode);
3606 
3607 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3608 		ret = -EINVAL;
3609 		goto unlock_inode;
3610 	}
3611 
3612 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3613 	filemap_invalidate_lock(inode->i_mapping);
3614 
3615 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3616 
3617 	while (page_idx < last_idx) {
3618 		struct dnode_of_data dn;
3619 		pgoff_t end_offset, count;
3620 
3621 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3622 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3623 		if (ret) {
3624 			if (ret == -ENOENT) {
3625 				page_idx = f2fs_get_next_page_offset(&dn,
3626 								page_idx);
3627 				ret = 0;
3628 				continue;
3629 			}
3630 			break;
3631 		}
3632 
3633 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3634 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3635 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3636 
3637 		ret = reserve_compress_blocks(&dn, count);
3638 
3639 		f2fs_put_dnode(&dn);
3640 
3641 		if (ret < 0)
3642 			break;
3643 
3644 		page_idx += count;
3645 		reserved_blocks += ret;
3646 	}
3647 
3648 	filemap_invalidate_unlock(inode->i_mapping);
3649 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3650 
3651 	if (ret >= 0) {
3652 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3653 		inode->i_ctime = current_time(inode);
3654 		f2fs_mark_inode_dirty_sync(inode, true);
3655 	}
3656 unlock_inode:
3657 	inode_unlock(inode);
3658 out:
3659 	mnt_drop_write_file(filp);
3660 
3661 	if (ret >= 0) {
3662 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3663 	} else if (reserved_blocks &&
3664 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3665 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3666 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3667 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3668 			"run fsck to fix.",
3669 			__func__, inode->i_ino, inode->i_blocks,
3670 			reserved_blocks,
3671 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3672 	}
3673 
3674 	return ret;
3675 }
3676 
3677 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3678 		pgoff_t off, block_t block, block_t len, u32 flags)
3679 {
3680 	struct request_queue *q = bdev_get_queue(bdev);
3681 	sector_t sector = SECTOR_FROM_BLOCK(block);
3682 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3683 	int ret = 0;
3684 
3685 	if (!q)
3686 		return -ENXIO;
3687 
3688 	if (flags & F2FS_TRIM_FILE_DISCARD)
3689 		ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3690 						blk_queue_secure_erase(q) ?
3691 						BLKDEV_DISCARD_SECURE : 0);
3692 
3693 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3694 		if (IS_ENCRYPTED(inode))
3695 			ret = fscrypt_zeroout_range(inode, off, block, len);
3696 		else
3697 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3698 					GFP_NOFS, 0);
3699 	}
3700 
3701 	return ret;
3702 }
3703 
3704 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3705 {
3706 	struct inode *inode = file_inode(filp);
3707 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3708 	struct address_space *mapping = inode->i_mapping;
3709 	struct block_device *prev_bdev = NULL;
3710 	struct f2fs_sectrim_range range;
3711 	pgoff_t index, pg_end, prev_index = 0;
3712 	block_t prev_block = 0, len = 0;
3713 	loff_t end_addr;
3714 	bool to_end = false;
3715 	int ret = 0;
3716 
3717 	if (!(filp->f_mode & FMODE_WRITE))
3718 		return -EBADF;
3719 
3720 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3721 				sizeof(range)))
3722 		return -EFAULT;
3723 
3724 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3725 			!S_ISREG(inode->i_mode))
3726 		return -EINVAL;
3727 
3728 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3729 			!f2fs_hw_support_discard(sbi)) ||
3730 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3731 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3732 		return -EOPNOTSUPP;
3733 
3734 	file_start_write(filp);
3735 	inode_lock(inode);
3736 
3737 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3738 			range.start >= inode->i_size) {
3739 		ret = -EINVAL;
3740 		goto err;
3741 	}
3742 
3743 	if (range.len == 0)
3744 		goto err;
3745 
3746 	if (inode->i_size - range.start > range.len) {
3747 		end_addr = range.start + range.len;
3748 	} else {
3749 		end_addr = range.len == (u64)-1 ?
3750 			sbi->sb->s_maxbytes : inode->i_size;
3751 		to_end = true;
3752 	}
3753 
3754 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3755 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3756 		ret = -EINVAL;
3757 		goto err;
3758 	}
3759 
3760 	index = F2FS_BYTES_TO_BLK(range.start);
3761 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3762 
3763 	ret = f2fs_convert_inline_inode(inode);
3764 	if (ret)
3765 		goto err;
3766 
3767 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3768 	filemap_invalidate_lock(mapping);
3769 
3770 	ret = filemap_write_and_wait_range(mapping, range.start,
3771 			to_end ? LLONG_MAX : end_addr - 1);
3772 	if (ret)
3773 		goto out;
3774 
3775 	truncate_inode_pages_range(mapping, range.start,
3776 			to_end ? -1 : end_addr - 1);
3777 
3778 	while (index < pg_end) {
3779 		struct dnode_of_data dn;
3780 		pgoff_t end_offset, count;
3781 		int i;
3782 
3783 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3784 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3785 		if (ret) {
3786 			if (ret == -ENOENT) {
3787 				index = f2fs_get_next_page_offset(&dn, index);
3788 				continue;
3789 			}
3790 			goto out;
3791 		}
3792 
3793 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3794 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3795 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3796 			struct block_device *cur_bdev;
3797 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3798 
3799 			if (!__is_valid_data_blkaddr(blkaddr))
3800 				continue;
3801 
3802 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3803 						DATA_GENERIC_ENHANCE)) {
3804 				ret = -EFSCORRUPTED;
3805 				f2fs_put_dnode(&dn);
3806 				goto out;
3807 			}
3808 
3809 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3810 			if (f2fs_is_multi_device(sbi)) {
3811 				int di = f2fs_target_device_index(sbi, blkaddr);
3812 
3813 				blkaddr -= FDEV(di).start_blk;
3814 			}
3815 
3816 			if (len) {
3817 				if (prev_bdev == cur_bdev &&
3818 						index == prev_index + len &&
3819 						blkaddr == prev_block + len) {
3820 					len++;
3821 				} else {
3822 					ret = f2fs_secure_erase(prev_bdev,
3823 						inode, prev_index, prev_block,
3824 						len, range.flags);
3825 					if (ret) {
3826 						f2fs_put_dnode(&dn);
3827 						goto out;
3828 					}
3829 
3830 					len = 0;
3831 				}
3832 			}
3833 
3834 			if (!len) {
3835 				prev_bdev = cur_bdev;
3836 				prev_index = index;
3837 				prev_block = blkaddr;
3838 				len = 1;
3839 			}
3840 		}
3841 
3842 		f2fs_put_dnode(&dn);
3843 
3844 		if (fatal_signal_pending(current)) {
3845 			ret = -EINTR;
3846 			goto out;
3847 		}
3848 		cond_resched();
3849 	}
3850 
3851 	if (len)
3852 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3853 				prev_block, len, range.flags);
3854 out:
3855 	filemap_invalidate_unlock(mapping);
3856 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3857 err:
3858 	inode_unlock(inode);
3859 	file_end_write(filp);
3860 
3861 	return ret;
3862 }
3863 
3864 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3865 {
3866 	struct inode *inode = file_inode(filp);
3867 	struct f2fs_comp_option option;
3868 
3869 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3870 		return -EOPNOTSUPP;
3871 
3872 	inode_lock_shared(inode);
3873 
3874 	if (!f2fs_compressed_file(inode)) {
3875 		inode_unlock_shared(inode);
3876 		return -ENODATA;
3877 	}
3878 
3879 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3880 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3881 
3882 	inode_unlock_shared(inode);
3883 
3884 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3885 				sizeof(option)))
3886 		return -EFAULT;
3887 
3888 	return 0;
3889 }
3890 
3891 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3892 {
3893 	struct inode *inode = file_inode(filp);
3894 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3895 	struct f2fs_comp_option option;
3896 	int ret = 0;
3897 
3898 	if (!f2fs_sb_has_compression(sbi))
3899 		return -EOPNOTSUPP;
3900 
3901 	if (!(filp->f_mode & FMODE_WRITE))
3902 		return -EBADF;
3903 
3904 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3905 				sizeof(option)))
3906 		return -EFAULT;
3907 
3908 	if (!f2fs_compressed_file(inode) ||
3909 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3910 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3911 			option.algorithm >= COMPRESS_MAX)
3912 		return -EINVAL;
3913 
3914 	file_start_write(filp);
3915 	inode_lock(inode);
3916 
3917 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3918 		ret = -EBUSY;
3919 		goto out;
3920 	}
3921 
3922 	if (inode->i_size != 0) {
3923 		ret = -EFBIG;
3924 		goto out;
3925 	}
3926 
3927 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3928 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3929 	F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3930 	f2fs_mark_inode_dirty_sync(inode, true);
3931 
3932 	if (!f2fs_is_compress_backend_ready(inode))
3933 		f2fs_warn(sbi, "compression algorithm is successfully set, "
3934 			"but current kernel doesn't support this algorithm.");
3935 out:
3936 	inode_unlock(inode);
3937 	file_end_write(filp);
3938 
3939 	return ret;
3940 }
3941 
3942 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3943 {
3944 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3945 	struct address_space *mapping = inode->i_mapping;
3946 	struct page *page;
3947 	pgoff_t redirty_idx = page_idx;
3948 	int i, page_len = 0, ret = 0;
3949 
3950 	page_cache_ra_unbounded(&ractl, len, 0);
3951 
3952 	for (i = 0; i < len; i++, page_idx++) {
3953 		page = read_cache_page(mapping, page_idx, NULL, NULL);
3954 		if (IS_ERR(page)) {
3955 			ret = PTR_ERR(page);
3956 			break;
3957 		}
3958 		page_len++;
3959 	}
3960 
3961 	for (i = 0; i < page_len; i++, redirty_idx++) {
3962 		page = find_lock_page(mapping, redirty_idx);
3963 		if (!page) {
3964 			ret = -ENOMEM;
3965 			break;
3966 		}
3967 		set_page_dirty(page);
3968 		f2fs_put_page(page, 1);
3969 		f2fs_put_page(page, 0);
3970 	}
3971 
3972 	return ret;
3973 }
3974 
3975 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3976 {
3977 	struct inode *inode = file_inode(filp);
3978 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3979 	struct f2fs_inode_info *fi = F2FS_I(inode);
3980 	pgoff_t page_idx = 0, last_idx;
3981 	unsigned int blk_per_seg = sbi->blocks_per_seg;
3982 	int cluster_size = F2FS_I(inode)->i_cluster_size;
3983 	int count, ret;
3984 
3985 	if (!f2fs_sb_has_compression(sbi) ||
3986 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3987 		return -EOPNOTSUPP;
3988 
3989 	if (!(filp->f_mode & FMODE_WRITE))
3990 		return -EBADF;
3991 
3992 	if (!f2fs_compressed_file(inode))
3993 		return -EINVAL;
3994 
3995 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3996 
3997 	file_start_write(filp);
3998 	inode_lock(inode);
3999 
4000 	if (!f2fs_is_compress_backend_ready(inode)) {
4001 		ret = -EOPNOTSUPP;
4002 		goto out;
4003 	}
4004 
4005 	if (f2fs_is_mmap_file(inode)) {
4006 		ret = -EBUSY;
4007 		goto out;
4008 	}
4009 
4010 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4011 	if (ret)
4012 		goto out;
4013 
4014 	if (!atomic_read(&fi->i_compr_blocks))
4015 		goto out;
4016 
4017 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4018 
4019 	count = last_idx - page_idx;
4020 	while (count) {
4021 		int len = min(cluster_size, count);
4022 
4023 		ret = redirty_blocks(inode, page_idx, len);
4024 		if (ret < 0)
4025 			break;
4026 
4027 		if (get_dirty_pages(inode) >= blk_per_seg)
4028 			filemap_fdatawrite(inode->i_mapping);
4029 
4030 		count -= len;
4031 		page_idx += len;
4032 	}
4033 
4034 	if (!ret)
4035 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4036 							LLONG_MAX);
4037 
4038 	if (ret)
4039 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4040 			  __func__, ret);
4041 out:
4042 	inode_unlock(inode);
4043 	file_end_write(filp);
4044 
4045 	return ret;
4046 }
4047 
4048 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4049 {
4050 	struct inode *inode = file_inode(filp);
4051 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4052 	pgoff_t page_idx = 0, last_idx;
4053 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4054 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4055 	int count, ret;
4056 
4057 	if (!f2fs_sb_has_compression(sbi) ||
4058 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4059 		return -EOPNOTSUPP;
4060 
4061 	if (!(filp->f_mode & FMODE_WRITE))
4062 		return -EBADF;
4063 
4064 	if (!f2fs_compressed_file(inode))
4065 		return -EINVAL;
4066 
4067 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4068 
4069 	file_start_write(filp);
4070 	inode_lock(inode);
4071 
4072 	if (!f2fs_is_compress_backend_ready(inode)) {
4073 		ret = -EOPNOTSUPP;
4074 		goto out;
4075 	}
4076 
4077 	if (f2fs_is_mmap_file(inode)) {
4078 		ret = -EBUSY;
4079 		goto out;
4080 	}
4081 
4082 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4083 	if (ret)
4084 		goto out;
4085 
4086 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4087 
4088 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4089 
4090 	count = last_idx - page_idx;
4091 	while (count) {
4092 		int len = min(cluster_size, count);
4093 
4094 		ret = redirty_blocks(inode, page_idx, len);
4095 		if (ret < 0)
4096 			break;
4097 
4098 		if (get_dirty_pages(inode) >= blk_per_seg)
4099 			filemap_fdatawrite(inode->i_mapping);
4100 
4101 		count -= len;
4102 		page_idx += len;
4103 	}
4104 
4105 	if (!ret)
4106 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4107 							LLONG_MAX);
4108 
4109 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4110 
4111 	if (ret)
4112 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4113 			  __func__, ret);
4114 out:
4115 	inode_unlock(inode);
4116 	file_end_write(filp);
4117 
4118 	return ret;
4119 }
4120 
4121 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4122 {
4123 	switch (cmd) {
4124 	case FS_IOC_GETVERSION:
4125 		return f2fs_ioc_getversion(filp, arg);
4126 	case F2FS_IOC_START_ATOMIC_WRITE:
4127 		return f2fs_ioc_start_atomic_write(filp);
4128 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4129 		return f2fs_ioc_commit_atomic_write(filp);
4130 	case F2FS_IOC_START_VOLATILE_WRITE:
4131 		return f2fs_ioc_start_volatile_write(filp);
4132 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4133 		return f2fs_ioc_release_volatile_write(filp);
4134 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
4135 		return f2fs_ioc_abort_volatile_write(filp);
4136 	case F2FS_IOC_SHUTDOWN:
4137 		return f2fs_ioc_shutdown(filp, arg);
4138 	case FITRIM:
4139 		return f2fs_ioc_fitrim(filp, arg);
4140 	case FS_IOC_SET_ENCRYPTION_POLICY:
4141 		return f2fs_ioc_set_encryption_policy(filp, arg);
4142 	case FS_IOC_GET_ENCRYPTION_POLICY:
4143 		return f2fs_ioc_get_encryption_policy(filp, arg);
4144 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4145 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4146 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4147 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4148 	case FS_IOC_ADD_ENCRYPTION_KEY:
4149 		return f2fs_ioc_add_encryption_key(filp, arg);
4150 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4151 		return f2fs_ioc_remove_encryption_key(filp, arg);
4152 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4153 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4154 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4155 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4156 	case FS_IOC_GET_ENCRYPTION_NONCE:
4157 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4158 	case F2FS_IOC_GARBAGE_COLLECT:
4159 		return f2fs_ioc_gc(filp, arg);
4160 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4161 		return f2fs_ioc_gc_range(filp, arg);
4162 	case F2FS_IOC_WRITE_CHECKPOINT:
4163 		return f2fs_ioc_write_checkpoint(filp, arg);
4164 	case F2FS_IOC_DEFRAGMENT:
4165 		return f2fs_ioc_defragment(filp, arg);
4166 	case F2FS_IOC_MOVE_RANGE:
4167 		return f2fs_ioc_move_range(filp, arg);
4168 	case F2FS_IOC_FLUSH_DEVICE:
4169 		return f2fs_ioc_flush_device(filp, arg);
4170 	case F2FS_IOC_GET_FEATURES:
4171 		return f2fs_ioc_get_features(filp, arg);
4172 	case F2FS_IOC_GET_PIN_FILE:
4173 		return f2fs_ioc_get_pin_file(filp, arg);
4174 	case F2FS_IOC_SET_PIN_FILE:
4175 		return f2fs_ioc_set_pin_file(filp, arg);
4176 	case F2FS_IOC_PRECACHE_EXTENTS:
4177 		return f2fs_ioc_precache_extents(filp, arg);
4178 	case F2FS_IOC_RESIZE_FS:
4179 		return f2fs_ioc_resize_fs(filp, arg);
4180 	case FS_IOC_ENABLE_VERITY:
4181 		return f2fs_ioc_enable_verity(filp, arg);
4182 	case FS_IOC_MEASURE_VERITY:
4183 		return f2fs_ioc_measure_verity(filp, arg);
4184 	case FS_IOC_READ_VERITY_METADATA:
4185 		return f2fs_ioc_read_verity_metadata(filp, arg);
4186 	case FS_IOC_GETFSLABEL:
4187 		return f2fs_ioc_getfslabel(filp, arg);
4188 	case FS_IOC_SETFSLABEL:
4189 		return f2fs_ioc_setfslabel(filp, arg);
4190 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4191 		return f2fs_get_compress_blocks(filp, arg);
4192 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4193 		return f2fs_release_compress_blocks(filp, arg);
4194 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4195 		return f2fs_reserve_compress_blocks(filp, arg);
4196 	case F2FS_IOC_SEC_TRIM_FILE:
4197 		return f2fs_sec_trim_file(filp, arg);
4198 	case F2FS_IOC_GET_COMPRESS_OPTION:
4199 		return f2fs_ioc_get_compress_option(filp, arg);
4200 	case F2FS_IOC_SET_COMPRESS_OPTION:
4201 		return f2fs_ioc_set_compress_option(filp, arg);
4202 	case F2FS_IOC_DECOMPRESS_FILE:
4203 		return f2fs_ioc_decompress_file(filp, arg);
4204 	case F2FS_IOC_COMPRESS_FILE:
4205 		return f2fs_ioc_compress_file(filp, arg);
4206 	default:
4207 		return -ENOTTY;
4208 	}
4209 }
4210 
4211 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4212 {
4213 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4214 		return -EIO;
4215 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4216 		return -ENOSPC;
4217 
4218 	return __f2fs_ioctl(filp, cmd, arg);
4219 }
4220 
4221 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4222 {
4223 	struct file *file = iocb->ki_filp;
4224 	struct inode *inode = file_inode(file);
4225 	int ret;
4226 
4227 	if (!f2fs_is_compress_backend_ready(inode))
4228 		return -EOPNOTSUPP;
4229 
4230 	ret = generic_file_read_iter(iocb, iter);
4231 
4232 	if (ret > 0)
4233 		f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4234 
4235 	return ret;
4236 }
4237 
4238 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4239 {
4240 	struct file *file = iocb->ki_filp;
4241 	struct inode *inode = file_inode(file);
4242 	ssize_t ret;
4243 
4244 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4245 		ret = -EIO;
4246 		goto out;
4247 	}
4248 
4249 	if (!f2fs_is_compress_backend_ready(inode)) {
4250 		ret = -EOPNOTSUPP;
4251 		goto out;
4252 	}
4253 
4254 	if (iocb->ki_flags & IOCB_NOWAIT) {
4255 		if (!inode_trylock(inode)) {
4256 			ret = -EAGAIN;
4257 			goto out;
4258 		}
4259 	} else {
4260 		inode_lock(inode);
4261 	}
4262 
4263 	if (unlikely(IS_IMMUTABLE(inode))) {
4264 		ret = -EPERM;
4265 		goto unlock;
4266 	}
4267 
4268 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4269 		ret = -EPERM;
4270 		goto unlock;
4271 	}
4272 
4273 	ret = generic_write_checks(iocb, from);
4274 	if (ret > 0) {
4275 		bool preallocated = false;
4276 		size_t target_size = 0;
4277 		int err;
4278 
4279 		if (fault_in_iov_iter_readable(from, iov_iter_count(from)))
4280 			set_inode_flag(inode, FI_NO_PREALLOC);
4281 
4282 		if ((iocb->ki_flags & IOCB_NOWAIT)) {
4283 			if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4284 						iov_iter_count(from)) ||
4285 				f2fs_has_inline_data(inode) ||
4286 				f2fs_force_buffered_io(inode, iocb, from)) {
4287 				clear_inode_flag(inode, FI_NO_PREALLOC);
4288 				inode_unlock(inode);
4289 				ret = -EAGAIN;
4290 				goto out;
4291 			}
4292 			goto write;
4293 		}
4294 
4295 		if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4296 			goto write;
4297 
4298 		if (iocb->ki_flags & IOCB_DIRECT) {
4299 			/*
4300 			 * Convert inline data for Direct I/O before entering
4301 			 * f2fs_direct_IO().
4302 			 */
4303 			err = f2fs_convert_inline_inode(inode);
4304 			if (err)
4305 				goto out_err;
4306 			/*
4307 			 * If force_buffere_io() is true, we have to allocate
4308 			 * blocks all the time, since f2fs_direct_IO will fall
4309 			 * back to buffered IO.
4310 			 */
4311 			if (!f2fs_force_buffered_io(inode, iocb, from) &&
4312 					f2fs_lfs_mode(F2FS_I_SB(inode)))
4313 				goto write;
4314 		}
4315 		preallocated = true;
4316 		target_size = iocb->ki_pos + iov_iter_count(from);
4317 
4318 		err = f2fs_preallocate_blocks(iocb, from);
4319 		if (err) {
4320 out_err:
4321 			clear_inode_flag(inode, FI_NO_PREALLOC);
4322 			inode_unlock(inode);
4323 			ret = err;
4324 			goto out;
4325 		}
4326 write:
4327 		ret = __generic_file_write_iter(iocb, from);
4328 		clear_inode_flag(inode, FI_NO_PREALLOC);
4329 
4330 		/* if we couldn't write data, we should deallocate blocks. */
4331 		if (preallocated && i_size_read(inode) < target_size) {
4332 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4333 			filemap_invalidate_lock(inode->i_mapping);
4334 			f2fs_truncate(inode);
4335 			filemap_invalidate_unlock(inode->i_mapping);
4336 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4337 		}
4338 
4339 		if (ret > 0)
4340 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4341 	}
4342 unlock:
4343 	inode_unlock(inode);
4344 out:
4345 	trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4346 					iov_iter_count(from), ret);
4347 	if (ret > 0)
4348 		ret = generic_write_sync(iocb, ret);
4349 	return ret;
4350 }
4351 
4352 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4353 		int advice)
4354 {
4355 	struct inode *inode;
4356 	struct address_space *mapping;
4357 	struct backing_dev_info *bdi;
4358 
4359 	if (advice == POSIX_FADV_SEQUENTIAL) {
4360 		inode = file_inode(filp);
4361 		if (S_ISFIFO(inode->i_mode))
4362 			return -ESPIPE;
4363 
4364 		mapping = filp->f_mapping;
4365 		if (!mapping || len < 0)
4366 			return -EINVAL;
4367 
4368 		bdi = inode_to_bdi(mapping->host);
4369 		filp->f_ra.ra_pages = bdi->ra_pages *
4370 			F2FS_I_SB(inode)->seq_file_ra_mul;
4371 		spin_lock(&filp->f_lock);
4372 		filp->f_mode &= ~FMODE_RANDOM;
4373 		spin_unlock(&filp->f_lock);
4374 		return 0;
4375 	}
4376 
4377 	return generic_fadvise(filp, offset, len, advice);
4378 }
4379 
4380 #ifdef CONFIG_COMPAT
4381 struct compat_f2fs_gc_range {
4382 	u32 sync;
4383 	compat_u64 start;
4384 	compat_u64 len;
4385 };
4386 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4387 						struct compat_f2fs_gc_range)
4388 
4389 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4390 {
4391 	struct compat_f2fs_gc_range __user *urange;
4392 	struct f2fs_gc_range range;
4393 	int err;
4394 
4395 	urange = compat_ptr(arg);
4396 	err = get_user(range.sync, &urange->sync);
4397 	err |= get_user(range.start, &urange->start);
4398 	err |= get_user(range.len, &urange->len);
4399 	if (err)
4400 		return -EFAULT;
4401 
4402 	return __f2fs_ioc_gc_range(file, &range);
4403 }
4404 
4405 struct compat_f2fs_move_range {
4406 	u32 dst_fd;
4407 	compat_u64 pos_in;
4408 	compat_u64 pos_out;
4409 	compat_u64 len;
4410 };
4411 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4412 					struct compat_f2fs_move_range)
4413 
4414 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4415 {
4416 	struct compat_f2fs_move_range __user *urange;
4417 	struct f2fs_move_range range;
4418 	int err;
4419 
4420 	urange = compat_ptr(arg);
4421 	err = get_user(range.dst_fd, &urange->dst_fd);
4422 	err |= get_user(range.pos_in, &urange->pos_in);
4423 	err |= get_user(range.pos_out, &urange->pos_out);
4424 	err |= get_user(range.len, &urange->len);
4425 	if (err)
4426 		return -EFAULT;
4427 
4428 	return __f2fs_ioc_move_range(file, &range);
4429 }
4430 
4431 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4432 {
4433 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4434 		return -EIO;
4435 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4436 		return -ENOSPC;
4437 
4438 	switch (cmd) {
4439 	case FS_IOC32_GETVERSION:
4440 		cmd = FS_IOC_GETVERSION;
4441 		break;
4442 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4443 		return f2fs_compat_ioc_gc_range(file, arg);
4444 	case F2FS_IOC32_MOVE_RANGE:
4445 		return f2fs_compat_ioc_move_range(file, arg);
4446 	case F2FS_IOC_START_ATOMIC_WRITE:
4447 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4448 	case F2FS_IOC_START_VOLATILE_WRITE:
4449 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4450 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
4451 	case F2FS_IOC_SHUTDOWN:
4452 	case FITRIM:
4453 	case FS_IOC_SET_ENCRYPTION_POLICY:
4454 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4455 	case FS_IOC_GET_ENCRYPTION_POLICY:
4456 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4457 	case FS_IOC_ADD_ENCRYPTION_KEY:
4458 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4459 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4460 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4461 	case FS_IOC_GET_ENCRYPTION_NONCE:
4462 	case F2FS_IOC_GARBAGE_COLLECT:
4463 	case F2FS_IOC_WRITE_CHECKPOINT:
4464 	case F2FS_IOC_DEFRAGMENT:
4465 	case F2FS_IOC_FLUSH_DEVICE:
4466 	case F2FS_IOC_GET_FEATURES:
4467 	case F2FS_IOC_GET_PIN_FILE:
4468 	case F2FS_IOC_SET_PIN_FILE:
4469 	case F2FS_IOC_PRECACHE_EXTENTS:
4470 	case F2FS_IOC_RESIZE_FS:
4471 	case FS_IOC_ENABLE_VERITY:
4472 	case FS_IOC_MEASURE_VERITY:
4473 	case FS_IOC_READ_VERITY_METADATA:
4474 	case FS_IOC_GETFSLABEL:
4475 	case FS_IOC_SETFSLABEL:
4476 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4477 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4478 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4479 	case F2FS_IOC_SEC_TRIM_FILE:
4480 	case F2FS_IOC_GET_COMPRESS_OPTION:
4481 	case F2FS_IOC_SET_COMPRESS_OPTION:
4482 	case F2FS_IOC_DECOMPRESS_FILE:
4483 	case F2FS_IOC_COMPRESS_FILE:
4484 		break;
4485 	default:
4486 		return -ENOIOCTLCMD;
4487 	}
4488 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4489 }
4490 #endif
4491 
4492 const struct file_operations f2fs_file_operations = {
4493 	.llseek		= f2fs_llseek,
4494 	.read_iter	= f2fs_file_read_iter,
4495 	.write_iter	= f2fs_file_write_iter,
4496 	.open		= f2fs_file_open,
4497 	.release	= f2fs_release_file,
4498 	.mmap		= f2fs_file_mmap,
4499 	.flush		= f2fs_file_flush,
4500 	.fsync		= f2fs_sync_file,
4501 	.fallocate	= f2fs_fallocate,
4502 	.unlocked_ioctl	= f2fs_ioctl,
4503 #ifdef CONFIG_COMPAT
4504 	.compat_ioctl	= f2fs_compat_ioctl,
4505 #endif
4506 	.splice_read	= generic_file_splice_read,
4507 	.splice_write	= iter_file_splice_write,
4508 	.fadvise	= f2fs_file_fadvise,
4509 };
4510