1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 #include <linux/fadvise.h> 27 #include <linux/iomap.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "acl.h" 34 #include "gc.h" 35 #include "iostat.h" 36 #include <trace/events/f2fs.h> 37 #include <uapi/linux/f2fs.h> 38 39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 40 { 41 struct inode *inode = file_inode(vmf->vma->vm_file); 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (!ret) 46 f2fs_update_iostat(F2FS_I_SB(inode), inode, 47 APP_MAPPED_READ_IO, F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(IS_IMMUTABLE(inode))) 64 return VM_FAULT_SIGBUS; 65 66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 67 return VM_FAULT_SIGBUS; 68 69 if (unlikely(f2fs_cp_error(sbi))) { 70 err = -EIO; 71 goto err; 72 } 73 74 if (!f2fs_is_checkpoint_ready(sbi)) { 75 err = -ENOSPC; 76 goto err; 77 } 78 79 err = f2fs_convert_inline_inode(inode); 80 if (err) 81 goto err; 82 83 #ifdef CONFIG_F2FS_FS_COMPRESSION 84 if (f2fs_compressed_file(inode)) { 85 int ret = f2fs_is_compressed_cluster(inode, page->index); 86 87 if (ret < 0) { 88 err = ret; 89 goto err; 90 } else if (ret) { 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 filemap_invalidate_lock_shared(inode->i_mapping); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 set_new_dnode(&dn, inode, NULL, NULL, 0); 117 err = f2fs_get_block_locked(&dn, page->index); 118 } 119 120 #ifdef CONFIG_F2FS_FS_COMPRESSION 121 if (!need_alloc) { 122 set_new_dnode(&dn, inode, NULL, NULL, 0); 123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 124 f2fs_put_dnode(&dn); 125 } 126 #endif 127 if (err) { 128 unlock_page(page); 129 goto out_sem; 130 } 131 132 f2fs_wait_on_page_writeback(page, DATA, false, true); 133 134 /* wait for GCed page writeback via META_MAPPING */ 135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 136 137 /* 138 * check to see if the page is mapped already (no holes) 139 */ 140 if (PageMappedToDisk(page)) 141 goto out_sem; 142 143 /* page is wholly or partially inside EOF */ 144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 145 i_size_read(inode)) { 146 loff_t offset; 147 148 offset = i_size_read(inode) & ~PAGE_MASK; 149 zero_user_segment(page, offset, PAGE_SIZE); 150 } 151 set_page_dirty(page); 152 153 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE); 154 f2fs_update_time(sbi, REQ_TIME); 155 156 trace_f2fs_vm_page_mkwrite(page, DATA); 157 out_sem: 158 filemap_invalidate_unlock_shared(inode->i_mapping); 159 160 sb_end_pagefault(inode->i_sb); 161 err: 162 return block_page_mkwrite_return(err); 163 } 164 165 static const struct vm_operations_struct f2fs_file_vm_ops = { 166 .fault = f2fs_filemap_fault, 167 .map_pages = filemap_map_pages, 168 .page_mkwrite = f2fs_vm_page_mkwrite, 169 }; 170 171 static int get_parent_ino(struct inode *inode, nid_t *pino) 172 { 173 struct dentry *dentry; 174 175 /* 176 * Make sure to get the non-deleted alias. The alias associated with 177 * the open file descriptor being fsync()'ed may be deleted already. 178 */ 179 dentry = d_find_alias(inode); 180 if (!dentry) 181 return 0; 182 183 *pino = parent_ino(dentry); 184 dput(dentry); 185 return 1; 186 } 187 188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 189 { 190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 191 enum cp_reason_type cp_reason = CP_NO_NEEDED; 192 193 if (!S_ISREG(inode->i_mode)) 194 cp_reason = CP_NON_REGULAR; 195 else if (f2fs_compressed_file(inode)) 196 cp_reason = CP_COMPRESSED; 197 else if (inode->i_nlink != 1) 198 cp_reason = CP_HARDLINK; 199 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 200 cp_reason = CP_SB_NEED_CP; 201 else if (file_wrong_pino(inode)) 202 cp_reason = CP_WRONG_PINO; 203 else if (!f2fs_space_for_roll_forward(sbi)) 204 cp_reason = CP_NO_SPC_ROLL; 205 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 206 cp_reason = CP_NODE_NEED_CP; 207 else if (test_opt(sbi, FASTBOOT)) 208 cp_reason = CP_FASTBOOT_MODE; 209 else if (F2FS_OPTION(sbi).active_logs == 2) 210 cp_reason = CP_SPEC_LOG_NUM; 211 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 212 f2fs_need_dentry_mark(sbi, inode->i_ino) && 213 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 214 TRANS_DIR_INO)) 215 cp_reason = CP_RECOVER_DIR; 216 217 return cp_reason; 218 } 219 220 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 221 { 222 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 223 bool ret = false; 224 /* But we need to avoid that there are some inode updates */ 225 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 226 ret = true; 227 f2fs_put_page(i, 0); 228 return ret; 229 } 230 231 static void try_to_fix_pino(struct inode *inode) 232 { 233 struct f2fs_inode_info *fi = F2FS_I(inode); 234 nid_t pino; 235 236 f2fs_down_write(&fi->i_sem); 237 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 238 get_parent_ino(inode, &pino)) { 239 f2fs_i_pino_write(inode, pino); 240 file_got_pino(inode); 241 } 242 f2fs_up_write(&fi->i_sem); 243 } 244 245 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 246 int datasync, bool atomic) 247 { 248 struct inode *inode = file->f_mapping->host; 249 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 250 nid_t ino = inode->i_ino; 251 int ret = 0; 252 enum cp_reason_type cp_reason = 0; 253 struct writeback_control wbc = { 254 .sync_mode = WB_SYNC_ALL, 255 .nr_to_write = LONG_MAX, 256 .for_reclaim = 0, 257 }; 258 unsigned int seq_id = 0; 259 260 if (unlikely(f2fs_readonly(inode->i_sb))) 261 return 0; 262 263 trace_f2fs_sync_file_enter(inode); 264 265 if (S_ISDIR(inode->i_mode)) 266 goto go_write; 267 268 /* if fdatasync is triggered, let's do in-place-update */ 269 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 270 set_inode_flag(inode, FI_NEED_IPU); 271 ret = file_write_and_wait_range(file, start, end); 272 clear_inode_flag(inode, FI_NEED_IPU); 273 274 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 275 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 276 return ret; 277 } 278 279 /* if the inode is dirty, let's recover all the time */ 280 if (!f2fs_skip_inode_update(inode, datasync)) { 281 f2fs_write_inode(inode, NULL); 282 goto go_write; 283 } 284 285 /* 286 * if there is no written data, don't waste time to write recovery info. 287 */ 288 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 289 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 290 291 /* it may call write_inode just prior to fsync */ 292 if (need_inode_page_update(sbi, ino)) 293 goto go_write; 294 295 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 296 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 297 goto flush_out; 298 goto out; 299 } else { 300 /* 301 * for OPU case, during fsync(), node can be persisted before 302 * data when lower device doesn't support write barrier, result 303 * in data corruption after SPO. 304 * So for strict fsync mode, force to use atomic write semantics 305 * to keep write order in between data/node and last node to 306 * avoid potential data corruption. 307 */ 308 if (F2FS_OPTION(sbi).fsync_mode == 309 FSYNC_MODE_STRICT && !atomic) 310 atomic = true; 311 } 312 go_write: 313 /* 314 * Both of fdatasync() and fsync() are able to be recovered from 315 * sudden-power-off. 316 */ 317 f2fs_down_read(&F2FS_I(inode)->i_sem); 318 cp_reason = need_do_checkpoint(inode); 319 f2fs_up_read(&F2FS_I(inode)->i_sem); 320 321 if (cp_reason) { 322 /* all the dirty node pages should be flushed for POR */ 323 ret = f2fs_sync_fs(inode->i_sb, 1); 324 325 /* 326 * We've secured consistency through sync_fs. Following pino 327 * will be used only for fsynced inodes after checkpoint. 328 */ 329 try_to_fix_pino(inode); 330 clear_inode_flag(inode, FI_APPEND_WRITE); 331 clear_inode_flag(inode, FI_UPDATE_WRITE); 332 goto out; 333 } 334 sync_nodes: 335 atomic_inc(&sbi->wb_sync_req[NODE]); 336 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 337 atomic_dec(&sbi->wb_sync_req[NODE]); 338 if (ret) 339 goto out; 340 341 /* if cp_error was enabled, we should avoid infinite loop */ 342 if (unlikely(f2fs_cp_error(sbi))) { 343 ret = -EIO; 344 goto out; 345 } 346 347 if (f2fs_need_inode_block_update(sbi, ino)) { 348 f2fs_mark_inode_dirty_sync(inode, true); 349 f2fs_write_inode(inode, NULL); 350 goto sync_nodes; 351 } 352 353 /* 354 * If it's atomic_write, it's just fine to keep write ordering. So 355 * here we don't need to wait for node write completion, since we use 356 * node chain which serializes node blocks. If one of node writes are 357 * reordered, we can see simply broken chain, resulting in stopping 358 * roll-forward recovery. It means we'll recover all or none node blocks 359 * given fsync mark. 360 */ 361 if (!atomic) { 362 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 363 if (ret) 364 goto out; 365 } 366 367 /* once recovery info is written, don't need to tack this */ 368 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 369 clear_inode_flag(inode, FI_APPEND_WRITE); 370 flush_out: 371 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) || 372 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi))) 373 ret = f2fs_issue_flush(sbi, inode->i_ino); 374 if (!ret) { 375 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 376 clear_inode_flag(inode, FI_UPDATE_WRITE); 377 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 378 } 379 f2fs_update_time(sbi, REQ_TIME); 380 out: 381 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 382 return ret; 383 } 384 385 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 386 { 387 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 388 return -EIO; 389 return f2fs_do_sync_file(file, start, end, datasync, false); 390 } 391 392 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 393 pgoff_t index, int whence) 394 { 395 switch (whence) { 396 case SEEK_DATA: 397 if (__is_valid_data_blkaddr(blkaddr)) 398 return true; 399 if (blkaddr == NEW_ADDR && 400 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 401 return true; 402 break; 403 case SEEK_HOLE: 404 if (blkaddr == NULL_ADDR) 405 return true; 406 break; 407 } 408 return false; 409 } 410 411 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 412 { 413 struct inode *inode = file->f_mapping->host; 414 loff_t maxbytes = inode->i_sb->s_maxbytes; 415 struct dnode_of_data dn; 416 pgoff_t pgofs, end_offset; 417 loff_t data_ofs = offset; 418 loff_t isize; 419 int err = 0; 420 421 inode_lock(inode); 422 423 isize = i_size_read(inode); 424 if (offset >= isize) 425 goto fail; 426 427 /* handle inline data case */ 428 if (f2fs_has_inline_data(inode)) { 429 if (whence == SEEK_HOLE) { 430 data_ofs = isize; 431 goto found; 432 } else if (whence == SEEK_DATA) { 433 data_ofs = offset; 434 goto found; 435 } 436 } 437 438 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 439 440 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 441 set_new_dnode(&dn, inode, NULL, NULL, 0); 442 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 443 if (err && err != -ENOENT) { 444 goto fail; 445 } else if (err == -ENOENT) { 446 /* direct node does not exists */ 447 if (whence == SEEK_DATA) { 448 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 449 continue; 450 } else { 451 goto found; 452 } 453 } 454 455 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 456 457 /* find data/hole in dnode block */ 458 for (; dn.ofs_in_node < end_offset; 459 dn.ofs_in_node++, pgofs++, 460 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 461 block_t blkaddr; 462 463 blkaddr = f2fs_data_blkaddr(&dn); 464 465 if (__is_valid_data_blkaddr(blkaddr) && 466 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 467 blkaddr, DATA_GENERIC_ENHANCE)) { 468 f2fs_put_dnode(&dn); 469 goto fail; 470 } 471 472 if (__found_offset(file->f_mapping, blkaddr, 473 pgofs, whence)) { 474 f2fs_put_dnode(&dn); 475 goto found; 476 } 477 } 478 f2fs_put_dnode(&dn); 479 } 480 481 if (whence == SEEK_DATA) 482 goto fail; 483 found: 484 if (whence == SEEK_HOLE && data_ofs > isize) 485 data_ofs = isize; 486 inode_unlock(inode); 487 return vfs_setpos(file, data_ofs, maxbytes); 488 fail: 489 inode_unlock(inode); 490 return -ENXIO; 491 } 492 493 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 494 { 495 struct inode *inode = file->f_mapping->host; 496 loff_t maxbytes = inode->i_sb->s_maxbytes; 497 498 if (f2fs_compressed_file(inode)) 499 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 500 501 switch (whence) { 502 case SEEK_SET: 503 case SEEK_CUR: 504 case SEEK_END: 505 return generic_file_llseek_size(file, offset, whence, 506 maxbytes, i_size_read(inode)); 507 case SEEK_DATA: 508 case SEEK_HOLE: 509 if (offset < 0) 510 return -ENXIO; 511 return f2fs_seek_block(file, offset, whence); 512 } 513 514 return -EINVAL; 515 } 516 517 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 518 { 519 struct inode *inode = file_inode(file); 520 521 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 522 return -EIO; 523 524 if (!f2fs_is_compress_backend_ready(inode)) 525 return -EOPNOTSUPP; 526 527 file_accessed(file); 528 vma->vm_ops = &f2fs_file_vm_ops; 529 set_inode_flag(inode, FI_MMAP_FILE); 530 return 0; 531 } 532 533 static int f2fs_file_open(struct inode *inode, struct file *filp) 534 { 535 int err = fscrypt_file_open(inode, filp); 536 537 if (err) 538 return err; 539 540 if (!f2fs_is_compress_backend_ready(inode)) 541 return -EOPNOTSUPP; 542 543 err = fsverity_file_open(inode, filp); 544 if (err) 545 return err; 546 547 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 548 filp->f_mode |= FMODE_CAN_ODIRECT; 549 550 return dquot_file_open(inode, filp); 551 } 552 553 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 554 { 555 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 556 struct f2fs_node *raw_node; 557 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 558 __le32 *addr; 559 int base = 0; 560 bool compressed_cluster = false; 561 int cluster_index = 0, valid_blocks = 0; 562 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 563 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 564 565 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 566 base = get_extra_isize(dn->inode); 567 568 raw_node = F2FS_NODE(dn->node_page); 569 addr = blkaddr_in_node(raw_node) + base + ofs; 570 571 /* Assumption: truncation starts with cluster */ 572 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 573 block_t blkaddr = le32_to_cpu(*addr); 574 575 if (f2fs_compressed_file(dn->inode) && 576 !(cluster_index & (cluster_size - 1))) { 577 if (compressed_cluster) 578 f2fs_i_compr_blocks_update(dn->inode, 579 valid_blocks, false); 580 compressed_cluster = (blkaddr == COMPRESS_ADDR); 581 valid_blocks = 0; 582 } 583 584 if (blkaddr == NULL_ADDR) 585 continue; 586 587 dn->data_blkaddr = NULL_ADDR; 588 f2fs_set_data_blkaddr(dn); 589 590 if (__is_valid_data_blkaddr(blkaddr)) { 591 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 592 DATA_GENERIC_ENHANCE)) 593 continue; 594 if (compressed_cluster) 595 valid_blocks++; 596 } 597 598 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 599 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 600 601 f2fs_invalidate_blocks(sbi, blkaddr); 602 603 if (!released || blkaddr != COMPRESS_ADDR) 604 nr_free++; 605 } 606 607 if (compressed_cluster) 608 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 609 610 if (nr_free) { 611 pgoff_t fofs; 612 /* 613 * once we invalidate valid blkaddr in range [ofs, ofs + count], 614 * we will invalidate all blkaddr in the whole range. 615 */ 616 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 617 dn->inode) + ofs; 618 f2fs_update_read_extent_cache_range(dn, fofs, 0, len); 619 f2fs_update_age_extent_cache_range(dn, fofs, len); 620 dec_valid_block_count(sbi, dn->inode, nr_free); 621 } 622 dn->ofs_in_node = ofs; 623 624 f2fs_update_time(sbi, REQ_TIME); 625 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 626 dn->ofs_in_node, nr_free); 627 } 628 629 static int truncate_partial_data_page(struct inode *inode, u64 from, 630 bool cache_only) 631 { 632 loff_t offset = from & (PAGE_SIZE - 1); 633 pgoff_t index = from >> PAGE_SHIFT; 634 struct address_space *mapping = inode->i_mapping; 635 struct page *page; 636 637 if (!offset && !cache_only) 638 return 0; 639 640 if (cache_only) { 641 page = find_lock_page(mapping, index); 642 if (page && PageUptodate(page)) 643 goto truncate_out; 644 f2fs_put_page(page, 1); 645 return 0; 646 } 647 648 page = f2fs_get_lock_data_page(inode, index, true); 649 if (IS_ERR(page)) 650 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 651 truncate_out: 652 f2fs_wait_on_page_writeback(page, DATA, true, true); 653 zero_user(page, offset, PAGE_SIZE - offset); 654 655 /* An encrypted inode should have a key and truncate the last page. */ 656 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 657 if (!cache_only) 658 set_page_dirty(page); 659 f2fs_put_page(page, 1); 660 return 0; 661 } 662 663 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 664 { 665 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 666 struct dnode_of_data dn; 667 pgoff_t free_from; 668 int count = 0, err = 0; 669 struct page *ipage; 670 bool truncate_page = false; 671 672 trace_f2fs_truncate_blocks_enter(inode, from); 673 674 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 675 676 if (free_from >= max_file_blocks(inode)) 677 goto free_partial; 678 679 if (lock) 680 f2fs_lock_op(sbi); 681 682 ipage = f2fs_get_node_page(sbi, inode->i_ino); 683 if (IS_ERR(ipage)) { 684 err = PTR_ERR(ipage); 685 goto out; 686 } 687 688 if (f2fs_has_inline_data(inode)) { 689 f2fs_truncate_inline_inode(inode, ipage, from); 690 f2fs_put_page(ipage, 1); 691 truncate_page = true; 692 goto out; 693 } 694 695 set_new_dnode(&dn, inode, ipage, NULL, 0); 696 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 697 if (err) { 698 if (err == -ENOENT) 699 goto free_next; 700 goto out; 701 } 702 703 count = ADDRS_PER_PAGE(dn.node_page, inode); 704 705 count -= dn.ofs_in_node; 706 f2fs_bug_on(sbi, count < 0); 707 708 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 709 f2fs_truncate_data_blocks_range(&dn, count); 710 free_from += count; 711 } 712 713 f2fs_put_dnode(&dn); 714 free_next: 715 err = f2fs_truncate_inode_blocks(inode, free_from); 716 out: 717 if (lock) 718 f2fs_unlock_op(sbi); 719 free_partial: 720 /* lastly zero out the first data page */ 721 if (!err) 722 err = truncate_partial_data_page(inode, from, truncate_page); 723 724 trace_f2fs_truncate_blocks_exit(inode, err); 725 return err; 726 } 727 728 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 729 { 730 u64 free_from = from; 731 int err; 732 733 #ifdef CONFIG_F2FS_FS_COMPRESSION 734 /* 735 * for compressed file, only support cluster size 736 * aligned truncation. 737 */ 738 if (f2fs_compressed_file(inode)) 739 free_from = round_up(from, 740 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 741 #endif 742 743 err = f2fs_do_truncate_blocks(inode, free_from, lock); 744 if (err) 745 return err; 746 747 #ifdef CONFIG_F2FS_FS_COMPRESSION 748 /* 749 * For compressed file, after release compress blocks, don't allow write 750 * direct, but we should allow write direct after truncate to zero. 751 */ 752 if (f2fs_compressed_file(inode) && !free_from 753 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 754 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 755 756 if (from != free_from) { 757 err = f2fs_truncate_partial_cluster(inode, from, lock); 758 if (err) 759 return err; 760 } 761 #endif 762 763 return 0; 764 } 765 766 int f2fs_truncate(struct inode *inode) 767 { 768 int err; 769 770 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 771 return -EIO; 772 773 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 774 S_ISLNK(inode->i_mode))) 775 return 0; 776 777 trace_f2fs_truncate(inode); 778 779 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) 780 return -EIO; 781 782 err = f2fs_dquot_initialize(inode); 783 if (err) 784 return err; 785 786 /* we should check inline_data size */ 787 if (!f2fs_may_inline_data(inode)) { 788 err = f2fs_convert_inline_inode(inode); 789 if (err) 790 return err; 791 } 792 793 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 794 if (err) 795 return err; 796 797 inode->i_mtime = inode->i_ctime = current_time(inode); 798 f2fs_mark_inode_dirty_sync(inode, false); 799 return 0; 800 } 801 802 static bool f2fs_force_buffered_io(struct inode *inode, int rw) 803 { 804 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 805 806 if (!fscrypt_dio_supported(inode)) 807 return true; 808 if (fsverity_active(inode)) 809 return true; 810 if (f2fs_compressed_file(inode)) 811 return true; 812 813 /* disallow direct IO if any of devices has unaligned blksize */ 814 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 815 return true; 816 /* 817 * for blkzoned device, fallback direct IO to buffered IO, so 818 * all IOs can be serialized by log-structured write. 819 */ 820 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE)) 821 return true; 822 if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi)) 823 return true; 824 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 825 return true; 826 827 return false; 828 } 829 830 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 831 struct kstat *stat, u32 request_mask, unsigned int query_flags) 832 { 833 struct inode *inode = d_inode(path->dentry); 834 struct f2fs_inode_info *fi = F2FS_I(inode); 835 struct f2fs_inode *ri = NULL; 836 unsigned int flags; 837 838 if (f2fs_has_extra_attr(inode) && 839 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 840 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 841 stat->result_mask |= STATX_BTIME; 842 stat->btime.tv_sec = fi->i_crtime.tv_sec; 843 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 844 } 845 846 /* 847 * Return the DIO alignment restrictions if requested. We only return 848 * this information when requested, since on encrypted files it might 849 * take a fair bit of work to get if the file wasn't opened recently. 850 * 851 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN 852 * cannot represent that, so in that case we report no DIO support. 853 */ 854 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 855 unsigned int bsize = i_blocksize(inode); 856 857 stat->result_mask |= STATX_DIOALIGN; 858 if (!f2fs_force_buffered_io(inode, WRITE)) { 859 stat->dio_mem_align = bsize; 860 stat->dio_offset_align = bsize; 861 } 862 } 863 864 flags = fi->i_flags; 865 if (flags & F2FS_COMPR_FL) 866 stat->attributes |= STATX_ATTR_COMPRESSED; 867 if (flags & F2FS_APPEND_FL) 868 stat->attributes |= STATX_ATTR_APPEND; 869 if (IS_ENCRYPTED(inode)) 870 stat->attributes |= STATX_ATTR_ENCRYPTED; 871 if (flags & F2FS_IMMUTABLE_FL) 872 stat->attributes |= STATX_ATTR_IMMUTABLE; 873 if (flags & F2FS_NODUMP_FL) 874 stat->attributes |= STATX_ATTR_NODUMP; 875 if (IS_VERITY(inode)) 876 stat->attributes |= STATX_ATTR_VERITY; 877 878 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 879 STATX_ATTR_APPEND | 880 STATX_ATTR_ENCRYPTED | 881 STATX_ATTR_IMMUTABLE | 882 STATX_ATTR_NODUMP | 883 STATX_ATTR_VERITY); 884 885 generic_fillattr(idmap, inode, stat); 886 887 /* we need to show initial sectors used for inline_data/dentries */ 888 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 889 f2fs_has_inline_dentry(inode)) 890 stat->blocks += (stat->size + 511) >> 9; 891 892 return 0; 893 } 894 895 #ifdef CONFIG_F2FS_FS_POSIX_ACL 896 static void __setattr_copy(struct mnt_idmap *idmap, 897 struct inode *inode, const struct iattr *attr) 898 { 899 unsigned int ia_valid = attr->ia_valid; 900 901 i_uid_update(idmap, attr, inode); 902 i_gid_update(idmap, attr, inode); 903 if (ia_valid & ATTR_ATIME) 904 inode->i_atime = attr->ia_atime; 905 if (ia_valid & ATTR_MTIME) 906 inode->i_mtime = attr->ia_mtime; 907 if (ia_valid & ATTR_CTIME) 908 inode->i_ctime = attr->ia_ctime; 909 if (ia_valid & ATTR_MODE) { 910 umode_t mode = attr->ia_mode; 911 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 912 913 if (!vfsgid_in_group_p(vfsgid) && 914 !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 915 mode &= ~S_ISGID; 916 set_acl_inode(inode, mode); 917 } 918 } 919 #else 920 #define __setattr_copy setattr_copy 921 #endif 922 923 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 924 struct iattr *attr) 925 { 926 struct inode *inode = d_inode(dentry); 927 int err; 928 929 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 930 return -EIO; 931 932 if (unlikely(IS_IMMUTABLE(inode))) 933 return -EPERM; 934 935 if (unlikely(IS_APPEND(inode) && 936 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 937 ATTR_GID | ATTR_TIMES_SET)))) 938 return -EPERM; 939 940 if ((attr->ia_valid & ATTR_SIZE) && 941 !f2fs_is_compress_backend_ready(inode)) 942 return -EOPNOTSUPP; 943 944 err = setattr_prepare(idmap, dentry, attr); 945 if (err) 946 return err; 947 948 err = fscrypt_prepare_setattr(dentry, attr); 949 if (err) 950 return err; 951 952 err = fsverity_prepare_setattr(dentry, attr); 953 if (err) 954 return err; 955 956 if (is_quota_modification(idmap, inode, attr)) { 957 err = f2fs_dquot_initialize(inode); 958 if (err) 959 return err; 960 } 961 if (i_uid_needs_update(idmap, attr, inode) || 962 i_gid_needs_update(idmap, attr, inode)) { 963 f2fs_lock_op(F2FS_I_SB(inode)); 964 err = dquot_transfer(idmap, inode, attr); 965 if (err) { 966 set_sbi_flag(F2FS_I_SB(inode), 967 SBI_QUOTA_NEED_REPAIR); 968 f2fs_unlock_op(F2FS_I_SB(inode)); 969 return err; 970 } 971 /* 972 * update uid/gid under lock_op(), so that dquot and inode can 973 * be updated atomically. 974 */ 975 i_uid_update(idmap, attr, inode); 976 i_gid_update(idmap, attr, inode); 977 f2fs_mark_inode_dirty_sync(inode, true); 978 f2fs_unlock_op(F2FS_I_SB(inode)); 979 } 980 981 if (attr->ia_valid & ATTR_SIZE) { 982 loff_t old_size = i_size_read(inode); 983 984 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 985 /* 986 * should convert inline inode before i_size_write to 987 * keep smaller than inline_data size with inline flag. 988 */ 989 err = f2fs_convert_inline_inode(inode); 990 if (err) 991 return err; 992 } 993 994 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 995 filemap_invalidate_lock(inode->i_mapping); 996 997 truncate_setsize(inode, attr->ia_size); 998 999 if (attr->ia_size <= old_size) 1000 err = f2fs_truncate(inode); 1001 /* 1002 * do not trim all blocks after i_size if target size is 1003 * larger than i_size. 1004 */ 1005 filemap_invalidate_unlock(inode->i_mapping); 1006 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1007 if (err) 1008 return err; 1009 1010 spin_lock(&F2FS_I(inode)->i_size_lock); 1011 inode->i_mtime = inode->i_ctime = current_time(inode); 1012 F2FS_I(inode)->last_disk_size = i_size_read(inode); 1013 spin_unlock(&F2FS_I(inode)->i_size_lock); 1014 } 1015 1016 __setattr_copy(idmap, inode, attr); 1017 1018 if (attr->ia_valid & ATTR_MODE) { 1019 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode)); 1020 1021 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 1022 if (!err) 1023 inode->i_mode = F2FS_I(inode)->i_acl_mode; 1024 clear_inode_flag(inode, FI_ACL_MODE); 1025 } 1026 } 1027 1028 /* file size may changed here */ 1029 f2fs_mark_inode_dirty_sync(inode, true); 1030 1031 /* inode change will produce dirty node pages flushed by checkpoint */ 1032 f2fs_balance_fs(F2FS_I_SB(inode), true); 1033 1034 return err; 1035 } 1036 1037 const struct inode_operations f2fs_file_inode_operations = { 1038 .getattr = f2fs_getattr, 1039 .setattr = f2fs_setattr, 1040 .get_inode_acl = f2fs_get_acl, 1041 .set_acl = f2fs_set_acl, 1042 .listxattr = f2fs_listxattr, 1043 .fiemap = f2fs_fiemap, 1044 .fileattr_get = f2fs_fileattr_get, 1045 .fileattr_set = f2fs_fileattr_set, 1046 }; 1047 1048 static int fill_zero(struct inode *inode, pgoff_t index, 1049 loff_t start, loff_t len) 1050 { 1051 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1052 struct page *page; 1053 1054 if (!len) 1055 return 0; 1056 1057 f2fs_balance_fs(sbi, true); 1058 1059 f2fs_lock_op(sbi); 1060 page = f2fs_get_new_data_page(inode, NULL, index, false); 1061 f2fs_unlock_op(sbi); 1062 1063 if (IS_ERR(page)) 1064 return PTR_ERR(page); 1065 1066 f2fs_wait_on_page_writeback(page, DATA, true, true); 1067 zero_user(page, start, len); 1068 set_page_dirty(page); 1069 f2fs_put_page(page, 1); 1070 return 0; 1071 } 1072 1073 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1074 { 1075 int err; 1076 1077 while (pg_start < pg_end) { 1078 struct dnode_of_data dn; 1079 pgoff_t end_offset, count; 1080 1081 set_new_dnode(&dn, inode, NULL, NULL, 0); 1082 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1083 if (err) { 1084 if (err == -ENOENT) { 1085 pg_start = f2fs_get_next_page_offset(&dn, 1086 pg_start); 1087 continue; 1088 } 1089 return err; 1090 } 1091 1092 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1093 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1094 1095 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1096 1097 f2fs_truncate_data_blocks_range(&dn, count); 1098 f2fs_put_dnode(&dn); 1099 1100 pg_start += count; 1101 } 1102 return 0; 1103 } 1104 1105 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 1106 { 1107 pgoff_t pg_start, pg_end; 1108 loff_t off_start, off_end; 1109 int ret; 1110 1111 ret = f2fs_convert_inline_inode(inode); 1112 if (ret) 1113 return ret; 1114 1115 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1116 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1117 1118 off_start = offset & (PAGE_SIZE - 1); 1119 off_end = (offset + len) & (PAGE_SIZE - 1); 1120 1121 if (pg_start == pg_end) { 1122 ret = fill_zero(inode, pg_start, off_start, 1123 off_end - off_start); 1124 if (ret) 1125 return ret; 1126 } else { 1127 if (off_start) { 1128 ret = fill_zero(inode, pg_start++, off_start, 1129 PAGE_SIZE - off_start); 1130 if (ret) 1131 return ret; 1132 } 1133 if (off_end) { 1134 ret = fill_zero(inode, pg_end, 0, off_end); 1135 if (ret) 1136 return ret; 1137 } 1138 1139 if (pg_start < pg_end) { 1140 loff_t blk_start, blk_end; 1141 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1142 1143 f2fs_balance_fs(sbi, true); 1144 1145 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1146 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1147 1148 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1149 filemap_invalidate_lock(inode->i_mapping); 1150 1151 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1152 1153 f2fs_lock_op(sbi); 1154 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1155 f2fs_unlock_op(sbi); 1156 1157 filemap_invalidate_unlock(inode->i_mapping); 1158 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1159 } 1160 } 1161 1162 return ret; 1163 } 1164 1165 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1166 int *do_replace, pgoff_t off, pgoff_t len) 1167 { 1168 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1169 struct dnode_of_data dn; 1170 int ret, done, i; 1171 1172 next_dnode: 1173 set_new_dnode(&dn, inode, NULL, NULL, 0); 1174 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1175 if (ret && ret != -ENOENT) { 1176 return ret; 1177 } else if (ret == -ENOENT) { 1178 if (dn.max_level == 0) 1179 return -ENOENT; 1180 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1181 dn.ofs_in_node, len); 1182 blkaddr += done; 1183 do_replace += done; 1184 goto next; 1185 } 1186 1187 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1188 dn.ofs_in_node, len); 1189 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1190 *blkaddr = f2fs_data_blkaddr(&dn); 1191 1192 if (__is_valid_data_blkaddr(*blkaddr) && 1193 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1194 DATA_GENERIC_ENHANCE)) { 1195 f2fs_put_dnode(&dn); 1196 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1197 return -EFSCORRUPTED; 1198 } 1199 1200 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1201 1202 if (f2fs_lfs_mode(sbi)) { 1203 f2fs_put_dnode(&dn); 1204 return -EOPNOTSUPP; 1205 } 1206 1207 /* do not invalidate this block address */ 1208 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1209 *do_replace = 1; 1210 } 1211 } 1212 f2fs_put_dnode(&dn); 1213 next: 1214 len -= done; 1215 off += done; 1216 if (len) 1217 goto next_dnode; 1218 return 0; 1219 } 1220 1221 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1222 int *do_replace, pgoff_t off, int len) 1223 { 1224 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1225 struct dnode_of_data dn; 1226 int ret, i; 1227 1228 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1229 if (*do_replace == 0) 1230 continue; 1231 1232 set_new_dnode(&dn, inode, NULL, NULL, 0); 1233 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1234 if (ret) { 1235 dec_valid_block_count(sbi, inode, 1); 1236 f2fs_invalidate_blocks(sbi, *blkaddr); 1237 } else { 1238 f2fs_update_data_blkaddr(&dn, *blkaddr); 1239 } 1240 f2fs_put_dnode(&dn); 1241 } 1242 return 0; 1243 } 1244 1245 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1246 block_t *blkaddr, int *do_replace, 1247 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1248 { 1249 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1250 pgoff_t i = 0; 1251 int ret; 1252 1253 while (i < len) { 1254 if (blkaddr[i] == NULL_ADDR && !full) { 1255 i++; 1256 continue; 1257 } 1258 1259 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1260 struct dnode_of_data dn; 1261 struct node_info ni; 1262 size_t new_size; 1263 pgoff_t ilen; 1264 1265 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1266 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1267 if (ret) 1268 return ret; 1269 1270 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1271 if (ret) { 1272 f2fs_put_dnode(&dn); 1273 return ret; 1274 } 1275 1276 ilen = min((pgoff_t) 1277 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1278 dn.ofs_in_node, len - i); 1279 do { 1280 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1281 f2fs_truncate_data_blocks_range(&dn, 1); 1282 1283 if (do_replace[i]) { 1284 f2fs_i_blocks_write(src_inode, 1285 1, false, false); 1286 f2fs_i_blocks_write(dst_inode, 1287 1, true, false); 1288 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1289 blkaddr[i], ni.version, true, false); 1290 1291 do_replace[i] = 0; 1292 } 1293 dn.ofs_in_node++; 1294 i++; 1295 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1296 if (dst_inode->i_size < new_size) 1297 f2fs_i_size_write(dst_inode, new_size); 1298 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1299 1300 f2fs_put_dnode(&dn); 1301 } else { 1302 struct page *psrc, *pdst; 1303 1304 psrc = f2fs_get_lock_data_page(src_inode, 1305 src + i, true); 1306 if (IS_ERR(psrc)) 1307 return PTR_ERR(psrc); 1308 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1309 true); 1310 if (IS_ERR(pdst)) { 1311 f2fs_put_page(psrc, 1); 1312 return PTR_ERR(pdst); 1313 } 1314 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); 1315 set_page_dirty(pdst); 1316 f2fs_put_page(pdst, 1); 1317 f2fs_put_page(psrc, 1); 1318 1319 ret = f2fs_truncate_hole(src_inode, 1320 src + i, src + i + 1); 1321 if (ret) 1322 return ret; 1323 i++; 1324 } 1325 } 1326 return 0; 1327 } 1328 1329 static int __exchange_data_block(struct inode *src_inode, 1330 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1331 pgoff_t len, bool full) 1332 { 1333 block_t *src_blkaddr; 1334 int *do_replace; 1335 pgoff_t olen; 1336 int ret; 1337 1338 while (len) { 1339 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1340 1341 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1342 array_size(olen, sizeof(block_t)), 1343 GFP_NOFS); 1344 if (!src_blkaddr) 1345 return -ENOMEM; 1346 1347 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1348 array_size(olen, sizeof(int)), 1349 GFP_NOFS); 1350 if (!do_replace) { 1351 kvfree(src_blkaddr); 1352 return -ENOMEM; 1353 } 1354 1355 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1356 do_replace, src, olen); 1357 if (ret) 1358 goto roll_back; 1359 1360 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1361 do_replace, src, dst, olen, full); 1362 if (ret) 1363 goto roll_back; 1364 1365 src += olen; 1366 dst += olen; 1367 len -= olen; 1368 1369 kvfree(src_blkaddr); 1370 kvfree(do_replace); 1371 } 1372 return 0; 1373 1374 roll_back: 1375 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1376 kvfree(src_blkaddr); 1377 kvfree(do_replace); 1378 return ret; 1379 } 1380 1381 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1382 { 1383 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1384 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1385 pgoff_t start = offset >> PAGE_SHIFT; 1386 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1387 int ret; 1388 1389 f2fs_balance_fs(sbi, true); 1390 1391 /* avoid gc operation during block exchange */ 1392 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1393 filemap_invalidate_lock(inode->i_mapping); 1394 1395 f2fs_lock_op(sbi); 1396 f2fs_drop_extent_tree(inode); 1397 truncate_pagecache(inode, offset); 1398 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1399 f2fs_unlock_op(sbi); 1400 1401 filemap_invalidate_unlock(inode->i_mapping); 1402 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1403 return ret; 1404 } 1405 1406 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1407 { 1408 loff_t new_size; 1409 int ret; 1410 1411 if (offset + len >= i_size_read(inode)) 1412 return -EINVAL; 1413 1414 /* collapse range should be aligned to block size of f2fs. */ 1415 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1416 return -EINVAL; 1417 1418 ret = f2fs_convert_inline_inode(inode); 1419 if (ret) 1420 return ret; 1421 1422 /* write out all dirty pages from offset */ 1423 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1424 if (ret) 1425 return ret; 1426 1427 ret = f2fs_do_collapse(inode, offset, len); 1428 if (ret) 1429 return ret; 1430 1431 /* write out all moved pages, if possible */ 1432 filemap_invalidate_lock(inode->i_mapping); 1433 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1434 truncate_pagecache(inode, offset); 1435 1436 new_size = i_size_read(inode) - len; 1437 ret = f2fs_truncate_blocks(inode, new_size, true); 1438 filemap_invalidate_unlock(inode->i_mapping); 1439 if (!ret) 1440 f2fs_i_size_write(inode, new_size); 1441 return ret; 1442 } 1443 1444 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1445 pgoff_t end) 1446 { 1447 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1448 pgoff_t index = start; 1449 unsigned int ofs_in_node = dn->ofs_in_node; 1450 blkcnt_t count = 0; 1451 int ret; 1452 1453 for (; index < end; index++, dn->ofs_in_node++) { 1454 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1455 count++; 1456 } 1457 1458 dn->ofs_in_node = ofs_in_node; 1459 ret = f2fs_reserve_new_blocks(dn, count); 1460 if (ret) 1461 return ret; 1462 1463 dn->ofs_in_node = ofs_in_node; 1464 for (index = start; index < end; index++, dn->ofs_in_node++) { 1465 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1466 /* 1467 * f2fs_reserve_new_blocks will not guarantee entire block 1468 * allocation. 1469 */ 1470 if (dn->data_blkaddr == NULL_ADDR) { 1471 ret = -ENOSPC; 1472 break; 1473 } 1474 1475 if (dn->data_blkaddr == NEW_ADDR) 1476 continue; 1477 1478 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1479 DATA_GENERIC_ENHANCE)) { 1480 ret = -EFSCORRUPTED; 1481 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1482 break; 1483 } 1484 1485 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1486 dn->data_blkaddr = NEW_ADDR; 1487 f2fs_set_data_blkaddr(dn); 1488 } 1489 1490 f2fs_update_read_extent_cache_range(dn, start, 0, index - start); 1491 f2fs_update_age_extent_cache_range(dn, start, index - start); 1492 1493 return ret; 1494 } 1495 1496 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1497 int mode) 1498 { 1499 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1500 struct address_space *mapping = inode->i_mapping; 1501 pgoff_t index, pg_start, pg_end; 1502 loff_t new_size = i_size_read(inode); 1503 loff_t off_start, off_end; 1504 int ret = 0; 1505 1506 ret = inode_newsize_ok(inode, (len + offset)); 1507 if (ret) 1508 return ret; 1509 1510 ret = f2fs_convert_inline_inode(inode); 1511 if (ret) 1512 return ret; 1513 1514 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1515 if (ret) 1516 return ret; 1517 1518 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1519 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1520 1521 off_start = offset & (PAGE_SIZE - 1); 1522 off_end = (offset + len) & (PAGE_SIZE - 1); 1523 1524 if (pg_start == pg_end) { 1525 ret = fill_zero(inode, pg_start, off_start, 1526 off_end - off_start); 1527 if (ret) 1528 return ret; 1529 1530 new_size = max_t(loff_t, new_size, offset + len); 1531 } else { 1532 if (off_start) { 1533 ret = fill_zero(inode, pg_start++, off_start, 1534 PAGE_SIZE - off_start); 1535 if (ret) 1536 return ret; 1537 1538 new_size = max_t(loff_t, new_size, 1539 (loff_t)pg_start << PAGE_SHIFT); 1540 } 1541 1542 for (index = pg_start; index < pg_end;) { 1543 struct dnode_of_data dn; 1544 unsigned int end_offset; 1545 pgoff_t end; 1546 1547 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1548 filemap_invalidate_lock(mapping); 1549 1550 truncate_pagecache_range(inode, 1551 (loff_t)index << PAGE_SHIFT, 1552 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1553 1554 f2fs_lock_op(sbi); 1555 1556 set_new_dnode(&dn, inode, NULL, NULL, 0); 1557 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1558 if (ret) { 1559 f2fs_unlock_op(sbi); 1560 filemap_invalidate_unlock(mapping); 1561 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1562 goto out; 1563 } 1564 1565 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1566 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1567 1568 ret = f2fs_do_zero_range(&dn, index, end); 1569 f2fs_put_dnode(&dn); 1570 1571 f2fs_unlock_op(sbi); 1572 filemap_invalidate_unlock(mapping); 1573 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1574 1575 f2fs_balance_fs(sbi, dn.node_changed); 1576 1577 if (ret) 1578 goto out; 1579 1580 index = end; 1581 new_size = max_t(loff_t, new_size, 1582 (loff_t)index << PAGE_SHIFT); 1583 } 1584 1585 if (off_end) { 1586 ret = fill_zero(inode, pg_end, 0, off_end); 1587 if (ret) 1588 goto out; 1589 1590 new_size = max_t(loff_t, new_size, offset + len); 1591 } 1592 } 1593 1594 out: 1595 if (new_size > i_size_read(inode)) { 1596 if (mode & FALLOC_FL_KEEP_SIZE) 1597 file_set_keep_isize(inode); 1598 else 1599 f2fs_i_size_write(inode, new_size); 1600 } 1601 return ret; 1602 } 1603 1604 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1605 { 1606 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1607 struct address_space *mapping = inode->i_mapping; 1608 pgoff_t nr, pg_start, pg_end, delta, idx; 1609 loff_t new_size; 1610 int ret = 0; 1611 1612 new_size = i_size_read(inode) + len; 1613 ret = inode_newsize_ok(inode, new_size); 1614 if (ret) 1615 return ret; 1616 1617 if (offset >= i_size_read(inode)) 1618 return -EINVAL; 1619 1620 /* insert range should be aligned to block size of f2fs. */ 1621 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1622 return -EINVAL; 1623 1624 ret = f2fs_convert_inline_inode(inode); 1625 if (ret) 1626 return ret; 1627 1628 f2fs_balance_fs(sbi, true); 1629 1630 filemap_invalidate_lock(mapping); 1631 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1632 filemap_invalidate_unlock(mapping); 1633 if (ret) 1634 return ret; 1635 1636 /* write out all dirty pages from offset */ 1637 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1638 if (ret) 1639 return ret; 1640 1641 pg_start = offset >> PAGE_SHIFT; 1642 pg_end = (offset + len) >> PAGE_SHIFT; 1643 delta = pg_end - pg_start; 1644 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1645 1646 /* avoid gc operation during block exchange */ 1647 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1648 filemap_invalidate_lock(mapping); 1649 truncate_pagecache(inode, offset); 1650 1651 while (!ret && idx > pg_start) { 1652 nr = idx - pg_start; 1653 if (nr > delta) 1654 nr = delta; 1655 idx -= nr; 1656 1657 f2fs_lock_op(sbi); 1658 f2fs_drop_extent_tree(inode); 1659 1660 ret = __exchange_data_block(inode, inode, idx, 1661 idx + delta, nr, false); 1662 f2fs_unlock_op(sbi); 1663 } 1664 filemap_invalidate_unlock(mapping); 1665 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1666 1667 /* write out all moved pages, if possible */ 1668 filemap_invalidate_lock(mapping); 1669 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1670 truncate_pagecache(inode, offset); 1671 filemap_invalidate_unlock(mapping); 1672 1673 if (!ret) 1674 f2fs_i_size_write(inode, new_size); 1675 return ret; 1676 } 1677 1678 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset, 1679 loff_t len, int mode) 1680 { 1681 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1682 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1683 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1684 .m_may_create = true }; 1685 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1686 .init_gc_type = FG_GC, 1687 .should_migrate_blocks = false, 1688 .err_gc_skipped = true, 1689 .nr_free_secs = 0 }; 1690 pgoff_t pg_start, pg_end; 1691 loff_t new_size; 1692 loff_t off_end; 1693 block_t expanded = 0; 1694 int err; 1695 1696 err = inode_newsize_ok(inode, (len + offset)); 1697 if (err) 1698 return err; 1699 1700 err = f2fs_convert_inline_inode(inode); 1701 if (err) 1702 return err; 1703 1704 f2fs_balance_fs(sbi, true); 1705 1706 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1707 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1708 off_end = (offset + len) & (PAGE_SIZE - 1); 1709 1710 map.m_lblk = pg_start; 1711 map.m_len = pg_end - pg_start; 1712 if (off_end) 1713 map.m_len++; 1714 1715 if (!map.m_len) 1716 return 0; 1717 1718 if (f2fs_is_pinned_file(inode)) { 1719 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1720 block_t sec_len = roundup(map.m_len, sec_blks); 1721 1722 map.m_len = sec_blks; 1723 next_alloc: 1724 if (has_not_enough_free_secs(sbi, 0, 1725 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1726 f2fs_down_write(&sbi->gc_lock); 1727 err = f2fs_gc(sbi, &gc_control); 1728 if (err && err != -ENODATA) 1729 goto out_err; 1730 } 1731 1732 f2fs_down_write(&sbi->pin_sem); 1733 1734 f2fs_lock_op(sbi); 1735 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 1736 f2fs_unlock_op(sbi); 1737 1738 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1739 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO); 1740 file_dont_truncate(inode); 1741 1742 f2fs_up_write(&sbi->pin_sem); 1743 1744 expanded += map.m_len; 1745 sec_len -= map.m_len; 1746 map.m_lblk += map.m_len; 1747 if (!err && sec_len) 1748 goto next_alloc; 1749 1750 map.m_len = expanded; 1751 } else { 1752 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO); 1753 expanded = map.m_len; 1754 } 1755 out_err: 1756 if (err) { 1757 pgoff_t last_off; 1758 1759 if (!expanded) 1760 return err; 1761 1762 last_off = pg_start + expanded - 1; 1763 1764 /* update new size to the failed position */ 1765 new_size = (last_off == pg_end) ? offset + len : 1766 (loff_t)(last_off + 1) << PAGE_SHIFT; 1767 } else { 1768 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1769 } 1770 1771 if (new_size > i_size_read(inode)) { 1772 if (mode & FALLOC_FL_KEEP_SIZE) 1773 file_set_keep_isize(inode); 1774 else 1775 f2fs_i_size_write(inode, new_size); 1776 } 1777 1778 return err; 1779 } 1780 1781 static long f2fs_fallocate(struct file *file, int mode, 1782 loff_t offset, loff_t len) 1783 { 1784 struct inode *inode = file_inode(file); 1785 long ret = 0; 1786 1787 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1788 return -EIO; 1789 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1790 return -ENOSPC; 1791 if (!f2fs_is_compress_backend_ready(inode)) 1792 return -EOPNOTSUPP; 1793 1794 /* f2fs only support ->fallocate for regular file */ 1795 if (!S_ISREG(inode->i_mode)) 1796 return -EINVAL; 1797 1798 if (IS_ENCRYPTED(inode) && 1799 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1800 return -EOPNOTSUPP; 1801 1802 /* 1803 * Pinned file should not support partial truncation since the block 1804 * can be used by applications. 1805 */ 1806 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1807 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1808 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1809 return -EOPNOTSUPP; 1810 1811 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1812 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1813 FALLOC_FL_INSERT_RANGE)) 1814 return -EOPNOTSUPP; 1815 1816 inode_lock(inode); 1817 1818 ret = file_modified(file); 1819 if (ret) 1820 goto out; 1821 1822 if (mode & FALLOC_FL_PUNCH_HOLE) { 1823 if (offset >= inode->i_size) 1824 goto out; 1825 1826 ret = f2fs_punch_hole(inode, offset, len); 1827 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1828 ret = f2fs_collapse_range(inode, offset, len); 1829 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1830 ret = f2fs_zero_range(inode, offset, len, mode); 1831 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1832 ret = f2fs_insert_range(inode, offset, len); 1833 } else { 1834 ret = f2fs_expand_inode_data(inode, offset, len, mode); 1835 } 1836 1837 if (!ret) { 1838 inode->i_mtime = inode->i_ctime = current_time(inode); 1839 f2fs_mark_inode_dirty_sync(inode, false); 1840 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1841 } 1842 1843 out: 1844 inode_unlock(inode); 1845 1846 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1847 return ret; 1848 } 1849 1850 static int f2fs_release_file(struct inode *inode, struct file *filp) 1851 { 1852 /* 1853 * f2fs_release_file is called at every close calls. So we should 1854 * not drop any inmemory pages by close called by other process. 1855 */ 1856 if (!(filp->f_mode & FMODE_WRITE) || 1857 atomic_read(&inode->i_writecount) != 1) 1858 return 0; 1859 1860 inode_lock(inode); 1861 f2fs_abort_atomic_write(inode, true); 1862 inode_unlock(inode); 1863 1864 return 0; 1865 } 1866 1867 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1868 { 1869 struct inode *inode = file_inode(file); 1870 1871 /* 1872 * If the process doing a transaction is crashed, we should do 1873 * roll-back. Otherwise, other reader/write can see corrupted database 1874 * until all the writers close its file. Since this should be done 1875 * before dropping file lock, it needs to do in ->flush. 1876 */ 1877 if (F2FS_I(inode)->atomic_write_task == current && 1878 (current->flags & PF_EXITING)) { 1879 inode_lock(inode); 1880 f2fs_abort_atomic_write(inode, true); 1881 inode_unlock(inode); 1882 } 1883 1884 return 0; 1885 } 1886 1887 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1888 { 1889 struct f2fs_inode_info *fi = F2FS_I(inode); 1890 u32 masked_flags = fi->i_flags & mask; 1891 1892 /* mask can be shrunk by flags_valid selector */ 1893 iflags &= mask; 1894 1895 /* Is it quota file? Do not allow user to mess with it */ 1896 if (IS_NOQUOTA(inode)) 1897 return -EPERM; 1898 1899 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1900 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1901 return -EOPNOTSUPP; 1902 if (!f2fs_empty_dir(inode)) 1903 return -ENOTEMPTY; 1904 } 1905 1906 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1907 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1908 return -EOPNOTSUPP; 1909 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1910 return -EINVAL; 1911 } 1912 1913 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1914 if (masked_flags & F2FS_COMPR_FL) { 1915 if (!f2fs_disable_compressed_file(inode)) 1916 return -EINVAL; 1917 } else { 1918 /* try to convert inline_data to support compression */ 1919 int err = f2fs_convert_inline_inode(inode); 1920 if (err) 1921 return err; 1922 if (!f2fs_may_compress(inode)) 1923 return -EINVAL; 1924 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 1925 return -EINVAL; 1926 if (set_compress_context(inode)) 1927 return -EOPNOTSUPP; 1928 } 1929 } 1930 1931 fi->i_flags = iflags | (fi->i_flags & ~mask); 1932 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1933 (fi->i_flags & F2FS_NOCOMP_FL)); 1934 1935 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1936 set_inode_flag(inode, FI_PROJ_INHERIT); 1937 else 1938 clear_inode_flag(inode, FI_PROJ_INHERIT); 1939 1940 inode->i_ctime = current_time(inode); 1941 f2fs_set_inode_flags(inode); 1942 f2fs_mark_inode_dirty_sync(inode, true); 1943 return 0; 1944 } 1945 1946 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 1947 1948 /* 1949 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1950 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1951 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1952 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1953 * 1954 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 1955 * FS_IOC_FSSETXATTR is done by the VFS. 1956 */ 1957 1958 static const struct { 1959 u32 iflag; 1960 u32 fsflag; 1961 } f2fs_fsflags_map[] = { 1962 { F2FS_COMPR_FL, FS_COMPR_FL }, 1963 { F2FS_SYNC_FL, FS_SYNC_FL }, 1964 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1965 { F2FS_APPEND_FL, FS_APPEND_FL }, 1966 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1967 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1968 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1969 { F2FS_INDEX_FL, FS_INDEX_FL }, 1970 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1971 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1972 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1973 }; 1974 1975 #define F2FS_GETTABLE_FS_FL ( \ 1976 FS_COMPR_FL | \ 1977 FS_SYNC_FL | \ 1978 FS_IMMUTABLE_FL | \ 1979 FS_APPEND_FL | \ 1980 FS_NODUMP_FL | \ 1981 FS_NOATIME_FL | \ 1982 FS_NOCOMP_FL | \ 1983 FS_INDEX_FL | \ 1984 FS_DIRSYNC_FL | \ 1985 FS_PROJINHERIT_FL | \ 1986 FS_ENCRYPT_FL | \ 1987 FS_INLINE_DATA_FL | \ 1988 FS_NOCOW_FL | \ 1989 FS_VERITY_FL | \ 1990 FS_CASEFOLD_FL) 1991 1992 #define F2FS_SETTABLE_FS_FL ( \ 1993 FS_COMPR_FL | \ 1994 FS_SYNC_FL | \ 1995 FS_IMMUTABLE_FL | \ 1996 FS_APPEND_FL | \ 1997 FS_NODUMP_FL | \ 1998 FS_NOATIME_FL | \ 1999 FS_NOCOMP_FL | \ 2000 FS_DIRSYNC_FL | \ 2001 FS_PROJINHERIT_FL | \ 2002 FS_CASEFOLD_FL) 2003 2004 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 2005 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 2006 { 2007 u32 fsflags = 0; 2008 int i; 2009 2010 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2011 if (iflags & f2fs_fsflags_map[i].iflag) 2012 fsflags |= f2fs_fsflags_map[i].fsflag; 2013 2014 return fsflags; 2015 } 2016 2017 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 2018 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 2019 { 2020 u32 iflags = 0; 2021 int i; 2022 2023 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2024 if (fsflags & f2fs_fsflags_map[i].fsflag) 2025 iflags |= f2fs_fsflags_map[i].iflag; 2026 2027 return iflags; 2028 } 2029 2030 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2031 { 2032 struct inode *inode = file_inode(filp); 2033 2034 return put_user(inode->i_generation, (int __user *)arg); 2035 } 2036 2037 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate) 2038 { 2039 struct inode *inode = file_inode(filp); 2040 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2041 struct f2fs_inode_info *fi = F2FS_I(inode); 2042 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2043 struct inode *pinode; 2044 loff_t isize; 2045 int ret; 2046 2047 if (!inode_owner_or_capable(idmap, inode)) 2048 return -EACCES; 2049 2050 if (!S_ISREG(inode->i_mode)) 2051 return -EINVAL; 2052 2053 if (filp->f_flags & O_DIRECT) 2054 return -EINVAL; 2055 2056 ret = mnt_want_write_file(filp); 2057 if (ret) 2058 return ret; 2059 2060 inode_lock(inode); 2061 2062 if (!f2fs_disable_compressed_file(inode)) { 2063 ret = -EINVAL; 2064 goto out; 2065 } 2066 2067 if (f2fs_is_atomic_file(inode)) 2068 goto out; 2069 2070 ret = f2fs_convert_inline_inode(inode); 2071 if (ret) 2072 goto out; 2073 2074 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2075 2076 /* 2077 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2078 * f2fs_is_atomic_file. 2079 */ 2080 if (get_dirty_pages(inode)) 2081 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2082 inode->i_ino, get_dirty_pages(inode)); 2083 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2084 if (ret) { 2085 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2086 goto out; 2087 } 2088 2089 /* Check if the inode already has a COW inode */ 2090 if (fi->cow_inode == NULL) { 2091 /* Create a COW inode for atomic write */ 2092 pinode = f2fs_iget(inode->i_sb, fi->i_pino); 2093 if (IS_ERR(pinode)) { 2094 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2095 ret = PTR_ERR(pinode); 2096 goto out; 2097 } 2098 2099 ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode); 2100 iput(pinode); 2101 if (ret) { 2102 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2103 goto out; 2104 } 2105 2106 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2107 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2108 } else { 2109 /* Reuse the already created COW inode */ 2110 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true); 2111 if (ret) { 2112 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2113 goto out; 2114 } 2115 } 2116 2117 f2fs_write_inode(inode, NULL); 2118 2119 stat_inc_atomic_inode(inode); 2120 2121 set_inode_flag(inode, FI_ATOMIC_FILE); 2122 2123 isize = i_size_read(inode); 2124 fi->original_i_size = isize; 2125 if (truncate) { 2126 set_inode_flag(inode, FI_ATOMIC_REPLACE); 2127 truncate_inode_pages_final(inode->i_mapping); 2128 f2fs_i_size_write(inode, 0); 2129 isize = 0; 2130 } 2131 f2fs_i_size_write(fi->cow_inode, isize); 2132 2133 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2134 2135 f2fs_update_time(sbi, REQ_TIME); 2136 fi->atomic_write_task = current; 2137 stat_update_max_atomic_write(inode); 2138 fi->atomic_write_cnt = 0; 2139 out: 2140 inode_unlock(inode); 2141 mnt_drop_write_file(filp); 2142 return ret; 2143 } 2144 2145 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2146 { 2147 struct inode *inode = file_inode(filp); 2148 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2149 int ret; 2150 2151 if (!inode_owner_or_capable(idmap, inode)) 2152 return -EACCES; 2153 2154 ret = mnt_want_write_file(filp); 2155 if (ret) 2156 return ret; 2157 2158 f2fs_balance_fs(F2FS_I_SB(inode), true); 2159 2160 inode_lock(inode); 2161 2162 if (f2fs_is_atomic_file(inode)) { 2163 ret = f2fs_commit_atomic_write(inode); 2164 if (!ret) 2165 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2166 2167 f2fs_abort_atomic_write(inode, ret); 2168 } else { 2169 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2170 } 2171 2172 inode_unlock(inode); 2173 mnt_drop_write_file(filp); 2174 return ret; 2175 } 2176 2177 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2178 { 2179 struct inode *inode = file_inode(filp); 2180 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2181 int ret; 2182 2183 if (!inode_owner_or_capable(idmap, inode)) 2184 return -EACCES; 2185 2186 ret = mnt_want_write_file(filp); 2187 if (ret) 2188 return ret; 2189 2190 inode_lock(inode); 2191 2192 f2fs_abort_atomic_write(inode, true); 2193 2194 inode_unlock(inode); 2195 2196 mnt_drop_write_file(filp); 2197 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2198 return ret; 2199 } 2200 2201 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2202 { 2203 struct inode *inode = file_inode(filp); 2204 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2205 struct super_block *sb = sbi->sb; 2206 __u32 in; 2207 int ret = 0; 2208 2209 if (!capable(CAP_SYS_ADMIN)) 2210 return -EPERM; 2211 2212 if (get_user(in, (__u32 __user *)arg)) 2213 return -EFAULT; 2214 2215 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2216 ret = mnt_want_write_file(filp); 2217 if (ret) { 2218 if (ret == -EROFS) { 2219 ret = 0; 2220 f2fs_stop_checkpoint(sbi, false, 2221 STOP_CP_REASON_SHUTDOWN); 2222 trace_f2fs_shutdown(sbi, in, ret); 2223 } 2224 return ret; 2225 } 2226 } 2227 2228 switch (in) { 2229 case F2FS_GOING_DOWN_FULLSYNC: 2230 ret = freeze_bdev(sb->s_bdev); 2231 if (ret) 2232 goto out; 2233 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2234 thaw_bdev(sb->s_bdev); 2235 break; 2236 case F2FS_GOING_DOWN_METASYNC: 2237 /* do checkpoint only */ 2238 ret = f2fs_sync_fs(sb, 1); 2239 if (ret) 2240 goto out; 2241 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2242 break; 2243 case F2FS_GOING_DOWN_NOSYNC: 2244 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2245 break; 2246 case F2FS_GOING_DOWN_METAFLUSH: 2247 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2248 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2249 break; 2250 case F2FS_GOING_DOWN_NEED_FSCK: 2251 set_sbi_flag(sbi, SBI_NEED_FSCK); 2252 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2253 set_sbi_flag(sbi, SBI_IS_DIRTY); 2254 /* do checkpoint only */ 2255 ret = f2fs_sync_fs(sb, 1); 2256 goto out; 2257 default: 2258 ret = -EINVAL; 2259 goto out; 2260 } 2261 2262 f2fs_stop_gc_thread(sbi); 2263 f2fs_stop_discard_thread(sbi); 2264 2265 f2fs_drop_discard_cmd(sbi); 2266 clear_opt(sbi, DISCARD); 2267 2268 f2fs_update_time(sbi, REQ_TIME); 2269 out: 2270 if (in != F2FS_GOING_DOWN_FULLSYNC) 2271 mnt_drop_write_file(filp); 2272 2273 trace_f2fs_shutdown(sbi, in, ret); 2274 2275 return ret; 2276 } 2277 2278 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2279 { 2280 struct inode *inode = file_inode(filp); 2281 struct super_block *sb = inode->i_sb; 2282 struct fstrim_range range; 2283 int ret; 2284 2285 if (!capable(CAP_SYS_ADMIN)) 2286 return -EPERM; 2287 2288 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2289 return -EOPNOTSUPP; 2290 2291 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2292 sizeof(range))) 2293 return -EFAULT; 2294 2295 ret = mnt_want_write_file(filp); 2296 if (ret) 2297 return ret; 2298 2299 range.minlen = max((unsigned int)range.minlen, 2300 bdev_discard_granularity(sb->s_bdev)); 2301 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2302 mnt_drop_write_file(filp); 2303 if (ret < 0) 2304 return ret; 2305 2306 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2307 sizeof(range))) 2308 return -EFAULT; 2309 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2310 return 0; 2311 } 2312 2313 static bool uuid_is_nonzero(__u8 u[16]) 2314 { 2315 int i; 2316 2317 for (i = 0; i < 16; i++) 2318 if (u[i]) 2319 return true; 2320 return false; 2321 } 2322 2323 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2324 { 2325 struct inode *inode = file_inode(filp); 2326 2327 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2328 return -EOPNOTSUPP; 2329 2330 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2331 2332 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2333 } 2334 2335 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2336 { 2337 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2338 return -EOPNOTSUPP; 2339 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2340 } 2341 2342 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2343 { 2344 struct inode *inode = file_inode(filp); 2345 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2346 u8 encrypt_pw_salt[16]; 2347 int err; 2348 2349 if (!f2fs_sb_has_encrypt(sbi)) 2350 return -EOPNOTSUPP; 2351 2352 err = mnt_want_write_file(filp); 2353 if (err) 2354 return err; 2355 2356 f2fs_down_write(&sbi->sb_lock); 2357 2358 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2359 goto got_it; 2360 2361 /* update superblock with uuid */ 2362 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2363 2364 err = f2fs_commit_super(sbi, false); 2365 if (err) { 2366 /* undo new data */ 2367 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2368 goto out_err; 2369 } 2370 got_it: 2371 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16); 2372 out_err: 2373 f2fs_up_write(&sbi->sb_lock); 2374 mnt_drop_write_file(filp); 2375 2376 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16)) 2377 err = -EFAULT; 2378 2379 return err; 2380 } 2381 2382 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2383 unsigned long arg) 2384 { 2385 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2386 return -EOPNOTSUPP; 2387 2388 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2389 } 2390 2391 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2392 { 2393 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2394 return -EOPNOTSUPP; 2395 2396 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2397 } 2398 2399 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2400 { 2401 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2402 return -EOPNOTSUPP; 2403 2404 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2405 } 2406 2407 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2408 unsigned long arg) 2409 { 2410 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2411 return -EOPNOTSUPP; 2412 2413 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2414 } 2415 2416 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2417 unsigned long arg) 2418 { 2419 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2420 return -EOPNOTSUPP; 2421 2422 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2423 } 2424 2425 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2426 { 2427 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2428 return -EOPNOTSUPP; 2429 2430 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2431 } 2432 2433 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2434 { 2435 struct inode *inode = file_inode(filp); 2436 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2437 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2438 .no_bg_gc = false, 2439 .should_migrate_blocks = false, 2440 .nr_free_secs = 0 }; 2441 __u32 sync; 2442 int ret; 2443 2444 if (!capable(CAP_SYS_ADMIN)) 2445 return -EPERM; 2446 2447 if (get_user(sync, (__u32 __user *)arg)) 2448 return -EFAULT; 2449 2450 if (f2fs_readonly(sbi->sb)) 2451 return -EROFS; 2452 2453 ret = mnt_want_write_file(filp); 2454 if (ret) 2455 return ret; 2456 2457 if (!sync) { 2458 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2459 ret = -EBUSY; 2460 goto out; 2461 } 2462 } else { 2463 f2fs_down_write(&sbi->gc_lock); 2464 } 2465 2466 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2467 gc_control.err_gc_skipped = sync; 2468 ret = f2fs_gc(sbi, &gc_control); 2469 out: 2470 mnt_drop_write_file(filp); 2471 return ret; 2472 } 2473 2474 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2475 { 2476 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2477 struct f2fs_gc_control gc_control = { 2478 .init_gc_type = range->sync ? FG_GC : BG_GC, 2479 .no_bg_gc = false, 2480 .should_migrate_blocks = false, 2481 .err_gc_skipped = range->sync, 2482 .nr_free_secs = 0 }; 2483 u64 end; 2484 int ret; 2485 2486 if (!capable(CAP_SYS_ADMIN)) 2487 return -EPERM; 2488 if (f2fs_readonly(sbi->sb)) 2489 return -EROFS; 2490 2491 end = range->start + range->len; 2492 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2493 end >= MAX_BLKADDR(sbi)) 2494 return -EINVAL; 2495 2496 ret = mnt_want_write_file(filp); 2497 if (ret) 2498 return ret; 2499 2500 do_more: 2501 if (!range->sync) { 2502 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2503 ret = -EBUSY; 2504 goto out; 2505 } 2506 } else { 2507 f2fs_down_write(&sbi->gc_lock); 2508 } 2509 2510 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2511 ret = f2fs_gc(sbi, &gc_control); 2512 if (ret) { 2513 if (ret == -EBUSY) 2514 ret = -EAGAIN; 2515 goto out; 2516 } 2517 range->start += CAP_BLKS_PER_SEC(sbi); 2518 if (range->start <= end) 2519 goto do_more; 2520 out: 2521 mnt_drop_write_file(filp); 2522 return ret; 2523 } 2524 2525 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2526 { 2527 struct f2fs_gc_range range; 2528 2529 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2530 sizeof(range))) 2531 return -EFAULT; 2532 return __f2fs_ioc_gc_range(filp, &range); 2533 } 2534 2535 static int f2fs_ioc_write_checkpoint(struct file *filp) 2536 { 2537 struct inode *inode = file_inode(filp); 2538 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2539 int ret; 2540 2541 if (!capable(CAP_SYS_ADMIN)) 2542 return -EPERM; 2543 2544 if (f2fs_readonly(sbi->sb)) 2545 return -EROFS; 2546 2547 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2548 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2549 return -EINVAL; 2550 } 2551 2552 ret = mnt_want_write_file(filp); 2553 if (ret) 2554 return ret; 2555 2556 ret = f2fs_sync_fs(sbi->sb, 1); 2557 2558 mnt_drop_write_file(filp); 2559 return ret; 2560 } 2561 2562 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2563 struct file *filp, 2564 struct f2fs_defragment *range) 2565 { 2566 struct inode *inode = file_inode(filp); 2567 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2568 .m_seg_type = NO_CHECK_TYPE, 2569 .m_may_create = false }; 2570 struct extent_info ei = {}; 2571 pgoff_t pg_start, pg_end, next_pgofs; 2572 unsigned int blk_per_seg = sbi->blocks_per_seg; 2573 unsigned int total = 0, sec_num; 2574 block_t blk_end = 0; 2575 bool fragmented = false; 2576 int err; 2577 2578 pg_start = range->start >> PAGE_SHIFT; 2579 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2580 2581 f2fs_balance_fs(sbi, true); 2582 2583 inode_lock(inode); 2584 2585 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 2586 err = -EINVAL; 2587 goto unlock_out; 2588 } 2589 2590 /* if in-place-update policy is enabled, don't waste time here */ 2591 set_inode_flag(inode, FI_OPU_WRITE); 2592 if (f2fs_should_update_inplace(inode, NULL)) { 2593 err = -EINVAL; 2594 goto out; 2595 } 2596 2597 /* writeback all dirty pages in the range */ 2598 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2599 range->start + range->len - 1); 2600 if (err) 2601 goto out; 2602 2603 /* 2604 * lookup mapping info in extent cache, skip defragmenting if physical 2605 * block addresses are continuous. 2606 */ 2607 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) { 2608 if (ei.fofs + ei.len >= pg_end) 2609 goto out; 2610 } 2611 2612 map.m_lblk = pg_start; 2613 map.m_next_pgofs = &next_pgofs; 2614 2615 /* 2616 * lookup mapping info in dnode page cache, skip defragmenting if all 2617 * physical block addresses are continuous even if there are hole(s) 2618 * in logical blocks. 2619 */ 2620 while (map.m_lblk < pg_end) { 2621 map.m_len = pg_end - map.m_lblk; 2622 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2623 if (err) 2624 goto out; 2625 2626 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2627 map.m_lblk = next_pgofs; 2628 continue; 2629 } 2630 2631 if (blk_end && blk_end != map.m_pblk) 2632 fragmented = true; 2633 2634 /* record total count of block that we're going to move */ 2635 total += map.m_len; 2636 2637 blk_end = map.m_pblk + map.m_len; 2638 2639 map.m_lblk += map.m_len; 2640 } 2641 2642 if (!fragmented) { 2643 total = 0; 2644 goto out; 2645 } 2646 2647 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2648 2649 /* 2650 * make sure there are enough free section for LFS allocation, this can 2651 * avoid defragment running in SSR mode when free section are allocated 2652 * intensively 2653 */ 2654 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2655 err = -EAGAIN; 2656 goto out; 2657 } 2658 2659 map.m_lblk = pg_start; 2660 map.m_len = pg_end - pg_start; 2661 total = 0; 2662 2663 while (map.m_lblk < pg_end) { 2664 pgoff_t idx; 2665 int cnt = 0; 2666 2667 do_map: 2668 map.m_len = pg_end - map.m_lblk; 2669 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2670 if (err) 2671 goto clear_out; 2672 2673 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2674 map.m_lblk = next_pgofs; 2675 goto check; 2676 } 2677 2678 set_inode_flag(inode, FI_SKIP_WRITES); 2679 2680 idx = map.m_lblk; 2681 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2682 struct page *page; 2683 2684 page = f2fs_get_lock_data_page(inode, idx, true); 2685 if (IS_ERR(page)) { 2686 err = PTR_ERR(page); 2687 goto clear_out; 2688 } 2689 2690 set_page_dirty(page); 2691 set_page_private_gcing(page); 2692 f2fs_put_page(page, 1); 2693 2694 idx++; 2695 cnt++; 2696 total++; 2697 } 2698 2699 map.m_lblk = idx; 2700 check: 2701 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2702 goto do_map; 2703 2704 clear_inode_flag(inode, FI_SKIP_WRITES); 2705 2706 err = filemap_fdatawrite(inode->i_mapping); 2707 if (err) 2708 goto out; 2709 } 2710 clear_out: 2711 clear_inode_flag(inode, FI_SKIP_WRITES); 2712 out: 2713 clear_inode_flag(inode, FI_OPU_WRITE); 2714 unlock_out: 2715 inode_unlock(inode); 2716 if (!err) 2717 range->len = (u64)total << PAGE_SHIFT; 2718 return err; 2719 } 2720 2721 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2722 { 2723 struct inode *inode = file_inode(filp); 2724 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2725 struct f2fs_defragment range; 2726 int err; 2727 2728 if (!capable(CAP_SYS_ADMIN)) 2729 return -EPERM; 2730 2731 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2732 return -EINVAL; 2733 2734 if (f2fs_readonly(sbi->sb)) 2735 return -EROFS; 2736 2737 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2738 sizeof(range))) 2739 return -EFAULT; 2740 2741 /* verify alignment of offset & size */ 2742 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2743 return -EINVAL; 2744 2745 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2746 max_file_blocks(inode))) 2747 return -EINVAL; 2748 2749 err = mnt_want_write_file(filp); 2750 if (err) 2751 return err; 2752 2753 err = f2fs_defragment_range(sbi, filp, &range); 2754 mnt_drop_write_file(filp); 2755 2756 f2fs_update_time(sbi, REQ_TIME); 2757 if (err < 0) 2758 return err; 2759 2760 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2761 sizeof(range))) 2762 return -EFAULT; 2763 2764 return 0; 2765 } 2766 2767 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2768 struct file *file_out, loff_t pos_out, size_t len) 2769 { 2770 struct inode *src = file_inode(file_in); 2771 struct inode *dst = file_inode(file_out); 2772 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2773 size_t olen = len, dst_max_i_size = 0; 2774 size_t dst_osize; 2775 int ret; 2776 2777 if (file_in->f_path.mnt != file_out->f_path.mnt || 2778 src->i_sb != dst->i_sb) 2779 return -EXDEV; 2780 2781 if (unlikely(f2fs_readonly(src->i_sb))) 2782 return -EROFS; 2783 2784 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2785 return -EINVAL; 2786 2787 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2788 return -EOPNOTSUPP; 2789 2790 if (pos_out < 0 || pos_in < 0) 2791 return -EINVAL; 2792 2793 if (src == dst) { 2794 if (pos_in == pos_out) 2795 return 0; 2796 if (pos_out > pos_in && pos_out < pos_in + len) 2797 return -EINVAL; 2798 } 2799 2800 inode_lock(src); 2801 if (src != dst) { 2802 ret = -EBUSY; 2803 if (!inode_trylock(dst)) 2804 goto out; 2805 } 2806 2807 ret = -EINVAL; 2808 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2809 goto out_unlock; 2810 if (len == 0) 2811 olen = len = src->i_size - pos_in; 2812 if (pos_in + len == src->i_size) 2813 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2814 if (len == 0) { 2815 ret = 0; 2816 goto out_unlock; 2817 } 2818 2819 dst_osize = dst->i_size; 2820 if (pos_out + olen > dst->i_size) 2821 dst_max_i_size = pos_out + olen; 2822 2823 /* verify the end result is block aligned */ 2824 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2825 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2826 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2827 goto out_unlock; 2828 2829 ret = f2fs_convert_inline_inode(src); 2830 if (ret) 2831 goto out_unlock; 2832 2833 ret = f2fs_convert_inline_inode(dst); 2834 if (ret) 2835 goto out_unlock; 2836 2837 /* write out all dirty pages from offset */ 2838 ret = filemap_write_and_wait_range(src->i_mapping, 2839 pos_in, pos_in + len); 2840 if (ret) 2841 goto out_unlock; 2842 2843 ret = filemap_write_and_wait_range(dst->i_mapping, 2844 pos_out, pos_out + len); 2845 if (ret) 2846 goto out_unlock; 2847 2848 f2fs_balance_fs(sbi, true); 2849 2850 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2851 if (src != dst) { 2852 ret = -EBUSY; 2853 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2854 goto out_src; 2855 } 2856 2857 f2fs_lock_op(sbi); 2858 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2859 pos_out >> F2FS_BLKSIZE_BITS, 2860 len >> F2FS_BLKSIZE_BITS, false); 2861 2862 if (!ret) { 2863 if (dst_max_i_size) 2864 f2fs_i_size_write(dst, dst_max_i_size); 2865 else if (dst_osize != dst->i_size) 2866 f2fs_i_size_write(dst, dst_osize); 2867 } 2868 f2fs_unlock_op(sbi); 2869 2870 if (src != dst) 2871 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2872 out_src: 2873 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2874 if (ret) 2875 goto out_unlock; 2876 2877 src->i_mtime = src->i_ctime = current_time(src); 2878 f2fs_mark_inode_dirty_sync(src, false); 2879 if (src != dst) { 2880 dst->i_mtime = dst->i_ctime = current_time(dst); 2881 f2fs_mark_inode_dirty_sync(dst, false); 2882 } 2883 f2fs_update_time(sbi, REQ_TIME); 2884 2885 out_unlock: 2886 if (src != dst) 2887 inode_unlock(dst); 2888 out: 2889 inode_unlock(src); 2890 return ret; 2891 } 2892 2893 static int __f2fs_ioc_move_range(struct file *filp, 2894 struct f2fs_move_range *range) 2895 { 2896 struct fd dst; 2897 int err; 2898 2899 if (!(filp->f_mode & FMODE_READ) || 2900 !(filp->f_mode & FMODE_WRITE)) 2901 return -EBADF; 2902 2903 dst = fdget(range->dst_fd); 2904 if (!dst.file) 2905 return -EBADF; 2906 2907 if (!(dst.file->f_mode & FMODE_WRITE)) { 2908 err = -EBADF; 2909 goto err_out; 2910 } 2911 2912 err = mnt_want_write_file(filp); 2913 if (err) 2914 goto err_out; 2915 2916 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2917 range->pos_out, range->len); 2918 2919 mnt_drop_write_file(filp); 2920 err_out: 2921 fdput(dst); 2922 return err; 2923 } 2924 2925 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2926 { 2927 struct f2fs_move_range range; 2928 2929 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2930 sizeof(range))) 2931 return -EFAULT; 2932 return __f2fs_ioc_move_range(filp, &range); 2933 } 2934 2935 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2936 { 2937 struct inode *inode = file_inode(filp); 2938 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2939 struct sit_info *sm = SIT_I(sbi); 2940 unsigned int start_segno = 0, end_segno = 0; 2941 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2942 struct f2fs_flush_device range; 2943 struct f2fs_gc_control gc_control = { 2944 .init_gc_type = FG_GC, 2945 .should_migrate_blocks = true, 2946 .err_gc_skipped = true, 2947 .nr_free_secs = 0 }; 2948 int ret; 2949 2950 if (!capable(CAP_SYS_ADMIN)) 2951 return -EPERM; 2952 2953 if (f2fs_readonly(sbi->sb)) 2954 return -EROFS; 2955 2956 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2957 return -EINVAL; 2958 2959 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2960 sizeof(range))) 2961 return -EFAULT; 2962 2963 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2964 __is_large_section(sbi)) { 2965 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2966 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2967 return -EINVAL; 2968 } 2969 2970 ret = mnt_want_write_file(filp); 2971 if (ret) 2972 return ret; 2973 2974 if (range.dev_num != 0) 2975 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2976 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2977 2978 start_segno = sm->last_victim[FLUSH_DEVICE]; 2979 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2980 start_segno = dev_start_segno; 2981 end_segno = min(start_segno + range.segments, dev_end_segno); 2982 2983 while (start_segno < end_segno) { 2984 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2985 ret = -EBUSY; 2986 goto out; 2987 } 2988 sm->last_victim[GC_CB] = end_segno + 1; 2989 sm->last_victim[GC_GREEDY] = end_segno + 1; 2990 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2991 2992 gc_control.victim_segno = start_segno; 2993 ret = f2fs_gc(sbi, &gc_control); 2994 if (ret == -EAGAIN) 2995 ret = 0; 2996 else if (ret < 0) 2997 break; 2998 start_segno++; 2999 } 3000 out: 3001 mnt_drop_write_file(filp); 3002 return ret; 3003 } 3004 3005 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 3006 { 3007 struct inode *inode = file_inode(filp); 3008 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 3009 3010 /* Must validate to set it with SQLite behavior in Android. */ 3011 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 3012 3013 return put_user(sb_feature, (u32 __user *)arg); 3014 } 3015 3016 #ifdef CONFIG_QUOTA 3017 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3018 { 3019 struct dquot *transfer_to[MAXQUOTAS] = {}; 3020 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3021 struct super_block *sb = sbi->sb; 3022 int err; 3023 3024 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 3025 if (IS_ERR(transfer_to[PRJQUOTA])) 3026 return PTR_ERR(transfer_to[PRJQUOTA]); 3027 3028 err = __dquot_transfer(inode, transfer_to); 3029 if (err) 3030 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3031 dqput(transfer_to[PRJQUOTA]); 3032 return err; 3033 } 3034 3035 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3036 { 3037 struct f2fs_inode_info *fi = F2FS_I(inode); 3038 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3039 struct f2fs_inode *ri = NULL; 3040 kprojid_t kprojid; 3041 int err; 3042 3043 if (!f2fs_sb_has_project_quota(sbi)) { 3044 if (projid != F2FS_DEF_PROJID) 3045 return -EOPNOTSUPP; 3046 else 3047 return 0; 3048 } 3049 3050 if (!f2fs_has_extra_attr(inode)) 3051 return -EOPNOTSUPP; 3052 3053 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3054 3055 if (projid_eq(kprojid, fi->i_projid)) 3056 return 0; 3057 3058 err = -EPERM; 3059 /* Is it quota file? Do not allow user to mess with it */ 3060 if (IS_NOQUOTA(inode)) 3061 return err; 3062 3063 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 3064 return -EOVERFLOW; 3065 3066 err = f2fs_dquot_initialize(inode); 3067 if (err) 3068 return err; 3069 3070 f2fs_lock_op(sbi); 3071 err = f2fs_transfer_project_quota(inode, kprojid); 3072 if (err) 3073 goto out_unlock; 3074 3075 fi->i_projid = kprojid; 3076 inode->i_ctime = current_time(inode); 3077 f2fs_mark_inode_dirty_sync(inode, true); 3078 out_unlock: 3079 f2fs_unlock_op(sbi); 3080 return err; 3081 } 3082 #else 3083 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3084 { 3085 return 0; 3086 } 3087 3088 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3089 { 3090 if (projid != F2FS_DEF_PROJID) 3091 return -EOPNOTSUPP; 3092 return 0; 3093 } 3094 #endif 3095 3096 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3097 { 3098 struct inode *inode = d_inode(dentry); 3099 struct f2fs_inode_info *fi = F2FS_I(inode); 3100 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3101 3102 if (IS_ENCRYPTED(inode)) 3103 fsflags |= FS_ENCRYPT_FL; 3104 if (IS_VERITY(inode)) 3105 fsflags |= FS_VERITY_FL; 3106 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3107 fsflags |= FS_INLINE_DATA_FL; 3108 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3109 fsflags |= FS_NOCOW_FL; 3110 3111 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3112 3113 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3114 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3115 3116 return 0; 3117 } 3118 3119 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3120 struct dentry *dentry, struct fileattr *fa) 3121 { 3122 struct inode *inode = d_inode(dentry); 3123 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3124 u32 iflags; 3125 int err; 3126 3127 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3128 return -EIO; 3129 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3130 return -ENOSPC; 3131 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3132 return -EOPNOTSUPP; 3133 fsflags &= F2FS_SETTABLE_FS_FL; 3134 if (!fa->flags_valid) 3135 mask &= FS_COMMON_FL; 3136 3137 iflags = f2fs_fsflags_to_iflags(fsflags); 3138 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3139 return -EOPNOTSUPP; 3140 3141 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3142 if (!err) 3143 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3144 3145 return err; 3146 } 3147 3148 int f2fs_pin_file_control(struct inode *inode, bool inc) 3149 { 3150 struct f2fs_inode_info *fi = F2FS_I(inode); 3151 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3152 3153 /* Use i_gc_failures for normal file as a risk signal. */ 3154 if (inc) 3155 f2fs_i_gc_failures_write(inode, 3156 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3157 3158 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3159 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3160 __func__, inode->i_ino, 3161 fi->i_gc_failures[GC_FAILURE_PIN]); 3162 clear_inode_flag(inode, FI_PIN_FILE); 3163 return -EAGAIN; 3164 } 3165 return 0; 3166 } 3167 3168 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3169 { 3170 struct inode *inode = file_inode(filp); 3171 __u32 pin; 3172 int ret = 0; 3173 3174 if (get_user(pin, (__u32 __user *)arg)) 3175 return -EFAULT; 3176 3177 if (!S_ISREG(inode->i_mode)) 3178 return -EINVAL; 3179 3180 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3181 return -EROFS; 3182 3183 ret = mnt_want_write_file(filp); 3184 if (ret) 3185 return ret; 3186 3187 inode_lock(inode); 3188 3189 if (!pin) { 3190 clear_inode_flag(inode, FI_PIN_FILE); 3191 f2fs_i_gc_failures_write(inode, 0); 3192 goto done; 3193 } 3194 3195 if (f2fs_should_update_outplace(inode, NULL)) { 3196 ret = -EINVAL; 3197 goto out; 3198 } 3199 3200 if (f2fs_pin_file_control(inode, false)) { 3201 ret = -EAGAIN; 3202 goto out; 3203 } 3204 3205 ret = f2fs_convert_inline_inode(inode); 3206 if (ret) 3207 goto out; 3208 3209 if (!f2fs_disable_compressed_file(inode)) { 3210 ret = -EOPNOTSUPP; 3211 goto out; 3212 } 3213 3214 set_inode_flag(inode, FI_PIN_FILE); 3215 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3216 done: 3217 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3218 out: 3219 inode_unlock(inode); 3220 mnt_drop_write_file(filp); 3221 return ret; 3222 } 3223 3224 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3225 { 3226 struct inode *inode = file_inode(filp); 3227 __u32 pin = 0; 3228 3229 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3230 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3231 return put_user(pin, (u32 __user *)arg); 3232 } 3233 3234 int f2fs_precache_extents(struct inode *inode) 3235 { 3236 struct f2fs_inode_info *fi = F2FS_I(inode); 3237 struct f2fs_map_blocks map; 3238 pgoff_t m_next_extent; 3239 loff_t end; 3240 int err; 3241 3242 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3243 return -EOPNOTSUPP; 3244 3245 map.m_lblk = 0; 3246 map.m_next_pgofs = NULL; 3247 map.m_next_extent = &m_next_extent; 3248 map.m_seg_type = NO_CHECK_TYPE; 3249 map.m_may_create = false; 3250 end = max_file_blocks(inode); 3251 3252 while (map.m_lblk < end) { 3253 map.m_len = end - map.m_lblk; 3254 3255 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3256 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE); 3257 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3258 if (err) 3259 return err; 3260 3261 map.m_lblk = m_next_extent; 3262 } 3263 3264 return 0; 3265 } 3266 3267 static int f2fs_ioc_precache_extents(struct file *filp) 3268 { 3269 return f2fs_precache_extents(file_inode(filp)); 3270 } 3271 3272 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3273 { 3274 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3275 __u64 block_count; 3276 3277 if (!capable(CAP_SYS_ADMIN)) 3278 return -EPERM; 3279 3280 if (f2fs_readonly(sbi->sb)) 3281 return -EROFS; 3282 3283 if (copy_from_user(&block_count, (void __user *)arg, 3284 sizeof(block_count))) 3285 return -EFAULT; 3286 3287 return f2fs_resize_fs(filp, block_count); 3288 } 3289 3290 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3291 { 3292 struct inode *inode = file_inode(filp); 3293 3294 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3295 3296 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3297 f2fs_warn(F2FS_I_SB(inode), 3298 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3299 inode->i_ino); 3300 return -EOPNOTSUPP; 3301 } 3302 3303 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3304 } 3305 3306 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3307 { 3308 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3309 return -EOPNOTSUPP; 3310 3311 return fsverity_ioctl_measure(filp, (void __user *)arg); 3312 } 3313 3314 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3315 { 3316 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3317 return -EOPNOTSUPP; 3318 3319 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3320 } 3321 3322 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3323 { 3324 struct inode *inode = file_inode(filp); 3325 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3326 char *vbuf; 3327 int count; 3328 int err = 0; 3329 3330 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3331 if (!vbuf) 3332 return -ENOMEM; 3333 3334 f2fs_down_read(&sbi->sb_lock); 3335 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3336 ARRAY_SIZE(sbi->raw_super->volume_name), 3337 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3338 f2fs_up_read(&sbi->sb_lock); 3339 3340 if (copy_to_user((char __user *)arg, vbuf, 3341 min(FSLABEL_MAX, count))) 3342 err = -EFAULT; 3343 3344 kfree(vbuf); 3345 return err; 3346 } 3347 3348 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3349 { 3350 struct inode *inode = file_inode(filp); 3351 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3352 char *vbuf; 3353 int err = 0; 3354 3355 if (!capable(CAP_SYS_ADMIN)) 3356 return -EPERM; 3357 3358 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3359 if (IS_ERR(vbuf)) 3360 return PTR_ERR(vbuf); 3361 3362 err = mnt_want_write_file(filp); 3363 if (err) 3364 goto out; 3365 3366 f2fs_down_write(&sbi->sb_lock); 3367 3368 memset(sbi->raw_super->volume_name, 0, 3369 sizeof(sbi->raw_super->volume_name)); 3370 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3371 sbi->raw_super->volume_name, 3372 ARRAY_SIZE(sbi->raw_super->volume_name)); 3373 3374 err = f2fs_commit_super(sbi, false); 3375 3376 f2fs_up_write(&sbi->sb_lock); 3377 3378 mnt_drop_write_file(filp); 3379 out: 3380 kfree(vbuf); 3381 return err; 3382 } 3383 3384 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks) 3385 { 3386 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3387 return -EOPNOTSUPP; 3388 3389 if (!f2fs_compressed_file(inode)) 3390 return -EINVAL; 3391 3392 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3393 3394 return 0; 3395 } 3396 3397 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg) 3398 { 3399 struct inode *inode = file_inode(filp); 3400 __u64 blocks; 3401 int ret; 3402 3403 ret = f2fs_get_compress_blocks(inode, &blocks); 3404 if (ret < 0) 3405 return ret; 3406 3407 return put_user(blocks, (u64 __user *)arg); 3408 } 3409 3410 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3411 { 3412 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3413 unsigned int released_blocks = 0; 3414 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3415 block_t blkaddr; 3416 int i; 3417 3418 for (i = 0; i < count; i++) { 3419 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3420 dn->ofs_in_node + i); 3421 3422 if (!__is_valid_data_blkaddr(blkaddr)) 3423 continue; 3424 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3425 DATA_GENERIC_ENHANCE))) { 3426 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3427 return -EFSCORRUPTED; 3428 } 3429 } 3430 3431 while (count) { 3432 int compr_blocks = 0; 3433 3434 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3435 blkaddr = f2fs_data_blkaddr(dn); 3436 3437 if (i == 0) { 3438 if (blkaddr == COMPRESS_ADDR) 3439 continue; 3440 dn->ofs_in_node += cluster_size; 3441 goto next; 3442 } 3443 3444 if (__is_valid_data_blkaddr(blkaddr)) 3445 compr_blocks++; 3446 3447 if (blkaddr != NEW_ADDR) 3448 continue; 3449 3450 dn->data_blkaddr = NULL_ADDR; 3451 f2fs_set_data_blkaddr(dn); 3452 } 3453 3454 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3455 dec_valid_block_count(sbi, dn->inode, 3456 cluster_size - compr_blocks); 3457 3458 released_blocks += cluster_size - compr_blocks; 3459 next: 3460 count -= cluster_size; 3461 } 3462 3463 return released_blocks; 3464 } 3465 3466 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3467 { 3468 struct inode *inode = file_inode(filp); 3469 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3470 pgoff_t page_idx = 0, last_idx; 3471 unsigned int released_blocks = 0; 3472 int ret; 3473 int writecount; 3474 3475 if (!f2fs_sb_has_compression(sbi)) 3476 return -EOPNOTSUPP; 3477 3478 if (!f2fs_compressed_file(inode)) 3479 return -EINVAL; 3480 3481 if (f2fs_readonly(sbi->sb)) 3482 return -EROFS; 3483 3484 ret = mnt_want_write_file(filp); 3485 if (ret) 3486 return ret; 3487 3488 f2fs_balance_fs(sbi, true); 3489 3490 inode_lock(inode); 3491 3492 writecount = atomic_read(&inode->i_writecount); 3493 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3494 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3495 ret = -EBUSY; 3496 goto out; 3497 } 3498 3499 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3500 ret = -EINVAL; 3501 goto out; 3502 } 3503 3504 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3505 if (ret) 3506 goto out; 3507 3508 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3509 ret = -EPERM; 3510 goto out; 3511 } 3512 3513 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3514 inode->i_ctime = current_time(inode); 3515 f2fs_mark_inode_dirty_sync(inode, true); 3516 3517 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3518 filemap_invalidate_lock(inode->i_mapping); 3519 3520 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3521 3522 while (page_idx < last_idx) { 3523 struct dnode_of_data dn; 3524 pgoff_t end_offset, count; 3525 3526 set_new_dnode(&dn, inode, NULL, NULL, 0); 3527 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3528 if (ret) { 3529 if (ret == -ENOENT) { 3530 page_idx = f2fs_get_next_page_offset(&dn, 3531 page_idx); 3532 ret = 0; 3533 continue; 3534 } 3535 break; 3536 } 3537 3538 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3539 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3540 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3541 3542 ret = release_compress_blocks(&dn, count); 3543 3544 f2fs_put_dnode(&dn); 3545 3546 if (ret < 0) 3547 break; 3548 3549 page_idx += count; 3550 released_blocks += ret; 3551 } 3552 3553 filemap_invalidate_unlock(inode->i_mapping); 3554 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3555 out: 3556 inode_unlock(inode); 3557 3558 mnt_drop_write_file(filp); 3559 3560 if (ret >= 0) { 3561 ret = put_user(released_blocks, (u64 __user *)arg); 3562 } else if (released_blocks && 3563 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3564 set_sbi_flag(sbi, SBI_NEED_FSCK); 3565 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3566 "iblocks=%llu, released=%u, compr_blocks=%u, " 3567 "run fsck to fix.", 3568 __func__, inode->i_ino, inode->i_blocks, 3569 released_blocks, 3570 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3571 } 3572 3573 return ret; 3574 } 3575 3576 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3577 { 3578 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3579 unsigned int reserved_blocks = 0; 3580 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3581 block_t blkaddr; 3582 int i; 3583 3584 for (i = 0; i < count; i++) { 3585 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3586 dn->ofs_in_node + i); 3587 3588 if (!__is_valid_data_blkaddr(blkaddr)) 3589 continue; 3590 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3591 DATA_GENERIC_ENHANCE))) { 3592 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3593 return -EFSCORRUPTED; 3594 } 3595 } 3596 3597 while (count) { 3598 int compr_blocks = 0; 3599 blkcnt_t reserved; 3600 int ret; 3601 3602 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3603 blkaddr = f2fs_data_blkaddr(dn); 3604 3605 if (i == 0) { 3606 if (blkaddr == COMPRESS_ADDR) 3607 continue; 3608 dn->ofs_in_node += cluster_size; 3609 goto next; 3610 } 3611 3612 if (__is_valid_data_blkaddr(blkaddr)) { 3613 compr_blocks++; 3614 continue; 3615 } 3616 3617 dn->data_blkaddr = NEW_ADDR; 3618 f2fs_set_data_blkaddr(dn); 3619 } 3620 3621 reserved = cluster_size - compr_blocks; 3622 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3623 if (ret) 3624 return ret; 3625 3626 if (reserved != cluster_size - compr_blocks) 3627 return -ENOSPC; 3628 3629 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3630 3631 reserved_blocks += reserved; 3632 next: 3633 count -= cluster_size; 3634 } 3635 3636 return reserved_blocks; 3637 } 3638 3639 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3640 { 3641 struct inode *inode = file_inode(filp); 3642 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3643 pgoff_t page_idx = 0, last_idx; 3644 unsigned int reserved_blocks = 0; 3645 int ret; 3646 3647 if (!f2fs_sb_has_compression(sbi)) 3648 return -EOPNOTSUPP; 3649 3650 if (!f2fs_compressed_file(inode)) 3651 return -EINVAL; 3652 3653 if (f2fs_readonly(sbi->sb)) 3654 return -EROFS; 3655 3656 ret = mnt_want_write_file(filp); 3657 if (ret) 3658 return ret; 3659 3660 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3661 goto out; 3662 3663 f2fs_balance_fs(sbi, true); 3664 3665 inode_lock(inode); 3666 3667 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3668 ret = -EINVAL; 3669 goto unlock_inode; 3670 } 3671 3672 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3673 filemap_invalidate_lock(inode->i_mapping); 3674 3675 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3676 3677 while (page_idx < last_idx) { 3678 struct dnode_of_data dn; 3679 pgoff_t end_offset, count; 3680 3681 set_new_dnode(&dn, inode, NULL, NULL, 0); 3682 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3683 if (ret) { 3684 if (ret == -ENOENT) { 3685 page_idx = f2fs_get_next_page_offset(&dn, 3686 page_idx); 3687 ret = 0; 3688 continue; 3689 } 3690 break; 3691 } 3692 3693 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3694 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3695 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3696 3697 ret = reserve_compress_blocks(&dn, count); 3698 3699 f2fs_put_dnode(&dn); 3700 3701 if (ret < 0) 3702 break; 3703 3704 page_idx += count; 3705 reserved_blocks += ret; 3706 } 3707 3708 filemap_invalidate_unlock(inode->i_mapping); 3709 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3710 3711 if (ret >= 0) { 3712 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3713 inode->i_ctime = current_time(inode); 3714 f2fs_mark_inode_dirty_sync(inode, true); 3715 } 3716 unlock_inode: 3717 inode_unlock(inode); 3718 out: 3719 mnt_drop_write_file(filp); 3720 3721 if (ret >= 0) { 3722 ret = put_user(reserved_blocks, (u64 __user *)arg); 3723 } else if (reserved_blocks && 3724 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3725 set_sbi_flag(sbi, SBI_NEED_FSCK); 3726 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3727 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3728 "run fsck to fix.", 3729 __func__, inode->i_ino, inode->i_blocks, 3730 reserved_blocks, 3731 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3732 } 3733 3734 return ret; 3735 } 3736 3737 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3738 pgoff_t off, block_t block, block_t len, u32 flags) 3739 { 3740 sector_t sector = SECTOR_FROM_BLOCK(block); 3741 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3742 int ret = 0; 3743 3744 if (flags & F2FS_TRIM_FILE_DISCARD) { 3745 if (bdev_max_secure_erase_sectors(bdev)) 3746 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3747 GFP_NOFS); 3748 else 3749 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3750 GFP_NOFS); 3751 } 3752 3753 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3754 if (IS_ENCRYPTED(inode)) 3755 ret = fscrypt_zeroout_range(inode, off, block, len); 3756 else 3757 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3758 GFP_NOFS, 0); 3759 } 3760 3761 return ret; 3762 } 3763 3764 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3765 { 3766 struct inode *inode = file_inode(filp); 3767 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3768 struct address_space *mapping = inode->i_mapping; 3769 struct block_device *prev_bdev = NULL; 3770 struct f2fs_sectrim_range range; 3771 pgoff_t index, pg_end, prev_index = 0; 3772 block_t prev_block = 0, len = 0; 3773 loff_t end_addr; 3774 bool to_end = false; 3775 int ret = 0; 3776 3777 if (!(filp->f_mode & FMODE_WRITE)) 3778 return -EBADF; 3779 3780 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3781 sizeof(range))) 3782 return -EFAULT; 3783 3784 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3785 !S_ISREG(inode->i_mode)) 3786 return -EINVAL; 3787 3788 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3789 !f2fs_hw_support_discard(sbi)) || 3790 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3791 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3792 return -EOPNOTSUPP; 3793 3794 file_start_write(filp); 3795 inode_lock(inode); 3796 3797 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3798 range.start >= inode->i_size) { 3799 ret = -EINVAL; 3800 goto err; 3801 } 3802 3803 if (range.len == 0) 3804 goto err; 3805 3806 if (inode->i_size - range.start > range.len) { 3807 end_addr = range.start + range.len; 3808 } else { 3809 end_addr = range.len == (u64)-1 ? 3810 sbi->sb->s_maxbytes : inode->i_size; 3811 to_end = true; 3812 } 3813 3814 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3815 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3816 ret = -EINVAL; 3817 goto err; 3818 } 3819 3820 index = F2FS_BYTES_TO_BLK(range.start); 3821 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3822 3823 ret = f2fs_convert_inline_inode(inode); 3824 if (ret) 3825 goto err; 3826 3827 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3828 filemap_invalidate_lock(mapping); 3829 3830 ret = filemap_write_and_wait_range(mapping, range.start, 3831 to_end ? LLONG_MAX : end_addr - 1); 3832 if (ret) 3833 goto out; 3834 3835 truncate_inode_pages_range(mapping, range.start, 3836 to_end ? -1 : end_addr - 1); 3837 3838 while (index < pg_end) { 3839 struct dnode_of_data dn; 3840 pgoff_t end_offset, count; 3841 int i; 3842 3843 set_new_dnode(&dn, inode, NULL, NULL, 0); 3844 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3845 if (ret) { 3846 if (ret == -ENOENT) { 3847 index = f2fs_get_next_page_offset(&dn, index); 3848 continue; 3849 } 3850 goto out; 3851 } 3852 3853 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3854 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3855 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3856 struct block_device *cur_bdev; 3857 block_t blkaddr = f2fs_data_blkaddr(&dn); 3858 3859 if (!__is_valid_data_blkaddr(blkaddr)) 3860 continue; 3861 3862 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3863 DATA_GENERIC_ENHANCE)) { 3864 ret = -EFSCORRUPTED; 3865 f2fs_put_dnode(&dn); 3866 f2fs_handle_error(sbi, 3867 ERROR_INVALID_BLKADDR); 3868 goto out; 3869 } 3870 3871 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3872 if (f2fs_is_multi_device(sbi)) { 3873 int di = f2fs_target_device_index(sbi, blkaddr); 3874 3875 blkaddr -= FDEV(di).start_blk; 3876 } 3877 3878 if (len) { 3879 if (prev_bdev == cur_bdev && 3880 index == prev_index + len && 3881 blkaddr == prev_block + len) { 3882 len++; 3883 } else { 3884 ret = f2fs_secure_erase(prev_bdev, 3885 inode, prev_index, prev_block, 3886 len, range.flags); 3887 if (ret) { 3888 f2fs_put_dnode(&dn); 3889 goto out; 3890 } 3891 3892 len = 0; 3893 } 3894 } 3895 3896 if (!len) { 3897 prev_bdev = cur_bdev; 3898 prev_index = index; 3899 prev_block = blkaddr; 3900 len = 1; 3901 } 3902 } 3903 3904 f2fs_put_dnode(&dn); 3905 3906 if (fatal_signal_pending(current)) { 3907 ret = -EINTR; 3908 goto out; 3909 } 3910 cond_resched(); 3911 } 3912 3913 if (len) 3914 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3915 prev_block, len, range.flags); 3916 out: 3917 filemap_invalidate_unlock(mapping); 3918 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3919 err: 3920 inode_unlock(inode); 3921 file_end_write(filp); 3922 3923 return ret; 3924 } 3925 3926 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3927 { 3928 struct inode *inode = file_inode(filp); 3929 struct f2fs_comp_option option; 3930 3931 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3932 return -EOPNOTSUPP; 3933 3934 inode_lock_shared(inode); 3935 3936 if (!f2fs_compressed_file(inode)) { 3937 inode_unlock_shared(inode); 3938 return -ENODATA; 3939 } 3940 3941 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3942 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3943 3944 inode_unlock_shared(inode); 3945 3946 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3947 sizeof(option))) 3948 return -EFAULT; 3949 3950 return 0; 3951 } 3952 3953 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 3954 { 3955 struct inode *inode = file_inode(filp); 3956 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3957 struct f2fs_comp_option option; 3958 int ret = 0; 3959 3960 if (!f2fs_sb_has_compression(sbi)) 3961 return -EOPNOTSUPP; 3962 3963 if (!(filp->f_mode & FMODE_WRITE)) 3964 return -EBADF; 3965 3966 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 3967 sizeof(option))) 3968 return -EFAULT; 3969 3970 if (!f2fs_compressed_file(inode) || 3971 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 3972 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 3973 option.algorithm >= COMPRESS_MAX) 3974 return -EINVAL; 3975 3976 file_start_write(filp); 3977 inode_lock(inode); 3978 3979 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 3980 ret = -EBUSY; 3981 goto out; 3982 } 3983 3984 if (F2FS_HAS_BLOCKS(inode)) { 3985 ret = -EFBIG; 3986 goto out; 3987 } 3988 3989 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 3990 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 3991 F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size); 3992 f2fs_mark_inode_dirty_sync(inode, true); 3993 3994 if (!f2fs_is_compress_backend_ready(inode)) 3995 f2fs_warn(sbi, "compression algorithm is successfully set, " 3996 "but current kernel doesn't support this algorithm."); 3997 out: 3998 inode_unlock(inode); 3999 file_end_write(filp); 4000 4001 return ret; 4002 } 4003 4004 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 4005 { 4006 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 4007 struct address_space *mapping = inode->i_mapping; 4008 struct page *page; 4009 pgoff_t redirty_idx = page_idx; 4010 int i, page_len = 0, ret = 0; 4011 4012 page_cache_ra_unbounded(&ractl, len, 0); 4013 4014 for (i = 0; i < len; i++, page_idx++) { 4015 page = read_cache_page(mapping, page_idx, NULL, NULL); 4016 if (IS_ERR(page)) { 4017 ret = PTR_ERR(page); 4018 break; 4019 } 4020 page_len++; 4021 } 4022 4023 for (i = 0; i < page_len; i++, redirty_idx++) { 4024 page = find_lock_page(mapping, redirty_idx); 4025 4026 /* It will never fail, when page has pinned above */ 4027 f2fs_bug_on(F2FS_I_SB(inode), !page); 4028 4029 set_page_dirty(page); 4030 f2fs_put_page(page, 1); 4031 f2fs_put_page(page, 0); 4032 } 4033 4034 return ret; 4035 } 4036 4037 static int f2fs_ioc_decompress_file(struct file *filp) 4038 { 4039 struct inode *inode = file_inode(filp); 4040 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4041 struct f2fs_inode_info *fi = F2FS_I(inode); 4042 pgoff_t page_idx = 0, last_idx; 4043 unsigned int blk_per_seg = sbi->blocks_per_seg; 4044 int cluster_size = fi->i_cluster_size; 4045 int count, ret; 4046 4047 if (!f2fs_sb_has_compression(sbi) || 4048 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4049 return -EOPNOTSUPP; 4050 4051 if (!(filp->f_mode & FMODE_WRITE)) 4052 return -EBADF; 4053 4054 if (!f2fs_compressed_file(inode)) 4055 return -EINVAL; 4056 4057 f2fs_balance_fs(sbi, true); 4058 4059 file_start_write(filp); 4060 inode_lock(inode); 4061 4062 if (!f2fs_is_compress_backend_ready(inode)) { 4063 ret = -EOPNOTSUPP; 4064 goto out; 4065 } 4066 4067 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4068 ret = -EINVAL; 4069 goto out; 4070 } 4071 4072 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4073 if (ret) 4074 goto out; 4075 4076 if (!atomic_read(&fi->i_compr_blocks)) 4077 goto out; 4078 4079 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4080 4081 count = last_idx - page_idx; 4082 while (count) { 4083 int len = min(cluster_size, count); 4084 4085 ret = redirty_blocks(inode, page_idx, len); 4086 if (ret < 0) 4087 break; 4088 4089 if (get_dirty_pages(inode) >= blk_per_seg) { 4090 ret = filemap_fdatawrite(inode->i_mapping); 4091 if (ret < 0) 4092 break; 4093 } 4094 4095 count -= len; 4096 page_idx += len; 4097 } 4098 4099 if (!ret) 4100 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4101 LLONG_MAX); 4102 4103 if (ret) 4104 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4105 __func__, ret); 4106 out: 4107 inode_unlock(inode); 4108 file_end_write(filp); 4109 4110 return ret; 4111 } 4112 4113 static int f2fs_ioc_compress_file(struct file *filp) 4114 { 4115 struct inode *inode = file_inode(filp); 4116 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4117 pgoff_t page_idx = 0, last_idx; 4118 unsigned int blk_per_seg = sbi->blocks_per_seg; 4119 int cluster_size = F2FS_I(inode)->i_cluster_size; 4120 int count, ret; 4121 4122 if (!f2fs_sb_has_compression(sbi) || 4123 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4124 return -EOPNOTSUPP; 4125 4126 if (!(filp->f_mode & FMODE_WRITE)) 4127 return -EBADF; 4128 4129 if (!f2fs_compressed_file(inode)) 4130 return -EINVAL; 4131 4132 f2fs_balance_fs(sbi, true); 4133 4134 file_start_write(filp); 4135 inode_lock(inode); 4136 4137 if (!f2fs_is_compress_backend_ready(inode)) { 4138 ret = -EOPNOTSUPP; 4139 goto out; 4140 } 4141 4142 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4143 ret = -EINVAL; 4144 goto out; 4145 } 4146 4147 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4148 if (ret) 4149 goto out; 4150 4151 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4152 4153 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4154 4155 count = last_idx - page_idx; 4156 while (count) { 4157 int len = min(cluster_size, count); 4158 4159 ret = redirty_blocks(inode, page_idx, len); 4160 if (ret < 0) 4161 break; 4162 4163 if (get_dirty_pages(inode) >= blk_per_seg) { 4164 ret = filemap_fdatawrite(inode->i_mapping); 4165 if (ret < 0) 4166 break; 4167 } 4168 4169 count -= len; 4170 page_idx += len; 4171 } 4172 4173 if (!ret) 4174 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4175 LLONG_MAX); 4176 4177 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4178 4179 if (ret) 4180 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4181 __func__, ret); 4182 out: 4183 inode_unlock(inode); 4184 file_end_write(filp); 4185 4186 return ret; 4187 } 4188 4189 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4190 { 4191 switch (cmd) { 4192 case FS_IOC_GETVERSION: 4193 return f2fs_ioc_getversion(filp, arg); 4194 case F2FS_IOC_START_ATOMIC_WRITE: 4195 return f2fs_ioc_start_atomic_write(filp, false); 4196 case F2FS_IOC_START_ATOMIC_REPLACE: 4197 return f2fs_ioc_start_atomic_write(filp, true); 4198 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4199 return f2fs_ioc_commit_atomic_write(filp); 4200 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4201 return f2fs_ioc_abort_atomic_write(filp); 4202 case F2FS_IOC_START_VOLATILE_WRITE: 4203 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4204 return -EOPNOTSUPP; 4205 case F2FS_IOC_SHUTDOWN: 4206 return f2fs_ioc_shutdown(filp, arg); 4207 case FITRIM: 4208 return f2fs_ioc_fitrim(filp, arg); 4209 case FS_IOC_SET_ENCRYPTION_POLICY: 4210 return f2fs_ioc_set_encryption_policy(filp, arg); 4211 case FS_IOC_GET_ENCRYPTION_POLICY: 4212 return f2fs_ioc_get_encryption_policy(filp, arg); 4213 case FS_IOC_GET_ENCRYPTION_PWSALT: 4214 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4215 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4216 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4217 case FS_IOC_ADD_ENCRYPTION_KEY: 4218 return f2fs_ioc_add_encryption_key(filp, arg); 4219 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4220 return f2fs_ioc_remove_encryption_key(filp, arg); 4221 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4222 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4223 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4224 return f2fs_ioc_get_encryption_key_status(filp, arg); 4225 case FS_IOC_GET_ENCRYPTION_NONCE: 4226 return f2fs_ioc_get_encryption_nonce(filp, arg); 4227 case F2FS_IOC_GARBAGE_COLLECT: 4228 return f2fs_ioc_gc(filp, arg); 4229 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4230 return f2fs_ioc_gc_range(filp, arg); 4231 case F2FS_IOC_WRITE_CHECKPOINT: 4232 return f2fs_ioc_write_checkpoint(filp); 4233 case F2FS_IOC_DEFRAGMENT: 4234 return f2fs_ioc_defragment(filp, arg); 4235 case F2FS_IOC_MOVE_RANGE: 4236 return f2fs_ioc_move_range(filp, arg); 4237 case F2FS_IOC_FLUSH_DEVICE: 4238 return f2fs_ioc_flush_device(filp, arg); 4239 case F2FS_IOC_GET_FEATURES: 4240 return f2fs_ioc_get_features(filp, arg); 4241 case F2FS_IOC_GET_PIN_FILE: 4242 return f2fs_ioc_get_pin_file(filp, arg); 4243 case F2FS_IOC_SET_PIN_FILE: 4244 return f2fs_ioc_set_pin_file(filp, arg); 4245 case F2FS_IOC_PRECACHE_EXTENTS: 4246 return f2fs_ioc_precache_extents(filp); 4247 case F2FS_IOC_RESIZE_FS: 4248 return f2fs_ioc_resize_fs(filp, arg); 4249 case FS_IOC_ENABLE_VERITY: 4250 return f2fs_ioc_enable_verity(filp, arg); 4251 case FS_IOC_MEASURE_VERITY: 4252 return f2fs_ioc_measure_verity(filp, arg); 4253 case FS_IOC_READ_VERITY_METADATA: 4254 return f2fs_ioc_read_verity_metadata(filp, arg); 4255 case FS_IOC_GETFSLABEL: 4256 return f2fs_ioc_getfslabel(filp, arg); 4257 case FS_IOC_SETFSLABEL: 4258 return f2fs_ioc_setfslabel(filp, arg); 4259 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4260 return f2fs_ioc_get_compress_blocks(filp, arg); 4261 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4262 return f2fs_release_compress_blocks(filp, arg); 4263 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4264 return f2fs_reserve_compress_blocks(filp, arg); 4265 case F2FS_IOC_SEC_TRIM_FILE: 4266 return f2fs_sec_trim_file(filp, arg); 4267 case F2FS_IOC_GET_COMPRESS_OPTION: 4268 return f2fs_ioc_get_compress_option(filp, arg); 4269 case F2FS_IOC_SET_COMPRESS_OPTION: 4270 return f2fs_ioc_set_compress_option(filp, arg); 4271 case F2FS_IOC_DECOMPRESS_FILE: 4272 return f2fs_ioc_decompress_file(filp); 4273 case F2FS_IOC_COMPRESS_FILE: 4274 return f2fs_ioc_compress_file(filp); 4275 default: 4276 return -ENOTTY; 4277 } 4278 } 4279 4280 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4281 { 4282 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4283 return -EIO; 4284 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4285 return -ENOSPC; 4286 4287 return __f2fs_ioctl(filp, cmd, arg); 4288 } 4289 4290 /* 4291 * Return %true if the given read or write request should use direct I/O, or 4292 * %false if it should use buffered I/O. 4293 */ 4294 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4295 struct iov_iter *iter) 4296 { 4297 unsigned int align; 4298 4299 if (!(iocb->ki_flags & IOCB_DIRECT)) 4300 return false; 4301 4302 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) 4303 return false; 4304 4305 /* 4306 * Direct I/O not aligned to the disk's logical_block_size will be 4307 * attempted, but will fail with -EINVAL. 4308 * 4309 * f2fs additionally requires that direct I/O be aligned to the 4310 * filesystem block size, which is often a stricter requirement. 4311 * However, f2fs traditionally falls back to buffered I/O on requests 4312 * that are logical_block_size-aligned but not fs-block aligned. 4313 * 4314 * The below logic implements this behavior. 4315 */ 4316 align = iocb->ki_pos | iov_iter_alignment(iter); 4317 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4318 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4319 return false; 4320 4321 return true; 4322 } 4323 4324 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4325 unsigned int flags) 4326 { 4327 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4328 4329 dec_page_count(sbi, F2FS_DIO_READ); 4330 if (error) 4331 return error; 4332 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size); 4333 return 0; 4334 } 4335 4336 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4337 .end_io = f2fs_dio_read_end_io, 4338 }; 4339 4340 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4341 { 4342 struct file *file = iocb->ki_filp; 4343 struct inode *inode = file_inode(file); 4344 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4345 struct f2fs_inode_info *fi = F2FS_I(inode); 4346 const loff_t pos = iocb->ki_pos; 4347 const size_t count = iov_iter_count(to); 4348 struct iomap_dio *dio; 4349 ssize_t ret; 4350 4351 if (count == 0) 4352 return 0; /* skip atime update */ 4353 4354 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4355 4356 if (iocb->ki_flags & IOCB_NOWAIT) { 4357 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4358 ret = -EAGAIN; 4359 goto out; 4360 } 4361 } else { 4362 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4363 } 4364 4365 /* 4366 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4367 * the higher-level function iomap_dio_rw() in order to ensure that the 4368 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4369 */ 4370 inc_page_count(sbi, F2FS_DIO_READ); 4371 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4372 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4373 if (IS_ERR_OR_NULL(dio)) { 4374 ret = PTR_ERR_OR_ZERO(dio); 4375 if (ret != -EIOCBQUEUED) 4376 dec_page_count(sbi, F2FS_DIO_READ); 4377 } else { 4378 ret = iomap_dio_complete(dio); 4379 } 4380 4381 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4382 4383 file_accessed(file); 4384 out: 4385 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4386 return ret; 4387 } 4388 4389 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count, 4390 int rw) 4391 { 4392 struct inode *inode = file_inode(file); 4393 char *buf, *path; 4394 4395 buf = f2fs_getname(F2FS_I_SB(inode)); 4396 if (!buf) 4397 return; 4398 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX); 4399 if (IS_ERR(path)) 4400 goto free_buf; 4401 if (rw == WRITE) 4402 trace_f2fs_datawrite_start(inode, pos, count, 4403 current->pid, path, current->comm); 4404 else 4405 trace_f2fs_dataread_start(inode, pos, count, 4406 current->pid, path, current->comm); 4407 free_buf: 4408 f2fs_putname(buf); 4409 } 4410 4411 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4412 { 4413 struct inode *inode = file_inode(iocb->ki_filp); 4414 const loff_t pos = iocb->ki_pos; 4415 ssize_t ret; 4416 4417 if (!f2fs_is_compress_backend_ready(inode)) 4418 return -EOPNOTSUPP; 4419 4420 if (trace_f2fs_dataread_start_enabled()) 4421 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 4422 iov_iter_count(to), READ); 4423 4424 if (f2fs_should_use_dio(inode, iocb, to)) { 4425 ret = f2fs_dio_read_iter(iocb, to); 4426 } else { 4427 ret = filemap_read(iocb, to, 0); 4428 if (ret > 0) 4429 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4430 APP_BUFFERED_READ_IO, ret); 4431 } 4432 if (trace_f2fs_dataread_end_enabled()) 4433 trace_f2fs_dataread_end(inode, pos, ret); 4434 return ret; 4435 } 4436 4437 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos, 4438 struct pipe_inode_info *pipe, 4439 size_t len, unsigned int flags) 4440 { 4441 struct inode *inode = file_inode(in); 4442 const loff_t pos = *ppos; 4443 ssize_t ret; 4444 4445 if (!f2fs_is_compress_backend_ready(inode)) 4446 return -EOPNOTSUPP; 4447 4448 if (trace_f2fs_dataread_start_enabled()) 4449 f2fs_trace_rw_file_path(in, pos, len, READ); 4450 4451 ret = filemap_splice_read(in, ppos, pipe, len, flags); 4452 if (ret > 0) 4453 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4454 APP_BUFFERED_READ_IO, ret); 4455 4456 if (trace_f2fs_dataread_end_enabled()) 4457 trace_f2fs_dataread_end(inode, pos, ret); 4458 return ret; 4459 } 4460 4461 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4462 { 4463 struct file *file = iocb->ki_filp; 4464 struct inode *inode = file_inode(file); 4465 ssize_t count; 4466 int err; 4467 4468 if (IS_IMMUTABLE(inode)) 4469 return -EPERM; 4470 4471 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4472 return -EPERM; 4473 4474 count = generic_write_checks(iocb, from); 4475 if (count <= 0) 4476 return count; 4477 4478 err = file_modified(file); 4479 if (err) 4480 return err; 4481 return count; 4482 } 4483 4484 /* 4485 * Preallocate blocks for a write request, if it is possible and helpful to do 4486 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4487 * blocks were preallocated, or a negative errno value if something went 4488 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4489 * requested blocks (not just some of them) have been allocated. 4490 */ 4491 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4492 bool dio) 4493 { 4494 struct inode *inode = file_inode(iocb->ki_filp); 4495 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4496 const loff_t pos = iocb->ki_pos; 4497 const size_t count = iov_iter_count(iter); 4498 struct f2fs_map_blocks map = {}; 4499 int flag; 4500 int ret; 4501 4502 /* If it will be an out-of-place direct write, don't bother. */ 4503 if (dio && f2fs_lfs_mode(sbi)) 4504 return 0; 4505 /* 4506 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4507 * buffered IO, if DIO meets any holes. 4508 */ 4509 if (dio && i_size_read(inode) && 4510 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4511 return 0; 4512 4513 /* No-wait I/O can't allocate blocks. */ 4514 if (iocb->ki_flags & IOCB_NOWAIT) 4515 return 0; 4516 4517 /* If it will be a short write, don't bother. */ 4518 if (fault_in_iov_iter_readable(iter, count)) 4519 return 0; 4520 4521 if (f2fs_has_inline_data(inode)) { 4522 /* If the data will fit inline, don't bother. */ 4523 if (pos + count <= MAX_INLINE_DATA(inode)) 4524 return 0; 4525 ret = f2fs_convert_inline_inode(inode); 4526 if (ret) 4527 return ret; 4528 } 4529 4530 /* Do not preallocate blocks that will be written partially in 4KB. */ 4531 map.m_lblk = F2FS_BLK_ALIGN(pos); 4532 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4533 if (map.m_len > map.m_lblk) 4534 map.m_len -= map.m_lblk; 4535 else 4536 map.m_len = 0; 4537 map.m_may_create = true; 4538 if (dio) { 4539 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4540 flag = F2FS_GET_BLOCK_PRE_DIO; 4541 } else { 4542 map.m_seg_type = NO_CHECK_TYPE; 4543 flag = F2FS_GET_BLOCK_PRE_AIO; 4544 } 4545 4546 ret = f2fs_map_blocks(inode, &map, flag); 4547 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4548 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4549 return ret; 4550 if (ret == 0) 4551 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4552 return map.m_len; 4553 } 4554 4555 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4556 struct iov_iter *from) 4557 { 4558 struct file *file = iocb->ki_filp; 4559 struct inode *inode = file_inode(file); 4560 ssize_t ret; 4561 4562 if (iocb->ki_flags & IOCB_NOWAIT) 4563 return -EOPNOTSUPP; 4564 4565 ret = generic_perform_write(iocb, from); 4566 4567 if (ret > 0) { 4568 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4569 APP_BUFFERED_IO, ret); 4570 } 4571 return ret; 4572 } 4573 4574 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4575 unsigned int flags) 4576 { 4577 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4578 4579 dec_page_count(sbi, F2FS_DIO_WRITE); 4580 if (error) 4581 return error; 4582 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size); 4583 return 0; 4584 } 4585 4586 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4587 .end_io = f2fs_dio_write_end_io, 4588 }; 4589 4590 static void f2fs_flush_buffered_write(struct address_space *mapping, 4591 loff_t start_pos, loff_t end_pos) 4592 { 4593 int ret; 4594 4595 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos); 4596 if (ret < 0) 4597 return; 4598 invalidate_mapping_pages(mapping, 4599 start_pos >> PAGE_SHIFT, 4600 end_pos >> PAGE_SHIFT); 4601 } 4602 4603 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4604 bool *may_need_sync) 4605 { 4606 struct file *file = iocb->ki_filp; 4607 struct inode *inode = file_inode(file); 4608 struct f2fs_inode_info *fi = F2FS_I(inode); 4609 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4610 const bool do_opu = f2fs_lfs_mode(sbi); 4611 const loff_t pos = iocb->ki_pos; 4612 const ssize_t count = iov_iter_count(from); 4613 unsigned int dio_flags; 4614 struct iomap_dio *dio; 4615 ssize_t ret; 4616 4617 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4618 4619 if (iocb->ki_flags & IOCB_NOWAIT) { 4620 /* f2fs_convert_inline_inode() and block allocation can block */ 4621 if (f2fs_has_inline_data(inode) || 4622 !f2fs_overwrite_io(inode, pos, count)) { 4623 ret = -EAGAIN; 4624 goto out; 4625 } 4626 4627 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4628 ret = -EAGAIN; 4629 goto out; 4630 } 4631 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4632 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4633 ret = -EAGAIN; 4634 goto out; 4635 } 4636 } else { 4637 ret = f2fs_convert_inline_inode(inode); 4638 if (ret) 4639 goto out; 4640 4641 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4642 if (do_opu) 4643 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4644 } 4645 4646 /* 4647 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4648 * the higher-level function iomap_dio_rw() in order to ensure that the 4649 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4650 */ 4651 inc_page_count(sbi, F2FS_DIO_WRITE); 4652 dio_flags = 0; 4653 if (pos + count > inode->i_size) 4654 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4655 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4656 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4657 if (IS_ERR_OR_NULL(dio)) { 4658 ret = PTR_ERR_OR_ZERO(dio); 4659 if (ret == -ENOTBLK) 4660 ret = 0; 4661 if (ret != -EIOCBQUEUED) 4662 dec_page_count(sbi, F2FS_DIO_WRITE); 4663 } else { 4664 ret = iomap_dio_complete(dio); 4665 } 4666 4667 if (do_opu) 4668 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4669 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4670 4671 if (ret < 0) 4672 goto out; 4673 if (pos + ret > inode->i_size) 4674 f2fs_i_size_write(inode, pos + ret); 4675 if (!do_opu) 4676 set_inode_flag(inode, FI_UPDATE_WRITE); 4677 4678 if (iov_iter_count(from)) { 4679 ssize_t ret2; 4680 loff_t bufio_start_pos = iocb->ki_pos; 4681 4682 /* 4683 * The direct write was partial, so we need to fall back to a 4684 * buffered write for the remainder. 4685 */ 4686 4687 ret2 = f2fs_buffered_write_iter(iocb, from); 4688 if (iov_iter_count(from)) 4689 f2fs_write_failed(inode, iocb->ki_pos); 4690 if (ret2 < 0) 4691 goto out; 4692 4693 /* 4694 * Ensure that the pagecache pages are written to disk and 4695 * invalidated to preserve the expected O_DIRECT semantics. 4696 */ 4697 if (ret2 > 0) { 4698 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4699 4700 ret += ret2; 4701 4702 f2fs_flush_buffered_write(file->f_mapping, 4703 bufio_start_pos, 4704 bufio_end_pos); 4705 } 4706 } else { 4707 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4708 *may_need_sync = false; 4709 } 4710 out: 4711 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4712 return ret; 4713 } 4714 4715 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4716 { 4717 struct inode *inode = file_inode(iocb->ki_filp); 4718 const loff_t orig_pos = iocb->ki_pos; 4719 const size_t orig_count = iov_iter_count(from); 4720 loff_t target_size; 4721 bool dio; 4722 bool may_need_sync = true; 4723 int preallocated; 4724 ssize_t ret; 4725 4726 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4727 ret = -EIO; 4728 goto out; 4729 } 4730 4731 if (!f2fs_is_compress_backend_ready(inode)) { 4732 ret = -EOPNOTSUPP; 4733 goto out; 4734 } 4735 4736 if (iocb->ki_flags & IOCB_NOWAIT) { 4737 if (!inode_trylock(inode)) { 4738 ret = -EAGAIN; 4739 goto out; 4740 } 4741 } else { 4742 inode_lock(inode); 4743 } 4744 4745 ret = f2fs_write_checks(iocb, from); 4746 if (ret <= 0) 4747 goto out_unlock; 4748 4749 /* Determine whether we will do a direct write or a buffered write. */ 4750 dio = f2fs_should_use_dio(inode, iocb, from); 4751 4752 /* Possibly preallocate the blocks for the write. */ 4753 target_size = iocb->ki_pos + iov_iter_count(from); 4754 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 4755 if (preallocated < 0) { 4756 ret = preallocated; 4757 } else { 4758 if (trace_f2fs_datawrite_start_enabled()) 4759 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 4760 orig_count, WRITE); 4761 4762 /* Do the actual write. */ 4763 ret = dio ? 4764 f2fs_dio_write_iter(iocb, from, &may_need_sync) : 4765 f2fs_buffered_write_iter(iocb, from); 4766 4767 if (trace_f2fs_datawrite_end_enabled()) 4768 trace_f2fs_datawrite_end(inode, orig_pos, ret); 4769 } 4770 4771 /* Don't leave any preallocated blocks around past i_size. */ 4772 if (preallocated && i_size_read(inode) < target_size) { 4773 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4774 filemap_invalidate_lock(inode->i_mapping); 4775 if (!f2fs_truncate(inode)) 4776 file_dont_truncate(inode); 4777 filemap_invalidate_unlock(inode->i_mapping); 4778 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4779 } else { 4780 file_dont_truncate(inode); 4781 } 4782 4783 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 4784 out_unlock: 4785 inode_unlock(inode); 4786 out: 4787 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 4788 4789 if (ret > 0 && may_need_sync) 4790 ret = generic_write_sync(iocb, ret); 4791 4792 /* If buffered IO was forced, flush and drop the data from 4793 * the page cache to preserve O_DIRECT semantics 4794 */ 4795 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT)) 4796 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping, 4797 orig_pos, 4798 orig_pos + ret - 1); 4799 4800 return ret; 4801 } 4802 4803 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 4804 int advice) 4805 { 4806 struct address_space *mapping; 4807 struct backing_dev_info *bdi; 4808 struct inode *inode = file_inode(filp); 4809 int err; 4810 4811 if (advice == POSIX_FADV_SEQUENTIAL) { 4812 if (S_ISFIFO(inode->i_mode)) 4813 return -ESPIPE; 4814 4815 mapping = filp->f_mapping; 4816 if (!mapping || len < 0) 4817 return -EINVAL; 4818 4819 bdi = inode_to_bdi(mapping->host); 4820 filp->f_ra.ra_pages = bdi->ra_pages * 4821 F2FS_I_SB(inode)->seq_file_ra_mul; 4822 spin_lock(&filp->f_lock); 4823 filp->f_mode &= ~FMODE_RANDOM; 4824 spin_unlock(&filp->f_lock); 4825 return 0; 4826 } 4827 4828 err = generic_fadvise(filp, offset, len, advice); 4829 if (!err && advice == POSIX_FADV_DONTNEED && 4830 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 4831 f2fs_compressed_file(inode)) 4832 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 4833 4834 return err; 4835 } 4836 4837 #ifdef CONFIG_COMPAT 4838 struct compat_f2fs_gc_range { 4839 u32 sync; 4840 compat_u64 start; 4841 compat_u64 len; 4842 }; 4843 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4844 struct compat_f2fs_gc_range) 4845 4846 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4847 { 4848 struct compat_f2fs_gc_range __user *urange; 4849 struct f2fs_gc_range range; 4850 int err; 4851 4852 urange = compat_ptr(arg); 4853 err = get_user(range.sync, &urange->sync); 4854 err |= get_user(range.start, &urange->start); 4855 err |= get_user(range.len, &urange->len); 4856 if (err) 4857 return -EFAULT; 4858 4859 return __f2fs_ioc_gc_range(file, &range); 4860 } 4861 4862 struct compat_f2fs_move_range { 4863 u32 dst_fd; 4864 compat_u64 pos_in; 4865 compat_u64 pos_out; 4866 compat_u64 len; 4867 }; 4868 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4869 struct compat_f2fs_move_range) 4870 4871 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4872 { 4873 struct compat_f2fs_move_range __user *urange; 4874 struct f2fs_move_range range; 4875 int err; 4876 4877 urange = compat_ptr(arg); 4878 err = get_user(range.dst_fd, &urange->dst_fd); 4879 err |= get_user(range.pos_in, &urange->pos_in); 4880 err |= get_user(range.pos_out, &urange->pos_out); 4881 err |= get_user(range.len, &urange->len); 4882 if (err) 4883 return -EFAULT; 4884 4885 return __f2fs_ioc_move_range(file, &range); 4886 } 4887 4888 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4889 { 4890 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4891 return -EIO; 4892 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4893 return -ENOSPC; 4894 4895 switch (cmd) { 4896 case FS_IOC32_GETVERSION: 4897 cmd = FS_IOC_GETVERSION; 4898 break; 4899 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4900 return f2fs_compat_ioc_gc_range(file, arg); 4901 case F2FS_IOC32_MOVE_RANGE: 4902 return f2fs_compat_ioc_move_range(file, arg); 4903 case F2FS_IOC_START_ATOMIC_WRITE: 4904 case F2FS_IOC_START_ATOMIC_REPLACE: 4905 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4906 case F2FS_IOC_START_VOLATILE_WRITE: 4907 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4908 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4909 case F2FS_IOC_SHUTDOWN: 4910 case FITRIM: 4911 case FS_IOC_SET_ENCRYPTION_POLICY: 4912 case FS_IOC_GET_ENCRYPTION_PWSALT: 4913 case FS_IOC_GET_ENCRYPTION_POLICY: 4914 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4915 case FS_IOC_ADD_ENCRYPTION_KEY: 4916 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4917 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4918 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4919 case FS_IOC_GET_ENCRYPTION_NONCE: 4920 case F2FS_IOC_GARBAGE_COLLECT: 4921 case F2FS_IOC_WRITE_CHECKPOINT: 4922 case F2FS_IOC_DEFRAGMENT: 4923 case F2FS_IOC_FLUSH_DEVICE: 4924 case F2FS_IOC_GET_FEATURES: 4925 case F2FS_IOC_GET_PIN_FILE: 4926 case F2FS_IOC_SET_PIN_FILE: 4927 case F2FS_IOC_PRECACHE_EXTENTS: 4928 case F2FS_IOC_RESIZE_FS: 4929 case FS_IOC_ENABLE_VERITY: 4930 case FS_IOC_MEASURE_VERITY: 4931 case FS_IOC_READ_VERITY_METADATA: 4932 case FS_IOC_GETFSLABEL: 4933 case FS_IOC_SETFSLABEL: 4934 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4935 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4936 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4937 case F2FS_IOC_SEC_TRIM_FILE: 4938 case F2FS_IOC_GET_COMPRESS_OPTION: 4939 case F2FS_IOC_SET_COMPRESS_OPTION: 4940 case F2FS_IOC_DECOMPRESS_FILE: 4941 case F2FS_IOC_COMPRESS_FILE: 4942 break; 4943 default: 4944 return -ENOIOCTLCMD; 4945 } 4946 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4947 } 4948 #endif 4949 4950 const struct file_operations f2fs_file_operations = { 4951 .llseek = f2fs_llseek, 4952 .read_iter = f2fs_file_read_iter, 4953 .write_iter = f2fs_file_write_iter, 4954 .iopoll = iocb_bio_iopoll, 4955 .open = f2fs_file_open, 4956 .release = f2fs_release_file, 4957 .mmap = f2fs_file_mmap, 4958 .flush = f2fs_file_flush, 4959 .fsync = f2fs_sync_file, 4960 .fallocate = f2fs_fallocate, 4961 .unlocked_ioctl = f2fs_ioctl, 4962 #ifdef CONFIG_COMPAT 4963 .compat_ioctl = f2fs_compat_ioctl, 4964 #endif 4965 .splice_read = f2fs_file_splice_read, 4966 .splice_write = iter_file_splice_write, 4967 .fadvise = f2fs_file_fadvise, 4968 }; 4969