1 /* 2 * fs/f2fs/file.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/stat.h> 14 #include <linux/buffer_head.h> 15 #include <linux/writeback.h> 16 #include <linux/blkdev.h> 17 #include <linux/falloc.h> 18 #include <linux/types.h> 19 #include <linux/compat.h> 20 #include <linux/uaccess.h> 21 #include <linux/mount.h> 22 #include <linux/pagevec.h> 23 #include <linux/uuid.h> 24 #include <linux/file.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "xattr.h" 30 #include "acl.h" 31 #include "gc.h" 32 #include "trace.h" 33 #include <trace/events/f2fs.h> 34 35 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma, 36 struct vm_fault *vmf) 37 { 38 struct page *page = vmf->page; 39 struct inode *inode = file_inode(vma->vm_file); 40 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 41 struct dnode_of_data dn; 42 int err; 43 44 sb_start_pagefault(inode->i_sb); 45 46 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 47 48 /* block allocation */ 49 f2fs_lock_op(sbi); 50 set_new_dnode(&dn, inode, NULL, NULL, 0); 51 err = f2fs_reserve_block(&dn, page->index); 52 if (err) { 53 f2fs_unlock_op(sbi); 54 goto out; 55 } 56 f2fs_put_dnode(&dn); 57 f2fs_unlock_op(sbi); 58 59 f2fs_balance_fs(sbi, dn.node_changed); 60 61 file_update_time(vma->vm_file); 62 lock_page(page); 63 if (unlikely(page->mapping != inode->i_mapping || 64 page_offset(page) > i_size_read(inode) || 65 !PageUptodate(page))) { 66 unlock_page(page); 67 err = -EFAULT; 68 goto out; 69 } 70 71 /* 72 * check to see if the page is mapped already (no holes) 73 */ 74 if (PageMappedToDisk(page)) 75 goto mapped; 76 77 /* page is wholly or partially inside EOF */ 78 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 79 i_size_read(inode)) { 80 unsigned offset; 81 offset = i_size_read(inode) & ~PAGE_MASK; 82 zero_user_segment(page, offset, PAGE_SIZE); 83 } 84 set_page_dirty(page); 85 if (!PageUptodate(page)) 86 SetPageUptodate(page); 87 88 trace_f2fs_vm_page_mkwrite(page, DATA); 89 mapped: 90 /* fill the page */ 91 f2fs_wait_on_page_writeback(page, DATA, false); 92 93 /* wait for GCed encrypted page writeback */ 94 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 95 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr); 96 97 /* if gced page is attached, don't write to cold segment */ 98 clear_cold_data(page); 99 out: 100 sb_end_pagefault(inode->i_sb); 101 f2fs_update_time(sbi, REQ_TIME); 102 return block_page_mkwrite_return(err); 103 } 104 105 static const struct vm_operations_struct f2fs_file_vm_ops = { 106 .fault = filemap_fault, 107 .map_pages = filemap_map_pages, 108 .page_mkwrite = f2fs_vm_page_mkwrite, 109 }; 110 111 static int get_parent_ino(struct inode *inode, nid_t *pino) 112 { 113 struct dentry *dentry; 114 115 inode = igrab(inode); 116 dentry = d_find_any_alias(inode); 117 iput(inode); 118 if (!dentry) 119 return 0; 120 121 if (update_dent_inode(inode, inode, &dentry->d_name)) { 122 dput(dentry); 123 return 0; 124 } 125 126 *pino = parent_ino(dentry); 127 dput(dentry); 128 return 1; 129 } 130 131 static inline bool need_do_checkpoint(struct inode *inode) 132 { 133 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 134 bool need_cp = false; 135 136 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1) 137 need_cp = true; 138 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino)) 139 need_cp = true; 140 else if (file_wrong_pino(inode)) 141 need_cp = true; 142 else if (!space_for_roll_forward(sbi)) 143 need_cp = true; 144 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 145 need_cp = true; 146 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi))) 147 need_cp = true; 148 else if (test_opt(sbi, FASTBOOT)) 149 need_cp = true; 150 else if (sbi->active_logs == 2) 151 need_cp = true; 152 153 return need_cp; 154 } 155 156 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 157 { 158 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 159 bool ret = false; 160 /* But we need to avoid that there are some inode updates */ 161 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino)) 162 ret = true; 163 f2fs_put_page(i, 0); 164 return ret; 165 } 166 167 static void try_to_fix_pino(struct inode *inode) 168 { 169 struct f2fs_inode_info *fi = F2FS_I(inode); 170 nid_t pino; 171 172 down_write(&fi->i_sem); 173 fi->xattr_ver = 0; 174 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 175 get_parent_ino(inode, &pino)) { 176 f2fs_i_pino_write(inode, pino); 177 file_got_pino(inode); 178 } 179 up_write(&fi->i_sem); 180 } 181 182 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 183 int datasync, bool atomic) 184 { 185 struct inode *inode = file->f_mapping->host; 186 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 187 nid_t ino = inode->i_ino; 188 int ret = 0; 189 bool need_cp = false; 190 struct writeback_control wbc = { 191 .sync_mode = WB_SYNC_ALL, 192 .nr_to_write = LONG_MAX, 193 .for_reclaim = 0, 194 }; 195 196 if (unlikely(f2fs_readonly(inode->i_sb))) 197 return 0; 198 199 trace_f2fs_sync_file_enter(inode); 200 201 /* if fdatasync is triggered, let's do in-place-update */ 202 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 203 set_inode_flag(inode, FI_NEED_IPU); 204 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 205 clear_inode_flag(inode, FI_NEED_IPU); 206 207 if (ret) { 208 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); 209 return ret; 210 } 211 212 /* if the inode is dirty, let's recover all the time */ 213 if (!datasync && !f2fs_skip_inode_update(inode)) { 214 f2fs_write_inode(inode, NULL); 215 goto go_write; 216 } 217 218 /* 219 * if there is no written data, don't waste time to write recovery info. 220 */ 221 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 222 !exist_written_data(sbi, ino, APPEND_INO)) { 223 224 /* it may call write_inode just prior to fsync */ 225 if (need_inode_page_update(sbi, ino)) 226 goto go_write; 227 228 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 229 exist_written_data(sbi, ino, UPDATE_INO)) 230 goto flush_out; 231 goto out; 232 } 233 go_write: 234 /* 235 * Both of fdatasync() and fsync() are able to be recovered from 236 * sudden-power-off. 237 */ 238 down_read(&F2FS_I(inode)->i_sem); 239 need_cp = need_do_checkpoint(inode); 240 up_read(&F2FS_I(inode)->i_sem); 241 242 if (need_cp) { 243 /* all the dirty node pages should be flushed for POR */ 244 ret = f2fs_sync_fs(inode->i_sb, 1); 245 246 /* 247 * We've secured consistency through sync_fs. Following pino 248 * will be used only for fsynced inodes after checkpoint. 249 */ 250 try_to_fix_pino(inode); 251 clear_inode_flag(inode, FI_APPEND_WRITE); 252 clear_inode_flag(inode, FI_UPDATE_WRITE); 253 goto out; 254 } 255 sync_nodes: 256 ret = fsync_node_pages(sbi, inode, &wbc, atomic); 257 if (ret) 258 goto out; 259 260 /* if cp_error was enabled, we should avoid infinite loop */ 261 if (unlikely(f2fs_cp_error(sbi))) { 262 ret = -EIO; 263 goto out; 264 } 265 266 if (need_inode_block_update(sbi, ino)) { 267 f2fs_mark_inode_dirty_sync(inode); 268 f2fs_write_inode(inode, NULL); 269 goto sync_nodes; 270 } 271 272 ret = wait_on_node_pages_writeback(sbi, ino); 273 if (ret) 274 goto out; 275 276 /* once recovery info is written, don't need to tack this */ 277 remove_ino_entry(sbi, ino, APPEND_INO); 278 clear_inode_flag(inode, FI_APPEND_WRITE); 279 flush_out: 280 remove_ino_entry(sbi, ino, UPDATE_INO); 281 clear_inode_flag(inode, FI_UPDATE_WRITE); 282 ret = f2fs_issue_flush(sbi); 283 f2fs_update_time(sbi, REQ_TIME); 284 out: 285 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); 286 f2fs_trace_ios(NULL, 1); 287 return ret; 288 } 289 290 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 291 { 292 return f2fs_do_sync_file(file, start, end, datasync, false); 293 } 294 295 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 296 pgoff_t pgofs, int whence) 297 { 298 struct pagevec pvec; 299 int nr_pages; 300 301 if (whence != SEEK_DATA) 302 return 0; 303 304 /* find first dirty page index */ 305 pagevec_init(&pvec, 0); 306 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs, 307 PAGECACHE_TAG_DIRTY, 1); 308 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX; 309 pagevec_release(&pvec); 310 return pgofs; 311 } 312 313 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs, 314 int whence) 315 { 316 switch (whence) { 317 case SEEK_DATA: 318 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 319 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR)) 320 return true; 321 break; 322 case SEEK_HOLE: 323 if (blkaddr == NULL_ADDR) 324 return true; 325 break; 326 } 327 return false; 328 } 329 330 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 331 { 332 struct inode *inode = file->f_mapping->host; 333 loff_t maxbytes = inode->i_sb->s_maxbytes; 334 struct dnode_of_data dn; 335 pgoff_t pgofs, end_offset, dirty; 336 loff_t data_ofs = offset; 337 loff_t isize; 338 int err = 0; 339 340 inode_lock(inode); 341 342 isize = i_size_read(inode); 343 if (offset >= isize) 344 goto fail; 345 346 /* handle inline data case */ 347 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 348 if (whence == SEEK_HOLE) 349 data_ofs = isize; 350 goto found; 351 } 352 353 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 354 355 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 356 357 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 358 set_new_dnode(&dn, inode, NULL, NULL, 0); 359 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 360 if (err && err != -ENOENT) { 361 goto fail; 362 } else if (err == -ENOENT) { 363 /* direct node does not exists */ 364 if (whence == SEEK_DATA) { 365 pgofs = get_next_page_offset(&dn, pgofs); 366 continue; 367 } else { 368 goto found; 369 } 370 } 371 372 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 373 374 /* find data/hole in dnode block */ 375 for (; dn.ofs_in_node < end_offset; 376 dn.ofs_in_node++, pgofs++, 377 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 378 block_t blkaddr; 379 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 380 381 if (__found_offset(blkaddr, dirty, pgofs, whence)) { 382 f2fs_put_dnode(&dn); 383 goto found; 384 } 385 } 386 f2fs_put_dnode(&dn); 387 } 388 389 if (whence == SEEK_DATA) 390 goto fail; 391 found: 392 if (whence == SEEK_HOLE && data_ofs > isize) 393 data_ofs = isize; 394 inode_unlock(inode); 395 return vfs_setpos(file, data_ofs, maxbytes); 396 fail: 397 inode_unlock(inode); 398 return -ENXIO; 399 } 400 401 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 402 { 403 struct inode *inode = file->f_mapping->host; 404 loff_t maxbytes = inode->i_sb->s_maxbytes; 405 406 switch (whence) { 407 case SEEK_SET: 408 case SEEK_CUR: 409 case SEEK_END: 410 return generic_file_llseek_size(file, offset, whence, 411 maxbytes, i_size_read(inode)); 412 case SEEK_DATA: 413 case SEEK_HOLE: 414 if (offset < 0) 415 return -ENXIO; 416 return f2fs_seek_block(file, offset, whence); 417 } 418 419 return -EINVAL; 420 } 421 422 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 423 { 424 struct inode *inode = file_inode(file); 425 int err; 426 427 if (f2fs_encrypted_inode(inode)) { 428 err = fscrypt_get_encryption_info(inode); 429 if (err) 430 return 0; 431 if (!f2fs_encrypted_inode(inode)) 432 return -ENOKEY; 433 } 434 435 /* we don't need to use inline_data strictly */ 436 err = f2fs_convert_inline_inode(inode); 437 if (err) 438 return err; 439 440 file_accessed(file); 441 vma->vm_ops = &f2fs_file_vm_ops; 442 return 0; 443 } 444 445 static int f2fs_file_open(struct inode *inode, struct file *filp) 446 { 447 int ret = generic_file_open(inode, filp); 448 struct dentry *dir; 449 450 if (!ret && f2fs_encrypted_inode(inode)) { 451 ret = fscrypt_get_encryption_info(inode); 452 if (ret) 453 return -EACCES; 454 if (!fscrypt_has_encryption_key(inode)) 455 return -ENOKEY; 456 } 457 dir = dget_parent(file_dentry(filp)); 458 if (f2fs_encrypted_inode(d_inode(dir)) && 459 !fscrypt_has_permitted_context(d_inode(dir), inode)) { 460 dput(dir); 461 return -EPERM; 462 } 463 dput(dir); 464 return ret; 465 } 466 467 int truncate_data_blocks_range(struct dnode_of_data *dn, int count) 468 { 469 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 470 struct f2fs_node *raw_node; 471 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 472 __le32 *addr; 473 474 raw_node = F2FS_NODE(dn->node_page); 475 addr = blkaddr_in_node(raw_node) + ofs; 476 477 for (; count > 0; count--, addr++, dn->ofs_in_node++) { 478 block_t blkaddr = le32_to_cpu(*addr); 479 if (blkaddr == NULL_ADDR) 480 continue; 481 482 dn->data_blkaddr = NULL_ADDR; 483 set_data_blkaddr(dn); 484 invalidate_blocks(sbi, blkaddr); 485 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 486 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 487 nr_free++; 488 } 489 490 if (nr_free) { 491 pgoff_t fofs; 492 /* 493 * once we invalidate valid blkaddr in range [ofs, ofs + count], 494 * we will invalidate all blkaddr in the whole range. 495 */ 496 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), 497 dn->inode) + ofs; 498 f2fs_update_extent_cache_range(dn, fofs, 0, len); 499 dec_valid_block_count(sbi, dn->inode, nr_free); 500 } 501 dn->ofs_in_node = ofs; 502 503 f2fs_update_time(sbi, REQ_TIME); 504 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 505 dn->ofs_in_node, nr_free); 506 return nr_free; 507 } 508 509 void truncate_data_blocks(struct dnode_of_data *dn) 510 { 511 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK); 512 } 513 514 static int truncate_partial_data_page(struct inode *inode, u64 from, 515 bool cache_only) 516 { 517 unsigned offset = from & (PAGE_SIZE - 1); 518 pgoff_t index = from >> PAGE_SHIFT; 519 struct address_space *mapping = inode->i_mapping; 520 struct page *page; 521 522 if (!offset && !cache_only) 523 return 0; 524 525 if (cache_only) { 526 page = f2fs_grab_cache_page(mapping, index, false); 527 if (page && PageUptodate(page)) 528 goto truncate_out; 529 f2fs_put_page(page, 1); 530 return 0; 531 } 532 533 page = get_lock_data_page(inode, index, true); 534 if (IS_ERR(page)) 535 return 0; 536 truncate_out: 537 f2fs_wait_on_page_writeback(page, DATA, true); 538 zero_user(page, offset, PAGE_SIZE - offset); 539 if (!cache_only || !f2fs_encrypted_inode(inode) || 540 !S_ISREG(inode->i_mode)) 541 set_page_dirty(page); 542 f2fs_put_page(page, 1); 543 return 0; 544 } 545 546 int truncate_blocks(struct inode *inode, u64 from, bool lock) 547 { 548 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 549 unsigned int blocksize = inode->i_sb->s_blocksize; 550 struct dnode_of_data dn; 551 pgoff_t free_from; 552 int count = 0, err = 0; 553 struct page *ipage; 554 bool truncate_page = false; 555 556 trace_f2fs_truncate_blocks_enter(inode, from); 557 558 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1); 559 560 if (free_from >= sbi->max_file_blocks) 561 goto free_partial; 562 563 if (lock) 564 f2fs_lock_op(sbi); 565 566 ipage = get_node_page(sbi, inode->i_ino); 567 if (IS_ERR(ipage)) { 568 err = PTR_ERR(ipage); 569 goto out; 570 } 571 572 if (f2fs_has_inline_data(inode)) { 573 if (truncate_inline_inode(ipage, from)) 574 set_page_dirty(ipage); 575 f2fs_put_page(ipage, 1); 576 truncate_page = true; 577 goto out; 578 } 579 580 set_new_dnode(&dn, inode, ipage, NULL, 0); 581 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 582 if (err) { 583 if (err == -ENOENT) 584 goto free_next; 585 goto out; 586 } 587 588 count = ADDRS_PER_PAGE(dn.node_page, inode); 589 590 count -= dn.ofs_in_node; 591 f2fs_bug_on(sbi, count < 0); 592 593 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 594 truncate_data_blocks_range(&dn, count); 595 free_from += count; 596 } 597 598 f2fs_put_dnode(&dn); 599 free_next: 600 err = truncate_inode_blocks(inode, free_from); 601 out: 602 if (lock) 603 f2fs_unlock_op(sbi); 604 free_partial: 605 /* lastly zero out the first data page */ 606 if (!err) 607 err = truncate_partial_data_page(inode, from, truncate_page); 608 609 trace_f2fs_truncate_blocks_exit(inode, err); 610 return err; 611 } 612 613 int f2fs_truncate(struct inode *inode) 614 { 615 int err; 616 617 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 618 S_ISLNK(inode->i_mode))) 619 return 0; 620 621 trace_f2fs_truncate(inode); 622 623 /* we should check inline_data size */ 624 if (!f2fs_may_inline_data(inode)) { 625 err = f2fs_convert_inline_inode(inode); 626 if (err) 627 return err; 628 } 629 630 err = truncate_blocks(inode, i_size_read(inode), true); 631 if (err) 632 return err; 633 634 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 635 f2fs_mark_inode_dirty_sync(inode); 636 return 0; 637 } 638 639 int f2fs_getattr(struct vfsmount *mnt, 640 struct dentry *dentry, struct kstat *stat) 641 { 642 struct inode *inode = d_inode(dentry); 643 generic_fillattr(inode, stat); 644 stat->blocks <<= 3; 645 return 0; 646 } 647 648 #ifdef CONFIG_F2FS_FS_POSIX_ACL 649 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 650 { 651 unsigned int ia_valid = attr->ia_valid; 652 653 if (ia_valid & ATTR_UID) 654 inode->i_uid = attr->ia_uid; 655 if (ia_valid & ATTR_GID) 656 inode->i_gid = attr->ia_gid; 657 if (ia_valid & ATTR_ATIME) 658 inode->i_atime = timespec_trunc(attr->ia_atime, 659 inode->i_sb->s_time_gran); 660 if (ia_valid & ATTR_MTIME) 661 inode->i_mtime = timespec_trunc(attr->ia_mtime, 662 inode->i_sb->s_time_gran); 663 if (ia_valid & ATTR_CTIME) 664 inode->i_ctime = timespec_trunc(attr->ia_ctime, 665 inode->i_sb->s_time_gran); 666 if (ia_valid & ATTR_MODE) { 667 umode_t mode = attr->ia_mode; 668 669 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 670 mode &= ~S_ISGID; 671 set_acl_inode(inode, mode); 672 } 673 } 674 #else 675 #define __setattr_copy setattr_copy 676 #endif 677 678 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 679 { 680 struct inode *inode = d_inode(dentry); 681 int err; 682 683 err = inode_change_ok(inode, attr); 684 if (err) 685 return err; 686 687 if (attr->ia_valid & ATTR_SIZE) { 688 if (f2fs_encrypted_inode(inode) && 689 fscrypt_get_encryption_info(inode)) 690 return -EACCES; 691 692 if (attr->ia_size <= i_size_read(inode)) { 693 truncate_setsize(inode, attr->ia_size); 694 err = f2fs_truncate(inode); 695 if (err) 696 return err; 697 f2fs_balance_fs(F2FS_I_SB(inode), true); 698 } else { 699 /* 700 * do not trim all blocks after i_size if target size is 701 * larger than i_size. 702 */ 703 truncate_setsize(inode, attr->ia_size); 704 705 /* should convert inline inode here */ 706 if (!f2fs_may_inline_data(inode)) { 707 err = f2fs_convert_inline_inode(inode); 708 if (err) 709 return err; 710 } 711 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 712 } 713 } 714 715 __setattr_copy(inode, attr); 716 717 if (attr->ia_valid & ATTR_MODE) { 718 err = posix_acl_chmod(inode, get_inode_mode(inode)); 719 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 720 inode->i_mode = F2FS_I(inode)->i_acl_mode; 721 clear_inode_flag(inode, FI_ACL_MODE); 722 } 723 } 724 725 f2fs_mark_inode_dirty_sync(inode); 726 return err; 727 } 728 729 const struct inode_operations f2fs_file_inode_operations = { 730 .getattr = f2fs_getattr, 731 .setattr = f2fs_setattr, 732 .get_acl = f2fs_get_acl, 733 .set_acl = f2fs_set_acl, 734 #ifdef CONFIG_F2FS_FS_XATTR 735 .setxattr = generic_setxattr, 736 .getxattr = generic_getxattr, 737 .listxattr = f2fs_listxattr, 738 .removexattr = generic_removexattr, 739 #endif 740 .fiemap = f2fs_fiemap, 741 }; 742 743 static int fill_zero(struct inode *inode, pgoff_t index, 744 loff_t start, loff_t len) 745 { 746 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 747 struct page *page; 748 749 if (!len) 750 return 0; 751 752 f2fs_balance_fs(sbi, true); 753 754 f2fs_lock_op(sbi); 755 page = get_new_data_page(inode, NULL, index, false); 756 f2fs_unlock_op(sbi); 757 758 if (IS_ERR(page)) 759 return PTR_ERR(page); 760 761 f2fs_wait_on_page_writeback(page, DATA, true); 762 zero_user(page, start, len); 763 set_page_dirty(page); 764 f2fs_put_page(page, 1); 765 return 0; 766 } 767 768 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 769 { 770 int err; 771 772 while (pg_start < pg_end) { 773 struct dnode_of_data dn; 774 pgoff_t end_offset, count; 775 776 set_new_dnode(&dn, inode, NULL, NULL, 0); 777 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 778 if (err) { 779 if (err == -ENOENT) { 780 pg_start++; 781 continue; 782 } 783 return err; 784 } 785 786 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 787 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 788 789 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 790 791 truncate_data_blocks_range(&dn, count); 792 f2fs_put_dnode(&dn); 793 794 pg_start += count; 795 } 796 return 0; 797 } 798 799 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 800 { 801 pgoff_t pg_start, pg_end; 802 loff_t off_start, off_end; 803 int ret; 804 805 ret = f2fs_convert_inline_inode(inode); 806 if (ret) 807 return ret; 808 809 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 810 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 811 812 off_start = offset & (PAGE_SIZE - 1); 813 off_end = (offset + len) & (PAGE_SIZE - 1); 814 815 if (pg_start == pg_end) { 816 ret = fill_zero(inode, pg_start, off_start, 817 off_end - off_start); 818 if (ret) 819 return ret; 820 } else { 821 if (off_start) { 822 ret = fill_zero(inode, pg_start++, off_start, 823 PAGE_SIZE - off_start); 824 if (ret) 825 return ret; 826 } 827 if (off_end) { 828 ret = fill_zero(inode, pg_end, 0, off_end); 829 if (ret) 830 return ret; 831 } 832 833 if (pg_start < pg_end) { 834 struct address_space *mapping = inode->i_mapping; 835 loff_t blk_start, blk_end; 836 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 837 838 f2fs_balance_fs(sbi, true); 839 840 blk_start = (loff_t)pg_start << PAGE_SHIFT; 841 blk_end = (loff_t)pg_end << PAGE_SHIFT; 842 truncate_inode_pages_range(mapping, blk_start, 843 blk_end - 1); 844 845 f2fs_lock_op(sbi); 846 ret = truncate_hole(inode, pg_start, pg_end); 847 f2fs_unlock_op(sbi); 848 } 849 } 850 851 return ret; 852 } 853 854 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 855 int *do_replace, pgoff_t off, pgoff_t len) 856 { 857 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 858 struct dnode_of_data dn; 859 int ret, done, i; 860 861 next_dnode: 862 set_new_dnode(&dn, inode, NULL, NULL, 0); 863 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 864 if (ret && ret != -ENOENT) { 865 return ret; 866 } else if (ret == -ENOENT) { 867 if (dn.max_level == 0) 868 return -ENOENT; 869 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len); 870 blkaddr += done; 871 do_replace += done; 872 goto next; 873 } 874 875 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 876 dn.ofs_in_node, len); 877 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 878 *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 879 if (!is_checkpointed_data(sbi, *blkaddr)) { 880 881 if (test_opt(sbi, LFS)) { 882 f2fs_put_dnode(&dn); 883 return -ENOTSUPP; 884 } 885 886 /* do not invalidate this block address */ 887 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 888 *do_replace = 1; 889 } 890 } 891 f2fs_put_dnode(&dn); 892 next: 893 len -= done; 894 off += done; 895 if (len) 896 goto next_dnode; 897 return 0; 898 } 899 900 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 901 int *do_replace, pgoff_t off, int len) 902 { 903 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 904 struct dnode_of_data dn; 905 int ret, i; 906 907 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 908 if (*do_replace == 0) 909 continue; 910 911 set_new_dnode(&dn, inode, NULL, NULL, 0); 912 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 913 if (ret) { 914 dec_valid_block_count(sbi, inode, 1); 915 invalidate_blocks(sbi, *blkaddr); 916 } else { 917 f2fs_update_data_blkaddr(&dn, *blkaddr); 918 } 919 f2fs_put_dnode(&dn); 920 } 921 return 0; 922 } 923 924 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 925 block_t *blkaddr, int *do_replace, 926 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 927 { 928 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 929 pgoff_t i = 0; 930 int ret; 931 932 while (i < len) { 933 if (blkaddr[i] == NULL_ADDR && !full) { 934 i++; 935 continue; 936 } 937 938 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 939 struct dnode_of_data dn; 940 struct node_info ni; 941 size_t new_size; 942 pgoff_t ilen; 943 944 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 945 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 946 if (ret) 947 return ret; 948 949 get_node_info(sbi, dn.nid, &ni); 950 ilen = min((pgoff_t) 951 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 952 dn.ofs_in_node, len - i); 953 do { 954 dn.data_blkaddr = datablock_addr(dn.node_page, 955 dn.ofs_in_node); 956 truncate_data_blocks_range(&dn, 1); 957 958 if (do_replace[i]) { 959 f2fs_i_blocks_write(src_inode, 960 1, false); 961 f2fs_i_blocks_write(dst_inode, 962 1, true); 963 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 964 blkaddr[i], ni.version, true, false); 965 966 do_replace[i] = 0; 967 } 968 dn.ofs_in_node++; 969 i++; 970 new_size = (dst + i) << PAGE_SHIFT; 971 if (dst_inode->i_size < new_size) 972 f2fs_i_size_write(dst_inode, new_size); 973 } while ((do_replace[i] || blkaddr[i] == NULL_ADDR) && --ilen); 974 975 f2fs_put_dnode(&dn); 976 } else { 977 struct page *psrc, *pdst; 978 979 psrc = get_lock_data_page(src_inode, src + i, true); 980 if (IS_ERR(psrc)) 981 return PTR_ERR(psrc); 982 pdst = get_new_data_page(dst_inode, NULL, dst + i, 983 true); 984 if (IS_ERR(pdst)) { 985 f2fs_put_page(psrc, 1); 986 return PTR_ERR(pdst); 987 } 988 f2fs_copy_page(psrc, pdst); 989 set_page_dirty(pdst); 990 f2fs_put_page(pdst, 1); 991 f2fs_put_page(psrc, 1); 992 993 ret = truncate_hole(src_inode, src + i, src + i + 1); 994 if (ret) 995 return ret; 996 i++; 997 } 998 } 999 return 0; 1000 } 1001 1002 static int __exchange_data_block(struct inode *src_inode, 1003 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1004 pgoff_t len, bool full) 1005 { 1006 block_t *src_blkaddr; 1007 int *do_replace; 1008 pgoff_t olen; 1009 int ret; 1010 1011 while (len) { 1012 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len); 1013 1014 src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL); 1015 if (!src_blkaddr) 1016 return -ENOMEM; 1017 1018 do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL); 1019 if (!do_replace) { 1020 kvfree(src_blkaddr); 1021 return -ENOMEM; 1022 } 1023 1024 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1025 do_replace, src, olen); 1026 if (ret) 1027 goto roll_back; 1028 1029 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1030 do_replace, src, dst, olen, full); 1031 if (ret) 1032 goto roll_back; 1033 1034 src += olen; 1035 dst += olen; 1036 len -= olen; 1037 1038 kvfree(src_blkaddr); 1039 kvfree(do_replace); 1040 } 1041 return 0; 1042 1043 roll_back: 1044 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len); 1045 kvfree(src_blkaddr); 1046 kvfree(do_replace); 1047 return ret; 1048 } 1049 1050 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end) 1051 { 1052 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1053 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; 1054 int ret; 1055 1056 f2fs_balance_fs(sbi, true); 1057 f2fs_lock_op(sbi); 1058 1059 f2fs_drop_extent_tree(inode); 1060 1061 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1062 f2fs_unlock_op(sbi); 1063 return ret; 1064 } 1065 1066 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1067 { 1068 pgoff_t pg_start, pg_end; 1069 loff_t new_size; 1070 int ret; 1071 1072 if (offset + len >= i_size_read(inode)) 1073 return -EINVAL; 1074 1075 /* collapse range should be aligned to block size of f2fs. */ 1076 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1077 return -EINVAL; 1078 1079 ret = f2fs_convert_inline_inode(inode); 1080 if (ret) 1081 return ret; 1082 1083 pg_start = offset >> PAGE_SHIFT; 1084 pg_end = (offset + len) >> PAGE_SHIFT; 1085 1086 /* write out all dirty pages from offset */ 1087 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1088 if (ret) 1089 return ret; 1090 1091 truncate_pagecache(inode, offset); 1092 1093 ret = f2fs_do_collapse(inode, pg_start, pg_end); 1094 if (ret) 1095 return ret; 1096 1097 /* write out all moved pages, if possible */ 1098 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1099 truncate_pagecache(inode, offset); 1100 1101 new_size = i_size_read(inode) - len; 1102 truncate_pagecache(inode, new_size); 1103 1104 ret = truncate_blocks(inode, new_size, true); 1105 if (!ret) 1106 f2fs_i_size_write(inode, new_size); 1107 1108 return ret; 1109 } 1110 1111 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1112 pgoff_t end) 1113 { 1114 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1115 pgoff_t index = start; 1116 unsigned int ofs_in_node = dn->ofs_in_node; 1117 blkcnt_t count = 0; 1118 int ret; 1119 1120 for (; index < end; index++, dn->ofs_in_node++) { 1121 if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR) 1122 count++; 1123 } 1124 1125 dn->ofs_in_node = ofs_in_node; 1126 ret = reserve_new_blocks(dn, count); 1127 if (ret) 1128 return ret; 1129 1130 dn->ofs_in_node = ofs_in_node; 1131 for (index = start; index < end; index++, dn->ofs_in_node++) { 1132 dn->data_blkaddr = 1133 datablock_addr(dn->node_page, dn->ofs_in_node); 1134 /* 1135 * reserve_new_blocks will not guarantee entire block 1136 * allocation. 1137 */ 1138 if (dn->data_blkaddr == NULL_ADDR) { 1139 ret = -ENOSPC; 1140 break; 1141 } 1142 if (dn->data_blkaddr != NEW_ADDR) { 1143 invalidate_blocks(sbi, dn->data_blkaddr); 1144 dn->data_blkaddr = NEW_ADDR; 1145 set_data_blkaddr(dn); 1146 } 1147 } 1148 1149 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1150 1151 return ret; 1152 } 1153 1154 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1155 int mode) 1156 { 1157 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1158 struct address_space *mapping = inode->i_mapping; 1159 pgoff_t index, pg_start, pg_end; 1160 loff_t new_size = i_size_read(inode); 1161 loff_t off_start, off_end; 1162 int ret = 0; 1163 1164 ret = inode_newsize_ok(inode, (len + offset)); 1165 if (ret) 1166 return ret; 1167 1168 ret = f2fs_convert_inline_inode(inode); 1169 if (ret) 1170 return ret; 1171 1172 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1173 if (ret) 1174 return ret; 1175 1176 truncate_pagecache_range(inode, offset, offset + len - 1); 1177 1178 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1179 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1180 1181 off_start = offset & (PAGE_SIZE - 1); 1182 off_end = (offset + len) & (PAGE_SIZE - 1); 1183 1184 if (pg_start == pg_end) { 1185 ret = fill_zero(inode, pg_start, off_start, 1186 off_end - off_start); 1187 if (ret) 1188 return ret; 1189 1190 if (offset + len > new_size) 1191 new_size = offset + len; 1192 new_size = max_t(loff_t, new_size, offset + len); 1193 } else { 1194 if (off_start) { 1195 ret = fill_zero(inode, pg_start++, off_start, 1196 PAGE_SIZE - off_start); 1197 if (ret) 1198 return ret; 1199 1200 new_size = max_t(loff_t, new_size, 1201 (loff_t)pg_start << PAGE_SHIFT); 1202 } 1203 1204 for (index = pg_start; index < pg_end;) { 1205 struct dnode_of_data dn; 1206 unsigned int end_offset; 1207 pgoff_t end; 1208 1209 f2fs_lock_op(sbi); 1210 1211 set_new_dnode(&dn, inode, NULL, NULL, 0); 1212 ret = get_dnode_of_data(&dn, index, ALLOC_NODE); 1213 if (ret) { 1214 f2fs_unlock_op(sbi); 1215 goto out; 1216 } 1217 1218 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1219 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1220 1221 ret = f2fs_do_zero_range(&dn, index, end); 1222 f2fs_put_dnode(&dn); 1223 f2fs_unlock_op(sbi); 1224 if (ret) 1225 goto out; 1226 1227 index = end; 1228 new_size = max_t(loff_t, new_size, 1229 (loff_t)index << PAGE_SHIFT); 1230 } 1231 1232 if (off_end) { 1233 ret = fill_zero(inode, pg_end, 0, off_end); 1234 if (ret) 1235 goto out; 1236 1237 new_size = max_t(loff_t, new_size, offset + len); 1238 } 1239 } 1240 1241 out: 1242 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) 1243 f2fs_i_size_write(inode, new_size); 1244 1245 return ret; 1246 } 1247 1248 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1249 { 1250 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1251 pgoff_t nr, pg_start, pg_end, delta, idx; 1252 loff_t new_size; 1253 int ret = 0; 1254 1255 new_size = i_size_read(inode) + len; 1256 if (new_size > inode->i_sb->s_maxbytes) 1257 return -EFBIG; 1258 1259 if (offset >= i_size_read(inode)) 1260 return -EINVAL; 1261 1262 /* insert range should be aligned to block size of f2fs. */ 1263 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1264 return -EINVAL; 1265 1266 ret = f2fs_convert_inline_inode(inode); 1267 if (ret) 1268 return ret; 1269 1270 f2fs_balance_fs(sbi, true); 1271 1272 ret = truncate_blocks(inode, i_size_read(inode), true); 1273 if (ret) 1274 return ret; 1275 1276 /* write out all dirty pages from offset */ 1277 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1278 if (ret) 1279 return ret; 1280 1281 truncate_pagecache(inode, offset); 1282 1283 pg_start = offset >> PAGE_SHIFT; 1284 pg_end = (offset + len) >> PAGE_SHIFT; 1285 delta = pg_end - pg_start; 1286 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; 1287 1288 while (!ret && idx > pg_start) { 1289 nr = idx - pg_start; 1290 if (nr > delta) 1291 nr = delta; 1292 idx -= nr; 1293 1294 f2fs_lock_op(sbi); 1295 f2fs_drop_extent_tree(inode); 1296 1297 ret = __exchange_data_block(inode, inode, idx, 1298 idx + delta, nr, false); 1299 f2fs_unlock_op(sbi); 1300 } 1301 1302 /* write out all moved pages, if possible */ 1303 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1304 truncate_pagecache(inode, offset); 1305 1306 if (!ret) 1307 f2fs_i_size_write(inode, new_size); 1308 return ret; 1309 } 1310 1311 static int expand_inode_data(struct inode *inode, loff_t offset, 1312 loff_t len, int mode) 1313 { 1314 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1315 struct f2fs_map_blocks map = { .m_next_pgofs = NULL }; 1316 pgoff_t pg_end; 1317 loff_t new_size = i_size_read(inode); 1318 loff_t off_end; 1319 int ret; 1320 1321 ret = inode_newsize_ok(inode, (len + offset)); 1322 if (ret) 1323 return ret; 1324 1325 ret = f2fs_convert_inline_inode(inode); 1326 if (ret) 1327 return ret; 1328 1329 f2fs_balance_fs(sbi, true); 1330 1331 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1332 off_end = (offset + len) & (PAGE_SIZE - 1); 1333 1334 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1335 map.m_len = pg_end - map.m_lblk; 1336 if (off_end) 1337 map.m_len++; 1338 1339 ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1340 if (ret) { 1341 pgoff_t last_off; 1342 1343 if (!map.m_len) 1344 return ret; 1345 1346 last_off = map.m_lblk + map.m_len - 1; 1347 1348 /* update new size to the failed position */ 1349 new_size = (last_off == pg_end) ? offset + len: 1350 (loff_t)(last_off + 1) << PAGE_SHIFT; 1351 } else { 1352 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1353 } 1354 1355 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) 1356 f2fs_i_size_write(inode, new_size); 1357 1358 return ret; 1359 } 1360 1361 static long f2fs_fallocate(struct file *file, int mode, 1362 loff_t offset, loff_t len) 1363 { 1364 struct inode *inode = file_inode(file); 1365 long ret = 0; 1366 1367 /* f2fs only support ->fallocate for regular file */ 1368 if (!S_ISREG(inode->i_mode)) 1369 return -EINVAL; 1370 1371 if (f2fs_encrypted_inode(inode) && 1372 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1373 return -EOPNOTSUPP; 1374 1375 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1376 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1377 FALLOC_FL_INSERT_RANGE)) 1378 return -EOPNOTSUPP; 1379 1380 inode_lock(inode); 1381 1382 if (mode & FALLOC_FL_PUNCH_HOLE) { 1383 if (offset >= inode->i_size) 1384 goto out; 1385 1386 ret = punch_hole(inode, offset, len); 1387 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1388 ret = f2fs_collapse_range(inode, offset, len); 1389 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1390 ret = f2fs_zero_range(inode, offset, len, mode); 1391 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1392 ret = f2fs_insert_range(inode, offset, len); 1393 } else { 1394 ret = expand_inode_data(inode, offset, len, mode); 1395 } 1396 1397 if (!ret) { 1398 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1399 f2fs_mark_inode_dirty_sync(inode); 1400 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1401 } 1402 1403 out: 1404 inode_unlock(inode); 1405 1406 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1407 return ret; 1408 } 1409 1410 static int f2fs_release_file(struct inode *inode, struct file *filp) 1411 { 1412 /* 1413 * f2fs_relase_file is called at every close calls. So we should 1414 * not drop any inmemory pages by close called by other process. 1415 */ 1416 if (!(filp->f_mode & FMODE_WRITE) || 1417 atomic_read(&inode->i_writecount) != 1) 1418 return 0; 1419 1420 /* some remained atomic pages should discarded */ 1421 if (f2fs_is_atomic_file(inode)) 1422 drop_inmem_pages(inode); 1423 if (f2fs_is_volatile_file(inode)) { 1424 clear_inode_flag(inode, FI_VOLATILE_FILE); 1425 set_inode_flag(inode, FI_DROP_CACHE); 1426 filemap_fdatawrite(inode->i_mapping); 1427 clear_inode_flag(inode, FI_DROP_CACHE); 1428 } 1429 return 0; 1430 } 1431 1432 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 1433 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 1434 1435 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 1436 { 1437 if (S_ISDIR(mode)) 1438 return flags; 1439 else if (S_ISREG(mode)) 1440 return flags & F2FS_REG_FLMASK; 1441 else 1442 return flags & F2FS_OTHER_FLMASK; 1443 } 1444 1445 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1446 { 1447 struct inode *inode = file_inode(filp); 1448 struct f2fs_inode_info *fi = F2FS_I(inode); 1449 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE; 1450 return put_user(flags, (int __user *)arg); 1451 } 1452 1453 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1454 { 1455 struct inode *inode = file_inode(filp); 1456 struct f2fs_inode_info *fi = F2FS_I(inode); 1457 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE; 1458 unsigned int oldflags; 1459 int ret; 1460 1461 if (!inode_owner_or_capable(inode)) 1462 return -EACCES; 1463 1464 if (get_user(flags, (int __user *)arg)) 1465 return -EFAULT; 1466 1467 ret = mnt_want_write_file(filp); 1468 if (ret) 1469 return ret; 1470 1471 flags = f2fs_mask_flags(inode->i_mode, flags); 1472 1473 inode_lock(inode); 1474 1475 oldflags = fi->i_flags; 1476 1477 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 1478 if (!capable(CAP_LINUX_IMMUTABLE)) { 1479 inode_unlock(inode); 1480 ret = -EPERM; 1481 goto out; 1482 } 1483 } 1484 1485 flags = flags & FS_FL_USER_MODIFIABLE; 1486 flags |= oldflags & ~FS_FL_USER_MODIFIABLE; 1487 fi->i_flags = flags; 1488 inode_unlock(inode); 1489 1490 inode->i_ctime = CURRENT_TIME; 1491 f2fs_set_inode_flags(inode); 1492 out: 1493 mnt_drop_write_file(filp); 1494 return ret; 1495 } 1496 1497 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1498 { 1499 struct inode *inode = file_inode(filp); 1500 1501 return put_user(inode->i_generation, (int __user *)arg); 1502 } 1503 1504 static int f2fs_ioc_start_atomic_write(struct file *filp) 1505 { 1506 struct inode *inode = file_inode(filp); 1507 int ret; 1508 1509 if (!inode_owner_or_capable(inode)) 1510 return -EACCES; 1511 1512 ret = mnt_want_write_file(filp); 1513 if (ret) 1514 return ret; 1515 1516 inode_lock(inode); 1517 1518 if (f2fs_is_atomic_file(inode)) 1519 goto out; 1520 1521 ret = f2fs_convert_inline_inode(inode); 1522 if (ret) 1523 goto out; 1524 1525 set_inode_flag(inode, FI_ATOMIC_FILE); 1526 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1527 1528 if (!get_dirty_pages(inode)) 1529 goto out; 1530 1531 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING, 1532 "Unexpected flush for atomic writes: ino=%lu, npages=%lld", 1533 inode->i_ino, get_dirty_pages(inode)); 1534 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 1535 if (ret) 1536 clear_inode_flag(inode, FI_ATOMIC_FILE); 1537 out: 1538 inode_unlock(inode); 1539 mnt_drop_write_file(filp); 1540 return ret; 1541 } 1542 1543 static int f2fs_ioc_commit_atomic_write(struct file *filp) 1544 { 1545 struct inode *inode = file_inode(filp); 1546 int ret; 1547 1548 if (!inode_owner_or_capable(inode)) 1549 return -EACCES; 1550 1551 ret = mnt_want_write_file(filp); 1552 if (ret) 1553 return ret; 1554 1555 inode_lock(inode); 1556 1557 if (f2fs_is_volatile_file(inode)) 1558 goto err_out; 1559 1560 if (f2fs_is_atomic_file(inode)) { 1561 clear_inode_flag(inode, FI_ATOMIC_FILE); 1562 ret = commit_inmem_pages(inode); 1563 if (ret) { 1564 set_inode_flag(inode, FI_ATOMIC_FILE); 1565 goto err_out; 1566 } 1567 } 1568 1569 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1570 err_out: 1571 inode_unlock(inode); 1572 mnt_drop_write_file(filp); 1573 return ret; 1574 } 1575 1576 static int f2fs_ioc_start_volatile_write(struct file *filp) 1577 { 1578 struct inode *inode = file_inode(filp); 1579 int ret; 1580 1581 if (!inode_owner_or_capable(inode)) 1582 return -EACCES; 1583 1584 ret = mnt_want_write_file(filp); 1585 if (ret) 1586 return ret; 1587 1588 inode_lock(inode); 1589 1590 if (f2fs_is_volatile_file(inode)) 1591 goto out; 1592 1593 ret = f2fs_convert_inline_inode(inode); 1594 if (ret) 1595 goto out; 1596 1597 set_inode_flag(inode, FI_VOLATILE_FILE); 1598 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1599 out: 1600 inode_unlock(inode); 1601 mnt_drop_write_file(filp); 1602 return ret; 1603 } 1604 1605 static int f2fs_ioc_release_volatile_write(struct file *filp) 1606 { 1607 struct inode *inode = file_inode(filp); 1608 int ret; 1609 1610 if (!inode_owner_or_capable(inode)) 1611 return -EACCES; 1612 1613 ret = mnt_want_write_file(filp); 1614 if (ret) 1615 return ret; 1616 1617 inode_lock(inode); 1618 1619 if (!f2fs_is_volatile_file(inode)) 1620 goto out; 1621 1622 if (!f2fs_is_first_block_written(inode)) { 1623 ret = truncate_partial_data_page(inode, 0, true); 1624 goto out; 1625 } 1626 1627 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 1628 out: 1629 inode_unlock(inode); 1630 mnt_drop_write_file(filp); 1631 return ret; 1632 } 1633 1634 static int f2fs_ioc_abort_volatile_write(struct file *filp) 1635 { 1636 struct inode *inode = file_inode(filp); 1637 int ret; 1638 1639 if (!inode_owner_or_capable(inode)) 1640 return -EACCES; 1641 1642 ret = mnt_want_write_file(filp); 1643 if (ret) 1644 return ret; 1645 1646 inode_lock(inode); 1647 1648 if (f2fs_is_atomic_file(inode)) 1649 drop_inmem_pages(inode); 1650 if (f2fs_is_volatile_file(inode)) { 1651 clear_inode_flag(inode, FI_VOLATILE_FILE); 1652 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1653 } 1654 1655 inode_unlock(inode); 1656 1657 mnt_drop_write_file(filp); 1658 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1659 return ret; 1660 } 1661 1662 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 1663 { 1664 struct inode *inode = file_inode(filp); 1665 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1666 struct super_block *sb = sbi->sb; 1667 __u32 in; 1668 int ret; 1669 1670 if (!capable(CAP_SYS_ADMIN)) 1671 return -EPERM; 1672 1673 if (get_user(in, (__u32 __user *)arg)) 1674 return -EFAULT; 1675 1676 ret = mnt_want_write_file(filp); 1677 if (ret) 1678 return ret; 1679 1680 switch (in) { 1681 case F2FS_GOING_DOWN_FULLSYNC: 1682 sb = freeze_bdev(sb->s_bdev); 1683 if (sb && !IS_ERR(sb)) { 1684 f2fs_stop_checkpoint(sbi, false); 1685 thaw_bdev(sb->s_bdev, sb); 1686 } 1687 break; 1688 case F2FS_GOING_DOWN_METASYNC: 1689 /* do checkpoint only */ 1690 f2fs_sync_fs(sb, 1); 1691 f2fs_stop_checkpoint(sbi, false); 1692 break; 1693 case F2FS_GOING_DOWN_NOSYNC: 1694 f2fs_stop_checkpoint(sbi, false); 1695 break; 1696 case F2FS_GOING_DOWN_METAFLUSH: 1697 sync_meta_pages(sbi, META, LONG_MAX); 1698 f2fs_stop_checkpoint(sbi, false); 1699 break; 1700 default: 1701 ret = -EINVAL; 1702 goto out; 1703 } 1704 f2fs_update_time(sbi, REQ_TIME); 1705 out: 1706 mnt_drop_write_file(filp); 1707 return ret; 1708 } 1709 1710 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 1711 { 1712 struct inode *inode = file_inode(filp); 1713 struct super_block *sb = inode->i_sb; 1714 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1715 struct fstrim_range range; 1716 int ret; 1717 1718 if (!capable(CAP_SYS_ADMIN)) 1719 return -EPERM; 1720 1721 if (!blk_queue_discard(q)) 1722 return -EOPNOTSUPP; 1723 1724 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 1725 sizeof(range))) 1726 return -EFAULT; 1727 1728 ret = mnt_want_write_file(filp); 1729 if (ret) 1730 return ret; 1731 1732 range.minlen = max((unsigned int)range.minlen, 1733 q->limits.discard_granularity); 1734 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 1735 mnt_drop_write_file(filp); 1736 if (ret < 0) 1737 return ret; 1738 1739 if (copy_to_user((struct fstrim_range __user *)arg, &range, 1740 sizeof(range))) 1741 return -EFAULT; 1742 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1743 return 0; 1744 } 1745 1746 static bool uuid_is_nonzero(__u8 u[16]) 1747 { 1748 int i; 1749 1750 for (i = 0; i < 16; i++) 1751 if (u[i]) 1752 return true; 1753 return false; 1754 } 1755 1756 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 1757 { 1758 struct fscrypt_policy policy; 1759 struct inode *inode = file_inode(filp); 1760 int ret; 1761 1762 if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg, 1763 sizeof(policy))) 1764 return -EFAULT; 1765 1766 ret = mnt_want_write_file(filp); 1767 if (ret) 1768 return ret; 1769 1770 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1771 ret = fscrypt_process_policy(inode, &policy); 1772 1773 mnt_drop_write_file(filp); 1774 return ret; 1775 } 1776 1777 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 1778 { 1779 struct fscrypt_policy policy; 1780 struct inode *inode = file_inode(filp); 1781 int err; 1782 1783 err = fscrypt_get_policy(inode, &policy); 1784 if (err) 1785 return err; 1786 1787 if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy))) 1788 return -EFAULT; 1789 return 0; 1790 } 1791 1792 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 1793 { 1794 struct inode *inode = file_inode(filp); 1795 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1796 int err; 1797 1798 if (!f2fs_sb_has_crypto(inode->i_sb)) 1799 return -EOPNOTSUPP; 1800 1801 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 1802 goto got_it; 1803 1804 err = mnt_want_write_file(filp); 1805 if (err) 1806 return err; 1807 1808 /* update superblock with uuid */ 1809 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 1810 1811 err = f2fs_commit_super(sbi, false); 1812 if (err) { 1813 /* undo new data */ 1814 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 1815 mnt_drop_write_file(filp); 1816 return err; 1817 } 1818 mnt_drop_write_file(filp); 1819 got_it: 1820 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 1821 16)) 1822 return -EFAULT; 1823 return 0; 1824 } 1825 1826 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 1827 { 1828 struct inode *inode = file_inode(filp); 1829 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1830 __u32 sync; 1831 int ret; 1832 1833 if (!capable(CAP_SYS_ADMIN)) 1834 return -EPERM; 1835 1836 if (get_user(sync, (__u32 __user *)arg)) 1837 return -EFAULT; 1838 1839 if (f2fs_readonly(sbi->sb)) 1840 return -EROFS; 1841 1842 ret = mnt_want_write_file(filp); 1843 if (ret) 1844 return ret; 1845 1846 if (!sync) { 1847 if (!mutex_trylock(&sbi->gc_mutex)) { 1848 ret = -EBUSY; 1849 goto out; 1850 } 1851 } else { 1852 mutex_lock(&sbi->gc_mutex); 1853 } 1854 1855 ret = f2fs_gc(sbi, sync); 1856 out: 1857 mnt_drop_write_file(filp); 1858 return ret; 1859 } 1860 1861 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 1862 { 1863 struct inode *inode = file_inode(filp); 1864 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1865 int ret; 1866 1867 if (!capable(CAP_SYS_ADMIN)) 1868 return -EPERM; 1869 1870 if (f2fs_readonly(sbi->sb)) 1871 return -EROFS; 1872 1873 ret = mnt_want_write_file(filp); 1874 if (ret) 1875 return ret; 1876 1877 ret = f2fs_sync_fs(sbi->sb, 1); 1878 1879 mnt_drop_write_file(filp); 1880 return ret; 1881 } 1882 1883 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 1884 struct file *filp, 1885 struct f2fs_defragment *range) 1886 { 1887 struct inode *inode = file_inode(filp); 1888 struct f2fs_map_blocks map = { .m_next_pgofs = NULL }; 1889 struct extent_info ei; 1890 pgoff_t pg_start, pg_end; 1891 unsigned int blk_per_seg = sbi->blocks_per_seg; 1892 unsigned int total = 0, sec_num; 1893 unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg; 1894 block_t blk_end = 0; 1895 bool fragmented = false; 1896 int err; 1897 1898 /* if in-place-update policy is enabled, don't waste time here */ 1899 if (need_inplace_update(inode)) 1900 return -EINVAL; 1901 1902 pg_start = range->start >> PAGE_SHIFT; 1903 pg_end = (range->start + range->len) >> PAGE_SHIFT; 1904 1905 f2fs_balance_fs(sbi, true); 1906 1907 inode_lock(inode); 1908 1909 /* writeback all dirty pages in the range */ 1910 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 1911 range->start + range->len - 1); 1912 if (err) 1913 goto out; 1914 1915 /* 1916 * lookup mapping info in extent cache, skip defragmenting if physical 1917 * block addresses are continuous. 1918 */ 1919 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 1920 if (ei.fofs + ei.len >= pg_end) 1921 goto out; 1922 } 1923 1924 map.m_lblk = pg_start; 1925 1926 /* 1927 * lookup mapping info in dnode page cache, skip defragmenting if all 1928 * physical block addresses are continuous even if there are hole(s) 1929 * in logical blocks. 1930 */ 1931 while (map.m_lblk < pg_end) { 1932 map.m_len = pg_end - map.m_lblk; 1933 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ); 1934 if (err) 1935 goto out; 1936 1937 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 1938 map.m_lblk++; 1939 continue; 1940 } 1941 1942 if (blk_end && blk_end != map.m_pblk) { 1943 fragmented = true; 1944 break; 1945 } 1946 blk_end = map.m_pblk + map.m_len; 1947 1948 map.m_lblk += map.m_len; 1949 } 1950 1951 if (!fragmented) 1952 goto out; 1953 1954 map.m_lblk = pg_start; 1955 map.m_len = pg_end - pg_start; 1956 1957 sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec; 1958 1959 /* 1960 * make sure there are enough free section for LFS allocation, this can 1961 * avoid defragment running in SSR mode when free section are allocated 1962 * intensively 1963 */ 1964 if (has_not_enough_free_secs(sbi, sec_num)) { 1965 err = -EAGAIN; 1966 goto out; 1967 } 1968 1969 while (map.m_lblk < pg_end) { 1970 pgoff_t idx; 1971 int cnt = 0; 1972 1973 do_map: 1974 map.m_len = pg_end - map.m_lblk; 1975 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ); 1976 if (err) 1977 goto clear_out; 1978 1979 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 1980 map.m_lblk++; 1981 continue; 1982 } 1983 1984 set_inode_flag(inode, FI_DO_DEFRAG); 1985 1986 idx = map.m_lblk; 1987 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 1988 struct page *page; 1989 1990 page = get_lock_data_page(inode, idx, true); 1991 if (IS_ERR(page)) { 1992 err = PTR_ERR(page); 1993 goto clear_out; 1994 } 1995 1996 set_page_dirty(page); 1997 f2fs_put_page(page, 1); 1998 1999 idx++; 2000 cnt++; 2001 total++; 2002 } 2003 2004 map.m_lblk = idx; 2005 2006 if (idx < pg_end && cnt < blk_per_seg) 2007 goto do_map; 2008 2009 clear_inode_flag(inode, FI_DO_DEFRAG); 2010 2011 err = filemap_fdatawrite(inode->i_mapping); 2012 if (err) 2013 goto out; 2014 } 2015 clear_out: 2016 clear_inode_flag(inode, FI_DO_DEFRAG); 2017 out: 2018 inode_unlock(inode); 2019 if (!err) 2020 range->len = (u64)total << PAGE_SHIFT; 2021 return err; 2022 } 2023 2024 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2025 { 2026 struct inode *inode = file_inode(filp); 2027 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2028 struct f2fs_defragment range; 2029 int err; 2030 2031 if (!capable(CAP_SYS_ADMIN)) 2032 return -EPERM; 2033 2034 if (!S_ISREG(inode->i_mode)) 2035 return -EINVAL; 2036 2037 err = mnt_want_write_file(filp); 2038 if (err) 2039 return err; 2040 2041 if (f2fs_readonly(sbi->sb)) { 2042 err = -EROFS; 2043 goto out; 2044 } 2045 2046 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2047 sizeof(range))) { 2048 err = -EFAULT; 2049 goto out; 2050 } 2051 2052 /* verify alignment of offset & size */ 2053 if (range.start & (F2FS_BLKSIZE - 1) || 2054 range.len & (F2FS_BLKSIZE - 1)) { 2055 err = -EINVAL; 2056 goto out; 2057 } 2058 2059 err = f2fs_defragment_range(sbi, filp, &range); 2060 f2fs_update_time(sbi, REQ_TIME); 2061 if (err < 0) 2062 goto out; 2063 2064 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2065 sizeof(range))) 2066 err = -EFAULT; 2067 out: 2068 mnt_drop_write_file(filp); 2069 return err; 2070 } 2071 2072 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2073 struct file *file_out, loff_t pos_out, size_t len) 2074 { 2075 struct inode *src = file_inode(file_in); 2076 struct inode *dst = file_inode(file_out); 2077 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2078 size_t olen = len, dst_max_i_size = 0; 2079 size_t dst_osize; 2080 int ret; 2081 2082 if (file_in->f_path.mnt != file_out->f_path.mnt || 2083 src->i_sb != dst->i_sb) 2084 return -EXDEV; 2085 2086 if (unlikely(f2fs_readonly(src->i_sb))) 2087 return -EROFS; 2088 2089 if (S_ISDIR(src->i_mode) || S_ISDIR(dst->i_mode)) 2090 return -EISDIR; 2091 2092 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst)) 2093 return -EOPNOTSUPP; 2094 2095 inode_lock(src); 2096 if (src != dst) 2097 inode_lock(dst); 2098 2099 ret = -EINVAL; 2100 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2101 goto out_unlock; 2102 if (len == 0) 2103 olen = len = src->i_size - pos_in; 2104 if (pos_in + len == src->i_size) 2105 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2106 if (len == 0) { 2107 ret = 0; 2108 goto out_unlock; 2109 } 2110 2111 dst_osize = dst->i_size; 2112 if (pos_out + olen > dst->i_size) 2113 dst_max_i_size = pos_out + olen; 2114 2115 /* verify the end result is block aligned */ 2116 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2117 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2118 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2119 goto out_unlock; 2120 2121 ret = f2fs_convert_inline_inode(src); 2122 if (ret) 2123 goto out_unlock; 2124 2125 ret = f2fs_convert_inline_inode(dst); 2126 if (ret) 2127 goto out_unlock; 2128 2129 /* write out all dirty pages from offset */ 2130 ret = filemap_write_and_wait_range(src->i_mapping, 2131 pos_in, pos_in + len); 2132 if (ret) 2133 goto out_unlock; 2134 2135 ret = filemap_write_and_wait_range(dst->i_mapping, 2136 pos_out, pos_out + len); 2137 if (ret) 2138 goto out_unlock; 2139 2140 f2fs_balance_fs(sbi, true); 2141 f2fs_lock_op(sbi); 2142 ret = __exchange_data_block(src, dst, pos_in, 2143 pos_out, len >> F2FS_BLKSIZE_BITS, false); 2144 2145 if (!ret) { 2146 if (dst_max_i_size) 2147 f2fs_i_size_write(dst, dst_max_i_size); 2148 else if (dst_osize != dst->i_size) 2149 f2fs_i_size_write(dst, dst_osize); 2150 } 2151 f2fs_unlock_op(sbi); 2152 out_unlock: 2153 if (src != dst) 2154 inode_unlock(dst); 2155 inode_unlock(src); 2156 return ret; 2157 } 2158 2159 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2160 { 2161 struct f2fs_move_range range; 2162 struct fd dst; 2163 int err; 2164 2165 if (!(filp->f_mode & FMODE_READ) || 2166 !(filp->f_mode & FMODE_WRITE)) 2167 return -EBADF; 2168 2169 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2170 sizeof(range))) 2171 return -EFAULT; 2172 2173 dst = fdget(range.dst_fd); 2174 if (!dst.file) 2175 return -EBADF; 2176 2177 if (!(dst.file->f_mode & FMODE_WRITE)) { 2178 err = -EBADF; 2179 goto err_out; 2180 } 2181 2182 err = mnt_want_write_file(filp); 2183 if (err) 2184 goto err_out; 2185 2186 err = f2fs_move_file_range(filp, range.pos_in, dst.file, 2187 range.pos_out, range.len); 2188 2189 mnt_drop_write_file(filp); 2190 2191 if (copy_to_user((struct f2fs_move_range __user *)arg, 2192 &range, sizeof(range))) 2193 err = -EFAULT; 2194 err_out: 2195 fdput(dst); 2196 return err; 2197 } 2198 2199 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 2200 { 2201 switch (cmd) { 2202 case F2FS_IOC_GETFLAGS: 2203 return f2fs_ioc_getflags(filp, arg); 2204 case F2FS_IOC_SETFLAGS: 2205 return f2fs_ioc_setflags(filp, arg); 2206 case F2FS_IOC_GETVERSION: 2207 return f2fs_ioc_getversion(filp, arg); 2208 case F2FS_IOC_START_ATOMIC_WRITE: 2209 return f2fs_ioc_start_atomic_write(filp); 2210 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 2211 return f2fs_ioc_commit_atomic_write(filp); 2212 case F2FS_IOC_START_VOLATILE_WRITE: 2213 return f2fs_ioc_start_volatile_write(filp); 2214 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 2215 return f2fs_ioc_release_volatile_write(filp); 2216 case F2FS_IOC_ABORT_VOLATILE_WRITE: 2217 return f2fs_ioc_abort_volatile_write(filp); 2218 case F2FS_IOC_SHUTDOWN: 2219 return f2fs_ioc_shutdown(filp, arg); 2220 case FITRIM: 2221 return f2fs_ioc_fitrim(filp, arg); 2222 case F2FS_IOC_SET_ENCRYPTION_POLICY: 2223 return f2fs_ioc_set_encryption_policy(filp, arg); 2224 case F2FS_IOC_GET_ENCRYPTION_POLICY: 2225 return f2fs_ioc_get_encryption_policy(filp, arg); 2226 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 2227 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 2228 case F2FS_IOC_GARBAGE_COLLECT: 2229 return f2fs_ioc_gc(filp, arg); 2230 case F2FS_IOC_WRITE_CHECKPOINT: 2231 return f2fs_ioc_write_checkpoint(filp, arg); 2232 case F2FS_IOC_DEFRAGMENT: 2233 return f2fs_ioc_defragment(filp, arg); 2234 case F2FS_IOC_MOVE_RANGE: 2235 return f2fs_ioc_move_range(filp, arg); 2236 default: 2237 return -ENOTTY; 2238 } 2239 } 2240 2241 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2242 { 2243 struct file *file = iocb->ki_filp; 2244 struct inode *inode = file_inode(file); 2245 struct blk_plug plug; 2246 ssize_t ret; 2247 2248 if (f2fs_encrypted_inode(inode) && 2249 !fscrypt_has_encryption_key(inode) && 2250 fscrypt_get_encryption_info(inode)) 2251 return -EACCES; 2252 2253 inode_lock(inode); 2254 ret = generic_write_checks(iocb, from); 2255 if (ret > 0) { 2256 ret = f2fs_preallocate_blocks(iocb, from); 2257 if (!ret) { 2258 blk_start_plug(&plug); 2259 ret = __generic_file_write_iter(iocb, from); 2260 blk_finish_plug(&plug); 2261 } 2262 } 2263 inode_unlock(inode); 2264 2265 if (ret > 0) 2266 ret = generic_write_sync(iocb, ret); 2267 return ret; 2268 } 2269 2270 #ifdef CONFIG_COMPAT 2271 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2272 { 2273 switch (cmd) { 2274 case F2FS_IOC32_GETFLAGS: 2275 cmd = F2FS_IOC_GETFLAGS; 2276 break; 2277 case F2FS_IOC32_SETFLAGS: 2278 cmd = F2FS_IOC_SETFLAGS; 2279 break; 2280 case F2FS_IOC32_GETVERSION: 2281 cmd = F2FS_IOC_GETVERSION; 2282 break; 2283 case F2FS_IOC_START_ATOMIC_WRITE: 2284 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 2285 case F2FS_IOC_START_VOLATILE_WRITE: 2286 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 2287 case F2FS_IOC_ABORT_VOLATILE_WRITE: 2288 case F2FS_IOC_SHUTDOWN: 2289 case F2FS_IOC_SET_ENCRYPTION_POLICY: 2290 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 2291 case F2FS_IOC_GET_ENCRYPTION_POLICY: 2292 case F2FS_IOC_GARBAGE_COLLECT: 2293 case F2FS_IOC_WRITE_CHECKPOINT: 2294 case F2FS_IOC_DEFRAGMENT: 2295 break; 2296 case F2FS_IOC_MOVE_RANGE: 2297 break; 2298 default: 2299 return -ENOIOCTLCMD; 2300 } 2301 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 2302 } 2303 #endif 2304 2305 const struct file_operations f2fs_file_operations = { 2306 .llseek = f2fs_llseek, 2307 .read_iter = generic_file_read_iter, 2308 .write_iter = f2fs_file_write_iter, 2309 .open = f2fs_file_open, 2310 .release = f2fs_release_file, 2311 .mmap = f2fs_file_mmap, 2312 .fsync = f2fs_sync_file, 2313 .fallocate = f2fs_fallocate, 2314 .unlocked_ioctl = f2fs_ioctl, 2315 #ifdef CONFIG_COMPAT 2316 .compat_ioctl = f2fs_compat_ioctl, 2317 #endif 2318 .splice_read = generic_file_splice_read, 2319 .splice_write = iter_file_splice_write, 2320 }; 2321