1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "xattr.h" 30 #include "acl.h" 31 #include "gc.h" 32 #include "trace.h" 33 #include <trace/events/f2fs.h> 34 #include <uapi/linux/f2fs.h> 35 36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 37 { 38 struct inode *inode = file_inode(vmf->vma->vm_file); 39 vm_fault_t ret; 40 41 down_read(&F2FS_I(inode)->i_mmap_sem); 42 ret = filemap_fault(vmf); 43 up_read(&F2FS_I(inode)->i_mmap_sem); 44 45 if (!ret) 46 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO, 47 F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(f2fs_cp_error(sbi))) { 64 err = -EIO; 65 goto err; 66 } 67 68 if (!f2fs_is_checkpoint_ready(sbi)) { 69 err = -ENOSPC; 70 goto err; 71 } 72 73 #ifdef CONFIG_F2FS_FS_COMPRESSION 74 if (f2fs_compressed_file(inode)) { 75 int ret = f2fs_is_compressed_cluster(inode, page->index); 76 77 if (ret < 0) { 78 err = ret; 79 goto err; 80 } else if (ret) { 81 if (ret < F2FS_I(inode)->i_cluster_size) { 82 err = -EAGAIN; 83 goto err; 84 } 85 need_alloc = false; 86 } 87 } 88 #endif 89 /* should do out of any locked page */ 90 if (need_alloc) 91 f2fs_balance_fs(sbi, true); 92 93 sb_start_pagefault(inode->i_sb); 94 95 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 96 97 file_update_time(vmf->vma->vm_file); 98 down_read(&F2FS_I(inode)->i_mmap_sem); 99 lock_page(page); 100 if (unlikely(page->mapping != inode->i_mapping || 101 page_offset(page) > i_size_read(inode) || 102 !PageUptodate(page))) { 103 unlock_page(page); 104 err = -EFAULT; 105 goto out_sem; 106 } 107 108 if (need_alloc) { 109 /* block allocation */ 110 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 111 set_new_dnode(&dn, inode, NULL, NULL, 0); 112 err = f2fs_get_block(&dn, page->index); 113 f2fs_put_dnode(&dn); 114 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 115 } 116 117 #ifdef CONFIG_F2FS_FS_COMPRESSION 118 if (!need_alloc) { 119 set_new_dnode(&dn, inode, NULL, NULL, 0); 120 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 121 f2fs_put_dnode(&dn); 122 } 123 #endif 124 if (err) { 125 unlock_page(page); 126 goto out_sem; 127 } 128 129 f2fs_wait_on_page_writeback(page, DATA, false, true); 130 131 /* wait for GCed page writeback via META_MAPPING */ 132 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 133 134 /* 135 * check to see if the page is mapped already (no holes) 136 */ 137 if (PageMappedToDisk(page)) 138 goto out_sem; 139 140 /* page is wholly or partially inside EOF */ 141 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 142 i_size_read(inode)) { 143 loff_t offset; 144 145 offset = i_size_read(inode) & ~PAGE_MASK; 146 zero_user_segment(page, offset, PAGE_SIZE); 147 } 148 set_page_dirty(page); 149 if (!PageUptodate(page)) 150 SetPageUptodate(page); 151 152 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 153 f2fs_update_time(sbi, REQ_TIME); 154 155 trace_f2fs_vm_page_mkwrite(page, DATA); 156 out_sem: 157 up_read(&F2FS_I(inode)->i_mmap_sem); 158 159 sb_end_pagefault(inode->i_sb); 160 err: 161 return block_page_mkwrite_return(err); 162 } 163 164 static const struct vm_operations_struct f2fs_file_vm_ops = { 165 .fault = f2fs_filemap_fault, 166 .map_pages = filemap_map_pages, 167 .page_mkwrite = f2fs_vm_page_mkwrite, 168 }; 169 170 static int get_parent_ino(struct inode *inode, nid_t *pino) 171 { 172 struct dentry *dentry; 173 174 /* 175 * Make sure to get the non-deleted alias. The alias associated with 176 * the open file descriptor being fsync()'ed may be deleted already. 177 */ 178 dentry = d_find_alias(inode); 179 if (!dentry) 180 return 0; 181 182 *pino = parent_ino(dentry); 183 dput(dentry); 184 return 1; 185 } 186 187 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 188 { 189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 190 enum cp_reason_type cp_reason = CP_NO_NEEDED; 191 192 if (!S_ISREG(inode->i_mode)) 193 cp_reason = CP_NON_REGULAR; 194 else if (f2fs_compressed_file(inode)) 195 cp_reason = CP_COMPRESSED; 196 else if (inode->i_nlink != 1) 197 cp_reason = CP_HARDLINK; 198 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 199 cp_reason = CP_SB_NEED_CP; 200 else if (file_wrong_pino(inode)) 201 cp_reason = CP_WRONG_PINO; 202 else if (!f2fs_space_for_roll_forward(sbi)) 203 cp_reason = CP_NO_SPC_ROLL; 204 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 205 cp_reason = CP_NODE_NEED_CP; 206 else if (test_opt(sbi, FASTBOOT)) 207 cp_reason = CP_FASTBOOT_MODE; 208 else if (F2FS_OPTION(sbi).active_logs == 2) 209 cp_reason = CP_SPEC_LOG_NUM; 210 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 211 f2fs_need_dentry_mark(sbi, inode->i_ino) && 212 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 213 TRANS_DIR_INO)) 214 cp_reason = CP_RECOVER_DIR; 215 216 return cp_reason; 217 } 218 219 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 220 { 221 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 222 bool ret = false; 223 /* But we need to avoid that there are some inode updates */ 224 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 225 ret = true; 226 f2fs_put_page(i, 0); 227 return ret; 228 } 229 230 static void try_to_fix_pino(struct inode *inode) 231 { 232 struct f2fs_inode_info *fi = F2FS_I(inode); 233 nid_t pino; 234 235 down_write(&fi->i_sem); 236 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 237 get_parent_ino(inode, &pino)) { 238 f2fs_i_pino_write(inode, pino); 239 file_got_pino(inode); 240 } 241 up_write(&fi->i_sem); 242 } 243 244 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 245 int datasync, bool atomic) 246 { 247 struct inode *inode = file->f_mapping->host; 248 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 249 nid_t ino = inode->i_ino; 250 int ret = 0; 251 enum cp_reason_type cp_reason = 0; 252 struct writeback_control wbc = { 253 .sync_mode = WB_SYNC_ALL, 254 .nr_to_write = LONG_MAX, 255 .for_reclaim = 0, 256 }; 257 unsigned int seq_id = 0; 258 259 if (unlikely(f2fs_readonly(inode->i_sb) || 260 is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 261 return 0; 262 263 trace_f2fs_sync_file_enter(inode); 264 265 if (S_ISDIR(inode->i_mode)) 266 goto go_write; 267 268 /* if fdatasync is triggered, let's do in-place-update */ 269 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 270 set_inode_flag(inode, FI_NEED_IPU); 271 ret = file_write_and_wait_range(file, start, end); 272 clear_inode_flag(inode, FI_NEED_IPU); 273 274 if (ret) { 275 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 276 return ret; 277 } 278 279 /* if the inode is dirty, let's recover all the time */ 280 if (!f2fs_skip_inode_update(inode, datasync)) { 281 f2fs_write_inode(inode, NULL); 282 goto go_write; 283 } 284 285 /* 286 * if there is no written data, don't waste time to write recovery info. 287 */ 288 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 289 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 290 291 /* it may call write_inode just prior to fsync */ 292 if (need_inode_page_update(sbi, ino)) 293 goto go_write; 294 295 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 296 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 297 goto flush_out; 298 goto out; 299 } 300 go_write: 301 /* 302 * Both of fdatasync() and fsync() are able to be recovered from 303 * sudden-power-off. 304 */ 305 down_read(&F2FS_I(inode)->i_sem); 306 cp_reason = need_do_checkpoint(inode); 307 up_read(&F2FS_I(inode)->i_sem); 308 309 if (cp_reason) { 310 /* all the dirty node pages should be flushed for POR */ 311 ret = f2fs_sync_fs(inode->i_sb, 1); 312 313 /* 314 * We've secured consistency through sync_fs. Following pino 315 * will be used only for fsynced inodes after checkpoint. 316 */ 317 try_to_fix_pino(inode); 318 clear_inode_flag(inode, FI_APPEND_WRITE); 319 clear_inode_flag(inode, FI_UPDATE_WRITE); 320 goto out; 321 } 322 sync_nodes: 323 atomic_inc(&sbi->wb_sync_req[NODE]); 324 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 325 atomic_dec(&sbi->wb_sync_req[NODE]); 326 if (ret) 327 goto out; 328 329 /* if cp_error was enabled, we should avoid infinite loop */ 330 if (unlikely(f2fs_cp_error(sbi))) { 331 ret = -EIO; 332 goto out; 333 } 334 335 if (f2fs_need_inode_block_update(sbi, ino)) { 336 f2fs_mark_inode_dirty_sync(inode, true); 337 f2fs_write_inode(inode, NULL); 338 goto sync_nodes; 339 } 340 341 /* 342 * If it's atomic_write, it's just fine to keep write ordering. So 343 * here we don't need to wait for node write completion, since we use 344 * node chain which serializes node blocks. If one of node writes are 345 * reordered, we can see simply broken chain, resulting in stopping 346 * roll-forward recovery. It means we'll recover all or none node blocks 347 * given fsync mark. 348 */ 349 if (!atomic) { 350 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 351 if (ret) 352 goto out; 353 } 354 355 /* once recovery info is written, don't need to tack this */ 356 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 357 clear_inode_flag(inode, FI_APPEND_WRITE); 358 flush_out: 359 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 360 ret = f2fs_issue_flush(sbi, inode->i_ino); 361 if (!ret) { 362 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 363 clear_inode_flag(inode, FI_UPDATE_WRITE); 364 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 365 } 366 f2fs_update_time(sbi, REQ_TIME); 367 out: 368 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 369 f2fs_trace_ios(NULL, 1); 370 return ret; 371 } 372 373 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 374 { 375 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 376 return -EIO; 377 return f2fs_do_sync_file(file, start, end, datasync, false); 378 } 379 380 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 381 pgoff_t index, int whence) 382 { 383 switch (whence) { 384 case SEEK_DATA: 385 if (__is_valid_data_blkaddr(blkaddr)) 386 return true; 387 if (blkaddr == NEW_ADDR && 388 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 389 return true; 390 break; 391 case SEEK_HOLE: 392 if (blkaddr == NULL_ADDR) 393 return true; 394 break; 395 } 396 return false; 397 } 398 399 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 400 { 401 struct inode *inode = file->f_mapping->host; 402 loff_t maxbytes = inode->i_sb->s_maxbytes; 403 struct dnode_of_data dn; 404 pgoff_t pgofs, end_offset; 405 loff_t data_ofs = offset; 406 loff_t isize; 407 int err = 0; 408 409 inode_lock(inode); 410 411 isize = i_size_read(inode); 412 if (offset >= isize) 413 goto fail; 414 415 /* handle inline data case */ 416 if (f2fs_has_inline_data(inode)) { 417 if (whence == SEEK_HOLE) { 418 data_ofs = isize; 419 goto found; 420 } else if (whence == SEEK_DATA) { 421 data_ofs = offset; 422 goto found; 423 } 424 } 425 426 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 427 428 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 429 set_new_dnode(&dn, inode, NULL, NULL, 0); 430 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 431 if (err && err != -ENOENT) { 432 goto fail; 433 } else if (err == -ENOENT) { 434 /* direct node does not exists */ 435 if (whence == SEEK_DATA) { 436 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 437 continue; 438 } else { 439 goto found; 440 } 441 } 442 443 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 444 445 /* find data/hole in dnode block */ 446 for (; dn.ofs_in_node < end_offset; 447 dn.ofs_in_node++, pgofs++, 448 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 449 block_t blkaddr; 450 451 blkaddr = f2fs_data_blkaddr(&dn); 452 453 if (__is_valid_data_blkaddr(blkaddr) && 454 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 455 blkaddr, DATA_GENERIC_ENHANCE)) { 456 f2fs_put_dnode(&dn); 457 goto fail; 458 } 459 460 if (__found_offset(file->f_mapping, blkaddr, 461 pgofs, whence)) { 462 f2fs_put_dnode(&dn); 463 goto found; 464 } 465 } 466 f2fs_put_dnode(&dn); 467 } 468 469 if (whence == SEEK_DATA) 470 goto fail; 471 found: 472 if (whence == SEEK_HOLE && data_ofs > isize) 473 data_ofs = isize; 474 inode_unlock(inode); 475 return vfs_setpos(file, data_ofs, maxbytes); 476 fail: 477 inode_unlock(inode); 478 return -ENXIO; 479 } 480 481 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 482 { 483 struct inode *inode = file->f_mapping->host; 484 loff_t maxbytes = inode->i_sb->s_maxbytes; 485 486 switch (whence) { 487 case SEEK_SET: 488 case SEEK_CUR: 489 case SEEK_END: 490 return generic_file_llseek_size(file, offset, whence, 491 maxbytes, i_size_read(inode)); 492 case SEEK_DATA: 493 case SEEK_HOLE: 494 if (offset < 0) 495 return -ENXIO; 496 return f2fs_seek_block(file, offset, whence); 497 } 498 499 return -EINVAL; 500 } 501 502 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 503 { 504 struct inode *inode = file_inode(file); 505 int err; 506 507 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 508 return -EIO; 509 510 if (!f2fs_is_compress_backend_ready(inode)) 511 return -EOPNOTSUPP; 512 513 /* we don't need to use inline_data strictly */ 514 err = f2fs_convert_inline_inode(inode); 515 if (err) 516 return err; 517 518 file_accessed(file); 519 vma->vm_ops = &f2fs_file_vm_ops; 520 set_inode_flag(inode, FI_MMAP_FILE); 521 return 0; 522 } 523 524 static int f2fs_file_open(struct inode *inode, struct file *filp) 525 { 526 int err = fscrypt_file_open(inode, filp); 527 528 if (err) 529 return err; 530 531 if (!f2fs_is_compress_backend_ready(inode)) 532 return -EOPNOTSUPP; 533 534 err = fsverity_file_open(inode, filp); 535 if (err) 536 return err; 537 538 filp->f_mode |= FMODE_NOWAIT; 539 540 return dquot_file_open(inode, filp); 541 } 542 543 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 544 { 545 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 546 struct f2fs_node *raw_node; 547 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 548 __le32 *addr; 549 int base = 0; 550 bool compressed_cluster = false; 551 int cluster_index = 0, valid_blocks = 0; 552 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 553 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 554 555 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 556 base = get_extra_isize(dn->inode); 557 558 raw_node = F2FS_NODE(dn->node_page); 559 addr = blkaddr_in_node(raw_node) + base + ofs; 560 561 /* Assumption: truncateion starts with cluster */ 562 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 563 block_t blkaddr = le32_to_cpu(*addr); 564 565 if (f2fs_compressed_file(dn->inode) && 566 !(cluster_index & (cluster_size - 1))) { 567 if (compressed_cluster) 568 f2fs_i_compr_blocks_update(dn->inode, 569 valid_blocks, false); 570 compressed_cluster = (blkaddr == COMPRESS_ADDR); 571 valid_blocks = 0; 572 } 573 574 if (blkaddr == NULL_ADDR) 575 continue; 576 577 dn->data_blkaddr = NULL_ADDR; 578 f2fs_set_data_blkaddr(dn); 579 580 if (__is_valid_data_blkaddr(blkaddr)) { 581 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 582 DATA_GENERIC_ENHANCE)) 583 continue; 584 if (compressed_cluster) 585 valid_blocks++; 586 } 587 588 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 589 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 590 591 f2fs_invalidate_blocks(sbi, blkaddr); 592 593 if (!released || blkaddr != COMPRESS_ADDR) 594 nr_free++; 595 } 596 597 if (compressed_cluster) 598 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 599 600 if (nr_free) { 601 pgoff_t fofs; 602 /* 603 * once we invalidate valid blkaddr in range [ofs, ofs + count], 604 * we will invalidate all blkaddr in the whole range. 605 */ 606 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 607 dn->inode) + ofs; 608 f2fs_update_extent_cache_range(dn, fofs, 0, len); 609 dec_valid_block_count(sbi, dn->inode, nr_free); 610 } 611 dn->ofs_in_node = ofs; 612 613 f2fs_update_time(sbi, REQ_TIME); 614 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 615 dn->ofs_in_node, nr_free); 616 } 617 618 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 619 { 620 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 621 } 622 623 static int truncate_partial_data_page(struct inode *inode, u64 from, 624 bool cache_only) 625 { 626 loff_t offset = from & (PAGE_SIZE - 1); 627 pgoff_t index = from >> PAGE_SHIFT; 628 struct address_space *mapping = inode->i_mapping; 629 struct page *page; 630 631 if (!offset && !cache_only) 632 return 0; 633 634 if (cache_only) { 635 page = find_lock_page(mapping, index); 636 if (page && PageUptodate(page)) 637 goto truncate_out; 638 f2fs_put_page(page, 1); 639 return 0; 640 } 641 642 page = f2fs_get_lock_data_page(inode, index, true); 643 if (IS_ERR(page)) 644 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 645 truncate_out: 646 f2fs_wait_on_page_writeback(page, DATA, true, true); 647 zero_user(page, offset, PAGE_SIZE - offset); 648 649 /* An encrypted inode should have a key and truncate the last page. */ 650 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 651 if (!cache_only) 652 set_page_dirty(page); 653 f2fs_put_page(page, 1); 654 return 0; 655 } 656 657 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 658 { 659 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 660 struct dnode_of_data dn; 661 pgoff_t free_from; 662 int count = 0, err = 0; 663 struct page *ipage; 664 bool truncate_page = false; 665 666 trace_f2fs_truncate_blocks_enter(inode, from); 667 668 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 669 670 if (free_from >= sbi->max_file_blocks) 671 goto free_partial; 672 673 if (lock) 674 f2fs_lock_op(sbi); 675 676 ipage = f2fs_get_node_page(sbi, inode->i_ino); 677 if (IS_ERR(ipage)) { 678 err = PTR_ERR(ipage); 679 goto out; 680 } 681 682 if (f2fs_has_inline_data(inode)) { 683 f2fs_truncate_inline_inode(inode, ipage, from); 684 f2fs_put_page(ipage, 1); 685 truncate_page = true; 686 goto out; 687 } 688 689 set_new_dnode(&dn, inode, ipage, NULL, 0); 690 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 691 if (err) { 692 if (err == -ENOENT) 693 goto free_next; 694 goto out; 695 } 696 697 count = ADDRS_PER_PAGE(dn.node_page, inode); 698 699 count -= dn.ofs_in_node; 700 f2fs_bug_on(sbi, count < 0); 701 702 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 703 f2fs_truncate_data_blocks_range(&dn, count); 704 free_from += count; 705 } 706 707 f2fs_put_dnode(&dn); 708 free_next: 709 err = f2fs_truncate_inode_blocks(inode, free_from); 710 out: 711 if (lock) 712 f2fs_unlock_op(sbi); 713 free_partial: 714 /* lastly zero out the first data page */ 715 if (!err) 716 err = truncate_partial_data_page(inode, from, truncate_page); 717 718 trace_f2fs_truncate_blocks_exit(inode, err); 719 return err; 720 } 721 722 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 723 { 724 u64 free_from = from; 725 int err; 726 727 #ifdef CONFIG_F2FS_FS_COMPRESSION 728 /* 729 * for compressed file, only support cluster size 730 * aligned truncation. 731 */ 732 if (f2fs_compressed_file(inode)) 733 free_from = round_up(from, 734 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 735 #endif 736 737 err = f2fs_do_truncate_blocks(inode, free_from, lock); 738 if (err) 739 return err; 740 741 #ifdef CONFIG_F2FS_FS_COMPRESSION 742 if (from != free_from) { 743 err = f2fs_truncate_partial_cluster(inode, from, lock); 744 if (err) 745 return err; 746 } 747 #endif 748 749 return 0; 750 } 751 752 int f2fs_truncate(struct inode *inode) 753 { 754 int err; 755 756 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 757 return -EIO; 758 759 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 760 S_ISLNK(inode->i_mode))) 761 return 0; 762 763 trace_f2fs_truncate(inode); 764 765 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 766 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 767 return -EIO; 768 } 769 770 /* we should check inline_data size */ 771 if (!f2fs_may_inline_data(inode)) { 772 err = f2fs_convert_inline_inode(inode); 773 if (err) 774 return err; 775 } 776 777 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 778 if (err) 779 return err; 780 781 inode->i_mtime = inode->i_ctime = current_time(inode); 782 f2fs_mark_inode_dirty_sync(inode, false); 783 return 0; 784 } 785 786 int f2fs_getattr(const struct path *path, struct kstat *stat, 787 u32 request_mask, unsigned int query_flags) 788 { 789 struct inode *inode = d_inode(path->dentry); 790 struct f2fs_inode_info *fi = F2FS_I(inode); 791 struct f2fs_inode *ri; 792 unsigned int flags; 793 794 if (f2fs_has_extra_attr(inode) && 795 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 796 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 797 stat->result_mask |= STATX_BTIME; 798 stat->btime.tv_sec = fi->i_crtime.tv_sec; 799 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 800 } 801 802 flags = fi->i_flags; 803 if (flags & F2FS_COMPR_FL) 804 stat->attributes |= STATX_ATTR_COMPRESSED; 805 if (flags & F2FS_APPEND_FL) 806 stat->attributes |= STATX_ATTR_APPEND; 807 if (IS_ENCRYPTED(inode)) 808 stat->attributes |= STATX_ATTR_ENCRYPTED; 809 if (flags & F2FS_IMMUTABLE_FL) 810 stat->attributes |= STATX_ATTR_IMMUTABLE; 811 if (flags & F2FS_NODUMP_FL) 812 stat->attributes |= STATX_ATTR_NODUMP; 813 if (IS_VERITY(inode)) 814 stat->attributes |= STATX_ATTR_VERITY; 815 816 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 817 STATX_ATTR_APPEND | 818 STATX_ATTR_ENCRYPTED | 819 STATX_ATTR_IMMUTABLE | 820 STATX_ATTR_NODUMP | 821 STATX_ATTR_VERITY); 822 823 generic_fillattr(inode, stat); 824 825 /* we need to show initial sectors used for inline_data/dentries */ 826 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 827 f2fs_has_inline_dentry(inode)) 828 stat->blocks += (stat->size + 511) >> 9; 829 830 return 0; 831 } 832 833 #ifdef CONFIG_F2FS_FS_POSIX_ACL 834 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 835 { 836 unsigned int ia_valid = attr->ia_valid; 837 838 if (ia_valid & ATTR_UID) 839 inode->i_uid = attr->ia_uid; 840 if (ia_valid & ATTR_GID) 841 inode->i_gid = attr->ia_gid; 842 if (ia_valid & ATTR_ATIME) 843 inode->i_atime = attr->ia_atime; 844 if (ia_valid & ATTR_MTIME) 845 inode->i_mtime = attr->ia_mtime; 846 if (ia_valid & ATTR_CTIME) 847 inode->i_ctime = attr->ia_ctime; 848 if (ia_valid & ATTR_MODE) { 849 umode_t mode = attr->ia_mode; 850 851 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 852 mode &= ~S_ISGID; 853 set_acl_inode(inode, mode); 854 } 855 } 856 #else 857 #define __setattr_copy setattr_copy 858 #endif 859 860 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 861 { 862 struct inode *inode = d_inode(dentry); 863 int err; 864 865 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 866 return -EIO; 867 868 if ((attr->ia_valid & ATTR_SIZE) && 869 !f2fs_is_compress_backend_ready(inode)) 870 return -EOPNOTSUPP; 871 872 err = setattr_prepare(dentry, attr); 873 if (err) 874 return err; 875 876 err = fscrypt_prepare_setattr(dentry, attr); 877 if (err) 878 return err; 879 880 err = fsverity_prepare_setattr(dentry, attr); 881 if (err) 882 return err; 883 884 if (is_quota_modification(inode, attr)) { 885 err = dquot_initialize(inode); 886 if (err) 887 return err; 888 } 889 if ((attr->ia_valid & ATTR_UID && 890 !uid_eq(attr->ia_uid, inode->i_uid)) || 891 (attr->ia_valid & ATTR_GID && 892 !gid_eq(attr->ia_gid, inode->i_gid))) { 893 f2fs_lock_op(F2FS_I_SB(inode)); 894 err = dquot_transfer(inode, attr); 895 if (err) { 896 set_sbi_flag(F2FS_I_SB(inode), 897 SBI_QUOTA_NEED_REPAIR); 898 f2fs_unlock_op(F2FS_I_SB(inode)); 899 return err; 900 } 901 /* 902 * update uid/gid under lock_op(), so that dquot and inode can 903 * be updated atomically. 904 */ 905 if (attr->ia_valid & ATTR_UID) 906 inode->i_uid = attr->ia_uid; 907 if (attr->ia_valid & ATTR_GID) 908 inode->i_gid = attr->ia_gid; 909 f2fs_mark_inode_dirty_sync(inode, true); 910 f2fs_unlock_op(F2FS_I_SB(inode)); 911 } 912 913 if (attr->ia_valid & ATTR_SIZE) { 914 loff_t old_size = i_size_read(inode); 915 916 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 917 /* 918 * should convert inline inode before i_size_write to 919 * keep smaller than inline_data size with inline flag. 920 */ 921 err = f2fs_convert_inline_inode(inode); 922 if (err) 923 return err; 924 } 925 926 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 927 down_write(&F2FS_I(inode)->i_mmap_sem); 928 929 truncate_setsize(inode, attr->ia_size); 930 931 if (attr->ia_size <= old_size) 932 err = f2fs_truncate(inode); 933 /* 934 * do not trim all blocks after i_size if target size is 935 * larger than i_size. 936 */ 937 up_write(&F2FS_I(inode)->i_mmap_sem); 938 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 939 if (err) 940 return err; 941 942 spin_lock(&F2FS_I(inode)->i_size_lock); 943 inode->i_mtime = inode->i_ctime = current_time(inode); 944 F2FS_I(inode)->last_disk_size = i_size_read(inode); 945 spin_unlock(&F2FS_I(inode)->i_size_lock); 946 } 947 948 __setattr_copy(inode, attr); 949 950 if (attr->ia_valid & ATTR_MODE) { 951 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode)); 952 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 953 inode->i_mode = F2FS_I(inode)->i_acl_mode; 954 clear_inode_flag(inode, FI_ACL_MODE); 955 } 956 } 957 958 /* file size may changed here */ 959 f2fs_mark_inode_dirty_sync(inode, true); 960 961 /* inode change will produce dirty node pages flushed by checkpoint */ 962 f2fs_balance_fs(F2FS_I_SB(inode), true); 963 964 return err; 965 } 966 967 const struct inode_operations f2fs_file_inode_operations = { 968 .getattr = f2fs_getattr, 969 .setattr = f2fs_setattr, 970 .get_acl = f2fs_get_acl, 971 .set_acl = f2fs_set_acl, 972 .listxattr = f2fs_listxattr, 973 .fiemap = f2fs_fiemap, 974 }; 975 976 static int fill_zero(struct inode *inode, pgoff_t index, 977 loff_t start, loff_t len) 978 { 979 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 980 struct page *page; 981 982 if (!len) 983 return 0; 984 985 f2fs_balance_fs(sbi, true); 986 987 f2fs_lock_op(sbi); 988 page = f2fs_get_new_data_page(inode, NULL, index, false); 989 f2fs_unlock_op(sbi); 990 991 if (IS_ERR(page)) 992 return PTR_ERR(page); 993 994 f2fs_wait_on_page_writeback(page, DATA, true, true); 995 zero_user(page, start, len); 996 set_page_dirty(page); 997 f2fs_put_page(page, 1); 998 return 0; 999 } 1000 1001 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1002 { 1003 int err; 1004 1005 while (pg_start < pg_end) { 1006 struct dnode_of_data dn; 1007 pgoff_t end_offset, count; 1008 1009 set_new_dnode(&dn, inode, NULL, NULL, 0); 1010 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1011 if (err) { 1012 if (err == -ENOENT) { 1013 pg_start = f2fs_get_next_page_offset(&dn, 1014 pg_start); 1015 continue; 1016 } 1017 return err; 1018 } 1019 1020 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1021 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1022 1023 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1024 1025 f2fs_truncate_data_blocks_range(&dn, count); 1026 f2fs_put_dnode(&dn); 1027 1028 pg_start += count; 1029 } 1030 return 0; 1031 } 1032 1033 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1034 { 1035 pgoff_t pg_start, pg_end; 1036 loff_t off_start, off_end; 1037 int ret; 1038 1039 ret = f2fs_convert_inline_inode(inode); 1040 if (ret) 1041 return ret; 1042 1043 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1044 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1045 1046 off_start = offset & (PAGE_SIZE - 1); 1047 off_end = (offset + len) & (PAGE_SIZE - 1); 1048 1049 if (pg_start == pg_end) { 1050 ret = fill_zero(inode, pg_start, off_start, 1051 off_end - off_start); 1052 if (ret) 1053 return ret; 1054 } else { 1055 if (off_start) { 1056 ret = fill_zero(inode, pg_start++, off_start, 1057 PAGE_SIZE - off_start); 1058 if (ret) 1059 return ret; 1060 } 1061 if (off_end) { 1062 ret = fill_zero(inode, pg_end, 0, off_end); 1063 if (ret) 1064 return ret; 1065 } 1066 1067 if (pg_start < pg_end) { 1068 struct address_space *mapping = inode->i_mapping; 1069 loff_t blk_start, blk_end; 1070 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1071 1072 f2fs_balance_fs(sbi, true); 1073 1074 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1075 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1076 1077 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1078 down_write(&F2FS_I(inode)->i_mmap_sem); 1079 1080 truncate_inode_pages_range(mapping, blk_start, 1081 blk_end - 1); 1082 1083 f2fs_lock_op(sbi); 1084 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1085 f2fs_unlock_op(sbi); 1086 1087 up_write(&F2FS_I(inode)->i_mmap_sem); 1088 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1089 } 1090 } 1091 1092 return ret; 1093 } 1094 1095 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1096 int *do_replace, pgoff_t off, pgoff_t len) 1097 { 1098 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1099 struct dnode_of_data dn; 1100 int ret, done, i; 1101 1102 next_dnode: 1103 set_new_dnode(&dn, inode, NULL, NULL, 0); 1104 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1105 if (ret && ret != -ENOENT) { 1106 return ret; 1107 } else if (ret == -ENOENT) { 1108 if (dn.max_level == 0) 1109 return -ENOENT; 1110 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1111 dn.ofs_in_node, len); 1112 blkaddr += done; 1113 do_replace += done; 1114 goto next; 1115 } 1116 1117 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1118 dn.ofs_in_node, len); 1119 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1120 *blkaddr = f2fs_data_blkaddr(&dn); 1121 1122 if (__is_valid_data_blkaddr(*blkaddr) && 1123 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1124 DATA_GENERIC_ENHANCE)) { 1125 f2fs_put_dnode(&dn); 1126 return -EFSCORRUPTED; 1127 } 1128 1129 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1130 1131 if (f2fs_lfs_mode(sbi)) { 1132 f2fs_put_dnode(&dn); 1133 return -EOPNOTSUPP; 1134 } 1135 1136 /* do not invalidate this block address */ 1137 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1138 *do_replace = 1; 1139 } 1140 } 1141 f2fs_put_dnode(&dn); 1142 next: 1143 len -= done; 1144 off += done; 1145 if (len) 1146 goto next_dnode; 1147 return 0; 1148 } 1149 1150 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1151 int *do_replace, pgoff_t off, int len) 1152 { 1153 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1154 struct dnode_of_data dn; 1155 int ret, i; 1156 1157 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1158 if (*do_replace == 0) 1159 continue; 1160 1161 set_new_dnode(&dn, inode, NULL, NULL, 0); 1162 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1163 if (ret) { 1164 dec_valid_block_count(sbi, inode, 1); 1165 f2fs_invalidate_blocks(sbi, *blkaddr); 1166 } else { 1167 f2fs_update_data_blkaddr(&dn, *blkaddr); 1168 } 1169 f2fs_put_dnode(&dn); 1170 } 1171 return 0; 1172 } 1173 1174 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1175 block_t *blkaddr, int *do_replace, 1176 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1177 { 1178 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1179 pgoff_t i = 0; 1180 int ret; 1181 1182 while (i < len) { 1183 if (blkaddr[i] == NULL_ADDR && !full) { 1184 i++; 1185 continue; 1186 } 1187 1188 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1189 struct dnode_of_data dn; 1190 struct node_info ni; 1191 size_t new_size; 1192 pgoff_t ilen; 1193 1194 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1195 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1196 if (ret) 1197 return ret; 1198 1199 ret = f2fs_get_node_info(sbi, dn.nid, &ni); 1200 if (ret) { 1201 f2fs_put_dnode(&dn); 1202 return ret; 1203 } 1204 1205 ilen = min((pgoff_t) 1206 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1207 dn.ofs_in_node, len - i); 1208 do { 1209 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1210 f2fs_truncate_data_blocks_range(&dn, 1); 1211 1212 if (do_replace[i]) { 1213 f2fs_i_blocks_write(src_inode, 1214 1, false, false); 1215 f2fs_i_blocks_write(dst_inode, 1216 1, true, false); 1217 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1218 blkaddr[i], ni.version, true, false); 1219 1220 do_replace[i] = 0; 1221 } 1222 dn.ofs_in_node++; 1223 i++; 1224 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1225 if (dst_inode->i_size < new_size) 1226 f2fs_i_size_write(dst_inode, new_size); 1227 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1228 1229 f2fs_put_dnode(&dn); 1230 } else { 1231 struct page *psrc, *pdst; 1232 1233 psrc = f2fs_get_lock_data_page(src_inode, 1234 src + i, true); 1235 if (IS_ERR(psrc)) 1236 return PTR_ERR(psrc); 1237 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1238 true); 1239 if (IS_ERR(pdst)) { 1240 f2fs_put_page(psrc, 1); 1241 return PTR_ERR(pdst); 1242 } 1243 f2fs_copy_page(psrc, pdst); 1244 set_page_dirty(pdst); 1245 f2fs_put_page(pdst, 1); 1246 f2fs_put_page(psrc, 1); 1247 1248 ret = f2fs_truncate_hole(src_inode, 1249 src + i, src + i + 1); 1250 if (ret) 1251 return ret; 1252 i++; 1253 } 1254 } 1255 return 0; 1256 } 1257 1258 static int __exchange_data_block(struct inode *src_inode, 1259 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1260 pgoff_t len, bool full) 1261 { 1262 block_t *src_blkaddr; 1263 int *do_replace; 1264 pgoff_t olen; 1265 int ret; 1266 1267 while (len) { 1268 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1269 1270 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1271 array_size(olen, sizeof(block_t)), 1272 GFP_NOFS); 1273 if (!src_blkaddr) 1274 return -ENOMEM; 1275 1276 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1277 array_size(olen, sizeof(int)), 1278 GFP_NOFS); 1279 if (!do_replace) { 1280 kvfree(src_blkaddr); 1281 return -ENOMEM; 1282 } 1283 1284 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1285 do_replace, src, olen); 1286 if (ret) 1287 goto roll_back; 1288 1289 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1290 do_replace, src, dst, olen, full); 1291 if (ret) 1292 goto roll_back; 1293 1294 src += olen; 1295 dst += olen; 1296 len -= olen; 1297 1298 kvfree(src_blkaddr); 1299 kvfree(do_replace); 1300 } 1301 return 0; 1302 1303 roll_back: 1304 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1305 kvfree(src_blkaddr); 1306 kvfree(do_replace); 1307 return ret; 1308 } 1309 1310 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1311 { 1312 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1313 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1314 pgoff_t start = offset >> PAGE_SHIFT; 1315 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1316 int ret; 1317 1318 f2fs_balance_fs(sbi, true); 1319 1320 /* avoid gc operation during block exchange */ 1321 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1322 down_write(&F2FS_I(inode)->i_mmap_sem); 1323 1324 f2fs_lock_op(sbi); 1325 f2fs_drop_extent_tree(inode); 1326 truncate_pagecache(inode, offset); 1327 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1328 f2fs_unlock_op(sbi); 1329 1330 up_write(&F2FS_I(inode)->i_mmap_sem); 1331 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1332 return ret; 1333 } 1334 1335 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1336 { 1337 loff_t new_size; 1338 int ret; 1339 1340 if (offset + len >= i_size_read(inode)) 1341 return -EINVAL; 1342 1343 /* collapse range should be aligned to block size of f2fs. */ 1344 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1345 return -EINVAL; 1346 1347 ret = f2fs_convert_inline_inode(inode); 1348 if (ret) 1349 return ret; 1350 1351 /* write out all dirty pages from offset */ 1352 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1353 if (ret) 1354 return ret; 1355 1356 ret = f2fs_do_collapse(inode, offset, len); 1357 if (ret) 1358 return ret; 1359 1360 /* write out all moved pages, if possible */ 1361 down_write(&F2FS_I(inode)->i_mmap_sem); 1362 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1363 truncate_pagecache(inode, offset); 1364 1365 new_size = i_size_read(inode) - len; 1366 ret = f2fs_truncate_blocks(inode, new_size, true); 1367 up_write(&F2FS_I(inode)->i_mmap_sem); 1368 if (!ret) 1369 f2fs_i_size_write(inode, new_size); 1370 return ret; 1371 } 1372 1373 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1374 pgoff_t end) 1375 { 1376 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1377 pgoff_t index = start; 1378 unsigned int ofs_in_node = dn->ofs_in_node; 1379 blkcnt_t count = 0; 1380 int ret; 1381 1382 for (; index < end; index++, dn->ofs_in_node++) { 1383 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1384 count++; 1385 } 1386 1387 dn->ofs_in_node = ofs_in_node; 1388 ret = f2fs_reserve_new_blocks(dn, count); 1389 if (ret) 1390 return ret; 1391 1392 dn->ofs_in_node = ofs_in_node; 1393 for (index = start; index < end; index++, dn->ofs_in_node++) { 1394 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1395 /* 1396 * f2fs_reserve_new_blocks will not guarantee entire block 1397 * allocation. 1398 */ 1399 if (dn->data_blkaddr == NULL_ADDR) { 1400 ret = -ENOSPC; 1401 break; 1402 } 1403 if (dn->data_blkaddr != NEW_ADDR) { 1404 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1405 dn->data_blkaddr = NEW_ADDR; 1406 f2fs_set_data_blkaddr(dn); 1407 } 1408 } 1409 1410 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1411 1412 return ret; 1413 } 1414 1415 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1416 int mode) 1417 { 1418 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1419 struct address_space *mapping = inode->i_mapping; 1420 pgoff_t index, pg_start, pg_end; 1421 loff_t new_size = i_size_read(inode); 1422 loff_t off_start, off_end; 1423 int ret = 0; 1424 1425 ret = inode_newsize_ok(inode, (len + offset)); 1426 if (ret) 1427 return ret; 1428 1429 ret = f2fs_convert_inline_inode(inode); 1430 if (ret) 1431 return ret; 1432 1433 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1434 if (ret) 1435 return ret; 1436 1437 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1438 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1439 1440 off_start = offset & (PAGE_SIZE - 1); 1441 off_end = (offset + len) & (PAGE_SIZE - 1); 1442 1443 if (pg_start == pg_end) { 1444 ret = fill_zero(inode, pg_start, off_start, 1445 off_end - off_start); 1446 if (ret) 1447 return ret; 1448 1449 new_size = max_t(loff_t, new_size, offset + len); 1450 } else { 1451 if (off_start) { 1452 ret = fill_zero(inode, pg_start++, off_start, 1453 PAGE_SIZE - off_start); 1454 if (ret) 1455 return ret; 1456 1457 new_size = max_t(loff_t, new_size, 1458 (loff_t)pg_start << PAGE_SHIFT); 1459 } 1460 1461 for (index = pg_start; index < pg_end;) { 1462 struct dnode_of_data dn; 1463 unsigned int end_offset; 1464 pgoff_t end; 1465 1466 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1467 down_write(&F2FS_I(inode)->i_mmap_sem); 1468 1469 truncate_pagecache_range(inode, 1470 (loff_t)index << PAGE_SHIFT, 1471 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1472 1473 f2fs_lock_op(sbi); 1474 1475 set_new_dnode(&dn, inode, NULL, NULL, 0); 1476 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1477 if (ret) { 1478 f2fs_unlock_op(sbi); 1479 up_write(&F2FS_I(inode)->i_mmap_sem); 1480 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1481 goto out; 1482 } 1483 1484 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1485 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1486 1487 ret = f2fs_do_zero_range(&dn, index, end); 1488 f2fs_put_dnode(&dn); 1489 1490 f2fs_unlock_op(sbi); 1491 up_write(&F2FS_I(inode)->i_mmap_sem); 1492 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1493 1494 f2fs_balance_fs(sbi, dn.node_changed); 1495 1496 if (ret) 1497 goto out; 1498 1499 index = end; 1500 new_size = max_t(loff_t, new_size, 1501 (loff_t)index << PAGE_SHIFT); 1502 } 1503 1504 if (off_end) { 1505 ret = fill_zero(inode, pg_end, 0, off_end); 1506 if (ret) 1507 goto out; 1508 1509 new_size = max_t(loff_t, new_size, offset + len); 1510 } 1511 } 1512 1513 out: 1514 if (new_size > i_size_read(inode)) { 1515 if (mode & FALLOC_FL_KEEP_SIZE) 1516 file_set_keep_isize(inode); 1517 else 1518 f2fs_i_size_write(inode, new_size); 1519 } 1520 return ret; 1521 } 1522 1523 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1524 { 1525 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1526 pgoff_t nr, pg_start, pg_end, delta, idx; 1527 loff_t new_size; 1528 int ret = 0; 1529 1530 new_size = i_size_read(inode) + len; 1531 ret = inode_newsize_ok(inode, new_size); 1532 if (ret) 1533 return ret; 1534 1535 if (offset >= i_size_read(inode)) 1536 return -EINVAL; 1537 1538 /* insert range should be aligned to block size of f2fs. */ 1539 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1540 return -EINVAL; 1541 1542 ret = f2fs_convert_inline_inode(inode); 1543 if (ret) 1544 return ret; 1545 1546 f2fs_balance_fs(sbi, true); 1547 1548 down_write(&F2FS_I(inode)->i_mmap_sem); 1549 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1550 up_write(&F2FS_I(inode)->i_mmap_sem); 1551 if (ret) 1552 return ret; 1553 1554 /* write out all dirty pages from offset */ 1555 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1556 if (ret) 1557 return ret; 1558 1559 pg_start = offset >> PAGE_SHIFT; 1560 pg_end = (offset + len) >> PAGE_SHIFT; 1561 delta = pg_end - pg_start; 1562 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1563 1564 /* avoid gc operation during block exchange */ 1565 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1566 down_write(&F2FS_I(inode)->i_mmap_sem); 1567 truncate_pagecache(inode, offset); 1568 1569 while (!ret && idx > pg_start) { 1570 nr = idx - pg_start; 1571 if (nr > delta) 1572 nr = delta; 1573 idx -= nr; 1574 1575 f2fs_lock_op(sbi); 1576 f2fs_drop_extent_tree(inode); 1577 1578 ret = __exchange_data_block(inode, inode, idx, 1579 idx + delta, nr, false); 1580 f2fs_unlock_op(sbi); 1581 } 1582 up_write(&F2FS_I(inode)->i_mmap_sem); 1583 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1584 1585 /* write out all moved pages, if possible */ 1586 down_write(&F2FS_I(inode)->i_mmap_sem); 1587 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1588 truncate_pagecache(inode, offset); 1589 up_write(&F2FS_I(inode)->i_mmap_sem); 1590 1591 if (!ret) 1592 f2fs_i_size_write(inode, new_size); 1593 return ret; 1594 } 1595 1596 static int expand_inode_data(struct inode *inode, loff_t offset, 1597 loff_t len, int mode) 1598 { 1599 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1600 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1601 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1602 .m_may_create = true }; 1603 pgoff_t pg_end; 1604 loff_t new_size = i_size_read(inode); 1605 loff_t off_end; 1606 int err; 1607 1608 err = inode_newsize_ok(inode, (len + offset)); 1609 if (err) 1610 return err; 1611 1612 err = f2fs_convert_inline_inode(inode); 1613 if (err) 1614 return err; 1615 1616 f2fs_balance_fs(sbi, true); 1617 1618 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1619 off_end = (offset + len) & (PAGE_SIZE - 1); 1620 1621 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1622 map.m_len = pg_end - map.m_lblk; 1623 if (off_end) 1624 map.m_len++; 1625 1626 if (!map.m_len) 1627 return 0; 1628 1629 if (f2fs_is_pinned_file(inode)) { 1630 block_t len = (map.m_len >> sbi->log_blocks_per_seg) << 1631 sbi->log_blocks_per_seg; 1632 block_t done = 0; 1633 1634 if (map.m_len % sbi->blocks_per_seg) 1635 len += sbi->blocks_per_seg; 1636 1637 map.m_len = sbi->blocks_per_seg; 1638 next_alloc: 1639 if (has_not_enough_free_secs(sbi, 0, 1640 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1641 down_write(&sbi->gc_lock); 1642 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1643 if (err && err != -ENODATA && err != -EAGAIN) 1644 goto out_err; 1645 } 1646 1647 down_write(&sbi->pin_sem); 1648 1649 f2fs_lock_op(sbi); 1650 f2fs_allocate_new_segment(sbi, CURSEG_COLD_DATA_PINNED); 1651 f2fs_unlock_op(sbi); 1652 1653 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1654 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1655 1656 up_write(&sbi->pin_sem); 1657 1658 done += map.m_len; 1659 len -= map.m_len; 1660 map.m_lblk += map.m_len; 1661 if (!err && len) 1662 goto next_alloc; 1663 1664 map.m_len = done; 1665 } else { 1666 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1667 } 1668 out_err: 1669 if (err) { 1670 pgoff_t last_off; 1671 1672 if (!map.m_len) 1673 return err; 1674 1675 last_off = map.m_lblk + map.m_len - 1; 1676 1677 /* update new size to the failed position */ 1678 new_size = (last_off == pg_end) ? offset + len : 1679 (loff_t)(last_off + 1) << PAGE_SHIFT; 1680 } else { 1681 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1682 } 1683 1684 if (new_size > i_size_read(inode)) { 1685 if (mode & FALLOC_FL_KEEP_SIZE) 1686 file_set_keep_isize(inode); 1687 else 1688 f2fs_i_size_write(inode, new_size); 1689 } 1690 1691 return err; 1692 } 1693 1694 static long f2fs_fallocate(struct file *file, int mode, 1695 loff_t offset, loff_t len) 1696 { 1697 struct inode *inode = file_inode(file); 1698 long ret = 0; 1699 1700 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1701 return -EIO; 1702 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1703 return -ENOSPC; 1704 if (!f2fs_is_compress_backend_ready(inode)) 1705 return -EOPNOTSUPP; 1706 1707 /* f2fs only support ->fallocate for regular file */ 1708 if (!S_ISREG(inode->i_mode)) 1709 return -EINVAL; 1710 1711 if (IS_ENCRYPTED(inode) && 1712 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1713 return -EOPNOTSUPP; 1714 1715 if (f2fs_compressed_file(inode) && 1716 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1717 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1718 return -EOPNOTSUPP; 1719 1720 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1721 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1722 FALLOC_FL_INSERT_RANGE)) 1723 return -EOPNOTSUPP; 1724 1725 inode_lock(inode); 1726 1727 if (mode & FALLOC_FL_PUNCH_HOLE) { 1728 if (offset >= inode->i_size) 1729 goto out; 1730 1731 ret = punch_hole(inode, offset, len); 1732 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1733 ret = f2fs_collapse_range(inode, offset, len); 1734 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1735 ret = f2fs_zero_range(inode, offset, len, mode); 1736 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1737 ret = f2fs_insert_range(inode, offset, len); 1738 } else { 1739 ret = expand_inode_data(inode, offset, len, mode); 1740 } 1741 1742 if (!ret) { 1743 inode->i_mtime = inode->i_ctime = current_time(inode); 1744 f2fs_mark_inode_dirty_sync(inode, false); 1745 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1746 } 1747 1748 out: 1749 inode_unlock(inode); 1750 1751 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1752 return ret; 1753 } 1754 1755 static int f2fs_release_file(struct inode *inode, struct file *filp) 1756 { 1757 /* 1758 * f2fs_relase_file is called at every close calls. So we should 1759 * not drop any inmemory pages by close called by other process. 1760 */ 1761 if (!(filp->f_mode & FMODE_WRITE) || 1762 atomic_read(&inode->i_writecount) != 1) 1763 return 0; 1764 1765 /* some remained atomic pages should discarded */ 1766 if (f2fs_is_atomic_file(inode)) 1767 f2fs_drop_inmem_pages(inode); 1768 if (f2fs_is_volatile_file(inode)) { 1769 set_inode_flag(inode, FI_DROP_CACHE); 1770 filemap_fdatawrite(inode->i_mapping); 1771 clear_inode_flag(inode, FI_DROP_CACHE); 1772 clear_inode_flag(inode, FI_VOLATILE_FILE); 1773 stat_dec_volatile_write(inode); 1774 } 1775 return 0; 1776 } 1777 1778 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1779 { 1780 struct inode *inode = file_inode(file); 1781 1782 /* 1783 * If the process doing a transaction is crashed, we should do 1784 * roll-back. Otherwise, other reader/write can see corrupted database 1785 * until all the writers close its file. Since this should be done 1786 * before dropping file lock, it needs to do in ->flush. 1787 */ 1788 if (f2fs_is_atomic_file(inode) && 1789 F2FS_I(inode)->inmem_task == current) 1790 f2fs_drop_inmem_pages(inode); 1791 return 0; 1792 } 1793 1794 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1795 { 1796 struct f2fs_inode_info *fi = F2FS_I(inode); 1797 u32 masked_flags = fi->i_flags & mask; 1798 1799 f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask)); 1800 1801 /* Is it quota file? Do not allow user to mess with it */ 1802 if (IS_NOQUOTA(inode)) 1803 return -EPERM; 1804 1805 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1806 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1807 return -EOPNOTSUPP; 1808 if (!f2fs_empty_dir(inode)) 1809 return -ENOTEMPTY; 1810 } 1811 1812 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1813 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1814 return -EOPNOTSUPP; 1815 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1816 return -EINVAL; 1817 } 1818 1819 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1820 if (masked_flags & F2FS_COMPR_FL) { 1821 if (!f2fs_disable_compressed_file(inode)) 1822 return -EINVAL; 1823 } 1824 if (iflags & F2FS_NOCOMP_FL) 1825 return -EINVAL; 1826 if (iflags & F2FS_COMPR_FL) { 1827 if (!f2fs_may_compress(inode)) 1828 return -EINVAL; 1829 if (S_ISREG(inode->i_mode) && inode->i_size) 1830 return -EINVAL; 1831 1832 set_compress_context(inode); 1833 } 1834 } 1835 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) { 1836 if (masked_flags & F2FS_COMPR_FL) 1837 return -EINVAL; 1838 } 1839 1840 fi->i_flags = iflags | (fi->i_flags & ~mask); 1841 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1842 (fi->i_flags & F2FS_NOCOMP_FL)); 1843 1844 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1845 set_inode_flag(inode, FI_PROJ_INHERIT); 1846 else 1847 clear_inode_flag(inode, FI_PROJ_INHERIT); 1848 1849 inode->i_ctime = current_time(inode); 1850 f2fs_set_inode_flags(inode); 1851 f2fs_mark_inode_dirty_sync(inode, true); 1852 return 0; 1853 } 1854 1855 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */ 1856 1857 /* 1858 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1859 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1860 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1861 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1862 */ 1863 1864 static const struct { 1865 u32 iflag; 1866 u32 fsflag; 1867 } f2fs_fsflags_map[] = { 1868 { F2FS_COMPR_FL, FS_COMPR_FL }, 1869 { F2FS_SYNC_FL, FS_SYNC_FL }, 1870 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1871 { F2FS_APPEND_FL, FS_APPEND_FL }, 1872 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1873 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1874 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1875 { F2FS_INDEX_FL, FS_INDEX_FL }, 1876 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1877 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1878 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1879 }; 1880 1881 #define F2FS_GETTABLE_FS_FL ( \ 1882 FS_COMPR_FL | \ 1883 FS_SYNC_FL | \ 1884 FS_IMMUTABLE_FL | \ 1885 FS_APPEND_FL | \ 1886 FS_NODUMP_FL | \ 1887 FS_NOATIME_FL | \ 1888 FS_NOCOMP_FL | \ 1889 FS_INDEX_FL | \ 1890 FS_DIRSYNC_FL | \ 1891 FS_PROJINHERIT_FL | \ 1892 FS_ENCRYPT_FL | \ 1893 FS_INLINE_DATA_FL | \ 1894 FS_NOCOW_FL | \ 1895 FS_VERITY_FL | \ 1896 FS_CASEFOLD_FL) 1897 1898 #define F2FS_SETTABLE_FS_FL ( \ 1899 FS_COMPR_FL | \ 1900 FS_SYNC_FL | \ 1901 FS_IMMUTABLE_FL | \ 1902 FS_APPEND_FL | \ 1903 FS_NODUMP_FL | \ 1904 FS_NOATIME_FL | \ 1905 FS_NOCOMP_FL | \ 1906 FS_DIRSYNC_FL | \ 1907 FS_PROJINHERIT_FL | \ 1908 FS_CASEFOLD_FL) 1909 1910 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1911 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1912 { 1913 u32 fsflags = 0; 1914 int i; 1915 1916 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1917 if (iflags & f2fs_fsflags_map[i].iflag) 1918 fsflags |= f2fs_fsflags_map[i].fsflag; 1919 1920 return fsflags; 1921 } 1922 1923 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1924 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1925 { 1926 u32 iflags = 0; 1927 int i; 1928 1929 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1930 if (fsflags & f2fs_fsflags_map[i].fsflag) 1931 iflags |= f2fs_fsflags_map[i].iflag; 1932 1933 return iflags; 1934 } 1935 1936 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1937 { 1938 struct inode *inode = file_inode(filp); 1939 struct f2fs_inode_info *fi = F2FS_I(inode); 1940 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1941 1942 if (IS_ENCRYPTED(inode)) 1943 fsflags |= FS_ENCRYPT_FL; 1944 if (IS_VERITY(inode)) 1945 fsflags |= FS_VERITY_FL; 1946 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 1947 fsflags |= FS_INLINE_DATA_FL; 1948 if (is_inode_flag_set(inode, FI_PIN_FILE)) 1949 fsflags |= FS_NOCOW_FL; 1950 1951 fsflags &= F2FS_GETTABLE_FS_FL; 1952 1953 return put_user(fsflags, (int __user *)arg); 1954 } 1955 1956 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1957 { 1958 struct inode *inode = file_inode(filp); 1959 struct f2fs_inode_info *fi = F2FS_I(inode); 1960 u32 fsflags, old_fsflags; 1961 u32 iflags; 1962 int ret; 1963 1964 if (!inode_owner_or_capable(inode)) 1965 return -EACCES; 1966 1967 if (get_user(fsflags, (int __user *)arg)) 1968 return -EFAULT; 1969 1970 if (fsflags & ~F2FS_GETTABLE_FS_FL) 1971 return -EOPNOTSUPP; 1972 fsflags &= F2FS_SETTABLE_FS_FL; 1973 1974 iflags = f2fs_fsflags_to_iflags(fsflags); 1975 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 1976 return -EOPNOTSUPP; 1977 1978 ret = mnt_want_write_file(filp); 1979 if (ret) 1980 return ret; 1981 1982 inode_lock(inode); 1983 1984 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1985 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 1986 if (ret) 1987 goto out; 1988 1989 ret = f2fs_setflags_common(inode, iflags, 1990 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL)); 1991 out: 1992 inode_unlock(inode); 1993 mnt_drop_write_file(filp); 1994 return ret; 1995 } 1996 1997 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1998 { 1999 struct inode *inode = file_inode(filp); 2000 2001 return put_user(inode->i_generation, (int __user *)arg); 2002 } 2003 2004 static int f2fs_ioc_start_atomic_write(struct file *filp) 2005 { 2006 struct inode *inode = file_inode(filp); 2007 struct f2fs_inode_info *fi = F2FS_I(inode); 2008 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2009 int ret; 2010 2011 if (!inode_owner_or_capable(inode)) 2012 return -EACCES; 2013 2014 if (!S_ISREG(inode->i_mode)) 2015 return -EINVAL; 2016 2017 if (filp->f_flags & O_DIRECT) 2018 return -EINVAL; 2019 2020 ret = mnt_want_write_file(filp); 2021 if (ret) 2022 return ret; 2023 2024 inode_lock(inode); 2025 2026 f2fs_disable_compressed_file(inode); 2027 2028 if (f2fs_is_atomic_file(inode)) { 2029 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) 2030 ret = -EINVAL; 2031 goto out; 2032 } 2033 2034 ret = f2fs_convert_inline_inode(inode); 2035 if (ret) 2036 goto out; 2037 2038 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2039 2040 /* 2041 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2042 * f2fs_is_atomic_file. 2043 */ 2044 if (get_dirty_pages(inode)) 2045 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2046 inode->i_ino, get_dirty_pages(inode)); 2047 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2048 if (ret) { 2049 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2050 goto out; 2051 } 2052 2053 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 2054 if (list_empty(&fi->inmem_ilist)) 2055 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 2056 sbi->atomic_files++; 2057 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 2058 2059 /* add inode in inmem_list first and set atomic_file */ 2060 set_inode_flag(inode, FI_ATOMIC_FILE); 2061 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2062 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2063 2064 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2065 F2FS_I(inode)->inmem_task = current; 2066 stat_update_max_atomic_write(inode); 2067 out: 2068 inode_unlock(inode); 2069 mnt_drop_write_file(filp); 2070 return ret; 2071 } 2072 2073 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2074 { 2075 struct inode *inode = file_inode(filp); 2076 int ret; 2077 2078 if (!inode_owner_or_capable(inode)) 2079 return -EACCES; 2080 2081 ret = mnt_want_write_file(filp); 2082 if (ret) 2083 return ret; 2084 2085 f2fs_balance_fs(F2FS_I_SB(inode), true); 2086 2087 inode_lock(inode); 2088 2089 if (f2fs_is_volatile_file(inode)) { 2090 ret = -EINVAL; 2091 goto err_out; 2092 } 2093 2094 if (f2fs_is_atomic_file(inode)) { 2095 ret = f2fs_commit_inmem_pages(inode); 2096 if (ret) 2097 goto err_out; 2098 2099 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2100 if (!ret) 2101 f2fs_drop_inmem_pages(inode); 2102 } else { 2103 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2104 } 2105 err_out: 2106 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2107 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2108 ret = -EINVAL; 2109 } 2110 inode_unlock(inode); 2111 mnt_drop_write_file(filp); 2112 return ret; 2113 } 2114 2115 static int f2fs_ioc_start_volatile_write(struct file *filp) 2116 { 2117 struct inode *inode = file_inode(filp); 2118 int ret; 2119 2120 if (!inode_owner_or_capable(inode)) 2121 return -EACCES; 2122 2123 if (!S_ISREG(inode->i_mode)) 2124 return -EINVAL; 2125 2126 ret = mnt_want_write_file(filp); 2127 if (ret) 2128 return ret; 2129 2130 inode_lock(inode); 2131 2132 if (f2fs_is_volatile_file(inode)) 2133 goto out; 2134 2135 ret = f2fs_convert_inline_inode(inode); 2136 if (ret) 2137 goto out; 2138 2139 stat_inc_volatile_write(inode); 2140 stat_update_max_volatile_write(inode); 2141 2142 set_inode_flag(inode, FI_VOLATILE_FILE); 2143 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2144 out: 2145 inode_unlock(inode); 2146 mnt_drop_write_file(filp); 2147 return ret; 2148 } 2149 2150 static int f2fs_ioc_release_volatile_write(struct file *filp) 2151 { 2152 struct inode *inode = file_inode(filp); 2153 int ret; 2154 2155 if (!inode_owner_or_capable(inode)) 2156 return -EACCES; 2157 2158 ret = mnt_want_write_file(filp); 2159 if (ret) 2160 return ret; 2161 2162 inode_lock(inode); 2163 2164 if (!f2fs_is_volatile_file(inode)) 2165 goto out; 2166 2167 if (!f2fs_is_first_block_written(inode)) { 2168 ret = truncate_partial_data_page(inode, 0, true); 2169 goto out; 2170 } 2171 2172 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 2173 out: 2174 inode_unlock(inode); 2175 mnt_drop_write_file(filp); 2176 return ret; 2177 } 2178 2179 static int f2fs_ioc_abort_volatile_write(struct file *filp) 2180 { 2181 struct inode *inode = file_inode(filp); 2182 int ret; 2183 2184 if (!inode_owner_or_capable(inode)) 2185 return -EACCES; 2186 2187 ret = mnt_want_write_file(filp); 2188 if (ret) 2189 return ret; 2190 2191 inode_lock(inode); 2192 2193 if (f2fs_is_atomic_file(inode)) 2194 f2fs_drop_inmem_pages(inode); 2195 if (f2fs_is_volatile_file(inode)) { 2196 clear_inode_flag(inode, FI_VOLATILE_FILE); 2197 stat_dec_volatile_write(inode); 2198 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2199 } 2200 2201 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2202 2203 inode_unlock(inode); 2204 2205 mnt_drop_write_file(filp); 2206 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2207 return ret; 2208 } 2209 2210 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2211 { 2212 struct inode *inode = file_inode(filp); 2213 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2214 struct super_block *sb = sbi->sb; 2215 __u32 in; 2216 int ret = 0; 2217 2218 if (!capable(CAP_SYS_ADMIN)) 2219 return -EPERM; 2220 2221 if (get_user(in, (__u32 __user *)arg)) 2222 return -EFAULT; 2223 2224 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2225 ret = mnt_want_write_file(filp); 2226 if (ret) { 2227 if (ret == -EROFS) { 2228 ret = 0; 2229 f2fs_stop_checkpoint(sbi, false); 2230 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2231 trace_f2fs_shutdown(sbi, in, ret); 2232 } 2233 return ret; 2234 } 2235 } 2236 2237 switch (in) { 2238 case F2FS_GOING_DOWN_FULLSYNC: 2239 ret = freeze_bdev(sb->s_bdev); 2240 if (ret) 2241 goto out; 2242 f2fs_stop_checkpoint(sbi, false); 2243 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2244 thaw_bdev(sb->s_bdev); 2245 break; 2246 case F2FS_GOING_DOWN_METASYNC: 2247 /* do checkpoint only */ 2248 ret = f2fs_sync_fs(sb, 1); 2249 if (ret) 2250 goto out; 2251 f2fs_stop_checkpoint(sbi, false); 2252 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2253 break; 2254 case F2FS_GOING_DOWN_NOSYNC: 2255 f2fs_stop_checkpoint(sbi, false); 2256 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2257 break; 2258 case F2FS_GOING_DOWN_METAFLUSH: 2259 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2260 f2fs_stop_checkpoint(sbi, false); 2261 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2262 break; 2263 case F2FS_GOING_DOWN_NEED_FSCK: 2264 set_sbi_flag(sbi, SBI_NEED_FSCK); 2265 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2266 set_sbi_flag(sbi, SBI_IS_DIRTY); 2267 /* do checkpoint only */ 2268 ret = f2fs_sync_fs(sb, 1); 2269 goto out; 2270 default: 2271 ret = -EINVAL; 2272 goto out; 2273 } 2274 2275 f2fs_stop_gc_thread(sbi); 2276 f2fs_stop_discard_thread(sbi); 2277 2278 f2fs_drop_discard_cmd(sbi); 2279 clear_opt(sbi, DISCARD); 2280 2281 f2fs_update_time(sbi, REQ_TIME); 2282 out: 2283 if (in != F2FS_GOING_DOWN_FULLSYNC) 2284 mnt_drop_write_file(filp); 2285 2286 trace_f2fs_shutdown(sbi, in, ret); 2287 2288 return ret; 2289 } 2290 2291 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2292 { 2293 struct inode *inode = file_inode(filp); 2294 struct super_block *sb = inode->i_sb; 2295 struct request_queue *q = bdev_get_queue(sb->s_bdev); 2296 struct fstrim_range range; 2297 int ret; 2298 2299 if (!capable(CAP_SYS_ADMIN)) 2300 return -EPERM; 2301 2302 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2303 return -EOPNOTSUPP; 2304 2305 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2306 sizeof(range))) 2307 return -EFAULT; 2308 2309 ret = mnt_want_write_file(filp); 2310 if (ret) 2311 return ret; 2312 2313 range.minlen = max((unsigned int)range.minlen, 2314 q->limits.discard_granularity); 2315 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2316 mnt_drop_write_file(filp); 2317 if (ret < 0) 2318 return ret; 2319 2320 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2321 sizeof(range))) 2322 return -EFAULT; 2323 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2324 return 0; 2325 } 2326 2327 static bool uuid_is_nonzero(__u8 u[16]) 2328 { 2329 int i; 2330 2331 for (i = 0; i < 16; i++) 2332 if (u[i]) 2333 return true; 2334 return false; 2335 } 2336 2337 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2338 { 2339 struct inode *inode = file_inode(filp); 2340 2341 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2342 return -EOPNOTSUPP; 2343 2344 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2345 2346 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2347 } 2348 2349 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2350 { 2351 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2352 return -EOPNOTSUPP; 2353 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2354 } 2355 2356 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2357 { 2358 struct inode *inode = file_inode(filp); 2359 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2360 int err; 2361 2362 if (!f2fs_sb_has_encrypt(sbi)) 2363 return -EOPNOTSUPP; 2364 2365 err = mnt_want_write_file(filp); 2366 if (err) 2367 return err; 2368 2369 down_write(&sbi->sb_lock); 2370 2371 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2372 goto got_it; 2373 2374 /* update superblock with uuid */ 2375 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2376 2377 err = f2fs_commit_super(sbi, false); 2378 if (err) { 2379 /* undo new data */ 2380 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2381 goto out_err; 2382 } 2383 got_it: 2384 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2385 16)) 2386 err = -EFAULT; 2387 out_err: 2388 up_write(&sbi->sb_lock); 2389 mnt_drop_write_file(filp); 2390 return err; 2391 } 2392 2393 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2394 unsigned long arg) 2395 { 2396 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2397 return -EOPNOTSUPP; 2398 2399 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2400 } 2401 2402 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2403 { 2404 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2405 return -EOPNOTSUPP; 2406 2407 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2408 } 2409 2410 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2411 { 2412 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2413 return -EOPNOTSUPP; 2414 2415 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2416 } 2417 2418 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2419 unsigned long arg) 2420 { 2421 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2422 return -EOPNOTSUPP; 2423 2424 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2425 } 2426 2427 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2428 unsigned long arg) 2429 { 2430 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2431 return -EOPNOTSUPP; 2432 2433 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2434 } 2435 2436 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2437 { 2438 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2439 return -EOPNOTSUPP; 2440 2441 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2442 } 2443 2444 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2445 { 2446 struct inode *inode = file_inode(filp); 2447 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2448 __u32 sync; 2449 int ret; 2450 2451 if (!capable(CAP_SYS_ADMIN)) 2452 return -EPERM; 2453 2454 if (get_user(sync, (__u32 __user *)arg)) 2455 return -EFAULT; 2456 2457 if (f2fs_readonly(sbi->sb)) 2458 return -EROFS; 2459 2460 ret = mnt_want_write_file(filp); 2461 if (ret) 2462 return ret; 2463 2464 if (!sync) { 2465 if (!down_write_trylock(&sbi->gc_lock)) { 2466 ret = -EBUSY; 2467 goto out; 2468 } 2469 } else { 2470 down_write(&sbi->gc_lock); 2471 } 2472 2473 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO); 2474 out: 2475 mnt_drop_write_file(filp); 2476 return ret; 2477 } 2478 2479 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2480 { 2481 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2482 u64 end; 2483 int ret; 2484 2485 if (!capable(CAP_SYS_ADMIN)) 2486 return -EPERM; 2487 if (f2fs_readonly(sbi->sb)) 2488 return -EROFS; 2489 2490 end = range->start + range->len; 2491 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2492 end >= MAX_BLKADDR(sbi)) 2493 return -EINVAL; 2494 2495 ret = mnt_want_write_file(filp); 2496 if (ret) 2497 return ret; 2498 2499 do_more: 2500 if (!range->sync) { 2501 if (!down_write_trylock(&sbi->gc_lock)) { 2502 ret = -EBUSY; 2503 goto out; 2504 } 2505 } else { 2506 down_write(&sbi->gc_lock); 2507 } 2508 2509 ret = f2fs_gc(sbi, range->sync, true, GET_SEGNO(sbi, range->start)); 2510 if (ret) { 2511 if (ret == -EBUSY) 2512 ret = -EAGAIN; 2513 goto out; 2514 } 2515 range->start += BLKS_PER_SEC(sbi); 2516 if (range->start <= end) 2517 goto do_more; 2518 out: 2519 mnt_drop_write_file(filp); 2520 return ret; 2521 } 2522 2523 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2524 { 2525 struct f2fs_gc_range range; 2526 2527 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2528 sizeof(range))) 2529 return -EFAULT; 2530 return __f2fs_ioc_gc_range(filp, &range); 2531 } 2532 2533 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2534 { 2535 struct inode *inode = file_inode(filp); 2536 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2537 int ret; 2538 2539 if (!capable(CAP_SYS_ADMIN)) 2540 return -EPERM; 2541 2542 if (f2fs_readonly(sbi->sb)) 2543 return -EROFS; 2544 2545 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2546 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2547 return -EINVAL; 2548 } 2549 2550 ret = mnt_want_write_file(filp); 2551 if (ret) 2552 return ret; 2553 2554 ret = f2fs_sync_fs(sbi->sb, 1); 2555 2556 mnt_drop_write_file(filp); 2557 return ret; 2558 } 2559 2560 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2561 struct file *filp, 2562 struct f2fs_defragment *range) 2563 { 2564 struct inode *inode = file_inode(filp); 2565 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2566 .m_seg_type = NO_CHECK_TYPE , 2567 .m_may_create = false }; 2568 struct extent_info ei = {0, 0, 0}; 2569 pgoff_t pg_start, pg_end, next_pgofs; 2570 unsigned int blk_per_seg = sbi->blocks_per_seg; 2571 unsigned int total = 0, sec_num; 2572 block_t blk_end = 0; 2573 bool fragmented = false; 2574 int err; 2575 2576 /* if in-place-update policy is enabled, don't waste time here */ 2577 if (f2fs_should_update_inplace(inode, NULL)) 2578 return -EINVAL; 2579 2580 pg_start = range->start >> PAGE_SHIFT; 2581 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2582 2583 f2fs_balance_fs(sbi, true); 2584 2585 inode_lock(inode); 2586 2587 /* writeback all dirty pages in the range */ 2588 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2589 range->start + range->len - 1); 2590 if (err) 2591 goto out; 2592 2593 /* 2594 * lookup mapping info in extent cache, skip defragmenting if physical 2595 * block addresses are continuous. 2596 */ 2597 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2598 if (ei.fofs + ei.len >= pg_end) 2599 goto out; 2600 } 2601 2602 map.m_lblk = pg_start; 2603 map.m_next_pgofs = &next_pgofs; 2604 2605 /* 2606 * lookup mapping info in dnode page cache, skip defragmenting if all 2607 * physical block addresses are continuous even if there are hole(s) 2608 * in logical blocks. 2609 */ 2610 while (map.m_lblk < pg_end) { 2611 map.m_len = pg_end - map.m_lblk; 2612 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2613 if (err) 2614 goto out; 2615 2616 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2617 map.m_lblk = next_pgofs; 2618 continue; 2619 } 2620 2621 if (blk_end && blk_end != map.m_pblk) 2622 fragmented = true; 2623 2624 /* record total count of block that we're going to move */ 2625 total += map.m_len; 2626 2627 blk_end = map.m_pblk + map.m_len; 2628 2629 map.m_lblk += map.m_len; 2630 } 2631 2632 if (!fragmented) { 2633 total = 0; 2634 goto out; 2635 } 2636 2637 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi)); 2638 2639 /* 2640 * make sure there are enough free section for LFS allocation, this can 2641 * avoid defragment running in SSR mode when free section are allocated 2642 * intensively 2643 */ 2644 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2645 err = -EAGAIN; 2646 goto out; 2647 } 2648 2649 map.m_lblk = pg_start; 2650 map.m_len = pg_end - pg_start; 2651 total = 0; 2652 2653 while (map.m_lblk < pg_end) { 2654 pgoff_t idx; 2655 int cnt = 0; 2656 2657 do_map: 2658 map.m_len = pg_end - map.m_lblk; 2659 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2660 if (err) 2661 goto clear_out; 2662 2663 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2664 map.m_lblk = next_pgofs; 2665 goto check; 2666 } 2667 2668 set_inode_flag(inode, FI_DO_DEFRAG); 2669 2670 idx = map.m_lblk; 2671 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2672 struct page *page; 2673 2674 page = f2fs_get_lock_data_page(inode, idx, true); 2675 if (IS_ERR(page)) { 2676 err = PTR_ERR(page); 2677 goto clear_out; 2678 } 2679 2680 set_page_dirty(page); 2681 f2fs_put_page(page, 1); 2682 2683 idx++; 2684 cnt++; 2685 total++; 2686 } 2687 2688 map.m_lblk = idx; 2689 check: 2690 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2691 goto do_map; 2692 2693 clear_inode_flag(inode, FI_DO_DEFRAG); 2694 2695 err = filemap_fdatawrite(inode->i_mapping); 2696 if (err) 2697 goto out; 2698 } 2699 clear_out: 2700 clear_inode_flag(inode, FI_DO_DEFRAG); 2701 out: 2702 inode_unlock(inode); 2703 if (!err) 2704 range->len = (u64)total << PAGE_SHIFT; 2705 return err; 2706 } 2707 2708 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2709 { 2710 struct inode *inode = file_inode(filp); 2711 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2712 struct f2fs_defragment range; 2713 int err; 2714 2715 if (!capable(CAP_SYS_ADMIN)) 2716 return -EPERM; 2717 2718 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2719 return -EINVAL; 2720 2721 if (f2fs_readonly(sbi->sb)) 2722 return -EROFS; 2723 2724 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2725 sizeof(range))) 2726 return -EFAULT; 2727 2728 /* verify alignment of offset & size */ 2729 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2730 return -EINVAL; 2731 2732 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2733 sbi->max_file_blocks)) 2734 return -EINVAL; 2735 2736 err = mnt_want_write_file(filp); 2737 if (err) 2738 return err; 2739 2740 err = f2fs_defragment_range(sbi, filp, &range); 2741 mnt_drop_write_file(filp); 2742 2743 f2fs_update_time(sbi, REQ_TIME); 2744 if (err < 0) 2745 return err; 2746 2747 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2748 sizeof(range))) 2749 return -EFAULT; 2750 2751 return 0; 2752 } 2753 2754 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2755 struct file *file_out, loff_t pos_out, size_t len) 2756 { 2757 struct inode *src = file_inode(file_in); 2758 struct inode *dst = file_inode(file_out); 2759 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2760 size_t olen = len, dst_max_i_size = 0; 2761 size_t dst_osize; 2762 int ret; 2763 2764 if (file_in->f_path.mnt != file_out->f_path.mnt || 2765 src->i_sb != dst->i_sb) 2766 return -EXDEV; 2767 2768 if (unlikely(f2fs_readonly(src->i_sb))) 2769 return -EROFS; 2770 2771 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2772 return -EINVAL; 2773 2774 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2775 return -EOPNOTSUPP; 2776 2777 if (pos_out < 0 || pos_in < 0) 2778 return -EINVAL; 2779 2780 if (src == dst) { 2781 if (pos_in == pos_out) 2782 return 0; 2783 if (pos_out > pos_in && pos_out < pos_in + len) 2784 return -EINVAL; 2785 } 2786 2787 inode_lock(src); 2788 if (src != dst) { 2789 ret = -EBUSY; 2790 if (!inode_trylock(dst)) 2791 goto out; 2792 } 2793 2794 ret = -EINVAL; 2795 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2796 goto out_unlock; 2797 if (len == 0) 2798 olen = len = src->i_size - pos_in; 2799 if (pos_in + len == src->i_size) 2800 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2801 if (len == 0) { 2802 ret = 0; 2803 goto out_unlock; 2804 } 2805 2806 dst_osize = dst->i_size; 2807 if (pos_out + olen > dst->i_size) 2808 dst_max_i_size = pos_out + olen; 2809 2810 /* verify the end result is block aligned */ 2811 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2812 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2813 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2814 goto out_unlock; 2815 2816 ret = f2fs_convert_inline_inode(src); 2817 if (ret) 2818 goto out_unlock; 2819 2820 ret = f2fs_convert_inline_inode(dst); 2821 if (ret) 2822 goto out_unlock; 2823 2824 /* write out all dirty pages from offset */ 2825 ret = filemap_write_and_wait_range(src->i_mapping, 2826 pos_in, pos_in + len); 2827 if (ret) 2828 goto out_unlock; 2829 2830 ret = filemap_write_and_wait_range(dst->i_mapping, 2831 pos_out, pos_out + len); 2832 if (ret) 2833 goto out_unlock; 2834 2835 f2fs_balance_fs(sbi, true); 2836 2837 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2838 if (src != dst) { 2839 ret = -EBUSY; 2840 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2841 goto out_src; 2842 } 2843 2844 f2fs_lock_op(sbi); 2845 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2846 pos_out >> F2FS_BLKSIZE_BITS, 2847 len >> F2FS_BLKSIZE_BITS, false); 2848 2849 if (!ret) { 2850 if (dst_max_i_size) 2851 f2fs_i_size_write(dst, dst_max_i_size); 2852 else if (dst_osize != dst->i_size) 2853 f2fs_i_size_write(dst, dst_osize); 2854 } 2855 f2fs_unlock_op(sbi); 2856 2857 if (src != dst) 2858 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2859 out_src: 2860 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2861 out_unlock: 2862 if (src != dst) 2863 inode_unlock(dst); 2864 out: 2865 inode_unlock(src); 2866 return ret; 2867 } 2868 2869 static int __f2fs_ioc_move_range(struct file *filp, 2870 struct f2fs_move_range *range) 2871 { 2872 struct fd dst; 2873 int err; 2874 2875 if (!(filp->f_mode & FMODE_READ) || 2876 !(filp->f_mode & FMODE_WRITE)) 2877 return -EBADF; 2878 2879 dst = fdget(range->dst_fd); 2880 if (!dst.file) 2881 return -EBADF; 2882 2883 if (!(dst.file->f_mode & FMODE_WRITE)) { 2884 err = -EBADF; 2885 goto err_out; 2886 } 2887 2888 err = mnt_want_write_file(filp); 2889 if (err) 2890 goto err_out; 2891 2892 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2893 range->pos_out, range->len); 2894 2895 mnt_drop_write_file(filp); 2896 err_out: 2897 fdput(dst); 2898 return err; 2899 } 2900 2901 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2902 { 2903 struct f2fs_move_range range; 2904 2905 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2906 sizeof(range))) 2907 return -EFAULT; 2908 return __f2fs_ioc_move_range(filp, &range); 2909 } 2910 2911 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2912 { 2913 struct inode *inode = file_inode(filp); 2914 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2915 struct sit_info *sm = SIT_I(sbi); 2916 unsigned int start_segno = 0, end_segno = 0; 2917 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2918 struct f2fs_flush_device range; 2919 int ret; 2920 2921 if (!capable(CAP_SYS_ADMIN)) 2922 return -EPERM; 2923 2924 if (f2fs_readonly(sbi->sb)) 2925 return -EROFS; 2926 2927 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2928 return -EINVAL; 2929 2930 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2931 sizeof(range))) 2932 return -EFAULT; 2933 2934 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2935 __is_large_section(sbi)) { 2936 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2937 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2938 return -EINVAL; 2939 } 2940 2941 ret = mnt_want_write_file(filp); 2942 if (ret) 2943 return ret; 2944 2945 if (range.dev_num != 0) 2946 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2947 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2948 2949 start_segno = sm->last_victim[FLUSH_DEVICE]; 2950 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2951 start_segno = dev_start_segno; 2952 end_segno = min(start_segno + range.segments, dev_end_segno); 2953 2954 while (start_segno < end_segno) { 2955 if (!down_write_trylock(&sbi->gc_lock)) { 2956 ret = -EBUSY; 2957 goto out; 2958 } 2959 sm->last_victim[GC_CB] = end_segno + 1; 2960 sm->last_victim[GC_GREEDY] = end_segno + 1; 2961 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2962 ret = f2fs_gc(sbi, true, true, start_segno); 2963 if (ret == -EAGAIN) 2964 ret = 0; 2965 else if (ret < 0) 2966 break; 2967 start_segno++; 2968 } 2969 out: 2970 mnt_drop_write_file(filp); 2971 return ret; 2972 } 2973 2974 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2975 { 2976 struct inode *inode = file_inode(filp); 2977 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2978 2979 /* Must validate to set it with SQLite behavior in Android. */ 2980 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2981 2982 return put_user(sb_feature, (u32 __user *)arg); 2983 } 2984 2985 #ifdef CONFIG_QUOTA 2986 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2987 { 2988 struct dquot *transfer_to[MAXQUOTAS] = {}; 2989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2990 struct super_block *sb = sbi->sb; 2991 int err = 0; 2992 2993 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2994 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2995 err = __dquot_transfer(inode, transfer_to); 2996 if (err) 2997 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2998 dqput(transfer_to[PRJQUOTA]); 2999 } 3000 return err; 3001 } 3002 3003 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 3004 { 3005 struct inode *inode = file_inode(filp); 3006 struct f2fs_inode_info *fi = F2FS_I(inode); 3007 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3008 struct page *ipage; 3009 kprojid_t kprojid; 3010 int err; 3011 3012 if (!f2fs_sb_has_project_quota(sbi)) { 3013 if (projid != F2FS_DEF_PROJID) 3014 return -EOPNOTSUPP; 3015 else 3016 return 0; 3017 } 3018 3019 if (!f2fs_has_extra_attr(inode)) 3020 return -EOPNOTSUPP; 3021 3022 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3023 3024 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 3025 return 0; 3026 3027 err = -EPERM; 3028 /* Is it quota file? Do not allow user to mess with it */ 3029 if (IS_NOQUOTA(inode)) 3030 return err; 3031 3032 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3033 if (IS_ERR(ipage)) 3034 return PTR_ERR(ipage); 3035 3036 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 3037 i_projid)) { 3038 err = -EOVERFLOW; 3039 f2fs_put_page(ipage, 1); 3040 return err; 3041 } 3042 f2fs_put_page(ipage, 1); 3043 3044 err = dquot_initialize(inode); 3045 if (err) 3046 return err; 3047 3048 f2fs_lock_op(sbi); 3049 err = f2fs_transfer_project_quota(inode, kprojid); 3050 if (err) 3051 goto out_unlock; 3052 3053 F2FS_I(inode)->i_projid = kprojid; 3054 inode->i_ctime = current_time(inode); 3055 f2fs_mark_inode_dirty_sync(inode, true); 3056 out_unlock: 3057 f2fs_unlock_op(sbi); 3058 return err; 3059 } 3060 #else 3061 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3062 { 3063 return 0; 3064 } 3065 3066 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 3067 { 3068 if (projid != F2FS_DEF_PROJID) 3069 return -EOPNOTSUPP; 3070 return 0; 3071 } 3072 #endif 3073 3074 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */ 3075 3076 /* 3077 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable 3078 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its 3079 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS. 3080 */ 3081 3082 static const struct { 3083 u32 iflag; 3084 u32 xflag; 3085 } f2fs_xflags_map[] = { 3086 { F2FS_SYNC_FL, FS_XFLAG_SYNC }, 3087 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE }, 3088 { F2FS_APPEND_FL, FS_XFLAG_APPEND }, 3089 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP }, 3090 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME }, 3091 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT }, 3092 }; 3093 3094 #define F2FS_SUPPORTED_XFLAGS ( \ 3095 FS_XFLAG_SYNC | \ 3096 FS_XFLAG_IMMUTABLE | \ 3097 FS_XFLAG_APPEND | \ 3098 FS_XFLAG_NODUMP | \ 3099 FS_XFLAG_NOATIME | \ 3100 FS_XFLAG_PROJINHERIT) 3101 3102 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */ 3103 static inline u32 f2fs_iflags_to_xflags(u32 iflags) 3104 { 3105 u32 xflags = 0; 3106 int i; 3107 3108 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 3109 if (iflags & f2fs_xflags_map[i].iflag) 3110 xflags |= f2fs_xflags_map[i].xflag; 3111 3112 return xflags; 3113 } 3114 3115 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */ 3116 static inline u32 f2fs_xflags_to_iflags(u32 xflags) 3117 { 3118 u32 iflags = 0; 3119 int i; 3120 3121 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 3122 if (xflags & f2fs_xflags_map[i].xflag) 3123 iflags |= f2fs_xflags_map[i].iflag; 3124 3125 return iflags; 3126 } 3127 3128 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa) 3129 { 3130 struct f2fs_inode_info *fi = F2FS_I(inode); 3131 3132 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags)); 3133 3134 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3135 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3136 } 3137 3138 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg) 3139 { 3140 struct inode *inode = file_inode(filp); 3141 struct fsxattr fa; 3142 3143 f2fs_fill_fsxattr(inode, &fa); 3144 3145 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa))) 3146 return -EFAULT; 3147 return 0; 3148 } 3149 3150 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg) 3151 { 3152 struct inode *inode = file_inode(filp); 3153 struct fsxattr fa, old_fa; 3154 u32 iflags; 3155 int err; 3156 3157 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa))) 3158 return -EFAULT; 3159 3160 /* Make sure caller has proper permission */ 3161 if (!inode_owner_or_capable(inode)) 3162 return -EACCES; 3163 3164 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS) 3165 return -EOPNOTSUPP; 3166 3167 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags); 3168 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3169 return -EOPNOTSUPP; 3170 3171 err = mnt_want_write_file(filp); 3172 if (err) 3173 return err; 3174 3175 inode_lock(inode); 3176 3177 f2fs_fill_fsxattr(inode, &old_fa); 3178 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 3179 if (err) 3180 goto out; 3181 3182 err = f2fs_setflags_common(inode, iflags, 3183 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS)); 3184 if (err) 3185 goto out; 3186 3187 err = f2fs_ioc_setproject(filp, fa.fsx_projid); 3188 out: 3189 inode_unlock(inode); 3190 mnt_drop_write_file(filp); 3191 return err; 3192 } 3193 3194 int f2fs_pin_file_control(struct inode *inode, bool inc) 3195 { 3196 struct f2fs_inode_info *fi = F2FS_I(inode); 3197 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3198 3199 /* Use i_gc_failures for normal file as a risk signal. */ 3200 if (inc) 3201 f2fs_i_gc_failures_write(inode, 3202 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3203 3204 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3205 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3206 __func__, inode->i_ino, 3207 fi->i_gc_failures[GC_FAILURE_PIN]); 3208 clear_inode_flag(inode, FI_PIN_FILE); 3209 return -EAGAIN; 3210 } 3211 return 0; 3212 } 3213 3214 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3215 { 3216 struct inode *inode = file_inode(filp); 3217 __u32 pin; 3218 int ret = 0; 3219 3220 if (get_user(pin, (__u32 __user *)arg)) 3221 return -EFAULT; 3222 3223 if (!S_ISREG(inode->i_mode)) 3224 return -EINVAL; 3225 3226 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3227 return -EROFS; 3228 3229 ret = mnt_want_write_file(filp); 3230 if (ret) 3231 return ret; 3232 3233 inode_lock(inode); 3234 3235 if (f2fs_should_update_outplace(inode, NULL)) { 3236 ret = -EINVAL; 3237 goto out; 3238 } 3239 3240 if (!pin) { 3241 clear_inode_flag(inode, FI_PIN_FILE); 3242 f2fs_i_gc_failures_write(inode, 0); 3243 goto done; 3244 } 3245 3246 if (f2fs_pin_file_control(inode, false)) { 3247 ret = -EAGAIN; 3248 goto out; 3249 } 3250 3251 ret = f2fs_convert_inline_inode(inode); 3252 if (ret) 3253 goto out; 3254 3255 if (!f2fs_disable_compressed_file(inode)) { 3256 ret = -EOPNOTSUPP; 3257 goto out; 3258 } 3259 3260 set_inode_flag(inode, FI_PIN_FILE); 3261 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3262 done: 3263 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3264 out: 3265 inode_unlock(inode); 3266 mnt_drop_write_file(filp); 3267 return ret; 3268 } 3269 3270 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3271 { 3272 struct inode *inode = file_inode(filp); 3273 __u32 pin = 0; 3274 3275 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3276 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3277 return put_user(pin, (u32 __user *)arg); 3278 } 3279 3280 int f2fs_precache_extents(struct inode *inode) 3281 { 3282 struct f2fs_inode_info *fi = F2FS_I(inode); 3283 struct f2fs_map_blocks map; 3284 pgoff_t m_next_extent; 3285 loff_t end; 3286 int err; 3287 3288 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3289 return -EOPNOTSUPP; 3290 3291 map.m_lblk = 0; 3292 map.m_next_pgofs = NULL; 3293 map.m_next_extent = &m_next_extent; 3294 map.m_seg_type = NO_CHECK_TYPE; 3295 map.m_may_create = false; 3296 end = F2FS_I_SB(inode)->max_file_blocks; 3297 3298 while (map.m_lblk < end) { 3299 map.m_len = end - map.m_lblk; 3300 3301 down_write(&fi->i_gc_rwsem[WRITE]); 3302 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3303 up_write(&fi->i_gc_rwsem[WRITE]); 3304 if (err) 3305 return err; 3306 3307 map.m_lblk = m_next_extent; 3308 } 3309 3310 return err; 3311 } 3312 3313 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3314 { 3315 return f2fs_precache_extents(file_inode(filp)); 3316 } 3317 3318 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3319 { 3320 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3321 __u64 block_count; 3322 3323 if (!capable(CAP_SYS_ADMIN)) 3324 return -EPERM; 3325 3326 if (f2fs_readonly(sbi->sb)) 3327 return -EROFS; 3328 3329 if (copy_from_user(&block_count, (void __user *)arg, 3330 sizeof(block_count))) 3331 return -EFAULT; 3332 3333 return f2fs_resize_fs(sbi, block_count); 3334 } 3335 3336 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3337 { 3338 struct inode *inode = file_inode(filp); 3339 3340 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3341 3342 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3343 f2fs_warn(F2FS_I_SB(inode), 3344 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n", 3345 inode->i_ino); 3346 return -EOPNOTSUPP; 3347 } 3348 3349 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3350 } 3351 3352 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3353 { 3354 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3355 return -EOPNOTSUPP; 3356 3357 return fsverity_ioctl_measure(filp, (void __user *)arg); 3358 } 3359 3360 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3361 { 3362 struct inode *inode = file_inode(filp); 3363 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3364 char *vbuf; 3365 int count; 3366 int err = 0; 3367 3368 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3369 if (!vbuf) 3370 return -ENOMEM; 3371 3372 down_read(&sbi->sb_lock); 3373 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3374 ARRAY_SIZE(sbi->raw_super->volume_name), 3375 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3376 up_read(&sbi->sb_lock); 3377 3378 if (copy_to_user((char __user *)arg, vbuf, 3379 min(FSLABEL_MAX, count))) 3380 err = -EFAULT; 3381 3382 kfree(vbuf); 3383 return err; 3384 } 3385 3386 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3387 { 3388 struct inode *inode = file_inode(filp); 3389 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3390 char *vbuf; 3391 int err = 0; 3392 3393 if (!capable(CAP_SYS_ADMIN)) 3394 return -EPERM; 3395 3396 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3397 if (IS_ERR(vbuf)) 3398 return PTR_ERR(vbuf); 3399 3400 err = mnt_want_write_file(filp); 3401 if (err) 3402 goto out; 3403 3404 down_write(&sbi->sb_lock); 3405 3406 memset(sbi->raw_super->volume_name, 0, 3407 sizeof(sbi->raw_super->volume_name)); 3408 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3409 sbi->raw_super->volume_name, 3410 ARRAY_SIZE(sbi->raw_super->volume_name)); 3411 3412 err = f2fs_commit_super(sbi, false); 3413 3414 up_write(&sbi->sb_lock); 3415 3416 mnt_drop_write_file(filp); 3417 out: 3418 kfree(vbuf); 3419 return err; 3420 } 3421 3422 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3423 { 3424 struct inode *inode = file_inode(filp); 3425 __u64 blocks; 3426 3427 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3428 return -EOPNOTSUPP; 3429 3430 if (!f2fs_compressed_file(inode)) 3431 return -EINVAL; 3432 3433 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3434 return put_user(blocks, (u64 __user *)arg); 3435 } 3436 3437 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3438 { 3439 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3440 unsigned int released_blocks = 0; 3441 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3442 block_t blkaddr; 3443 int i; 3444 3445 for (i = 0; i < count; i++) { 3446 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3447 dn->ofs_in_node + i); 3448 3449 if (!__is_valid_data_blkaddr(blkaddr)) 3450 continue; 3451 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3452 DATA_GENERIC_ENHANCE))) 3453 return -EFSCORRUPTED; 3454 } 3455 3456 while (count) { 3457 int compr_blocks = 0; 3458 3459 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3460 blkaddr = f2fs_data_blkaddr(dn); 3461 3462 if (i == 0) { 3463 if (blkaddr == COMPRESS_ADDR) 3464 continue; 3465 dn->ofs_in_node += cluster_size; 3466 goto next; 3467 } 3468 3469 if (__is_valid_data_blkaddr(blkaddr)) 3470 compr_blocks++; 3471 3472 if (blkaddr != NEW_ADDR) 3473 continue; 3474 3475 dn->data_blkaddr = NULL_ADDR; 3476 f2fs_set_data_blkaddr(dn); 3477 } 3478 3479 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3480 dec_valid_block_count(sbi, dn->inode, 3481 cluster_size - compr_blocks); 3482 3483 released_blocks += cluster_size - compr_blocks; 3484 next: 3485 count -= cluster_size; 3486 } 3487 3488 return released_blocks; 3489 } 3490 3491 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3492 { 3493 struct inode *inode = file_inode(filp); 3494 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3495 pgoff_t page_idx = 0, last_idx; 3496 unsigned int released_blocks = 0; 3497 int ret; 3498 int writecount; 3499 3500 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3501 return -EOPNOTSUPP; 3502 3503 if (!f2fs_compressed_file(inode)) 3504 return -EINVAL; 3505 3506 if (f2fs_readonly(sbi->sb)) 3507 return -EROFS; 3508 3509 ret = mnt_want_write_file(filp); 3510 if (ret) 3511 return ret; 3512 3513 f2fs_balance_fs(F2FS_I_SB(inode), true); 3514 3515 inode_lock(inode); 3516 3517 writecount = atomic_read(&inode->i_writecount); 3518 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3519 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3520 ret = -EBUSY; 3521 goto out; 3522 } 3523 3524 if (IS_IMMUTABLE(inode)) { 3525 ret = -EINVAL; 3526 goto out; 3527 } 3528 3529 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3530 if (ret) 3531 goto out; 3532 3533 F2FS_I(inode)->i_flags |= F2FS_IMMUTABLE_FL; 3534 f2fs_set_inode_flags(inode); 3535 inode->i_ctime = current_time(inode); 3536 f2fs_mark_inode_dirty_sync(inode, true); 3537 3538 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3539 goto out; 3540 3541 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3542 down_write(&F2FS_I(inode)->i_mmap_sem); 3543 3544 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3545 3546 while (page_idx < last_idx) { 3547 struct dnode_of_data dn; 3548 pgoff_t end_offset, count; 3549 3550 set_new_dnode(&dn, inode, NULL, NULL, 0); 3551 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3552 if (ret) { 3553 if (ret == -ENOENT) { 3554 page_idx = f2fs_get_next_page_offset(&dn, 3555 page_idx); 3556 ret = 0; 3557 continue; 3558 } 3559 break; 3560 } 3561 3562 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3563 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3564 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3565 3566 ret = release_compress_blocks(&dn, count); 3567 3568 f2fs_put_dnode(&dn); 3569 3570 if (ret < 0) 3571 break; 3572 3573 page_idx += count; 3574 released_blocks += ret; 3575 } 3576 3577 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3578 up_write(&F2FS_I(inode)->i_mmap_sem); 3579 out: 3580 inode_unlock(inode); 3581 3582 mnt_drop_write_file(filp); 3583 3584 if (ret >= 0) { 3585 ret = put_user(released_blocks, (u64 __user *)arg); 3586 } else if (released_blocks && 3587 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3588 set_sbi_flag(sbi, SBI_NEED_FSCK); 3589 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3590 "iblocks=%llu, released=%u, compr_blocks=%u, " 3591 "run fsck to fix.", 3592 __func__, inode->i_ino, inode->i_blocks, 3593 released_blocks, 3594 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3595 } 3596 3597 return ret; 3598 } 3599 3600 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3601 { 3602 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3603 unsigned int reserved_blocks = 0; 3604 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3605 block_t blkaddr; 3606 int i; 3607 3608 for (i = 0; i < count; i++) { 3609 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3610 dn->ofs_in_node + i); 3611 3612 if (!__is_valid_data_blkaddr(blkaddr)) 3613 continue; 3614 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3615 DATA_GENERIC_ENHANCE))) 3616 return -EFSCORRUPTED; 3617 } 3618 3619 while (count) { 3620 int compr_blocks = 0; 3621 blkcnt_t reserved; 3622 int ret; 3623 3624 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3625 blkaddr = f2fs_data_blkaddr(dn); 3626 3627 if (i == 0) { 3628 if (blkaddr == COMPRESS_ADDR) 3629 continue; 3630 dn->ofs_in_node += cluster_size; 3631 goto next; 3632 } 3633 3634 if (__is_valid_data_blkaddr(blkaddr)) { 3635 compr_blocks++; 3636 continue; 3637 } 3638 3639 dn->data_blkaddr = NEW_ADDR; 3640 f2fs_set_data_blkaddr(dn); 3641 } 3642 3643 reserved = cluster_size - compr_blocks; 3644 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3645 if (ret) 3646 return ret; 3647 3648 if (reserved != cluster_size - compr_blocks) 3649 return -ENOSPC; 3650 3651 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3652 3653 reserved_blocks += reserved; 3654 next: 3655 count -= cluster_size; 3656 } 3657 3658 return reserved_blocks; 3659 } 3660 3661 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3662 { 3663 struct inode *inode = file_inode(filp); 3664 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3665 pgoff_t page_idx = 0, last_idx; 3666 unsigned int reserved_blocks = 0; 3667 int ret; 3668 3669 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3670 return -EOPNOTSUPP; 3671 3672 if (!f2fs_compressed_file(inode)) 3673 return -EINVAL; 3674 3675 if (f2fs_readonly(sbi->sb)) 3676 return -EROFS; 3677 3678 ret = mnt_want_write_file(filp); 3679 if (ret) 3680 return ret; 3681 3682 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3683 goto out; 3684 3685 f2fs_balance_fs(F2FS_I_SB(inode), true); 3686 3687 inode_lock(inode); 3688 3689 if (!IS_IMMUTABLE(inode)) { 3690 ret = -EINVAL; 3691 goto unlock_inode; 3692 } 3693 3694 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3695 down_write(&F2FS_I(inode)->i_mmap_sem); 3696 3697 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3698 3699 while (page_idx < last_idx) { 3700 struct dnode_of_data dn; 3701 pgoff_t end_offset, count; 3702 3703 set_new_dnode(&dn, inode, NULL, NULL, 0); 3704 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3705 if (ret) { 3706 if (ret == -ENOENT) { 3707 page_idx = f2fs_get_next_page_offset(&dn, 3708 page_idx); 3709 ret = 0; 3710 continue; 3711 } 3712 break; 3713 } 3714 3715 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3716 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3717 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3718 3719 ret = reserve_compress_blocks(&dn, count); 3720 3721 f2fs_put_dnode(&dn); 3722 3723 if (ret < 0) 3724 break; 3725 3726 page_idx += count; 3727 reserved_blocks += ret; 3728 } 3729 3730 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3731 up_write(&F2FS_I(inode)->i_mmap_sem); 3732 3733 if (ret >= 0) { 3734 F2FS_I(inode)->i_flags &= ~F2FS_IMMUTABLE_FL; 3735 f2fs_set_inode_flags(inode); 3736 inode->i_ctime = current_time(inode); 3737 f2fs_mark_inode_dirty_sync(inode, true); 3738 } 3739 unlock_inode: 3740 inode_unlock(inode); 3741 out: 3742 mnt_drop_write_file(filp); 3743 3744 if (ret >= 0) { 3745 ret = put_user(reserved_blocks, (u64 __user *)arg); 3746 } else if (reserved_blocks && 3747 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3748 set_sbi_flag(sbi, SBI_NEED_FSCK); 3749 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3750 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3751 "run fsck to fix.", 3752 __func__, inode->i_ino, inode->i_blocks, 3753 reserved_blocks, 3754 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3755 } 3756 3757 return ret; 3758 } 3759 3760 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3761 pgoff_t off, block_t block, block_t len, u32 flags) 3762 { 3763 struct request_queue *q = bdev_get_queue(bdev); 3764 sector_t sector = SECTOR_FROM_BLOCK(block); 3765 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3766 int ret = 0; 3767 3768 if (!q) 3769 return -ENXIO; 3770 3771 if (flags & F2FS_TRIM_FILE_DISCARD) 3772 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS, 3773 blk_queue_secure_erase(q) ? 3774 BLKDEV_DISCARD_SECURE : 0); 3775 3776 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3777 if (IS_ENCRYPTED(inode)) 3778 ret = fscrypt_zeroout_range(inode, off, block, len); 3779 else 3780 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3781 GFP_NOFS, 0); 3782 } 3783 3784 return ret; 3785 } 3786 3787 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3788 { 3789 struct inode *inode = file_inode(filp); 3790 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3791 struct address_space *mapping = inode->i_mapping; 3792 struct block_device *prev_bdev = NULL; 3793 struct f2fs_sectrim_range range; 3794 pgoff_t index, pg_end, prev_index = 0; 3795 block_t prev_block = 0, len = 0; 3796 loff_t end_addr; 3797 bool to_end = false; 3798 int ret = 0; 3799 3800 if (!(filp->f_mode & FMODE_WRITE)) 3801 return -EBADF; 3802 3803 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3804 sizeof(range))) 3805 return -EFAULT; 3806 3807 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3808 !S_ISREG(inode->i_mode)) 3809 return -EINVAL; 3810 3811 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3812 !f2fs_hw_support_discard(sbi)) || 3813 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3814 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3815 return -EOPNOTSUPP; 3816 3817 file_start_write(filp); 3818 inode_lock(inode); 3819 3820 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3821 range.start >= inode->i_size) { 3822 ret = -EINVAL; 3823 goto err; 3824 } 3825 3826 if (range.len == 0) 3827 goto err; 3828 3829 if (inode->i_size - range.start > range.len) { 3830 end_addr = range.start + range.len; 3831 } else { 3832 end_addr = range.len == (u64)-1 ? 3833 sbi->sb->s_maxbytes : inode->i_size; 3834 to_end = true; 3835 } 3836 3837 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3838 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3839 ret = -EINVAL; 3840 goto err; 3841 } 3842 3843 index = F2FS_BYTES_TO_BLK(range.start); 3844 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3845 3846 ret = f2fs_convert_inline_inode(inode); 3847 if (ret) 3848 goto err; 3849 3850 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3851 down_write(&F2FS_I(inode)->i_mmap_sem); 3852 3853 ret = filemap_write_and_wait_range(mapping, range.start, 3854 to_end ? LLONG_MAX : end_addr - 1); 3855 if (ret) 3856 goto out; 3857 3858 truncate_inode_pages_range(mapping, range.start, 3859 to_end ? -1 : end_addr - 1); 3860 3861 while (index < pg_end) { 3862 struct dnode_of_data dn; 3863 pgoff_t end_offset, count; 3864 int i; 3865 3866 set_new_dnode(&dn, inode, NULL, NULL, 0); 3867 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3868 if (ret) { 3869 if (ret == -ENOENT) { 3870 index = f2fs_get_next_page_offset(&dn, index); 3871 continue; 3872 } 3873 goto out; 3874 } 3875 3876 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3877 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3878 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3879 struct block_device *cur_bdev; 3880 block_t blkaddr = f2fs_data_blkaddr(&dn); 3881 3882 if (!__is_valid_data_blkaddr(blkaddr)) 3883 continue; 3884 3885 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3886 DATA_GENERIC_ENHANCE)) { 3887 ret = -EFSCORRUPTED; 3888 f2fs_put_dnode(&dn); 3889 goto out; 3890 } 3891 3892 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3893 if (f2fs_is_multi_device(sbi)) { 3894 int di = f2fs_target_device_index(sbi, blkaddr); 3895 3896 blkaddr -= FDEV(di).start_blk; 3897 } 3898 3899 if (len) { 3900 if (prev_bdev == cur_bdev && 3901 index == prev_index + len && 3902 blkaddr == prev_block + len) { 3903 len++; 3904 } else { 3905 ret = f2fs_secure_erase(prev_bdev, 3906 inode, prev_index, prev_block, 3907 len, range.flags); 3908 if (ret) { 3909 f2fs_put_dnode(&dn); 3910 goto out; 3911 } 3912 3913 len = 0; 3914 } 3915 } 3916 3917 if (!len) { 3918 prev_bdev = cur_bdev; 3919 prev_index = index; 3920 prev_block = blkaddr; 3921 len = 1; 3922 } 3923 } 3924 3925 f2fs_put_dnode(&dn); 3926 3927 if (fatal_signal_pending(current)) { 3928 ret = -EINTR; 3929 goto out; 3930 } 3931 cond_resched(); 3932 } 3933 3934 if (len) 3935 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3936 prev_block, len, range.flags); 3937 out: 3938 up_write(&F2FS_I(inode)->i_mmap_sem); 3939 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3940 err: 3941 inode_unlock(inode); 3942 file_end_write(filp); 3943 3944 return ret; 3945 } 3946 3947 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3948 { 3949 struct inode *inode = file_inode(filp); 3950 struct f2fs_comp_option option; 3951 3952 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3953 return -EOPNOTSUPP; 3954 3955 inode_lock_shared(inode); 3956 3957 if (!f2fs_compressed_file(inode)) { 3958 inode_unlock_shared(inode); 3959 return -ENODATA; 3960 } 3961 3962 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3963 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3964 3965 inode_unlock_shared(inode); 3966 3967 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3968 sizeof(option))) 3969 return -EFAULT; 3970 3971 return 0; 3972 } 3973 3974 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 3975 { 3976 struct inode *inode = file_inode(filp); 3977 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3978 struct f2fs_comp_option option; 3979 int ret = 0; 3980 3981 if (!f2fs_sb_has_compression(sbi)) 3982 return -EOPNOTSUPP; 3983 3984 if (!(filp->f_mode & FMODE_WRITE)) 3985 return -EBADF; 3986 3987 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 3988 sizeof(option))) 3989 return -EFAULT; 3990 3991 if (!f2fs_compressed_file(inode) || 3992 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 3993 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 3994 option.algorithm >= COMPRESS_MAX) 3995 return -EINVAL; 3996 3997 file_start_write(filp); 3998 inode_lock(inode); 3999 4000 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 4001 ret = -EBUSY; 4002 goto out; 4003 } 4004 4005 if (inode->i_size != 0) { 4006 ret = -EFBIG; 4007 goto out; 4008 } 4009 4010 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 4011 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 4012 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size; 4013 f2fs_mark_inode_dirty_sync(inode, true); 4014 4015 if (!f2fs_is_compress_backend_ready(inode)) 4016 f2fs_warn(sbi, "compression algorithm is successfully set, " 4017 "but current kernel doesn't support this algorithm."); 4018 out: 4019 inode_unlock(inode); 4020 file_end_write(filp); 4021 4022 return ret; 4023 } 4024 4025 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 4026 { 4027 DEFINE_READAHEAD(ractl, NULL, inode->i_mapping, page_idx); 4028 struct address_space *mapping = inode->i_mapping; 4029 struct page *page; 4030 pgoff_t redirty_idx = page_idx; 4031 int i, page_len = 0, ret = 0; 4032 4033 page_cache_ra_unbounded(&ractl, len, 0); 4034 4035 for (i = 0; i < len; i++, page_idx++) { 4036 page = read_cache_page(mapping, page_idx, NULL, NULL); 4037 if (IS_ERR(page)) { 4038 ret = PTR_ERR(page); 4039 break; 4040 } 4041 page_len++; 4042 } 4043 4044 for (i = 0; i < page_len; i++, redirty_idx++) { 4045 page = find_lock_page(mapping, redirty_idx); 4046 if (!page) 4047 ret = -ENOENT; 4048 set_page_dirty(page); 4049 f2fs_put_page(page, 1); 4050 f2fs_put_page(page, 0); 4051 } 4052 4053 return ret; 4054 } 4055 4056 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg) 4057 { 4058 struct inode *inode = file_inode(filp); 4059 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4060 struct f2fs_inode_info *fi = F2FS_I(inode); 4061 pgoff_t page_idx = 0, last_idx; 4062 unsigned int blk_per_seg = sbi->blocks_per_seg; 4063 int cluster_size = F2FS_I(inode)->i_cluster_size; 4064 int count, ret; 4065 4066 if (!f2fs_sb_has_compression(sbi) || 4067 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4068 return -EOPNOTSUPP; 4069 4070 if (!(filp->f_mode & FMODE_WRITE)) 4071 return -EBADF; 4072 4073 if (!f2fs_compressed_file(inode)) 4074 return -EINVAL; 4075 4076 f2fs_balance_fs(F2FS_I_SB(inode), true); 4077 4078 file_start_write(filp); 4079 inode_lock(inode); 4080 4081 if (!f2fs_is_compress_backend_ready(inode)) { 4082 ret = -EOPNOTSUPP; 4083 goto out; 4084 } 4085 4086 if (f2fs_is_mmap_file(inode)) { 4087 ret = -EBUSY; 4088 goto out; 4089 } 4090 4091 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4092 if (ret) 4093 goto out; 4094 4095 if (!atomic_read(&fi->i_compr_blocks)) 4096 goto out; 4097 4098 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4099 4100 count = last_idx - page_idx; 4101 while (count) { 4102 int len = min(cluster_size, count); 4103 4104 ret = redirty_blocks(inode, page_idx, len); 4105 if (ret < 0) 4106 break; 4107 4108 if (get_dirty_pages(inode) >= blk_per_seg) 4109 filemap_fdatawrite(inode->i_mapping); 4110 4111 count -= len; 4112 page_idx += len; 4113 } 4114 4115 if (!ret) 4116 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4117 LLONG_MAX); 4118 4119 if (ret) 4120 f2fs_warn(sbi, "%s: The file might be partially decompressed " 4121 "(errno=%d). Please delete the file.\n", 4122 __func__, ret); 4123 out: 4124 inode_unlock(inode); 4125 file_end_write(filp); 4126 4127 return ret; 4128 } 4129 4130 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg) 4131 { 4132 struct inode *inode = file_inode(filp); 4133 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4134 pgoff_t page_idx = 0, last_idx; 4135 unsigned int blk_per_seg = sbi->blocks_per_seg; 4136 int cluster_size = F2FS_I(inode)->i_cluster_size; 4137 int count, ret; 4138 4139 if (!f2fs_sb_has_compression(sbi) || 4140 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4141 return -EOPNOTSUPP; 4142 4143 if (!(filp->f_mode & FMODE_WRITE)) 4144 return -EBADF; 4145 4146 if (!f2fs_compressed_file(inode)) 4147 return -EINVAL; 4148 4149 f2fs_balance_fs(F2FS_I_SB(inode), true); 4150 4151 file_start_write(filp); 4152 inode_lock(inode); 4153 4154 if (!f2fs_is_compress_backend_ready(inode)) { 4155 ret = -EOPNOTSUPP; 4156 goto out; 4157 } 4158 4159 if (f2fs_is_mmap_file(inode)) { 4160 ret = -EBUSY; 4161 goto out; 4162 } 4163 4164 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4165 if (ret) 4166 goto out; 4167 4168 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4169 4170 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4171 4172 count = last_idx - page_idx; 4173 while (count) { 4174 int len = min(cluster_size, count); 4175 4176 ret = redirty_blocks(inode, page_idx, len); 4177 if (ret < 0) 4178 break; 4179 4180 if (get_dirty_pages(inode) >= blk_per_seg) 4181 filemap_fdatawrite(inode->i_mapping); 4182 4183 count -= len; 4184 page_idx += len; 4185 } 4186 4187 if (!ret) 4188 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4189 LLONG_MAX); 4190 4191 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4192 4193 if (ret) 4194 f2fs_warn(sbi, "%s: The file might be partially compressed " 4195 "(errno=%d). Please delete the file.\n", 4196 __func__, ret); 4197 out: 4198 inode_unlock(inode); 4199 file_end_write(filp); 4200 4201 return ret; 4202 } 4203 4204 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4205 { 4206 switch (cmd) { 4207 case FS_IOC_GETFLAGS: 4208 return f2fs_ioc_getflags(filp, arg); 4209 case FS_IOC_SETFLAGS: 4210 return f2fs_ioc_setflags(filp, arg); 4211 case FS_IOC_GETVERSION: 4212 return f2fs_ioc_getversion(filp, arg); 4213 case F2FS_IOC_START_ATOMIC_WRITE: 4214 return f2fs_ioc_start_atomic_write(filp); 4215 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4216 return f2fs_ioc_commit_atomic_write(filp); 4217 case F2FS_IOC_START_VOLATILE_WRITE: 4218 return f2fs_ioc_start_volatile_write(filp); 4219 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4220 return f2fs_ioc_release_volatile_write(filp); 4221 case F2FS_IOC_ABORT_VOLATILE_WRITE: 4222 return f2fs_ioc_abort_volatile_write(filp); 4223 case F2FS_IOC_SHUTDOWN: 4224 return f2fs_ioc_shutdown(filp, arg); 4225 case FITRIM: 4226 return f2fs_ioc_fitrim(filp, arg); 4227 case FS_IOC_SET_ENCRYPTION_POLICY: 4228 return f2fs_ioc_set_encryption_policy(filp, arg); 4229 case FS_IOC_GET_ENCRYPTION_POLICY: 4230 return f2fs_ioc_get_encryption_policy(filp, arg); 4231 case FS_IOC_GET_ENCRYPTION_PWSALT: 4232 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4233 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4234 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4235 case FS_IOC_ADD_ENCRYPTION_KEY: 4236 return f2fs_ioc_add_encryption_key(filp, arg); 4237 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4238 return f2fs_ioc_remove_encryption_key(filp, arg); 4239 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4240 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4241 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4242 return f2fs_ioc_get_encryption_key_status(filp, arg); 4243 case FS_IOC_GET_ENCRYPTION_NONCE: 4244 return f2fs_ioc_get_encryption_nonce(filp, arg); 4245 case F2FS_IOC_GARBAGE_COLLECT: 4246 return f2fs_ioc_gc(filp, arg); 4247 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4248 return f2fs_ioc_gc_range(filp, arg); 4249 case F2FS_IOC_WRITE_CHECKPOINT: 4250 return f2fs_ioc_write_checkpoint(filp, arg); 4251 case F2FS_IOC_DEFRAGMENT: 4252 return f2fs_ioc_defragment(filp, arg); 4253 case F2FS_IOC_MOVE_RANGE: 4254 return f2fs_ioc_move_range(filp, arg); 4255 case F2FS_IOC_FLUSH_DEVICE: 4256 return f2fs_ioc_flush_device(filp, arg); 4257 case F2FS_IOC_GET_FEATURES: 4258 return f2fs_ioc_get_features(filp, arg); 4259 case FS_IOC_FSGETXATTR: 4260 return f2fs_ioc_fsgetxattr(filp, arg); 4261 case FS_IOC_FSSETXATTR: 4262 return f2fs_ioc_fssetxattr(filp, arg); 4263 case F2FS_IOC_GET_PIN_FILE: 4264 return f2fs_ioc_get_pin_file(filp, arg); 4265 case F2FS_IOC_SET_PIN_FILE: 4266 return f2fs_ioc_set_pin_file(filp, arg); 4267 case F2FS_IOC_PRECACHE_EXTENTS: 4268 return f2fs_ioc_precache_extents(filp, arg); 4269 case F2FS_IOC_RESIZE_FS: 4270 return f2fs_ioc_resize_fs(filp, arg); 4271 case FS_IOC_ENABLE_VERITY: 4272 return f2fs_ioc_enable_verity(filp, arg); 4273 case FS_IOC_MEASURE_VERITY: 4274 return f2fs_ioc_measure_verity(filp, arg); 4275 case FS_IOC_GETFSLABEL: 4276 return f2fs_ioc_getfslabel(filp, arg); 4277 case FS_IOC_SETFSLABEL: 4278 return f2fs_ioc_setfslabel(filp, arg); 4279 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4280 return f2fs_get_compress_blocks(filp, arg); 4281 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4282 return f2fs_release_compress_blocks(filp, arg); 4283 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4284 return f2fs_reserve_compress_blocks(filp, arg); 4285 case F2FS_IOC_SEC_TRIM_FILE: 4286 return f2fs_sec_trim_file(filp, arg); 4287 case F2FS_IOC_GET_COMPRESS_OPTION: 4288 return f2fs_ioc_get_compress_option(filp, arg); 4289 case F2FS_IOC_SET_COMPRESS_OPTION: 4290 return f2fs_ioc_set_compress_option(filp, arg); 4291 case F2FS_IOC_DECOMPRESS_FILE: 4292 return f2fs_ioc_decompress_file(filp, arg); 4293 case F2FS_IOC_COMPRESS_FILE: 4294 return f2fs_ioc_compress_file(filp, arg); 4295 default: 4296 return -ENOTTY; 4297 } 4298 } 4299 4300 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4301 { 4302 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4303 return -EIO; 4304 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4305 return -ENOSPC; 4306 4307 return __f2fs_ioctl(filp, cmd, arg); 4308 } 4309 4310 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 4311 { 4312 struct file *file = iocb->ki_filp; 4313 struct inode *inode = file_inode(file); 4314 int ret; 4315 4316 if (!f2fs_is_compress_backend_ready(inode)) 4317 return -EOPNOTSUPP; 4318 4319 ret = generic_file_read_iter(iocb, iter); 4320 4321 if (ret > 0) 4322 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret); 4323 4324 return ret; 4325 } 4326 4327 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4328 { 4329 struct file *file = iocb->ki_filp; 4330 struct inode *inode = file_inode(file); 4331 ssize_t ret; 4332 4333 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4334 ret = -EIO; 4335 goto out; 4336 } 4337 4338 if (!f2fs_is_compress_backend_ready(inode)) { 4339 ret = -EOPNOTSUPP; 4340 goto out; 4341 } 4342 4343 if (iocb->ki_flags & IOCB_NOWAIT) { 4344 if (!inode_trylock(inode)) { 4345 ret = -EAGAIN; 4346 goto out; 4347 } 4348 } else { 4349 inode_lock(inode); 4350 } 4351 4352 ret = generic_write_checks(iocb, from); 4353 if (ret > 0) { 4354 bool preallocated = false; 4355 size_t target_size = 0; 4356 int err; 4357 4358 if (iov_iter_fault_in_readable(from, iov_iter_count(from))) 4359 set_inode_flag(inode, FI_NO_PREALLOC); 4360 4361 if ((iocb->ki_flags & IOCB_NOWAIT)) { 4362 if (!f2fs_overwrite_io(inode, iocb->ki_pos, 4363 iov_iter_count(from)) || 4364 f2fs_has_inline_data(inode) || 4365 f2fs_force_buffered_io(inode, iocb, from)) { 4366 clear_inode_flag(inode, FI_NO_PREALLOC); 4367 inode_unlock(inode); 4368 ret = -EAGAIN; 4369 goto out; 4370 } 4371 goto write; 4372 } 4373 4374 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 4375 goto write; 4376 4377 if (iocb->ki_flags & IOCB_DIRECT) { 4378 /* 4379 * Convert inline data for Direct I/O before entering 4380 * f2fs_direct_IO(). 4381 */ 4382 err = f2fs_convert_inline_inode(inode); 4383 if (err) 4384 goto out_err; 4385 /* 4386 * If force_buffere_io() is true, we have to allocate 4387 * blocks all the time, since f2fs_direct_IO will fall 4388 * back to buffered IO. 4389 */ 4390 if (!f2fs_force_buffered_io(inode, iocb, from) && 4391 allow_outplace_dio(inode, iocb, from)) 4392 goto write; 4393 } 4394 preallocated = true; 4395 target_size = iocb->ki_pos + iov_iter_count(from); 4396 4397 err = f2fs_preallocate_blocks(iocb, from); 4398 if (err) { 4399 out_err: 4400 clear_inode_flag(inode, FI_NO_PREALLOC); 4401 inode_unlock(inode); 4402 ret = err; 4403 goto out; 4404 } 4405 write: 4406 ret = __generic_file_write_iter(iocb, from); 4407 clear_inode_flag(inode, FI_NO_PREALLOC); 4408 4409 /* if we couldn't write data, we should deallocate blocks. */ 4410 if (preallocated && i_size_read(inode) < target_size) 4411 f2fs_truncate(inode); 4412 4413 if (ret > 0) 4414 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); 4415 } 4416 inode_unlock(inode); 4417 out: 4418 trace_f2fs_file_write_iter(inode, iocb->ki_pos, 4419 iov_iter_count(from), ret); 4420 if (ret > 0) 4421 ret = generic_write_sync(iocb, ret); 4422 return ret; 4423 } 4424 4425 #ifdef CONFIG_COMPAT 4426 struct compat_f2fs_gc_range { 4427 u32 sync; 4428 compat_u64 start; 4429 compat_u64 len; 4430 }; 4431 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4432 struct compat_f2fs_gc_range) 4433 4434 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4435 { 4436 struct compat_f2fs_gc_range __user *urange; 4437 struct f2fs_gc_range range; 4438 int err; 4439 4440 urange = compat_ptr(arg); 4441 err = get_user(range.sync, &urange->sync); 4442 err |= get_user(range.start, &urange->start); 4443 err |= get_user(range.len, &urange->len); 4444 if (err) 4445 return -EFAULT; 4446 4447 return __f2fs_ioc_gc_range(file, &range); 4448 } 4449 4450 struct compat_f2fs_move_range { 4451 u32 dst_fd; 4452 compat_u64 pos_in; 4453 compat_u64 pos_out; 4454 compat_u64 len; 4455 }; 4456 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4457 struct compat_f2fs_move_range) 4458 4459 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4460 { 4461 struct compat_f2fs_move_range __user *urange; 4462 struct f2fs_move_range range; 4463 int err; 4464 4465 urange = compat_ptr(arg); 4466 err = get_user(range.dst_fd, &urange->dst_fd); 4467 err |= get_user(range.pos_in, &urange->pos_in); 4468 err |= get_user(range.pos_out, &urange->pos_out); 4469 err |= get_user(range.len, &urange->len); 4470 if (err) 4471 return -EFAULT; 4472 4473 return __f2fs_ioc_move_range(file, &range); 4474 } 4475 4476 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4477 { 4478 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4479 return -EIO; 4480 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4481 return -ENOSPC; 4482 4483 switch (cmd) { 4484 case FS_IOC32_GETFLAGS: 4485 cmd = FS_IOC_GETFLAGS; 4486 break; 4487 case FS_IOC32_SETFLAGS: 4488 cmd = FS_IOC_SETFLAGS; 4489 break; 4490 case FS_IOC32_GETVERSION: 4491 cmd = FS_IOC_GETVERSION; 4492 break; 4493 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4494 return f2fs_compat_ioc_gc_range(file, arg); 4495 case F2FS_IOC32_MOVE_RANGE: 4496 return f2fs_compat_ioc_move_range(file, arg); 4497 case F2FS_IOC_START_ATOMIC_WRITE: 4498 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4499 case F2FS_IOC_START_VOLATILE_WRITE: 4500 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4501 case F2FS_IOC_ABORT_VOLATILE_WRITE: 4502 case F2FS_IOC_SHUTDOWN: 4503 case FITRIM: 4504 case FS_IOC_SET_ENCRYPTION_POLICY: 4505 case FS_IOC_GET_ENCRYPTION_PWSALT: 4506 case FS_IOC_GET_ENCRYPTION_POLICY: 4507 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4508 case FS_IOC_ADD_ENCRYPTION_KEY: 4509 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4510 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4511 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4512 case FS_IOC_GET_ENCRYPTION_NONCE: 4513 case F2FS_IOC_GARBAGE_COLLECT: 4514 case F2FS_IOC_WRITE_CHECKPOINT: 4515 case F2FS_IOC_DEFRAGMENT: 4516 case F2FS_IOC_FLUSH_DEVICE: 4517 case F2FS_IOC_GET_FEATURES: 4518 case FS_IOC_FSGETXATTR: 4519 case FS_IOC_FSSETXATTR: 4520 case F2FS_IOC_GET_PIN_FILE: 4521 case F2FS_IOC_SET_PIN_FILE: 4522 case F2FS_IOC_PRECACHE_EXTENTS: 4523 case F2FS_IOC_RESIZE_FS: 4524 case FS_IOC_ENABLE_VERITY: 4525 case FS_IOC_MEASURE_VERITY: 4526 case FS_IOC_GETFSLABEL: 4527 case FS_IOC_SETFSLABEL: 4528 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4529 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4530 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4531 case F2FS_IOC_SEC_TRIM_FILE: 4532 case F2FS_IOC_GET_COMPRESS_OPTION: 4533 case F2FS_IOC_SET_COMPRESS_OPTION: 4534 case F2FS_IOC_DECOMPRESS_FILE: 4535 case F2FS_IOC_COMPRESS_FILE: 4536 break; 4537 default: 4538 return -ENOIOCTLCMD; 4539 } 4540 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4541 } 4542 #endif 4543 4544 const struct file_operations f2fs_file_operations = { 4545 .llseek = f2fs_llseek, 4546 .read_iter = f2fs_file_read_iter, 4547 .write_iter = f2fs_file_write_iter, 4548 .open = f2fs_file_open, 4549 .release = f2fs_release_file, 4550 .mmap = f2fs_file_mmap, 4551 .flush = f2fs_file_flush, 4552 .fsync = f2fs_sync_file, 4553 .fallocate = f2fs_fallocate, 4554 .unlocked_ioctl = f2fs_ioctl, 4555 #ifdef CONFIG_COMPAT 4556 .compat_ioctl = f2fs_compat_ioctl, 4557 #endif 4558 .splice_read = generic_file_splice_read, 4559 .splice_write = iter_file_splice_write, 4560 }; 4561