xref: /openbmc/linux/fs/f2fs/file.c (revision 68198dca)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35 
36 static int f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 	struct inode *inode = file_inode(vmf->vma->vm_file);
39 	int err;
40 
41 	down_read(&F2FS_I(inode)->i_mmap_sem);
42 	err = filemap_fault(vmf);
43 	up_read(&F2FS_I(inode)->i_mmap_sem);
44 
45 	return err;
46 }
47 
48 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 	struct page *page = vmf->page;
51 	struct inode *inode = file_inode(vmf->vma->vm_file);
52 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 	struct dnode_of_data dn;
54 	int err;
55 
56 	if (unlikely(f2fs_cp_error(sbi))) {
57 		err = -EIO;
58 		goto err;
59 	}
60 
61 	sb_start_pagefault(inode->i_sb);
62 
63 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
64 
65 	/* block allocation */
66 	f2fs_lock_op(sbi);
67 	set_new_dnode(&dn, inode, NULL, NULL, 0);
68 	err = f2fs_reserve_block(&dn, page->index);
69 	if (err) {
70 		f2fs_unlock_op(sbi);
71 		goto out;
72 	}
73 	f2fs_put_dnode(&dn);
74 	f2fs_unlock_op(sbi);
75 
76 	f2fs_balance_fs(sbi, dn.node_changed);
77 
78 	file_update_time(vmf->vma->vm_file);
79 	down_read(&F2FS_I(inode)->i_mmap_sem);
80 	lock_page(page);
81 	if (unlikely(page->mapping != inode->i_mapping ||
82 			page_offset(page) > i_size_read(inode) ||
83 			!PageUptodate(page))) {
84 		unlock_page(page);
85 		err = -EFAULT;
86 		goto out_sem;
87 	}
88 
89 	/*
90 	 * check to see if the page is mapped already (no holes)
91 	 */
92 	if (PageMappedToDisk(page))
93 		goto mapped;
94 
95 	/* page is wholly or partially inside EOF */
96 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
97 						i_size_read(inode)) {
98 		unsigned offset;
99 		offset = i_size_read(inode) & ~PAGE_MASK;
100 		zero_user_segment(page, offset, PAGE_SIZE);
101 	}
102 	set_page_dirty(page);
103 	if (!PageUptodate(page))
104 		SetPageUptodate(page);
105 
106 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
107 
108 	trace_f2fs_vm_page_mkwrite(page, DATA);
109 mapped:
110 	/* fill the page */
111 	f2fs_wait_on_page_writeback(page, DATA, false);
112 
113 	/* wait for GCed encrypted page writeback */
114 	if (f2fs_encrypted_file(inode))
115 		f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
116 
117 out_sem:
118 	up_read(&F2FS_I(inode)->i_mmap_sem);
119 out:
120 	sb_end_pagefault(inode->i_sb);
121 	f2fs_update_time(sbi, REQ_TIME);
122 err:
123 	return block_page_mkwrite_return(err);
124 }
125 
126 static const struct vm_operations_struct f2fs_file_vm_ops = {
127 	.fault		= f2fs_filemap_fault,
128 	.map_pages	= filemap_map_pages,
129 	.page_mkwrite	= f2fs_vm_page_mkwrite,
130 };
131 
132 static int get_parent_ino(struct inode *inode, nid_t *pino)
133 {
134 	struct dentry *dentry;
135 
136 	inode = igrab(inode);
137 	dentry = d_find_any_alias(inode);
138 	iput(inode);
139 	if (!dentry)
140 		return 0;
141 
142 	*pino = parent_ino(dentry);
143 	dput(dentry);
144 	return 1;
145 }
146 
147 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
148 {
149 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
150 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
151 
152 	if (!S_ISREG(inode->i_mode))
153 		cp_reason = CP_NON_REGULAR;
154 	else if (inode->i_nlink != 1)
155 		cp_reason = CP_HARDLINK;
156 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
157 		cp_reason = CP_SB_NEED_CP;
158 	else if (file_wrong_pino(inode))
159 		cp_reason = CP_WRONG_PINO;
160 	else if (!space_for_roll_forward(sbi))
161 		cp_reason = CP_NO_SPC_ROLL;
162 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
163 		cp_reason = CP_NODE_NEED_CP;
164 	else if (test_opt(sbi, FASTBOOT))
165 		cp_reason = CP_FASTBOOT_MODE;
166 	else if (sbi->active_logs == 2)
167 		cp_reason = CP_SPEC_LOG_NUM;
168 
169 	return cp_reason;
170 }
171 
172 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
173 {
174 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
175 	bool ret = false;
176 	/* But we need to avoid that there are some inode updates */
177 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
178 		ret = true;
179 	f2fs_put_page(i, 0);
180 	return ret;
181 }
182 
183 static void try_to_fix_pino(struct inode *inode)
184 {
185 	struct f2fs_inode_info *fi = F2FS_I(inode);
186 	nid_t pino;
187 
188 	down_write(&fi->i_sem);
189 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
190 			get_parent_ino(inode, &pino)) {
191 		f2fs_i_pino_write(inode, pino);
192 		file_got_pino(inode);
193 	}
194 	up_write(&fi->i_sem);
195 }
196 
197 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
198 						int datasync, bool atomic)
199 {
200 	struct inode *inode = file->f_mapping->host;
201 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
202 	nid_t ino = inode->i_ino;
203 	int ret = 0;
204 	enum cp_reason_type cp_reason = 0;
205 	struct writeback_control wbc = {
206 		.sync_mode = WB_SYNC_ALL,
207 		.nr_to_write = LONG_MAX,
208 		.for_reclaim = 0,
209 	};
210 
211 	if (unlikely(f2fs_readonly(inode->i_sb)))
212 		return 0;
213 
214 	trace_f2fs_sync_file_enter(inode);
215 
216 	/* if fdatasync is triggered, let's do in-place-update */
217 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
218 		set_inode_flag(inode, FI_NEED_IPU);
219 	ret = file_write_and_wait_range(file, start, end);
220 	clear_inode_flag(inode, FI_NEED_IPU);
221 
222 	if (ret) {
223 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
224 		return ret;
225 	}
226 
227 	/* if the inode is dirty, let's recover all the time */
228 	if (!f2fs_skip_inode_update(inode, datasync)) {
229 		f2fs_write_inode(inode, NULL);
230 		goto go_write;
231 	}
232 
233 	/*
234 	 * if there is no written data, don't waste time to write recovery info.
235 	 */
236 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
237 			!exist_written_data(sbi, ino, APPEND_INO)) {
238 
239 		/* it may call write_inode just prior to fsync */
240 		if (need_inode_page_update(sbi, ino))
241 			goto go_write;
242 
243 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
244 				exist_written_data(sbi, ino, UPDATE_INO))
245 			goto flush_out;
246 		goto out;
247 	}
248 go_write:
249 	/*
250 	 * Both of fdatasync() and fsync() are able to be recovered from
251 	 * sudden-power-off.
252 	 */
253 	down_read(&F2FS_I(inode)->i_sem);
254 	cp_reason = need_do_checkpoint(inode);
255 	up_read(&F2FS_I(inode)->i_sem);
256 
257 	if (cp_reason) {
258 		/* all the dirty node pages should be flushed for POR */
259 		ret = f2fs_sync_fs(inode->i_sb, 1);
260 
261 		/*
262 		 * We've secured consistency through sync_fs. Following pino
263 		 * will be used only for fsynced inodes after checkpoint.
264 		 */
265 		try_to_fix_pino(inode);
266 		clear_inode_flag(inode, FI_APPEND_WRITE);
267 		clear_inode_flag(inode, FI_UPDATE_WRITE);
268 		goto out;
269 	}
270 sync_nodes:
271 	ret = fsync_node_pages(sbi, inode, &wbc, atomic);
272 	if (ret)
273 		goto out;
274 
275 	/* if cp_error was enabled, we should avoid infinite loop */
276 	if (unlikely(f2fs_cp_error(sbi))) {
277 		ret = -EIO;
278 		goto out;
279 	}
280 
281 	if (need_inode_block_update(sbi, ino)) {
282 		f2fs_mark_inode_dirty_sync(inode, true);
283 		f2fs_write_inode(inode, NULL);
284 		goto sync_nodes;
285 	}
286 
287 	/*
288 	 * If it's atomic_write, it's just fine to keep write ordering. So
289 	 * here we don't need to wait for node write completion, since we use
290 	 * node chain which serializes node blocks. If one of node writes are
291 	 * reordered, we can see simply broken chain, resulting in stopping
292 	 * roll-forward recovery. It means we'll recover all or none node blocks
293 	 * given fsync mark.
294 	 */
295 	if (!atomic) {
296 		ret = wait_on_node_pages_writeback(sbi, ino);
297 		if (ret)
298 			goto out;
299 	}
300 
301 	/* once recovery info is written, don't need to tack this */
302 	remove_ino_entry(sbi, ino, APPEND_INO);
303 	clear_inode_flag(inode, FI_APPEND_WRITE);
304 flush_out:
305 	if (!atomic)
306 		ret = f2fs_issue_flush(sbi, inode->i_ino);
307 	if (!ret) {
308 		remove_ino_entry(sbi, ino, UPDATE_INO);
309 		clear_inode_flag(inode, FI_UPDATE_WRITE);
310 		remove_ino_entry(sbi, ino, FLUSH_INO);
311 	}
312 	f2fs_update_time(sbi, REQ_TIME);
313 out:
314 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
315 	f2fs_trace_ios(NULL, 1);
316 	return ret;
317 }
318 
319 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
320 {
321 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
322 		return -EIO;
323 	return f2fs_do_sync_file(file, start, end, datasync, false);
324 }
325 
326 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
327 						pgoff_t pgofs, int whence)
328 {
329 	struct page *page;
330 	int nr_pages;
331 
332 	if (whence != SEEK_DATA)
333 		return 0;
334 
335 	/* find first dirty page index */
336 	nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
337 				      1, &page);
338 	if (!nr_pages)
339 		return ULONG_MAX;
340 	pgofs = page->index;
341 	put_page(page);
342 	return pgofs;
343 }
344 
345 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
346 							int whence)
347 {
348 	switch (whence) {
349 	case SEEK_DATA:
350 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
351 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
352 			return true;
353 		break;
354 	case SEEK_HOLE:
355 		if (blkaddr == NULL_ADDR)
356 			return true;
357 		break;
358 	}
359 	return false;
360 }
361 
362 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
363 {
364 	struct inode *inode = file->f_mapping->host;
365 	loff_t maxbytes = inode->i_sb->s_maxbytes;
366 	struct dnode_of_data dn;
367 	pgoff_t pgofs, end_offset, dirty;
368 	loff_t data_ofs = offset;
369 	loff_t isize;
370 	int err = 0;
371 
372 	inode_lock(inode);
373 
374 	isize = i_size_read(inode);
375 	if (offset >= isize)
376 		goto fail;
377 
378 	/* handle inline data case */
379 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
380 		if (whence == SEEK_HOLE)
381 			data_ofs = isize;
382 		goto found;
383 	}
384 
385 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
386 
387 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
388 
389 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
390 		set_new_dnode(&dn, inode, NULL, NULL, 0);
391 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
392 		if (err && err != -ENOENT) {
393 			goto fail;
394 		} else if (err == -ENOENT) {
395 			/* direct node does not exists */
396 			if (whence == SEEK_DATA) {
397 				pgofs = get_next_page_offset(&dn, pgofs);
398 				continue;
399 			} else {
400 				goto found;
401 			}
402 		}
403 
404 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
405 
406 		/* find data/hole in dnode block */
407 		for (; dn.ofs_in_node < end_offset;
408 				dn.ofs_in_node++, pgofs++,
409 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
410 			block_t blkaddr;
411 			blkaddr = datablock_addr(dn.inode,
412 					dn.node_page, dn.ofs_in_node);
413 
414 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
415 				f2fs_put_dnode(&dn);
416 				goto found;
417 			}
418 		}
419 		f2fs_put_dnode(&dn);
420 	}
421 
422 	if (whence == SEEK_DATA)
423 		goto fail;
424 found:
425 	if (whence == SEEK_HOLE && data_ofs > isize)
426 		data_ofs = isize;
427 	inode_unlock(inode);
428 	return vfs_setpos(file, data_ofs, maxbytes);
429 fail:
430 	inode_unlock(inode);
431 	return -ENXIO;
432 }
433 
434 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
435 {
436 	struct inode *inode = file->f_mapping->host;
437 	loff_t maxbytes = inode->i_sb->s_maxbytes;
438 
439 	switch (whence) {
440 	case SEEK_SET:
441 	case SEEK_CUR:
442 	case SEEK_END:
443 		return generic_file_llseek_size(file, offset, whence,
444 						maxbytes, i_size_read(inode));
445 	case SEEK_DATA:
446 	case SEEK_HOLE:
447 		if (offset < 0)
448 			return -ENXIO;
449 		return f2fs_seek_block(file, offset, whence);
450 	}
451 
452 	return -EINVAL;
453 }
454 
455 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
456 {
457 	struct inode *inode = file_inode(file);
458 	int err;
459 
460 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
461 		return -EIO;
462 
463 	/* we don't need to use inline_data strictly */
464 	err = f2fs_convert_inline_inode(inode);
465 	if (err)
466 		return err;
467 
468 	file_accessed(file);
469 	vma->vm_ops = &f2fs_file_vm_ops;
470 	return 0;
471 }
472 
473 static int f2fs_file_open(struct inode *inode, struct file *filp)
474 {
475 	struct dentry *dir;
476 
477 	if (f2fs_encrypted_inode(inode)) {
478 		int ret = fscrypt_get_encryption_info(inode);
479 		if (ret)
480 			return -EACCES;
481 		if (!fscrypt_has_encryption_key(inode))
482 			return -ENOKEY;
483 	}
484 	dir = dget_parent(file_dentry(filp));
485 	if (f2fs_encrypted_inode(d_inode(dir)) &&
486 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
487 		dput(dir);
488 		return -EPERM;
489 	}
490 	dput(dir);
491 	return dquot_file_open(inode, filp);
492 }
493 
494 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
495 {
496 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
497 	struct f2fs_node *raw_node;
498 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
499 	__le32 *addr;
500 	int base = 0;
501 
502 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
503 		base = get_extra_isize(dn->inode);
504 
505 	raw_node = F2FS_NODE(dn->node_page);
506 	addr = blkaddr_in_node(raw_node) + base + ofs;
507 
508 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
509 		block_t blkaddr = le32_to_cpu(*addr);
510 		if (blkaddr == NULL_ADDR)
511 			continue;
512 
513 		dn->data_blkaddr = NULL_ADDR;
514 		set_data_blkaddr(dn);
515 		invalidate_blocks(sbi, blkaddr);
516 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
517 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
518 		nr_free++;
519 	}
520 
521 	if (nr_free) {
522 		pgoff_t fofs;
523 		/*
524 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
525 		 * we will invalidate all blkaddr in the whole range.
526 		 */
527 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
528 							dn->inode) + ofs;
529 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
530 		dec_valid_block_count(sbi, dn->inode, nr_free);
531 	}
532 	dn->ofs_in_node = ofs;
533 
534 	f2fs_update_time(sbi, REQ_TIME);
535 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
536 					 dn->ofs_in_node, nr_free);
537 	return nr_free;
538 }
539 
540 void truncate_data_blocks(struct dnode_of_data *dn)
541 {
542 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
543 }
544 
545 static int truncate_partial_data_page(struct inode *inode, u64 from,
546 								bool cache_only)
547 {
548 	unsigned offset = from & (PAGE_SIZE - 1);
549 	pgoff_t index = from >> PAGE_SHIFT;
550 	struct address_space *mapping = inode->i_mapping;
551 	struct page *page;
552 
553 	if (!offset && !cache_only)
554 		return 0;
555 
556 	if (cache_only) {
557 		page = find_lock_page(mapping, index);
558 		if (page && PageUptodate(page))
559 			goto truncate_out;
560 		f2fs_put_page(page, 1);
561 		return 0;
562 	}
563 
564 	page = get_lock_data_page(inode, index, true);
565 	if (IS_ERR(page))
566 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
567 truncate_out:
568 	f2fs_wait_on_page_writeback(page, DATA, true);
569 	zero_user(page, offset, PAGE_SIZE - offset);
570 
571 	/* An encrypted inode should have a key and truncate the last page. */
572 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
573 	if (!cache_only)
574 		set_page_dirty(page);
575 	f2fs_put_page(page, 1);
576 	return 0;
577 }
578 
579 int truncate_blocks(struct inode *inode, u64 from, bool lock)
580 {
581 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
582 	unsigned int blocksize = inode->i_sb->s_blocksize;
583 	struct dnode_of_data dn;
584 	pgoff_t free_from;
585 	int count = 0, err = 0;
586 	struct page *ipage;
587 	bool truncate_page = false;
588 
589 	trace_f2fs_truncate_blocks_enter(inode, from);
590 
591 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
592 
593 	if (free_from >= sbi->max_file_blocks)
594 		goto free_partial;
595 
596 	if (lock)
597 		f2fs_lock_op(sbi);
598 
599 	ipage = get_node_page(sbi, inode->i_ino);
600 	if (IS_ERR(ipage)) {
601 		err = PTR_ERR(ipage);
602 		goto out;
603 	}
604 
605 	if (f2fs_has_inline_data(inode)) {
606 		truncate_inline_inode(inode, ipage, from);
607 		f2fs_put_page(ipage, 1);
608 		truncate_page = true;
609 		goto out;
610 	}
611 
612 	set_new_dnode(&dn, inode, ipage, NULL, 0);
613 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
614 	if (err) {
615 		if (err == -ENOENT)
616 			goto free_next;
617 		goto out;
618 	}
619 
620 	count = ADDRS_PER_PAGE(dn.node_page, inode);
621 
622 	count -= dn.ofs_in_node;
623 	f2fs_bug_on(sbi, count < 0);
624 
625 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
626 		truncate_data_blocks_range(&dn, count);
627 		free_from += count;
628 	}
629 
630 	f2fs_put_dnode(&dn);
631 free_next:
632 	err = truncate_inode_blocks(inode, free_from);
633 out:
634 	if (lock)
635 		f2fs_unlock_op(sbi);
636 free_partial:
637 	/* lastly zero out the first data page */
638 	if (!err)
639 		err = truncate_partial_data_page(inode, from, truncate_page);
640 
641 	trace_f2fs_truncate_blocks_exit(inode, err);
642 	return err;
643 }
644 
645 int f2fs_truncate(struct inode *inode)
646 {
647 	int err;
648 
649 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
650 		return -EIO;
651 
652 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
653 				S_ISLNK(inode->i_mode)))
654 		return 0;
655 
656 	trace_f2fs_truncate(inode);
657 
658 #ifdef CONFIG_F2FS_FAULT_INJECTION
659 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
660 		f2fs_show_injection_info(FAULT_TRUNCATE);
661 		return -EIO;
662 	}
663 #endif
664 	/* we should check inline_data size */
665 	if (!f2fs_may_inline_data(inode)) {
666 		err = f2fs_convert_inline_inode(inode);
667 		if (err)
668 			return err;
669 	}
670 
671 	err = truncate_blocks(inode, i_size_read(inode), true);
672 	if (err)
673 		return err;
674 
675 	inode->i_mtime = inode->i_ctime = current_time(inode);
676 	f2fs_mark_inode_dirty_sync(inode, false);
677 	return 0;
678 }
679 
680 int f2fs_getattr(const struct path *path, struct kstat *stat,
681 		 u32 request_mask, unsigned int query_flags)
682 {
683 	struct inode *inode = d_inode(path->dentry);
684 	struct f2fs_inode_info *fi = F2FS_I(inode);
685 	unsigned int flags;
686 
687 	flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
688 	if (flags & FS_APPEND_FL)
689 		stat->attributes |= STATX_ATTR_APPEND;
690 	if (flags & FS_COMPR_FL)
691 		stat->attributes |= STATX_ATTR_COMPRESSED;
692 	if (f2fs_encrypted_inode(inode))
693 		stat->attributes |= STATX_ATTR_ENCRYPTED;
694 	if (flags & FS_IMMUTABLE_FL)
695 		stat->attributes |= STATX_ATTR_IMMUTABLE;
696 	if (flags & FS_NODUMP_FL)
697 		stat->attributes |= STATX_ATTR_NODUMP;
698 
699 	stat->attributes_mask |= (STATX_ATTR_APPEND |
700 				  STATX_ATTR_COMPRESSED |
701 				  STATX_ATTR_ENCRYPTED |
702 				  STATX_ATTR_IMMUTABLE |
703 				  STATX_ATTR_NODUMP);
704 
705 	generic_fillattr(inode, stat);
706 
707 	/* we need to show initial sectors used for inline_data/dentries */
708 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
709 					f2fs_has_inline_dentry(inode))
710 		stat->blocks += (stat->size + 511) >> 9;
711 
712 	return 0;
713 }
714 
715 #ifdef CONFIG_F2FS_FS_POSIX_ACL
716 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
717 {
718 	unsigned int ia_valid = attr->ia_valid;
719 
720 	if (ia_valid & ATTR_UID)
721 		inode->i_uid = attr->ia_uid;
722 	if (ia_valid & ATTR_GID)
723 		inode->i_gid = attr->ia_gid;
724 	if (ia_valid & ATTR_ATIME)
725 		inode->i_atime = timespec_trunc(attr->ia_atime,
726 						inode->i_sb->s_time_gran);
727 	if (ia_valid & ATTR_MTIME)
728 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
729 						inode->i_sb->s_time_gran);
730 	if (ia_valid & ATTR_CTIME)
731 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
732 						inode->i_sb->s_time_gran);
733 	if (ia_valid & ATTR_MODE) {
734 		umode_t mode = attr->ia_mode;
735 
736 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
737 			mode &= ~S_ISGID;
738 		set_acl_inode(inode, mode);
739 	}
740 }
741 #else
742 #define __setattr_copy setattr_copy
743 #endif
744 
745 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
746 {
747 	struct inode *inode = d_inode(dentry);
748 	int err;
749 	bool size_changed = false;
750 
751 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
752 		return -EIO;
753 
754 	err = setattr_prepare(dentry, attr);
755 	if (err)
756 		return err;
757 
758 	if (is_quota_modification(inode, attr)) {
759 		err = dquot_initialize(inode);
760 		if (err)
761 			return err;
762 	}
763 	if ((attr->ia_valid & ATTR_UID &&
764 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
765 		(attr->ia_valid & ATTR_GID &&
766 		!gid_eq(attr->ia_gid, inode->i_gid))) {
767 		err = dquot_transfer(inode, attr);
768 		if (err)
769 			return err;
770 	}
771 
772 	if (attr->ia_valid & ATTR_SIZE) {
773 		if (f2fs_encrypted_inode(inode)) {
774 			err = fscrypt_get_encryption_info(inode);
775 			if (err)
776 				return err;
777 			if (!fscrypt_has_encryption_key(inode))
778 				return -ENOKEY;
779 		}
780 
781 		if (attr->ia_size <= i_size_read(inode)) {
782 			down_write(&F2FS_I(inode)->i_mmap_sem);
783 			truncate_setsize(inode, attr->ia_size);
784 			err = f2fs_truncate(inode);
785 			up_write(&F2FS_I(inode)->i_mmap_sem);
786 			if (err)
787 				return err;
788 		} else {
789 			/*
790 			 * do not trim all blocks after i_size if target size is
791 			 * larger than i_size.
792 			 */
793 			down_write(&F2FS_I(inode)->i_mmap_sem);
794 			truncate_setsize(inode, attr->ia_size);
795 			up_write(&F2FS_I(inode)->i_mmap_sem);
796 
797 			/* should convert inline inode here */
798 			if (!f2fs_may_inline_data(inode)) {
799 				err = f2fs_convert_inline_inode(inode);
800 				if (err)
801 					return err;
802 			}
803 			inode->i_mtime = inode->i_ctime = current_time(inode);
804 		}
805 
806 		down_write(&F2FS_I(inode)->i_sem);
807 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
808 		up_write(&F2FS_I(inode)->i_sem);
809 
810 		size_changed = true;
811 	}
812 
813 	__setattr_copy(inode, attr);
814 
815 	if (attr->ia_valid & ATTR_MODE) {
816 		err = posix_acl_chmod(inode, get_inode_mode(inode));
817 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
818 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
819 			clear_inode_flag(inode, FI_ACL_MODE);
820 		}
821 	}
822 
823 	/* file size may changed here */
824 	f2fs_mark_inode_dirty_sync(inode, size_changed);
825 
826 	/* inode change will produce dirty node pages flushed by checkpoint */
827 	f2fs_balance_fs(F2FS_I_SB(inode), true);
828 
829 	return err;
830 }
831 
832 const struct inode_operations f2fs_file_inode_operations = {
833 	.getattr	= f2fs_getattr,
834 	.setattr	= f2fs_setattr,
835 	.get_acl	= f2fs_get_acl,
836 	.set_acl	= f2fs_set_acl,
837 #ifdef CONFIG_F2FS_FS_XATTR
838 	.listxattr	= f2fs_listxattr,
839 #endif
840 	.fiemap		= f2fs_fiemap,
841 };
842 
843 static int fill_zero(struct inode *inode, pgoff_t index,
844 					loff_t start, loff_t len)
845 {
846 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
847 	struct page *page;
848 
849 	if (!len)
850 		return 0;
851 
852 	f2fs_balance_fs(sbi, true);
853 
854 	f2fs_lock_op(sbi);
855 	page = get_new_data_page(inode, NULL, index, false);
856 	f2fs_unlock_op(sbi);
857 
858 	if (IS_ERR(page))
859 		return PTR_ERR(page);
860 
861 	f2fs_wait_on_page_writeback(page, DATA, true);
862 	zero_user(page, start, len);
863 	set_page_dirty(page);
864 	f2fs_put_page(page, 1);
865 	return 0;
866 }
867 
868 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
869 {
870 	int err;
871 
872 	while (pg_start < pg_end) {
873 		struct dnode_of_data dn;
874 		pgoff_t end_offset, count;
875 
876 		set_new_dnode(&dn, inode, NULL, NULL, 0);
877 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
878 		if (err) {
879 			if (err == -ENOENT) {
880 				pg_start = get_next_page_offset(&dn, pg_start);
881 				continue;
882 			}
883 			return err;
884 		}
885 
886 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
887 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
888 
889 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
890 
891 		truncate_data_blocks_range(&dn, count);
892 		f2fs_put_dnode(&dn);
893 
894 		pg_start += count;
895 	}
896 	return 0;
897 }
898 
899 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
900 {
901 	pgoff_t pg_start, pg_end;
902 	loff_t off_start, off_end;
903 	int ret;
904 
905 	ret = f2fs_convert_inline_inode(inode);
906 	if (ret)
907 		return ret;
908 
909 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
910 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
911 
912 	off_start = offset & (PAGE_SIZE - 1);
913 	off_end = (offset + len) & (PAGE_SIZE - 1);
914 
915 	if (pg_start == pg_end) {
916 		ret = fill_zero(inode, pg_start, off_start,
917 						off_end - off_start);
918 		if (ret)
919 			return ret;
920 	} else {
921 		if (off_start) {
922 			ret = fill_zero(inode, pg_start++, off_start,
923 						PAGE_SIZE - off_start);
924 			if (ret)
925 				return ret;
926 		}
927 		if (off_end) {
928 			ret = fill_zero(inode, pg_end, 0, off_end);
929 			if (ret)
930 				return ret;
931 		}
932 
933 		if (pg_start < pg_end) {
934 			struct address_space *mapping = inode->i_mapping;
935 			loff_t blk_start, blk_end;
936 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
937 
938 			f2fs_balance_fs(sbi, true);
939 
940 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
941 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
942 			down_write(&F2FS_I(inode)->i_mmap_sem);
943 			truncate_inode_pages_range(mapping, blk_start,
944 					blk_end - 1);
945 
946 			f2fs_lock_op(sbi);
947 			ret = truncate_hole(inode, pg_start, pg_end);
948 			f2fs_unlock_op(sbi);
949 			up_write(&F2FS_I(inode)->i_mmap_sem);
950 		}
951 	}
952 
953 	return ret;
954 }
955 
956 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
957 				int *do_replace, pgoff_t off, pgoff_t len)
958 {
959 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
960 	struct dnode_of_data dn;
961 	int ret, done, i;
962 
963 next_dnode:
964 	set_new_dnode(&dn, inode, NULL, NULL, 0);
965 	ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
966 	if (ret && ret != -ENOENT) {
967 		return ret;
968 	} else if (ret == -ENOENT) {
969 		if (dn.max_level == 0)
970 			return -ENOENT;
971 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
972 		blkaddr += done;
973 		do_replace += done;
974 		goto next;
975 	}
976 
977 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
978 							dn.ofs_in_node, len);
979 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
980 		*blkaddr = datablock_addr(dn.inode,
981 					dn.node_page, dn.ofs_in_node);
982 		if (!is_checkpointed_data(sbi, *blkaddr)) {
983 
984 			if (test_opt(sbi, LFS)) {
985 				f2fs_put_dnode(&dn);
986 				return -ENOTSUPP;
987 			}
988 
989 			/* do not invalidate this block address */
990 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
991 			*do_replace = 1;
992 		}
993 	}
994 	f2fs_put_dnode(&dn);
995 next:
996 	len -= done;
997 	off += done;
998 	if (len)
999 		goto next_dnode;
1000 	return 0;
1001 }
1002 
1003 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1004 				int *do_replace, pgoff_t off, int len)
1005 {
1006 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007 	struct dnode_of_data dn;
1008 	int ret, i;
1009 
1010 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1011 		if (*do_replace == 0)
1012 			continue;
1013 
1014 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1015 		ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1016 		if (ret) {
1017 			dec_valid_block_count(sbi, inode, 1);
1018 			invalidate_blocks(sbi, *blkaddr);
1019 		} else {
1020 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1021 		}
1022 		f2fs_put_dnode(&dn);
1023 	}
1024 	return 0;
1025 }
1026 
1027 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1028 			block_t *blkaddr, int *do_replace,
1029 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1030 {
1031 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1032 	pgoff_t i = 0;
1033 	int ret;
1034 
1035 	while (i < len) {
1036 		if (blkaddr[i] == NULL_ADDR && !full) {
1037 			i++;
1038 			continue;
1039 		}
1040 
1041 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1042 			struct dnode_of_data dn;
1043 			struct node_info ni;
1044 			size_t new_size;
1045 			pgoff_t ilen;
1046 
1047 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1048 			ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1049 			if (ret)
1050 				return ret;
1051 
1052 			get_node_info(sbi, dn.nid, &ni);
1053 			ilen = min((pgoff_t)
1054 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1055 						dn.ofs_in_node, len - i);
1056 			do {
1057 				dn.data_blkaddr = datablock_addr(dn.inode,
1058 						dn.node_page, dn.ofs_in_node);
1059 				truncate_data_blocks_range(&dn, 1);
1060 
1061 				if (do_replace[i]) {
1062 					f2fs_i_blocks_write(src_inode,
1063 							1, false, false);
1064 					f2fs_i_blocks_write(dst_inode,
1065 							1, true, false);
1066 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1067 					blkaddr[i], ni.version, true, false);
1068 
1069 					do_replace[i] = 0;
1070 				}
1071 				dn.ofs_in_node++;
1072 				i++;
1073 				new_size = (dst + i) << PAGE_SHIFT;
1074 				if (dst_inode->i_size < new_size)
1075 					f2fs_i_size_write(dst_inode, new_size);
1076 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1077 
1078 			f2fs_put_dnode(&dn);
1079 		} else {
1080 			struct page *psrc, *pdst;
1081 
1082 			psrc = get_lock_data_page(src_inode, src + i, true);
1083 			if (IS_ERR(psrc))
1084 				return PTR_ERR(psrc);
1085 			pdst = get_new_data_page(dst_inode, NULL, dst + i,
1086 								true);
1087 			if (IS_ERR(pdst)) {
1088 				f2fs_put_page(psrc, 1);
1089 				return PTR_ERR(pdst);
1090 			}
1091 			f2fs_copy_page(psrc, pdst);
1092 			set_page_dirty(pdst);
1093 			f2fs_put_page(pdst, 1);
1094 			f2fs_put_page(psrc, 1);
1095 
1096 			ret = truncate_hole(src_inode, src + i, src + i + 1);
1097 			if (ret)
1098 				return ret;
1099 			i++;
1100 		}
1101 	}
1102 	return 0;
1103 }
1104 
1105 static int __exchange_data_block(struct inode *src_inode,
1106 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1107 			pgoff_t len, bool full)
1108 {
1109 	block_t *src_blkaddr;
1110 	int *do_replace;
1111 	pgoff_t olen;
1112 	int ret;
1113 
1114 	while (len) {
1115 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1116 
1117 		src_blkaddr = kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1118 		if (!src_blkaddr)
1119 			return -ENOMEM;
1120 
1121 		do_replace = kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1122 		if (!do_replace) {
1123 			kvfree(src_blkaddr);
1124 			return -ENOMEM;
1125 		}
1126 
1127 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1128 					do_replace, src, olen);
1129 		if (ret)
1130 			goto roll_back;
1131 
1132 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1133 					do_replace, src, dst, olen, full);
1134 		if (ret)
1135 			goto roll_back;
1136 
1137 		src += olen;
1138 		dst += olen;
1139 		len -= olen;
1140 
1141 		kvfree(src_blkaddr);
1142 		kvfree(do_replace);
1143 	}
1144 	return 0;
1145 
1146 roll_back:
1147 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1148 	kvfree(src_blkaddr);
1149 	kvfree(do_replace);
1150 	return ret;
1151 }
1152 
1153 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1154 {
1155 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1156 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1157 	int ret;
1158 
1159 	f2fs_balance_fs(sbi, true);
1160 	f2fs_lock_op(sbi);
1161 
1162 	f2fs_drop_extent_tree(inode);
1163 
1164 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1165 	f2fs_unlock_op(sbi);
1166 	return ret;
1167 }
1168 
1169 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1170 {
1171 	pgoff_t pg_start, pg_end;
1172 	loff_t new_size;
1173 	int ret;
1174 
1175 	if (offset + len >= i_size_read(inode))
1176 		return -EINVAL;
1177 
1178 	/* collapse range should be aligned to block size of f2fs. */
1179 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1180 		return -EINVAL;
1181 
1182 	ret = f2fs_convert_inline_inode(inode);
1183 	if (ret)
1184 		return ret;
1185 
1186 	pg_start = offset >> PAGE_SHIFT;
1187 	pg_end = (offset + len) >> PAGE_SHIFT;
1188 
1189 	down_write(&F2FS_I(inode)->i_mmap_sem);
1190 	/* write out all dirty pages from offset */
1191 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1192 	if (ret)
1193 		goto out;
1194 
1195 	/* avoid gc operation during block exchange */
1196 	down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1197 
1198 	truncate_pagecache(inode, offset);
1199 
1200 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1201 	if (ret)
1202 		goto out_unlock;
1203 
1204 	/* write out all moved pages, if possible */
1205 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1206 	truncate_pagecache(inode, offset);
1207 
1208 	new_size = i_size_read(inode) - len;
1209 	truncate_pagecache(inode, new_size);
1210 
1211 	ret = truncate_blocks(inode, new_size, true);
1212 	if (!ret)
1213 		f2fs_i_size_write(inode, new_size);
1214 out_unlock:
1215 	up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1216 out:
1217 	up_write(&F2FS_I(inode)->i_mmap_sem);
1218 	return ret;
1219 }
1220 
1221 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1222 								pgoff_t end)
1223 {
1224 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1225 	pgoff_t index = start;
1226 	unsigned int ofs_in_node = dn->ofs_in_node;
1227 	blkcnt_t count = 0;
1228 	int ret;
1229 
1230 	for (; index < end; index++, dn->ofs_in_node++) {
1231 		if (datablock_addr(dn->inode, dn->node_page,
1232 					dn->ofs_in_node) == NULL_ADDR)
1233 			count++;
1234 	}
1235 
1236 	dn->ofs_in_node = ofs_in_node;
1237 	ret = reserve_new_blocks(dn, count);
1238 	if (ret)
1239 		return ret;
1240 
1241 	dn->ofs_in_node = ofs_in_node;
1242 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1243 		dn->data_blkaddr = datablock_addr(dn->inode,
1244 					dn->node_page, dn->ofs_in_node);
1245 		/*
1246 		 * reserve_new_blocks will not guarantee entire block
1247 		 * allocation.
1248 		 */
1249 		if (dn->data_blkaddr == NULL_ADDR) {
1250 			ret = -ENOSPC;
1251 			break;
1252 		}
1253 		if (dn->data_blkaddr != NEW_ADDR) {
1254 			invalidate_blocks(sbi, dn->data_blkaddr);
1255 			dn->data_blkaddr = NEW_ADDR;
1256 			set_data_blkaddr(dn);
1257 		}
1258 	}
1259 
1260 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1261 
1262 	return ret;
1263 }
1264 
1265 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1266 								int mode)
1267 {
1268 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1269 	struct address_space *mapping = inode->i_mapping;
1270 	pgoff_t index, pg_start, pg_end;
1271 	loff_t new_size = i_size_read(inode);
1272 	loff_t off_start, off_end;
1273 	int ret = 0;
1274 
1275 	ret = inode_newsize_ok(inode, (len + offset));
1276 	if (ret)
1277 		return ret;
1278 
1279 	ret = f2fs_convert_inline_inode(inode);
1280 	if (ret)
1281 		return ret;
1282 
1283 	down_write(&F2FS_I(inode)->i_mmap_sem);
1284 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1285 	if (ret)
1286 		goto out_sem;
1287 
1288 	truncate_pagecache_range(inode, offset, offset + len - 1);
1289 
1290 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1291 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1292 
1293 	off_start = offset & (PAGE_SIZE - 1);
1294 	off_end = (offset + len) & (PAGE_SIZE - 1);
1295 
1296 	if (pg_start == pg_end) {
1297 		ret = fill_zero(inode, pg_start, off_start,
1298 						off_end - off_start);
1299 		if (ret)
1300 			goto out_sem;
1301 
1302 		new_size = max_t(loff_t, new_size, offset + len);
1303 	} else {
1304 		if (off_start) {
1305 			ret = fill_zero(inode, pg_start++, off_start,
1306 						PAGE_SIZE - off_start);
1307 			if (ret)
1308 				goto out_sem;
1309 
1310 			new_size = max_t(loff_t, new_size,
1311 					(loff_t)pg_start << PAGE_SHIFT);
1312 		}
1313 
1314 		for (index = pg_start; index < pg_end;) {
1315 			struct dnode_of_data dn;
1316 			unsigned int end_offset;
1317 			pgoff_t end;
1318 
1319 			f2fs_lock_op(sbi);
1320 
1321 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1322 			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1323 			if (ret) {
1324 				f2fs_unlock_op(sbi);
1325 				goto out;
1326 			}
1327 
1328 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1329 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1330 
1331 			ret = f2fs_do_zero_range(&dn, index, end);
1332 			f2fs_put_dnode(&dn);
1333 			f2fs_unlock_op(sbi);
1334 
1335 			f2fs_balance_fs(sbi, dn.node_changed);
1336 
1337 			if (ret)
1338 				goto out;
1339 
1340 			index = end;
1341 			new_size = max_t(loff_t, new_size,
1342 					(loff_t)index << PAGE_SHIFT);
1343 		}
1344 
1345 		if (off_end) {
1346 			ret = fill_zero(inode, pg_end, 0, off_end);
1347 			if (ret)
1348 				goto out;
1349 
1350 			new_size = max_t(loff_t, new_size, offset + len);
1351 		}
1352 	}
1353 
1354 out:
1355 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1356 		f2fs_i_size_write(inode, new_size);
1357 out_sem:
1358 	up_write(&F2FS_I(inode)->i_mmap_sem);
1359 
1360 	return ret;
1361 }
1362 
1363 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1364 {
1365 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1366 	pgoff_t nr, pg_start, pg_end, delta, idx;
1367 	loff_t new_size;
1368 	int ret = 0;
1369 
1370 	new_size = i_size_read(inode) + len;
1371 	ret = inode_newsize_ok(inode, new_size);
1372 	if (ret)
1373 		return ret;
1374 
1375 	if (offset >= i_size_read(inode))
1376 		return -EINVAL;
1377 
1378 	/* insert range should be aligned to block size of f2fs. */
1379 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1380 		return -EINVAL;
1381 
1382 	ret = f2fs_convert_inline_inode(inode);
1383 	if (ret)
1384 		return ret;
1385 
1386 	f2fs_balance_fs(sbi, true);
1387 
1388 	down_write(&F2FS_I(inode)->i_mmap_sem);
1389 	ret = truncate_blocks(inode, i_size_read(inode), true);
1390 	if (ret)
1391 		goto out;
1392 
1393 	/* write out all dirty pages from offset */
1394 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1395 	if (ret)
1396 		goto out;
1397 
1398 	/* avoid gc operation during block exchange */
1399 	down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1400 
1401 	truncate_pagecache(inode, offset);
1402 
1403 	pg_start = offset >> PAGE_SHIFT;
1404 	pg_end = (offset + len) >> PAGE_SHIFT;
1405 	delta = pg_end - pg_start;
1406 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1407 
1408 	while (!ret && idx > pg_start) {
1409 		nr = idx - pg_start;
1410 		if (nr > delta)
1411 			nr = delta;
1412 		idx -= nr;
1413 
1414 		f2fs_lock_op(sbi);
1415 		f2fs_drop_extent_tree(inode);
1416 
1417 		ret = __exchange_data_block(inode, inode, idx,
1418 					idx + delta, nr, false);
1419 		f2fs_unlock_op(sbi);
1420 	}
1421 
1422 	/* write out all moved pages, if possible */
1423 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1424 	truncate_pagecache(inode, offset);
1425 
1426 	if (!ret)
1427 		f2fs_i_size_write(inode, new_size);
1428 
1429 	up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1430 out:
1431 	up_write(&F2FS_I(inode)->i_mmap_sem);
1432 	return ret;
1433 }
1434 
1435 static int expand_inode_data(struct inode *inode, loff_t offset,
1436 					loff_t len, int mode)
1437 {
1438 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1439 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1440 	pgoff_t pg_end;
1441 	loff_t new_size = i_size_read(inode);
1442 	loff_t off_end;
1443 	int err;
1444 
1445 	err = inode_newsize_ok(inode, (len + offset));
1446 	if (err)
1447 		return err;
1448 
1449 	err = f2fs_convert_inline_inode(inode);
1450 	if (err)
1451 		return err;
1452 
1453 	f2fs_balance_fs(sbi, true);
1454 
1455 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1456 	off_end = (offset + len) & (PAGE_SIZE - 1);
1457 
1458 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1459 	map.m_len = pg_end - map.m_lblk;
1460 	if (off_end)
1461 		map.m_len++;
1462 
1463 	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1464 	if (err) {
1465 		pgoff_t last_off;
1466 
1467 		if (!map.m_len)
1468 			return err;
1469 
1470 		last_off = map.m_lblk + map.m_len - 1;
1471 
1472 		/* update new size to the failed position */
1473 		new_size = (last_off == pg_end) ? offset + len:
1474 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1475 	} else {
1476 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1477 	}
1478 
1479 	if (new_size > i_size_read(inode)) {
1480 		if (mode & FALLOC_FL_KEEP_SIZE)
1481 			file_set_keep_isize(inode);
1482 		else
1483 			f2fs_i_size_write(inode, new_size);
1484 	}
1485 
1486 	return err;
1487 }
1488 
1489 static long f2fs_fallocate(struct file *file, int mode,
1490 				loff_t offset, loff_t len)
1491 {
1492 	struct inode *inode = file_inode(file);
1493 	long ret = 0;
1494 
1495 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1496 		return -EIO;
1497 
1498 	/* f2fs only support ->fallocate for regular file */
1499 	if (!S_ISREG(inode->i_mode))
1500 		return -EINVAL;
1501 
1502 	if (f2fs_encrypted_inode(inode) &&
1503 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1504 		return -EOPNOTSUPP;
1505 
1506 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1507 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1508 			FALLOC_FL_INSERT_RANGE))
1509 		return -EOPNOTSUPP;
1510 
1511 	inode_lock(inode);
1512 
1513 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1514 		if (offset >= inode->i_size)
1515 			goto out;
1516 
1517 		ret = punch_hole(inode, offset, len);
1518 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1519 		ret = f2fs_collapse_range(inode, offset, len);
1520 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1521 		ret = f2fs_zero_range(inode, offset, len, mode);
1522 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1523 		ret = f2fs_insert_range(inode, offset, len);
1524 	} else {
1525 		ret = expand_inode_data(inode, offset, len, mode);
1526 	}
1527 
1528 	if (!ret) {
1529 		inode->i_mtime = inode->i_ctime = current_time(inode);
1530 		f2fs_mark_inode_dirty_sync(inode, false);
1531 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1532 	}
1533 
1534 out:
1535 	inode_unlock(inode);
1536 
1537 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1538 	return ret;
1539 }
1540 
1541 static int f2fs_release_file(struct inode *inode, struct file *filp)
1542 {
1543 	/*
1544 	 * f2fs_relase_file is called at every close calls. So we should
1545 	 * not drop any inmemory pages by close called by other process.
1546 	 */
1547 	if (!(filp->f_mode & FMODE_WRITE) ||
1548 			atomic_read(&inode->i_writecount) != 1)
1549 		return 0;
1550 
1551 	/* some remained atomic pages should discarded */
1552 	if (f2fs_is_atomic_file(inode))
1553 		drop_inmem_pages(inode);
1554 	if (f2fs_is_volatile_file(inode)) {
1555 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1556 		stat_dec_volatile_write(inode);
1557 		set_inode_flag(inode, FI_DROP_CACHE);
1558 		filemap_fdatawrite(inode->i_mapping);
1559 		clear_inode_flag(inode, FI_DROP_CACHE);
1560 	}
1561 	return 0;
1562 }
1563 
1564 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1565 {
1566 	struct inode *inode = file_inode(file);
1567 
1568 	/*
1569 	 * If the process doing a transaction is crashed, we should do
1570 	 * roll-back. Otherwise, other reader/write can see corrupted database
1571 	 * until all the writers close its file. Since this should be done
1572 	 * before dropping file lock, it needs to do in ->flush.
1573 	 */
1574 	if (f2fs_is_atomic_file(inode) &&
1575 			F2FS_I(inode)->inmem_task == current)
1576 		drop_inmem_pages(inode);
1577 	return 0;
1578 }
1579 
1580 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1581 {
1582 	struct inode *inode = file_inode(filp);
1583 	struct f2fs_inode_info *fi = F2FS_I(inode);
1584 	unsigned int flags = fi->i_flags &
1585 			(FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
1586 	return put_user(flags, (int __user *)arg);
1587 }
1588 
1589 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1590 {
1591 	struct f2fs_inode_info *fi = F2FS_I(inode);
1592 	unsigned int oldflags;
1593 
1594 	/* Is it quota file? Do not allow user to mess with it */
1595 	if (IS_NOQUOTA(inode))
1596 		return -EPERM;
1597 
1598 	flags = f2fs_mask_flags(inode->i_mode, flags);
1599 
1600 	oldflags = fi->i_flags;
1601 
1602 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
1603 		if (!capable(CAP_LINUX_IMMUTABLE))
1604 			return -EPERM;
1605 
1606 	flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1607 	flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1608 	fi->i_flags = flags;
1609 
1610 	if (fi->i_flags & FS_PROJINHERIT_FL)
1611 		set_inode_flag(inode, FI_PROJ_INHERIT);
1612 	else
1613 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1614 
1615 	inode->i_ctime = current_time(inode);
1616 	f2fs_set_inode_flags(inode);
1617 	f2fs_mark_inode_dirty_sync(inode, false);
1618 	return 0;
1619 }
1620 
1621 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1622 {
1623 	struct inode *inode = file_inode(filp);
1624 	unsigned int flags;
1625 	int ret;
1626 
1627 	if (!inode_owner_or_capable(inode))
1628 		return -EACCES;
1629 
1630 	if (get_user(flags, (int __user *)arg))
1631 		return -EFAULT;
1632 
1633 	ret = mnt_want_write_file(filp);
1634 	if (ret)
1635 		return ret;
1636 
1637 	inode_lock(inode);
1638 
1639 	ret = __f2fs_ioc_setflags(inode, flags);
1640 
1641 	inode_unlock(inode);
1642 	mnt_drop_write_file(filp);
1643 	return ret;
1644 }
1645 
1646 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1647 {
1648 	struct inode *inode = file_inode(filp);
1649 
1650 	return put_user(inode->i_generation, (int __user *)arg);
1651 }
1652 
1653 static int f2fs_ioc_start_atomic_write(struct file *filp)
1654 {
1655 	struct inode *inode = file_inode(filp);
1656 	int ret;
1657 
1658 	if (!inode_owner_or_capable(inode))
1659 		return -EACCES;
1660 
1661 	if (!S_ISREG(inode->i_mode))
1662 		return -EINVAL;
1663 
1664 	ret = mnt_want_write_file(filp);
1665 	if (ret)
1666 		return ret;
1667 
1668 	inode_lock(inode);
1669 
1670 	if (f2fs_is_atomic_file(inode))
1671 		goto out;
1672 
1673 	ret = f2fs_convert_inline_inode(inode);
1674 	if (ret)
1675 		goto out;
1676 
1677 	set_inode_flag(inode, FI_ATOMIC_FILE);
1678 	set_inode_flag(inode, FI_HOT_DATA);
1679 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1680 
1681 	if (!get_dirty_pages(inode))
1682 		goto inc_stat;
1683 
1684 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1685 		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1686 					inode->i_ino, get_dirty_pages(inode));
1687 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1688 	if (ret) {
1689 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1690 		clear_inode_flag(inode, FI_HOT_DATA);
1691 		goto out;
1692 	}
1693 
1694 inc_stat:
1695 	F2FS_I(inode)->inmem_task = current;
1696 	stat_inc_atomic_write(inode);
1697 	stat_update_max_atomic_write(inode);
1698 out:
1699 	inode_unlock(inode);
1700 	mnt_drop_write_file(filp);
1701 	return ret;
1702 }
1703 
1704 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1705 {
1706 	struct inode *inode = file_inode(filp);
1707 	int ret;
1708 
1709 	if (!inode_owner_or_capable(inode))
1710 		return -EACCES;
1711 
1712 	ret = mnt_want_write_file(filp);
1713 	if (ret)
1714 		return ret;
1715 
1716 	inode_lock(inode);
1717 
1718 	if (f2fs_is_volatile_file(inode))
1719 		goto err_out;
1720 
1721 	if (f2fs_is_atomic_file(inode)) {
1722 		ret = commit_inmem_pages(inode);
1723 		if (ret)
1724 			goto err_out;
1725 
1726 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1727 		if (!ret) {
1728 			clear_inode_flag(inode, FI_ATOMIC_FILE);
1729 			clear_inode_flag(inode, FI_HOT_DATA);
1730 			stat_dec_atomic_write(inode);
1731 		}
1732 	} else {
1733 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1734 	}
1735 err_out:
1736 	inode_unlock(inode);
1737 	mnt_drop_write_file(filp);
1738 	return ret;
1739 }
1740 
1741 static int f2fs_ioc_start_volatile_write(struct file *filp)
1742 {
1743 	struct inode *inode = file_inode(filp);
1744 	int ret;
1745 
1746 	if (!inode_owner_or_capable(inode))
1747 		return -EACCES;
1748 
1749 	if (!S_ISREG(inode->i_mode))
1750 		return -EINVAL;
1751 
1752 	ret = mnt_want_write_file(filp);
1753 	if (ret)
1754 		return ret;
1755 
1756 	inode_lock(inode);
1757 
1758 	if (f2fs_is_volatile_file(inode))
1759 		goto out;
1760 
1761 	ret = f2fs_convert_inline_inode(inode);
1762 	if (ret)
1763 		goto out;
1764 
1765 	stat_inc_volatile_write(inode);
1766 	stat_update_max_volatile_write(inode);
1767 
1768 	set_inode_flag(inode, FI_VOLATILE_FILE);
1769 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1770 out:
1771 	inode_unlock(inode);
1772 	mnt_drop_write_file(filp);
1773 	return ret;
1774 }
1775 
1776 static int f2fs_ioc_release_volatile_write(struct file *filp)
1777 {
1778 	struct inode *inode = file_inode(filp);
1779 	int ret;
1780 
1781 	if (!inode_owner_or_capable(inode))
1782 		return -EACCES;
1783 
1784 	ret = mnt_want_write_file(filp);
1785 	if (ret)
1786 		return ret;
1787 
1788 	inode_lock(inode);
1789 
1790 	if (!f2fs_is_volatile_file(inode))
1791 		goto out;
1792 
1793 	if (!f2fs_is_first_block_written(inode)) {
1794 		ret = truncate_partial_data_page(inode, 0, true);
1795 		goto out;
1796 	}
1797 
1798 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1799 out:
1800 	inode_unlock(inode);
1801 	mnt_drop_write_file(filp);
1802 	return ret;
1803 }
1804 
1805 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1806 {
1807 	struct inode *inode = file_inode(filp);
1808 	int ret;
1809 
1810 	if (!inode_owner_or_capable(inode))
1811 		return -EACCES;
1812 
1813 	ret = mnt_want_write_file(filp);
1814 	if (ret)
1815 		return ret;
1816 
1817 	inode_lock(inode);
1818 
1819 	if (f2fs_is_atomic_file(inode))
1820 		drop_inmem_pages(inode);
1821 	if (f2fs_is_volatile_file(inode)) {
1822 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1823 		stat_dec_volatile_write(inode);
1824 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1825 	}
1826 
1827 	inode_unlock(inode);
1828 
1829 	mnt_drop_write_file(filp);
1830 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1831 	return ret;
1832 }
1833 
1834 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1835 {
1836 	struct inode *inode = file_inode(filp);
1837 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1838 	struct super_block *sb = sbi->sb;
1839 	__u32 in;
1840 	int ret;
1841 
1842 	if (!capable(CAP_SYS_ADMIN))
1843 		return -EPERM;
1844 
1845 	if (get_user(in, (__u32 __user *)arg))
1846 		return -EFAULT;
1847 
1848 	ret = mnt_want_write_file(filp);
1849 	if (ret)
1850 		return ret;
1851 
1852 	switch (in) {
1853 	case F2FS_GOING_DOWN_FULLSYNC:
1854 		sb = freeze_bdev(sb->s_bdev);
1855 		if (sb && !IS_ERR(sb)) {
1856 			f2fs_stop_checkpoint(sbi, false);
1857 			thaw_bdev(sb->s_bdev, sb);
1858 		}
1859 		break;
1860 	case F2FS_GOING_DOWN_METASYNC:
1861 		/* do checkpoint only */
1862 		f2fs_sync_fs(sb, 1);
1863 		f2fs_stop_checkpoint(sbi, false);
1864 		break;
1865 	case F2FS_GOING_DOWN_NOSYNC:
1866 		f2fs_stop_checkpoint(sbi, false);
1867 		break;
1868 	case F2FS_GOING_DOWN_METAFLUSH:
1869 		sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1870 		f2fs_stop_checkpoint(sbi, false);
1871 		break;
1872 	default:
1873 		ret = -EINVAL;
1874 		goto out;
1875 	}
1876 	f2fs_update_time(sbi, REQ_TIME);
1877 out:
1878 	mnt_drop_write_file(filp);
1879 	return ret;
1880 }
1881 
1882 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1883 {
1884 	struct inode *inode = file_inode(filp);
1885 	struct super_block *sb = inode->i_sb;
1886 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1887 	struct fstrim_range range;
1888 	int ret;
1889 
1890 	if (!capable(CAP_SYS_ADMIN))
1891 		return -EPERM;
1892 
1893 	if (!blk_queue_discard(q))
1894 		return -EOPNOTSUPP;
1895 
1896 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1897 				sizeof(range)))
1898 		return -EFAULT;
1899 
1900 	ret = mnt_want_write_file(filp);
1901 	if (ret)
1902 		return ret;
1903 
1904 	range.minlen = max((unsigned int)range.minlen,
1905 				q->limits.discard_granularity);
1906 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1907 	mnt_drop_write_file(filp);
1908 	if (ret < 0)
1909 		return ret;
1910 
1911 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1912 				sizeof(range)))
1913 		return -EFAULT;
1914 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1915 	return 0;
1916 }
1917 
1918 static bool uuid_is_nonzero(__u8 u[16])
1919 {
1920 	int i;
1921 
1922 	for (i = 0; i < 16; i++)
1923 		if (u[i])
1924 			return true;
1925 	return false;
1926 }
1927 
1928 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1929 {
1930 	struct inode *inode = file_inode(filp);
1931 
1932 	if (!f2fs_sb_has_crypto(inode->i_sb))
1933 		return -EOPNOTSUPP;
1934 
1935 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1936 
1937 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1938 }
1939 
1940 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1941 {
1942 	if (!f2fs_sb_has_crypto(file_inode(filp)->i_sb))
1943 		return -EOPNOTSUPP;
1944 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1945 }
1946 
1947 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1948 {
1949 	struct inode *inode = file_inode(filp);
1950 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1951 	int err;
1952 
1953 	if (!f2fs_sb_has_crypto(inode->i_sb))
1954 		return -EOPNOTSUPP;
1955 
1956 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1957 		goto got_it;
1958 
1959 	err = mnt_want_write_file(filp);
1960 	if (err)
1961 		return err;
1962 
1963 	/* update superblock with uuid */
1964 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1965 
1966 	err = f2fs_commit_super(sbi, false);
1967 	if (err) {
1968 		/* undo new data */
1969 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1970 		mnt_drop_write_file(filp);
1971 		return err;
1972 	}
1973 	mnt_drop_write_file(filp);
1974 got_it:
1975 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1976 									16))
1977 		return -EFAULT;
1978 	return 0;
1979 }
1980 
1981 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1982 {
1983 	struct inode *inode = file_inode(filp);
1984 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1985 	__u32 sync;
1986 	int ret;
1987 
1988 	if (!capable(CAP_SYS_ADMIN))
1989 		return -EPERM;
1990 
1991 	if (get_user(sync, (__u32 __user *)arg))
1992 		return -EFAULT;
1993 
1994 	if (f2fs_readonly(sbi->sb))
1995 		return -EROFS;
1996 
1997 	ret = mnt_want_write_file(filp);
1998 	if (ret)
1999 		return ret;
2000 
2001 	if (!sync) {
2002 		if (!mutex_trylock(&sbi->gc_mutex)) {
2003 			ret = -EBUSY;
2004 			goto out;
2005 		}
2006 	} else {
2007 		mutex_lock(&sbi->gc_mutex);
2008 	}
2009 
2010 	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2011 out:
2012 	mnt_drop_write_file(filp);
2013 	return ret;
2014 }
2015 
2016 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2017 {
2018 	struct inode *inode = file_inode(filp);
2019 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2020 	struct f2fs_gc_range range;
2021 	u64 end;
2022 	int ret;
2023 
2024 	if (!capable(CAP_SYS_ADMIN))
2025 		return -EPERM;
2026 
2027 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2028 							sizeof(range)))
2029 		return -EFAULT;
2030 
2031 	if (f2fs_readonly(sbi->sb))
2032 		return -EROFS;
2033 
2034 	ret = mnt_want_write_file(filp);
2035 	if (ret)
2036 		return ret;
2037 
2038 	end = range.start + range.len;
2039 	if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi))
2040 		return -EINVAL;
2041 do_more:
2042 	if (!range.sync) {
2043 		if (!mutex_trylock(&sbi->gc_mutex)) {
2044 			ret = -EBUSY;
2045 			goto out;
2046 		}
2047 	} else {
2048 		mutex_lock(&sbi->gc_mutex);
2049 	}
2050 
2051 	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2052 	range.start += sbi->blocks_per_seg;
2053 	if (range.start <= end)
2054 		goto do_more;
2055 out:
2056 	mnt_drop_write_file(filp);
2057 	return ret;
2058 }
2059 
2060 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2061 {
2062 	struct inode *inode = file_inode(filp);
2063 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2064 	int ret;
2065 
2066 	if (!capable(CAP_SYS_ADMIN))
2067 		return -EPERM;
2068 
2069 	if (f2fs_readonly(sbi->sb))
2070 		return -EROFS;
2071 
2072 	ret = mnt_want_write_file(filp);
2073 	if (ret)
2074 		return ret;
2075 
2076 	ret = f2fs_sync_fs(sbi->sb, 1);
2077 
2078 	mnt_drop_write_file(filp);
2079 	return ret;
2080 }
2081 
2082 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2083 					struct file *filp,
2084 					struct f2fs_defragment *range)
2085 {
2086 	struct inode *inode = file_inode(filp);
2087 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
2088 	struct extent_info ei = {0,0,0};
2089 	pgoff_t pg_start, pg_end;
2090 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2091 	unsigned int total = 0, sec_num;
2092 	block_t blk_end = 0;
2093 	bool fragmented = false;
2094 	int err;
2095 
2096 	/* if in-place-update policy is enabled, don't waste time here */
2097 	if (need_inplace_update_policy(inode, NULL))
2098 		return -EINVAL;
2099 
2100 	pg_start = range->start >> PAGE_SHIFT;
2101 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2102 
2103 	f2fs_balance_fs(sbi, true);
2104 
2105 	inode_lock(inode);
2106 
2107 	/* writeback all dirty pages in the range */
2108 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2109 						range->start + range->len - 1);
2110 	if (err)
2111 		goto out;
2112 
2113 	/*
2114 	 * lookup mapping info in extent cache, skip defragmenting if physical
2115 	 * block addresses are continuous.
2116 	 */
2117 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2118 		if (ei.fofs + ei.len >= pg_end)
2119 			goto out;
2120 	}
2121 
2122 	map.m_lblk = pg_start;
2123 
2124 	/*
2125 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2126 	 * physical block addresses are continuous even if there are hole(s)
2127 	 * in logical blocks.
2128 	 */
2129 	while (map.m_lblk < pg_end) {
2130 		map.m_len = pg_end - map.m_lblk;
2131 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2132 		if (err)
2133 			goto out;
2134 
2135 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2136 			map.m_lblk++;
2137 			continue;
2138 		}
2139 
2140 		if (blk_end && blk_end != map.m_pblk) {
2141 			fragmented = true;
2142 			break;
2143 		}
2144 		blk_end = map.m_pblk + map.m_len;
2145 
2146 		map.m_lblk += map.m_len;
2147 	}
2148 
2149 	if (!fragmented)
2150 		goto out;
2151 
2152 	map.m_lblk = pg_start;
2153 	map.m_len = pg_end - pg_start;
2154 
2155 	sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2156 
2157 	/*
2158 	 * make sure there are enough free section for LFS allocation, this can
2159 	 * avoid defragment running in SSR mode when free section are allocated
2160 	 * intensively
2161 	 */
2162 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2163 		err = -EAGAIN;
2164 		goto out;
2165 	}
2166 
2167 	while (map.m_lblk < pg_end) {
2168 		pgoff_t idx;
2169 		int cnt = 0;
2170 
2171 do_map:
2172 		map.m_len = pg_end - map.m_lblk;
2173 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2174 		if (err)
2175 			goto clear_out;
2176 
2177 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2178 			map.m_lblk++;
2179 			continue;
2180 		}
2181 
2182 		set_inode_flag(inode, FI_DO_DEFRAG);
2183 
2184 		idx = map.m_lblk;
2185 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2186 			struct page *page;
2187 
2188 			page = get_lock_data_page(inode, idx, true);
2189 			if (IS_ERR(page)) {
2190 				err = PTR_ERR(page);
2191 				goto clear_out;
2192 			}
2193 
2194 			set_page_dirty(page);
2195 			f2fs_put_page(page, 1);
2196 
2197 			idx++;
2198 			cnt++;
2199 			total++;
2200 		}
2201 
2202 		map.m_lblk = idx;
2203 
2204 		if (idx < pg_end && cnt < blk_per_seg)
2205 			goto do_map;
2206 
2207 		clear_inode_flag(inode, FI_DO_DEFRAG);
2208 
2209 		err = filemap_fdatawrite(inode->i_mapping);
2210 		if (err)
2211 			goto out;
2212 	}
2213 clear_out:
2214 	clear_inode_flag(inode, FI_DO_DEFRAG);
2215 out:
2216 	inode_unlock(inode);
2217 	if (!err)
2218 		range->len = (u64)total << PAGE_SHIFT;
2219 	return err;
2220 }
2221 
2222 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2223 {
2224 	struct inode *inode = file_inode(filp);
2225 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2226 	struct f2fs_defragment range;
2227 	int err;
2228 
2229 	if (!capable(CAP_SYS_ADMIN))
2230 		return -EPERM;
2231 
2232 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2233 		return -EINVAL;
2234 
2235 	if (f2fs_readonly(sbi->sb))
2236 		return -EROFS;
2237 
2238 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2239 							sizeof(range)))
2240 		return -EFAULT;
2241 
2242 	/* verify alignment of offset & size */
2243 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2244 		return -EINVAL;
2245 
2246 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2247 					sbi->max_file_blocks))
2248 		return -EINVAL;
2249 
2250 	err = mnt_want_write_file(filp);
2251 	if (err)
2252 		return err;
2253 
2254 	err = f2fs_defragment_range(sbi, filp, &range);
2255 	mnt_drop_write_file(filp);
2256 
2257 	f2fs_update_time(sbi, REQ_TIME);
2258 	if (err < 0)
2259 		return err;
2260 
2261 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2262 							sizeof(range)))
2263 		return -EFAULT;
2264 
2265 	return 0;
2266 }
2267 
2268 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2269 			struct file *file_out, loff_t pos_out, size_t len)
2270 {
2271 	struct inode *src = file_inode(file_in);
2272 	struct inode *dst = file_inode(file_out);
2273 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2274 	size_t olen = len, dst_max_i_size = 0;
2275 	size_t dst_osize;
2276 	int ret;
2277 
2278 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2279 				src->i_sb != dst->i_sb)
2280 		return -EXDEV;
2281 
2282 	if (unlikely(f2fs_readonly(src->i_sb)))
2283 		return -EROFS;
2284 
2285 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2286 		return -EINVAL;
2287 
2288 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2289 		return -EOPNOTSUPP;
2290 
2291 	if (src == dst) {
2292 		if (pos_in == pos_out)
2293 			return 0;
2294 		if (pos_out > pos_in && pos_out < pos_in + len)
2295 			return -EINVAL;
2296 	}
2297 
2298 	inode_lock(src);
2299 	down_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2300 	if (src != dst) {
2301 		ret = -EBUSY;
2302 		if (!inode_trylock(dst))
2303 			goto out;
2304 		if (!down_write_trylock(&F2FS_I(dst)->dio_rwsem[WRITE])) {
2305 			inode_unlock(dst);
2306 			goto out;
2307 		}
2308 	}
2309 
2310 	ret = -EINVAL;
2311 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2312 		goto out_unlock;
2313 	if (len == 0)
2314 		olen = len = src->i_size - pos_in;
2315 	if (pos_in + len == src->i_size)
2316 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2317 	if (len == 0) {
2318 		ret = 0;
2319 		goto out_unlock;
2320 	}
2321 
2322 	dst_osize = dst->i_size;
2323 	if (pos_out + olen > dst->i_size)
2324 		dst_max_i_size = pos_out + olen;
2325 
2326 	/* verify the end result is block aligned */
2327 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2328 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2329 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2330 		goto out_unlock;
2331 
2332 	ret = f2fs_convert_inline_inode(src);
2333 	if (ret)
2334 		goto out_unlock;
2335 
2336 	ret = f2fs_convert_inline_inode(dst);
2337 	if (ret)
2338 		goto out_unlock;
2339 
2340 	/* write out all dirty pages from offset */
2341 	ret = filemap_write_and_wait_range(src->i_mapping,
2342 					pos_in, pos_in + len);
2343 	if (ret)
2344 		goto out_unlock;
2345 
2346 	ret = filemap_write_and_wait_range(dst->i_mapping,
2347 					pos_out, pos_out + len);
2348 	if (ret)
2349 		goto out_unlock;
2350 
2351 	f2fs_balance_fs(sbi, true);
2352 	f2fs_lock_op(sbi);
2353 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2354 				pos_out >> F2FS_BLKSIZE_BITS,
2355 				len >> F2FS_BLKSIZE_BITS, false);
2356 
2357 	if (!ret) {
2358 		if (dst_max_i_size)
2359 			f2fs_i_size_write(dst, dst_max_i_size);
2360 		else if (dst_osize != dst->i_size)
2361 			f2fs_i_size_write(dst, dst_osize);
2362 	}
2363 	f2fs_unlock_op(sbi);
2364 out_unlock:
2365 	if (src != dst) {
2366 		up_write(&F2FS_I(dst)->dio_rwsem[WRITE]);
2367 		inode_unlock(dst);
2368 	}
2369 out:
2370 	up_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2371 	inode_unlock(src);
2372 	return ret;
2373 }
2374 
2375 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2376 {
2377 	struct f2fs_move_range range;
2378 	struct fd dst;
2379 	int err;
2380 
2381 	if (!(filp->f_mode & FMODE_READ) ||
2382 			!(filp->f_mode & FMODE_WRITE))
2383 		return -EBADF;
2384 
2385 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2386 							sizeof(range)))
2387 		return -EFAULT;
2388 
2389 	dst = fdget(range.dst_fd);
2390 	if (!dst.file)
2391 		return -EBADF;
2392 
2393 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2394 		err = -EBADF;
2395 		goto err_out;
2396 	}
2397 
2398 	err = mnt_want_write_file(filp);
2399 	if (err)
2400 		goto err_out;
2401 
2402 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2403 					range.pos_out, range.len);
2404 
2405 	mnt_drop_write_file(filp);
2406 	if (err)
2407 		goto err_out;
2408 
2409 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2410 						&range, sizeof(range)))
2411 		err = -EFAULT;
2412 err_out:
2413 	fdput(dst);
2414 	return err;
2415 }
2416 
2417 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2418 {
2419 	struct inode *inode = file_inode(filp);
2420 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2421 	struct sit_info *sm = SIT_I(sbi);
2422 	unsigned int start_segno = 0, end_segno = 0;
2423 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2424 	struct f2fs_flush_device range;
2425 	int ret;
2426 
2427 	if (!capable(CAP_SYS_ADMIN))
2428 		return -EPERM;
2429 
2430 	if (f2fs_readonly(sbi->sb))
2431 		return -EROFS;
2432 
2433 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2434 							sizeof(range)))
2435 		return -EFAULT;
2436 
2437 	if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2438 			sbi->segs_per_sec != 1) {
2439 		f2fs_msg(sbi->sb, KERN_WARNING,
2440 			"Can't flush %u in %d for segs_per_sec %u != 1\n",
2441 				range.dev_num, sbi->s_ndevs,
2442 				sbi->segs_per_sec);
2443 		return -EINVAL;
2444 	}
2445 
2446 	ret = mnt_want_write_file(filp);
2447 	if (ret)
2448 		return ret;
2449 
2450 	if (range.dev_num != 0)
2451 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2452 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2453 
2454 	start_segno = sm->last_victim[FLUSH_DEVICE];
2455 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2456 		start_segno = dev_start_segno;
2457 	end_segno = min(start_segno + range.segments, dev_end_segno);
2458 
2459 	while (start_segno < end_segno) {
2460 		if (!mutex_trylock(&sbi->gc_mutex)) {
2461 			ret = -EBUSY;
2462 			goto out;
2463 		}
2464 		sm->last_victim[GC_CB] = end_segno + 1;
2465 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2466 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2467 		ret = f2fs_gc(sbi, true, true, start_segno);
2468 		if (ret == -EAGAIN)
2469 			ret = 0;
2470 		else if (ret < 0)
2471 			break;
2472 		start_segno++;
2473 	}
2474 out:
2475 	mnt_drop_write_file(filp);
2476 	return ret;
2477 }
2478 
2479 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2480 {
2481 	struct inode *inode = file_inode(filp);
2482 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2483 
2484 	/* Must validate to set it with SQLite behavior in Android. */
2485 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2486 
2487 	return put_user(sb_feature, (u32 __user *)arg);
2488 }
2489 
2490 #ifdef CONFIG_QUOTA
2491 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2492 {
2493 	struct inode *inode = file_inode(filp);
2494 	struct f2fs_inode_info *fi = F2FS_I(inode);
2495 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2496 	struct super_block *sb = sbi->sb;
2497 	struct dquot *transfer_to[MAXQUOTAS] = {};
2498 	struct page *ipage;
2499 	kprojid_t kprojid;
2500 	int err;
2501 
2502 	if (!f2fs_sb_has_project_quota(sb)) {
2503 		if (projid != F2FS_DEF_PROJID)
2504 			return -EOPNOTSUPP;
2505 		else
2506 			return 0;
2507 	}
2508 
2509 	if (!f2fs_has_extra_attr(inode))
2510 		return -EOPNOTSUPP;
2511 
2512 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2513 
2514 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2515 		return 0;
2516 
2517 	err = mnt_want_write_file(filp);
2518 	if (err)
2519 		return err;
2520 
2521 	err = -EPERM;
2522 	inode_lock(inode);
2523 
2524 	/* Is it quota file? Do not allow user to mess with it */
2525 	if (IS_NOQUOTA(inode))
2526 		goto out_unlock;
2527 
2528 	ipage = get_node_page(sbi, inode->i_ino);
2529 	if (IS_ERR(ipage)) {
2530 		err = PTR_ERR(ipage);
2531 		goto out_unlock;
2532 	}
2533 
2534 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2535 								i_projid)) {
2536 		err = -EOVERFLOW;
2537 		f2fs_put_page(ipage, 1);
2538 		goto out_unlock;
2539 	}
2540 	f2fs_put_page(ipage, 1);
2541 
2542 	dquot_initialize(inode);
2543 
2544 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2545 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2546 		err = __dquot_transfer(inode, transfer_to);
2547 		dqput(transfer_to[PRJQUOTA]);
2548 		if (err)
2549 			goto out_dirty;
2550 	}
2551 
2552 	F2FS_I(inode)->i_projid = kprojid;
2553 	inode->i_ctime = current_time(inode);
2554 out_dirty:
2555 	f2fs_mark_inode_dirty_sync(inode, true);
2556 out_unlock:
2557 	inode_unlock(inode);
2558 	mnt_drop_write_file(filp);
2559 	return err;
2560 }
2561 #else
2562 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2563 {
2564 	if (projid != F2FS_DEF_PROJID)
2565 		return -EOPNOTSUPP;
2566 	return 0;
2567 }
2568 #endif
2569 
2570 /* Transfer internal flags to xflags */
2571 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2572 {
2573 	__u32 xflags = 0;
2574 
2575 	if (iflags & FS_SYNC_FL)
2576 		xflags |= FS_XFLAG_SYNC;
2577 	if (iflags & FS_IMMUTABLE_FL)
2578 		xflags |= FS_XFLAG_IMMUTABLE;
2579 	if (iflags & FS_APPEND_FL)
2580 		xflags |= FS_XFLAG_APPEND;
2581 	if (iflags & FS_NODUMP_FL)
2582 		xflags |= FS_XFLAG_NODUMP;
2583 	if (iflags & FS_NOATIME_FL)
2584 		xflags |= FS_XFLAG_NOATIME;
2585 	if (iflags & FS_PROJINHERIT_FL)
2586 		xflags |= FS_XFLAG_PROJINHERIT;
2587 	return xflags;
2588 }
2589 
2590 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2591 				  FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2592 				  FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2593 
2594 /* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
2595 #define F2FS_FL_XFLAG_VISIBLE		(FS_SYNC_FL | \
2596 					 FS_IMMUTABLE_FL | \
2597 					 FS_APPEND_FL | \
2598 					 FS_NODUMP_FL | \
2599 					 FS_NOATIME_FL | \
2600 					 FS_PROJINHERIT_FL)
2601 
2602 /* Transfer xflags flags to internal */
2603 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2604 {
2605 	unsigned long iflags = 0;
2606 
2607 	if (xflags & FS_XFLAG_SYNC)
2608 		iflags |= FS_SYNC_FL;
2609 	if (xflags & FS_XFLAG_IMMUTABLE)
2610 		iflags |= FS_IMMUTABLE_FL;
2611 	if (xflags & FS_XFLAG_APPEND)
2612 		iflags |= FS_APPEND_FL;
2613 	if (xflags & FS_XFLAG_NODUMP)
2614 		iflags |= FS_NODUMP_FL;
2615 	if (xflags & FS_XFLAG_NOATIME)
2616 		iflags |= FS_NOATIME_FL;
2617 	if (xflags & FS_XFLAG_PROJINHERIT)
2618 		iflags |= FS_PROJINHERIT_FL;
2619 
2620 	return iflags;
2621 }
2622 
2623 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2624 {
2625 	struct inode *inode = file_inode(filp);
2626 	struct f2fs_inode_info *fi = F2FS_I(inode);
2627 	struct fsxattr fa;
2628 
2629 	memset(&fa, 0, sizeof(struct fsxattr));
2630 	fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2631 				(FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
2632 
2633 	if (f2fs_sb_has_project_quota(inode->i_sb))
2634 		fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2635 							fi->i_projid);
2636 
2637 	if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2638 		return -EFAULT;
2639 	return 0;
2640 }
2641 
2642 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2643 {
2644 	struct inode *inode = file_inode(filp);
2645 	struct f2fs_inode_info *fi = F2FS_I(inode);
2646 	struct fsxattr fa;
2647 	unsigned int flags;
2648 	int err;
2649 
2650 	if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2651 		return -EFAULT;
2652 
2653 	/* Make sure caller has proper permission */
2654 	if (!inode_owner_or_capable(inode))
2655 		return -EACCES;
2656 
2657 	if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2658 		return -EOPNOTSUPP;
2659 
2660 	flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2661 	if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2662 		return -EOPNOTSUPP;
2663 
2664 	err = mnt_want_write_file(filp);
2665 	if (err)
2666 		return err;
2667 
2668 	inode_lock(inode);
2669 	flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2670 				(flags & F2FS_FL_XFLAG_VISIBLE);
2671 	err = __f2fs_ioc_setflags(inode, flags);
2672 	inode_unlock(inode);
2673 	mnt_drop_write_file(filp);
2674 	if (err)
2675 		return err;
2676 
2677 	err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2678 	if (err)
2679 		return err;
2680 
2681 	return 0;
2682 }
2683 
2684 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2685 {
2686 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2687 		return -EIO;
2688 
2689 	switch (cmd) {
2690 	case F2FS_IOC_GETFLAGS:
2691 		return f2fs_ioc_getflags(filp, arg);
2692 	case F2FS_IOC_SETFLAGS:
2693 		return f2fs_ioc_setflags(filp, arg);
2694 	case F2FS_IOC_GETVERSION:
2695 		return f2fs_ioc_getversion(filp, arg);
2696 	case F2FS_IOC_START_ATOMIC_WRITE:
2697 		return f2fs_ioc_start_atomic_write(filp);
2698 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2699 		return f2fs_ioc_commit_atomic_write(filp);
2700 	case F2FS_IOC_START_VOLATILE_WRITE:
2701 		return f2fs_ioc_start_volatile_write(filp);
2702 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2703 		return f2fs_ioc_release_volatile_write(filp);
2704 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2705 		return f2fs_ioc_abort_volatile_write(filp);
2706 	case F2FS_IOC_SHUTDOWN:
2707 		return f2fs_ioc_shutdown(filp, arg);
2708 	case FITRIM:
2709 		return f2fs_ioc_fitrim(filp, arg);
2710 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2711 		return f2fs_ioc_set_encryption_policy(filp, arg);
2712 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2713 		return f2fs_ioc_get_encryption_policy(filp, arg);
2714 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2715 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2716 	case F2FS_IOC_GARBAGE_COLLECT:
2717 		return f2fs_ioc_gc(filp, arg);
2718 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2719 		return f2fs_ioc_gc_range(filp, arg);
2720 	case F2FS_IOC_WRITE_CHECKPOINT:
2721 		return f2fs_ioc_write_checkpoint(filp, arg);
2722 	case F2FS_IOC_DEFRAGMENT:
2723 		return f2fs_ioc_defragment(filp, arg);
2724 	case F2FS_IOC_MOVE_RANGE:
2725 		return f2fs_ioc_move_range(filp, arg);
2726 	case F2FS_IOC_FLUSH_DEVICE:
2727 		return f2fs_ioc_flush_device(filp, arg);
2728 	case F2FS_IOC_GET_FEATURES:
2729 		return f2fs_ioc_get_features(filp, arg);
2730 	case F2FS_IOC_FSGETXATTR:
2731 		return f2fs_ioc_fsgetxattr(filp, arg);
2732 	case F2FS_IOC_FSSETXATTR:
2733 		return f2fs_ioc_fssetxattr(filp, arg);
2734 	default:
2735 		return -ENOTTY;
2736 	}
2737 }
2738 
2739 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2740 {
2741 	struct file *file = iocb->ki_filp;
2742 	struct inode *inode = file_inode(file);
2743 	struct blk_plug plug;
2744 	ssize_t ret;
2745 
2746 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2747 		return -EIO;
2748 
2749 	inode_lock(inode);
2750 	ret = generic_write_checks(iocb, from);
2751 	if (ret > 0) {
2752 		int err;
2753 
2754 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2755 			set_inode_flag(inode, FI_NO_PREALLOC);
2756 
2757 		err = f2fs_preallocate_blocks(iocb, from);
2758 		if (err) {
2759 			clear_inode_flag(inode, FI_NO_PREALLOC);
2760 			inode_unlock(inode);
2761 			return err;
2762 		}
2763 		blk_start_plug(&plug);
2764 		ret = __generic_file_write_iter(iocb, from);
2765 		blk_finish_plug(&plug);
2766 		clear_inode_flag(inode, FI_NO_PREALLOC);
2767 
2768 		if (ret > 0)
2769 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2770 	}
2771 	inode_unlock(inode);
2772 
2773 	if (ret > 0)
2774 		ret = generic_write_sync(iocb, ret);
2775 	return ret;
2776 }
2777 
2778 #ifdef CONFIG_COMPAT
2779 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2780 {
2781 	switch (cmd) {
2782 	case F2FS_IOC32_GETFLAGS:
2783 		cmd = F2FS_IOC_GETFLAGS;
2784 		break;
2785 	case F2FS_IOC32_SETFLAGS:
2786 		cmd = F2FS_IOC_SETFLAGS;
2787 		break;
2788 	case F2FS_IOC32_GETVERSION:
2789 		cmd = F2FS_IOC_GETVERSION;
2790 		break;
2791 	case F2FS_IOC_START_ATOMIC_WRITE:
2792 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2793 	case F2FS_IOC_START_VOLATILE_WRITE:
2794 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2795 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2796 	case F2FS_IOC_SHUTDOWN:
2797 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2798 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2799 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2800 	case F2FS_IOC_GARBAGE_COLLECT:
2801 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2802 	case F2FS_IOC_WRITE_CHECKPOINT:
2803 	case F2FS_IOC_DEFRAGMENT:
2804 	case F2FS_IOC_MOVE_RANGE:
2805 	case F2FS_IOC_FLUSH_DEVICE:
2806 	case F2FS_IOC_GET_FEATURES:
2807 	case F2FS_IOC_FSGETXATTR:
2808 	case F2FS_IOC_FSSETXATTR:
2809 		break;
2810 	default:
2811 		return -ENOIOCTLCMD;
2812 	}
2813 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2814 }
2815 #endif
2816 
2817 const struct file_operations f2fs_file_operations = {
2818 	.llseek		= f2fs_llseek,
2819 	.read_iter	= generic_file_read_iter,
2820 	.write_iter	= f2fs_file_write_iter,
2821 	.open		= f2fs_file_open,
2822 	.release	= f2fs_release_file,
2823 	.mmap		= f2fs_file_mmap,
2824 	.flush		= f2fs_file_flush,
2825 	.fsync		= f2fs_sync_file,
2826 	.fallocate	= f2fs_fallocate,
2827 	.unlocked_ioctl	= f2fs_ioctl,
2828 #ifdef CONFIG_COMPAT
2829 	.compat_ioctl	= f2fs_compat_ioctl,
2830 #endif
2831 	.splice_read	= generic_file_splice_read,
2832 	.splice_write	= iter_file_splice_write,
2833 };
2834