xref: /openbmc/linux/fs/f2fs/file.c (revision 61ae993c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (!ret)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		set_new_dnode(&dn, inode, NULL, NULL, 0);
117 		err = f2fs_get_block_locked(&dn, page->index);
118 	}
119 
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 	if (!need_alloc) {
122 		set_new_dnode(&dn, inode, NULL, NULL, 0);
123 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 		f2fs_put_dnode(&dn);
125 	}
126 #endif
127 	if (err) {
128 		unlock_page(page);
129 		goto out_sem;
130 	}
131 
132 	f2fs_wait_on_page_writeback(page, DATA, false, true);
133 
134 	/* wait for GCed page writeback via META_MAPPING */
135 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136 
137 	/*
138 	 * check to see if the page is mapped already (no holes)
139 	 */
140 	if (PageMappedToDisk(page))
141 		goto out_sem;
142 
143 	/* page is wholly or partially inside EOF */
144 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 						i_size_read(inode)) {
146 		loff_t offset;
147 
148 		offset = i_size_read(inode) & ~PAGE_MASK;
149 		zero_user_segment(page, offset, PAGE_SIZE);
150 	}
151 	set_page_dirty(page);
152 
153 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154 	f2fs_update_time(sbi, REQ_TIME);
155 
156 	trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158 	filemap_invalidate_unlock_shared(inode->i_mapping);
159 
160 	sb_end_pagefault(inode->i_sb);
161 err:
162 	return vmf_fs_error(err);
163 }
164 
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166 	.fault		= f2fs_filemap_fault,
167 	.map_pages	= filemap_map_pages,
168 	.page_mkwrite	= f2fs_vm_page_mkwrite,
169 };
170 
171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173 	struct dentry *dentry;
174 
175 	/*
176 	 * Make sure to get the non-deleted alias.  The alias associated with
177 	 * the open file descriptor being fsync()'ed may be deleted already.
178 	 */
179 	dentry = d_find_alias(inode);
180 	if (!dentry)
181 		return 0;
182 
183 	*pino = parent_ino(dentry);
184 	dput(dentry);
185 	return 1;
186 }
187 
188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
192 
193 	if (!S_ISREG(inode->i_mode))
194 		cp_reason = CP_NON_REGULAR;
195 	else if (f2fs_compressed_file(inode))
196 		cp_reason = CP_COMPRESSED;
197 	else if (inode->i_nlink != 1)
198 		cp_reason = CP_HARDLINK;
199 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200 		cp_reason = CP_SB_NEED_CP;
201 	else if (file_wrong_pino(inode))
202 		cp_reason = CP_WRONG_PINO;
203 	else if (!f2fs_space_for_roll_forward(sbi))
204 		cp_reason = CP_NO_SPC_ROLL;
205 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206 		cp_reason = CP_NODE_NEED_CP;
207 	else if (test_opt(sbi, FASTBOOT))
208 		cp_reason = CP_FASTBOOT_MODE;
209 	else if (F2FS_OPTION(sbi).active_logs == 2)
210 		cp_reason = CP_SPEC_LOG_NUM;
211 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214 							TRANS_DIR_INO))
215 		cp_reason = CP_RECOVER_DIR;
216 
217 	return cp_reason;
218 }
219 
220 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
221 {
222 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
223 	bool ret = false;
224 	/* But we need to avoid that there are some inode updates */
225 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
226 		ret = true;
227 	f2fs_put_page(i, 0);
228 	return ret;
229 }
230 
231 static void try_to_fix_pino(struct inode *inode)
232 {
233 	struct f2fs_inode_info *fi = F2FS_I(inode);
234 	nid_t pino;
235 
236 	f2fs_down_write(&fi->i_sem);
237 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
238 			get_parent_ino(inode, &pino)) {
239 		f2fs_i_pino_write(inode, pino);
240 		file_got_pino(inode);
241 	}
242 	f2fs_up_write(&fi->i_sem);
243 }
244 
245 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
246 						int datasync, bool atomic)
247 {
248 	struct inode *inode = file->f_mapping->host;
249 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
250 	nid_t ino = inode->i_ino;
251 	int ret = 0;
252 	enum cp_reason_type cp_reason = 0;
253 	struct writeback_control wbc = {
254 		.sync_mode = WB_SYNC_ALL,
255 		.nr_to_write = LONG_MAX,
256 		.for_reclaim = 0,
257 	};
258 	unsigned int seq_id = 0;
259 
260 	if (unlikely(f2fs_readonly(inode->i_sb)))
261 		return 0;
262 
263 	trace_f2fs_sync_file_enter(inode);
264 
265 	if (S_ISDIR(inode->i_mode))
266 		goto go_write;
267 
268 	/* if fdatasync is triggered, let's do in-place-update */
269 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
270 		set_inode_flag(inode, FI_NEED_IPU);
271 	ret = file_write_and_wait_range(file, start, end);
272 	clear_inode_flag(inode, FI_NEED_IPU);
273 
274 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
275 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
276 		return ret;
277 	}
278 
279 	/* if the inode is dirty, let's recover all the time */
280 	if (!f2fs_skip_inode_update(inode, datasync)) {
281 		f2fs_write_inode(inode, NULL);
282 		goto go_write;
283 	}
284 
285 	/*
286 	 * if there is no written data, don't waste time to write recovery info.
287 	 */
288 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
289 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
290 
291 		/* it may call write_inode just prior to fsync */
292 		if (need_inode_page_update(sbi, ino))
293 			goto go_write;
294 
295 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
296 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
297 			goto flush_out;
298 		goto out;
299 	} else {
300 		/*
301 		 * for OPU case, during fsync(), node can be persisted before
302 		 * data when lower device doesn't support write barrier, result
303 		 * in data corruption after SPO.
304 		 * So for strict fsync mode, force to use atomic write semantics
305 		 * to keep write order in between data/node and last node to
306 		 * avoid potential data corruption.
307 		 */
308 		if (F2FS_OPTION(sbi).fsync_mode ==
309 				FSYNC_MODE_STRICT && !atomic)
310 			atomic = true;
311 	}
312 go_write:
313 	/*
314 	 * Both of fdatasync() and fsync() are able to be recovered from
315 	 * sudden-power-off.
316 	 */
317 	f2fs_down_read(&F2FS_I(inode)->i_sem);
318 	cp_reason = need_do_checkpoint(inode);
319 	f2fs_up_read(&F2FS_I(inode)->i_sem);
320 
321 	if (cp_reason) {
322 		/* all the dirty node pages should be flushed for POR */
323 		ret = f2fs_sync_fs(inode->i_sb, 1);
324 
325 		/*
326 		 * We've secured consistency through sync_fs. Following pino
327 		 * will be used only for fsynced inodes after checkpoint.
328 		 */
329 		try_to_fix_pino(inode);
330 		clear_inode_flag(inode, FI_APPEND_WRITE);
331 		clear_inode_flag(inode, FI_UPDATE_WRITE);
332 		goto out;
333 	}
334 sync_nodes:
335 	atomic_inc(&sbi->wb_sync_req[NODE]);
336 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
337 	atomic_dec(&sbi->wb_sync_req[NODE]);
338 	if (ret)
339 		goto out;
340 
341 	/* if cp_error was enabled, we should avoid infinite loop */
342 	if (unlikely(f2fs_cp_error(sbi))) {
343 		ret = -EIO;
344 		goto out;
345 	}
346 
347 	if (f2fs_need_inode_block_update(sbi, ino)) {
348 		f2fs_mark_inode_dirty_sync(inode, true);
349 		f2fs_write_inode(inode, NULL);
350 		goto sync_nodes;
351 	}
352 
353 	/*
354 	 * If it's atomic_write, it's just fine to keep write ordering. So
355 	 * here we don't need to wait for node write completion, since we use
356 	 * node chain which serializes node blocks. If one of node writes are
357 	 * reordered, we can see simply broken chain, resulting in stopping
358 	 * roll-forward recovery. It means we'll recover all or none node blocks
359 	 * given fsync mark.
360 	 */
361 	if (!atomic) {
362 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
363 		if (ret)
364 			goto out;
365 	}
366 
367 	/* once recovery info is written, don't need to tack this */
368 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
369 	clear_inode_flag(inode, FI_APPEND_WRITE);
370 flush_out:
371 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
372 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
373 		ret = f2fs_issue_flush(sbi, inode->i_ino);
374 	if (!ret) {
375 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
376 		clear_inode_flag(inode, FI_UPDATE_WRITE);
377 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
378 	}
379 	f2fs_update_time(sbi, REQ_TIME);
380 out:
381 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
382 	return ret;
383 }
384 
385 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
386 {
387 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
388 		return -EIO;
389 	return f2fs_do_sync_file(file, start, end, datasync, false);
390 }
391 
392 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
393 				pgoff_t index, int whence)
394 {
395 	switch (whence) {
396 	case SEEK_DATA:
397 		if (__is_valid_data_blkaddr(blkaddr))
398 			return true;
399 		if (blkaddr == NEW_ADDR &&
400 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
401 			return true;
402 		break;
403 	case SEEK_HOLE:
404 		if (blkaddr == NULL_ADDR)
405 			return true;
406 		break;
407 	}
408 	return false;
409 }
410 
411 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
412 {
413 	struct inode *inode = file->f_mapping->host;
414 	loff_t maxbytes = inode->i_sb->s_maxbytes;
415 	struct dnode_of_data dn;
416 	pgoff_t pgofs, end_offset;
417 	loff_t data_ofs = offset;
418 	loff_t isize;
419 	int err = 0;
420 
421 	inode_lock(inode);
422 
423 	isize = i_size_read(inode);
424 	if (offset >= isize)
425 		goto fail;
426 
427 	/* handle inline data case */
428 	if (f2fs_has_inline_data(inode)) {
429 		if (whence == SEEK_HOLE) {
430 			data_ofs = isize;
431 			goto found;
432 		} else if (whence == SEEK_DATA) {
433 			data_ofs = offset;
434 			goto found;
435 		}
436 	}
437 
438 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
439 
440 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
441 		set_new_dnode(&dn, inode, NULL, NULL, 0);
442 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
443 		if (err && err != -ENOENT) {
444 			goto fail;
445 		} else if (err == -ENOENT) {
446 			/* direct node does not exists */
447 			if (whence == SEEK_DATA) {
448 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
449 				continue;
450 			} else {
451 				goto found;
452 			}
453 		}
454 
455 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
456 
457 		/* find data/hole in dnode block */
458 		for (; dn.ofs_in_node < end_offset;
459 				dn.ofs_in_node++, pgofs++,
460 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461 			block_t blkaddr;
462 
463 			blkaddr = f2fs_data_blkaddr(&dn);
464 
465 			if (__is_valid_data_blkaddr(blkaddr) &&
466 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
467 					blkaddr, DATA_GENERIC_ENHANCE)) {
468 				f2fs_put_dnode(&dn);
469 				goto fail;
470 			}
471 
472 			if (__found_offset(file->f_mapping, blkaddr,
473 							pgofs, whence)) {
474 				f2fs_put_dnode(&dn);
475 				goto found;
476 			}
477 		}
478 		f2fs_put_dnode(&dn);
479 	}
480 
481 	if (whence == SEEK_DATA)
482 		goto fail;
483 found:
484 	if (whence == SEEK_HOLE && data_ofs > isize)
485 		data_ofs = isize;
486 	inode_unlock(inode);
487 	return vfs_setpos(file, data_ofs, maxbytes);
488 fail:
489 	inode_unlock(inode);
490 	return -ENXIO;
491 }
492 
493 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
494 {
495 	struct inode *inode = file->f_mapping->host;
496 	loff_t maxbytes = inode->i_sb->s_maxbytes;
497 
498 	if (f2fs_compressed_file(inode))
499 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
500 
501 	switch (whence) {
502 	case SEEK_SET:
503 	case SEEK_CUR:
504 	case SEEK_END:
505 		return generic_file_llseek_size(file, offset, whence,
506 						maxbytes, i_size_read(inode));
507 	case SEEK_DATA:
508 	case SEEK_HOLE:
509 		if (offset < 0)
510 			return -ENXIO;
511 		return f2fs_seek_block(file, offset, whence);
512 	}
513 
514 	return -EINVAL;
515 }
516 
517 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
518 {
519 	struct inode *inode = file_inode(file);
520 
521 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
522 		return -EIO;
523 
524 	if (!f2fs_is_compress_backend_ready(inode))
525 		return -EOPNOTSUPP;
526 
527 	file_accessed(file);
528 	vma->vm_ops = &f2fs_file_vm_ops;
529 
530 	f2fs_down_read(&F2FS_I(inode)->i_sem);
531 	set_inode_flag(inode, FI_MMAP_FILE);
532 	f2fs_up_read(&F2FS_I(inode)->i_sem);
533 
534 	return 0;
535 }
536 
537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539 	int err = fscrypt_file_open(inode, filp);
540 
541 	if (err)
542 		return err;
543 
544 	if (!f2fs_is_compress_backend_ready(inode))
545 		return -EOPNOTSUPP;
546 
547 	err = fsverity_file_open(inode, filp);
548 	if (err)
549 		return err;
550 
551 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
552 	filp->f_mode |= FMODE_CAN_ODIRECT;
553 
554 	return dquot_file_open(inode, filp);
555 }
556 
557 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
558 {
559 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
560 	struct f2fs_node *raw_node;
561 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
562 	__le32 *addr;
563 	int base = 0;
564 	bool compressed_cluster = false;
565 	int cluster_index = 0, valid_blocks = 0;
566 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
567 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
568 
569 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
570 		base = get_extra_isize(dn->inode);
571 
572 	raw_node = F2FS_NODE(dn->node_page);
573 	addr = blkaddr_in_node(raw_node) + base + ofs;
574 
575 	/* Assumption: truncation starts with cluster */
576 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
577 		block_t blkaddr = le32_to_cpu(*addr);
578 
579 		if (f2fs_compressed_file(dn->inode) &&
580 					!(cluster_index & (cluster_size - 1))) {
581 			if (compressed_cluster)
582 				f2fs_i_compr_blocks_update(dn->inode,
583 							valid_blocks, false);
584 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
585 			valid_blocks = 0;
586 		}
587 
588 		if (blkaddr == NULL_ADDR)
589 			continue;
590 
591 		dn->data_blkaddr = NULL_ADDR;
592 		f2fs_set_data_blkaddr(dn);
593 
594 		if (__is_valid_data_blkaddr(blkaddr)) {
595 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
596 					DATA_GENERIC_ENHANCE))
597 				continue;
598 			if (compressed_cluster)
599 				valid_blocks++;
600 		}
601 
602 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
603 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
604 
605 		f2fs_invalidate_blocks(sbi, blkaddr);
606 
607 		if (!released || blkaddr != COMPRESS_ADDR)
608 			nr_free++;
609 	}
610 
611 	if (compressed_cluster)
612 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
613 
614 	if (nr_free) {
615 		pgoff_t fofs;
616 		/*
617 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
618 		 * we will invalidate all blkaddr in the whole range.
619 		 */
620 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
621 							dn->inode) + ofs;
622 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
623 		f2fs_update_age_extent_cache_range(dn, fofs, len);
624 		dec_valid_block_count(sbi, dn->inode, nr_free);
625 	}
626 	dn->ofs_in_node = ofs;
627 
628 	f2fs_update_time(sbi, REQ_TIME);
629 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
630 					 dn->ofs_in_node, nr_free);
631 }
632 
633 static int truncate_partial_data_page(struct inode *inode, u64 from,
634 								bool cache_only)
635 {
636 	loff_t offset = from & (PAGE_SIZE - 1);
637 	pgoff_t index = from >> PAGE_SHIFT;
638 	struct address_space *mapping = inode->i_mapping;
639 	struct page *page;
640 
641 	if (!offset && !cache_only)
642 		return 0;
643 
644 	if (cache_only) {
645 		page = find_lock_page(mapping, index);
646 		if (page && PageUptodate(page))
647 			goto truncate_out;
648 		f2fs_put_page(page, 1);
649 		return 0;
650 	}
651 
652 	page = f2fs_get_lock_data_page(inode, index, true);
653 	if (IS_ERR(page))
654 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
655 truncate_out:
656 	f2fs_wait_on_page_writeback(page, DATA, true, true);
657 	zero_user(page, offset, PAGE_SIZE - offset);
658 
659 	/* An encrypted inode should have a key and truncate the last page. */
660 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
661 	if (!cache_only)
662 		set_page_dirty(page);
663 	f2fs_put_page(page, 1);
664 	return 0;
665 }
666 
667 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
668 {
669 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
670 	struct dnode_of_data dn;
671 	pgoff_t free_from;
672 	int count = 0, err = 0;
673 	struct page *ipage;
674 	bool truncate_page = false;
675 
676 	trace_f2fs_truncate_blocks_enter(inode, from);
677 
678 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
679 
680 	if (free_from >= max_file_blocks(inode))
681 		goto free_partial;
682 
683 	if (lock)
684 		f2fs_lock_op(sbi);
685 
686 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
687 	if (IS_ERR(ipage)) {
688 		err = PTR_ERR(ipage);
689 		goto out;
690 	}
691 
692 	if (f2fs_has_inline_data(inode)) {
693 		f2fs_truncate_inline_inode(inode, ipage, from);
694 		f2fs_put_page(ipage, 1);
695 		truncate_page = true;
696 		goto out;
697 	}
698 
699 	set_new_dnode(&dn, inode, ipage, NULL, 0);
700 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
701 	if (err) {
702 		if (err == -ENOENT)
703 			goto free_next;
704 		goto out;
705 	}
706 
707 	count = ADDRS_PER_PAGE(dn.node_page, inode);
708 
709 	count -= dn.ofs_in_node;
710 	f2fs_bug_on(sbi, count < 0);
711 
712 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
713 		f2fs_truncate_data_blocks_range(&dn, count);
714 		free_from += count;
715 	}
716 
717 	f2fs_put_dnode(&dn);
718 free_next:
719 	err = f2fs_truncate_inode_blocks(inode, free_from);
720 out:
721 	if (lock)
722 		f2fs_unlock_op(sbi);
723 free_partial:
724 	/* lastly zero out the first data page */
725 	if (!err)
726 		err = truncate_partial_data_page(inode, from, truncate_page);
727 
728 	trace_f2fs_truncate_blocks_exit(inode, err);
729 	return err;
730 }
731 
732 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
733 {
734 	u64 free_from = from;
735 	int err;
736 
737 #ifdef CONFIG_F2FS_FS_COMPRESSION
738 	/*
739 	 * for compressed file, only support cluster size
740 	 * aligned truncation.
741 	 */
742 	if (f2fs_compressed_file(inode))
743 		free_from = round_up(from,
744 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
745 #endif
746 
747 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
748 	if (err)
749 		return err;
750 
751 #ifdef CONFIG_F2FS_FS_COMPRESSION
752 	/*
753 	 * For compressed file, after release compress blocks, don't allow write
754 	 * direct, but we should allow write direct after truncate to zero.
755 	 */
756 	if (f2fs_compressed_file(inode) && !free_from
757 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
758 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
759 
760 	if (from != free_from) {
761 		err = f2fs_truncate_partial_cluster(inode, from, lock);
762 		if (err)
763 			return err;
764 	}
765 #endif
766 
767 	return 0;
768 }
769 
770 int f2fs_truncate(struct inode *inode)
771 {
772 	int err;
773 
774 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
775 		return -EIO;
776 
777 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
778 				S_ISLNK(inode->i_mode)))
779 		return 0;
780 
781 	trace_f2fs_truncate(inode);
782 
783 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
784 		return -EIO;
785 
786 	err = f2fs_dquot_initialize(inode);
787 	if (err)
788 		return err;
789 
790 	/* we should check inline_data size */
791 	if (!f2fs_may_inline_data(inode)) {
792 		err = f2fs_convert_inline_inode(inode);
793 		if (err)
794 			return err;
795 	}
796 
797 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
798 	if (err)
799 		return err;
800 
801 	inode->i_mtime = inode_set_ctime_current(inode);
802 	f2fs_mark_inode_dirty_sync(inode, false);
803 	return 0;
804 }
805 
806 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
807 {
808 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
809 
810 	if (!fscrypt_dio_supported(inode))
811 		return true;
812 	if (fsverity_active(inode))
813 		return true;
814 	if (f2fs_compressed_file(inode))
815 		return true;
816 
817 	/* disallow direct IO if any of devices has unaligned blksize */
818 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
819 		return true;
820 	/*
821 	 * for blkzoned device, fallback direct IO to buffered IO, so
822 	 * all IOs can be serialized by log-structured write.
823 	 */
824 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
825 		return true;
826 	if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
827 		return true;
828 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
829 		return true;
830 
831 	return false;
832 }
833 
834 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
835 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
836 {
837 	struct inode *inode = d_inode(path->dentry);
838 	struct f2fs_inode_info *fi = F2FS_I(inode);
839 	struct f2fs_inode *ri = NULL;
840 	unsigned int flags;
841 
842 	if (f2fs_has_extra_attr(inode) &&
843 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
844 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
845 		stat->result_mask |= STATX_BTIME;
846 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
847 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
848 	}
849 
850 	/*
851 	 * Return the DIO alignment restrictions if requested.  We only return
852 	 * this information when requested, since on encrypted files it might
853 	 * take a fair bit of work to get if the file wasn't opened recently.
854 	 *
855 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
856 	 * cannot represent that, so in that case we report no DIO support.
857 	 */
858 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
859 		unsigned int bsize = i_blocksize(inode);
860 
861 		stat->result_mask |= STATX_DIOALIGN;
862 		if (!f2fs_force_buffered_io(inode, WRITE)) {
863 			stat->dio_mem_align = bsize;
864 			stat->dio_offset_align = bsize;
865 		}
866 	}
867 
868 	flags = fi->i_flags;
869 	if (flags & F2FS_COMPR_FL)
870 		stat->attributes |= STATX_ATTR_COMPRESSED;
871 	if (flags & F2FS_APPEND_FL)
872 		stat->attributes |= STATX_ATTR_APPEND;
873 	if (IS_ENCRYPTED(inode))
874 		stat->attributes |= STATX_ATTR_ENCRYPTED;
875 	if (flags & F2FS_IMMUTABLE_FL)
876 		stat->attributes |= STATX_ATTR_IMMUTABLE;
877 	if (flags & F2FS_NODUMP_FL)
878 		stat->attributes |= STATX_ATTR_NODUMP;
879 	if (IS_VERITY(inode))
880 		stat->attributes |= STATX_ATTR_VERITY;
881 
882 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
883 				  STATX_ATTR_APPEND |
884 				  STATX_ATTR_ENCRYPTED |
885 				  STATX_ATTR_IMMUTABLE |
886 				  STATX_ATTR_NODUMP |
887 				  STATX_ATTR_VERITY);
888 
889 	generic_fillattr(idmap, request_mask, inode, stat);
890 
891 	/* we need to show initial sectors used for inline_data/dentries */
892 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
893 					f2fs_has_inline_dentry(inode))
894 		stat->blocks += (stat->size + 511) >> 9;
895 
896 	return 0;
897 }
898 
899 #ifdef CONFIG_F2FS_FS_POSIX_ACL
900 static void __setattr_copy(struct mnt_idmap *idmap,
901 			   struct inode *inode, const struct iattr *attr)
902 {
903 	unsigned int ia_valid = attr->ia_valid;
904 
905 	i_uid_update(idmap, attr, inode);
906 	i_gid_update(idmap, attr, inode);
907 	if (ia_valid & ATTR_ATIME)
908 		inode->i_atime = attr->ia_atime;
909 	if (ia_valid & ATTR_MTIME)
910 		inode->i_mtime = attr->ia_mtime;
911 	if (ia_valid & ATTR_CTIME)
912 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
913 	if (ia_valid & ATTR_MODE) {
914 		umode_t mode = attr->ia_mode;
915 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
916 
917 		if (!vfsgid_in_group_p(vfsgid) &&
918 		    !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
919 			mode &= ~S_ISGID;
920 		set_acl_inode(inode, mode);
921 	}
922 }
923 #else
924 #define __setattr_copy setattr_copy
925 #endif
926 
927 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
928 		 struct iattr *attr)
929 {
930 	struct inode *inode = d_inode(dentry);
931 	int err;
932 
933 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
934 		return -EIO;
935 
936 	if (unlikely(IS_IMMUTABLE(inode)))
937 		return -EPERM;
938 
939 	if (unlikely(IS_APPEND(inode) &&
940 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
941 				  ATTR_GID | ATTR_TIMES_SET))))
942 		return -EPERM;
943 
944 	if ((attr->ia_valid & ATTR_SIZE) &&
945 		!f2fs_is_compress_backend_ready(inode))
946 		return -EOPNOTSUPP;
947 
948 	err = setattr_prepare(idmap, dentry, attr);
949 	if (err)
950 		return err;
951 
952 	err = fscrypt_prepare_setattr(dentry, attr);
953 	if (err)
954 		return err;
955 
956 	err = fsverity_prepare_setattr(dentry, attr);
957 	if (err)
958 		return err;
959 
960 	if (is_quota_modification(idmap, inode, attr)) {
961 		err = f2fs_dquot_initialize(inode);
962 		if (err)
963 			return err;
964 	}
965 	if (i_uid_needs_update(idmap, attr, inode) ||
966 	    i_gid_needs_update(idmap, attr, inode)) {
967 		f2fs_lock_op(F2FS_I_SB(inode));
968 		err = dquot_transfer(idmap, inode, attr);
969 		if (err) {
970 			set_sbi_flag(F2FS_I_SB(inode),
971 					SBI_QUOTA_NEED_REPAIR);
972 			f2fs_unlock_op(F2FS_I_SB(inode));
973 			return err;
974 		}
975 		/*
976 		 * update uid/gid under lock_op(), so that dquot and inode can
977 		 * be updated atomically.
978 		 */
979 		i_uid_update(idmap, attr, inode);
980 		i_gid_update(idmap, attr, inode);
981 		f2fs_mark_inode_dirty_sync(inode, true);
982 		f2fs_unlock_op(F2FS_I_SB(inode));
983 	}
984 
985 	if (attr->ia_valid & ATTR_SIZE) {
986 		loff_t old_size = i_size_read(inode);
987 
988 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
989 			/*
990 			 * should convert inline inode before i_size_write to
991 			 * keep smaller than inline_data size with inline flag.
992 			 */
993 			err = f2fs_convert_inline_inode(inode);
994 			if (err)
995 				return err;
996 		}
997 
998 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
999 		filemap_invalidate_lock(inode->i_mapping);
1000 
1001 		truncate_setsize(inode, attr->ia_size);
1002 
1003 		if (attr->ia_size <= old_size)
1004 			err = f2fs_truncate(inode);
1005 		/*
1006 		 * do not trim all blocks after i_size if target size is
1007 		 * larger than i_size.
1008 		 */
1009 		filemap_invalidate_unlock(inode->i_mapping);
1010 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1011 		if (err)
1012 			return err;
1013 
1014 		spin_lock(&F2FS_I(inode)->i_size_lock);
1015 		inode->i_mtime = inode_set_ctime_current(inode);
1016 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1017 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1018 	}
1019 
1020 	__setattr_copy(idmap, inode, attr);
1021 
1022 	if (attr->ia_valid & ATTR_MODE) {
1023 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1024 
1025 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1026 			if (!err)
1027 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1028 			clear_inode_flag(inode, FI_ACL_MODE);
1029 		}
1030 	}
1031 
1032 	/* file size may changed here */
1033 	f2fs_mark_inode_dirty_sync(inode, true);
1034 
1035 	/* inode change will produce dirty node pages flushed by checkpoint */
1036 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1037 
1038 	return err;
1039 }
1040 
1041 const struct inode_operations f2fs_file_inode_operations = {
1042 	.getattr	= f2fs_getattr,
1043 	.setattr	= f2fs_setattr,
1044 	.get_inode_acl	= f2fs_get_acl,
1045 	.set_acl	= f2fs_set_acl,
1046 	.listxattr	= f2fs_listxattr,
1047 	.fiemap		= f2fs_fiemap,
1048 	.fileattr_get	= f2fs_fileattr_get,
1049 	.fileattr_set	= f2fs_fileattr_set,
1050 };
1051 
1052 static int fill_zero(struct inode *inode, pgoff_t index,
1053 					loff_t start, loff_t len)
1054 {
1055 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1056 	struct page *page;
1057 
1058 	if (!len)
1059 		return 0;
1060 
1061 	f2fs_balance_fs(sbi, true);
1062 
1063 	f2fs_lock_op(sbi);
1064 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1065 	f2fs_unlock_op(sbi);
1066 
1067 	if (IS_ERR(page))
1068 		return PTR_ERR(page);
1069 
1070 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1071 	zero_user(page, start, len);
1072 	set_page_dirty(page);
1073 	f2fs_put_page(page, 1);
1074 	return 0;
1075 }
1076 
1077 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1078 {
1079 	int err;
1080 
1081 	while (pg_start < pg_end) {
1082 		struct dnode_of_data dn;
1083 		pgoff_t end_offset, count;
1084 
1085 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1086 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1087 		if (err) {
1088 			if (err == -ENOENT) {
1089 				pg_start = f2fs_get_next_page_offset(&dn,
1090 								pg_start);
1091 				continue;
1092 			}
1093 			return err;
1094 		}
1095 
1096 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1097 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1098 
1099 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1100 
1101 		f2fs_truncate_data_blocks_range(&dn, count);
1102 		f2fs_put_dnode(&dn);
1103 
1104 		pg_start += count;
1105 	}
1106 	return 0;
1107 }
1108 
1109 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1110 {
1111 	pgoff_t pg_start, pg_end;
1112 	loff_t off_start, off_end;
1113 	int ret;
1114 
1115 	ret = f2fs_convert_inline_inode(inode);
1116 	if (ret)
1117 		return ret;
1118 
1119 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1120 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1121 
1122 	off_start = offset & (PAGE_SIZE - 1);
1123 	off_end = (offset + len) & (PAGE_SIZE - 1);
1124 
1125 	if (pg_start == pg_end) {
1126 		ret = fill_zero(inode, pg_start, off_start,
1127 						off_end - off_start);
1128 		if (ret)
1129 			return ret;
1130 	} else {
1131 		if (off_start) {
1132 			ret = fill_zero(inode, pg_start++, off_start,
1133 						PAGE_SIZE - off_start);
1134 			if (ret)
1135 				return ret;
1136 		}
1137 		if (off_end) {
1138 			ret = fill_zero(inode, pg_end, 0, off_end);
1139 			if (ret)
1140 				return ret;
1141 		}
1142 
1143 		if (pg_start < pg_end) {
1144 			loff_t blk_start, blk_end;
1145 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1146 
1147 			f2fs_balance_fs(sbi, true);
1148 
1149 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1150 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1151 
1152 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1153 			filemap_invalidate_lock(inode->i_mapping);
1154 
1155 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1156 
1157 			f2fs_lock_op(sbi);
1158 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1159 			f2fs_unlock_op(sbi);
1160 
1161 			filemap_invalidate_unlock(inode->i_mapping);
1162 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1163 		}
1164 	}
1165 
1166 	return ret;
1167 }
1168 
1169 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1170 				int *do_replace, pgoff_t off, pgoff_t len)
1171 {
1172 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1173 	struct dnode_of_data dn;
1174 	int ret, done, i;
1175 
1176 next_dnode:
1177 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1178 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1179 	if (ret && ret != -ENOENT) {
1180 		return ret;
1181 	} else if (ret == -ENOENT) {
1182 		if (dn.max_level == 0)
1183 			return -ENOENT;
1184 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1185 						dn.ofs_in_node, len);
1186 		blkaddr += done;
1187 		do_replace += done;
1188 		goto next;
1189 	}
1190 
1191 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1192 							dn.ofs_in_node, len);
1193 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1194 		*blkaddr = f2fs_data_blkaddr(&dn);
1195 
1196 		if (__is_valid_data_blkaddr(*blkaddr) &&
1197 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1198 					DATA_GENERIC_ENHANCE)) {
1199 			f2fs_put_dnode(&dn);
1200 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1201 			return -EFSCORRUPTED;
1202 		}
1203 
1204 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1205 
1206 			if (f2fs_lfs_mode(sbi)) {
1207 				f2fs_put_dnode(&dn);
1208 				return -EOPNOTSUPP;
1209 			}
1210 
1211 			/* do not invalidate this block address */
1212 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1213 			*do_replace = 1;
1214 		}
1215 	}
1216 	f2fs_put_dnode(&dn);
1217 next:
1218 	len -= done;
1219 	off += done;
1220 	if (len)
1221 		goto next_dnode;
1222 	return 0;
1223 }
1224 
1225 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1226 				int *do_replace, pgoff_t off, int len)
1227 {
1228 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1229 	struct dnode_of_data dn;
1230 	int ret, i;
1231 
1232 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1233 		if (*do_replace == 0)
1234 			continue;
1235 
1236 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1237 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1238 		if (ret) {
1239 			dec_valid_block_count(sbi, inode, 1);
1240 			f2fs_invalidate_blocks(sbi, *blkaddr);
1241 		} else {
1242 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1243 		}
1244 		f2fs_put_dnode(&dn);
1245 	}
1246 	return 0;
1247 }
1248 
1249 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1250 			block_t *blkaddr, int *do_replace,
1251 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1252 {
1253 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1254 	pgoff_t i = 0;
1255 	int ret;
1256 
1257 	while (i < len) {
1258 		if (blkaddr[i] == NULL_ADDR && !full) {
1259 			i++;
1260 			continue;
1261 		}
1262 
1263 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1264 			struct dnode_of_data dn;
1265 			struct node_info ni;
1266 			size_t new_size;
1267 			pgoff_t ilen;
1268 
1269 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1270 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1271 			if (ret)
1272 				return ret;
1273 
1274 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1275 			if (ret) {
1276 				f2fs_put_dnode(&dn);
1277 				return ret;
1278 			}
1279 
1280 			ilen = min((pgoff_t)
1281 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1282 						dn.ofs_in_node, len - i);
1283 			do {
1284 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1285 				f2fs_truncate_data_blocks_range(&dn, 1);
1286 
1287 				if (do_replace[i]) {
1288 					f2fs_i_blocks_write(src_inode,
1289 							1, false, false);
1290 					f2fs_i_blocks_write(dst_inode,
1291 							1, true, false);
1292 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1293 					blkaddr[i], ni.version, true, false);
1294 
1295 					do_replace[i] = 0;
1296 				}
1297 				dn.ofs_in_node++;
1298 				i++;
1299 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1300 				if (dst_inode->i_size < new_size)
1301 					f2fs_i_size_write(dst_inode, new_size);
1302 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1303 
1304 			f2fs_put_dnode(&dn);
1305 		} else {
1306 			struct page *psrc, *pdst;
1307 
1308 			psrc = f2fs_get_lock_data_page(src_inode,
1309 							src + i, true);
1310 			if (IS_ERR(psrc))
1311 				return PTR_ERR(psrc);
1312 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1313 								true);
1314 			if (IS_ERR(pdst)) {
1315 				f2fs_put_page(psrc, 1);
1316 				return PTR_ERR(pdst);
1317 			}
1318 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1319 			set_page_dirty(pdst);
1320 			f2fs_put_page(pdst, 1);
1321 			f2fs_put_page(psrc, 1);
1322 
1323 			ret = f2fs_truncate_hole(src_inode,
1324 						src + i, src + i + 1);
1325 			if (ret)
1326 				return ret;
1327 			i++;
1328 		}
1329 	}
1330 	return 0;
1331 }
1332 
1333 static int __exchange_data_block(struct inode *src_inode,
1334 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1335 			pgoff_t len, bool full)
1336 {
1337 	block_t *src_blkaddr;
1338 	int *do_replace;
1339 	pgoff_t olen;
1340 	int ret;
1341 
1342 	while (len) {
1343 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1344 
1345 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1346 					array_size(olen, sizeof(block_t)),
1347 					GFP_NOFS);
1348 		if (!src_blkaddr)
1349 			return -ENOMEM;
1350 
1351 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1352 					array_size(olen, sizeof(int)),
1353 					GFP_NOFS);
1354 		if (!do_replace) {
1355 			kvfree(src_blkaddr);
1356 			return -ENOMEM;
1357 		}
1358 
1359 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1360 					do_replace, src, olen);
1361 		if (ret)
1362 			goto roll_back;
1363 
1364 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1365 					do_replace, src, dst, olen, full);
1366 		if (ret)
1367 			goto roll_back;
1368 
1369 		src += olen;
1370 		dst += olen;
1371 		len -= olen;
1372 
1373 		kvfree(src_blkaddr);
1374 		kvfree(do_replace);
1375 	}
1376 	return 0;
1377 
1378 roll_back:
1379 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1380 	kvfree(src_blkaddr);
1381 	kvfree(do_replace);
1382 	return ret;
1383 }
1384 
1385 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1386 {
1387 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1388 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1389 	pgoff_t start = offset >> PAGE_SHIFT;
1390 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1391 	int ret;
1392 
1393 	f2fs_balance_fs(sbi, true);
1394 
1395 	/* avoid gc operation during block exchange */
1396 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1397 	filemap_invalidate_lock(inode->i_mapping);
1398 
1399 	f2fs_lock_op(sbi);
1400 	f2fs_drop_extent_tree(inode);
1401 	truncate_pagecache(inode, offset);
1402 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1403 	f2fs_unlock_op(sbi);
1404 
1405 	filemap_invalidate_unlock(inode->i_mapping);
1406 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1407 	return ret;
1408 }
1409 
1410 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1411 {
1412 	loff_t new_size;
1413 	int ret;
1414 
1415 	if (offset + len >= i_size_read(inode))
1416 		return -EINVAL;
1417 
1418 	/* collapse range should be aligned to block size of f2fs. */
1419 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1420 		return -EINVAL;
1421 
1422 	ret = f2fs_convert_inline_inode(inode);
1423 	if (ret)
1424 		return ret;
1425 
1426 	/* write out all dirty pages from offset */
1427 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1428 	if (ret)
1429 		return ret;
1430 
1431 	ret = f2fs_do_collapse(inode, offset, len);
1432 	if (ret)
1433 		return ret;
1434 
1435 	/* write out all moved pages, if possible */
1436 	filemap_invalidate_lock(inode->i_mapping);
1437 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1438 	truncate_pagecache(inode, offset);
1439 
1440 	new_size = i_size_read(inode) - len;
1441 	ret = f2fs_truncate_blocks(inode, new_size, true);
1442 	filemap_invalidate_unlock(inode->i_mapping);
1443 	if (!ret)
1444 		f2fs_i_size_write(inode, new_size);
1445 	return ret;
1446 }
1447 
1448 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1449 								pgoff_t end)
1450 {
1451 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1452 	pgoff_t index = start;
1453 	unsigned int ofs_in_node = dn->ofs_in_node;
1454 	blkcnt_t count = 0;
1455 	int ret;
1456 
1457 	for (; index < end; index++, dn->ofs_in_node++) {
1458 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1459 			count++;
1460 	}
1461 
1462 	dn->ofs_in_node = ofs_in_node;
1463 	ret = f2fs_reserve_new_blocks(dn, count);
1464 	if (ret)
1465 		return ret;
1466 
1467 	dn->ofs_in_node = ofs_in_node;
1468 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1469 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1470 		/*
1471 		 * f2fs_reserve_new_blocks will not guarantee entire block
1472 		 * allocation.
1473 		 */
1474 		if (dn->data_blkaddr == NULL_ADDR) {
1475 			ret = -ENOSPC;
1476 			break;
1477 		}
1478 
1479 		if (dn->data_blkaddr == NEW_ADDR)
1480 			continue;
1481 
1482 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1483 					DATA_GENERIC_ENHANCE)) {
1484 			ret = -EFSCORRUPTED;
1485 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1486 			break;
1487 		}
1488 
1489 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1490 		dn->data_blkaddr = NEW_ADDR;
1491 		f2fs_set_data_blkaddr(dn);
1492 	}
1493 
1494 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1495 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1496 
1497 	return ret;
1498 }
1499 
1500 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1501 								int mode)
1502 {
1503 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1504 	struct address_space *mapping = inode->i_mapping;
1505 	pgoff_t index, pg_start, pg_end;
1506 	loff_t new_size = i_size_read(inode);
1507 	loff_t off_start, off_end;
1508 	int ret = 0;
1509 
1510 	ret = inode_newsize_ok(inode, (len + offset));
1511 	if (ret)
1512 		return ret;
1513 
1514 	ret = f2fs_convert_inline_inode(inode);
1515 	if (ret)
1516 		return ret;
1517 
1518 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1519 	if (ret)
1520 		return ret;
1521 
1522 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1523 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1524 
1525 	off_start = offset & (PAGE_SIZE - 1);
1526 	off_end = (offset + len) & (PAGE_SIZE - 1);
1527 
1528 	if (pg_start == pg_end) {
1529 		ret = fill_zero(inode, pg_start, off_start,
1530 						off_end - off_start);
1531 		if (ret)
1532 			return ret;
1533 
1534 		new_size = max_t(loff_t, new_size, offset + len);
1535 	} else {
1536 		if (off_start) {
1537 			ret = fill_zero(inode, pg_start++, off_start,
1538 						PAGE_SIZE - off_start);
1539 			if (ret)
1540 				return ret;
1541 
1542 			new_size = max_t(loff_t, new_size,
1543 					(loff_t)pg_start << PAGE_SHIFT);
1544 		}
1545 
1546 		for (index = pg_start; index < pg_end;) {
1547 			struct dnode_of_data dn;
1548 			unsigned int end_offset;
1549 			pgoff_t end;
1550 
1551 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1552 			filemap_invalidate_lock(mapping);
1553 
1554 			truncate_pagecache_range(inode,
1555 				(loff_t)index << PAGE_SHIFT,
1556 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1557 
1558 			f2fs_lock_op(sbi);
1559 
1560 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1561 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1562 			if (ret) {
1563 				f2fs_unlock_op(sbi);
1564 				filemap_invalidate_unlock(mapping);
1565 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1566 				goto out;
1567 			}
1568 
1569 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1570 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1571 
1572 			ret = f2fs_do_zero_range(&dn, index, end);
1573 			f2fs_put_dnode(&dn);
1574 
1575 			f2fs_unlock_op(sbi);
1576 			filemap_invalidate_unlock(mapping);
1577 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1578 
1579 			f2fs_balance_fs(sbi, dn.node_changed);
1580 
1581 			if (ret)
1582 				goto out;
1583 
1584 			index = end;
1585 			new_size = max_t(loff_t, new_size,
1586 					(loff_t)index << PAGE_SHIFT);
1587 		}
1588 
1589 		if (off_end) {
1590 			ret = fill_zero(inode, pg_end, 0, off_end);
1591 			if (ret)
1592 				goto out;
1593 
1594 			new_size = max_t(loff_t, new_size, offset + len);
1595 		}
1596 	}
1597 
1598 out:
1599 	if (new_size > i_size_read(inode)) {
1600 		if (mode & FALLOC_FL_KEEP_SIZE)
1601 			file_set_keep_isize(inode);
1602 		else
1603 			f2fs_i_size_write(inode, new_size);
1604 	}
1605 	return ret;
1606 }
1607 
1608 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1609 {
1610 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1611 	struct address_space *mapping = inode->i_mapping;
1612 	pgoff_t nr, pg_start, pg_end, delta, idx;
1613 	loff_t new_size;
1614 	int ret = 0;
1615 
1616 	new_size = i_size_read(inode) + len;
1617 	ret = inode_newsize_ok(inode, new_size);
1618 	if (ret)
1619 		return ret;
1620 
1621 	if (offset >= i_size_read(inode))
1622 		return -EINVAL;
1623 
1624 	/* insert range should be aligned to block size of f2fs. */
1625 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1626 		return -EINVAL;
1627 
1628 	ret = f2fs_convert_inline_inode(inode);
1629 	if (ret)
1630 		return ret;
1631 
1632 	f2fs_balance_fs(sbi, true);
1633 
1634 	filemap_invalidate_lock(mapping);
1635 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1636 	filemap_invalidate_unlock(mapping);
1637 	if (ret)
1638 		return ret;
1639 
1640 	/* write out all dirty pages from offset */
1641 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1642 	if (ret)
1643 		return ret;
1644 
1645 	pg_start = offset >> PAGE_SHIFT;
1646 	pg_end = (offset + len) >> PAGE_SHIFT;
1647 	delta = pg_end - pg_start;
1648 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1649 
1650 	/* avoid gc operation during block exchange */
1651 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1652 	filemap_invalidate_lock(mapping);
1653 	truncate_pagecache(inode, offset);
1654 
1655 	while (!ret && idx > pg_start) {
1656 		nr = idx - pg_start;
1657 		if (nr > delta)
1658 			nr = delta;
1659 		idx -= nr;
1660 
1661 		f2fs_lock_op(sbi);
1662 		f2fs_drop_extent_tree(inode);
1663 
1664 		ret = __exchange_data_block(inode, inode, idx,
1665 					idx + delta, nr, false);
1666 		f2fs_unlock_op(sbi);
1667 	}
1668 	filemap_invalidate_unlock(mapping);
1669 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1670 
1671 	/* write out all moved pages, if possible */
1672 	filemap_invalidate_lock(mapping);
1673 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1674 	truncate_pagecache(inode, offset);
1675 	filemap_invalidate_unlock(mapping);
1676 
1677 	if (!ret)
1678 		f2fs_i_size_write(inode, new_size);
1679 	return ret;
1680 }
1681 
1682 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1683 					loff_t len, int mode)
1684 {
1685 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1686 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1687 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1688 			.m_may_create = true };
1689 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1690 			.init_gc_type = FG_GC,
1691 			.should_migrate_blocks = false,
1692 			.err_gc_skipped = true,
1693 			.nr_free_secs = 0 };
1694 	pgoff_t pg_start, pg_end;
1695 	loff_t new_size;
1696 	loff_t off_end;
1697 	block_t expanded = 0;
1698 	int err;
1699 
1700 	err = inode_newsize_ok(inode, (len + offset));
1701 	if (err)
1702 		return err;
1703 
1704 	err = f2fs_convert_inline_inode(inode);
1705 	if (err)
1706 		return err;
1707 
1708 	f2fs_balance_fs(sbi, true);
1709 
1710 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1711 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1712 	off_end = (offset + len) & (PAGE_SIZE - 1);
1713 
1714 	map.m_lblk = pg_start;
1715 	map.m_len = pg_end - pg_start;
1716 	if (off_end)
1717 		map.m_len++;
1718 
1719 	if (!map.m_len)
1720 		return 0;
1721 
1722 	if (f2fs_is_pinned_file(inode)) {
1723 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1724 		block_t sec_len = roundup(map.m_len, sec_blks);
1725 
1726 		map.m_len = sec_blks;
1727 next_alloc:
1728 		if (has_not_enough_free_secs(sbi, 0,
1729 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1730 			f2fs_down_write(&sbi->gc_lock);
1731 			stat_inc_gc_call_count(sbi, FOREGROUND);
1732 			err = f2fs_gc(sbi, &gc_control);
1733 			if (err && err != -ENODATA)
1734 				goto out_err;
1735 		}
1736 
1737 		f2fs_down_write(&sbi->pin_sem);
1738 
1739 		f2fs_lock_op(sbi);
1740 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1741 		f2fs_unlock_op(sbi);
1742 
1743 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1744 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1745 		file_dont_truncate(inode);
1746 
1747 		f2fs_up_write(&sbi->pin_sem);
1748 
1749 		expanded += map.m_len;
1750 		sec_len -= map.m_len;
1751 		map.m_lblk += map.m_len;
1752 		if (!err && sec_len)
1753 			goto next_alloc;
1754 
1755 		map.m_len = expanded;
1756 	} else {
1757 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1758 		expanded = map.m_len;
1759 	}
1760 out_err:
1761 	if (err) {
1762 		pgoff_t last_off;
1763 
1764 		if (!expanded)
1765 			return err;
1766 
1767 		last_off = pg_start + expanded - 1;
1768 
1769 		/* update new size to the failed position */
1770 		new_size = (last_off == pg_end) ? offset + len :
1771 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1772 	} else {
1773 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1774 	}
1775 
1776 	if (new_size > i_size_read(inode)) {
1777 		if (mode & FALLOC_FL_KEEP_SIZE)
1778 			file_set_keep_isize(inode);
1779 		else
1780 			f2fs_i_size_write(inode, new_size);
1781 	}
1782 
1783 	return err;
1784 }
1785 
1786 static long f2fs_fallocate(struct file *file, int mode,
1787 				loff_t offset, loff_t len)
1788 {
1789 	struct inode *inode = file_inode(file);
1790 	long ret = 0;
1791 
1792 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1793 		return -EIO;
1794 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1795 		return -ENOSPC;
1796 	if (!f2fs_is_compress_backend_ready(inode))
1797 		return -EOPNOTSUPP;
1798 
1799 	/* f2fs only support ->fallocate for regular file */
1800 	if (!S_ISREG(inode->i_mode))
1801 		return -EINVAL;
1802 
1803 	if (IS_ENCRYPTED(inode) &&
1804 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1805 		return -EOPNOTSUPP;
1806 
1807 	/*
1808 	 * Pinned file should not support partial truncation since the block
1809 	 * can be used by applications.
1810 	 */
1811 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1812 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1813 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1814 		return -EOPNOTSUPP;
1815 
1816 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1817 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1818 			FALLOC_FL_INSERT_RANGE))
1819 		return -EOPNOTSUPP;
1820 
1821 	inode_lock(inode);
1822 
1823 	ret = file_modified(file);
1824 	if (ret)
1825 		goto out;
1826 
1827 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1828 		if (offset >= inode->i_size)
1829 			goto out;
1830 
1831 		ret = f2fs_punch_hole(inode, offset, len);
1832 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1833 		ret = f2fs_collapse_range(inode, offset, len);
1834 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1835 		ret = f2fs_zero_range(inode, offset, len, mode);
1836 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1837 		ret = f2fs_insert_range(inode, offset, len);
1838 	} else {
1839 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1840 	}
1841 
1842 	if (!ret) {
1843 		inode->i_mtime = inode_set_ctime_current(inode);
1844 		f2fs_mark_inode_dirty_sync(inode, false);
1845 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1846 	}
1847 
1848 out:
1849 	inode_unlock(inode);
1850 
1851 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1852 	return ret;
1853 }
1854 
1855 static int f2fs_release_file(struct inode *inode, struct file *filp)
1856 {
1857 	/*
1858 	 * f2fs_release_file is called at every close calls. So we should
1859 	 * not drop any inmemory pages by close called by other process.
1860 	 */
1861 	if (!(filp->f_mode & FMODE_WRITE) ||
1862 			atomic_read(&inode->i_writecount) != 1)
1863 		return 0;
1864 
1865 	inode_lock(inode);
1866 	f2fs_abort_atomic_write(inode, true);
1867 	inode_unlock(inode);
1868 
1869 	return 0;
1870 }
1871 
1872 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1873 {
1874 	struct inode *inode = file_inode(file);
1875 
1876 	/*
1877 	 * If the process doing a transaction is crashed, we should do
1878 	 * roll-back. Otherwise, other reader/write can see corrupted database
1879 	 * until all the writers close its file. Since this should be done
1880 	 * before dropping file lock, it needs to do in ->flush.
1881 	 */
1882 	if (F2FS_I(inode)->atomic_write_task == current &&
1883 				(current->flags & PF_EXITING)) {
1884 		inode_lock(inode);
1885 		f2fs_abort_atomic_write(inode, true);
1886 		inode_unlock(inode);
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1893 {
1894 	struct f2fs_inode_info *fi = F2FS_I(inode);
1895 	u32 masked_flags = fi->i_flags & mask;
1896 
1897 	/* mask can be shrunk by flags_valid selector */
1898 	iflags &= mask;
1899 
1900 	/* Is it quota file? Do not allow user to mess with it */
1901 	if (IS_NOQUOTA(inode))
1902 		return -EPERM;
1903 
1904 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1905 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1906 			return -EOPNOTSUPP;
1907 		if (!f2fs_empty_dir(inode))
1908 			return -ENOTEMPTY;
1909 	}
1910 
1911 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1912 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1913 			return -EOPNOTSUPP;
1914 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1915 			return -EINVAL;
1916 	}
1917 
1918 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1919 		if (masked_flags & F2FS_COMPR_FL) {
1920 			if (!f2fs_disable_compressed_file(inode))
1921 				return -EINVAL;
1922 		} else {
1923 			/* try to convert inline_data to support compression */
1924 			int err = f2fs_convert_inline_inode(inode);
1925 			if (err)
1926 				return err;
1927 
1928 			f2fs_down_write(&F2FS_I(inode)->i_sem);
1929 			if (!f2fs_may_compress(inode) ||
1930 					(S_ISREG(inode->i_mode) &&
1931 					F2FS_HAS_BLOCKS(inode))) {
1932 				f2fs_up_write(&F2FS_I(inode)->i_sem);
1933 				return -EINVAL;
1934 			}
1935 			err = set_compress_context(inode);
1936 			f2fs_up_write(&F2FS_I(inode)->i_sem);
1937 
1938 			if (err)
1939 				return err;
1940 		}
1941 	}
1942 
1943 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1944 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1945 					(fi->i_flags & F2FS_NOCOMP_FL));
1946 
1947 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1948 		set_inode_flag(inode, FI_PROJ_INHERIT);
1949 	else
1950 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1951 
1952 	inode_set_ctime_current(inode);
1953 	f2fs_set_inode_flags(inode);
1954 	f2fs_mark_inode_dirty_sync(inode, true);
1955 	return 0;
1956 }
1957 
1958 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1959 
1960 /*
1961  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1962  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1963  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1964  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1965  *
1966  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1967  * FS_IOC_FSSETXATTR is done by the VFS.
1968  */
1969 
1970 static const struct {
1971 	u32 iflag;
1972 	u32 fsflag;
1973 } f2fs_fsflags_map[] = {
1974 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1975 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1976 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1977 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1978 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1979 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1980 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1981 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1982 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1983 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1984 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1985 };
1986 
1987 #define F2FS_GETTABLE_FS_FL (		\
1988 		FS_COMPR_FL |		\
1989 		FS_SYNC_FL |		\
1990 		FS_IMMUTABLE_FL |	\
1991 		FS_APPEND_FL |		\
1992 		FS_NODUMP_FL |		\
1993 		FS_NOATIME_FL |		\
1994 		FS_NOCOMP_FL |		\
1995 		FS_INDEX_FL |		\
1996 		FS_DIRSYNC_FL |		\
1997 		FS_PROJINHERIT_FL |	\
1998 		FS_ENCRYPT_FL |		\
1999 		FS_INLINE_DATA_FL |	\
2000 		FS_NOCOW_FL |		\
2001 		FS_VERITY_FL |		\
2002 		FS_CASEFOLD_FL)
2003 
2004 #define F2FS_SETTABLE_FS_FL (		\
2005 		FS_COMPR_FL |		\
2006 		FS_SYNC_FL |		\
2007 		FS_IMMUTABLE_FL |	\
2008 		FS_APPEND_FL |		\
2009 		FS_NODUMP_FL |		\
2010 		FS_NOATIME_FL |		\
2011 		FS_NOCOMP_FL |		\
2012 		FS_DIRSYNC_FL |		\
2013 		FS_PROJINHERIT_FL |	\
2014 		FS_CASEFOLD_FL)
2015 
2016 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2017 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2018 {
2019 	u32 fsflags = 0;
2020 	int i;
2021 
2022 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2023 		if (iflags & f2fs_fsflags_map[i].iflag)
2024 			fsflags |= f2fs_fsflags_map[i].fsflag;
2025 
2026 	return fsflags;
2027 }
2028 
2029 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2030 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2031 {
2032 	u32 iflags = 0;
2033 	int i;
2034 
2035 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2036 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2037 			iflags |= f2fs_fsflags_map[i].iflag;
2038 
2039 	return iflags;
2040 }
2041 
2042 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2043 {
2044 	struct inode *inode = file_inode(filp);
2045 
2046 	return put_user(inode->i_generation, (int __user *)arg);
2047 }
2048 
2049 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2050 {
2051 	struct inode *inode = file_inode(filp);
2052 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2053 	struct f2fs_inode_info *fi = F2FS_I(inode);
2054 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2055 	struct inode *pinode;
2056 	loff_t isize;
2057 	int ret;
2058 
2059 	if (!inode_owner_or_capable(idmap, inode))
2060 		return -EACCES;
2061 
2062 	if (!S_ISREG(inode->i_mode))
2063 		return -EINVAL;
2064 
2065 	if (filp->f_flags & O_DIRECT)
2066 		return -EINVAL;
2067 
2068 	ret = mnt_want_write_file(filp);
2069 	if (ret)
2070 		return ret;
2071 
2072 	inode_lock(inode);
2073 
2074 	if (!f2fs_disable_compressed_file(inode)) {
2075 		ret = -EINVAL;
2076 		goto out;
2077 	}
2078 
2079 	if (f2fs_is_atomic_file(inode))
2080 		goto out;
2081 
2082 	ret = f2fs_convert_inline_inode(inode);
2083 	if (ret)
2084 		goto out;
2085 
2086 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2087 
2088 	/*
2089 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2090 	 * f2fs_is_atomic_file.
2091 	 */
2092 	if (get_dirty_pages(inode))
2093 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2094 			  inode->i_ino, get_dirty_pages(inode));
2095 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2096 	if (ret) {
2097 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2098 		goto out;
2099 	}
2100 
2101 	/* Check if the inode already has a COW inode */
2102 	if (fi->cow_inode == NULL) {
2103 		/* Create a COW inode for atomic write */
2104 		pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2105 		if (IS_ERR(pinode)) {
2106 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2107 			ret = PTR_ERR(pinode);
2108 			goto out;
2109 		}
2110 
2111 		ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2112 		iput(pinode);
2113 		if (ret) {
2114 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2115 			goto out;
2116 		}
2117 
2118 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2119 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2120 	} else {
2121 		/* Reuse the already created COW inode */
2122 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2123 		if (ret) {
2124 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2125 			goto out;
2126 		}
2127 	}
2128 
2129 	f2fs_write_inode(inode, NULL);
2130 
2131 	stat_inc_atomic_inode(inode);
2132 
2133 	set_inode_flag(inode, FI_ATOMIC_FILE);
2134 
2135 	isize = i_size_read(inode);
2136 	fi->original_i_size = isize;
2137 	if (truncate) {
2138 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2139 		truncate_inode_pages_final(inode->i_mapping);
2140 		f2fs_i_size_write(inode, 0);
2141 		isize = 0;
2142 	}
2143 	f2fs_i_size_write(fi->cow_inode, isize);
2144 
2145 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2146 
2147 	f2fs_update_time(sbi, REQ_TIME);
2148 	fi->atomic_write_task = current;
2149 	stat_update_max_atomic_write(inode);
2150 	fi->atomic_write_cnt = 0;
2151 out:
2152 	inode_unlock(inode);
2153 	mnt_drop_write_file(filp);
2154 	return ret;
2155 }
2156 
2157 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2158 {
2159 	struct inode *inode = file_inode(filp);
2160 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2161 	int ret;
2162 
2163 	if (!inode_owner_or_capable(idmap, inode))
2164 		return -EACCES;
2165 
2166 	ret = mnt_want_write_file(filp);
2167 	if (ret)
2168 		return ret;
2169 
2170 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2171 
2172 	inode_lock(inode);
2173 
2174 	if (f2fs_is_atomic_file(inode)) {
2175 		ret = f2fs_commit_atomic_write(inode);
2176 		if (!ret)
2177 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2178 
2179 		f2fs_abort_atomic_write(inode, ret);
2180 	} else {
2181 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2182 	}
2183 
2184 	inode_unlock(inode);
2185 	mnt_drop_write_file(filp);
2186 	return ret;
2187 }
2188 
2189 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2190 {
2191 	struct inode *inode = file_inode(filp);
2192 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2193 	int ret;
2194 
2195 	if (!inode_owner_or_capable(idmap, inode))
2196 		return -EACCES;
2197 
2198 	ret = mnt_want_write_file(filp);
2199 	if (ret)
2200 		return ret;
2201 
2202 	inode_lock(inode);
2203 
2204 	f2fs_abort_atomic_write(inode, true);
2205 
2206 	inode_unlock(inode);
2207 
2208 	mnt_drop_write_file(filp);
2209 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2210 	return ret;
2211 }
2212 
2213 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2214 {
2215 	struct inode *inode = file_inode(filp);
2216 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2217 	struct super_block *sb = sbi->sb;
2218 	__u32 in;
2219 	int ret = 0;
2220 
2221 	if (!capable(CAP_SYS_ADMIN))
2222 		return -EPERM;
2223 
2224 	if (get_user(in, (__u32 __user *)arg))
2225 		return -EFAULT;
2226 
2227 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2228 		ret = mnt_want_write_file(filp);
2229 		if (ret) {
2230 			if (ret == -EROFS) {
2231 				ret = 0;
2232 				f2fs_stop_checkpoint(sbi, false,
2233 						STOP_CP_REASON_SHUTDOWN);
2234 				trace_f2fs_shutdown(sbi, in, ret);
2235 			}
2236 			return ret;
2237 		}
2238 	}
2239 
2240 	switch (in) {
2241 	case F2FS_GOING_DOWN_FULLSYNC:
2242 		ret = freeze_bdev(sb->s_bdev);
2243 		if (ret)
2244 			goto out;
2245 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2246 		thaw_bdev(sb->s_bdev);
2247 		break;
2248 	case F2FS_GOING_DOWN_METASYNC:
2249 		/* do checkpoint only */
2250 		ret = f2fs_sync_fs(sb, 1);
2251 		if (ret)
2252 			goto out;
2253 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2254 		break;
2255 	case F2FS_GOING_DOWN_NOSYNC:
2256 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2257 		break;
2258 	case F2FS_GOING_DOWN_METAFLUSH:
2259 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2260 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2261 		break;
2262 	case F2FS_GOING_DOWN_NEED_FSCK:
2263 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2264 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2265 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2266 		/* do checkpoint only */
2267 		ret = f2fs_sync_fs(sb, 1);
2268 		goto out;
2269 	default:
2270 		ret = -EINVAL;
2271 		goto out;
2272 	}
2273 
2274 	f2fs_stop_gc_thread(sbi);
2275 	f2fs_stop_discard_thread(sbi);
2276 
2277 	f2fs_drop_discard_cmd(sbi);
2278 	clear_opt(sbi, DISCARD);
2279 
2280 	f2fs_update_time(sbi, REQ_TIME);
2281 out:
2282 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2283 		mnt_drop_write_file(filp);
2284 
2285 	trace_f2fs_shutdown(sbi, in, ret);
2286 
2287 	return ret;
2288 }
2289 
2290 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2291 {
2292 	struct inode *inode = file_inode(filp);
2293 	struct super_block *sb = inode->i_sb;
2294 	struct fstrim_range range;
2295 	int ret;
2296 
2297 	if (!capable(CAP_SYS_ADMIN))
2298 		return -EPERM;
2299 
2300 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2301 		return -EOPNOTSUPP;
2302 
2303 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2304 				sizeof(range)))
2305 		return -EFAULT;
2306 
2307 	ret = mnt_want_write_file(filp);
2308 	if (ret)
2309 		return ret;
2310 
2311 	range.minlen = max((unsigned int)range.minlen,
2312 			   bdev_discard_granularity(sb->s_bdev));
2313 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2314 	mnt_drop_write_file(filp);
2315 	if (ret < 0)
2316 		return ret;
2317 
2318 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2319 				sizeof(range)))
2320 		return -EFAULT;
2321 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2322 	return 0;
2323 }
2324 
2325 static bool uuid_is_nonzero(__u8 u[16])
2326 {
2327 	int i;
2328 
2329 	for (i = 0; i < 16; i++)
2330 		if (u[i])
2331 			return true;
2332 	return false;
2333 }
2334 
2335 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2336 {
2337 	struct inode *inode = file_inode(filp);
2338 
2339 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2340 		return -EOPNOTSUPP;
2341 
2342 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2343 
2344 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2345 }
2346 
2347 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2348 {
2349 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2350 		return -EOPNOTSUPP;
2351 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2352 }
2353 
2354 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2355 {
2356 	struct inode *inode = file_inode(filp);
2357 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2358 	u8 encrypt_pw_salt[16];
2359 	int err;
2360 
2361 	if (!f2fs_sb_has_encrypt(sbi))
2362 		return -EOPNOTSUPP;
2363 
2364 	err = mnt_want_write_file(filp);
2365 	if (err)
2366 		return err;
2367 
2368 	f2fs_down_write(&sbi->sb_lock);
2369 
2370 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2371 		goto got_it;
2372 
2373 	/* update superblock with uuid */
2374 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2375 
2376 	err = f2fs_commit_super(sbi, false);
2377 	if (err) {
2378 		/* undo new data */
2379 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2380 		goto out_err;
2381 	}
2382 got_it:
2383 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2384 out_err:
2385 	f2fs_up_write(&sbi->sb_lock);
2386 	mnt_drop_write_file(filp);
2387 
2388 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2389 		err = -EFAULT;
2390 
2391 	return err;
2392 }
2393 
2394 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2395 					     unsigned long arg)
2396 {
2397 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2398 		return -EOPNOTSUPP;
2399 
2400 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2401 }
2402 
2403 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2404 {
2405 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2406 		return -EOPNOTSUPP;
2407 
2408 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2409 }
2410 
2411 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2412 {
2413 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2414 		return -EOPNOTSUPP;
2415 
2416 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2417 }
2418 
2419 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2420 						    unsigned long arg)
2421 {
2422 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2423 		return -EOPNOTSUPP;
2424 
2425 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2426 }
2427 
2428 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2429 					      unsigned long arg)
2430 {
2431 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2432 		return -EOPNOTSUPP;
2433 
2434 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2435 }
2436 
2437 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2438 {
2439 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2440 		return -EOPNOTSUPP;
2441 
2442 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2443 }
2444 
2445 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2446 {
2447 	struct inode *inode = file_inode(filp);
2448 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2449 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2450 			.no_bg_gc = false,
2451 			.should_migrate_blocks = false,
2452 			.nr_free_secs = 0 };
2453 	__u32 sync;
2454 	int ret;
2455 
2456 	if (!capable(CAP_SYS_ADMIN))
2457 		return -EPERM;
2458 
2459 	if (get_user(sync, (__u32 __user *)arg))
2460 		return -EFAULT;
2461 
2462 	if (f2fs_readonly(sbi->sb))
2463 		return -EROFS;
2464 
2465 	ret = mnt_want_write_file(filp);
2466 	if (ret)
2467 		return ret;
2468 
2469 	if (!sync) {
2470 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2471 			ret = -EBUSY;
2472 			goto out;
2473 		}
2474 	} else {
2475 		f2fs_down_write(&sbi->gc_lock);
2476 	}
2477 
2478 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2479 	gc_control.err_gc_skipped = sync;
2480 	stat_inc_gc_call_count(sbi, FOREGROUND);
2481 	ret = f2fs_gc(sbi, &gc_control);
2482 out:
2483 	mnt_drop_write_file(filp);
2484 	return ret;
2485 }
2486 
2487 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2488 {
2489 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2490 	struct f2fs_gc_control gc_control = {
2491 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2492 			.no_bg_gc = false,
2493 			.should_migrate_blocks = false,
2494 			.err_gc_skipped = range->sync,
2495 			.nr_free_secs = 0 };
2496 	u64 end;
2497 	int ret;
2498 
2499 	if (!capable(CAP_SYS_ADMIN))
2500 		return -EPERM;
2501 	if (f2fs_readonly(sbi->sb))
2502 		return -EROFS;
2503 
2504 	end = range->start + range->len;
2505 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2506 					end >= MAX_BLKADDR(sbi))
2507 		return -EINVAL;
2508 
2509 	ret = mnt_want_write_file(filp);
2510 	if (ret)
2511 		return ret;
2512 
2513 do_more:
2514 	if (!range->sync) {
2515 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2516 			ret = -EBUSY;
2517 			goto out;
2518 		}
2519 	} else {
2520 		f2fs_down_write(&sbi->gc_lock);
2521 	}
2522 
2523 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2524 	stat_inc_gc_call_count(sbi, FOREGROUND);
2525 	ret = f2fs_gc(sbi, &gc_control);
2526 	if (ret) {
2527 		if (ret == -EBUSY)
2528 			ret = -EAGAIN;
2529 		goto out;
2530 	}
2531 	range->start += CAP_BLKS_PER_SEC(sbi);
2532 	if (range->start <= end)
2533 		goto do_more;
2534 out:
2535 	mnt_drop_write_file(filp);
2536 	return ret;
2537 }
2538 
2539 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2540 {
2541 	struct f2fs_gc_range range;
2542 
2543 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2544 							sizeof(range)))
2545 		return -EFAULT;
2546 	return __f2fs_ioc_gc_range(filp, &range);
2547 }
2548 
2549 static int f2fs_ioc_write_checkpoint(struct file *filp)
2550 {
2551 	struct inode *inode = file_inode(filp);
2552 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2553 	int ret;
2554 
2555 	if (!capable(CAP_SYS_ADMIN))
2556 		return -EPERM;
2557 
2558 	if (f2fs_readonly(sbi->sb))
2559 		return -EROFS;
2560 
2561 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2562 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2563 		return -EINVAL;
2564 	}
2565 
2566 	ret = mnt_want_write_file(filp);
2567 	if (ret)
2568 		return ret;
2569 
2570 	ret = f2fs_sync_fs(sbi->sb, 1);
2571 
2572 	mnt_drop_write_file(filp);
2573 	return ret;
2574 }
2575 
2576 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2577 					struct file *filp,
2578 					struct f2fs_defragment *range)
2579 {
2580 	struct inode *inode = file_inode(filp);
2581 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2582 					.m_seg_type = NO_CHECK_TYPE,
2583 					.m_may_create = false };
2584 	struct extent_info ei = {};
2585 	pgoff_t pg_start, pg_end, next_pgofs;
2586 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2587 	unsigned int total = 0, sec_num;
2588 	block_t blk_end = 0;
2589 	bool fragmented = false;
2590 	int err;
2591 
2592 	pg_start = range->start >> PAGE_SHIFT;
2593 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2594 
2595 	f2fs_balance_fs(sbi, true);
2596 
2597 	inode_lock(inode);
2598 
2599 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2600 		err = -EINVAL;
2601 		goto unlock_out;
2602 	}
2603 
2604 	/* if in-place-update policy is enabled, don't waste time here */
2605 	set_inode_flag(inode, FI_OPU_WRITE);
2606 	if (f2fs_should_update_inplace(inode, NULL)) {
2607 		err = -EINVAL;
2608 		goto out;
2609 	}
2610 
2611 	/* writeback all dirty pages in the range */
2612 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2613 						range->start + range->len - 1);
2614 	if (err)
2615 		goto out;
2616 
2617 	/*
2618 	 * lookup mapping info in extent cache, skip defragmenting if physical
2619 	 * block addresses are continuous.
2620 	 */
2621 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2622 		if (ei.fofs + ei.len >= pg_end)
2623 			goto out;
2624 	}
2625 
2626 	map.m_lblk = pg_start;
2627 	map.m_next_pgofs = &next_pgofs;
2628 
2629 	/*
2630 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2631 	 * physical block addresses are continuous even if there are hole(s)
2632 	 * in logical blocks.
2633 	 */
2634 	while (map.m_lblk < pg_end) {
2635 		map.m_len = pg_end - map.m_lblk;
2636 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2637 		if (err)
2638 			goto out;
2639 
2640 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2641 			map.m_lblk = next_pgofs;
2642 			continue;
2643 		}
2644 
2645 		if (blk_end && blk_end != map.m_pblk)
2646 			fragmented = true;
2647 
2648 		/* record total count of block that we're going to move */
2649 		total += map.m_len;
2650 
2651 		blk_end = map.m_pblk + map.m_len;
2652 
2653 		map.m_lblk += map.m_len;
2654 	}
2655 
2656 	if (!fragmented) {
2657 		total = 0;
2658 		goto out;
2659 	}
2660 
2661 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2662 
2663 	/*
2664 	 * make sure there are enough free section for LFS allocation, this can
2665 	 * avoid defragment running in SSR mode when free section are allocated
2666 	 * intensively
2667 	 */
2668 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2669 		err = -EAGAIN;
2670 		goto out;
2671 	}
2672 
2673 	map.m_lblk = pg_start;
2674 	map.m_len = pg_end - pg_start;
2675 	total = 0;
2676 
2677 	while (map.m_lblk < pg_end) {
2678 		pgoff_t idx;
2679 		int cnt = 0;
2680 
2681 do_map:
2682 		map.m_len = pg_end - map.m_lblk;
2683 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2684 		if (err)
2685 			goto clear_out;
2686 
2687 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2688 			map.m_lblk = next_pgofs;
2689 			goto check;
2690 		}
2691 
2692 		set_inode_flag(inode, FI_SKIP_WRITES);
2693 
2694 		idx = map.m_lblk;
2695 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2696 			struct page *page;
2697 
2698 			page = f2fs_get_lock_data_page(inode, idx, true);
2699 			if (IS_ERR(page)) {
2700 				err = PTR_ERR(page);
2701 				goto clear_out;
2702 			}
2703 
2704 			set_page_dirty(page);
2705 			set_page_private_gcing(page);
2706 			f2fs_put_page(page, 1);
2707 
2708 			idx++;
2709 			cnt++;
2710 			total++;
2711 		}
2712 
2713 		map.m_lblk = idx;
2714 check:
2715 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2716 			goto do_map;
2717 
2718 		clear_inode_flag(inode, FI_SKIP_WRITES);
2719 
2720 		err = filemap_fdatawrite(inode->i_mapping);
2721 		if (err)
2722 			goto out;
2723 	}
2724 clear_out:
2725 	clear_inode_flag(inode, FI_SKIP_WRITES);
2726 out:
2727 	clear_inode_flag(inode, FI_OPU_WRITE);
2728 unlock_out:
2729 	inode_unlock(inode);
2730 	if (!err)
2731 		range->len = (u64)total << PAGE_SHIFT;
2732 	return err;
2733 }
2734 
2735 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2736 {
2737 	struct inode *inode = file_inode(filp);
2738 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2739 	struct f2fs_defragment range;
2740 	int err;
2741 
2742 	if (!capable(CAP_SYS_ADMIN))
2743 		return -EPERM;
2744 
2745 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2746 		return -EINVAL;
2747 
2748 	if (f2fs_readonly(sbi->sb))
2749 		return -EROFS;
2750 
2751 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2752 							sizeof(range)))
2753 		return -EFAULT;
2754 
2755 	/* verify alignment of offset & size */
2756 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2757 		return -EINVAL;
2758 
2759 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2760 					max_file_blocks(inode)))
2761 		return -EINVAL;
2762 
2763 	err = mnt_want_write_file(filp);
2764 	if (err)
2765 		return err;
2766 
2767 	err = f2fs_defragment_range(sbi, filp, &range);
2768 	mnt_drop_write_file(filp);
2769 
2770 	f2fs_update_time(sbi, REQ_TIME);
2771 	if (err < 0)
2772 		return err;
2773 
2774 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2775 							sizeof(range)))
2776 		return -EFAULT;
2777 
2778 	return 0;
2779 }
2780 
2781 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2782 			struct file *file_out, loff_t pos_out, size_t len)
2783 {
2784 	struct inode *src = file_inode(file_in);
2785 	struct inode *dst = file_inode(file_out);
2786 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2787 	size_t olen = len, dst_max_i_size = 0;
2788 	size_t dst_osize;
2789 	int ret;
2790 
2791 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2792 				src->i_sb != dst->i_sb)
2793 		return -EXDEV;
2794 
2795 	if (unlikely(f2fs_readonly(src->i_sb)))
2796 		return -EROFS;
2797 
2798 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2799 		return -EINVAL;
2800 
2801 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2802 		return -EOPNOTSUPP;
2803 
2804 	if (pos_out < 0 || pos_in < 0)
2805 		return -EINVAL;
2806 
2807 	if (src == dst) {
2808 		if (pos_in == pos_out)
2809 			return 0;
2810 		if (pos_out > pos_in && pos_out < pos_in + len)
2811 			return -EINVAL;
2812 	}
2813 
2814 	inode_lock(src);
2815 	if (src != dst) {
2816 		ret = -EBUSY;
2817 		if (!inode_trylock(dst))
2818 			goto out;
2819 	}
2820 
2821 	ret = -EINVAL;
2822 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2823 		goto out_unlock;
2824 	if (len == 0)
2825 		olen = len = src->i_size - pos_in;
2826 	if (pos_in + len == src->i_size)
2827 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2828 	if (len == 0) {
2829 		ret = 0;
2830 		goto out_unlock;
2831 	}
2832 
2833 	dst_osize = dst->i_size;
2834 	if (pos_out + olen > dst->i_size)
2835 		dst_max_i_size = pos_out + olen;
2836 
2837 	/* verify the end result is block aligned */
2838 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2839 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2840 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2841 		goto out_unlock;
2842 
2843 	ret = f2fs_convert_inline_inode(src);
2844 	if (ret)
2845 		goto out_unlock;
2846 
2847 	ret = f2fs_convert_inline_inode(dst);
2848 	if (ret)
2849 		goto out_unlock;
2850 
2851 	/* write out all dirty pages from offset */
2852 	ret = filemap_write_and_wait_range(src->i_mapping,
2853 					pos_in, pos_in + len);
2854 	if (ret)
2855 		goto out_unlock;
2856 
2857 	ret = filemap_write_and_wait_range(dst->i_mapping,
2858 					pos_out, pos_out + len);
2859 	if (ret)
2860 		goto out_unlock;
2861 
2862 	f2fs_balance_fs(sbi, true);
2863 
2864 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2865 	if (src != dst) {
2866 		ret = -EBUSY;
2867 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2868 			goto out_src;
2869 	}
2870 
2871 	f2fs_lock_op(sbi);
2872 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2873 				pos_out >> F2FS_BLKSIZE_BITS,
2874 				len >> F2FS_BLKSIZE_BITS, false);
2875 
2876 	if (!ret) {
2877 		if (dst_max_i_size)
2878 			f2fs_i_size_write(dst, dst_max_i_size);
2879 		else if (dst_osize != dst->i_size)
2880 			f2fs_i_size_write(dst, dst_osize);
2881 	}
2882 	f2fs_unlock_op(sbi);
2883 
2884 	if (src != dst)
2885 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2886 out_src:
2887 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2888 	if (ret)
2889 		goto out_unlock;
2890 
2891 	src->i_mtime = inode_set_ctime_current(src);
2892 	f2fs_mark_inode_dirty_sync(src, false);
2893 	if (src != dst) {
2894 		dst->i_mtime = inode_set_ctime_current(dst);
2895 		f2fs_mark_inode_dirty_sync(dst, false);
2896 	}
2897 	f2fs_update_time(sbi, REQ_TIME);
2898 
2899 out_unlock:
2900 	if (src != dst)
2901 		inode_unlock(dst);
2902 out:
2903 	inode_unlock(src);
2904 	return ret;
2905 }
2906 
2907 static int __f2fs_ioc_move_range(struct file *filp,
2908 				struct f2fs_move_range *range)
2909 {
2910 	struct fd dst;
2911 	int err;
2912 
2913 	if (!(filp->f_mode & FMODE_READ) ||
2914 			!(filp->f_mode & FMODE_WRITE))
2915 		return -EBADF;
2916 
2917 	dst = fdget(range->dst_fd);
2918 	if (!dst.file)
2919 		return -EBADF;
2920 
2921 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2922 		err = -EBADF;
2923 		goto err_out;
2924 	}
2925 
2926 	err = mnt_want_write_file(filp);
2927 	if (err)
2928 		goto err_out;
2929 
2930 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2931 					range->pos_out, range->len);
2932 
2933 	mnt_drop_write_file(filp);
2934 err_out:
2935 	fdput(dst);
2936 	return err;
2937 }
2938 
2939 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2940 {
2941 	struct f2fs_move_range range;
2942 
2943 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2944 							sizeof(range)))
2945 		return -EFAULT;
2946 	return __f2fs_ioc_move_range(filp, &range);
2947 }
2948 
2949 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2950 {
2951 	struct inode *inode = file_inode(filp);
2952 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2953 	struct sit_info *sm = SIT_I(sbi);
2954 	unsigned int start_segno = 0, end_segno = 0;
2955 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2956 	struct f2fs_flush_device range;
2957 	struct f2fs_gc_control gc_control = {
2958 			.init_gc_type = FG_GC,
2959 			.should_migrate_blocks = true,
2960 			.err_gc_skipped = true,
2961 			.nr_free_secs = 0 };
2962 	int ret;
2963 
2964 	if (!capable(CAP_SYS_ADMIN))
2965 		return -EPERM;
2966 
2967 	if (f2fs_readonly(sbi->sb))
2968 		return -EROFS;
2969 
2970 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2971 		return -EINVAL;
2972 
2973 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2974 							sizeof(range)))
2975 		return -EFAULT;
2976 
2977 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2978 			__is_large_section(sbi)) {
2979 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2980 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2981 		return -EINVAL;
2982 	}
2983 
2984 	ret = mnt_want_write_file(filp);
2985 	if (ret)
2986 		return ret;
2987 
2988 	if (range.dev_num != 0)
2989 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2990 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2991 
2992 	start_segno = sm->last_victim[FLUSH_DEVICE];
2993 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2994 		start_segno = dev_start_segno;
2995 	end_segno = min(start_segno + range.segments, dev_end_segno);
2996 
2997 	while (start_segno < end_segno) {
2998 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2999 			ret = -EBUSY;
3000 			goto out;
3001 		}
3002 		sm->last_victim[GC_CB] = end_segno + 1;
3003 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3004 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3005 
3006 		gc_control.victim_segno = start_segno;
3007 		stat_inc_gc_call_count(sbi, FOREGROUND);
3008 		ret = f2fs_gc(sbi, &gc_control);
3009 		if (ret == -EAGAIN)
3010 			ret = 0;
3011 		else if (ret < 0)
3012 			break;
3013 		start_segno++;
3014 	}
3015 out:
3016 	mnt_drop_write_file(filp);
3017 	return ret;
3018 }
3019 
3020 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3021 {
3022 	struct inode *inode = file_inode(filp);
3023 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3024 
3025 	/* Must validate to set it with SQLite behavior in Android. */
3026 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3027 
3028 	return put_user(sb_feature, (u32 __user *)arg);
3029 }
3030 
3031 #ifdef CONFIG_QUOTA
3032 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3033 {
3034 	struct dquot *transfer_to[MAXQUOTAS] = {};
3035 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3036 	struct super_block *sb = sbi->sb;
3037 	int err;
3038 
3039 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3040 	if (IS_ERR(transfer_to[PRJQUOTA]))
3041 		return PTR_ERR(transfer_to[PRJQUOTA]);
3042 
3043 	err = __dquot_transfer(inode, transfer_to);
3044 	if (err)
3045 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3046 	dqput(transfer_to[PRJQUOTA]);
3047 	return err;
3048 }
3049 
3050 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3051 {
3052 	struct f2fs_inode_info *fi = F2FS_I(inode);
3053 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3054 	struct f2fs_inode *ri = NULL;
3055 	kprojid_t kprojid;
3056 	int err;
3057 
3058 	if (!f2fs_sb_has_project_quota(sbi)) {
3059 		if (projid != F2FS_DEF_PROJID)
3060 			return -EOPNOTSUPP;
3061 		else
3062 			return 0;
3063 	}
3064 
3065 	if (!f2fs_has_extra_attr(inode))
3066 		return -EOPNOTSUPP;
3067 
3068 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3069 
3070 	if (projid_eq(kprojid, fi->i_projid))
3071 		return 0;
3072 
3073 	err = -EPERM;
3074 	/* Is it quota file? Do not allow user to mess with it */
3075 	if (IS_NOQUOTA(inode))
3076 		return err;
3077 
3078 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3079 		return -EOVERFLOW;
3080 
3081 	err = f2fs_dquot_initialize(inode);
3082 	if (err)
3083 		return err;
3084 
3085 	f2fs_lock_op(sbi);
3086 	err = f2fs_transfer_project_quota(inode, kprojid);
3087 	if (err)
3088 		goto out_unlock;
3089 
3090 	fi->i_projid = kprojid;
3091 	inode_set_ctime_current(inode);
3092 	f2fs_mark_inode_dirty_sync(inode, true);
3093 out_unlock:
3094 	f2fs_unlock_op(sbi);
3095 	return err;
3096 }
3097 #else
3098 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3099 {
3100 	return 0;
3101 }
3102 
3103 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3104 {
3105 	if (projid != F2FS_DEF_PROJID)
3106 		return -EOPNOTSUPP;
3107 	return 0;
3108 }
3109 #endif
3110 
3111 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3112 {
3113 	struct inode *inode = d_inode(dentry);
3114 	struct f2fs_inode_info *fi = F2FS_I(inode);
3115 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3116 
3117 	if (IS_ENCRYPTED(inode))
3118 		fsflags |= FS_ENCRYPT_FL;
3119 	if (IS_VERITY(inode))
3120 		fsflags |= FS_VERITY_FL;
3121 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3122 		fsflags |= FS_INLINE_DATA_FL;
3123 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3124 		fsflags |= FS_NOCOW_FL;
3125 
3126 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3127 
3128 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3129 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3130 
3131 	return 0;
3132 }
3133 
3134 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3135 		      struct dentry *dentry, struct fileattr *fa)
3136 {
3137 	struct inode *inode = d_inode(dentry);
3138 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3139 	u32 iflags;
3140 	int err;
3141 
3142 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3143 		return -EIO;
3144 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3145 		return -ENOSPC;
3146 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3147 		return -EOPNOTSUPP;
3148 	fsflags &= F2FS_SETTABLE_FS_FL;
3149 	if (!fa->flags_valid)
3150 		mask &= FS_COMMON_FL;
3151 
3152 	iflags = f2fs_fsflags_to_iflags(fsflags);
3153 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3154 		return -EOPNOTSUPP;
3155 
3156 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3157 	if (!err)
3158 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3159 
3160 	return err;
3161 }
3162 
3163 int f2fs_pin_file_control(struct inode *inode, bool inc)
3164 {
3165 	struct f2fs_inode_info *fi = F2FS_I(inode);
3166 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3167 
3168 	/* Use i_gc_failures for normal file as a risk signal. */
3169 	if (inc)
3170 		f2fs_i_gc_failures_write(inode,
3171 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3172 
3173 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3174 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3175 			  __func__, inode->i_ino,
3176 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3177 		clear_inode_flag(inode, FI_PIN_FILE);
3178 		return -EAGAIN;
3179 	}
3180 	return 0;
3181 }
3182 
3183 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3184 {
3185 	struct inode *inode = file_inode(filp);
3186 	__u32 pin;
3187 	int ret = 0;
3188 
3189 	if (get_user(pin, (__u32 __user *)arg))
3190 		return -EFAULT;
3191 
3192 	if (!S_ISREG(inode->i_mode))
3193 		return -EINVAL;
3194 
3195 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3196 		return -EROFS;
3197 
3198 	ret = mnt_want_write_file(filp);
3199 	if (ret)
3200 		return ret;
3201 
3202 	inode_lock(inode);
3203 
3204 	if (!pin) {
3205 		clear_inode_flag(inode, FI_PIN_FILE);
3206 		f2fs_i_gc_failures_write(inode, 0);
3207 		goto done;
3208 	}
3209 
3210 	if (f2fs_should_update_outplace(inode, NULL)) {
3211 		ret = -EINVAL;
3212 		goto out;
3213 	}
3214 
3215 	if (f2fs_pin_file_control(inode, false)) {
3216 		ret = -EAGAIN;
3217 		goto out;
3218 	}
3219 
3220 	ret = f2fs_convert_inline_inode(inode);
3221 	if (ret)
3222 		goto out;
3223 
3224 	if (!f2fs_disable_compressed_file(inode)) {
3225 		ret = -EOPNOTSUPP;
3226 		goto out;
3227 	}
3228 
3229 	set_inode_flag(inode, FI_PIN_FILE);
3230 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3231 done:
3232 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3233 out:
3234 	inode_unlock(inode);
3235 	mnt_drop_write_file(filp);
3236 	return ret;
3237 }
3238 
3239 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3240 {
3241 	struct inode *inode = file_inode(filp);
3242 	__u32 pin = 0;
3243 
3244 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3245 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3246 	return put_user(pin, (u32 __user *)arg);
3247 }
3248 
3249 int f2fs_precache_extents(struct inode *inode)
3250 {
3251 	struct f2fs_inode_info *fi = F2FS_I(inode);
3252 	struct f2fs_map_blocks map;
3253 	pgoff_t m_next_extent;
3254 	loff_t end;
3255 	int err;
3256 
3257 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3258 		return -EOPNOTSUPP;
3259 
3260 	map.m_lblk = 0;
3261 	map.m_pblk = 0;
3262 	map.m_next_pgofs = NULL;
3263 	map.m_next_extent = &m_next_extent;
3264 	map.m_seg_type = NO_CHECK_TYPE;
3265 	map.m_may_create = false;
3266 	end = max_file_blocks(inode);
3267 
3268 	while (map.m_lblk < end) {
3269 		map.m_len = end - map.m_lblk;
3270 
3271 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3272 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3273 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3274 		if (err)
3275 			return err;
3276 
3277 		map.m_lblk = m_next_extent;
3278 	}
3279 
3280 	return 0;
3281 }
3282 
3283 static int f2fs_ioc_precache_extents(struct file *filp)
3284 {
3285 	return f2fs_precache_extents(file_inode(filp));
3286 }
3287 
3288 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3289 {
3290 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3291 	__u64 block_count;
3292 
3293 	if (!capable(CAP_SYS_ADMIN))
3294 		return -EPERM;
3295 
3296 	if (f2fs_readonly(sbi->sb))
3297 		return -EROFS;
3298 
3299 	if (copy_from_user(&block_count, (void __user *)arg,
3300 			   sizeof(block_count)))
3301 		return -EFAULT;
3302 
3303 	return f2fs_resize_fs(filp, block_count);
3304 }
3305 
3306 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3307 {
3308 	struct inode *inode = file_inode(filp);
3309 
3310 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3311 
3312 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3313 		f2fs_warn(F2FS_I_SB(inode),
3314 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3315 			  inode->i_ino);
3316 		return -EOPNOTSUPP;
3317 	}
3318 
3319 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3320 }
3321 
3322 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3323 {
3324 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3325 		return -EOPNOTSUPP;
3326 
3327 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3328 }
3329 
3330 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3331 {
3332 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3333 		return -EOPNOTSUPP;
3334 
3335 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3336 }
3337 
3338 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3339 {
3340 	struct inode *inode = file_inode(filp);
3341 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3342 	char *vbuf;
3343 	int count;
3344 	int err = 0;
3345 
3346 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3347 	if (!vbuf)
3348 		return -ENOMEM;
3349 
3350 	f2fs_down_read(&sbi->sb_lock);
3351 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3352 			ARRAY_SIZE(sbi->raw_super->volume_name),
3353 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3354 	f2fs_up_read(&sbi->sb_lock);
3355 
3356 	if (copy_to_user((char __user *)arg, vbuf,
3357 				min(FSLABEL_MAX, count)))
3358 		err = -EFAULT;
3359 
3360 	kfree(vbuf);
3361 	return err;
3362 }
3363 
3364 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3365 {
3366 	struct inode *inode = file_inode(filp);
3367 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3368 	char *vbuf;
3369 	int err = 0;
3370 
3371 	if (!capable(CAP_SYS_ADMIN))
3372 		return -EPERM;
3373 
3374 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3375 	if (IS_ERR(vbuf))
3376 		return PTR_ERR(vbuf);
3377 
3378 	err = mnt_want_write_file(filp);
3379 	if (err)
3380 		goto out;
3381 
3382 	f2fs_down_write(&sbi->sb_lock);
3383 
3384 	memset(sbi->raw_super->volume_name, 0,
3385 			sizeof(sbi->raw_super->volume_name));
3386 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3387 			sbi->raw_super->volume_name,
3388 			ARRAY_SIZE(sbi->raw_super->volume_name));
3389 
3390 	err = f2fs_commit_super(sbi, false);
3391 
3392 	f2fs_up_write(&sbi->sb_lock);
3393 
3394 	mnt_drop_write_file(filp);
3395 out:
3396 	kfree(vbuf);
3397 	return err;
3398 }
3399 
3400 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3401 {
3402 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3403 		return -EOPNOTSUPP;
3404 
3405 	if (!f2fs_compressed_file(inode))
3406 		return -EINVAL;
3407 
3408 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3409 
3410 	return 0;
3411 }
3412 
3413 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3414 {
3415 	struct inode *inode = file_inode(filp);
3416 	__u64 blocks;
3417 	int ret;
3418 
3419 	ret = f2fs_get_compress_blocks(inode, &blocks);
3420 	if (ret < 0)
3421 		return ret;
3422 
3423 	return put_user(blocks, (u64 __user *)arg);
3424 }
3425 
3426 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3427 {
3428 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3429 	unsigned int released_blocks = 0;
3430 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3431 	block_t blkaddr;
3432 	int i;
3433 
3434 	for (i = 0; i < count; i++) {
3435 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3436 						dn->ofs_in_node + i);
3437 
3438 		if (!__is_valid_data_blkaddr(blkaddr))
3439 			continue;
3440 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3441 					DATA_GENERIC_ENHANCE))) {
3442 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3443 			return -EFSCORRUPTED;
3444 		}
3445 	}
3446 
3447 	while (count) {
3448 		int compr_blocks = 0;
3449 
3450 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3451 			blkaddr = f2fs_data_blkaddr(dn);
3452 
3453 			if (i == 0) {
3454 				if (blkaddr == COMPRESS_ADDR)
3455 					continue;
3456 				dn->ofs_in_node += cluster_size;
3457 				goto next;
3458 			}
3459 
3460 			if (__is_valid_data_blkaddr(blkaddr))
3461 				compr_blocks++;
3462 
3463 			if (blkaddr != NEW_ADDR)
3464 				continue;
3465 
3466 			dn->data_blkaddr = NULL_ADDR;
3467 			f2fs_set_data_blkaddr(dn);
3468 		}
3469 
3470 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3471 		dec_valid_block_count(sbi, dn->inode,
3472 					cluster_size - compr_blocks);
3473 
3474 		released_blocks += cluster_size - compr_blocks;
3475 next:
3476 		count -= cluster_size;
3477 	}
3478 
3479 	return released_blocks;
3480 }
3481 
3482 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3483 {
3484 	struct inode *inode = file_inode(filp);
3485 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3486 	pgoff_t page_idx = 0, last_idx;
3487 	unsigned int released_blocks = 0;
3488 	int ret;
3489 	int writecount;
3490 
3491 	if (!f2fs_sb_has_compression(sbi))
3492 		return -EOPNOTSUPP;
3493 
3494 	if (!f2fs_compressed_file(inode))
3495 		return -EINVAL;
3496 
3497 	if (f2fs_readonly(sbi->sb))
3498 		return -EROFS;
3499 
3500 	ret = mnt_want_write_file(filp);
3501 	if (ret)
3502 		return ret;
3503 
3504 	f2fs_balance_fs(sbi, true);
3505 
3506 	inode_lock(inode);
3507 
3508 	writecount = atomic_read(&inode->i_writecount);
3509 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3510 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3511 		ret = -EBUSY;
3512 		goto out;
3513 	}
3514 
3515 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3516 		ret = -EINVAL;
3517 		goto out;
3518 	}
3519 
3520 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3521 	if (ret)
3522 		goto out;
3523 
3524 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3525 		ret = -EPERM;
3526 		goto out;
3527 	}
3528 
3529 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3530 	inode_set_ctime_current(inode);
3531 	f2fs_mark_inode_dirty_sync(inode, true);
3532 
3533 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3534 	filemap_invalidate_lock(inode->i_mapping);
3535 
3536 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3537 
3538 	while (page_idx < last_idx) {
3539 		struct dnode_of_data dn;
3540 		pgoff_t end_offset, count;
3541 
3542 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3543 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3544 		if (ret) {
3545 			if (ret == -ENOENT) {
3546 				page_idx = f2fs_get_next_page_offset(&dn,
3547 								page_idx);
3548 				ret = 0;
3549 				continue;
3550 			}
3551 			break;
3552 		}
3553 
3554 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3555 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3556 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3557 
3558 		ret = release_compress_blocks(&dn, count);
3559 
3560 		f2fs_put_dnode(&dn);
3561 
3562 		if (ret < 0)
3563 			break;
3564 
3565 		page_idx += count;
3566 		released_blocks += ret;
3567 	}
3568 
3569 	filemap_invalidate_unlock(inode->i_mapping);
3570 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3571 out:
3572 	inode_unlock(inode);
3573 
3574 	mnt_drop_write_file(filp);
3575 
3576 	if (ret >= 0) {
3577 		ret = put_user(released_blocks, (u64 __user *)arg);
3578 	} else if (released_blocks &&
3579 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3580 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3581 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3582 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3583 			"run fsck to fix.",
3584 			__func__, inode->i_ino, inode->i_blocks,
3585 			released_blocks,
3586 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3587 	}
3588 
3589 	return ret;
3590 }
3591 
3592 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3593 {
3594 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3595 	unsigned int reserved_blocks = 0;
3596 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3597 	block_t blkaddr;
3598 	int i;
3599 
3600 	for (i = 0; i < count; i++) {
3601 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3602 						dn->ofs_in_node + i);
3603 
3604 		if (!__is_valid_data_blkaddr(blkaddr))
3605 			continue;
3606 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3607 					DATA_GENERIC_ENHANCE))) {
3608 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3609 			return -EFSCORRUPTED;
3610 		}
3611 	}
3612 
3613 	while (count) {
3614 		int compr_blocks = 0;
3615 		blkcnt_t reserved;
3616 		int ret;
3617 
3618 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3619 			blkaddr = f2fs_data_blkaddr(dn);
3620 
3621 			if (i == 0) {
3622 				if (blkaddr == COMPRESS_ADDR)
3623 					continue;
3624 				dn->ofs_in_node += cluster_size;
3625 				goto next;
3626 			}
3627 
3628 			if (__is_valid_data_blkaddr(blkaddr)) {
3629 				compr_blocks++;
3630 				continue;
3631 			}
3632 
3633 			dn->data_blkaddr = NEW_ADDR;
3634 			f2fs_set_data_blkaddr(dn);
3635 		}
3636 
3637 		reserved = cluster_size - compr_blocks;
3638 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3639 		if (ret)
3640 			return ret;
3641 
3642 		if (reserved != cluster_size - compr_blocks)
3643 			return -ENOSPC;
3644 
3645 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3646 
3647 		reserved_blocks += reserved;
3648 next:
3649 		count -= cluster_size;
3650 	}
3651 
3652 	return reserved_blocks;
3653 }
3654 
3655 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3656 {
3657 	struct inode *inode = file_inode(filp);
3658 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3659 	pgoff_t page_idx = 0, last_idx;
3660 	unsigned int reserved_blocks = 0;
3661 	int ret;
3662 
3663 	if (!f2fs_sb_has_compression(sbi))
3664 		return -EOPNOTSUPP;
3665 
3666 	if (!f2fs_compressed_file(inode))
3667 		return -EINVAL;
3668 
3669 	if (f2fs_readonly(sbi->sb))
3670 		return -EROFS;
3671 
3672 	ret = mnt_want_write_file(filp);
3673 	if (ret)
3674 		return ret;
3675 
3676 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3677 		goto out;
3678 
3679 	f2fs_balance_fs(sbi, true);
3680 
3681 	inode_lock(inode);
3682 
3683 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3684 		ret = -EINVAL;
3685 		goto unlock_inode;
3686 	}
3687 
3688 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3689 	filemap_invalidate_lock(inode->i_mapping);
3690 
3691 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3692 
3693 	while (page_idx < last_idx) {
3694 		struct dnode_of_data dn;
3695 		pgoff_t end_offset, count;
3696 
3697 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3698 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3699 		if (ret) {
3700 			if (ret == -ENOENT) {
3701 				page_idx = f2fs_get_next_page_offset(&dn,
3702 								page_idx);
3703 				ret = 0;
3704 				continue;
3705 			}
3706 			break;
3707 		}
3708 
3709 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3710 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3711 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3712 
3713 		ret = reserve_compress_blocks(&dn, count);
3714 
3715 		f2fs_put_dnode(&dn);
3716 
3717 		if (ret < 0)
3718 			break;
3719 
3720 		page_idx += count;
3721 		reserved_blocks += ret;
3722 	}
3723 
3724 	filemap_invalidate_unlock(inode->i_mapping);
3725 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3726 
3727 	if (ret >= 0) {
3728 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3729 		inode_set_ctime_current(inode);
3730 		f2fs_mark_inode_dirty_sync(inode, true);
3731 	}
3732 unlock_inode:
3733 	inode_unlock(inode);
3734 out:
3735 	mnt_drop_write_file(filp);
3736 
3737 	if (ret >= 0) {
3738 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3739 	} else if (reserved_blocks &&
3740 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3741 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3742 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3743 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3744 			"run fsck to fix.",
3745 			__func__, inode->i_ino, inode->i_blocks,
3746 			reserved_blocks,
3747 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3748 	}
3749 
3750 	return ret;
3751 }
3752 
3753 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3754 		pgoff_t off, block_t block, block_t len, u32 flags)
3755 {
3756 	sector_t sector = SECTOR_FROM_BLOCK(block);
3757 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3758 	int ret = 0;
3759 
3760 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3761 		if (bdev_max_secure_erase_sectors(bdev))
3762 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3763 					GFP_NOFS);
3764 		else
3765 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3766 					GFP_NOFS);
3767 	}
3768 
3769 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3770 		if (IS_ENCRYPTED(inode))
3771 			ret = fscrypt_zeroout_range(inode, off, block, len);
3772 		else
3773 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3774 					GFP_NOFS, 0);
3775 	}
3776 
3777 	return ret;
3778 }
3779 
3780 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3781 {
3782 	struct inode *inode = file_inode(filp);
3783 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3784 	struct address_space *mapping = inode->i_mapping;
3785 	struct block_device *prev_bdev = NULL;
3786 	struct f2fs_sectrim_range range;
3787 	pgoff_t index, pg_end, prev_index = 0;
3788 	block_t prev_block = 0, len = 0;
3789 	loff_t end_addr;
3790 	bool to_end = false;
3791 	int ret = 0;
3792 
3793 	if (!(filp->f_mode & FMODE_WRITE))
3794 		return -EBADF;
3795 
3796 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3797 				sizeof(range)))
3798 		return -EFAULT;
3799 
3800 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3801 			!S_ISREG(inode->i_mode))
3802 		return -EINVAL;
3803 
3804 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3805 			!f2fs_hw_support_discard(sbi)) ||
3806 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3807 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3808 		return -EOPNOTSUPP;
3809 
3810 	file_start_write(filp);
3811 	inode_lock(inode);
3812 
3813 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3814 			range.start >= inode->i_size) {
3815 		ret = -EINVAL;
3816 		goto err;
3817 	}
3818 
3819 	if (range.len == 0)
3820 		goto err;
3821 
3822 	if (inode->i_size - range.start > range.len) {
3823 		end_addr = range.start + range.len;
3824 	} else {
3825 		end_addr = range.len == (u64)-1 ?
3826 			sbi->sb->s_maxbytes : inode->i_size;
3827 		to_end = true;
3828 	}
3829 
3830 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3831 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3832 		ret = -EINVAL;
3833 		goto err;
3834 	}
3835 
3836 	index = F2FS_BYTES_TO_BLK(range.start);
3837 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3838 
3839 	ret = f2fs_convert_inline_inode(inode);
3840 	if (ret)
3841 		goto err;
3842 
3843 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3844 	filemap_invalidate_lock(mapping);
3845 
3846 	ret = filemap_write_and_wait_range(mapping, range.start,
3847 			to_end ? LLONG_MAX : end_addr - 1);
3848 	if (ret)
3849 		goto out;
3850 
3851 	truncate_inode_pages_range(mapping, range.start,
3852 			to_end ? -1 : end_addr - 1);
3853 
3854 	while (index < pg_end) {
3855 		struct dnode_of_data dn;
3856 		pgoff_t end_offset, count;
3857 		int i;
3858 
3859 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3860 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3861 		if (ret) {
3862 			if (ret == -ENOENT) {
3863 				index = f2fs_get_next_page_offset(&dn, index);
3864 				continue;
3865 			}
3866 			goto out;
3867 		}
3868 
3869 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3870 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3871 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3872 			struct block_device *cur_bdev;
3873 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3874 
3875 			if (!__is_valid_data_blkaddr(blkaddr))
3876 				continue;
3877 
3878 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3879 						DATA_GENERIC_ENHANCE)) {
3880 				ret = -EFSCORRUPTED;
3881 				f2fs_put_dnode(&dn);
3882 				f2fs_handle_error(sbi,
3883 						ERROR_INVALID_BLKADDR);
3884 				goto out;
3885 			}
3886 
3887 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3888 			if (f2fs_is_multi_device(sbi)) {
3889 				int di = f2fs_target_device_index(sbi, blkaddr);
3890 
3891 				blkaddr -= FDEV(di).start_blk;
3892 			}
3893 
3894 			if (len) {
3895 				if (prev_bdev == cur_bdev &&
3896 						index == prev_index + len &&
3897 						blkaddr == prev_block + len) {
3898 					len++;
3899 				} else {
3900 					ret = f2fs_secure_erase(prev_bdev,
3901 						inode, prev_index, prev_block,
3902 						len, range.flags);
3903 					if (ret) {
3904 						f2fs_put_dnode(&dn);
3905 						goto out;
3906 					}
3907 
3908 					len = 0;
3909 				}
3910 			}
3911 
3912 			if (!len) {
3913 				prev_bdev = cur_bdev;
3914 				prev_index = index;
3915 				prev_block = blkaddr;
3916 				len = 1;
3917 			}
3918 		}
3919 
3920 		f2fs_put_dnode(&dn);
3921 
3922 		if (fatal_signal_pending(current)) {
3923 			ret = -EINTR;
3924 			goto out;
3925 		}
3926 		cond_resched();
3927 	}
3928 
3929 	if (len)
3930 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3931 				prev_block, len, range.flags);
3932 out:
3933 	filemap_invalidate_unlock(mapping);
3934 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3935 err:
3936 	inode_unlock(inode);
3937 	file_end_write(filp);
3938 
3939 	return ret;
3940 }
3941 
3942 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3943 {
3944 	struct inode *inode = file_inode(filp);
3945 	struct f2fs_comp_option option;
3946 
3947 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3948 		return -EOPNOTSUPP;
3949 
3950 	inode_lock_shared(inode);
3951 
3952 	if (!f2fs_compressed_file(inode)) {
3953 		inode_unlock_shared(inode);
3954 		return -ENODATA;
3955 	}
3956 
3957 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3958 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3959 
3960 	inode_unlock_shared(inode);
3961 
3962 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3963 				sizeof(option)))
3964 		return -EFAULT;
3965 
3966 	return 0;
3967 }
3968 
3969 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3970 {
3971 	struct inode *inode = file_inode(filp);
3972 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3973 	struct f2fs_comp_option option;
3974 	int ret = 0;
3975 
3976 	if (!f2fs_sb_has_compression(sbi))
3977 		return -EOPNOTSUPP;
3978 
3979 	if (!(filp->f_mode & FMODE_WRITE))
3980 		return -EBADF;
3981 
3982 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3983 				sizeof(option)))
3984 		return -EFAULT;
3985 
3986 	if (!f2fs_compressed_file(inode) ||
3987 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3988 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3989 			option.algorithm >= COMPRESS_MAX)
3990 		return -EINVAL;
3991 
3992 	file_start_write(filp);
3993 	inode_lock(inode);
3994 
3995 	f2fs_down_write(&F2FS_I(inode)->i_sem);
3996 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3997 		ret = -EBUSY;
3998 		goto out;
3999 	}
4000 
4001 	if (F2FS_HAS_BLOCKS(inode)) {
4002 		ret = -EFBIG;
4003 		goto out;
4004 	}
4005 
4006 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4007 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4008 	F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4009 	/* Set default level */
4010 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4011 		F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4012 	else
4013 		F2FS_I(inode)->i_compress_level = 0;
4014 	/* Adjust mount option level */
4015 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4016 	    F2FS_OPTION(sbi).compress_level)
4017 		F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4018 	f2fs_mark_inode_dirty_sync(inode, true);
4019 
4020 	if (!f2fs_is_compress_backend_ready(inode))
4021 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4022 			"but current kernel doesn't support this algorithm.");
4023 out:
4024 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4025 	inode_unlock(inode);
4026 	file_end_write(filp);
4027 
4028 	return ret;
4029 }
4030 
4031 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4032 {
4033 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4034 	struct address_space *mapping = inode->i_mapping;
4035 	struct page *page;
4036 	pgoff_t redirty_idx = page_idx;
4037 	int i, page_len = 0, ret = 0;
4038 
4039 	page_cache_ra_unbounded(&ractl, len, 0);
4040 
4041 	for (i = 0; i < len; i++, page_idx++) {
4042 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4043 		if (IS_ERR(page)) {
4044 			ret = PTR_ERR(page);
4045 			break;
4046 		}
4047 		page_len++;
4048 	}
4049 
4050 	for (i = 0; i < page_len; i++, redirty_idx++) {
4051 		page = find_lock_page(mapping, redirty_idx);
4052 
4053 		/* It will never fail, when page has pinned above */
4054 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4055 
4056 		set_page_dirty(page);
4057 		f2fs_put_page(page, 1);
4058 		f2fs_put_page(page, 0);
4059 	}
4060 
4061 	return ret;
4062 }
4063 
4064 static int f2fs_ioc_decompress_file(struct file *filp)
4065 {
4066 	struct inode *inode = file_inode(filp);
4067 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4068 	struct f2fs_inode_info *fi = F2FS_I(inode);
4069 	pgoff_t page_idx = 0, last_idx;
4070 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4071 	int cluster_size = fi->i_cluster_size;
4072 	int count, ret;
4073 
4074 	if (!f2fs_sb_has_compression(sbi) ||
4075 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4076 		return -EOPNOTSUPP;
4077 
4078 	if (!(filp->f_mode & FMODE_WRITE))
4079 		return -EBADF;
4080 
4081 	if (!f2fs_compressed_file(inode))
4082 		return -EINVAL;
4083 
4084 	f2fs_balance_fs(sbi, true);
4085 
4086 	file_start_write(filp);
4087 	inode_lock(inode);
4088 
4089 	if (!f2fs_is_compress_backend_ready(inode)) {
4090 		ret = -EOPNOTSUPP;
4091 		goto out;
4092 	}
4093 
4094 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4095 		ret = -EINVAL;
4096 		goto out;
4097 	}
4098 
4099 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4100 	if (ret)
4101 		goto out;
4102 
4103 	if (!atomic_read(&fi->i_compr_blocks))
4104 		goto out;
4105 
4106 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4107 
4108 	count = last_idx - page_idx;
4109 	while (count && count >= cluster_size) {
4110 		ret = redirty_blocks(inode, page_idx, cluster_size);
4111 		if (ret < 0)
4112 			break;
4113 
4114 		if (get_dirty_pages(inode) >= blk_per_seg) {
4115 			ret = filemap_fdatawrite(inode->i_mapping);
4116 			if (ret < 0)
4117 				break;
4118 		}
4119 
4120 		count -= cluster_size;
4121 		page_idx += cluster_size;
4122 
4123 		cond_resched();
4124 		if (fatal_signal_pending(current)) {
4125 			ret = -EINTR;
4126 			break;
4127 		}
4128 	}
4129 
4130 	if (!ret)
4131 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4132 							LLONG_MAX);
4133 
4134 	if (ret)
4135 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4136 			  __func__, ret);
4137 out:
4138 	inode_unlock(inode);
4139 	file_end_write(filp);
4140 
4141 	return ret;
4142 }
4143 
4144 static int f2fs_ioc_compress_file(struct file *filp)
4145 {
4146 	struct inode *inode = file_inode(filp);
4147 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4148 	pgoff_t page_idx = 0, last_idx;
4149 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4150 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4151 	int count, ret;
4152 
4153 	if (!f2fs_sb_has_compression(sbi) ||
4154 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4155 		return -EOPNOTSUPP;
4156 
4157 	if (!(filp->f_mode & FMODE_WRITE))
4158 		return -EBADF;
4159 
4160 	if (!f2fs_compressed_file(inode))
4161 		return -EINVAL;
4162 
4163 	f2fs_balance_fs(sbi, true);
4164 
4165 	file_start_write(filp);
4166 	inode_lock(inode);
4167 
4168 	if (!f2fs_is_compress_backend_ready(inode)) {
4169 		ret = -EOPNOTSUPP;
4170 		goto out;
4171 	}
4172 
4173 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4174 		ret = -EINVAL;
4175 		goto out;
4176 	}
4177 
4178 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4179 	if (ret)
4180 		goto out;
4181 
4182 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4183 
4184 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4185 
4186 	count = last_idx - page_idx;
4187 	while (count && count >= cluster_size) {
4188 		ret = redirty_blocks(inode, page_idx, cluster_size);
4189 		if (ret < 0)
4190 			break;
4191 
4192 		if (get_dirty_pages(inode) >= blk_per_seg) {
4193 			ret = filemap_fdatawrite(inode->i_mapping);
4194 			if (ret < 0)
4195 				break;
4196 		}
4197 
4198 		count -= cluster_size;
4199 		page_idx += cluster_size;
4200 
4201 		cond_resched();
4202 		if (fatal_signal_pending(current)) {
4203 			ret = -EINTR;
4204 			break;
4205 		}
4206 	}
4207 
4208 	if (!ret)
4209 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4210 							LLONG_MAX);
4211 
4212 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4213 
4214 	if (ret)
4215 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4216 			  __func__, ret);
4217 out:
4218 	inode_unlock(inode);
4219 	file_end_write(filp);
4220 
4221 	return ret;
4222 }
4223 
4224 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4225 {
4226 	switch (cmd) {
4227 	case FS_IOC_GETVERSION:
4228 		return f2fs_ioc_getversion(filp, arg);
4229 	case F2FS_IOC_START_ATOMIC_WRITE:
4230 		return f2fs_ioc_start_atomic_write(filp, false);
4231 	case F2FS_IOC_START_ATOMIC_REPLACE:
4232 		return f2fs_ioc_start_atomic_write(filp, true);
4233 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4234 		return f2fs_ioc_commit_atomic_write(filp);
4235 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4236 		return f2fs_ioc_abort_atomic_write(filp);
4237 	case F2FS_IOC_START_VOLATILE_WRITE:
4238 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4239 		return -EOPNOTSUPP;
4240 	case F2FS_IOC_SHUTDOWN:
4241 		return f2fs_ioc_shutdown(filp, arg);
4242 	case FITRIM:
4243 		return f2fs_ioc_fitrim(filp, arg);
4244 	case FS_IOC_SET_ENCRYPTION_POLICY:
4245 		return f2fs_ioc_set_encryption_policy(filp, arg);
4246 	case FS_IOC_GET_ENCRYPTION_POLICY:
4247 		return f2fs_ioc_get_encryption_policy(filp, arg);
4248 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4249 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4250 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4251 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4252 	case FS_IOC_ADD_ENCRYPTION_KEY:
4253 		return f2fs_ioc_add_encryption_key(filp, arg);
4254 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4255 		return f2fs_ioc_remove_encryption_key(filp, arg);
4256 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4257 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4258 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4259 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4260 	case FS_IOC_GET_ENCRYPTION_NONCE:
4261 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4262 	case F2FS_IOC_GARBAGE_COLLECT:
4263 		return f2fs_ioc_gc(filp, arg);
4264 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4265 		return f2fs_ioc_gc_range(filp, arg);
4266 	case F2FS_IOC_WRITE_CHECKPOINT:
4267 		return f2fs_ioc_write_checkpoint(filp);
4268 	case F2FS_IOC_DEFRAGMENT:
4269 		return f2fs_ioc_defragment(filp, arg);
4270 	case F2FS_IOC_MOVE_RANGE:
4271 		return f2fs_ioc_move_range(filp, arg);
4272 	case F2FS_IOC_FLUSH_DEVICE:
4273 		return f2fs_ioc_flush_device(filp, arg);
4274 	case F2FS_IOC_GET_FEATURES:
4275 		return f2fs_ioc_get_features(filp, arg);
4276 	case F2FS_IOC_GET_PIN_FILE:
4277 		return f2fs_ioc_get_pin_file(filp, arg);
4278 	case F2FS_IOC_SET_PIN_FILE:
4279 		return f2fs_ioc_set_pin_file(filp, arg);
4280 	case F2FS_IOC_PRECACHE_EXTENTS:
4281 		return f2fs_ioc_precache_extents(filp);
4282 	case F2FS_IOC_RESIZE_FS:
4283 		return f2fs_ioc_resize_fs(filp, arg);
4284 	case FS_IOC_ENABLE_VERITY:
4285 		return f2fs_ioc_enable_verity(filp, arg);
4286 	case FS_IOC_MEASURE_VERITY:
4287 		return f2fs_ioc_measure_verity(filp, arg);
4288 	case FS_IOC_READ_VERITY_METADATA:
4289 		return f2fs_ioc_read_verity_metadata(filp, arg);
4290 	case FS_IOC_GETFSLABEL:
4291 		return f2fs_ioc_getfslabel(filp, arg);
4292 	case FS_IOC_SETFSLABEL:
4293 		return f2fs_ioc_setfslabel(filp, arg);
4294 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4295 		return f2fs_ioc_get_compress_blocks(filp, arg);
4296 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4297 		return f2fs_release_compress_blocks(filp, arg);
4298 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4299 		return f2fs_reserve_compress_blocks(filp, arg);
4300 	case F2FS_IOC_SEC_TRIM_FILE:
4301 		return f2fs_sec_trim_file(filp, arg);
4302 	case F2FS_IOC_GET_COMPRESS_OPTION:
4303 		return f2fs_ioc_get_compress_option(filp, arg);
4304 	case F2FS_IOC_SET_COMPRESS_OPTION:
4305 		return f2fs_ioc_set_compress_option(filp, arg);
4306 	case F2FS_IOC_DECOMPRESS_FILE:
4307 		return f2fs_ioc_decompress_file(filp);
4308 	case F2FS_IOC_COMPRESS_FILE:
4309 		return f2fs_ioc_compress_file(filp);
4310 	default:
4311 		return -ENOTTY;
4312 	}
4313 }
4314 
4315 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4316 {
4317 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4318 		return -EIO;
4319 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4320 		return -ENOSPC;
4321 
4322 	return __f2fs_ioctl(filp, cmd, arg);
4323 }
4324 
4325 /*
4326  * Return %true if the given read or write request should use direct I/O, or
4327  * %false if it should use buffered I/O.
4328  */
4329 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4330 				struct iov_iter *iter)
4331 {
4332 	unsigned int align;
4333 
4334 	if (!(iocb->ki_flags & IOCB_DIRECT))
4335 		return false;
4336 
4337 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4338 		return false;
4339 
4340 	/*
4341 	 * Direct I/O not aligned to the disk's logical_block_size will be
4342 	 * attempted, but will fail with -EINVAL.
4343 	 *
4344 	 * f2fs additionally requires that direct I/O be aligned to the
4345 	 * filesystem block size, which is often a stricter requirement.
4346 	 * However, f2fs traditionally falls back to buffered I/O on requests
4347 	 * that are logical_block_size-aligned but not fs-block aligned.
4348 	 *
4349 	 * The below logic implements this behavior.
4350 	 */
4351 	align = iocb->ki_pos | iov_iter_alignment(iter);
4352 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4353 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4354 		return false;
4355 
4356 	return true;
4357 }
4358 
4359 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4360 				unsigned int flags)
4361 {
4362 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4363 
4364 	dec_page_count(sbi, F2FS_DIO_READ);
4365 	if (error)
4366 		return error;
4367 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4368 	return 0;
4369 }
4370 
4371 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4372 	.end_io = f2fs_dio_read_end_io,
4373 };
4374 
4375 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4376 {
4377 	struct file *file = iocb->ki_filp;
4378 	struct inode *inode = file_inode(file);
4379 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4380 	struct f2fs_inode_info *fi = F2FS_I(inode);
4381 	const loff_t pos = iocb->ki_pos;
4382 	const size_t count = iov_iter_count(to);
4383 	struct iomap_dio *dio;
4384 	ssize_t ret;
4385 
4386 	if (count == 0)
4387 		return 0; /* skip atime update */
4388 
4389 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4390 
4391 	if (iocb->ki_flags & IOCB_NOWAIT) {
4392 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4393 			ret = -EAGAIN;
4394 			goto out;
4395 		}
4396 	} else {
4397 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4398 	}
4399 
4400 	/*
4401 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4402 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4403 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4404 	 */
4405 	inc_page_count(sbi, F2FS_DIO_READ);
4406 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4407 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4408 	if (IS_ERR_OR_NULL(dio)) {
4409 		ret = PTR_ERR_OR_ZERO(dio);
4410 		if (ret != -EIOCBQUEUED)
4411 			dec_page_count(sbi, F2FS_DIO_READ);
4412 	} else {
4413 		ret = iomap_dio_complete(dio);
4414 	}
4415 
4416 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4417 
4418 	file_accessed(file);
4419 out:
4420 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4421 	return ret;
4422 }
4423 
4424 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4425 				    int rw)
4426 {
4427 	struct inode *inode = file_inode(file);
4428 	char *buf, *path;
4429 
4430 	buf = f2fs_getname(F2FS_I_SB(inode));
4431 	if (!buf)
4432 		return;
4433 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4434 	if (IS_ERR(path))
4435 		goto free_buf;
4436 	if (rw == WRITE)
4437 		trace_f2fs_datawrite_start(inode, pos, count,
4438 				current->pid, path, current->comm);
4439 	else
4440 		trace_f2fs_dataread_start(inode, pos, count,
4441 				current->pid, path, current->comm);
4442 free_buf:
4443 	f2fs_putname(buf);
4444 }
4445 
4446 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4447 {
4448 	struct inode *inode = file_inode(iocb->ki_filp);
4449 	const loff_t pos = iocb->ki_pos;
4450 	ssize_t ret;
4451 
4452 	if (!f2fs_is_compress_backend_ready(inode))
4453 		return -EOPNOTSUPP;
4454 
4455 	if (trace_f2fs_dataread_start_enabled())
4456 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4457 					iov_iter_count(to), READ);
4458 
4459 	if (f2fs_should_use_dio(inode, iocb, to)) {
4460 		ret = f2fs_dio_read_iter(iocb, to);
4461 	} else {
4462 		ret = filemap_read(iocb, to, 0);
4463 		if (ret > 0)
4464 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4465 						APP_BUFFERED_READ_IO, ret);
4466 	}
4467 	if (trace_f2fs_dataread_end_enabled())
4468 		trace_f2fs_dataread_end(inode, pos, ret);
4469 	return ret;
4470 }
4471 
4472 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4473 				     struct pipe_inode_info *pipe,
4474 				     size_t len, unsigned int flags)
4475 {
4476 	struct inode *inode = file_inode(in);
4477 	const loff_t pos = *ppos;
4478 	ssize_t ret;
4479 
4480 	if (!f2fs_is_compress_backend_ready(inode))
4481 		return -EOPNOTSUPP;
4482 
4483 	if (trace_f2fs_dataread_start_enabled())
4484 		f2fs_trace_rw_file_path(in, pos, len, READ);
4485 
4486 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4487 	if (ret > 0)
4488 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4489 				   APP_BUFFERED_READ_IO, ret);
4490 
4491 	if (trace_f2fs_dataread_end_enabled())
4492 		trace_f2fs_dataread_end(inode, pos, ret);
4493 	return ret;
4494 }
4495 
4496 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4497 {
4498 	struct file *file = iocb->ki_filp;
4499 	struct inode *inode = file_inode(file);
4500 	ssize_t count;
4501 	int err;
4502 
4503 	if (IS_IMMUTABLE(inode))
4504 		return -EPERM;
4505 
4506 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4507 		return -EPERM;
4508 
4509 	count = generic_write_checks(iocb, from);
4510 	if (count <= 0)
4511 		return count;
4512 
4513 	err = file_modified(file);
4514 	if (err)
4515 		return err;
4516 	return count;
4517 }
4518 
4519 /*
4520  * Preallocate blocks for a write request, if it is possible and helpful to do
4521  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4522  * blocks were preallocated, or a negative errno value if something went
4523  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4524  * requested blocks (not just some of them) have been allocated.
4525  */
4526 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4527 				   bool dio)
4528 {
4529 	struct inode *inode = file_inode(iocb->ki_filp);
4530 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4531 	const loff_t pos = iocb->ki_pos;
4532 	const size_t count = iov_iter_count(iter);
4533 	struct f2fs_map_blocks map = {};
4534 	int flag;
4535 	int ret;
4536 
4537 	/* If it will be an out-of-place direct write, don't bother. */
4538 	if (dio && f2fs_lfs_mode(sbi))
4539 		return 0;
4540 	/*
4541 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4542 	 * buffered IO, if DIO meets any holes.
4543 	 */
4544 	if (dio && i_size_read(inode) &&
4545 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4546 		return 0;
4547 
4548 	/* No-wait I/O can't allocate blocks. */
4549 	if (iocb->ki_flags & IOCB_NOWAIT)
4550 		return 0;
4551 
4552 	/* If it will be a short write, don't bother. */
4553 	if (fault_in_iov_iter_readable(iter, count))
4554 		return 0;
4555 
4556 	if (f2fs_has_inline_data(inode)) {
4557 		/* If the data will fit inline, don't bother. */
4558 		if (pos + count <= MAX_INLINE_DATA(inode))
4559 			return 0;
4560 		ret = f2fs_convert_inline_inode(inode);
4561 		if (ret)
4562 			return ret;
4563 	}
4564 
4565 	/* Do not preallocate blocks that will be written partially in 4KB. */
4566 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4567 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4568 	if (map.m_len > map.m_lblk)
4569 		map.m_len -= map.m_lblk;
4570 	else
4571 		map.m_len = 0;
4572 	map.m_may_create = true;
4573 	if (dio) {
4574 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4575 		flag = F2FS_GET_BLOCK_PRE_DIO;
4576 	} else {
4577 		map.m_seg_type = NO_CHECK_TYPE;
4578 		flag = F2FS_GET_BLOCK_PRE_AIO;
4579 	}
4580 
4581 	ret = f2fs_map_blocks(inode, &map, flag);
4582 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4583 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4584 		return ret;
4585 	if (ret == 0)
4586 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4587 	return map.m_len;
4588 }
4589 
4590 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4591 					struct iov_iter *from)
4592 {
4593 	struct file *file = iocb->ki_filp;
4594 	struct inode *inode = file_inode(file);
4595 	ssize_t ret;
4596 
4597 	if (iocb->ki_flags & IOCB_NOWAIT)
4598 		return -EOPNOTSUPP;
4599 
4600 	ret = generic_perform_write(iocb, from);
4601 
4602 	if (ret > 0) {
4603 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4604 						APP_BUFFERED_IO, ret);
4605 	}
4606 	return ret;
4607 }
4608 
4609 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4610 				 unsigned int flags)
4611 {
4612 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4613 
4614 	dec_page_count(sbi, F2FS_DIO_WRITE);
4615 	if (error)
4616 		return error;
4617 	f2fs_update_time(sbi, REQ_TIME);
4618 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4619 	return 0;
4620 }
4621 
4622 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4623 	.end_io = f2fs_dio_write_end_io,
4624 };
4625 
4626 static void f2fs_flush_buffered_write(struct address_space *mapping,
4627 				      loff_t start_pos, loff_t end_pos)
4628 {
4629 	int ret;
4630 
4631 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4632 	if (ret < 0)
4633 		return;
4634 	invalidate_mapping_pages(mapping,
4635 				 start_pos >> PAGE_SHIFT,
4636 				 end_pos >> PAGE_SHIFT);
4637 }
4638 
4639 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4640 				   bool *may_need_sync)
4641 {
4642 	struct file *file = iocb->ki_filp;
4643 	struct inode *inode = file_inode(file);
4644 	struct f2fs_inode_info *fi = F2FS_I(inode);
4645 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4646 	const bool do_opu = f2fs_lfs_mode(sbi);
4647 	const loff_t pos = iocb->ki_pos;
4648 	const ssize_t count = iov_iter_count(from);
4649 	unsigned int dio_flags;
4650 	struct iomap_dio *dio;
4651 	ssize_t ret;
4652 
4653 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4654 
4655 	if (iocb->ki_flags & IOCB_NOWAIT) {
4656 		/* f2fs_convert_inline_inode() and block allocation can block */
4657 		if (f2fs_has_inline_data(inode) ||
4658 		    !f2fs_overwrite_io(inode, pos, count)) {
4659 			ret = -EAGAIN;
4660 			goto out;
4661 		}
4662 
4663 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4664 			ret = -EAGAIN;
4665 			goto out;
4666 		}
4667 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4668 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4669 			ret = -EAGAIN;
4670 			goto out;
4671 		}
4672 	} else {
4673 		ret = f2fs_convert_inline_inode(inode);
4674 		if (ret)
4675 			goto out;
4676 
4677 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4678 		if (do_opu)
4679 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4680 	}
4681 
4682 	/*
4683 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4684 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4685 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4686 	 */
4687 	inc_page_count(sbi, F2FS_DIO_WRITE);
4688 	dio_flags = 0;
4689 	if (pos + count > inode->i_size)
4690 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4691 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4692 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4693 	if (IS_ERR_OR_NULL(dio)) {
4694 		ret = PTR_ERR_OR_ZERO(dio);
4695 		if (ret == -ENOTBLK)
4696 			ret = 0;
4697 		if (ret != -EIOCBQUEUED)
4698 			dec_page_count(sbi, F2FS_DIO_WRITE);
4699 	} else {
4700 		ret = iomap_dio_complete(dio);
4701 	}
4702 
4703 	if (do_opu)
4704 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4705 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4706 
4707 	if (ret < 0)
4708 		goto out;
4709 	if (pos + ret > inode->i_size)
4710 		f2fs_i_size_write(inode, pos + ret);
4711 	if (!do_opu)
4712 		set_inode_flag(inode, FI_UPDATE_WRITE);
4713 
4714 	if (iov_iter_count(from)) {
4715 		ssize_t ret2;
4716 		loff_t bufio_start_pos = iocb->ki_pos;
4717 
4718 		/*
4719 		 * The direct write was partial, so we need to fall back to a
4720 		 * buffered write for the remainder.
4721 		 */
4722 
4723 		ret2 = f2fs_buffered_write_iter(iocb, from);
4724 		if (iov_iter_count(from))
4725 			f2fs_write_failed(inode, iocb->ki_pos);
4726 		if (ret2 < 0)
4727 			goto out;
4728 
4729 		/*
4730 		 * Ensure that the pagecache pages are written to disk and
4731 		 * invalidated to preserve the expected O_DIRECT semantics.
4732 		 */
4733 		if (ret2 > 0) {
4734 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4735 
4736 			ret += ret2;
4737 
4738 			f2fs_flush_buffered_write(file->f_mapping,
4739 						  bufio_start_pos,
4740 						  bufio_end_pos);
4741 		}
4742 	} else {
4743 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4744 		*may_need_sync = false;
4745 	}
4746 out:
4747 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4748 	return ret;
4749 }
4750 
4751 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4752 {
4753 	struct inode *inode = file_inode(iocb->ki_filp);
4754 	const loff_t orig_pos = iocb->ki_pos;
4755 	const size_t orig_count = iov_iter_count(from);
4756 	loff_t target_size;
4757 	bool dio;
4758 	bool may_need_sync = true;
4759 	int preallocated;
4760 	ssize_t ret;
4761 
4762 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4763 		ret = -EIO;
4764 		goto out;
4765 	}
4766 
4767 	if (!f2fs_is_compress_backend_ready(inode)) {
4768 		ret = -EOPNOTSUPP;
4769 		goto out;
4770 	}
4771 
4772 	if (iocb->ki_flags & IOCB_NOWAIT) {
4773 		if (!inode_trylock(inode)) {
4774 			ret = -EAGAIN;
4775 			goto out;
4776 		}
4777 	} else {
4778 		inode_lock(inode);
4779 	}
4780 
4781 	ret = f2fs_write_checks(iocb, from);
4782 	if (ret <= 0)
4783 		goto out_unlock;
4784 
4785 	/* Determine whether we will do a direct write or a buffered write. */
4786 	dio = f2fs_should_use_dio(inode, iocb, from);
4787 
4788 	/* Possibly preallocate the blocks for the write. */
4789 	target_size = iocb->ki_pos + iov_iter_count(from);
4790 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4791 	if (preallocated < 0) {
4792 		ret = preallocated;
4793 	} else {
4794 		if (trace_f2fs_datawrite_start_enabled())
4795 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4796 						orig_count, WRITE);
4797 
4798 		/* Do the actual write. */
4799 		ret = dio ?
4800 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4801 			f2fs_buffered_write_iter(iocb, from);
4802 
4803 		if (trace_f2fs_datawrite_end_enabled())
4804 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4805 	}
4806 
4807 	/* Don't leave any preallocated blocks around past i_size. */
4808 	if (preallocated && i_size_read(inode) < target_size) {
4809 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4810 		filemap_invalidate_lock(inode->i_mapping);
4811 		if (!f2fs_truncate(inode))
4812 			file_dont_truncate(inode);
4813 		filemap_invalidate_unlock(inode->i_mapping);
4814 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4815 	} else {
4816 		file_dont_truncate(inode);
4817 	}
4818 
4819 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4820 out_unlock:
4821 	inode_unlock(inode);
4822 out:
4823 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4824 
4825 	if (ret > 0 && may_need_sync)
4826 		ret = generic_write_sync(iocb, ret);
4827 
4828 	/* If buffered IO was forced, flush and drop the data from
4829 	 * the page cache to preserve O_DIRECT semantics
4830 	 */
4831 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4832 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4833 					  orig_pos,
4834 					  orig_pos + ret - 1);
4835 
4836 	return ret;
4837 }
4838 
4839 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4840 		int advice)
4841 {
4842 	struct address_space *mapping;
4843 	struct backing_dev_info *bdi;
4844 	struct inode *inode = file_inode(filp);
4845 	int err;
4846 
4847 	if (advice == POSIX_FADV_SEQUENTIAL) {
4848 		if (S_ISFIFO(inode->i_mode))
4849 			return -ESPIPE;
4850 
4851 		mapping = filp->f_mapping;
4852 		if (!mapping || len < 0)
4853 			return -EINVAL;
4854 
4855 		bdi = inode_to_bdi(mapping->host);
4856 		filp->f_ra.ra_pages = bdi->ra_pages *
4857 			F2FS_I_SB(inode)->seq_file_ra_mul;
4858 		spin_lock(&filp->f_lock);
4859 		filp->f_mode &= ~FMODE_RANDOM;
4860 		spin_unlock(&filp->f_lock);
4861 		return 0;
4862 	}
4863 
4864 	err = generic_fadvise(filp, offset, len, advice);
4865 	if (!err && advice == POSIX_FADV_DONTNEED &&
4866 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4867 		f2fs_compressed_file(inode))
4868 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4869 
4870 	return err;
4871 }
4872 
4873 #ifdef CONFIG_COMPAT
4874 struct compat_f2fs_gc_range {
4875 	u32 sync;
4876 	compat_u64 start;
4877 	compat_u64 len;
4878 };
4879 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4880 						struct compat_f2fs_gc_range)
4881 
4882 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4883 {
4884 	struct compat_f2fs_gc_range __user *urange;
4885 	struct f2fs_gc_range range;
4886 	int err;
4887 
4888 	urange = compat_ptr(arg);
4889 	err = get_user(range.sync, &urange->sync);
4890 	err |= get_user(range.start, &urange->start);
4891 	err |= get_user(range.len, &urange->len);
4892 	if (err)
4893 		return -EFAULT;
4894 
4895 	return __f2fs_ioc_gc_range(file, &range);
4896 }
4897 
4898 struct compat_f2fs_move_range {
4899 	u32 dst_fd;
4900 	compat_u64 pos_in;
4901 	compat_u64 pos_out;
4902 	compat_u64 len;
4903 };
4904 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4905 					struct compat_f2fs_move_range)
4906 
4907 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4908 {
4909 	struct compat_f2fs_move_range __user *urange;
4910 	struct f2fs_move_range range;
4911 	int err;
4912 
4913 	urange = compat_ptr(arg);
4914 	err = get_user(range.dst_fd, &urange->dst_fd);
4915 	err |= get_user(range.pos_in, &urange->pos_in);
4916 	err |= get_user(range.pos_out, &urange->pos_out);
4917 	err |= get_user(range.len, &urange->len);
4918 	if (err)
4919 		return -EFAULT;
4920 
4921 	return __f2fs_ioc_move_range(file, &range);
4922 }
4923 
4924 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4925 {
4926 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4927 		return -EIO;
4928 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4929 		return -ENOSPC;
4930 
4931 	switch (cmd) {
4932 	case FS_IOC32_GETVERSION:
4933 		cmd = FS_IOC_GETVERSION;
4934 		break;
4935 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4936 		return f2fs_compat_ioc_gc_range(file, arg);
4937 	case F2FS_IOC32_MOVE_RANGE:
4938 		return f2fs_compat_ioc_move_range(file, arg);
4939 	case F2FS_IOC_START_ATOMIC_WRITE:
4940 	case F2FS_IOC_START_ATOMIC_REPLACE:
4941 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4942 	case F2FS_IOC_START_VOLATILE_WRITE:
4943 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4944 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4945 	case F2FS_IOC_SHUTDOWN:
4946 	case FITRIM:
4947 	case FS_IOC_SET_ENCRYPTION_POLICY:
4948 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4949 	case FS_IOC_GET_ENCRYPTION_POLICY:
4950 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4951 	case FS_IOC_ADD_ENCRYPTION_KEY:
4952 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4953 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4954 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4955 	case FS_IOC_GET_ENCRYPTION_NONCE:
4956 	case F2FS_IOC_GARBAGE_COLLECT:
4957 	case F2FS_IOC_WRITE_CHECKPOINT:
4958 	case F2FS_IOC_DEFRAGMENT:
4959 	case F2FS_IOC_FLUSH_DEVICE:
4960 	case F2FS_IOC_GET_FEATURES:
4961 	case F2FS_IOC_GET_PIN_FILE:
4962 	case F2FS_IOC_SET_PIN_FILE:
4963 	case F2FS_IOC_PRECACHE_EXTENTS:
4964 	case F2FS_IOC_RESIZE_FS:
4965 	case FS_IOC_ENABLE_VERITY:
4966 	case FS_IOC_MEASURE_VERITY:
4967 	case FS_IOC_READ_VERITY_METADATA:
4968 	case FS_IOC_GETFSLABEL:
4969 	case FS_IOC_SETFSLABEL:
4970 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4971 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4972 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4973 	case F2FS_IOC_SEC_TRIM_FILE:
4974 	case F2FS_IOC_GET_COMPRESS_OPTION:
4975 	case F2FS_IOC_SET_COMPRESS_OPTION:
4976 	case F2FS_IOC_DECOMPRESS_FILE:
4977 	case F2FS_IOC_COMPRESS_FILE:
4978 		break;
4979 	default:
4980 		return -ENOIOCTLCMD;
4981 	}
4982 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4983 }
4984 #endif
4985 
4986 const struct file_operations f2fs_file_operations = {
4987 	.llseek		= f2fs_llseek,
4988 	.read_iter	= f2fs_file_read_iter,
4989 	.write_iter	= f2fs_file_write_iter,
4990 	.iopoll		= iocb_bio_iopoll,
4991 	.open		= f2fs_file_open,
4992 	.release	= f2fs_release_file,
4993 	.mmap		= f2fs_file_mmap,
4994 	.flush		= f2fs_file_flush,
4995 	.fsync		= f2fs_sync_file,
4996 	.fallocate	= f2fs_fallocate,
4997 	.unlocked_ioctl	= f2fs_ioctl,
4998 #ifdef CONFIG_COMPAT
4999 	.compat_ioctl	= f2fs_compat_ioctl,
5000 #endif
5001 	.splice_read	= f2fs_file_splice_read,
5002 	.splice_write	= iter_file_splice_write,
5003 	.fadvise	= f2fs_file_fadvise,
5004 };
5005