1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "xattr.h" 30 #include "acl.h" 31 #include "gc.h" 32 #include <trace/events/f2fs.h> 33 #include <uapi/linux/f2fs.h> 34 35 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 36 { 37 struct inode *inode = file_inode(vmf->vma->vm_file); 38 vm_fault_t ret; 39 40 down_read(&F2FS_I(inode)->i_mmap_sem); 41 ret = filemap_fault(vmf); 42 up_read(&F2FS_I(inode)->i_mmap_sem); 43 44 if (!ret) 45 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO, 46 F2FS_BLKSIZE); 47 48 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 49 50 return ret; 51 } 52 53 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 54 { 55 struct page *page = vmf->page; 56 struct inode *inode = file_inode(vmf->vma->vm_file); 57 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 58 struct dnode_of_data dn; 59 bool need_alloc = true; 60 int err = 0; 61 62 if (unlikely(IS_IMMUTABLE(inode))) 63 return VM_FAULT_SIGBUS; 64 65 if (unlikely(f2fs_cp_error(sbi))) { 66 err = -EIO; 67 goto err; 68 } 69 70 if (!f2fs_is_checkpoint_ready(sbi)) { 71 err = -ENOSPC; 72 goto err; 73 } 74 75 err = f2fs_convert_inline_inode(inode); 76 if (err) 77 goto err; 78 79 #ifdef CONFIG_F2FS_FS_COMPRESSION 80 if (f2fs_compressed_file(inode)) { 81 int ret = f2fs_is_compressed_cluster(inode, page->index); 82 83 if (ret < 0) { 84 err = ret; 85 goto err; 86 } else if (ret) { 87 if (ret < F2FS_I(inode)->i_cluster_size) { 88 err = -EAGAIN; 89 goto err; 90 } 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 down_read(&F2FS_I(inode)->i_mmap_sem); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 117 set_new_dnode(&dn, inode, NULL, NULL, 0); 118 err = f2fs_get_block(&dn, page->index); 119 f2fs_put_dnode(&dn); 120 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 121 } 122 123 #ifdef CONFIG_F2FS_FS_COMPRESSION 124 if (!need_alloc) { 125 set_new_dnode(&dn, inode, NULL, NULL, 0); 126 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 127 f2fs_put_dnode(&dn); 128 } 129 #endif 130 if (err) { 131 unlock_page(page); 132 goto out_sem; 133 } 134 135 f2fs_wait_on_page_writeback(page, DATA, false, true); 136 137 /* wait for GCed page writeback via META_MAPPING */ 138 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 139 140 /* 141 * check to see if the page is mapped already (no holes) 142 */ 143 if (PageMappedToDisk(page)) 144 goto out_sem; 145 146 /* page is wholly or partially inside EOF */ 147 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 148 i_size_read(inode)) { 149 loff_t offset; 150 151 offset = i_size_read(inode) & ~PAGE_MASK; 152 zero_user_segment(page, offset, PAGE_SIZE); 153 } 154 set_page_dirty(page); 155 if (!PageUptodate(page)) 156 SetPageUptodate(page); 157 158 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 159 f2fs_update_time(sbi, REQ_TIME); 160 161 trace_f2fs_vm_page_mkwrite(page, DATA); 162 out_sem: 163 up_read(&F2FS_I(inode)->i_mmap_sem); 164 165 sb_end_pagefault(inode->i_sb); 166 err: 167 return block_page_mkwrite_return(err); 168 } 169 170 static const struct vm_operations_struct f2fs_file_vm_ops = { 171 .fault = f2fs_filemap_fault, 172 .map_pages = filemap_map_pages, 173 .page_mkwrite = f2fs_vm_page_mkwrite, 174 }; 175 176 static int get_parent_ino(struct inode *inode, nid_t *pino) 177 { 178 struct dentry *dentry; 179 180 /* 181 * Make sure to get the non-deleted alias. The alias associated with 182 * the open file descriptor being fsync()'ed may be deleted already. 183 */ 184 dentry = d_find_alias(inode); 185 if (!dentry) 186 return 0; 187 188 *pino = parent_ino(dentry); 189 dput(dentry); 190 return 1; 191 } 192 193 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 194 { 195 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 196 enum cp_reason_type cp_reason = CP_NO_NEEDED; 197 198 if (!S_ISREG(inode->i_mode)) 199 cp_reason = CP_NON_REGULAR; 200 else if (f2fs_compressed_file(inode)) 201 cp_reason = CP_COMPRESSED; 202 else if (inode->i_nlink != 1) 203 cp_reason = CP_HARDLINK; 204 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 205 cp_reason = CP_SB_NEED_CP; 206 else if (file_wrong_pino(inode)) 207 cp_reason = CP_WRONG_PINO; 208 else if (!f2fs_space_for_roll_forward(sbi)) 209 cp_reason = CP_NO_SPC_ROLL; 210 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 211 cp_reason = CP_NODE_NEED_CP; 212 else if (test_opt(sbi, FASTBOOT)) 213 cp_reason = CP_FASTBOOT_MODE; 214 else if (F2FS_OPTION(sbi).active_logs == 2) 215 cp_reason = CP_SPEC_LOG_NUM; 216 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 217 f2fs_need_dentry_mark(sbi, inode->i_ino) && 218 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 219 TRANS_DIR_INO)) 220 cp_reason = CP_RECOVER_DIR; 221 222 return cp_reason; 223 } 224 225 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 226 { 227 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 228 bool ret = false; 229 /* But we need to avoid that there are some inode updates */ 230 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 231 ret = true; 232 f2fs_put_page(i, 0); 233 return ret; 234 } 235 236 static void try_to_fix_pino(struct inode *inode) 237 { 238 struct f2fs_inode_info *fi = F2FS_I(inode); 239 nid_t pino; 240 241 down_write(&fi->i_sem); 242 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 243 get_parent_ino(inode, &pino)) { 244 f2fs_i_pino_write(inode, pino); 245 file_got_pino(inode); 246 } 247 up_write(&fi->i_sem); 248 } 249 250 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 251 int datasync, bool atomic) 252 { 253 struct inode *inode = file->f_mapping->host; 254 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 255 nid_t ino = inode->i_ino; 256 int ret = 0; 257 enum cp_reason_type cp_reason = 0; 258 struct writeback_control wbc = { 259 .sync_mode = WB_SYNC_ALL, 260 .nr_to_write = LONG_MAX, 261 .for_reclaim = 0, 262 }; 263 unsigned int seq_id = 0; 264 265 if (unlikely(f2fs_readonly(inode->i_sb) || 266 is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 267 return 0; 268 269 trace_f2fs_sync_file_enter(inode); 270 271 if (S_ISDIR(inode->i_mode)) 272 goto go_write; 273 274 /* if fdatasync is triggered, let's do in-place-update */ 275 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 276 set_inode_flag(inode, FI_NEED_IPU); 277 ret = file_write_and_wait_range(file, start, end); 278 clear_inode_flag(inode, FI_NEED_IPU); 279 280 if (ret) { 281 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 282 return ret; 283 } 284 285 /* if the inode is dirty, let's recover all the time */ 286 if (!f2fs_skip_inode_update(inode, datasync)) { 287 f2fs_write_inode(inode, NULL); 288 goto go_write; 289 } 290 291 /* 292 * if there is no written data, don't waste time to write recovery info. 293 */ 294 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 295 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 296 297 /* it may call write_inode just prior to fsync */ 298 if (need_inode_page_update(sbi, ino)) 299 goto go_write; 300 301 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 302 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 303 goto flush_out; 304 goto out; 305 } 306 go_write: 307 /* 308 * Both of fdatasync() and fsync() are able to be recovered from 309 * sudden-power-off. 310 */ 311 down_read(&F2FS_I(inode)->i_sem); 312 cp_reason = need_do_checkpoint(inode); 313 up_read(&F2FS_I(inode)->i_sem); 314 315 if (cp_reason) { 316 /* all the dirty node pages should be flushed for POR */ 317 ret = f2fs_sync_fs(inode->i_sb, 1); 318 319 /* 320 * We've secured consistency through sync_fs. Following pino 321 * will be used only for fsynced inodes after checkpoint. 322 */ 323 try_to_fix_pino(inode); 324 clear_inode_flag(inode, FI_APPEND_WRITE); 325 clear_inode_flag(inode, FI_UPDATE_WRITE); 326 goto out; 327 } 328 sync_nodes: 329 atomic_inc(&sbi->wb_sync_req[NODE]); 330 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 331 atomic_dec(&sbi->wb_sync_req[NODE]); 332 if (ret) 333 goto out; 334 335 /* if cp_error was enabled, we should avoid infinite loop */ 336 if (unlikely(f2fs_cp_error(sbi))) { 337 ret = -EIO; 338 goto out; 339 } 340 341 if (f2fs_need_inode_block_update(sbi, ino)) { 342 f2fs_mark_inode_dirty_sync(inode, true); 343 f2fs_write_inode(inode, NULL); 344 goto sync_nodes; 345 } 346 347 /* 348 * If it's atomic_write, it's just fine to keep write ordering. So 349 * here we don't need to wait for node write completion, since we use 350 * node chain which serializes node blocks. If one of node writes are 351 * reordered, we can see simply broken chain, resulting in stopping 352 * roll-forward recovery. It means we'll recover all or none node blocks 353 * given fsync mark. 354 */ 355 if (!atomic) { 356 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 357 if (ret) 358 goto out; 359 } 360 361 /* once recovery info is written, don't need to tack this */ 362 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 363 clear_inode_flag(inode, FI_APPEND_WRITE); 364 flush_out: 365 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 366 ret = f2fs_issue_flush(sbi, inode->i_ino); 367 if (!ret) { 368 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 369 clear_inode_flag(inode, FI_UPDATE_WRITE); 370 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 371 } 372 f2fs_update_time(sbi, REQ_TIME); 373 out: 374 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 375 return ret; 376 } 377 378 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 379 { 380 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 381 return -EIO; 382 return f2fs_do_sync_file(file, start, end, datasync, false); 383 } 384 385 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 386 pgoff_t index, int whence) 387 { 388 switch (whence) { 389 case SEEK_DATA: 390 if (__is_valid_data_blkaddr(blkaddr)) 391 return true; 392 if (blkaddr == NEW_ADDR && 393 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 394 return true; 395 break; 396 case SEEK_HOLE: 397 if (blkaddr == NULL_ADDR) 398 return true; 399 break; 400 } 401 return false; 402 } 403 404 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 405 { 406 struct inode *inode = file->f_mapping->host; 407 loff_t maxbytes = inode->i_sb->s_maxbytes; 408 struct dnode_of_data dn; 409 pgoff_t pgofs, end_offset; 410 loff_t data_ofs = offset; 411 loff_t isize; 412 int err = 0; 413 414 inode_lock(inode); 415 416 isize = i_size_read(inode); 417 if (offset >= isize) 418 goto fail; 419 420 /* handle inline data case */ 421 if (f2fs_has_inline_data(inode)) { 422 if (whence == SEEK_HOLE) { 423 data_ofs = isize; 424 goto found; 425 } else if (whence == SEEK_DATA) { 426 data_ofs = offset; 427 goto found; 428 } 429 } 430 431 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 432 433 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 434 set_new_dnode(&dn, inode, NULL, NULL, 0); 435 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 436 if (err && err != -ENOENT) { 437 goto fail; 438 } else if (err == -ENOENT) { 439 /* direct node does not exists */ 440 if (whence == SEEK_DATA) { 441 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 442 continue; 443 } else { 444 goto found; 445 } 446 } 447 448 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 449 450 /* find data/hole in dnode block */ 451 for (; dn.ofs_in_node < end_offset; 452 dn.ofs_in_node++, pgofs++, 453 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 454 block_t blkaddr; 455 456 blkaddr = f2fs_data_blkaddr(&dn); 457 458 if (__is_valid_data_blkaddr(blkaddr) && 459 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 460 blkaddr, DATA_GENERIC_ENHANCE)) { 461 f2fs_put_dnode(&dn); 462 goto fail; 463 } 464 465 if (__found_offset(file->f_mapping, blkaddr, 466 pgofs, whence)) { 467 f2fs_put_dnode(&dn); 468 goto found; 469 } 470 } 471 f2fs_put_dnode(&dn); 472 } 473 474 if (whence == SEEK_DATA) 475 goto fail; 476 found: 477 if (whence == SEEK_HOLE && data_ofs > isize) 478 data_ofs = isize; 479 inode_unlock(inode); 480 return vfs_setpos(file, data_ofs, maxbytes); 481 fail: 482 inode_unlock(inode); 483 return -ENXIO; 484 } 485 486 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 487 { 488 struct inode *inode = file->f_mapping->host; 489 loff_t maxbytes = inode->i_sb->s_maxbytes; 490 491 if (f2fs_compressed_file(inode)) 492 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 493 494 switch (whence) { 495 case SEEK_SET: 496 case SEEK_CUR: 497 case SEEK_END: 498 return generic_file_llseek_size(file, offset, whence, 499 maxbytes, i_size_read(inode)); 500 case SEEK_DATA: 501 case SEEK_HOLE: 502 if (offset < 0) 503 return -ENXIO; 504 return f2fs_seek_block(file, offset, whence); 505 } 506 507 return -EINVAL; 508 } 509 510 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 511 { 512 struct inode *inode = file_inode(file); 513 514 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 515 return -EIO; 516 517 if (!f2fs_is_compress_backend_ready(inode)) 518 return -EOPNOTSUPP; 519 520 file_accessed(file); 521 vma->vm_ops = &f2fs_file_vm_ops; 522 set_inode_flag(inode, FI_MMAP_FILE); 523 return 0; 524 } 525 526 static int f2fs_file_open(struct inode *inode, struct file *filp) 527 { 528 int err = fscrypt_file_open(inode, filp); 529 530 if (err) 531 return err; 532 533 if (!f2fs_is_compress_backend_ready(inode)) 534 return -EOPNOTSUPP; 535 536 err = fsverity_file_open(inode, filp); 537 if (err) 538 return err; 539 540 filp->f_mode |= FMODE_NOWAIT; 541 542 return dquot_file_open(inode, filp); 543 } 544 545 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 546 { 547 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 548 struct f2fs_node *raw_node; 549 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 550 __le32 *addr; 551 int base = 0; 552 bool compressed_cluster = false; 553 int cluster_index = 0, valid_blocks = 0; 554 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 555 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 556 557 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 558 base = get_extra_isize(dn->inode); 559 560 raw_node = F2FS_NODE(dn->node_page); 561 addr = blkaddr_in_node(raw_node) + base + ofs; 562 563 /* Assumption: truncateion starts with cluster */ 564 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 565 block_t blkaddr = le32_to_cpu(*addr); 566 567 if (f2fs_compressed_file(dn->inode) && 568 !(cluster_index & (cluster_size - 1))) { 569 if (compressed_cluster) 570 f2fs_i_compr_blocks_update(dn->inode, 571 valid_blocks, false); 572 compressed_cluster = (blkaddr == COMPRESS_ADDR); 573 valid_blocks = 0; 574 } 575 576 if (blkaddr == NULL_ADDR) 577 continue; 578 579 dn->data_blkaddr = NULL_ADDR; 580 f2fs_set_data_blkaddr(dn); 581 582 if (__is_valid_data_blkaddr(blkaddr)) { 583 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 584 DATA_GENERIC_ENHANCE)) 585 continue; 586 if (compressed_cluster) 587 valid_blocks++; 588 } 589 590 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 591 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 592 593 f2fs_invalidate_blocks(sbi, blkaddr); 594 595 if (!released || blkaddr != COMPRESS_ADDR) 596 nr_free++; 597 } 598 599 if (compressed_cluster) 600 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 601 602 if (nr_free) { 603 pgoff_t fofs; 604 /* 605 * once we invalidate valid blkaddr in range [ofs, ofs + count], 606 * we will invalidate all blkaddr in the whole range. 607 */ 608 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 609 dn->inode) + ofs; 610 f2fs_update_extent_cache_range(dn, fofs, 0, len); 611 dec_valid_block_count(sbi, dn->inode, nr_free); 612 } 613 dn->ofs_in_node = ofs; 614 615 f2fs_update_time(sbi, REQ_TIME); 616 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 617 dn->ofs_in_node, nr_free); 618 } 619 620 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 621 { 622 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 623 } 624 625 static int truncate_partial_data_page(struct inode *inode, u64 from, 626 bool cache_only) 627 { 628 loff_t offset = from & (PAGE_SIZE - 1); 629 pgoff_t index = from >> PAGE_SHIFT; 630 struct address_space *mapping = inode->i_mapping; 631 struct page *page; 632 633 if (!offset && !cache_only) 634 return 0; 635 636 if (cache_only) { 637 page = find_lock_page(mapping, index); 638 if (page && PageUptodate(page)) 639 goto truncate_out; 640 f2fs_put_page(page, 1); 641 return 0; 642 } 643 644 page = f2fs_get_lock_data_page(inode, index, true); 645 if (IS_ERR(page)) 646 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 647 truncate_out: 648 f2fs_wait_on_page_writeback(page, DATA, true, true); 649 zero_user(page, offset, PAGE_SIZE - offset); 650 651 /* An encrypted inode should have a key and truncate the last page. */ 652 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 653 if (!cache_only) 654 set_page_dirty(page); 655 f2fs_put_page(page, 1); 656 return 0; 657 } 658 659 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 660 { 661 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 662 struct dnode_of_data dn; 663 pgoff_t free_from; 664 int count = 0, err = 0; 665 struct page *ipage; 666 bool truncate_page = false; 667 668 trace_f2fs_truncate_blocks_enter(inode, from); 669 670 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 671 672 if (free_from >= max_file_blocks(inode)) 673 goto free_partial; 674 675 if (lock) 676 f2fs_lock_op(sbi); 677 678 ipage = f2fs_get_node_page(sbi, inode->i_ino); 679 if (IS_ERR(ipage)) { 680 err = PTR_ERR(ipage); 681 goto out; 682 } 683 684 if (f2fs_has_inline_data(inode)) { 685 f2fs_truncate_inline_inode(inode, ipage, from); 686 f2fs_put_page(ipage, 1); 687 truncate_page = true; 688 goto out; 689 } 690 691 set_new_dnode(&dn, inode, ipage, NULL, 0); 692 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 693 if (err) { 694 if (err == -ENOENT) 695 goto free_next; 696 goto out; 697 } 698 699 count = ADDRS_PER_PAGE(dn.node_page, inode); 700 701 count -= dn.ofs_in_node; 702 f2fs_bug_on(sbi, count < 0); 703 704 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 705 f2fs_truncate_data_blocks_range(&dn, count); 706 free_from += count; 707 } 708 709 f2fs_put_dnode(&dn); 710 free_next: 711 err = f2fs_truncate_inode_blocks(inode, free_from); 712 out: 713 if (lock) 714 f2fs_unlock_op(sbi); 715 free_partial: 716 /* lastly zero out the first data page */ 717 if (!err) 718 err = truncate_partial_data_page(inode, from, truncate_page); 719 720 trace_f2fs_truncate_blocks_exit(inode, err); 721 return err; 722 } 723 724 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 725 { 726 u64 free_from = from; 727 int err; 728 729 #ifdef CONFIG_F2FS_FS_COMPRESSION 730 /* 731 * for compressed file, only support cluster size 732 * aligned truncation. 733 */ 734 if (f2fs_compressed_file(inode)) 735 free_from = round_up(from, 736 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 737 #endif 738 739 err = f2fs_do_truncate_blocks(inode, free_from, lock); 740 if (err) 741 return err; 742 743 #ifdef CONFIG_F2FS_FS_COMPRESSION 744 if (from != free_from) { 745 err = f2fs_truncate_partial_cluster(inode, from, lock); 746 if (err) 747 return err; 748 } 749 #endif 750 751 return 0; 752 } 753 754 int f2fs_truncate(struct inode *inode) 755 { 756 int err; 757 758 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 759 return -EIO; 760 761 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 762 S_ISLNK(inode->i_mode))) 763 return 0; 764 765 trace_f2fs_truncate(inode); 766 767 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 768 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 769 return -EIO; 770 } 771 772 err = dquot_initialize(inode); 773 if (err) 774 return err; 775 776 /* we should check inline_data size */ 777 if (!f2fs_may_inline_data(inode)) { 778 err = f2fs_convert_inline_inode(inode); 779 if (err) 780 return err; 781 } 782 783 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 784 if (err) 785 return err; 786 787 inode->i_mtime = inode->i_ctime = current_time(inode); 788 f2fs_mark_inode_dirty_sync(inode, false); 789 return 0; 790 } 791 792 int f2fs_getattr(const struct path *path, struct kstat *stat, 793 u32 request_mask, unsigned int query_flags) 794 { 795 struct inode *inode = d_inode(path->dentry); 796 struct f2fs_inode_info *fi = F2FS_I(inode); 797 struct f2fs_inode *ri; 798 unsigned int flags; 799 800 if (f2fs_has_extra_attr(inode) && 801 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 802 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 803 stat->result_mask |= STATX_BTIME; 804 stat->btime.tv_sec = fi->i_crtime.tv_sec; 805 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 806 } 807 808 flags = fi->i_flags; 809 if (flags & F2FS_COMPR_FL) 810 stat->attributes |= STATX_ATTR_COMPRESSED; 811 if (flags & F2FS_APPEND_FL) 812 stat->attributes |= STATX_ATTR_APPEND; 813 if (IS_ENCRYPTED(inode)) 814 stat->attributes |= STATX_ATTR_ENCRYPTED; 815 if (flags & F2FS_IMMUTABLE_FL) 816 stat->attributes |= STATX_ATTR_IMMUTABLE; 817 if (flags & F2FS_NODUMP_FL) 818 stat->attributes |= STATX_ATTR_NODUMP; 819 if (IS_VERITY(inode)) 820 stat->attributes |= STATX_ATTR_VERITY; 821 822 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 823 STATX_ATTR_APPEND | 824 STATX_ATTR_ENCRYPTED | 825 STATX_ATTR_IMMUTABLE | 826 STATX_ATTR_NODUMP | 827 STATX_ATTR_VERITY); 828 829 generic_fillattr(inode, stat); 830 831 /* we need to show initial sectors used for inline_data/dentries */ 832 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 833 f2fs_has_inline_dentry(inode)) 834 stat->blocks += (stat->size + 511) >> 9; 835 836 return 0; 837 } 838 839 #ifdef CONFIG_F2FS_FS_POSIX_ACL 840 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 841 { 842 unsigned int ia_valid = attr->ia_valid; 843 844 if (ia_valid & ATTR_UID) 845 inode->i_uid = attr->ia_uid; 846 if (ia_valid & ATTR_GID) 847 inode->i_gid = attr->ia_gid; 848 if (ia_valid & ATTR_ATIME) 849 inode->i_atime = attr->ia_atime; 850 if (ia_valid & ATTR_MTIME) 851 inode->i_mtime = attr->ia_mtime; 852 if (ia_valid & ATTR_CTIME) 853 inode->i_ctime = attr->ia_ctime; 854 if (ia_valid & ATTR_MODE) { 855 umode_t mode = attr->ia_mode; 856 857 if (!in_group_p(inode->i_gid) && 858 !capable_wrt_inode_uidgid(inode, CAP_FSETID)) 859 mode &= ~S_ISGID; 860 set_acl_inode(inode, mode); 861 } 862 } 863 #else 864 #define __setattr_copy setattr_copy 865 #endif 866 867 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 868 { 869 struct inode *inode = d_inode(dentry); 870 int err; 871 872 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 873 return -EIO; 874 875 if (unlikely(IS_IMMUTABLE(inode))) 876 return -EPERM; 877 878 if (unlikely(IS_APPEND(inode) && 879 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 880 ATTR_GID | ATTR_TIMES_SET)))) 881 return -EPERM; 882 883 if ((attr->ia_valid & ATTR_SIZE) && 884 !f2fs_is_compress_backend_ready(inode)) 885 return -EOPNOTSUPP; 886 887 err = setattr_prepare(dentry, attr); 888 if (err) 889 return err; 890 891 err = fscrypt_prepare_setattr(dentry, attr); 892 if (err) 893 return err; 894 895 err = fsverity_prepare_setattr(dentry, attr); 896 if (err) 897 return err; 898 899 if (is_quota_modification(inode, attr)) { 900 err = dquot_initialize(inode); 901 if (err) 902 return err; 903 } 904 if ((attr->ia_valid & ATTR_UID && 905 !uid_eq(attr->ia_uid, inode->i_uid)) || 906 (attr->ia_valid & ATTR_GID && 907 !gid_eq(attr->ia_gid, inode->i_gid))) { 908 f2fs_lock_op(F2FS_I_SB(inode)); 909 err = dquot_transfer(inode, attr); 910 if (err) { 911 set_sbi_flag(F2FS_I_SB(inode), 912 SBI_QUOTA_NEED_REPAIR); 913 f2fs_unlock_op(F2FS_I_SB(inode)); 914 return err; 915 } 916 /* 917 * update uid/gid under lock_op(), so that dquot and inode can 918 * be updated atomically. 919 */ 920 if (attr->ia_valid & ATTR_UID) 921 inode->i_uid = attr->ia_uid; 922 if (attr->ia_valid & ATTR_GID) 923 inode->i_gid = attr->ia_gid; 924 f2fs_mark_inode_dirty_sync(inode, true); 925 f2fs_unlock_op(F2FS_I_SB(inode)); 926 } 927 928 if (attr->ia_valid & ATTR_SIZE) { 929 loff_t old_size = i_size_read(inode); 930 931 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 932 /* 933 * should convert inline inode before i_size_write to 934 * keep smaller than inline_data size with inline flag. 935 */ 936 err = f2fs_convert_inline_inode(inode); 937 if (err) 938 return err; 939 } 940 941 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 942 down_write(&F2FS_I(inode)->i_mmap_sem); 943 944 truncate_setsize(inode, attr->ia_size); 945 946 if (attr->ia_size <= old_size) 947 err = f2fs_truncate(inode); 948 /* 949 * do not trim all blocks after i_size if target size is 950 * larger than i_size. 951 */ 952 up_write(&F2FS_I(inode)->i_mmap_sem); 953 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 954 if (err) 955 return err; 956 957 spin_lock(&F2FS_I(inode)->i_size_lock); 958 inode->i_mtime = inode->i_ctime = current_time(inode); 959 F2FS_I(inode)->last_disk_size = i_size_read(inode); 960 spin_unlock(&F2FS_I(inode)->i_size_lock); 961 } 962 963 __setattr_copy(inode, attr); 964 965 if (attr->ia_valid & ATTR_MODE) { 966 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode)); 967 968 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 969 if (!err) 970 inode->i_mode = F2FS_I(inode)->i_acl_mode; 971 clear_inode_flag(inode, FI_ACL_MODE); 972 } 973 } 974 975 /* file size may changed here */ 976 f2fs_mark_inode_dirty_sync(inode, true); 977 978 /* inode change will produce dirty node pages flushed by checkpoint */ 979 f2fs_balance_fs(F2FS_I_SB(inode), true); 980 981 return err; 982 } 983 984 const struct inode_operations f2fs_file_inode_operations = { 985 .getattr = f2fs_getattr, 986 .setattr = f2fs_setattr, 987 .get_acl = f2fs_get_acl, 988 .set_acl = f2fs_set_acl, 989 .listxattr = f2fs_listxattr, 990 .fiemap = f2fs_fiemap, 991 }; 992 993 static int fill_zero(struct inode *inode, pgoff_t index, 994 loff_t start, loff_t len) 995 { 996 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 997 struct page *page; 998 999 if (!len) 1000 return 0; 1001 1002 f2fs_balance_fs(sbi, true); 1003 1004 f2fs_lock_op(sbi); 1005 page = f2fs_get_new_data_page(inode, NULL, index, false); 1006 f2fs_unlock_op(sbi); 1007 1008 if (IS_ERR(page)) 1009 return PTR_ERR(page); 1010 1011 f2fs_wait_on_page_writeback(page, DATA, true, true); 1012 zero_user(page, start, len); 1013 set_page_dirty(page); 1014 f2fs_put_page(page, 1); 1015 return 0; 1016 } 1017 1018 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1019 { 1020 int err; 1021 1022 while (pg_start < pg_end) { 1023 struct dnode_of_data dn; 1024 pgoff_t end_offset, count; 1025 1026 set_new_dnode(&dn, inode, NULL, NULL, 0); 1027 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1028 if (err) { 1029 if (err == -ENOENT) { 1030 pg_start = f2fs_get_next_page_offset(&dn, 1031 pg_start); 1032 continue; 1033 } 1034 return err; 1035 } 1036 1037 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1038 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1039 1040 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1041 1042 f2fs_truncate_data_blocks_range(&dn, count); 1043 f2fs_put_dnode(&dn); 1044 1045 pg_start += count; 1046 } 1047 return 0; 1048 } 1049 1050 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1051 { 1052 pgoff_t pg_start, pg_end; 1053 loff_t off_start, off_end; 1054 int ret; 1055 1056 ret = f2fs_convert_inline_inode(inode); 1057 if (ret) 1058 return ret; 1059 1060 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1061 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1062 1063 off_start = offset & (PAGE_SIZE - 1); 1064 off_end = (offset + len) & (PAGE_SIZE - 1); 1065 1066 if (pg_start == pg_end) { 1067 ret = fill_zero(inode, pg_start, off_start, 1068 off_end - off_start); 1069 if (ret) 1070 return ret; 1071 } else { 1072 if (off_start) { 1073 ret = fill_zero(inode, pg_start++, off_start, 1074 PAGE_SIZE - off_start); 1075 if (ret) 1076 return ret; 1077 } 1078 if (off_end) { 1079 ret = fill_zero(inode, pg_end, 0, off_end); 1080 if (ret) 1081 return ret; 1082 } 1083 1084 if (pg_start < pg_end) { 1085 struct address_space *mapping = inode->i_mapping; 1086 loff_t blk_start, blk_end; 1087 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1088 1089 f2fs_balance_fs(sbi, true); 1090 1091 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1092 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1093 1094 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1095 down_write(&F2FS_I(inode)->i_mmap_sem); 1096 1097 truncate_inode_pages_range(mapping, blk_start, 1098 blk_end - 1); 1099 1100 f2fs_lock_op(sbi); 1101 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1102 f2fs_unlock_op(sbi); 1103 1104 up_write(&F2FS_I(inode)->i_mmap_sem); 1105 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1106 } 1107 } 1108 1109 return ret; 1110 } 1111 1112 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1113 int *do_replace, pgoff_t off, pgoff_t len) 1114 { 1115 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1116 struct dnode_of_data dn; 1117 int ret, done, i; 1118 1119 next_dnode: 1120 set_new_dnode(&dn, inode, NULL, NULL, 0); 1121 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1122 if (ret && ret != -ENOENT) { 1123 return ret; 1124 } else if (ret == -ENOENT) { 1125 if (dn.max_level == 0) 1126 return -ENOENT; 1127 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1128 dn.ofs_in_node, len); 1129 blkaddr += done; 1130 do_replace += done; 1131 goto next; 1132 } 1133 1134 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1135 dn.ofs_in_node, len); 1136 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1137 *blkaddr = f2fs_data_blkaddr(&dn); 1138 1139 if (__is_valid_data_blkaddr(*blkaddr) && 1140 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1141 DATA_GENERIC_ENHANCE)) { 1142 f2fs_put_dnode(&dn); 1143 return -EFSCORRUPTED; 1144 } 1145 1146 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1147 1148 if (f2fs_lfs_mode(sbi)) { 1149 f2fs_put_dnode(&dn); 1150 return -EOPNOTSUPP; 1151 } 1152 1153 /* do not invalidate this block address */ 1154 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1155 *do_replace = 1; 1156 } 1157 } 1158 f2fs_put_dnode(&dn); 1159 next: 1160 len -= done; 1161 off += done; 1162 if (len) 1163 goto next_dnode; 1164 return 0; 1165 } 1166 1167 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1168 int *do_replace, pgoff_t off, int len) 1169 { 1170 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1171 struct dnode_of_data dn; 1172 int ret, i; 1173 1174 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1175 if (*do_replace == 0) 1176 continue; 1177 1178 set_new_dnode(&dn, inode, NULL, NULL, 0); 1179 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1180 if (ret) { 1181 dec_valid_block_count(sbi, inode, 1); 1182 f2fs_invalidate_blocks(sbi, *blkaddr); 1183 } else { 1184 f2fs_update_data_blkaddr(&dn, *blkaddr); 1185 } 1186 f2fs_put_dnode(&dn); 1187 } 1188 return 0; 1189 } 1190 1191 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1192 block_t *blkaddr, int *do_replace, 1193 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1194 { 1195 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1196 pgoff_t i = 0; 1197 int ret; 1198 1199 while (i < len) { 1200 if (blkaddr[i] == NULL_ADDR && !full) { 1201 i++; 1202 continue; 1203 } 1204 1205 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1206 struct dnode_of_data dn; 1207 struct node_info ni; 1208 size_t new_size; 1209 pgoff_t ilen; 1210 1211 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1212 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1213 if (ret) 1214 return ret; 1215 1216 ret = f2fs_get_node_info(sbi, dn.nid, &ni); 1217 if (ret) { 1218 f2fs_put_dnode(&dn); 1219 return ret; 1220 } 1221 1222 ilen = min((pgoff_t) 1223 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1224 dn.ofs_in_node, len - i); 1225 do { 1226 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1227 f2fs_truncate_data_blocks_range(&dn, 1); 1228 1229 if (do_replace[i]) { 1230 f2fs_i_blocks_write(src_inode, 1231 1, false, false); 1232 f2fs_i_blocks_write(dst_inode, 1233 1, true, false); 1234 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1235 blkaddr[i], ni.version, true, false); 1236 1237 do_replace[i] = 0; 1238 } 1239 dn.ofs_in_node++; 1240 i++; 1241 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1242 if (dst_inode->i_size < new_size) 1243 f2fs_i_size_write(dst_inode, new_size); 1244 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1245 1246 f2fs_put_dnode(&dn); 1247 } else { 1248 struct page *psrc, *pdst; 1249 1250 psrc = f2fs_get_lock_data_page(src_inode, 1251 src + i, true); 1252 if (IS_ERR(psrc)) 1253 return PTR_ERR(psrc); 1254 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1255 true); 1256 if (IS_ERR(pdst)) { 1257 f2fs_put_page(psrc, 1); 1258 return PTR_ERR(pdst); 1259 } 1260 f2fs_copy_page(psrc, pdst); 1261 set_page_dirty(pdst); 1262 f2fs_put_page(pdst, 1); 1263 f2fs_put_page(psrc, 1); 1264 1265 ret = f2fs_truncate_hole(src_inode, 1266 src + i, src + i + 1); 1267 if (ret) 1268 return ret; 1269 i++; 1270 } 1271 } 1272 return 0; 1273 } 1274 1275 static int __exchange_data_block(struct inode *src_inode, 1276 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1277 pgoff_t len, bool full) 1278 { 1279 block_t *src_blkaddr; 1280 int *do_replace; 1281 pgoff_t olen; 1282 int ret; 1283 1284 while (len) { 1285 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1286 1287 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1288 array_size(olen, sizeof(block_t)), 1289 GFP_NOFS); 1290 if (!src_blkaddr) 1291 return -ENOMEM; 1292 1293 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1294 array_size(olen, sizeof(int)), 1295 GFP_NOFS); 1296 if (!do_replace) { 1297 kvfree(src_blkaddr); 1298 return -ENOMEM; 1299 } 1300 1301 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1302 do_replace, src, olen); 1303 if (ret) 1304 goto roll_back; 1305 1306 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1307 do_replace, src, dst, olen, full); 1308 if (ret) 1309 goto roll_back; 1310 1311 src += olen; 1312 dst += olen; 1313 len -= olen; 1314 1315 kvfree(src_blkaddr); 1316 kvfree(do_replace); 1317 } 1318 return 0; 1319 1320 roll_back: 1321 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1322 kvfree(src_blkaddr); 1323 kvfree(do_replace); 1324 return ret; 1325 } 1326 1327 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1328 { 1329 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1330 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1331 pgoff_t start = offset >> PAGE_SHIFT; 1332 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1333 int ret; 1334 1335 f2fs_balance_fs(sbi, true); 1336 1337 /* avoid gc operation during block exchange */ 1338 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1339 down_write(&F2FS_I(inode)->i_mmap_sem); 1340 1341 f2fs_lock_op(sbi); 1342 f2fs_drop_extent_tree(inode); 1343 truncate_pagecache(inode, offset); 1344 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1345 f2fs_unlock_op(sbi); 1346 1347 up_write(&F2FS_I(inode)->i_mmap_sem); 1348 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1349 return ret; 1350 } 1351 1352 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1353 { 1354 loff_t new_size; 1355 int ret; 1356 1357 if (offset + len >= i_size_read(inode)) 1358 return -EINVAL; 1359 1360 /* collapse range should be aligned to block size of f2fs. */ 1361 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1362 return -EINVAL; 1363 1364 ret = f2fs_convert_inline_inode(inode); 1365 if (ret) 1366 return ret; 1367 1368 /* write out all dirty pages from offset */ 1369 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1370 if (ret) 1371 return ret; 1372 1373 ret = f2fs_do_collapse(inode, offset, len); 1374 if (ret) 1375 return ret; 1376 1377 /* write out all moved pages, if possible */ 1378 down_write(&F2FS_I(inode)->i_mmap_sem); 1379 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1380 truncate_pagecache(inode, offset); 1381 1382 new_size = i_size_read(inode) - len; 1383 ret = f2fs_truncate_blocks(inode, new_size, true); 1384 up_write(&F2FS_I(inode)->i_mmap_sem); 1385 if (!ret) 1386 f2fs_i_size_write(inode, new_size); 1387 return ret; 1388 } 1389 1390 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1391 pgoff_t end) 1392 { 1393 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1394 pgoff_t index = start; 1395 unsigned int ofs_in_node = dn->ofs_in_node; 1396 blkcnt_t count = 0; 1397 int ret; 1398 1399 for (; index < end; index++, dn->ofs_in_node++) { 1400 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1401 count++; 1402 } 1403 1404 dn->ofs_in_node = ofs_in_node; 1405 ret = f2fs_reserve_new_blocks(dn, count); 1406 if (ret) 1407 return ret; 1408 1409 dn->ofs_in_node = ofs_in_node; 1410 for (index = start; index < end; index++, dn->ofs_in_node++) { 1411 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1412 /* 1413 * f2fs_reserve_new_blocks will not guarantee entire block 1414 * allocation. 1415 */ 1416 if (dn->data_blkaddr == NULL_ADDR) { 1417 ret = -ENOSPC; 1418 break; 1419 } 1420 if (dn->data_blkaddr != NEW_ADDR) { 1421 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1422 dn->data_blkaddr = NEW_ADDR; 1423 f2fs_set_data_blkaddr(dn); 1424 } 1425 } 1426 1427 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1428 1429 return ret; 1430 } 1431 1432 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1433 int mode) 1434 { 1435 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1436 struct address_space *mapping = inode->i_mapping; 1437 pgoff_t index, pg_start, pg_end; 1438 loff_t new_size = i_size_read(inode); 1439 loff_t off_start, off_end; 1440 int ret = 0; 1441 1442 ret = inode_newsize_ok(inode, (len + offset)); 1443 if (ret) 1444 return ret; 1445 1446 ret = f2fs_convert_inline_inode(inode); 1447 if (ret) 1448 return ret; 1449 1450 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1451 if (ret) 1452 return ret; 1453 1454 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1455 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1456 1457 off_start = offset & (PAGE_SIZE - 1); 1458 off_end = (offset + len) & (PAGE_SIZE - 1); 1459 1460 if (pg_start == pg_end) { 1461 ret = fill_zero(inode, pg_start, off_start, 1462 off_end - off_start); 1463 if (ret) 1464 return ret; 1465 1466 new_size = max_t(loff_t, new_size, offset + len); 1467 } else { 1468 if (off_start) { 1469 ret = fill_zero(inode, pg_start++, off_start, 1470 PAGE_SIZE - off_start); 1471 if (ret) 1472 return ret; 1473 1474 new_size = max_t(loff_t, new_size, 1475 (loff_t)pg_start << PAGE_SHIFT); 1476 } 1477 1478 for (index = pg_start; index < pg_end;) { 1479 struct dnode_of_data dn; 1480 unsigned int end_offset; 1481 pgoff_t end; 1482 1483 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1484 down_write(&F2FS_I(inode)->i_mmap_sem); 1485 1486 truncate_pagecache_range(inode, 1487 (loff_t)index << PAGE_SHIFT, 1488 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1489 1490 f2fs_lock_op(sbi); 1491 1492 set_new_dnode(&dn, inode, NULL, NULL, 0); 1493 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1494 if (ret) { 1495 f2fs_unlock_op(sbi); 1496 up_write(&F2FS_I(inode)->i_mmap_sem); 1497 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1498 goto out; 1499 } 1500 1501 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1502 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1503 1504 ret = f2fs_do_zero_range(&dn, index, end); 1505 f2fs_put_dnode(&dn); 1506 1507 f2fs_unlock_op(sbi); 1508 up_write(&F2FS_I(inode)->i_mmap_sem); 1509 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1510 1511 f2fs_balance_fs(sbi, dn.node_changed); 1512 1513 if (ret) 1514 goto out; 1515 1516 index = end; 1517 new_size = max_t(loff_t, new_size, 1518 (loff_t)index << PAGE_SHIFT); 1519 } 1520 1521 if (off_end) { 1522 ret = fill_zero(inode, pg_end, 0, off_end); 1523 if (ret) 1524 goto out; 1525 1526 new_size = max_t(loff_t, new_size, offset + len); 1527 } 1528 } 1529 1530 out: 1531 if (new_size > i_size_read(inode)) { 1532 if (mode & FALLOC_FL_KEEP_SIZE) 1533 file_set_keep_isize(inode); 1534 else 1535 f2fs_i_size_write(inode, new_size); 1536 } 1537 return ret; 1538 } 1539 1540 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1541 { 1542 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1543 pgoff_t nr, pg_start, pg_end, delta, idx; 1544 loff_t new_size; 1545 int ret = 0; 1546 1547 new_size = i_size_read(inode) + len; 1548 ret = inode_newsize_ok(inode, new_size); 1549 if (ret) 1550 return ret; 1551 1552 if (offset >= i_size_read(inode)) 1553 return -EINVAL; 1554 1555 /* insert range should be aligned to block size of f2fs. */ 1556 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1557 return -EINVAL; 1558 1559 ret = f2fs_convert_inline_inode(inode); 1560 if (ret) 1561 return ret; 1562 1563 f2fs_balance_fs(sbi, true); 1564 1565 down_write(&F2FS_I(inode)->i_mmap_sem); 1566 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1567 up_write(&F2FS_I(inode)->i_mmap_sem); 1568 if (ret) 1569 return ret; 1570 1571 /* write out all dirty pages from offset */ 1572 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1573 if (ret) 1574 return ret; 1575 1576 pg_start = offset >> PAGE_SHIFT; 1577 pg_end = (offset + len) >> PAGE_SHIFT; 1578 delta = pg_end - pg_start; 1579 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1580 1581 /* avoid gc operation during block exchange */ 1582 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1583 down_write(&F2FS_I(inode)->i_mmap_sem); 1584 truncate_pagecache(inode, offset); 1585 1586 while (!ret && idx > pg_start) { 1587 nr = idx - pg_start; 1588 if (nr > delta) 1589 nr = delta; 1590 idx -= nr; 1591 1592 f2fs_lock_op(sbi); 1593 f2fs_drop_extent_tree(inode); 1594 1595 ret = __exchange_data_block(inode, inode, idx, 1596 idx + delta, nr, false); 1597 f2fs_unlock_op(sbi); 1598 } 1599 up_write(&F2FS_I(inode)->i_mmap_sem); 1600 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1601 1602 /* write out all moved pages, if possible */ 1603 down_write(&F2FS_I(inode)->i_mmap_sem); 1604 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1605 truncate_pagecache(inode, offset); 1606 up_write(&F2FS_I(inode)->i_mmap_sem); 1607 1608 if (!ret) 1609 f2fs_i_size_write(inode, new_size); 1610 return ret; 1611 } 1612 1613 static int expand_inode_data(struct inode *inode, loff_t offset, 1614 loff_t len, int mode) 1615 { 1616 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1617 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1618 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1619 .m_may_create = true }; 1620 pgoff_t pg_end; 1621 loff_t new_size = i_size_read(inode); 1622 loff_t off_end; 1623 int err; 1624 1625 err = inode_newsize_ok(inode, (len + offset)); 1626 if (err) 1627 return err; 1628 1629 err = f2fs_convert_inline_inode(inode); 1630 if (err) 1631 return err; 1632 1633 f2fs_balance_fs(sbi, true); 1634 1635 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1636 off_end = (offset + len) & (PAGE_SIZE - 1); 1637 1638 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1639 map.m_len = pg_end - map.m_lblk; 1640 if (off_end) 1641 map.m_len++; 1642 1643 if (!map.m_len) 1644 return 0; 1645 1646 if (f2fs_is_pinned_file(inode)) { 1647 block_t len = (map.m_len >> sbi->log_blocks_per_seg) << 1648 sbi->log_blocks_per_seg; 1649 block_t done = 0; 1650 1651 if (map.m_len % sbi->blocks_per_seg) 1652 len += sbi->blocks_per_seg; 1653 1654 map.m_len = sbi->blocks_per_seg; 1655 next_alloc: 1656 if (has_not_enough_free_secs(sbi, 0, 1657 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1658 down_write(&sbi->gc_lock); 1659 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1660 if (err && err != -ENODATA && err != -EAGAIN) 1661 goto out_err; 1662 } 1663 1664 down_write(&sbi->pin_sem); 1665 1666 f2fs_lock_op(sbi); 1667 f2fs_allocate_new_segment(sbi, CURSEG_COLD_DATA_PINNED); 1668 f2fs_unlock_op(sbi); 1669 1670 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1671 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1672 1673 up_write(&sbi->pin_sem); 1674 1675 done += map.m_len; 1676 len -= map.m_len; 1677 map.m_lblk += map.m_len; 1678 if (!err && len) 1679 goto next_alloc; 1680 1681 map.m_len = done; 1682 } else { 1683 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1684 } 1685 out_err: 1686 if (err) { 1687 pgoff_t last_off; 1688 1689 if (!map.m_len) 1690 return err; 1691 1692 last_off = map.m_lblk + map.m_len - 1; 1693 1694 /* update new size to the failed position */ 1695 new_size = (last_off == pg_end) ? offset + len : 1696 (loff_t)(last_off + 1) << PAGE_SHIFT; 1697 } else { 1698 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1699 } 1700 1701 if (new_size > i_size_read(inode)) { 1702 if (mode & FALLOC_FL_KEEP_SIZE) 1703 file_set_keep_isize(inode); 1704 else 1705 f2fs_i_size_write(inode, new_size); 1706 } 1707 1708 return err; 1709 } 1710 1711 static long f2fs_fallocate(struct file *file, int mode, 1712 loff_t offset, loff_t len) 1713 { 1714 struct inode *inode = file_inode(file); 1715 long ret = 0; 1716 1717 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1718 return -EIO; 1719 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1720 return -ENOSPC; 1721 if (!f2fs_is_compress_backend_ready(inode)) 1722 return -EOPNOTSUPP; 1723 1724 /* f2fs only support ->fallocate for regular file */ 1725 if (!S_ISREG(inode->i_mode)) 1726 return -EINVAL; 1727 1728 if (IS_ENCRYPTED(inode) && 1729 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1730 return -EOPNOTSUPP; 1731 1732 if (f2fs_compressed_file(inode) && 1733 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1734 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1735 return -EOPNOTSUPP; 1736 1737 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1738 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1739 FALLOC_FL_INSERT_RANGE)) 1740 return -EOPNOTSUPP; 1741 1742 inode_lock(inode); 1743 1744 if (mode & FALLOC_FL_PUNCH_HOLE) { 1745 if (offset >= inode->i_size) 1746 goto out; 1747 1748 ret = punch_hole(inode, offset, len); 1749 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1750 ret = f2fs_collapse_range(inode, offset, len); 1751 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1752 ret = f2fs_zero_range(inode, offset, len, mode); 1753 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1754 ret = f2fs_insert_range(inode, offset, len); 1755 } else { 1756 ret = expand_inode_data(inode, offset, len, mode); 1757 } 1758 1759 if (!ret) { 1760 inode->i_mtime = inode->i_ctime = current_time(inode); 1761 f2fs_mark_inode_dirty_sync(inode, false); 1762 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1763 } 1764 1765 out: 1766 inode_unlock(inode); 1767 1768 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1769 return ret; 1770 } 1771 1772 static int f2fs_release_file(struct inode *inode, struct file *filp) 1773 { 1774 /* 1775 * f2fs_relase_file is called at every close calls. So we should 1776 * not drop any inmemory pages by close called by other process. 1777 */ 1778 if (!(filp->f_mode & FMODE_WRITE) || 1779 atomic_read(&inode->i_writecount) != 1) 1780 return 0; 1781 1782 /* some remained atomic pages should discarded */ 1783 if (f2fs_is_atomic_file(inode)) 1784 f2fs_drop_inmem_pages(inode); 1785 if (f2fs_is_volatile_file(inode)) { 1786 set_inode_flag(inode, FI_DROP_CACHE); 1787 filemap_fdatawrite(inode->i_mapping); 1788 clear_inode_flag(inode, FI_DROP_CACHE); 1789 clear_inode_flag(inode, FI_VOLATILE_FILE); 1790 stat_dec_volatile_write(inode); 1791 } 1792 return 0; 1793 } 1794 1795 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1796 { 1797 struct inode *inode = file_inode(file); 1798 1799 /* 1800 * If the process doing a transaction is crashed, we should do 1801 * roll-back. Otherwise, other reader/write can see corrupted database 1802 * until all the writers close its file. Since this should be done 1803 * before dropping file lock, it needs to do in ->flush. 1804 */ 1805 if (f2fs_is_atomic_file(inode) && 1806 F2FS_I(inode)->inmem_task == current) 1807 f2fs_drop_inmem_pages(inode); 1808 return 0; 1809 } 1810 1811 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1812 { 1813 struct f2fs_inode_info *fi = F2FS_I(inode); 1814 u32 masked_flags = fi->i_flags & mask; 1815 1816 f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask)); 1817 1818 /* Is it quota file? Do not allow user to mess with it */ 1819 if (IS_NOQUOTA(inode)) 1820 return -EPERM; 1821 1822 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1823 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1824 return -EOPNOTSUPP; 1825 if (!f2fs_empty_dir(inode)) 1826 return -ENOTEMPTY; 1827 } 1828 1829 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1830 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1831 return -EOPNOTSUPP; 1832 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1833 return -EINVAL; 1834 } 1835 1836 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1837 if (masked_flags & F2FS_COMPR_FL) { 1838 if (!f2fs_disable_compressed_file(inode)) 1839 return -EINVAL; 1840 } 1841 if (iflags & F2FS_NOCOMP_FL) 1842 return -EINVAL; 1843 if (iflags & F2FS_COMPR_FL) { 1844 if (!f2fs_may_compress(inode)) 1845 return -EINVAL; 1846 if (S_ISREG(inode->i_mode) && inode->i_size) 1847 return -EINVAL; 1848 1849 set_compress_context(inode); 1850 } 1851 } 1852 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) { 1853 if (masked_flags & F2FS_COMPR_FL) 1854 return -EINVAL; 1855 } 1856 1857 fi->i_flags = iflags | (fi->i_flags & ~mask); 1858 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1859 (fi->i_flags & F2FS_NOCOMP_FL)); 1860 1861 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1862 set_inode_flag(inode, FI_PROJ_INHERIT); 1863 else 1864 clear_inode_flag(inode, FI_PROJ_INHERIT); 1865 1866 inode->i_ctime = current_time(inode); 1867 f2fs_set_inode_flags(inode); 1868 f2fs_mark_inode_dirty_sync(inode, true); 1869 return 0; 1870 } 1871 1872 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */ 1873 1874 /* 1875 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1876 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1877 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1878 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1879 */ 1880 1881 static const struct { 1882 u32 iflag; 1883 u32 fsflag; 1884 } f2fs_fsflags_map[] = { 1885 { F2FS_COMPR_FL, FS_COMPR_FL }, 1886 { F2FS_SYNC_FL, FS_SYNC_FL }, 1887 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1888 { F2FS_APPEND_FL, FS_APPEND_FL }, 1889 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1890 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1891 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1892 { F2FS_INDEX_FL, FS_INDEX_FL }, 1893 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1894 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1895 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1896 }; 1897 1898 #define F2FS_GETTABLE_FS_FL ( \ 1899 FS_COMPR_FL | \ 1900 FS_SYNC_FL | \ 1901 FS_IMMUTABLE_FL | \ 1902 FS_APPEND_FL | \ 1903 FS_NODUMP_FL | \ 1904 FS_NOATIME_FL | \ 1905 FS_NOCOMP_FL | \ 1906 FS_INDEX_FL | \ 1907 FS_DIRSYNC_FL | \ 1908 FS_PROJINHERIT_FL | \ 1909 FS_ENCRYPT_FL | \ 1910 FS_INLINE_DATA_FL | \ 1911 FS_NOCOW_FL | \ 1912 FS_VERITY_FL | \ 1913 FS_CASEFOLD_FL) 1914 1915 #define F2FS_SETTABLE_FS_FL ( \ 1916 FS_COMPR_FL | \ 1917 FS_SYNC_FL | \ 1918 FS_IMMUTABLE_FL | \ 1919 FS_APPEND_FL | \ 1920 FS_NODUMP_FL | \ 1921 FS_NOATIME_FL | \ 1922 FS_NOCOMP_FL | \ 1923 FS_DIRSYNC_FL | \ 1924 FS_PROJINHERIT_FL | \ 1925 FS_CASEFOLD_FL) 1926 1927 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1928 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1929 { 1930 u32 fsflags = 0; 1931 int i; 1932 1933 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1934 if (iflags & f2fs_fsflags_map[i].iflag) 1935 fsflags |= f2fs_fsflags_map[i].fsflag; 1936 1937 return fsflags; 1938 } 1939 1940 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1941 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1942 { 1943 u32 iflags = 0; 1944 int i; 1945 1946 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1947 if (fsflags & f2fs_fsflags_map[i].fsflag) 1948 iflags |= f2fs_fsflags_map[i].iflag; 1949 1950 return iflags; 1951 } 1952 1953 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1954 { 1955 struct inode *inode = file_inode(filp); 1956 struct f2fs_inode_info *fi = F2FS_I(inode); 1957 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1958 1959 if (IS_ENCRYPTED(inode)) 1960 fsflags |= FS_ENCRYPT_FL; 1961 if (IS_VERITY(inode)) 1962 fsflags |= FS_VERITY_FL; 1963 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 1964 fsflags |= FS_INLINE_DATA_FL; 1965 if (is_inode_flag_set(inode, FI_PIN_FILE)) 1966 fsflags |= FS_NOCOW_FL; 1967 1968 fsflags &= F2FS_GETTABLE_FS_FL; 1969 1970 return put_user(fsflags, (int __user *)arg); 1971 } 1972 1973 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1974 { 1975 struct inode *inode = file_inode(filp); 1976 struct f2fs_inode_info *fi = F2FS_I(inode); 1977 u32 fsflags, old_fsflags; 1978 u32 iflags; 1979 int ret; 1980 1981 if (!inode_owner_or_capable(inode)) 1982 return -EACCES; 1983 1984 if (get_user(fsflags, (int __user *)arg)) 1985 return -EFAULT; 1986 1987 if (fsflags & ~F2FS_GETTABLE_FS_FL) 1988 return -EOPNOTSUPP; 1989 fsflags &= F2FS_SETTABLE_FS_FL; 1990 1991 iflags = f2fs_fsflags_to_iflags(fsflags); 1992 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 1993 return -EOPNOTSUPP; 1994 1995 ret = mnt_want_write_file(filp); 1996 if (ret) 1997 return ret; 1998 1999 inode_lock(inode); 2000 2001 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 2002 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 2003 if (ret) 2004 goto out; 2005 2006 ret = f2fs_setflags_common(inode, iflags, 2007 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL)); 2008 out: 2009 inode_unlock(inode); 2010 mnt_drop_write_file(filp); 2011 return ret; 2012 } 2013 2014 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2015 { 2016 struct inode *inode = file_inode(filp); 2017 2018 return put_user(inode->i_generation, (int __user *)arg); 2019 } 2020 2021 static int f2fs_ioc_start_atomic_write(struct file *filp) 2022 { 2023 struct inode *inode = file_inode(filp); 2024 struct f2fs_inode_info *fi = F2FS_I(inode); 2025 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2026 int ret; 2027 2028 if (!inode_owner_or_capable(inode)) 2029 return -EACCES; 2030 2031 if (!S_ISREG(inode->i_mode)) 2032 return -EINVAL; 2033 2034 if (filp->f_flags & O_DIRECT) 2035 return -EINVAL; 2036 2037 ret = mnt_want_write_file(filp); 2038 if (ret) 2039 return ret; 2040 2041 inode_lock(inode); 2042 2043 f2fs_disable_compressed_file(inode); 2044 2045 if (f2fs_is_atomic_file(inode)) { 2046 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) 2047 ret = -EINVAL; 2048 goto out; 2049 } 2050 2051 ret = f2fs_convert_inline_inode(inode); 2052 if (ret) 2053 goto out; 2054 2055 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2056 2057 /* 2058 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2059 * f2fs_is_atomic_file. 2060 */ 2061 if (get_dirty_pages(inode)) 2062 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2063 inode->i_ino, get_dirty_pages(inode)); 2064 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2065 if (ret) { 2066 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2067 goto out; 2068 } 2069 2070 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 2071 if (list_empty(&fi->inmem_ilist)) 2072 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 2073 sbi->atomic_files++; 2074 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 2075 2076 /* add inode in inmem_list first and set atomic_file */ 2077 set_inode_flag(inode, FI_ATOMIC_FILE); 2078 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2079 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2080 2081 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2082 F2FS_I(inode)->inmem_task = current; 2083 stat_update_max_atomic_write(inode); 2084 out: 2085 inode_unlock(inode); 2086 mnt_drop_write_file(filp); 2087 return ret; 2088 } 2089 2090 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2091 { 2092 struct inode *inode = file_inode(filp); 2093 int ret; 2094 2095 if (!inode_owner_or_capable(inode)) 2096 return -EACCES; 2097 2098 ret = mnt_want_write_file(filp); 2099 if (ret) 2100 return ret; 2101 2102 f2fs_balance_fs(F2FS_I_SB(inode), true); 2103 2104 inode_lock(inode); 2105 2106 if (f2fs_is_volatile_file(inode)) { 2107 ret = -EINVAL; 2108 goto err_out; 2109 } 2110 2111 if (f2fs_is_atomic_file(inode)) { 2112 ret = f2fs_commit_inmem_pages(inode); 2113 if (ret) 2114 goto err_out; 2115 2116 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2117 if (!ret) 2118 f2fs_drop_inmem_pages(inode); 2119 } else { 2120 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2121 } 2122 err_out: 2123 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2124 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2125 ret = -EINVAL; 2126 } 2127 inode_unlock(inode); 2128 mnt_drop_write_file(filp); 2129 return ret; 2130 } 2131 2132 static int f2fs_ioc_start_volatile_write(struct file *filp) 2133 { 2134 struct inode *inode = file_inode(filp); 2135 int ret; 2136 2137 if (!inode_owner_or_capable(inode)) 2138 return -EACCES; 2139 2140 if (!S_ISREG(inode->i_mode)) 2141 return -EINVAL; 2142 2143 ret = mnt_want_write_file(filp); 2144 if (ret) 2145 return ret; 2146 2147 inode_lock(inode); 2148 2149 if (f2fs_is_volatile_file(inode)) 2150 goto out; 2151 2152 ret = f2fs_convert_inline_inode(inode); 2153 if (ret) 2154 goto out; 2155 2156 stat_inc_volatile_write(inode); 2157 stat_update_max_volatile_write(inode); 2158 2159 set_inode_flag(inode, FI_VOLATILE_FILE); 2160 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2161 out: 2162 inode_unlock(inode); 2163 mnt_drop_write_file(filp); 2164 return ret; 2165 } 2166 2167 static int f2fs_ioc_release_volatile_write(struct file *filp) 2168 { 2169 struct inode *inode = file_inode(filp); 2170 int ret; 2171 2172 if (!inode_owner_or_capable(inode)) 2173 return -EACCES; 2174 2175 ret = mnt_want_write_file(filp); 2176 if (ret) 2177 return ret; 2178 2179 inode_lock(inode); 2180 2181 if (!f2fs_is_volatile_file(inode)) 2182 goto out; 2183 2184 if (!f2fs_is_first_block_written(inode)) { 2185 ret = truncate_partial_data_page(inode, 0, true); 2186 goto out; 2187 } 2188 2189 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 2190 out: 2191 inode_unlock(inode); 2192 mnt_drop_write_file(filp); 2193 return ret; 2194 } 2195 2196 static int f2fs_ioc_abort_volatile_write(struct file *filp) 2197 { 2198 struct inode *inode = file_inode(filp); 2199 int ret; 2200 2201 if (!inode_owner_or_capable(inode)) 2202 return -EACCES; 2203 2204 ret = mnt_want_write_file(filp); 2205 if (ret) 2206 return ret; 2207 2208 inode_lock(inode); 2209 2210 if (f2fs_is_atomic_file(inode)) 2211 f2fs_drop_inmem_pages(inode); 2212 if (f2fs_is_volatile_file(inode)) { 2213 clear_inode_flag(inode, FI_VOLATILE_FILE); 2214 stat_dec_volatile_write(inode); 2215 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2216 } 2217 2218 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2219 2220 inode_unlock(inode); 2221 2222 mnt_drop_write_file(filp); 2223 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2224 return ret; 2225 } 2226 2227 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2228 { 2229 struct inode *inode = file_inode(filp); 2230 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2231 struct super_block *sb = sbi->sb; 2232 __u32 in; 2233 int ret = 0; 2234 2235 if (!capable(CAP_SYS_ADMIN)) 2236 return -EPERM; 2237 2238 if (get_user(in, (__u32 __user *)arg)) 2239 return -EFAULT; 2240 2241 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2242 ret = mnt_want_write_file(filp); 2243 if (ret) { 2244 if (ret == -EROFS) { 2245 ret = 0; 2246 f2fs_stop_checkpoint(sbi, false); 2247 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2248 trace_f2fs_shutdown(sbi, in, ret); 2249 } 2250 return ret; 2251 } 2252 } 2253 2254 switch (in) { 2255 case F2FS_GOING_DOWN_FULLSYNC: 2256 ret = freeze_bdev(sb->s_bdev); 2257 if (ret) 2258 goto out; 2259 f2fs_stop_checkpoint(sbi, false); 2260 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2261 thaw_bdev(sb->s_bdev); 2262 break; 2263 case F2FS_GOING_DOWN_METASYNC: 2264 /* do checkpoint only */ 2265 ret = f2fs_sync_fs(sb, 1); 2266 if (ret) 2267 goto out; 2268 f2fs_stop_checkpoint(sbi, false); 2269 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2270 break; 2271 case F2FS_GOING_DOWN_NOSYNC: 2272 f2fs_stop_checkpoint(sbi, false); 2273 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2274 break; 2275 case F2FS_GOING_DOWN_METAFLUSH: 2276 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2277 f2fs_stop_checkpoint(sbi, false); 2278 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2279 break; 2280 case F2FS_GOING_DOWN_NEED_FSCK: 2281 set_sbi_flag(sbi, SBI_NEED_FSCK); 2282 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2283 set_sbi_flag(sbi, SBI_IS_DIRTY); 2284 /* do checkpoint only */ 2285 ret = f2fs_sync_fs(sb, 1); 2286 goto out; 2287 default: 2288 ret = -EINVAL; 2289 goto out; 2290 } 2291 2292 f2fs_stop_gc_thread(sbi); 2293 f2fs_stop_discard_thread(sbi); 2294 2295 f2fs_drop_discard_cmd(sbi); 2296 clear_opt(sbi, DISCARD); 2297 2298 f2fs_update_time(sbi, REQ_TIME); 2299 out: 2300 if (in != F2FS_GOING_DOWN_FULLSYNC) 2301 mnt_drop_write_file(filp); 2302 2303 trace_f2fs_shutdown(sbi, in, ret); 2304 2305 return ret; 2306 } 2307 2308 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2309 { 2310 struct inode *inode = file_inode(filp); 2311 struct super_block *sb = inode->i_sb; 2312 struct request_queue *q = bdev_get_queue(sb->s_bdev); 2313 struct fstrim_range range; 2314 int ret; 2315 2316 if (!capable(CAP_SYS_ADMIN)) 2317 return -EPERM; 2318 2319 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2320 return -EOPNOTSUPP; 2321 2322 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2323 sizeof(range))) 2324 return -EFAULT; 2325 2326 ret = mnt_want_write_file(filp); 2327 if (ret) 2328 return ret; 2329 2330 range.minlen = max((unsigned int)range.minlen, 2331 q->limits.discard_granularity); 2332 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2333 mnt_drop_write_file(filp); 2334 if (ret < 0) 2335 return ret; 2336 2337 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2338 sizeof(range))) 2339 return -EFAULT; 2340 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2341 return 0; 2342 } 2343 2344 static bool uuid_is_nonzero(__u8 u[16]) 2345 { 2346 int i; 2347 2348 for (i = 0; i < 16; i++) 2349 if (u[i]) 2350 return true; 2351 return false; 2352 } 2353 2354 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2355 { 2356 struct inode *inode = file_inode(filp); 2357 2358 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2359 return -EOPNOTSUPP; 2360 2361 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2362 2363 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2364 } 2365 2366 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2367 { 2368 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2369 return -EOPNOTSUPP; 2370 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2371 } 2372 2373 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2374 { 2375 struct inode *inode = file_inode(filp); 2376 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2377 int err; 2378 2379 if (!f2fs_sb_has_encrypt(sbi)) 2380 return -EOPNOTSUPP; 2381 2382 err = mnt_want_write_file(filp); 2383 if (err) 2384 return err; 2385 2386 down_write(&sbi->sb_lock); 2387 2388 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2389 goto got_it; 2390 2391 /* update superblock with uuid */ 2392 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2393 2394 err = f2fs_commit_super(sbi, false); 2395 if (err) { 2396 /* undo new data */ 2397 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2398 goto out_err; 2399 } 2400 got_it: 2401 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2402 16)) 2403 err = -EFAULT; 2404 out_err: 2405 up_write(&sbi->sb_lock); 2406 mnt_drop_write_file(filp); 2407 return err; 2408 } 2409 2410 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2411 unsigned long arg) 2412 { 2413 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2414 return -EOPNOTSUPP; 2415 2416 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2417 } 2418 2419 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2420 { 2421 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2422 return -EOPNOTSUPP; 2423 2424 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2425 } 2426 2427 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2428 { 2429 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2430 return -EOPNOTSUPP; 2431 2432 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2433 } 2434 2435 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2436 unsigned long arg) 2437 { 2438 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2439 return -EOPNOTSUPP; 2440 2441 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2442 } 2443 2444 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2445 unsigned long arg) 2446 { 2447 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2448 return -EOPNOTSUPP; 2449 2450 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2451 } 2452 2453 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2454 { 2455 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2456 return -EOPNOTSUPP; 2457 2458 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2459 } 2460 2461 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2462 { 2463 struct inode *inode = file_inode(filp); 2464 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2465 __u32 sync; 2466 int ret; 2467 2468 if (!capable(CAP_SYS_ADMIN)) 2469 return -EPERM; 2470 2471 if (get_user(sync, (__u32 __user *)arg)) 2472 return -EFAULT; 2473 2474 if (f2fs_readonly(sbi->sb)) 2475 return -EROFS; 2476 2477 ret = mnt_want_write_file(filp); 2478 if (ret) 2479 return ret; 2480 2481 if (!sync) { 2482 if (!down_write_trylock(&sbi->gc_lock)) { 2483 ret = -EBUSY; 2484 goto out; 2485 } 2486 } else { 2487 down_write(&sbi->gc_lock); 2488 } 2489 2490 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO); 2491 out: 2492 mnt_drop_write_file(filp); 2493 return ret; 2494 } 2495 2496 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2497 { 2498 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2499 u64 end; 2500 int ret; 2501 2502 if (!capable(CAP_SYS_ADMIN)) 2503 return -EPERM; 2504 if (f2fs_readonly(sbi->sb)) 2505 return -EROFS; 2506 2507 end = range->start + range->len; 2508 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2509 end >= MAX_BLKADDR(sbi)) 2510 return -EINVAL; 2511 2512 ret = mnt_want_write_file(filp); 2513 if (ret) 2514 return ret; 2515 2516 do_more: 2517 if (!range->sync) { 2518 if (!down_write_trylock(&sbi->gc_lock)) { 2519 ret = -EBUSY; 2520 goto out; 2521 } 2522 } else { 2523 down_write(&sbi->gc_lock); 2524 } 2525 2526 ret = f2fs_gc(sbi, range->sync, true, GET_SEGNO(sbi, range->start)); 2527 if (ret) { 2528 if (ret == -EBUSY) 2529 ret = -EAGAIN; 2530 goto out; 2531 } 2532 range->start += BLKS_PER_SEC(sbi); 2533 if (range->start <= end) 2534 goto do_more; 2535 out: 2536 mnt_drop_write_file(filp); 2537 return ret; 2538 } 2539 2540 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2541 { 2542 struct f2fs_gc_range range; 2543 2544 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2545 sizeof(range))) 2546 return -EFAULT; 2547 return __f2fs_ioc_gc_range(filp, &range); 2548 } 2549 2550 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2551 { 2552 struct inode *inode = file_inode(filp); 2553 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2554 int ret; 2555 2556 if (!capable(CAP_SYS_ADMIN)) 2557 return -EPERM; 2558 2559 if (f2fs_readonly(sbi->sb)) 2560 return -EROFS; 2561 2562 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2563 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2564 return -EINVAL; 2565 } 2566 2567 ret = mnt_want_write_file(filp); 2568 if (ret) 2569 return ret; 2570 2571 ret = f2fs_sync_fs(sbi->sb, 1); 2572 2573 mnt_drop_write_file(filp); 2574 return ret; 2575 } 2576 2577 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2578 struct file *filp, 2579 struct f2fs_defragment *range) 2580 { 2581 struct inode *inode = file_inode(filp); 2582 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2583 .m_seg_type = NO_CHECK_TYPE , 2584 .m_may_create = false }; 2585 struct extent_info ei = {0, 0, 0}; 2586 pgoff_t pg_start, pg_end, next_pgofs; 2587 unsigned int blk_per_seg = sbi->blocks_per_seg; 2588 unsigned int total = 0, sec_num; 2589 block_t blk_end = 0; 2590 bool fragmented = false; 2591 int err; 2592 2593 /* if in-place-update policy is enabled, don't waste time here */ 2594 if (f2fs_should_update_inplace(inode, NULL)) 2595 return -EINVAL; 2596 2597 pg_start = range->start >> PAGE_SHIFT; 2598 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2599 2600 f2fs_balance_fs(sbi, true); 2601 2602 inode_lock(inode); 2603 2604 /* writeback all dirty pages in the range */ 2605 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2606 range->start + range->len - 1); 2607 if (err) 2608 goto out; 2609 2610 /* 2611 * lookup mapping info in extent cache, skip defragmenting if physical 2612 * block addresses are continuous. 2613 */ 2614 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2615 if (ei.fofs + ei.len >= pg_end) 2616 goto out; 2617 } 2618 2619 map.m_lblk = pg_start; 2620 map.m_next_pgofs = &next_pgofs; 2621 2622 /* 2623 * lookup mapping info in dnode page cache, skip defragmenting if all 2624 * physical block addresses are continuous even if there are hole(s) 2625 * in logical blocks. 2626 */ 2627 while (map.m_lblk < pg_end) { 2628 map.m_len = pg_end - map.m_lblk; 2629 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2630 if (err) 2631 goto out; 2632 2633 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2634 map.m_lblk = next_pgofs; 2635 continue; 2636 } 2637 2638 if (blk_end && blk_end != map.m_pblk) 2639 fragmented = true; 2640 2641 /* record total count of block that we're going to move */ 2642 total += map.m_len; 2643 2644 blk_end = map.m_pblk + map.m_len; 2645 2646 map.m_lblk += map.m_len; 2647 } 2648 2649 if (!fragmented) { 2650 total = 0; 2651 goto out; 2652 } 2653 2654 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi)); 2655 2656 /* 2657 * make sure there are enough free section for LFS allocation, this can 2658 * avoid defragment running in SSR mode when free section are allocated 2659 * intensively 2660 */ 2661 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2662 err = -EAGAIN; 2663 goto out; 2664 } 2665 2666 map.m_lblk = pg_start; 2667 map.m_len = pg_end - pg_start; 2668 total = 0; 2669 2670 while (map.m_lblk < pg_end) { 2671 pgoff_t idx; 2672 int cnt = 0; 2673 2674 do_map: 2675 map.m_len = pg_end - map.m_lblk; 2676 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2677 if (err) 2678 goto clear_out; 2679 2680 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2681 map.m_lblk = next_pgofs; 2682 goto check; 2683 } 2684 2685 set_inode_flag(inode, FI_DO_DEFRAG); 2686 2687 idx = map.m_lblk; 2688 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2689 struct page *page; 2690 2691 page = f2fs_get_lock_data_page(inode, idx, true); 2692 if (IS_ERR(page)) { 2693 err = PTR_ERR(page); 2694 goto clear_out; 2695 } 2696 2697 set_page_dirty(page); 2698 f2fs_put_page(page, 1); 2699 2700 idx++; 2701 cnt++; 2702 total++; 2703 } 2704 2705 map.m_lblk = idx; 2706 check: 2707 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2708 goto do_map; 2709 2710 clear_inode_flag(inode, FI_DO_DEFRAG); 2711 2712 err = filemap_fdatawrite(inode->i_mapping); 2713 if (err) 2714 goto out; 2715 } 2716 clear_out: 2717 clear_inode_flag(inode, FI_DO_DEFRAG); 2718 out: 2719 inode_unlock(inode); 2720 if (!err) 2721 range->len = (u64)total << PAGE_SHIFT; 2722 return err; 2723 } 2724 2725 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2726 { 2727 struct inode *inode = file_inode(filp); 2728 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2729 struct f2fs_defragment range; 2730 int err; 2731 2732 if (!capable(CAP_SYS_ADMIN)) 2733 return -EPERM; 2734 2735 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2736 return -EINVAL; 2737 2738 if (f2fs_readonly(sbi->sb)) 2739 return -EROFS; 2740 2741 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2742 sizeof(range))) 2743 return -EFAULT; 2744 2745 /* verify alignment of offset & size */ 2746 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2747 return -EINVAL; 2748 2749 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2750 max_file_blocks(inode))) 2751 return -EINVAL; 2752 2753 err = mnt_want_write_file(filp); 2754 if (err) 2755 return err; 2756 2757 err = f2fs_defragment_range(sbi, filp, &range); 2758 mnt_drop_write_file(filp); 2759 2760 f2fs_update_time(sbi, REQ_TIME); 2761 if (err < 0) 2762 return err; 2763 2764 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2765 sizeof(range))) 2766 return -EFAULT; 2767 2768 return 0; 2769 } 2770 2771 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2772 struct file *file_out, loff_t pos_out, size_t len) 2773 { 2774 struct inode *src = file_inode(file_in); 2775 struct inode *dst = file_inode(file_out); 2776 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2777 size_t olen = len, dst_max_i_size = 0; 2778 size_t dst_osize; 2779 int ret; 2780 2781 if (file_in->f_path.mnt != file_out->f_path.mnt || 2782 src->i_sb != dst->i_sb) 2783 return -EXDEV; 2784 2785 if (unlikely(f2fs_readonly(src->i_sb))) 2786 return -EROFS; 2787 2788 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2789 return -EINVAL; 2790 2791 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2792 return -EOPNOTSUPP; 2793 2794 if (pos_out < 0 || pos_in < 0) 2795 return -EINVAL; 2796 2797 if (src == dst) { 2798 if (pos_in == pos_out) 2799 return 0; 2800 if (pos_out > pos_in && pos_out < pos_in + len) 2801 return -EINVAL; 2802 } 2803 2804 inode_lock(src); 2805 if (src != dst) { 2806 ret = -EBUSY; 2807 if (!inode_trylock(dst)) 2808 goto out; 2809 } 2810 2811 ret = -EINVAL; 2812 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2813 goto out_unlock; 2814 if (len == 0) 2815 olen = len = src->i_size - pos_in; 2816 if (pos_in + len == src->i_size) 2817 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2818 if (len == 0) { 2819 ret = 0; 2820 goto out_unlock; 2821 } 2822 2823 dst_osize = dst->i_size; 2824 if (pos_out + olen > dst->i_size) 2825 dst_max_i_size = pos_out + olen; 2826 2827 /* verify the end result is block aligned */ 2828 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2829 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2830 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2831 goto out_unlock; 2832 2833 ret = f2fs_convert_inline_inode(src); 2834 if (ret) 2835 goto out_unlock; 2836 2837 ret = f2fs_convert_inline_inode(dst); 2838 if (ret) 2839 goto out_unlock; 2840 2841 /* write out all dirty pages from offset */ 2842 ret = filemap_write_and_wait_range(src->i_mapping, 2843 pos_in, pos_in + len); 2844 if (ret) 2845 goto out_unlock; 2846 2847 ret = filemap_write_and_wait_range(dst->i_mapping, 2848 pos_out, pos_out + len); 2849 if (ret) 2850 goto out_unlock; 2851 2852 f2fs_balance_fs(sbi, true); 2853 2854 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2855 if (src != dst) { 2856 ret = -EBUSY; 2857 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2858 goto out_src; 2859 } 2860 2861 f2fs_lock_op(sbi); 2862 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2863 pos_out >> F2FS_BLKSIZE_BITS, 2864 len >> F2FS_BLKSIZE_BITS, false); 2865 2866 if (!ret) { 2867 if (dst_max_i_size) 2868 f2fs_i_size_write(dst, dst_max_i_size); 2869 else if (dst_osize != dst->i_size) 2870 f2fs_i_size_write(dst, dst_osize); 2871 } 2872 f2fs_unlock_op(sbi); 2873 2874 if (src != dst) 2875 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2876 out_src: 2877 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2878 out_unlock: 2879 if (src != dst) 2880 inode_unlock(dst); 2881 out: 2882 inode_unlock(src); 2883 return ret; 2884 } 2885 2886 static int __f2fs_ioc_move_range(struct file *filp, 2887 struct f2fs_move_range *range) 2888 { 2889 struct fd dst; 2890 int err; 2891 2892 if (!(filp->f_mode & FMODE_READ) || 2893 !(filp->f_mode & FMODE_WRITE)) 2894 return -EBADF; 2895 2896 dst = fdget(range->dst_fd); 2897 if (!dst.file) 2898 return -EBADF; 2899 2900 if (!(dst.file->f_mode & FMODE_WRITE)) { 2901 err = -EBADF; 2902 goto err_out; 2903 } 2904 2905 err = mnt_want_write_file(filp); 2906 if (err) 2907 goto err_out; 2908 2909 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2910 range->pos_out, range->len); 2911 2912 mnt_drop_write_file(filp); 2913 err_out: 2914 fdput(dst); 2915 return err; 2916 } 2917 2918 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2919 { 2920 struct f2fs_move_range range; 2921 2922 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2923 sizeof(range))) 2924 return -EFAULT; 2925 return __f2fs_ioc_move_range(filp, &range); 2926 } 2927 2928 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2929 { 2930 struct inode *inode = file_inode(filp); 2931 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2932 struct sit_info *sm = SIT_I(sbi); 2933 unsigned int start_segno = 0, end_segno = 0; 2934 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2935 struct f2fs_flush_device range; 2936 int ret; 2937 2938 if (!capable(CAP_SYS_ADMIN)) 2939 return -EPERM; 2940 2941 if (f2fs_readonly(sbi->sb)) 2942 return -EROFS; 2943 2944 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2945 return -EINVAL; 2946 2947 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2948 sizeof(range))) 2949 return -EFAULT; 2950 2951 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2952 __is_large_section(sbi)) { 2953 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2954 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2955 return -EINVAL; 2956 } 2957 2958 ret = mnt_want_write_file(filp); 2959 if (ret) 2960 return ret; 2961 2962 if (range.dev_num != 0) 2963 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2964 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2965 2966 start_segno = sm->last_victim[FLUSH_DEVICE]; 2967 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2968 start_segno = dev_start_segno; 2969 end_segno = min(start_segno + range.segments, dev_end_segno); 2970 2971 while (start_segno < end_segno) { 2972 if (!down_write_trylock(&sbi->gc_lock)) { 2973 ret = -EBUSY; 2974 goto out; 2975 } 2976 sm->last_victim[GC_CB] = end_segno + 1; 2977 sm->last_victim[GC_GREEDY] = end_segno + 1; 2978 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2979 ret = f2fs_gc(sbi, true, true, start_segno); 2980 if (ret == -EAGAIN) 2981 ret = 0; 2982 else if (ret < 0) 2983 break; 2984 start_segno++; 2985 } 2986 out: 2987 mnt_drop_write_file(filp); 2988 return ret; 2989 } 2990 2991 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2992 { 2993 struct inode *inode = file_inode(filp); 2994 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2995 2996 /* Must validate to set it with SQLite behavior in Android. */ 2997 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2998 2999 return put_user(sb_feature, (u32 __user *)arg); 3000 } 3001 3002 #ifdef CONFIG_QUOTA 3003 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3004 { 3005 struct dquot *transfer_to[MAXQUOTAS] = {}; 3006 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3007 struct super_block *sb = sbi->sb; 3008 int err = 0; 3009 3010 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 3011 if (!IS_ERR(transfer_to[PRJQUOTA])) { 3012 err = __dquot_transfer(inode, transfer_to); 3013 if (err) 3014 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3015 dqput(transfer_to[PRJQUOTA]); 3016 } 3017 return err; 3018 } 3019 3020 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 3021 { 3022 struct inode *inode = file_inode(filp); 3023 struct f2fs_inode_info *fi = F2FS_I(inode); 3024 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3025 struct page *ipage; 3026 kprojid_t kprojid; 3027 int err; 3028 3029 if (!f2fs_sb_has_project_quota(sbi)) { 3030 if (projid != F2FS_DEF_PROJID) 3031 return -EOPNOTSUPP; 3032 else 3033 return 0; 3034 } 3035 3036 if (!f2fs_has_extra_attr(inode)) 3037 return -EOPNOTSUPP; 3038 3039 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3040 3041 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 3042 return 0; 3043 3044 err = -EPERM; 3045 /* Is it quota file? Do not allow user to mess with it */ 3046 if (IS_NOQUOTA(inode)) 3047 return err; 3048 3049 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3050 if (IS_ERR(ipage)) 3051 return PTR_ERR(ipage); 3052 3053 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 3054 i_projid)) { 3055 err = -EOVERFLOW; 3056 f2fs_put_page(ipage, 1); 3057 return err; 3058 } 3059 f2fs_put_page(ipage, 1); 3060 3061 err = dquot_initialize(inode); 3062 if (err) 3063 return err; 3064 3065 f2fs_lock_op(sbi); 3066 err = f2fs_transfer_project_quota(inode, kprojid); 3067 if (err) 3068 goto out_unlock; 3069 3070 F2FS_I(inode)->i_projid = kprojid; 3071 inode->i_ctime = current_time(inode); 3072 f2fs_mark_inode_dirty_sync(inode, true); 3073 out_unlock: 3074 f2fs_unlock_op(sbi); 3075 return err; 3076 } 3077 #else 3078 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3079 { 3080 return 0; 3081 } 3082 3083 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 3084 { 3085 if (projid != F2FS_DEF_PROJID) 3086 return -EOPNOTSUPP; 3087 return 0; 3088 } 3089 #endif 3090 3091 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */ 3092 3093 /* 3094 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable 3095 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its 3096 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS. 3097 */ 3098 3099 static const struct { 3100 u32 iflag; 3101 u32 xflag; 3102 } f2fs_xflags_map[] = { 3103 { F2FS_SYNC_FL, FS_XFLAG_SYNC }, 3104 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE }, 3105 { F2FS_APPEND_FL, FS_XFLAG_APPEND }, 3106 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP }, 3107 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME }, 3108 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT }, 3109 }; 3110 3111 #define F2FS_SUPPORTED_XFLAGS ( \ 3112 FS_XFLAG_SYNC | \ 3113 FS_XFLAG_IMMUTABLE | \ 3114 FS_XFLAG_APPEND | \ 3115 FS_XFLAG_NODUMP | \ 3116 FS_XFLAG_NOATIME | \ 3117 FS_XFLAG_PROJINHERIT) 3118 3119 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */ 3120 static inline u32 f2fs_iflags_to_xflags(u32 iflags) 3121 { 3122 u32 xflags = 0; 3123 int i; 3124 3125 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 3126 if (iflags & f2fs_xflags_map[i].iflag) 3127 xflags |= f2fs_xflags_map[i].xflag; 3128 3129 return xflags; 3130 } 3131 3132 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */ 3133 static inline u32 f2fs_xflags_to_iflags(u32 xflags) 3134 { 3135 u32 iflags = 0; 3136 int i; 3137 3138 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 3139 if (xflags & f2fs_xflags_map[i].xflag) 3140 iflags |= f2fs_xflags_map[i].iflag; 3141 3142 return iflags; 3143 } 3144 3145 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa) 3146 { 3147 struct f2fs_inode_info *fi = F2FS_I(inode); 3148 3149 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags)); 3150 3151 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3152 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3153 } 3154 3155 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg) 3156 { 3157 struct inode *inode = file_inode(filp); 3158 struct fsxattr fa; 3159 3160 f2fs_fill_fsxattr(inode, &fa); 3161 3162 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa))) 3163 return -EFAULT; 3164 return 0; 3165 } 3166 3167 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg) 3168 { 3169 struct inode *inode = file_inode(filp); 3170 struct fsxattr fa, old_fa; 3171 u32 iflags; 3172 int err; 3173 3174 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa))) 3175 return -EFAULT; 3176 3177 /* Make sure caller has proper permission */ 3178 if (!inode_owner_or_capable(inode)) 3179 return -EACCES; 3180 3181 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS) 3182 return -EOPNOTSUPP; 3183 3184 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags); 3185 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3186 return -EOPNOTSUPP; 3187 3188 err = mnt_want_write_file(filp); 3189 if (err) 3190 return err; 3191 3192 inode_lock(inode); 3193 3194 f2fs_fill_fsxattr(inode, &old_fa); 3195 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 3196 if (err) 3197 goto out; 3198 3199 err = f2fs_setflags_common(inode, iflags, 3200 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS)); 3201 if (err) 3202 goto out; 3203 3204 err = f2fs_ioc_setproject(filp, fa.fsx_projid); 3205 out: 3206 inode_unlock(inode); 3207 mnt_drop_write_file(filp); 3208 return err; 3209 } 3210 3211 int f2fs_pin_file_control(struct inode *inode, bool inc) 3212 { 3213 struct f2fs_inode_info *fi = F2FS_I(inode); 3214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3215 3216 /* Use i_gc_failures for normal file as a risk signal. */ 3217 if (inc) 3218 f2fs_i_gc_failures_write(inode, 3219 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3220 3221 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3222 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3223 __func__, inode->i_ino, 3224 fi->i_gc_failures[GC_FAILURE_PIN]); 3225 clear_inode_flag(inode, FI_PIN_FILE); 3226 return -EAGAIN; 3227 } 3228 return 0; 3229 } 3230 3231 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3232 { 3233 struct inode *inode = file_inode(filp); 3234 __u32 pin; 3235 int ret = 0; 3236 3237 if (get_user(pin, (__u32 __user *)arg)) 3238 return -EFAULT; 3239 3240 if (!S_ISREG(inode->i_mode)) 3241 return -EINVAL; 3242 3243 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3244 return -EROFS; 3245 3246 ret = mnt_want_write_file(filp); 3247 if (ret) 3248 return ret; 3249 3250 inode_lock(inode); 3251 3252 if (f2fs_should_update_outplace(inode, NULL)) { 3253 ret = -EINVAL; 3254 goto out; 3255 } 3256 3257 if (!pin) { 3258 clear_inode_flag(inode, FI_PIN_FILE); 3259 f2fs_i_gc_failures_write(inode, 0); 3260 goto done; 3261 } 3262 3263 if (f2fs_pin_file_control(inode, false)) { 3264 ret = -EAGAIN; 3265 goto out; 3266 } 3267 3268 ret = f2fs_convert_inline_inode(inode); 3269 if (ret) 3270 goto out; 3271 3272 if (!f2fs_disable_compressed_file(inode)) { 3273 ret = -EOPNOTSUPP; 3274 goto out; 3275 } 3276 3277 set_inode_flag(inode, FI_PIN_FILE); 3278 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3279 done: 3280 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3281 out: 3282 inode_unlock(inode); 3283 mnt_drop_write_file(filp); 3284 return ret; 3285 } 3286 3287 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3288 { 3289 struct inode *inode = file_inode(filp); 3290 __u32 pin = 0; 3291 3292 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3293 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3294 return put_user(pin, (u32 __user *)arg); 3295 } 3296 3297 int f2fs_precache_extents(struct inode *inode) 3298 { 3299 struct f2fs_inode_info *fi = F2FS_I(inode); 3300 struct f2fs_map_blocks map; 3301 pgoff_t m_next_extent; 3302 loff_t end; 3303 int err; 3304 3305 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3306 return -EOPNOTSUPP; 3307 3308 map.m_lblk = 0; 3309 map.m_next_pgofs = NULL; 3310 map.m_next_extent = &m_next_extent; 3311 map.m_seg_type = NO_CHECK_TYPE; 3312 map.m_may_create = false; 3313 end = max_file_blocks(inode); 3314 3315 while (map.m_lblk < end) { 3316 map.m_len = end - map.m_lblk; 3317 3318 down_write(&fi->i_gc_rwsem[WRITE]); 3319 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3320 up_write(&fi->i_gc_rwsem[WRITE]); 3321 if (err) 3322 return err; 3323 3324 map.m_lblk = m_next_extent; 3325 } 3326 3327 return err; 3328 } 3329 3330 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3331 { 3332 return f2fs_precache_extents(file_inode(filp)); 3333 } 3334 3335 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3336 { 3337 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3338 __u64 block_count; 3339 3340 if (!capable(CAP_SYS_ADMIN)) 3341 return -EPERM; 3342 3343 if (f2fs_readonly(sbi->sb)) 3344 return -EROFS; 3345 3346 if (copy_from_user(&block_count, (void __user *)arg, 3347 sizeof(block_count))) 3348 return -EFAULT; 3349 3350 return f2fs_resize_fs(sbi, block_count); 3351 } 3352 3353 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3354 { 3355 struct inode *inode = file_inode(filp); 3356 3357 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3358 3359 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3360 f2fs_warn(F2FS_I_SB(inode), 3361 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n", 3362 inode->i_ino); 3363 return -EOPNOTSUPP; 3364 } 3365 3366 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3367 } 3368 3369 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3370 { 3371 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3372 return -EOPNOTSUPP; 3373 3374 return fsverity_ioctl_measure(filp, (void __user *)arg); 3375 } 3376 3377 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3378 { 3379 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3380 return -EOPNOTSUPP; 3381 3382 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3383 } 3384 3385 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3386 { 3387 struct inode *inode = file_inode(filp); 3388 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3389 char *vbuf; 3390 int count; 3391 int err = 0; 3392 3393 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3394 if (!vbuf) 3395 return -ENOMEM; 3396 3397 down_read(&sbi->sb_lock); 3398 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3399 ARRAY_SIZE(sbi->raw_super->volume_name), 3400 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3401 up_read(&sbi->sb_lock); 3402 3403 if (copy_to_user((char __user *)arg, vbuf, 3404 min(FSLABEL_MAX, count))) 3405 err = -EFAULT; 3406 3407 kfree(vbuf); 3408 return err; 3409 } 3410 3411 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3412 { 3413 struct inode *inode = file_inode(filp); 3414 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3415 char *vbuf; 3416 int err = 0; 3417 3418 if (!capable(CAP_SYS_ADMIN)) 3419 return -EPERM; 3420 3421 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3422 if (IS_ERR(vbuf)) 3423 return PTR_ERR(vbuf); 3424 3425 err = mnt_want_write_file(filp); 3426 if (err) 3427 goto out; 3428 3429 down_write(&sbi->sb_lock); 3430 3431 memset(sbi->raw_super->volume_name, 0, 3432 sizeof(sbi->raw_super->volume_name)); 3433 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3434 sbi->raw_super->volume_name, 3435 ARRAY_SIZE(sbi->raw_super->volume_name)); 3436 3437 err = f2fs_commit_super(sbi, false); 3438 3439 up_write(&sbi->sb_lock); 3440 3441 mnt_drop_write_file(filp); 3442 out: 3443 kfree(vbuf); 3444 return err; 3445 } 3446 3447 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3448 { 3449 struct inode *inode = file_inode(filp); 3450 __u64 blocks; 3451 3452 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3453 return -EOPNOTSUPP; 3454 3455 if (!f2fs_compressed_file(inode)) 3456 return -EINVAL; 3457 3458 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3459 return put_user(blocks, (u64 __user *)arg); 3460 } 3461 3462 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3463 { 3464 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3465 unsigned int released_blocks = 0; 3466 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3467 block_t blkaddr; 3468 int i; 3469 3470 for (i = 0; i < count; i++) { 3471 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3472 dn->ofs_in_node + i); 3473 3474 if (!__is_valid_data_blkaddr(blkaddr)) 3475 continue; 3476 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3477 DATA_GENERIC_ENHANCE))) 3478 return -EFSCORRUPTED; 3479 } 3480 3481 while (count) { 3482 int compr_blocks = 0; 3483 3484 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3485 blkaddr = f2fs_data_blkaddr(dn); 3486 3487 if (i == 0) { 3488 if (blkaddr == COMPRESS_ADDR) 3489 continue; 3490 dn->ofs_in_node += cluster_size; 3491 goto next; 3492 } 3493 3494 if (__is_valid_data_blkaddr(blkaddr)) 3495 compr_blocks++; 3496 3497 if (blkaddr != NEW_ADDR) 3498 continue; 3499 3500 dn->data_blkaddr = NULL_ADDR; 3501 f2fs_set_data_blkaddr(dn); 3502 } 3503 3504 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3505 dec_valid_block_count(sbi, dn->inode, 3506 cluster_size - compr_blocks); 3507 3508 released_blocks += cluster_size - compr_blocks; 3509 next: 3510 count -= cluster_size; 3511 } 3512 3513 return released_blocks; 3514 } 3515 3516 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3517 { 3518 struct inode *inode = file_inode(filp); 3519 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3520 pgoff_t page_idx = 0, last_idx; 3521 unsigned int released_blocks = 0; 3522 int ret; 3523 int writecount; 3524 3525 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3526 return -EOPNOTSUPP; 3527 3528 if (!f2fs_compressed_file(inode)) 3529 return -EINVAL; 3530 3531 if (f2fs_readonly(sbi->sb)) 3532 return -EROFS; 3533 3534 ret = mnt_want_write_file(filp); 3535 if (ret) 3536 return ret; 3537 3538 f2fs_balance_fs(F2FS_I_SB(inode), true); 3539 3540 inode_lock(inode); 3541 3542 writecount = atomic_read(&inode->i_writecount); 3543 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3544 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3545 ret = -EBUSY; 3546 goto out; 3547 } 3548 3549 if (IS_IMMUTABLE(inode)) { 3550 ret = -EINVAL; 3551 goto out; 3552 } 3553 3554 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3555 if (ret) 3556 goto out; 3557 3558 F2FS_I(inode)->i_flags |= F2FS_IMMUTABLE_FL; 3559 f2fs_set_inode_flags(inode); 3560 inode->i_ctime = current_time(inode); 3561 f2fs_mark_inode_dirty_sync(inode, true); 3562 3563 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3564 goto out; 3565 3566 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3567 down_write(&F2FS_I(inode)->i_mmap_sem); 3568 3569 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3570 3571 while (page_idx < last_idx) { 3572 struct dnode_of_data dn; 3573 pgoff_t end_offset, count; 3574 3575 set_new_dnode(&dn, inode, NULL, NULL, 0); 3576 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3577 if (ret) { 3578 if (ret == -ENOENT) { 3579 page_idx = f2fs_get_next_page_offset(&dn, 3580 page_idx); 3581 ret = 0; 3582 continue; 3583 } 3584 break; 3585 } 3586 3587 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3588 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3589 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3590 3591 ret = release_compress_blocks(&dn, count); 3592 3593 f2fs_put_dnode(&dn); 3594 3595 if (ret < 0) 3596 break; 3597 3598 page_idx += count; 3599 released_blocks += ret; 3600 } 3601 3602 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3603 up_write(&F2FS_I(inode)->i_mmap_sem); 3604 out: 3605 inode_unlock(inode); 3606 3607 mnt_drop_write_file(filp); 3608 3609 if (ret >= 0) { 3610 ret = put_user(released_blocks, (u64 __user *)arg); 3611 } else if (released_blocks && 3612 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3613 set_sbi_flag(sbi, SBI_NEED_FSCK); 3614 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3615 "iblocks=%llu, released=%u, compr_blocks=%u, " 3616 "run fsck to fix.", 3617 __func__, inode->i_ino, inode->i_blocks, 3618 released_blocks, 3619 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3620 } 3621 3622 return ret; 3623 } 3624 3625 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3626 { 3627 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3628 unsigned int reserved_blocks = 0; 3629 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3630 block_t blkaddr; 3631 int i; 3632 3633 for (i = 0; i < count; i++) { 3634 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3635 dn->ofs_in_node + i); 3636 3637 if (!__is_valid_data_blkaddr(blkaddr)) 3638 continue; 3639 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3640 DATA_GENERIC_ENHANCE))) 3641 return -EFSCORRUPTED; 3642 } 3643 3644 while (count) { 3645 int compr_blocks = 0; 3646 blkcnt_t reserved; 3647 int ret; 3648 3649 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3650 blkaddr = f2fs_data_blkaddr(dn); 3651 3652 if (i == 0) { 3653 if (blkaddr == COMPRESS_ADDR) 3654 continue; 3655 dn->ofs_in_node += cluster_size; 3656 goto next; 3657 } 3658 3659 if (__is_valid_data_blkaddr(blkaddr)) { 3660 compr_blocks++; 3661 continue; 3662 } 3663 3664 dn->data_blkaddr = NEW_ADDR; 3665 f2fs_set_data_blkaddr(dn); 3666 } 3667 3668 reserved = cluster_size - compr_blocks; 3669 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3670 if (ret) 3671 return ret; 3672 3673 if (reserved != cluster_size - compr_blocks) 3674 return -ENOSPC; 3675 3676 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3677 3678 reserved_blocks += reserved; 3679 next: 3680 count -= cluster_size; 3681 } 3682 3683 return reserved_blocks; 3684 } 3685 3686 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3687 { 3688 struct inode *inode = file_inode(filp); 3689 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3690 pgoff_t page_idx = 0, last_idx; 3691 unsigned int reserved_blocks = 0; 3692 int ret; 3693 3694 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3695 return -EOPNOTSUPP; 3696 3697 if (!f2fs_compressed_file(inode)) 3698 return -EINVAL; 3699 3700 if (f2fs_readonly(sbi->sb)) 3701 return -EROFS; 3702 3703 ret = mnt_want_write_file(filp); 3704 if (ret) 3705 return ret; 3706 3707 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3708 goto out; 3709 3710 f2fs_balance_fs(F2FS_I_SB(inode), true); 3711 3712 inode_lock(inode); 3713 3714 if (!IS_IMMUTABLE(inode)) { 3715 ret = -EINVAL; 3716 goto unlock_inode; 3717 } 3718 3719 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3720 down_write(&F2FS_I(inode)->i_mmap_sem); 3721 3722 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3723 3724 while (page_idx < last_idx) { 3725 struct dnode_of_data dn; 3726 pgoff_t end_offset, count; 3727 3728 set_new_dnode(&dn, inode, NULL, NULL, 0); 3729 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3730 if (ret) { 3731 if (ret == -ENOENT) { 3732 page_idx = f2fs_get_next_page_offset(&dn, 3733 page_idx); 3734 ret = 0; 3735 continue; 3736 } 3737 break; 3738 } 3739 3740 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3741 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3742 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3743 3744 ret = reserve_compress_blocks(&dn, count); 3745 3746 f2fs_put_dnode(&dn); 3747 3748 if (ret < 0) 3749 break; 3750 3751 page_idx += count; 3752 reserved_blocks += ret; 3753 } 3754 3755 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3756 up_write(&F2FS_I(inode)->i_mmap_sem); 3757 3758 if (ret >= 0) { 3759 F2FS_I(inode)->i_flags &= ~F2FS_IMMUTABLE_FL; 3760 f2fs_set_inode_flags(inode); 3761 inode->i_ctime = current_time(inode); 3762 f2fs_mark_inode_dirty_sync(inode, true); 3763 } 3764 unlock_inode: 3765 inode_unlock(inode); 3766 out: 3767 mnt_drop_write_file(filp); 3768 3769 if (ret >= 0) { 3770 ret = put_user(reserved_blocks, (u64 __user *)arg); 3771 } else if (reserved_blocks && 3772 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3773 set_sbi_flag(sbi, SBI_NEED_FSCK); 3774 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3775 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3776 "run fsck to fix.", 3777 __func__, inode->i_ino, inode->i_blocks, 3778 reserved_blocks, 3779 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3780 } 3781 3782 return ret; 3783 } 3784 3785 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3786 pgoff_t off, block_t block, block_t len, u32 flags) 3787 { 3788 struct request_queue *q = bdev_get_queue(bdev); 3789 sector_t sector = SECTOR_FROM_BLOCK(block); 3790 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3791 int ret = 0; 3792 3793 if (!q) 3794 return -ENXIO; 3795 3796 if (flags & F2FS_TRIM_FILE_DISCARD) 3797 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS, 3798 blk_queue_secure_erase(q) ? 3799 BLKDEV_DISCARD_SECURE : 0); 3800 3801 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3802 if (IS_ENCRYPTED(inode)) 3803 ret = fscrypt_zeroout_range(inode, off, block, len); 3804 else 3805 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3806 GFP_NOFS, 0); 3807 } 3808 3809 return ret; 3810 } 3811 3812 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3813 { 3814 struct inode *inode = file_inode(filp); 3815 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3816 struct address_space *mapping = inode->i_mapping; 3817 struct block_device *prev_bdev = NULL; 3818 struct f2fs_sectrim_range range; 3819 pgoff_t index, pg_end, prev_index = 0; 3820 block_t prev_block = 0, len = 0; 3821 loff_t end_addr; 3822 bool to_end = false; 3823 int ret = 0; 3824 3825 if (!(filp->f_mode & FMODE_WRITE)) 3826 return -EBADF; 3827 3828 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3829 sizeof(range))) 3830 return -EFAULT; 3831 3832 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3833 !S_ISREG(inode->i_mode)) 3834 return -EINVAL; 3835 3836 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3837 !f2fs_hw_support_discard(sbi)) || 3838 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3839 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3840 return -EOPNOTSUPP; 3841 3842 file_start_write(filp); 3843 inode_lock(inode); 3844 3845 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3846 range.start >= inode->i_size) { 3847 ret = -EINVAL; 3848 goto err; 3849 } 3850 3851 if (range.len == 0) 3852 goto err; 3853 3854 if (inode->i_size - range.start > range.len) { 3855 end_addr = range.start + range.len; 3856 } else { 3857 end_addr = range.len == (u64)-1 ? 3858 sbi->sb->s_maxbytes : inode->i_size; 3859 to_end = true; 3860 } 3861 3862 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3863 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3864 ret = -EINVAL; 3865 goto err; 3866 } 3867 3868 index = F2FS_BYTES_TO_BLK(range.start); 3869 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3870 3871 ret = f2fs_convert_inline_inode(inode); 3872 if (ret) 3873 goto err; 3874 3875 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3876 down_write(&F2FS_I(inode)->i_mmap_sem); 3877 3878 ret = filemap_write_and_wait_range(mapping, range.start, 3879 to_end ? LLONG_MAX : end_addr - 1); 3880 if (ret) 3881 goto out; 3882 3883 truncate_inode_pages_range(mapping, range.start, 3884 to_end ? -1 : end_addr - 1); 3885 3886 while (index < pg_end) { 3887 struct dnode_of_data dn; 3888 pgoff_t end_offset, count; 3889 int i; 3890 3891 set_new_dnode(&dn, inode, NULL, NULL, 0); 3892 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3893 if (ret) { 3894 if (ret == -ENOENT) { 3895 index = f2fs_get_next_page_offset(&dn, index); 3896 continue; 3897 } 3898 goto out; 3899 } 3900 3901 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3902 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3903 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3904 struct block_device *cur_bdev; 3905 block_t blkaddr = f2fs_data_blkaddr(&dn); 3906 3907 if (!__is_valid_data_blkaddr(blkaddr)) 3908 continue; 3909 3910 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3911 DATA_GENERIC_ENHANCE)) { 3912 ret = -EFSCORRUPTED; 3913 f2fs_put_dnode(&dn); 3914 goto out; 3915 } 3916 3917 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3918 if (f2fs_is_multi_device(sbi)) { 3919 int di = f2fs_target_device_index(sbi, blkaddr); 3920 3921 blkaddr -= FDEV(di).start_blk; 3922 } 3923 3924 if (len) { 3925 if (prev_bdev == cur_bdev && 3926 index == prev_index + len && 3927 blkaddr == prev_block + len) { 3928 len++; 3929 } else { 3930 ret = f2fs_secure_erase(prev_bdev, 3931 inode, prev_index, prev_block, 3932 len, range.flags); 3933 if (ret) { 3934 f2fs_put_dnode(&dn); 3935 goto out; 3936 } 3937 3938 len = 0; 3939 } 3940 } 3941 3942 if (!len) { 3943 prev_bdev = cur_bdev; 3944 prev_index = index; 3945 prev_block = blkaddr; 3946 len = 1; 3947 } 3948 } 3949 3950 f2fs_put_dnode(&dn); 3951 3952 if (fatal_signal_pending(current)) { 3953 ret = -EINTR; 3954 goto out; 3955 } 3956 cond_resched(); 3957 } 3958 3959 if (len) 3960 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3961 prev_block, len, range.flags); 3962 out: 3963 up_write(&F2FS_I(inode)->i_mmap_sem); 3964 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3965 err: 3966 inode_unlock(inode); 3967 file_end_write(filp); 3968 3969 return ret; 3970 } 3971 3972 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3973 { 3974 struct inode *inode = file_inode(filp); 3975 struct f2fs_comp_option option; 3976 3977 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3978 return -EOPNOTSUPP; 3979 3980 inode_lock_shared(inode); 3981 3982 if (!f2fs_compressed_file(inode)) { 3983 inode_unlock_shared(inode); 3984 return -ENODATA; 3985 } 3986 3987 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3988 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3989 3990 inode_unlock_shared(inode); 3991 3992 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3993 sizeof(option))) 3994 return -EFAULT; 3995 3996 return 0; 3997 } 3998 3999 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 4000 { 4001 struct inode *inode = file_inode(filp); 4002 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4003 struct f2fs_comp_option option; 4004 int ret = 0; 4005 4006 if (!f2fs_sb_has_compression(sbi)) 4007 return -EOPNOTSUPP; 4008 4009 if (!(filp->f_mode & FMODE_WRITE)) 4010 return -EBADF; 4011 4012 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 4013 sizeof(option))) 4014 return -EFAULT; 4015 4016 if (!f2fs_compressed_file(inode) || 4017 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 4018 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 4019 option.algorithm >= COMPRESS_MAX) 4020 return -EINVAL; 4021 4022 file_start_write(filp); 4023 inode_lock(inode); 4024 4025 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 4026 ret = -EBUSY; 4027 goto out; 4028 } 4029 4030 if (inode->i_size != 0) { 4031 ret = -EFBIG; 4032 goto out; 4033 } 4034 4035 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 4036 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 4037 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size; 4038 f2fs_mark_inode_dirty_sync(inode, true); 4039 4040 if (!f2fs_is_compress_backend_ready(inode)) 4041 f2fs_warn(sbi, "compression algorithm is successfully set, " 4042 "but current kernel doesn't support this algorithm."); 4043 out: 4044 inode_unlock(inode); 4045 file_end_write(filp); 4046 4047 return ret; 4048 } 4049 4050 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 4051 { 4052 DEFINE_READAHEAD(ractl, NULL, inode->i_mapping, page_idx); 4053 struct address_space *mapping = inode->i_mapping; 4054 struct page *page; 4055 pgoff_t redirty_idx = page_idx; 4056 int i, page_len = 0, ret = 0; 4057 4058 page_cache_ra_unbounded(&ractl, len, 0); 4059 4060 for (i = 0; i < len; i++, page_idx++) { 4061 page = read_cache_page(mapping, page_idx, NULL, NULL); 4062 if (IS_ERR(page)) { 4063 ret = PTR_ERR(page); 4064 break; 4065 } 4066 page_len++; 4067 } 4068 4069 for (i = 0; i < page_len; i++, redirty_idx++) { 4070 page = find_lock_page(mapping, redirty_idx); 4071 if (!page) { 4072 ret = -ENOMEM; 4073 break; 4074 } 4075 set_page_dirty(page); 4076 f2fs_put_page(page, 1); 4077 f2fs_put_page(page, 0); 4078 } 4079 4080 return ret; 4081 } 4082 4083 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg) 4084 { 4085 struct inode *inode = file_inode(filp); 4086 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4087 struct f2fs_inode_info *fi = F2FS_I(inode); 4088 pgoff_t page_idx = 0, last_idx; 4089 unsigned int blk_per_seg = sbi->blocks_per_seg; 4090 int cluster_size = F2FS_I(inode)->i_cluster_size; 4091 int count, ret; 4092 4093 if (!f2fs_sb_has_compression(sbi) || 4094 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4095 return -EOPNOTSUPP; 4096 4097 if (!(filp->f_mode & FMODE_WRITE)) 4098 return -EBADF; 4099 4100 if (!f2fs_compressed_file(inode)) 4101 return -EINVAL; 4102 4103 f2fs_balance_fs(F2FS_I_SB(inode), true); 4104 4105 file_start_write(filp); 4106 inode_lock(inode); 4107 4108 if (!f2fs_is_compress_backend_ready(inode)) { 4109 ret = -EOPNOTSUPP; 4110 goto out; 4111 } 4112 4113 if (f2fs_is_mmap_file(inode)) { 4114 ret = -EBUSY; 4115 goto out; 4116 } 4117 4118 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4119 if (ret) 4120 goto out; 4121 4122 if (!atomic_read(&fi->i_compr_blocks)) 4123 goto out; 4124 4125 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4126 4127 count = last_idx - page_idx; 4128 while (count) { 4129 int len = min(cluster_size, count); 4130 4131 ret = redirty_blocks(inode, page_idx, len); 4132 if (ret < 0) 4133 break; 4134 4135 if (get_dirty_pages(inode) >= blk_per_seg) 4136 filemap_fdatawrite(inode->i_mapping); 4137 4138 count -= len; 4139 page_idx += len; 4140 } 4141 4142 if (!ret) 4143 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4144 LLONG_MAX); 4145 4146 if (ret) 4147 f2fs_warn(sbi, "%s: The file might be partially decompressed " 4148 "(errno=%d). Please delete the file.\n", 4149 __func__, ret); 4150 out: 4151 inode_unlock(inode); 4152 file_end_write(filp); 4153 4154 return ret; 4155 } 4156 4157 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg) 4158 { 4159 struct inode *inode = file_inode(filp); 4160 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4161 pgoff_t page_idx = 0, last_idx; 4162 unsigned int blk_per_seg = sbi->blocks_per_seg; 4163 int cluster_size = F2FS_I(inode)->i_cluster_size; 4164 int count, ret; 4165 4166 if (!f2fs_sb_has_compression(sbi) || 4167 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4168 return -EOPNOTSUPP; 4169 4170 if (!(filp->f_mode & FMODE_WRITE)) 4171 return -EBADF; 4172 4173 if (!f2fs_compressed_file(inode)) 4174 return -EINVAL; 4175 4176 f2fs_balance_fs(F2FS_I_SB(inode), true); 4177 4178 file_start_write(filp); 4179 inode_lock(inode); 4180 4181 if (!f2fs_is_compress_backend_ready(inode)) { 4182 ret = -EOPNOTSUPP; 4183 goto out; 4184 } 4185 4186 if (f2fs_is_mmap_file(inode)) { 4187 ret = -EBUSY; 4188 goto out; 4189 } 4190 4191 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4192 if (ret) 4193 goto out; 4194 4195 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4196 4197 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4198 4199 count = last_idx - page_idx; 4200 while (count) { 4201 int len = min(cluster_size, count); 4202 4203 ret = redirty_blocks(inode, page_idx, len); 4204 if (ret < 0) 4205 break; 4206 4207 if (get_dirty_pages(inode) >= blk_per_seg) 4208 filemap_fdatawrite(inode->i_mapping); 4209 4210 count -= len; 4211 page_idx += len; 4212 } 4213 4214 if (!ret) 4215 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4216 LLONG_MAX); 4217 4218 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4219 4220 if (ret) 4221 f2fs_warn(sbi, "%s: The file might be partially compressed " 4222 "(errno=%d). Please delete the file.\n", 4223 __func__, ret); 4224 out: 4225 inode_unlock(inode); 4226 file_end_write(filp); 4227 4228 return ret; 4229 } 4230 4231 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4232 { 4233 switch (cmd) { 4234 case FS_IOC_GETFLAGS: 4235 return f2fs_ioc_getflags(filp, arg); 4236 case FS_IOC_SETFLAGS: 4237 return f2fs_ioc_setflags(filp, arg); 4238 case FS_IOC_GETVERSION: 4239 return f2fs_ioc_getversion(filp, arg); 4240 case F2FS_IOC_START_ATOMIC_WRITE: 4241 return f2fs_ioc_start_atomic_write(filp); 4242 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4243 return f2fs_ioc_commit_atomic_write(filp); 4244 case F2FS_IOC_START_VOLATILE_WRITE: 4245 return f2fs_ioc_start_volatile_write(filp); 4246 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4247 return f2fs_ioc_release_volatile_write(filp); 4248 case F2FS_IOC_ABORT_VOLATILE_WRITE: 4249 return f2fs_ioc_abort_volatile_write(filp); 4250 case F2FS_IOC_SHUTDOWN: 4251 return f2fs_ioc_shutdown(filp, arg); 4252 case FITRIM: 4253 return f2fs_ioc_fitrim(filp, arg); 4254 case FS_IOC_SET_ENCRYPTION_POLICY: 4255 return f2fs_ioc_set_encryption_policy(filp, arg); 4256 case FS_IOC_GET_ENCRYPTION_POLICY: 4257 return f2fs_ioc_get_encryption_policy(filp, arg); 4258 case FS_IOC_GET_ENCRYPTION_PWSALT: 4259 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4260 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4261 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4262 case FS_IOC_ADD_ENCRYPTION_KEY: 4263 return f2fs_ioc_add_encryption_key(filp, arg); 4264 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4265 return f2fs_ioc_remove_encryption_key(filp, arg); 4266 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4267 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4268 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4269 return f2fs_ioc_get_encryption_key_status(filp, arg); 4270 case FS_IOC_GET_ENCRYPTION_NONCE: 4271 return f2fs_ioc_get_encryption_nonce(filp, arg); 4272 case F2FS_IOC_GARBAGE_COLLECT: 4273 return f2fs_ioc_gc(filp, arg); 4274 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4275 return f2fs_ioc_gc_range(filp, arg); 4276 case F2FS_IOC_WRITE_CHECKPOINT: 4277 return f2fs_ioc_write_checkpoint(filp, arg); 4278 case F2FS_IOC_DEFRAGMENT: 4279 return f2fs_ioc_defragment(filp, arg); 4280 case F2FS_IOC_MOVE_RANGE: 4281 return f2fs_ioc_move_range(filp, arg); 4282 case F2FS_IOC_FLUSH_DEVICE: 4283 return f2fs_ioc_flush_device(filp, arg); 4284 case F2FS_IOC_GET_FEATURES: 4285 return f2fs_ioc_get_features(filp, arg); 4286 case FS_IOC_FSGETXATTR: 4287 return f2fs_ioc_fsgetxattr(filp, arg); 4288 case FS_IOC_FSSETXATTR: 4289 return f2fs_ioc_fssetxattr(filp, arg); 4290 case F2FS_IOC_GET_PIN_FILE: 4291 return f2fs_ioc_get_pin_file(filp, arg); 4292 case F2FS_IOC_SET_PIN_FILE: 4293 return f2fs_ioc_set_pin_file(filp, arg); 4294 case F2FS_IOC_PRECACHE_EXTENTS: 4295 return f2fs_ioc_precache_extents(filp, arg); 4296 case F2FS_IOC_RESIZE_FS: 4297 return f2fs_ioc_resize_fs(filp, arg); 4298 case FS_IOC_ENABLE_VERITY: 4299 return f2fs_ioc_enable_verity(filp, arg); 4300 case FS_IOC_MEASURE_VERITY: 4301 return f2fs_ioc_measure_verity(filp, arg); 4302 case FS_IOC_READ_VERITY_METADATA: 4303 return f2fs_ioc_read_verity_metadata(filp, arg); 4304 case FS_IOC_GETFSLABEL: 4305 return f2fs_ioc_getfslabel(filp, arg); 4306 case FS_IOC_SETFSLABEL: 4307 return f2fs_ioc_setfslabel(filp, arg); 4308 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4309 return f2fs_get_compress_blocks(filp, arg); 4310 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4311 return f2fs_release_compress_blocks(filp, arg); 4312 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4313 return f2fs_reserve_compress_blocks(filp, arg); 4314 case F2FS_IOC_SEC_TRIM_FILE: 4315 return f2fs_sec_trim_file(filp, arg); 4316 case F2FS_IOC_GET_COMPRESS_OPTION: 4317 return f2fs_ioc_get_compress_option(filp, arg); 4318 case F2FS_IOC_SET_COMPRESS_OPTION: 4319 return f2fs_ioc_set_compress_option(filp, arg); 4320 case F2FS_IOC_DECOMPRESS_FILE: 4321 return f2fs_ioc_decompress_file(filp, arg); 4322 case F2FS_IOC_COMPRESS_FILE: 4323 return f2fs_ioc_compress_file(filp, arg); 4324 default: 4325 return -ENOTTY; 4326 } 4327 } 4328 4329 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4330 { 4331 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4332 return -EIO; 4333 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4334 return -ENOSPC; 4335 4336 return __f2fs_ioctl(filp, cmd, arg); 4337 } 4338 4339 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 4340 { 4341 struct file *file = iocb->ki_filp; 4342 struct inode *inode = file_inode(file); 4343 int ret; 4344 4345 if (!f2fs_is_compress_backend_ready(inode)) 4346 return -EOPNOTSUPP; 4347 4348 ret = generic_file_read_iter(iocb, iter); 4349 4350 if (ret > 0) 4351 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret); 4352 4353 return ret; 4354 } 4355 4356 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4357 { 4358 struct file *file = iocb->ki_filp; 4359 struct inode *inode = file_inode(file); 4360 ssize_t ret; 4361 4362 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4363 ret = -EIO; 4364 goto out; 4365 } 4366 4367 if (!f2fs_is_compress_backend_ready(inode)) { 4368 ret = -EOPNOTSUPP; 4369 goto out; 4370 } 4371 4372 if (iocb->ki_flags & IOCB_NOWAIT) { 4373 if (!inode_trylock(inode)) { 4374 ret = -EAGAIN; 4375 goto out; 4376 } 4377 } else { 4378 inode_lock(inode); 4379 } 4380 4381 if (unlikely(IS_IMMUTABLE(inode))) { 4382 ret = -EPERM; 4383 goto unlock; 4384 } 4385 4386 ret = generic_write_checks(iocb, from); 4387 if (ret > 0) { 4388 bool preallocated = false; 4389 size_t target_size = 0; 4390 int err; 4391 4392 if (iov_iter_fault_in_readable(from, iov_iter_count(from))) 4393 set_inode_flag(inode, FI_NO_PREALLOC); 4394 4395 if ((iocb->ki_flags & IOCB_NOWAIT)) { 4396 if (!f2fs_overwrite_io(inode, iocb->ki_pos, 4397 iov_iter_count(from)) || 4398 f2fs_has_inline_data(inode) || 4399 f2fs_force_buffered_io(inode, iocb, from)) { 4400 clear_inode_flag(inode, FI_NO_PREALLOC); 4401 inode_unlock(inode); 4402 ret = -EAGAIN; 4403 goto out; 4404 } 4405 goto write; 4406 } 4407 4408 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 4409 goto write; 4410 4411 if (iocb->ki_flags & IOCB_DIRECT) { 4412 /* 4413 * Convert inline data for Direct I/O before entering 4414 * f2fs_direct_IO(). 4415 */ 4416 err = f2fs_convert_inline_inode(inode); 4417 if (err) 4418 goto out_err; 4419 /* 4420 * If force_buffere_io() is true, we have to allocate 4421 * blocks all the time, since f2fs_direct_IO will fall 4422 * back to buffered IO. 4423 */ 4424 if (!f2fs_force_buffered_io(inode, iocb, from) && 4425 allow_outplace_dio(inode, iocb, from)) 4426 goto write; 4427 } 4428 preallocated = true; 4429 target_size = iocb->ki_pos + iov_iter_count(from); 4430 4431 err = f2fs_preallocate_blocks(iocb, from); 4432 if (err) { 4433 out_err: 4434 clear_inode_flag(inode, FI_NO_PREALLOC); 4435 inode_unlock(inode); 4436 ret = err; 4437 goto out; 4438 } 4439 write: 4440 ret = __generic_file_write_iter(iocb, from); 4441 clear_inode_flag(inode, FI_NO_PREALLOC); 4442 4443 /* if we couldn't write data, we should deallocate blocks. */ 4444 if (preallocated && i_size_read(inode) < target_size) 4445 f2fs_truncate(inode); 4446 4447 if (ret > 0) 4448 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); 4449 } 4450 unlock: 4451 inode_unlock(inode); 4452 out: 4453 trace_f2fs_file_write_iter(inode, iocb->ki_pos, 4454 iov_iter_count(from), ret); 4455 if (ret > 0) 4456 ret = generic_write_sync(iocb, ret); 4457 return ret; 4458 } 4459 4460 #ifdef CONFIG_COMPAT 4461 struct compat_f2fs_gc_range { 4462 u32 sync; 4463 compat_u64 start; 4464 compat_u64 len; 4465 }; 4466 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4467 struct compat_f2fs_gc_range) 4468 4469 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4470 { 4471 struct compat_f2fs_gc_range __user *urange; 4472 struct f2fs_gc_range range; 4473 int err; 4474 4475 urange = compat_ptr(arg); 4476 err = get_user(range.sync, &urange->sync); 4477 err |= get_user(range.start, &urange->start); 4478 err |= get_user(range.len, &urange->len); 4479 if (err) 4480 return -EFAULT; 4481 4482 return __f2fs_ioc_gc_range(file, &range); 4483 } 4484 4485 struct compat_f2fs_move_range { 4486 u32 dst_fd; 4487 compat_u64 pos_in; 4488 compat_u64 pos_out; 4489 compat_u64 len; 4490 }; 4491 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4492 struct compat_f2fs_move_range) 4493 4494 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4495 { 4496 struct compat_f2fs_move_range __user *urange; 4497 struct f2fs_move_range range; 4498 int err; 4499 4500 urange = compat_ptr(arg); 4501 err = get_user(range.dst_fd, &urange->dst_fd); 4502 err |= get_user(range.pos_in, &urange->pos_in); 4503 err |= get_user(range.pos_out, &urange->pos_out); 4504 err |= get_user(range.len, &urange->len); 4505 if (err) 4506 return -EFAULT; 4507 4508 return __f2fs_ioc_move_range(file, &range); 4509 } 4510 4511 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4512 { 4513 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4514 return -EIO; 4515 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4516 return -ENOSPC; 4517 4518 switch (cmd) { 4519 case FS_IOC32_GETFLAGS: 4520 cmd = FS_IOC_GETFLAGS; 4521 break; 4522 case FS_IOC32_SETFLAGS: 4523 cmd = FS_IOC_SETFLAGS; 4524 break; 4525 case FS_IOC32_GETVERSION: 4526 cmd = FS_IOC_GETVERSION; 4527 break; 4528 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4529 return f2fs_compat_ioc_gc_range(file, arg); 4530 case F2FS_IOC32_MOVE_RANGE: 4531 return f2fs_compat_ioc_move_range(file, arg); 4532 case F2FS_IOC_START_ATOMIC_WRITE: 4533 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4534 case F2FS_IOC_START_VOLATILE_WRITE: 4535 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4536 case F2FS_IOC_ABORT_VOLATILE_WRITE: 4537 case F2FS_IOC_SHUTDOWN: 4538 case FITRIM: 4539 case FS_IOC_SET_ENCRYPTION_POLICY: 4540 case FS_IOC_GET_ENCRYPTION_PWSALT: 4541 case FS_IOC_GET_ENCRYPTION_POLICY: 4542 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4543 case FS_IOC_ADD_ENCRYPTION_KEY: 4544 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4545 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4546 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4547 case FS_IOC_GET_ENCRYPTION_NONCE: 4548 case F2FS_IOC_GARBAGE_COLLECT: 4549 case F2FS_IOC_WRITE_CHECKPOINT: 4550 case F2FS_IOC_DEFRAGMENT: 4551 case F2FS_IOC_FLUSH_DEVICE: 4552 case F2FS_IOC_GET_FEATURES: 4553 case FS_IOC_FSGETXATTR: 4554 case FS_IOC_FSSETXATTR: 4555 case F2FS_IOC_GET_PIN_FILE: 4556 case F2FS_IOC_SET_PIN_FILE: 4557 case F2FS_IOC_PRECACHE_EXTENTS: 4558 case F2FS_IOC_RESIZE_FS: 4559 case FS_IOC_ENABLE_VERITY: 4560 case FS_IOC_MEASURE_VERITY: 4561 case FS_IOC_READ_VERITY_METADATA: 4562 case FS_IOC_GETFSLABEL: 4563 case FS_IOC_SETFSLABEL: 4564 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4565 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4566 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4567 case F2FS_IOC_SEC_TRIM_FILE: 4568 case F2FS_IOC_GET_COMPRESS_OPTION: 4569 case F2FS_IOC_SET_COMPRESS_OPTION: 4570 case F2FS_IOC_DECOMPRESS_FILE: 4571 case F2FS_IOC_COMPRESS_FILE: 4572 break; 4573 default: 4574 return -ENOIOCTLCMD; 4575 } 4576 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4577 } 4578 #endif 4579 4580 const struct file_operations f2fs_file_operations = { 4581 .llseek = f2fs_llseek, 4582 .read_iter = f2fs_file_read_iter, 4583 .write_iter = f2fs_file_write_iter, 4584 .open = f2fs_file_open, 4585 .release = f2fs_release_file, 4586 .mmap = f2fs_file_mmap, 4587 .flush = f2fs_file_flush, 4588 .fsync = f2fs_sync_file, 4589 .fallocate = f2fs_fallocate, 4590 .unlocked_ioctl = f2fs_ioctl, 4591 #ifdef CONFIG_COMPAT 4592 .compat_ioctl = f2fs_compat_ioctl, 4593 #endif 4594 .splice_read = generic_file_splice_read, 4595 .splice_write = iter_file_splice_write, 4596 }; 4597