xref: /openbmc/linux/fs/f2fs/file.c (revision 5f2fb52fac15a8a8e10ce020dd532504a8abfc4e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33 
34 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
35 {
36 	struct inode *inode = file_inode(vmf->vma->vm_file);
37 	vm_fault_t ret;
38 
39 	down_read(&F2FS_I(inode)->i_mmap_sem);
40 	ret = filemap_fault(vmf);
41 	up_read(&F2FS_I(inode)->i_mmap_sem);
42 
43 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
44 
45 	return ret;
46 }
47 
48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 	struct page *page = vmf->page;
51 	struct inode *inode = file_inode(vmf->vma->vm_file);
52 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 	struct dnode_of_data dn;
54 	bool need_alloc = true;
55 	int err = 0;
56 
57 	if (unlikely(f2fs_cp_error(sbi))) {
58 		err = -EIO;
59 		goto err;
60 	}
61 
62 	if (!f2fs_is_checkpoint_ready(sbi)) {
63 		err = -ENOSPC;
64 		goto err;
65 	}
66 
67 #ifdef CONFIG_F2FS_FS_COMPRESSION
68 	if (f2fs_compressed_file(inode)) {
69 		int ret = f2fs_is_compressed_cluster(inode, page->index);
70 
71 		if (ret < 0) {
72 			err = ret;
73 			goto err;
74 		} else if (ret) {
75 			if (ret < F2FS_I(inode)->i_cluster_size) {
76 				err = -EAGAIN;
77 				goto err;
78 			}
79 			need_alloc = false;
80 		}
81 	}
82 #endif
83 	/* should do out of any locked page */
84 	if (need_alloc)
85 		f2fs_balance_fs(sbi, true);
86 
87 	sb_start_pagefault(inode->i_sb);
88 
89 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
90 
91 	file_update_time(vmf->vma->vm_file);
92 	down_read(&F2FS_I(inode)->i_mmap_sem);
93 	lock_page(page);
94 	if (unlikely(page->mapping != inode->i_mapping ||
95 			page_offset(page) > i_size_read(inode) ||
96 			!PageUptodate(page))) {
97 		unlock_page(page);
98 		err = -EFAULT;
99 		goto out_sem;
100 	}
101 
102 	if (need_alloc) {
103 		/* block allocation */
104 		__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
105 		set_new_dnode(&dn, inode, NULL, NULL, 0);
106 		err = f2fs_get_block(&dn, page->index);
107 		f2fs_put_dnode(&dn);
108 		__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
109 		if (err) {
110 			unlock_page(page);
111 			goto out_sem;
112 		}
113 	}
114 
115 	/* fill the page */
116 	f2fs_wait_on_page_writeback(page, DATA, false, true);
117 
118 	/* wait for GCed page writeback via META_MAPPING */
119 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
120 
121 	/*
122 	 * check to see if the page is mapped already (no holes)
123 	 */
124 	if (PageMappedToDisk(page))
125 		goto out_sem;
126 
127 	/* page is wholly or partially inside EOF */
128 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
129 						i_size_read(inode)) {
130 		loff_t offset;
131 
132 		offset = i_size_read(inode) & ~PAGE_MASK;
133 		zero_user_segment(page, offset, PAGE_SIZE);
134 	}
135 	set_page_dirty(page);
136 	if (!PageUptodate(page))
137 		SetPageUptodate(page);
138 
139 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
140 	f2fs_update_time(sbi, REQ_TIME);
141 
142 	trace_f2fs_vm_page_mkwrite(page, DATA);
143 out_sem:
144 	up_read(&F2FS_I(inode)->i_mmap_sem);
145 
146 	sb_end_pagefault(inode->i_sb);
147 err:
148 	return block_page_mkwrite_return(err);
149 }
150 
151 static const struct vm_operations_struct f2fs_file_vm_ops = {
152 	.fault		= f2fs_filemap_fault,
153 	.map_pages	= filemap_map_pages,
154 	.page_mkwrite	= f2fs_vm_page_mkwrite,
155 };
156 
157 static int get_parent_ino(struct inode *inode, nid_t *pino)
158 {
159 	struct dentry *dentry;
160 
161 	inode = igrab(inode);
162 	dentry = d_find_any_alias(inode);
163 	iput(inode);
164 	if (!dentry)
165 		return 0;
166 
167 	*pino = parent_ino(dentry);
168 	dput(dentry);
169 	return 1;
170 }
171 
172 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
173 {
174 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
175 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
176 
177 	if (!S_ISREG(inode->i_mode))
178 		cp_reason = CP_NON_REGULAR;
179 	else if (f2fs_compressed_file(inode))
180 		cp_reason = CP_COMPRESSED;
181 	else if (inode->i_nlink != 1)
182 		cp_reason = CP_HARDLINK;
183 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
184 		cp_reason = CP_SB_NEED_CP;
185 	else if (file_wrong_pino(inode))
186 		cp_reason = CP_WRONG_PINO;
187 	else if (!f2fs_space_for_roll_forward(sbi))
188 		cp_reason = CP_NO_SPC_ROLL;
189 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
190 		cp_reason = CP_NODE_NEED_CP;
191 	else if (test_opt(sbi, FASTBOOT))
192 		cp_reason = CP_FASTBOOT_MODE;
193 	else if (F2FS_OPTION(sbi).active_logs == 2)
194 		cp_reason = CP_SPEC_LOG_NUM;
195 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
196 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
197 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
198 							TRANS_DIR_INO))
199 		cp_reason = CP_RECOVER_DIR;
200 
201 	return cp_reason;
202 }
203 
204 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
205 {
206 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
207 	bool ret = false;
208 	/* But we need to avoid that there are some inode updates */
209 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
210 		ret = true;
211 	f2fs_put_page(i, 0);
212 	return ret;
213 }
214 
215 static void try_to_fix_pino(struct inode *inode)
216 {
217 	struct f2fs_inode_info *fi = F2FS_I(inode);
218 	nid_t pino;
219 
220 	down_write(&fi->i_sem);
221 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
222 			get_parent_ino(inode, &pino)) {
223 		f2fs_i_pino_write(inode, pino);
224 		file_got_pino(inode);
225 	}
226 	up_write(&fi->i_sem);
227 }
228 
229 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
230 						int datasync, bool atomic)
231 {
232 	struct inode *inode = file->f_mapping->host;
233 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
234 	nid_t ino = inode->i_ino;
235 	int ret = 0;
236 	enum cp_reason_type cp_reason = 0;
237 	struct writeback_control wbc = {
238 		.sync_mode = WB_SYNC_ALL,
239 		.nr_to_write = LONG_MAX,
240 		.for_reclaim = 0,
241 	};
242 	unsigned int seq_id = 0;
243 
244 	if (unlikely(f2fs_readonly(inode->i_sb) ||
245 				is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
246 		return 0;
247 
248 	trace_f2fs_sync_file_enter(inode);
249 
250 	if (S_ISDIR(inode->i_mode))
251 		goto go_write;
252 
253 	/* if fdatasync is triggered, let's do in-place-update */
254 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
255 		set_inode_flag(inode, FI_NEED_IPU);
256 	ret = file_write_and_wait_range(file, start, end);
257 	clear_inode_flag(inode, FI_NEED_IPU);
258 
259 	if (ret) {
260 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
261 		return ret;
262 	}
263 
264 	/* if the inode is dirty, let's recover all the time */
265 	if (!f2fs_skip_inode_update(inode, datasync)) {
266 		f2fs_write_inode(inode, NULL);
267 		goto go_write;
268 	}
269 
270 	/*
271 	 * if there is no written data, don't waste time to write recovery info.
272 	 */
273 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
274 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
275 
276 		/* it may call write_inode just prior to fsync */
277 		if (need_inode_page_update(sbi, ino))
278 			goto go_write;
279 
280 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
281 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
282 			goto flush_out;
283 		goto out;
284 	}
285 go_write:
286 	/*
287 	 * Both of fdatasync() and fsync() are able to be recovered from
288 	 * sudden-power-off.
289 	 */
290 	down_read(&F2FS_I(inode)->i_sem);
291 	cp_reason = need_do_checkpoint(inode);
292 	up_read(&F2FS_I(inode)->i_sem);
293 
294 	if (cp_reason) {
295 		/* all the dirty node pages should be flushed for POR */
296 		ret = f2fs_sync_fs(inode->i_sb, 1);
297 
298 		/*
299 		 * We've secured consistency through sync_fs. Following pino
300 		 * will be used only for fsynced inodes after checkpoint.
301 		 */
302 		try_to_fix_pino(inode);
303 		clear_inode_flag(inode, FI_APPEND_WRITE);
304 		clear_inode_flag(inode, FI_UPDATE_WRITE);
305 		goto out;
306 	}
307 sync_nodes:
308 	atomic_inc(&sbi->wb_sync_req[NODE]);
309 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
310 	atomic_dec(&sbi->wb_sync_req[NODE]);
311 	if (ret)
312 		goto out;
313 
314 	/* if cp_error was enabled, we should avoid infinite loop */
315 	if (unlikely(f2fs_cp_error(sbi))) {
316 		ret = -EIO;
317 		goto out;
318 	}
319 
320 	if (f2fs_need_inode_block_update(sbi, ino)) {
321 		f2fs_mark_inode_dirty_sync(inode, true);
322 		f2fs_write_inode(inode, NULL);
323 		goto sync_nodes;
324 	}
325 
326 	/*
327 	 * If it's atomic_write, it's just fine to keep write ordering. So
328 	 * here we don't need to wait for node write completion, since we use
329 	 * node chain which serializes node blocks. If one of node writes are
330 	 * reordered, we can see simply broken chain, resulting in stopping
331 	 * roll-forward recovery. It means we'll recover all or none node blocks
332 	 * given fsync mark.
333 	 */
334 	if (!atomic) {
335 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
336 		if (ret)
337 			goto out;
338 	}
339 
340 	/* once recovery info is written, don't need to tack this */
341 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
342 	clear_inode_flag(inode, FI_APPEND_WRITE);
343 flush_out:
344 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
345 		ret = f2fs_issue_flush(sbi, inode->i_ino);
346 	if (!ret) {
347 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
348 		clear_inode_flag(inode, FI_UPDATE_WRITE);
349 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
350 	}
351 	f2fs_update_time(sbi, REQ_TIME);
352 out:
353 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
354 	f2fs_trace_ios(NULL, 1);
355 	return ret;
356 }
357 
358 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
359 {
360 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
361 		return -EIO;
362 	return f2fs_do_sync_file(file, start, end, datasync, false);
363 }
364 
365 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
366 						pgoff_t pgofs, int whence)
367 {
368 	struct page *page;
369 	int nr_pages;
370 
371 	if (whence != SEEK_DATA)
372 		return 0;
373 
374 	/* find first dirty page index */
375 	nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
376 				      1, &page);
377 	if (!nr_pages)
378 		return ULONG_MAX;
379 	pgofs = page->index;
380 	put_page(page);
381 	return pgofs;
382 }
383 
384 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
385 				pgoff_t dirty, pgoff_t pgofs, int whence)
386 {
387 	switch (whence) {
388 	case SEEK_DATA:
389 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
390 			__is_valid_data_blkaddr(blkaddr))
391 			return true;
392 		break;
393 	case SEEK_HOLE:
394 		if (blkaddr == NULL_ADDR)
395 			return true;
396 		break;
397 	}
398 	return false;
399 }
400 
401 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
402 {
403 	struct inode *inode = file->f_mapping->host;
404 	loff_t maxbytes = inode->i_sb->s_maxbytes;
405 	struct dnode_of_data dn;
406 	pgoff_t pgofs, end_offset, dirty;
407 	loff_t data_ofs = offset;
408 	loff_t isize;
409 	int err = 0;
410 
411 	inode_lock(inode);
412 
413 	isize = i_size_read(inode);
414 	if (offset >= isize)
415 		goto fail;
416 
417 	/* handle inline data case */
418 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
419 		if (whence == SEEK_HOLE)
420 			data_ofs = isize;
421 		goto found;
422 	}
423 
424 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
425 
426 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
427 
428 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
429 		set_new_dnode(&dn, inode, NULL, NULL, 0);
430 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
431 		if (err && err != -ENOENT) {
432 			goto fail;
433 		} else if (err == -ENOENT) {
434 			/* direct node does not exists */
435 			if (whence == SEEK_DATA) {
436 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
437 				continue;
438 			} else {
439 				goto found;
440 			}
441 		}
442 
443 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
444 
445 		/* find data/hole in dnode block */
446 		for (; dn.ofs_in_node < end_offset;
447 				dn.ofs_in_node++, pgofs++,
448 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
449 			block_t blkaddr;
450 
451 			blkaddr = datablock_addr(dn.inode,
452 					dn.node_page, dn.ofs_in_node);
453 
454 			if (__is_valid_data_blkaddr(blkaddr) &&
455 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
456 					blkaddr, DATA_GENERIC_ENHANCE)) {
457 				f2fs_put_dnode(&dn);
458 				goto fail;
459 			}
460 
461 			if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
462 							pgofs, whence)) {
463 				f2fs_put_dnode(&dn);
464 				goto found;
465 			}
466 		}
467 		f2fs_put_dnode(&dn);
468 	}
469 
470 	if (whence == SEEK_DATA)
471 		goto fail;
472 found:
473 	if (whence == SEEK_HOLE && data_ofs > isize)
474 		data_ofs = isize;
475 	inode_unlock(inode);
476 	return vfs_setpos(file, data_ofs, maxbytes);
477 fail:
478 	inode_unlock(inode);
479 	return -ENXIO;
480 }
481 
482 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
483 {
484 	struct inode *inode = file->f_mapping->host;
485 	loff_t maxbytes = inode->i_sb->s_maxbytes;
486 
487 	switch (whence) {
488 	case SEEK_SET:
489 	case SEEK_CUR:
490 	case SEEK_END:
491 		return generic_file_llseek_size(file, offset, whence,
492 						maxbytes, i_size_read(inode));
493 	case SEEK_DATA:
494 	case SEEK_HOLE:
495 		if (offset < 0)
496 			return -ENXIO;
497 		return f2fs_seek_block(file, offset, whence);
498 	}
499 
500 	return -EINVAL;
501 }
502 
503 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
504 {
505 	struct inode *inode = file_inode(file);
506 	int err;
507 
508 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
509 		return -EIO;
510 
511 	if (!f2fs_is_compress_backend_ready(inode))
512 		return -EOPNOTSUPP;
513 
514 	/* we don't need to use inline_data strictly */
515 	err = f2fs_convert_inline_inode(inode);
516 	if (err)
517 		return err;
518 
519 	file_accessed(file);
520 	vma->vm_ops = &f2fs_file_vm_ops;
521 	set_inode_flag(inode, FI_MMAP_FILE);
522 	return 0;
523 }
524 
525 static int f2fs_file_open(struct inode *inode, struct file *filp)
526 {
527 	int err = fscrypt_file_open(inode, filp);
528 
529 	if (err)
530 		return err;
531 
532 	if (!f2fs_is_compress_backend_ready(inode))
533 		return -EOPNOTSUPP;
534 
535 	err = fsverity_file_open(inode, filp);
536 	if (err)
537 		return err;
538 
539 	filp->f_mode |= FMODE_NOWAIT;
540 
541 	return dquot_file_open(inode, filp);
542 }
543 
544 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
545 {
546 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
547 	struct f2fs_node *raw_node;
548 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
549 	__le32 *addr;
550 	int base = 0;
551 	bool compressed_cluster = false;
552 	int cluster_index = 0, valid_blocks = 0;
553 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
554 
555 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
556 		base = get_extra_isize(dn->inode);
557 
558 	raw_node = F2FS_NODE(dn->node_page);
559 	addr = blkaddr_in_node(raw_node) + base + ofs;
560 
561 	/* Assumption: truncateion starts with cluster */
562 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
563 		block_t blkaddr = le32_to_cpu(*addr);
564 
565 		if (f2fs_compressed_file(dn->inode) &&
566 					!(cluster_index & (cluster_size - 1))) {
567 			if (compressed_cluster)
568 				f2fs_i_compr_blocks_update(dn->inode,
569 							valid_blocks, false);
570 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
571 			valid_blocks = 0;
572 		}
573 
574 		if (blkaddr == NULL_ADDR)
575 			continue;
576 
577 		dn->data_blkaddr = NULL_ADDR;
578 		f2fs_set_data_blkaddr(dn);
579 
580 		if (__is_valid_data_blkaddr(blkaddr)) {
581 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
582 					DATA_GENERIC_ENHANCE))
583 				continue;
584 			if (compressed_cluster)
585 				valid_blocks++;
586 		}
587 
588 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
589 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
590 
591 		f2fs_invalidate_blocks(sbi, blkaddr);
592 		nr_free++;
593 	}
594 
595 	if (compressed_cluster)
596 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
597 
598 	if (nr_free) {
599 		pgoff_t fofs;
600 		/*
601 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
602 		 * we will invalidate all blkaddr in the whole range.
603 		 */
604 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
605 							dn->inode) + ofs;
606 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
607 		dec_valid_block_count(sbi, dn->inode, nr_free);
608 	}
609 	dn->ofs_in_node = ofs;
610 
611 	f2fs_update_time(sbi, REQ_TIME);
612 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
613 					 dn->ofs_in_node, nr_free);
614 }
615 
616 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
617 {
618 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
619 }
620 
621 static int truncate_partial_data_page(struct inode *inode, u64 from,
622 								bool cache_only)
623 {
624 	loff_t offset = from & (PAGE_SIZE - 1);
625 	pgoff_t index = from >> PAGE_SHIFT;
626 	struct address_space *mapping = inode->i_mapping;
627 	struct page *page;
628 
629 	if (!offset && !cache_only)
630 		return 0;
631 
632 	if (cache_only) {
633 		page = find_lock_page(mapping, index);
634 		if (page && PageUptodate(page))
635 			goto truncate_out;
636 		f2fs_put_page(page, 1);
637 		return 0;
638 	}
639 
640 	if (f2fs_compressed_file(inode))
641 		return 0;
642 
643 	page = f2fs_get_lock_data_page(inode, index, true);
644 	if (IS_ERR(page))
645 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
646 truncate_out:
647 	f2fs_wait_on_page_writeback(page, DATA, true, true);
648 	zero_user(page, offset, PAGE_SIZE - offset);
649 
650 	/* An encrypted inode should have a key and truncate the last page. */
651 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
652 	if (!cache_only)
653 		set_page_dirty(page);
654 	f2fs_put_page(page, 1);
655 	return 0;
656 }
657 
658 static int do_truncate_blocks(struct inode *inode, u64 from, bool lock)
659 {
660 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
661 	struct dnode_of_data dn;
662 	pgoff_t free_from;
663 	int count = 0, err = 0;
664 	struct page *ipage;
665 	bool truncate_page = false;
666 
667 	trace_f2fs_truncate_blocks_enter(inode, from);
668 
669 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
670 
671 	if (free_from >= sbi->max_file_blocks)
672 		goto free_partial;
673 
674 	if (lock)
675 		f2fs_lock_op(sbi);
676 
677 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
678 	if (IS_ERR(ipage)) {
679 		err = PTR_ERR(ipage);
680 		goto out;
681 	}
682 
683 	if (f2fs_has_inline_data(inode)) {
684 		f2fs_truncate_inline_inode(inode, ipage, from);
685 		f2fs_put_page(ipage, 1);
686 		truncate_page = true;
687 		goto out;
688 	}
689 
690 	set_new_dnode(&dn, inode, ipage, NULL, 0);
691 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
692 	if (err) {
693 		if (err == -ENOENT)
694 			goto free_next;
695 		goto out;
696 	}
697 
698 	count = ADDRS_PER_PAGE(dn.node_page, inode);
699 
700 	count -= dn.ofs_in_node;
701 	f2fs_bug_on(sbi, count < 0);
702 
703 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
704 		f2fs_truncate_data_blocks_range(&dn, count);
705 		free_from += count;
706 	}
707 
708 	f2fs_put_dnode(&dn);
709 free_next:
710 	err = f2fs_truncate_inode_blocks(inode, free_from);
711 out:
712 	if (lock)
713 		f2fs_unlock_op(sbi);
714 free_partial:
715 	/* lastly zero out the first data page */
716 	if (!err)
717 		err = truncate_partial_data_page(inode, from, truncate_page);
718 
719 	trace_f2fs_truncate_blocks_exit(inode, err);
720 	return err;
721 }
722 
723 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
724 {
725 	u64 free_from = from;
726 
727 	/*
728 	 * for compressed file, only support cluster size
729 	 * aligned truncation.
730 	 */
731 	if (f2fs_compressed_file(inode)) {
732 		size_t cluster_shift = PAGE_SHIFT +
733 					F2FS_I(inode)->i_log_cluster_size;
734 		size_t cluster_mask = (1 << cluster_shift) - 1;
735 
736 		free_from = from >> cluster_shift;
737 		if (from & cluster_mask)
738 			free_from++;
739 		free_from <<= cluster_shift;
740 	}
741 
742 	return do_truncate_blocks(inode, free_from, lock);
743 }
744 
745 int f2fs_truncate(struct inode *inode)
746 {
747 	int err;
748 
749 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
750 		return -EIO;
751 
752 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
753 				S_ISLNK(inode->i_mode)))
754 		return 0;
755 
756 	trace_f2fs_truncate(inode);
757 
758 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
759 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
760 		return -EIO;
761 	}
762 
763 	/* we should check inline_data size */
764 	if (!f2fs_may_inline_data(inode)) {
765 		err = f2fs_convert_inline_inode(inode);
766 		if (err)
767 			return err;
768 	}
769 
770 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
771 	if (err)
772 		return err;
773 
774 	inode->i_mtime = inode->i_ctime = current_time(inode);
775 	f2fs_mark_inode_dirty_sync(inode, false);
776 	return 0;
777 }
778 
779 int f2fs_getattr(const struct path *path, struct kstat *stat,
780 		 u32 request_mask, unsigned int query_flags)
781 {
782 	struct inode *inode = d_inode(path->dentry);
783 	struct f2fs_inode_info *fi = F2FS_I(inode);
784 	struct f2fs_inode *ri;
785 	unsigned int flags;
786 
787 	if (f2fs_has_extra_attr(inode) &&
788 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
789 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
790 		stat->result_mask |= STATX_BTIME;
791 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
792 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
793 	}
794 
795 	flags = fi->i_flags;
796 	if (flags & F2FS_APPEND_FL)
797 		stat->attributes |= STATX_ATTR_APPEND;
798 	if (IS_ENCRYPTED(inode))
799 		stat->attributes |= STATX_ATTR_ENCRYPTED;
800 	if (flags & F2FS_IMMUTABLE_FL)
801 		stat->attributes |= STATX_ATTR_IMMUTABLE;
802 	if (flags & F2FS_NODUMP_FL)
803 		stat->attributes |= STATX_ATTR_NODUMP;
804 	if (IS_VERITY(inode))
805 		stat->attributes |= STATX_ATTR_VERITY;
806 
807 	stat->attributes_mask |= (STATX_ATTR_APPEND |
808 				  STATX_ATTR_ENCRYPTED |
809 				  STATX_ATTR_IMMUTABLE |
810 				  STATX_ATTR_NODUMP |
811 				  STATX_ATTR_VERITY);
812 
813 	generic_fillattr(inode, stat);
814 
815 	/* we need to show initial sectors used for inline_data/dentries */
816 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
817 					f2fs_has_inline_dentry(inode))
818 		stat->blocks += (stat->size + 511) >> 9;
819 
820 	return 0;
821 }
822 
823 #ifdef CONFIG_F2FS_FS_POSIX_ACL
824 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
825 {
826 	unsigned int ia_valid = attr->ia_valid;
827 
828 	if (ia_valid & ATTR_UID)
829 		inode->i_uid = attr->ia_uid;
830 	if (ia_valid & ATTR_GID)
831 		inode->i_gid = attr->ia_gid;
832 	if (ia_valid & ATTR_ATIME) {
833 		inode->i_atime = timestamp_truncate(attr->ia_atime,
834 						  inode);
835 	}
836 	if (ia_valid & ATTR_MTIME) {
837 		inode->i_mtime = timestamp_truncate(attr->ia_mtime,
838 						  inode);
839 	}
840 	if (ia_valid & ATTR_CTIME) {
841 		inode->i_ctime = timestamp_truncate(attr->ia_ctime,
842 						  inode);
843 	}
844 	if (ia_valid & ATTR_MODE) {
845 		umode_t mode = attr->ia_mode;
846 
847 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
848 			mode &= ~S_ISGID;
849 		set_acl_inode(inode, mode);
850 	}
851 }
852 #else
853 #define __setattr_copy setattr_copy
854 #endif
855 
856 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
857 {
858 	struct inode *inode = d_inode(dentry);
859 	int err;
860 
861 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
862 		return -EIO;
863 
864 	if ((attr->ia_valid & ATTR_SIZE) &&
865 		!f2fs_is_compress_backend_ready(inode))
866 		return -EOPNOTSUPP;
867 
868 	err = setattr_prepare(dentry, attr);
869 	if (err)
870 		return err;
871 
872 	err = fscrypt_prepare_setattr(dentry, attr);
873 	if (err)
874 		return err;
875 
876 	err = fsverity_prepare_setattr(dentry, attr);
877 	if (err)
878 		return err;
879 
880 	if (is_quota_modification(inode, attr)) {
881 		err = dquot_initialize(inode);
882 		if (err)
883 			return err;
884 	}
885 	if ((attr->ia_valid & ATTR_UID &&
886 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
887 		(attr->ia_valid & ATTR_GID &&
888 		!gid_eq(attr->ia_gid, inode->i_gid))) {
889 		f2fs_lock_op(F2FS_I_SB(inode));
890 		err = dquot_transfer(inode, attr);
891 		if (err) {
892 			set_sbi_flag(F2FS_I_SB(inode),
893 					SBI_QUOTA_NEED_REPAIR);
894 			f2fs_unlock_op(F2FS_I_SB(inode));
895 			return err;
896 		}
897 		/*
898 		 * update uid/gid under lock_op(), so that dquot and inode can
899 		 * be updated atomically.
900 		 */
901 		if (attr->ia_valid & ATTR_UID)
902 			inode->i_uid = attr->ia_uid;
903 		if (attr->ia_valid & ATTR_GID)
904 			inode->i_gid = attr->ia_gid;
905 		f2fs_mark_inode_dirty_sync(inode, true);
906 		f2fs_unlock_op(F2FS_I_SB(inode));
907 	}
908 
909 	if (attr->ia_valid & ATTR_SIZE) {
910 		loff_t old_size = i_size_read(inode);
911 
912 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
913 			/*
914 			 * should convert inline inode before i_size_write to
915 			 * keep smaller than inline_data size with inline flag.
916 			 */
917 			err = f2fs_convert_inline_inode(inode);
918 			if (err)
919 				return err;
920 		}
921 
922 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
923 		down_write(&F2FS_I(inode)->i_mmap_sem);
924 
925 		truncate_setsize(inode, attr->ia_size);
926 
927 		if (attr->ia_size <= old_size)
928 			err = f2fs_truncate(inode);
929 		/*
930 		 * do not trim all blocks after i_size if target size is
931 		 * larger than i_size.
932 		 */
933 		up_write(&F2FS_I(inode)->i_mmap_sem);
934 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
935 		if (err)
936 			return err;
937 
938 		down_write(&F2FS_I(inode)->i_sem);
939 		inode->i_mtime = inode->i_ctime = current_time(inode);
940 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
941 		up_write(&F2FS_I(inode)->i_sem);
942 	}
943 
944 	__setattr_copy(inode, attr);
945 
946 	if (attr->ia_valid & ATTR_MODE) {
947 		err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
948 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
949 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
950 			clear_inode_flag(inode, FI_ACL_MODE);
951 		}
952 	}
953 
954 	/* file size may changed here */
955 	f2fs_mark_inode_dirty_sync(inode, true);
956 
957 	/* inode change will produce dirty node pages flushed by checkpoint */
958 	f2fs_balance_fs(F2FS_I_SB(inode), true);
959 
960 	return err;
961 }
962 
963 const struct inode_operations f2fs_file_inode_operations = {
964 	.getattr	= f2fs_getattr,
965 	.setattr	= f2fs_setattr,
966 	.get_acl	= f2fs_get_acl,
967 	.set_acl	= f2fs_set_acl,
968 #ifdef CONFIG_F2FS_FS_XATTR
969 	.listxattr	= f2fs_listxattr,
970 #endif
971 	.fiemap		= f2fs_fiemap,
972 };
973 
974 static int fill_zero(struct inode *inode, pgoff_t index,
975 					loff_t start, loff_t len)
976 {
977 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
978 	struct page *page;
979 
980 	if (!len)
981 		return 0;
982 
983 	f2fs_balance_fs(sbi, true);
984 
985 	f2fs_lock_op(sbi);
986 	page = f2fs_get_new_data_page(inode, NULL, index, false);
987 	f2fs_unlock_op(sbi);
988 
989 	if (IS_ERR(page))
990 		return PTR_ERR(page);
991 
992 	f2fs_wait_on_page_writeback(page, DATA, true, true);
993 	zero_user(page, start, len);
994 	set_page_dirty(page);
995 	f2fs_put_page(page, 1);
996 	return 0;
997 }
998 
999 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1000 {
1001 	int err;
1002 
1003 	while (pg_start < pg_end) {
1004 		struct dnode_of_data dn;
1005 		pgoff_t end_offset, count;
1006 
1007 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1008 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1009 		if (err) {
1010 			if (err == -ENOENT) {
1011 				pg_start = f2fs_get_next_page_offset(&dn,
1012 								pg_start);
1013 				continue;
1014 			}
1015 			return err;
1016 		}
1017 
1018 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1019 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1020 
1021 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1022 
1023 		f2fs_truncate_data_blocks_range(&dn, count);
1024 		f2fs_put_dnode(&dn);
1025 
1026 		pg_start += count;
1027 	}
1028 	return 0;
1029 }
1030 
1031 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1032 {
1033 	pgoff_t pg_start, pg_end;
1034 	loff_t off_start, off_end;
1035 	int ret;
1036 
1037 	ret = f2fs_convert_inline_inode(inode);
1038 	if (ret)
1039 		return ret;
1040 
1041 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1042 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1043 
1044 	off_start = offset & (PAGE_SIZE - 1);
1045 	off_end = (offset + len) & (PAGE_SIZE - 1);
1046 
1047 	if (pg_start == pg_end) {
1048 		ret = fill_zero(inode, pg_start, off_start,
1049 						off_end - off_start);
1050 		if (ret)
1051 			return ret;
1052 	} else {
1053 		if (off_start) {
1054 			ret = fill_zero(inode, pg_start++, off_start,
1055 						PAGE_SIZE - off_start);
1056 			if (ret)
1057 				return ret;
1058 		}
1059 		if (off_end) {
1060 			ret = fill_zero(inode, pg_end, 0, off_end);
1061 			if (ret)
1062 				return ret;
1063 		}
1064 
1065 		if (pg_start < pg_end) {
1066 			struct address_space *mapping = inode->i_mapping;
1067 			loff_t blk_start, blk_end;
1068 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1069 
1070 			f2fs_balance_fs(sbi, true);
1071 
1072 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1073 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1074 
1075 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1076 			down_write(&F2FS_I(inode)->i_mmap_sem);
1077 
1078 			truncate_inode_pages_range(mapping, blk_start,
1079 					blk_end - 1);
1080 
1081 			f2fs_lock_op(sbi);
1082 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1083 			f2fs_unlock_op(sbi);
1084 
1085 			up_write(&F2FS_I(inode)->i_mmap_sem);
1086 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1087 		}
1088 	}
1089 
1090 	return ret;
1091 }
1092 
1093 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1094 				int *do_replace, pgoff_t off, pgoff_t len)
1095 {
1096 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1097 	struct dnode_of_data dn;
1098 	int ret, done, i;
1099 
1100 next_dnode:
1101 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1102 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1103 	if (ret && ret != -ENOENT) {
1104 		return ret;
1105 	} else if (ret == -ENOENT) {
1106 		if (dn.max_level == 0)
1107 			return -ENOENT;
1108 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1109 						dn.ofs_in_node, len);
1110 		blkaddr += done;
1111 		do_replace += done;
1112 		goto next;
1113 	}
1114 
1115 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1116 							dn.ofs_in_node, len);
1117 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1118 		*blkaddr = datablock_addr(dn.inode,
1119 					dn.node_page, dn.ofs_in_node);
1120 
1121 		if (__is_valid_data_blkaddr(*blkaddr) &&
1122 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1123 					DATA_GENERIC_ENHANCE)) {
1124 			f2fs_put_dnode(&dn);
1125 			return -EFSCORRUPTED;
1126 		}
1127 
1128 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1129 
1130 			if (test_opt(sbi, LFS)) {
1131 				f2fs_put_dnode(&dn);
1132 				return -EOPNOTSUPP;
1133 			}
1134 
1135 			/* do not invalidate this block address */
1136 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1137 			*do_replace = 1;
1138 		}
1139 	}
1140 	f2fs_put_dnode(&dn);
1141 next:
1142 	len -= done;
1143 	off += done;
1144 	if (len)
1145 		goto next_dnode;
1146 	return 0;
1147 }
1148 
1149 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1150 				int *do_replace, pgoff_t off, int len)
1151 {
1152 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1153 	struct dnode_of_data dn;
1154 	int ret, i;
1155 
1156 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1157 		if (*do_replace == 0)
1158 			continue;
1159 
1160 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1161 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1162 		if (ret) {
1163 			dec_valid_block_count(sbi, inode, 1);
1164 			f2fs_invalidate_blocks(sbi, *blkaddr);
1165 		} else {
1166 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1167 		}
1168 		f2fs_put_dnode(&dn);
1169 	}
1170 	return 0;
1171 }
1172 
1173 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1174 			block_t *blkaddr, int *do_replace,
1175 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1176 {
1177 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1178 	pgoff_t i = 0;
1179 	int ret;
1180 
1181 	while (i < len) {
1182 		if (blkaddr[i] == NULL_ADDR && !full) {
1183 			i++;
1184 			continue;
1185 		}
1186 
1187 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1188 			struct dnode_of_data dn;
1189 			struct node_info ni;
1190 			size_t new_size;
1191 			pgoff_t ilen;
1192 
1193 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1194 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1195 			if (ret)
1196 				return ret;
1197 
1198 			ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1199 			if (ret) {
1200 				f2fs_put_dnode(&dn);
1201 				return ret;
1202 			}
1203 
1204 			ilen = min((pgoff_t)
1205 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1206 						dn.ofs_in_node, len - i);
1207 			do {
1208 				dn.data_blkaddr = datablock_addr(dn.inode,
1209 						dn.node_page, dn.ofs_in_node);
1210 				f2fs_truncate_data_blocks_range(&dn, 1);
1211 
1212 				if (do_replace[i]) {
1213 					f2fs_i_blocks_write(src_inode,
1214 							1, false, false);
1215 					f2fs_i_blocks_write(dst_inode,
1216 							1, true, false);
1217 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1218 					blkaddr[i], ni.version, true, false);
1219 
1220 					do_replace[i] = 0;
1221 				}
1222 				dn.ofs_in_node++;
1223 				i++;
1224 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1225 				if (dst_inode->i_size < new_size)
1226 					f2fs_i_size_write(dst_inode, new_size);
1227 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1228 
1229 			f2fs_put_dnode(&dn);
1230 		} else {
1231 			struct page *psrc, *pdst;
1232 
1233 			psrc = f2fs_get_lock_data_page(src_inode,
1234 							src + i, true);
1235 			if (IS_ERR(psrc))
1236 				return PTR_ERR(psrc);
1237 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1238 								true);
1239 			if (IS_ERR(pdst)) {
1240 				f2fs_put_page(psrc, 1);
1241 				return PTR_ERR(pdst);
1242 			}
1243 			f2fs_copy_page(psrc, pdst);
1244 			set_page_dirty(pdst);
1245 			f2fs_put_page(pdst, 1);
1246 			f2fs_put_page(psrc, 1);
1247 
1248 			ret = f2fs_truncate_hole(src_inode,
1249 						src + i, src + i + 1);
1250 			if (ret)
1251 				return ret;
1252 			i++;
1253 		}
1254 	}
1255 	return 0;
1256 }
1257 
1258 static int __exchange_data_block(struct inode *src_inode,
1259 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1260 			pgoff_t len, bool full)
1261 {
1262 	block_t *src_blkaddr;
1263 	int *do_replace;
1264 	pgoff_t olen;
1265 	int ret;
1266 
1267 	while (len) {
1268 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1269 
1270 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1271 					array_size(olen, sizeof(block_t)),
1272 					GFP_NOFS);
1273 		if (!src_blkaddr)
1274 			return -ENOMEM;
1275 
1276 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1277 					array_size(olen, sizeof(int)),
1278 					GFP_NOFS);
1279 		if (!do_replace) {
1280 			kvfree(src_blkaddr);
1281 			return -ENOMEM;
1282 		}
1283 
1284 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1285 					do_replace, src, olen);
1286 		if (ret)
1287 			goto roll_back;
1288 
1289 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1290 					do_replace, src, dst, olen, full);
1291 		if (ret)
1292 			goto roll_back;
1293 
1294 		src += olen;
1295 		dst += olen;
1296 		len -= olen;
1297 
1298 		kvfree(src_blkaddr);
1299 		kvfree(do_replace);
1300 	}
1301 	return 0;
1302 
1303 roll_back:
1304 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1305 	kvfree(src_blkaddr);
1306 	kvfree(do_replace);
1307 	return ret;
1308 }
1309 
1310 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1311 {
1312 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1313 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1314 	pgoff_t start = offset >> PAGE_SHIFT;
1315 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1316 	int ret;
1317 
1318 	f2fs_balance_fs(sbi, true);
1319 
1320 	/* avoid gc operation during block exchange */
1321 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1322 	down_write(&F2FS_I(inode)->i_mmap_sem);
1323 
1324 	f2fs_lock_op(sbi);
1325 	f2fs_drop_extent_tree(inode);
1326 	truncate_pagecache(inode, offset);
1327 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1328 	f2fs_unlock_op(sbi);
1329 
1330 	up_write(&F2FS_I(inode)->i_mmap_sem);
1331 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1332 	return ret;
1333 }
1334 
1335 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1336 {
1337 	loff_t new_size;
1338 	int ret;
1339 
1340 	if (offset + len >= i_size_read(inode))
1341 		return -EINVAL;
1342 
1343 	/* collapse range should be aligned to block size of f2fs. */
1344 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1345 		return -EINVAL;
1346 
1347 	ret = f2fs_convert_inline_inode(inode);
1348 	if (ret)
1349 		return ret;
1350 
1351 	/* write out all dirty pages from offset */
1352 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1353 	if (ret)
1354 		return ret;
1355 
1356 	ret = f2fs_do_collapse(inode, offset, len);
1357 	if (ret)
1358 		return ret;
1359 
1360 	/* write out all moved pages, if possible */
1361 	down_write(&F2FS_I(inode)->i_mmap_sem);
1362 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1363 	truncate_pagecache(inode, offset);
1364 
1365 	new_size = i_size_read(inode) - len;
1366 	truncate_pagecache(inode, new_size);
1367 
1368 	ret = f2fs_truncate_blocks(inode, new_size, true);
1369 	up_write(&F2FS_I(inode)->i_mmap_sem);
1370 	if (!ret)
1371 		f2fs_i_size_write(inode, new_size);
1372 	return ret;
1373 }
1374 
1375 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1376 								pgoff_t end)
1377 {
1378 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1379 	pgoff_t index = start;
1380 	unsigned int ofs_in_node = dn->ofs_in_node;
1381 	blkcnt_t count = 0;
1382 	int ret;
1383 
1384 	for (; index < end; index++, dn->ofs_in_node++) {
1385 		if (datablock_addr(dn->inode, dn->node_page,
1386 					dn->ofs_in_node) == NULL_ADDR)
1387 			count++;
1388 	}
1389 
1390 	dn->ofs_in_node = ofs_in_node;
1391 	ret = f2fs_reserve_new_blocks(dn, count);
1392 	if (ret)
1393 		return ret;
1394 
1395 	dn->ofs_in_node = ofs_in_node;
1396 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1397 		dn->data_blkaddr = datablock_addr(dn->inode,
1398 					dn->node_page, dn->ofs_in_node);
1399 		/*
1400 		 * f2fs_reserve_new_blocks will not guarantee entire block
1401 		 * allocation.
1402 		 */
1403 		if (dn->data_blkaddr == NULL_ADDR) {
1404 			ret = -ENOSPC;
1405 			break;
1406 		}
1407 		if (dn->data_blkaddr != NEW_ADDR) {
1408 			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1409 			dn->data_blkaddr = NEW_ADDR;
1410 			f2fs_set_data_blkaddr(dn);
1411 		}
1412 	}
1413 
1414 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1415 
1416 	return ret;
1417 }
1418 
1419 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1420 								int mode)
1421 {
1422 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1423 	struct address_space *mapping = inode->i_mapping;
1424 	pgoff_t index, pg_start, pg_end;
1425 	loff_t new_size = i_size_read(inode);
1426 	loff_t off_start, off_end;
1427 	int ret = 0;
1428 
1429 	ret = inode_newsize_ok(inode, (len + offset));
1430 	if (ret)
1431 		return ret;
1432 
1433 	ret = f2fs_convert_inline_inode(inode);
1434 	if (ret)
1435 		return ret;
1436 
1437 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1438 	if (ret)
1439 		return ret;
1440 
1441 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1442 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1443 
1444 	off_start = offset & (PAGE_SIZE - 1);
1445 	off_end = (offset + len) & (PAGE_SIZE - 1);
1446 
1447 	if (pg_start == pg_end) {
1448 		ret = fill_zero(inode, pg_start, off_start,
1449 						off_end - off_start);
1450 		if (ret)
1451 			return ret;
1452 
1453 		new_size = max_t(loff_t, new_size, offset + len);
1454 	} else {
1455 		if (off_start) {
1456 			ret = fill_zero(inode, pg_start++, off_start,
1457 						PAGE_SIZE - off_start);
1458 			if (ret)
1459 				return ret;
1460 
1461 			new_size = max_t(loff_t, new_size,
1462 					(loff_t)pg_start << PAGE_SHIFT);
1463 		}
1464 
1465 		for (index = pg_start; index < pg_end;) {
1466 			struct dnode_of_data dn;
1467 			unsigned int end_offset;
1468 			pgoff_t end;
1469 
1470 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1471 			down_write(&F2FS_I(inode)->i_mmap_sem);
1472 
1473 			truncate_pagecache_range(inode,
1474 				(loff_t)index << PAGE_SHIFT,
1475 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1476 
1477 			f2fs_lock_op(sbi);
1478 
1479 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1480 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1481 			if (ret) {
1482 				f2fs_unlock_op(sbi);
1483 				up_write(&F2FS_I(inode)->i_mmap_sem);
1484 				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1485 				goto out;
1486 			}
1487 
1488 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1489 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1490 
1491 			ret = f2fs_do_zero_range(&dn, index, end);
1492 			f2fs_put_dnode(&dn);
1493 
1494 			f2fs_unlock_op(sbi);
1495 			up_write(&F2FS_I(inode)->i_mmap_sem);
1496 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1497 
1498 			f2fs_balance_fs(sbi, dn.node_changed);
1499 
1500 			if (ret)
1501 				goto out;
1502 
1503 			index = end;
1504 			new_size = max_t(loff_t, new_size,
1505 					(loff_t)index << PAGE_SHIFT);
1506 		}
1507 
1508 		if (off_end) {
1509 			ret = fill_zero(inode, pg_end, 0, off_end);
1510 			if (ret)
1511 				goto out;
1512 
1513 			new_size = max_t(loff_t, new_size, offset + len);
1514 		}
1515 	}
1516 
1517 out:
1518 	if (new_size > i_size_read(inode)) {
1519 		if (mode & FALLOC_FL_KEEP_SIZE)
1520 			file_set_keep_isize(inode);
1521 		else
1522 			f2fs_i_size_write(inode, new_size);
1523 	}
1524 	return ret;
1525 }
1526 
1527 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1528 {
1529 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1530 	pgoff_t nr, pg_start, pg_end, delta, idx;
1531 	loff_t new_size;
1532 	int ret = 0;
1533 
1534 	new_size = i_size_read(inode) + len;
1535 	ret = inode_newsize_ok(inode, new_size);
1536 	if (ret)
1537 		return ret;
1538 
1539 	if (offset >= i_size_read(inode))
1540 		return -EINVAL;
1541 
1542 	/* insert range should be aligned to block size of f2fs. */
1543 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1544 		return -EINVAL;
1545 
1546 	ret = f2fs_convert_inline_inode(inode);
1547 	if (ret)
1548 		return ret;
1549 
1550 	f2fs_balance_fs(sbi, true);
1551 
1552 	down_write(&F2FS_I(inode)->i_mmap_sem);
1553 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1554 	up_write(&F2FS_I(inode)->i_mmap_sem);
1555 	if (ret)
1556 		return ret;
1557 
1558 	/* write out all dirty pages from offset */
1559 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1560 	if (ret)
1561 		return ret;
1562 
1563 	pg_start = offset >> PAGE_SHIFT;
1564 	pg_end = (offset + len) >> PAGE_SHIFT;
1565 	delta = pg_end - pg_start;
1566 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1567 
1568 	/* avoid gc operation during block exchange */
1569 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1570 	down_write(&F2FS_I(inode)->i_mmap_sem);
1571 	truncate_pagecache(inode, offset);
1572 
1573 	while (!ret && idx > pg_start) {
1574 		nr = idx - pg_start;
1575 		if (nr > delta)
1576 			nr = delta;
1577 		idx -= nr;
1578 
1579 		f2fs_lock_op(sbi);
1580 		f2fs_drop_extent_tree(inode);
1581 
1582 		ret = __exchange_data_block(inode, inode, idx,
1583 					idx + delta, nr, false);
1584 		f2fs_unlock_op(sbi);
1585 	}
1586 	up_write(&F2FS_I(inode)->i_mmap_sem);
1587 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1588 
1589 	/* write out all moved pages, if possible */
1590 	down_write(&F2FS_I(inode)->i_mmap_sem);
1591 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1592 	truncate_pagecache(inode, offset);
1593 	up_write(&F2FS_I(inode)->i_mmap_sem);
1594 
1595 	if (!ret)
1596 		f2fs_i_size_write(inode, new_size);
1597 	return ret;
1598 }
1599 
1600 static int expand_inode_data(struct inode *inode, loff_t offset,
1601 					loff_t len, int mode)
1602 {
1603 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1604 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1605 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1606 			.m_may_create = true };
1607 	pgoff_t pg_end;
1608 	loff_t new_size = i_size_read(inode);
1609 	loff_t off_end;
1610 	int err;
1611 
1612 	err = inode_newsize_ok(inode, (len + offset));
1613 	if (err)
1614 		return err;
1615 
1616 	err = f2fs_convert_inline_inode(inode);
1617 	if (err)
1618 		return err;
1619 
1620 	f2fs_balance_fs(sbi, true);
1621 
1622 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1623 	off_end = (offset + len) & (PAGE_SIZE - 1);
1624 
1625 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1626 	map.m_len = pg_end - map.m_lblk;
1627 	if (off_end)
1628 		map.m_len++;
1629 
1630 	if (!map.m_len)
1631 		return 0;
1632 
1633 	if (f2fs_is_pinned_file(inode)) {
1634 		block_t len = (map.m_len >> sbi->log_blocks_per_seg) <<
1635 					sbi->log_blocks_per_seg;
1636 		block_t done = 0;
1637 
1638 		if (map.m_len % sbi->blocks_per_seg)
1639 			len += sbi->blocks_per_seg;
1640 
1641 		map.m_len = sbi->blocks_per_seg;
1642 next_alloc:
1643 		if (has_not_enough_free_secs(sbi, 0,
1644 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1645 			down_write(&sbi->gc_lock);
1646 			err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1647 			if (err && err != -ENODATA && err != -EAGAIN)
1648 				goto out_err;
1649 		}
1650 
1651 		down_write(&sbi->pin_sem);
1652 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1653 		f2fs_allocate_new_segments(sbi, CURSEG_COLD_DATA);
1654 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1655 		up_write(&sbi->pin_sem);
1656 
1657 		done += map.m_len;
1658 		len -= map.m_len;
1659 		map.m_lblk += map.m_len;
1660 		if (!err && len)
1661 			goto next_alloc;
1662 
1663 		map.m_len = done;
1664 	} else {
1665 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1666 	}
1667 out_err:
1668 	if (err) {
1669 		pgoff_t last_off;
1670 
1671 		if (!map.m_len)
1672 			return err;
1673 
1674 		last_off = map.m_lblk + map.m_len - 1;
1675 
1676 		/* update new size to the failed position */
1677 		new_size = (last_off == pg_end) ? offset + len :
1678 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1679 	} else {
1680 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1681 	}
1682 
1683 	if (new_size > i_size_read(inode)) {
1684 		if (mode & FALLOC_FL_KEEP_SIZE)
1685 			file_set_keep_isize(inode);
1686 		else
1687 			f2fs_i_size_write(inode, new_size);
1688 	}
1689 
1690 	return err;
1691 }
1692 
1693 static long f2fs_fallocate(struct file *file, int mode,
1694 				loff_t offset, loff_t len)
1695 {
1696 	struct inode *inode = file_inode(file);
1697 	long ret = 0;
1698 
1699 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1700 		return -EIO;
1701 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1702 		return -ENOSPC;
1703 	if (!f2fs_is_compress_backend_ready(inode))
1704 		return -EOPNOTSUPP;
1705 
1706 	/* f2fs only support ->fallocate for regular file */
1707 	if (!S_ISREG(inode->i_mode))
1708 		return -EINVAL;
1709 
1710 	if (IS_ENCRYPTED(inode) &&
1711 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1712 		return -EOPNOTSUPP;
1713 
1714 	if (f2fs_compressed_file(inode) &&
1715 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1716 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1717 		return -EOPNOTSUPP;
1718 
1719 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1720 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1721 			FALLOC_FL_INSERT_RANGE))
1722 		return -EOPNOTSUPP;
1723 
1724 	inode_lock(inode);
1725 
1726 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1727 		if (offset >= inode->i_size)
1728 			goto out;
1729 
1730 		ret = punch_hole(inode, offset, len);
1731 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1732 		ret = f2fs_collapse_range(inode, offset, len);
1733 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1734 		ret = f2fs_zero_range(inode, offset, len, mode);
1735 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1736 		ret = f2fs_insert_range(inode, offset, len);
1737 	} else {
1738 		ret = expand_inode_data(inode, offset, len, mode);
1739 	}
1740 
1741 	if (!ret) {
1742 		inode->i_mtime = inode->i_ctime = current_time(inode);
1743 		f2fs_mark_inode_dirty_sync(inode, false);
1744 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1745 	}
1746 
1747 out:
1748 	inode_unlock(inode);
1749 
1750 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1751 	return ret;
1752 }
1753 
1754 static int f2fs_release_file(struct inode *inode, struct file *filp)
1755 {
1756 	/*
1757 	 * f2fs_relase_file is called at every close calls. So we should
1758 	 * not drop any inmemory pages by close called by other process.
1759 	 */
1760 	if (!(filp->f_mode & FMODE_WRITE) ||
1761 			atomic_read(&inode->i_writecount) != 1)
1762 		return 0;
1763 
1764 	/* some remained atomic pages should discarded */
1765 	if (f2fs_is_atomic_file(inode))
1766 		f2fs_drop_inmem_pages(inode);
1767 	if (f2fs_is_volatile_file(inode)) {
1768 		set_inode_flag(inode, FI_DROP_CACHE);
1769 		filemap_fdatawrite(inode->i_mapping);
1770 		clear_inode_flag(inode, FI_DROP_CACHE);
1771 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1772 		stat_dec_volatile_write(inode);
1773 	}
1774 	return 0;
1775 }
1776 
1777 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1778 {
1779 	struct inode *inode = file_inode(file);
1780 
1781 	/*
1782 	 * If the process doing a transaction is crashed, we should do
1783 	 * roll-back. Otherwise, other reader/write can see corrupted database
1784 	 * until all the writers close its file. Since this should be done
1785 	 * before dropping file lock, it needs to do in ->flush.
1786 	 */
1787 	if (f2fs_is_atomic_file(inode) &&
1788 			F2FS_I(inode)->inmem_task == current)
1789 		f2fs_drop_inmem_pages(inode);
1790 	return 0;
1791 }
1792 
1793 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1794 {
1795 	struct f2fs_inode_info *fi = F2FS_I(inode);
1796 
1797 	/* Is it quota file? Do not allow user to mess with it */
1798 	if (IS_NOQUOTA(inode))
1799 		return -EPERM;
1800 
1801 	if ((iflags ^ fi->i_flags) & F2FS_CASEFOLD_FL) {
1802 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1803 			return -EOPNOTSUPP;
1804 		if (!f2fs_empty_dir(inode))
1805 			return -ENOTEMPTY;
1806 	}
1807 
1808 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1809 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1810 			return -EOPNOTSUPP;
1811 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1812 			return -EINVAL;
1813 	}
1814 
1815 	if ((iflags ^ fi->i_flags) & F2FS_COMPR_FL) {
1816 		if (S_ISREG(inode->i_mode) &&
1817 			(fi->i_flags & F2FS_COMPR_FL || i_size_read(inode) ||
1818 						F2FS_HAS_BLOCKS(inode)))
1819 			return -EINVAL;
1820 		if (iflags & F2FS_NOCOMP_FL)
1821 			return -EINVAL;
1822 		if (iflags & F2FS_COMPR_FL) {
1823 			int err = f2fs_convert_inline_inode(inode);
1824 
1825 			if (err)
1826 				return err;
1827 
1828 			if (!f2fs_may_compress(inode))
1829 				return -EINVAL;
1830 
1831 			set_compress_context(inode);
1832 		}
1833 	}
1834 	if ((iflags ^ fi->i_flags) & F2FS_NOCOMP_FL) {
1835 		if (fi->i_flags & F2FS_COMPR_FL)
1836 			return -EINVAL;
1837 	}
1838 
1839 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1840 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1841 					(fi->i_flags & F2FS_NOCOMP_FL));
1842 
1843 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1844 		set_inode_flag(inode, FI_PROJ_INHERIT);
1845 	else
1846 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1847 
1848 	inode->i_ctime = current_time(inode);
1849 	f2fs_set_inode_flags(inode);
1850 	f2fs_mark_inode_dirty_sync(inode, true);
1851 	return 0;
1852 }
1853 
1854 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1855 
1856 /*
1857  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1858  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1859  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1860  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1861  */
1862 
1863 static const struct {
1864 	u32 iflag;
1865 	u32 fsflag;
1866 } f2fs_fsflags_map[] = {
1867 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1868 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1869 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1870 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1871 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1872 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1873 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1874 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1875 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1876 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1877 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1878 };
1879 
1880 #define F2FS_GETTABLE_FS_FL (		\
1881 		FS_COMPR_FL |		\
1882 		FS_SYNC_FL |		\
1883 		FS_IMMUTABLE_FL |	\
1884 		FS_APPEND_FL |		\
1885 		FS_NODUMP_FL |		\
1886 		FS_NOATIME_FL |		\
1887 		FS_NOCOMP_FL |		\
1888 		FS_INDEX_FL |		\
1889 		FS_DIRSYNC_FL |		\
1890 		FS_PROJINHERIT_FL |	\
1891 		FS_ENCRYPT_FL |		\
1892 		FS_INLINE_DATA_FL |	\
1893 		FS_NOCOW_FL |		\
1894 		FS_VERITY_FL |		\
1895 		FS_CASEFOLD_FL)
1896 
1897 #define F2FS_SETTABLE_FS_FL (		\
1898 		FS_COMPR_FL |		\
1899 		FS_SYNC_FL |		\
1900 		FS_IMMUTABLE_FL |	\
1901 		FS_APPEND_FL |		\
1902 		FS_NODUMP_FL |		\
1903 		FS_NOATIME_FL |		\
1904 		FS_NOCOMP_FL |		\
1905 		FS_DIRSYNC_FL |		\
1906 		FS_PROJINHERIT_FL |	\
1907 		FS_CASEFOLD_FL)
1908 
1909 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1910 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1911 {
1912 	u32 fsflags = 0;
1913 	int i;
1914 
1915 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1916 		if (iflags & f2fs_fsflags_map[i].iflag)
1917 			fsflags |= f2fs_fsflags_map[i].fsflag;
1918 
1919 	return fsflags;
1920 }
1921 
1922 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1923 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1924 {
1925 	u32 iflags = 0;
1926 	int i;
1927 
1928 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1929 		if (fsflags & f2fs_fsflags_map[i].fsflag)
1930 			iflags |= f2fs_fsflags_map[i].iflag;
1931 
1932 	return iflags;
1933 }
1934 
1935 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1936 {
1937 	struct inode *inode = file_inode(filp);
1938 	struct f2fs_inode_info *fi = F2FS_I(inode);
1939 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1940 
1941 	if (IS_ENCRYPTED(inode))
1942 		fsflags |= FS_ENCRYPT_FL;
1943 	if (IS_VERITY(inode))
1944 		fsflags |= FS_VERITY_FL;
1945 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1946 		fsflags |= FS_INLINE_DATA_FL;
1947 	if (is_inode_flag_set(inode, FI_PIN_FILE))
1948 		fsflags |= FS_NOCOW_FL;
1949 
1950 	fsflags &= F2FS_GETTABLE_FS_FL;
1951 
1952 	return put_user(fsflags, (int __user *)arg);
1953 }
1954 
1955 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1956 {
1957 	struct inode *inode = file_inode(filp);
1958 	struct f2fs_inode_info *fi = F2FS_I(inode);
1959 	u32 fsflags, old_fsflags;
1960 	u32 iflags;
1961 	int ret;
1962 
1963 	if (!inode_owner_or_capable(inode))
1964 		return -EACCES;
1965 
1966 	if (get_user(fsflags, (int __user *)arg))
1967 		return -EFAULT;
1968 
1969 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
1970 		return -EOPNOTSUPP;
1971 	fsflags &= F2FS_SETTABLE_FS_FL;
1972 
1973 	iflags = f2fs_fsflags_to_iflags(fsflags);
1974 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
1975 		return -EOPNOTSUPP;
1976 
1977 	ret = mnt_want_write_file(filp);
1978 	if (ret)
1979 		return ret;
1980 
1981 	inode_lock(inode);
1982 
1983 	old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1984 	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
1985 	if (ret)
1986 		goto out;
1987 
1988 	ret = f2fs_setflags_common(inode, iflags,
1989 			f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
1990 out:
1991 	inode_unlock(inode);
1992 	mnt_drop_write_file(filp);
1993 	return ret;
1994 }
1995 
1996 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1997 {
1998 	struct inode *inode = file_inode(filp);
1999 
2000 	return put_user(inode->i_generation, (int __user *)arg);
2001 }
2002 
2003 static int f2fs_ioc_start_atomic_write(struct file *filp)
2004 {
2005 	struct inode *inode = file_inode(filp);
2006 	struct f2fs_inode_info *fi = F2FS_I(inode);
2007 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2008 	int ret;
2009 
2010 	if (!inode_owner_or_capable(inode))
2011 		return -EACCES;
2012 
2013 	if (!S_ISREG(inode->i_mode))
2014 		return -EINVAL;
2015 
2016 	if (filp->f_flags & O_DIRECT)
2017 		return -EINVAL;
2018 
2019 	ret = mnt_want_write_file(filp);
2020 	if (ret)
2021 		return ret;
2022 
2023 	inode_lock(inode);
2024 
2025 	f2fs_disable_compressed_file(inode);
2026 
2027 	if (f2fs_is_atomic_file(inode)) {
2028 		if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2029 			ret = -EINVAL;
2030 		goto out;
2031 	}
2032 
2033 	ret = f2fs_convert_inline_inode(inode);
2034 	if (ret)
2035 		goto out;
2036 
2037 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2038 
2039 	/*
2040 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2041 	 * f2fs_is_atomic_file.
2042 	 */
2043 	if (get_dirty_pages(inode))
2044 		f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2045 			  inode->i_ino, get_dirty_pages(inode));
2046 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2047 	if (ret) {
2048 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2049 		goto out;
2050 	}
2051 
2052 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2053 	if (list_empty(&fi->inmem_ilist))
2054 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2055 	sbi->atomic_files++;
2056 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2057 
2058 	/* add inode in inmem_list first and set atomic_file */
2059 	set_inode_flag(inode, FI_ATOMIC_FILE);
2060 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2061 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2062 
2063 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2064 	F2FS_I(inode)->inmem_task = current;
2065 	stat_update_max_atomic_write(inode);
2066 out:
2067 	inode_unlock(inode);
2068 	mnt_drop_write_file(filp);
2069 	return ret;
2070 }
2071 
2072 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2073 {
2074 	struct inode *inode = file_inode(filp);
2075 	int ret;
2076 
2077 	if (!inode_owner_or_capable(inode))
2078 		return -EACCES;
2079 
2080 	ret = mnt_want_write_file(filp);
2081 	if (ret)
2082 		return ret;
2083 
2084 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2085 
2086 	inode_lock(inode);
2087 
2088 	if (f2fs_is_volatile_file(inode)) {
2089 		ret = -EINVAL;
2090 		goto err_out;
2091 	}
2092 
2093 	if (f2fs_is_atomic_file(inode)) {
2094 		ret = f2fs_commit_inmem_pages(inode);
2095 		if (ret)
2096 			goto err_out;
2097 
2098 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2099 		if (!ret)
2100 			f2fs_drop_inmem_pages(inode);
2101 	} else {
2102 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2103 	}
2104 err_out:
2105 	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2106 		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2107 		ret = -EINVAL;
2108 	}
2109 	inode_unlock(inode);
2110 	mnt_drop_write_file(filp);
2111 	return ret;
2112 }
2113 
2114 static int f2fs_ioc_start_volatile_write(struct file *filp)
2115 {
2116 	struct inode *inode = file_inode(filp);
2117 	int ret;
2118 
2119 	if (!inode_owner_or_capable(inode))
2120 		return -EACCES;
2121 
2122 	if (!S_ISREG(inode->i_mode))
2123 		return -EINVAL;
2124 
2125 	ret = mnt_want_write_file(filp);
2126 	if (ret)
2127 		return ret;
2128 
2129 	inode_lock(inode);
2130 
2131 	if (f2fs_is_volatile_file(inode))
2132 		goto out;
2133 
2134 	ret = f2fs_convert_inline_inode(inode);
2135 	if (ret)
2136 		goto out;
2137 
2138 	stat_inc_volatile_write(inode);
2139 	stat_update_max_volatile_write(inode);
2140 
2141 	set_inode_flag(inode, FI_VOLATILE_FILE);
2142 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2143 out:
2144 	inode_unlock(inode);
2145 	mnt_drop_write_file(filp);
2146 	return ret;
2147 }
2148 
2149 static int f2fs_ioc_release_volatile_write(struct file *filp)
2150 {
2151 	struct inode *inode = file_inode(filp);
2152 	int ret;
2153 
2154 	if (!inode_owner_or_capable(inode))
2155 		return -EACCES;
2156 
2157 	ret = mnt_want_write_file(filp);
2158 	if (ret)
2159 		return ret;
2160 
2161 	inode_lock(inode);
2162 
2163 	if (!f2fs_is_volatile_file(inode))
2164 		goto out;
2165 
2166 	if (!f2fs_is_first_block_written(inode)) {
2167 		ret = truncate_partial_data_page(inode, 0, true);
2168 		goto out;
2169 	}
2170 
2171 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2172 out:
2173 	inode_unlock(inode);
2174 	mnt_drop_write_file(filp);
2175 	return ret;
2176 }
2177 
2178 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2179 {
2180 	struct inode *inode = file_inode(filp);
2181 	int ret;
2182 
2183 	if (!inode_owner_or_capable(inode))
2184 		return -EACCES;
2185 
2186 	ret = mnt_want_write_file(filp);
2187 	if (ret)
2188 		return ret;
2189 
2190 	inode_lock(inode);
2191 
2192 	if (f2fs_is_atomic_file(inode))
2193 		f2fs_drop_inmem_pages(inode);
2194 	if (f2fs_is_volatile_file(inode)) {
2195 		clear_inode_flag(inode, FI_VOLATILE_FILE);
2196 		stat_dec_volatile_write(inode);
2197 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2198 	}
2199 
2200 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2201 
2202 	inode_unlock(inode);
2203 
2204 	mnt_drop_write_file(filp);
2205 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2206 	return ret;
2207 }
2208 
2209 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2210 {
2211 	struct inode *inode = file_inode(filp);
2212 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2213 	struct super_block *sb = sbi->sb;
2214 	__u32 in;
2215 	int ret = 0;
2216 
2217 	if (!capable(CAP_SYS_ADMIN))
2218 		return -EPERM;
2219 
2220 	if (get_user(in, (__u32 __user *)arg))
2221 		return -EFAULT;
2222 
2223 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2224 		ret = mnt_want_write_file(filp);
2225 		if (ret)
2226 			return ret;
2227 	}
2228 
2229 	switch (in) {
2230 	case F2FS_GOING_DOWN_FULLSYNC:
2231 		sb = freeze_bdev(sb->s_bdev);
2232 		if (IS_ERR(sb)) {
2233 			ret = PTR_ERR(sb);
2234 			goto out;
2235 		}
2236 		if (sb) {
2237 			f2fs_stop_checkpoint(sbi, false);
2238 			set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2239 			thaw_bdev(sb->s_bdev, sb);
2240 		}
2241 		break;
2242 	case F2FS_GOING_DOWN_METASYNC:
2243 		/* do checkpoint only */
2244 		ret = f2fs_sync_fs(sb, 1);
2245 		if (ret)
2246 			goto out;
2247 		f2fs_stop_checkpoint(sbi, false);
2248 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2249 		break;
2250 	case F2FS_GOING_DOWN_NOSYNC:
2251 		f2fs_stop_checkpoint(sbi, false);
2252 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2253 		break;
2254 	case F2FS_GOING_DOWN_METAFLUSH:
2255 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2256 		f2fs_stop_checkpoint(sbi, false);
2257 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2258 		break;
2259 	case F2FS_GOING_DOWN_NEED_FSCK:
2260 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2261 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2262 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2263 		/* do checkpoint only */
2264 		ret = f2fs_sync_fs(sb, 1);
2265 		goto out;
2266 	default:
2267 		ret = -EINVAL;
2268 		goto out;
2269 	}
2270 
2271 	f2fs_stop_gc_thread(sbi);
2272 	f2fs_stop_discard_thread(sbi);
2273 
2274 	f2fs_drop_discard_cmd(sbi);
2275 	clear_opt(sbi, DISCARD);
2276 
2277 	f2fs_update_time(sbi, REQ_TIME);
2278 out:
2279 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2280 		mnt_drop_write_file(filp);
2281 
2282 	trace_f2fs_shutdown(sbi, in, ret);
2283 
2284 	return ret;
2285 }
2286 
2287 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2288 {
2289 	struct inode *inode = file_inode(filp);
2290 	struct super_block *sb = inode->i_sb;
2291 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
2292 	struct fstrim_range range;
2293 	int ret;
2294 
2295 	if (!capable(CAP_SYS_ADMIN))
2296 		return -EPERM;
2297 
2298 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2299 		return -EOPNOTSUPP;
2300 
2301 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2302 				sizeof(range)))
2303 		return -EFAULT;
2304 
2305 	ret = mnt_want_write_file(filp);
2306 	if (ret)
2307 		return ret;
2308 
2309 	range.minlen = max((unsigned int)range.minlen,
2310 				q->limits.discard_granularity);
2311 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2312 	mnt_drop_write_file(filp);
2313 	if (ret < 0)
2314 		return ret;
2315 
2316 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2317 				sizeof(range)))
2318 		return -EFAULT;
2319 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2320 	return 0;
2321 }
2322 
2323 static bool uuid_is_nonzero(__u8 u[16])
2324 {
2325 	int i;
2326 
2327 	for (i = 0; i < 16; i++)
2328 		if (u[i])
2329 			return true;
2330 	return false;
2331 }
2332 
2333 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2334 {
2335 	struct inode *inode = file_inode(filp);
2336 
2337 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2338 		return -EOPNOTSUPP;
2339 
2340 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2341 
2342 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2343 }
2344 
2345 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2346 {
2347 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2348 		return -EOPNOTSUPP;
2349 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2350 }
2351 
2352 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2353 {
2354 	struct inode *inode = file_inode(filp);
2355 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2356 	int err;
2357 
2358 	if (!f2fs_sb_has_encrypt(sbi))
2359 		return -EOPNOTSUPP;
2360 
2361 	err = mnt_want_write_file(filp);
2362 	if (err)
2363 		return err;
2364 
2365 	down_write(&sbi->sb_lock);
2366 
2367 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2368 		goto got_it;
2369 
2370 	/* update superblock with uuid */
2371 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2372 
2373 	err = f2fs_commit_super(sbi, false);
2374 	if (err) {
2375 		/* undo new data */
2376 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2377 		goto out_err;
2378 	}
2379 got_it:
2380 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2381 									16))
2382 		err = -EFAULT;
2383 out_err:
2384 	up_write(&sbi->sb_lock);
2385 	mnt_drop_write_file(filp);
2386 	return err;
2387 }
2388 
2389 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2390 					     unsigned long arg)
2391 {
2392 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2393 		return -EOPNOTSUPP;
2394 
2395 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2396 }
2397 
2398 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2399 {
2400 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2401 		return -EOPNOTSUPP;
2402 
2403 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2404 }
2405 
2406 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2407 {
2408 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2409 		return -EOPNOTSUPP;
2410 
2411 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2412 }
2413 
2414 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2415 						    unsigned long arg)
2416 {
2417 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2418 		return -EOPNOTSUPP;
2419 
2420 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2421 }
2422 
2423 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2424 					      unsigned long arg)
2425 {
2426 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2427 		return -EOPNOTSUPP;
2428 
2429 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2430 }
2431 
2432 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2433 {
2434 	struct inode *inode = file_inode(filp);
2435 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2436 	__u32 sync;
2437 	int ret;
2438 
2439 	if (!capable(CAP_SYS_ADMIN))
2440 		return -EPERM;
2441 
2442 	if (get_user(sync, (__u32 __user *)arg))
2443 		return -EFAULT;
2444 
2445 	if (f2fs_readonly(sbi->sb))
2446 		return -EROFS;
2447 
2448 	ret = mnt_want_write_file(filp);
2449 	if (ret)
2450 		return ret;
2451 
2452 	if (!sync) {
2453 		if (!down_write_trylock(&sbi->gc_lock)) {
2454 			ret = -EBUSY;
2455 			goto out;
2456 		}
2457 	} else {
2458 		down_write(&sbi->gc_lock);
2459 	}
2460 
2461 	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2462 out:
2463 	mnt_drop_write_file(filp);
2464 	return ret;
2465 }
2466 
2467 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2468 {
2469 	struct inode *inode = file_inode(filp);
2470 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2471 	struct f2fs_gc_range range;
2472 	u64 end;
2473 	int ret;
2474 
2475 	if (!capable(CAP_SYS_ADMIN))
2476 		return -EPERM;
2477 
2478 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2479 							sizeof(range)))
2480 		return -EFAULT;
2481 
2482 	if (f2fs_readonly(sbi->sb))
2483 		return -EROFS;
2484 
2485 	end = range.start + range.len;
2486 	if (end < range.start || range.start < MAIN_BLKADDR(sbi) ||
2487 					end >= MAX_BLKADDR(sbi))
2488 		return -EINVAL;
2489 
2490 	ret = mnt_want_write_file(filp);
2491 	if (ret)
2492 		return ret;
2493 
2494 do_more:
2495 	if (!range.sync) {
2496 		if (!down_write_trylock(&sbi->gc_lock)) {
2497 			ret = -EBUSY;
2498 			goto out;
2499 		}
2500 	} else {
2501 		down_write(&sbi->gc_lock);
2502 	}
2503 
2504 	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2505 	range.start += BLKS_PER_SEC(sbi);
2506 	if (range.start <= end)
2507 		goto do_more;
2508 out:
2509 	mnt_drop_write_file(filp);
2510 	return ret;
2511 }
2512 
2513 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2514 {
2515 	struct inode *inode = file_inode(filp);
2516 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2517 	int ret;
2518 
2519 	if (!capable(CAP_SYS_ADMIN))
2520 		return -EPERM;
2521 
2522 	if (f2fs_readonly(sbi->sb))
2523 		return -EROFS;
2524 
2525 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2526 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2527 		return -EINVAL;
2528 	}
2529 
2530 	ret = mnt_want_write_file(filp);
2531 	if (ret)
2532 		return ret;
2533 
2534 	ret = f2fs_sync_fs(sbi->sb, 1);
2535 
2536 	mnt_drop_write_file(filp);
2537 	return ret;
2538 }
2539 
2540 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2541 					struct file *filp,
2542 					struct f2fs_defragment *range)
2543 {
2544 	struct inode *inode = file_inode(filp);
2545 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2546 					.m_seg_type = NO_CHECK_TYPE ,
2547 					.m_may_create = false };
2548 	struct extent_info ei = {0, 0, 0};
2549 	pgoff_t pg_start, pg_end, next_pgofs;
2550 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2551 	unsigned int total = 0, sec_num;
2552 	block_t blk_end = 0;
2553 	bool fragmented = false;
2554 	int err;
2555 
2556 	/* if in-place-update policy is enabled, don't waste time here */
2557 	if (f2fs_should_update_inplace(inode, NULL))
2558 		return -EINVAL;
2559 
2560 	pg_start = range->start >> PAGE_SHIFT;
2561 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2562 
2563 	f2fs_balance_fs(sbi, true);
2564 
2565 	inode_lock(inode);
2566 
2567 	/* writeback all dirty pages in the range */
2568 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2569 						range->start + range->len - 1);
2570 	if (err)
2571 		goto out;
2572 
2573 	/*
2574 	 * lookup mapping info in extent cache, skip defragmenting if physical
2575 	 * block addresses are continuous.
2576 	 */
2577 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2578 		if (ei.fofs + ei.len >= pg_end)
2579 			goto out;
2580 	}
2581 
2582 	map.m_lblk = pg_start;
2583 	map.m_next_pgofs = &next_pgofs;
2584 
2585 	/*
2586 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2587 	 * physical block addresses are continuous even if there are hole(s)
2588 	 * in logical blocks.
2589 	 */
2590 	while (map.m_lblk < pg_end) {
2591 		map.m_len = pg_end - map.m_lblk;
2592 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2593 		if (err)
2594 			goto out;
2595 
2596 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2597 			map.m_lblk = next_pgofs;
2598 			continue;
2599 		}
2600 
2601 		if (blk_end && blk_end != map.m_pblk)
2602 			fragmented = true;
2603 
2604 		/* record total count of block that we're going to move */
2605 		total += map.m_len;
2606 
2607 		blk_end = map.m_pblk + map.m_len;
2608 
2609 		map.m_lblk += map.m_len;
2610 	}
2611 
2612 	if (!fragmented) {
2613 		total = 0;
2614 		goto out;
2615 	}
2616 
2617 	sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2618 
2619 	/*
2620 	 * make sure there are enough free section for LFS allocation, this can
2621 	 * avoid defragment running in SSR mode when free section are allocated
2622 	 * intensively
2623 	 */
2624 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2625 		err = -EAGAIN;
2626 		goto out;
2627 	}
2628 
2629 	map.m_lblk = pg_start;
2630 	map.m_len = pg_end - pg_start;
2631 	total = 0;
2632 
2633 	while (map.m_lblk < pg_end) {
2634 		pgoff_t idx;
2635 		int cnt = 0;
2636 
2637 do_map:
2638 		map.m_len = pg_end - map.m_lblk;
2639 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2640 		if (err)
2641 			goto clear_out;
2642 
2643 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2644 			map.m_lblk = next_pgofs;
2645 			goto check;
2646 		}
2647 
2648 		set_inode_flag(inode, FI_DO_DEFRAG);
2649 
2650 		idx = map.m_lblk;
2651 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2652 			struct page *page;
2653 
2654 			page = f2fs_get_lock_data_page(inode, idx, true);
2655 			if (IS_ERR(page)) {
2656 				err = PTR_ERR(page);
2657 				goto clear_out;
2658 			}
2659 
2660 			set_page_dirty(page);
2661 			f2fs_put_page(page, 1);
2662 
2663 			idx++;
2664 			cnt++;
2665 			total++;
2666 		}
2667 
2668 		map.m_lblk = idx;
2669 check:
2670 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2671 			goto do_map;
2672 
2673 		clear_inode_flag(inode, FI_DO_DEFRAG);
2674 
2675 		err = filemap_fdatawrite(inode->i_mapping);
2676 		if (err)
2677 			goto out;
2678 	}
2679 clear_out:
2680 	clear_inode_flag(inode, FI_DO_DEFRAG);
2681 out:
2682 	inode_unlock(inode);
2683 	if (!err)
2684 		range->len = (u64)total << PAGE_SHIFT;
2685 	return err;
2686 }
2687 
2688 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2689 {
2690 	struct inode *inode = file_inode(filp);
2691 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2692 	struct f2fs_defragment range;
2693 	int err;
2694 
2695 	if (!capable(CAP_SYS_ADMIN))
2696 		return -EPERM;
2697 
2698 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2699 		return -EINVAL;
2700 
2701 	if (f2fs_readonly(sbi->sb))
2702 		return -EROFS;
2703 
2704 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2705 							sizeof(range)))
2706 		return -EFAULT;
2707 
2708 	/* verify alignment of offset & size */
2709 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2710 		return -EINVAL;
2711 
2712 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2713 					sbi->max_file_blocks))
2714 		return -EINVAL;
2715 
2716 	err = mnt_want_write_file(filp);
2717 	if (err)
2718 		return err;
2719 
2720 	err = f2fs_defragment_range(sbi, filp, &range);
2721 	mnt_drop_write_file(filp);
2722 
2723 	f2fs_update_time(sbi, REQ_TIME);
2724 	if (err < 0)
2725 		return err;
2726 
2727 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2728 							sizeof(range)))
2729 		return -EFAULT;
2730 
2731 	return 0;
2732 }
2733 
2734 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2735 			struct file *file_out, loff_t pos_out, size_t len)
2736 {
2737 	struct inode *src = file_inode(file_in);
2738 	struct inode *dst = file_inode(file_out);
2739 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2740 	size_t olen = len, dst_max_i_size = 0;
2741 	size_t dst_osize;
2742 	int ret;
2743 
2744 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2745 				src->i_sb != dst->i_sb)
2746 		return -EXDEV;
2747 
2748 	if (unlikely(f2fs_readonly(src->i_sb)))
2749 		return -EROFS;
2750 
2751 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2752 		return -EINVAL;
2753 
2754 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2755 		return -EOPNOTSUPP;
2756 
2757 	if (src == dst) {
2758 		if (pos_in == pos_out)
2759 			return 0;
2760 		if (pos_out > pos_in && pos_out < pos_in + len)
2761 			return -EINVAL;
2762 	}
2763 
2764 	inode_lock(src);
2765 	if (src != dst) {
2766 		ret = -EBUSY;
2767 		if (!inode_trylock(dst))
2768 			goto out;
2769 	}
2770 
2771 	ret = -EINVAL;
2772 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2773 		goto out_unlock;
2774 	if (len == 0)
2775 		olen = len = src->i_size - pos_in;
2776 	if (pos_in + len == src->i_size)
2777 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2778 	if (len == 0) {
2779 		ret = 0;
2780 		goto out_unlock;
2781 	}
2782 
2783 	dst_osize = dst->i_size;
2784 	if (pos_out + olen > dst->i_size)
2785 		dst_max_i_size = pos_out + olen;
2786 
2787 	/* verify the end result is block aligned */
2788 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2789 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2790 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2791 		goto out_unlock;
2792 
2793 	ret = f2fs_convert_inline_inode(src);
2794 	if (ret)
2795 		goto out_unlock;
2796 
2797 	ret = f2fs_convert_inline_inode(dst);
2798 	if (ret)
2799 		goto out_unlock;
2800 
2801 	/* write out all dirty pages from offset */
2802 	ret = filemap_write_and_wait_range(src->i_mapping,
2803 					pos_in, pos_in + len);
2804 	if (ret)
2805 		goto out_unlock;
2806 
2807 	ret = filemap_write_and_wait_range(dst->i_mapping,
2808 					pos_out, pos_out + len);
2809 	if (ret)
2810 		goto out_unlock;
2811 
2812 	f2fs_balance_fs(sbi, true);
2813 
2814 	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2815 	if (src != dst) {
2816 		ret = -EBUSY;
2817 		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2818 			goto out_src;
2819 	}
2820 
2821 	f2fs_lock_op(sbi);
2822 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2823 				pos_out >> F2FS_BLKSIZE_BITS,
2824 				len >> F2FS_BLKSIZE_BITS, false);
2825 
2826 	if (!ret) {
2827 		if (dst_max_i_size)
2828 			f2fs_i_size_write(dst, dst_max_i_size);
2829 		else if (dst_osize != dst->i_size)
2830 			f2fs_i_size_write(dst, dst_osize);
2831 	}
2832 	f2fs_unlock_op(sbi);
2833 
2834 	if (src != dst)
2835 		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2836 out_src:
2837 	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2838 out_unlock:
2839 	if (src != dst)
2840 		inode_unlock(dst);
2841 out:
2842 	inode_unlock(src);
2843 	return ret;
2844 }
2845 
2846 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2847 {
2848 	struct f2fs_move_range range;
2849 	struct fd dst;
2850 	int err;
2851 
2852 	if (!(filp->f_mode & FMODE_READ) ||
2853 			!(filp->f_mode & FMODE_WRITE))
2854 		return -EBADF;
2855 
2856 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2857 							sizeof(range)))
2858 		return -EFAULT;
2859 
2860 	dst = fdget(range.dst_fd);
2861 	if (!dst.file)
2862 		return -EBADF;
2863 
2864 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2865 		err = -EBADF;
2866 		goto err_out;
2867 	}
2868 
2869 	err = mnt_want_write_file(filp);
2870 	if (err)
2871 		goto err_out;
2872 
2873 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2874 					range.pos_out, range.len);
2875 
2876 	mnt_drop_write_file(filp);
2877 	if (err)
2878 		goto err_out;
2879 
2880 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2881 						&range, sizeof(range)))
2882 		err = -EFAULT;
2883 err_out:
2884 	fdput(dst);
2885 	return err;
2886 }
2887 
2888 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2889 {
2890 	struct inode *inode = file_inode(filp);
2891 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2892 	struct sit_info *sm = SIT_I(sbi);
2893 	unsigned int start_segno = 0, end_segno = 0;
2894 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2895 	struct f2fs_flush_device range;
2896 	int ret;
2897 
2898 	if (!capable(CAP_SYS_ADMIN))
2899 		return -EPERM;
2900 
2901 	if (f2fs_readonly(sbi->sb))
2902 		return -EROFS;
2903 
2904 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2905 		return -EINVAL;
2906 
2907 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2908 							sizeof(range)))
2909 		return -EFAULT;
2910 
2911 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2912 			__is_large_section(sbi)) {
2913 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2914 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2915 		return -EINVAL;
2916 	}
2917 
2918 	ret = mnt_want_write_file(filp);
2919 	if (ret)
2920 		return ret;
2921 
2922 	if (range.dev_num != 0)
2923 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2924 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2925 
2926 	start_segno = sm->last_victim[FLUSH_DEVICE];
2927 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2928 		start_segno = dev_start_segno;
2929 	end_segno = min(start_segno + range.segments, dev_end_segno);
2930 
2931 	while (start_segno < end_segno) {
2932 		if (!down_write_trylock(&sbi->gc_lock)) {
2933 			ret = -EBUSY;
2934 			goto out;
2935 		}
2936 		sm->last_victim[GC_CB] = end_segno + 1;
2937 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2938 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2939 		ret = f2fs_gc(sbi, true, true, start_segno);
2940 		if (ret == -EAGAIN)
2941 			ret = 0;
2942 		else if (ret < 0)
2943 			break;
2944 		start_segno++;
2945 	}
2946 out:
2947 	mnt_drop_write_file(filp);
2948 	return ret;
2949 }
2950 
2951 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2952 {
2953 	struct inode *inode = file_inode(filp);
2954 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2955 
2956 	/* Must validate to set it with SQLite behavior in Android. */
2957 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2958 
2959 	return put_user(sb_feature, (u32 __user *)arg);
2960 }
2961 
2962 #ifdef CONFIG_QUOTA
2963 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2964 {
2965 	struct dquot *transfer_to[MAXQUOTAS] = {};
2966 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2967 	struct super_block *sb = sbi->sb;
2968 	int err = 0;
2969 
2970 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2971 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2972 		err = __dquot_transfer(inode, transfer_to);
2973 		if (err)
2974 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2975 		dqput(transfer_to[PRJQUOTA]);
2976 	}
2977 	return err;
2978 }
2979 
2980 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2981 {
2982 	struct inode *inode = file_inode(filp);
2983 	struct f2fs_inode_info *fi = F2FS_I(inode);
2984 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2985 	struct page *ipage;
2986 	kprojid_t kprojid;
2987 	int err;
2988 
2989 	if (!f2fs_sb_has_project_quota(sbi)) {
2990 		if (projid != F2FS_DEF_PROJID)
2991 			return -EOPNOTSUPP;
2992 		else
2993 			return 0;
2994 	}
2995 
2996 	if (!f2fs_has_extra_attr(inode))
2997 		return -EOPNOTSUPP;
2998 
2999 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3000 
3001 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3002 		return 0;
3003 
3004 	err = -EPERM;
3005 	/* Is it quota file? Do not allow user to mess with it */
3006 	if (IS_NOQUOTA(inode))
3007 		return err;
3008 
3009 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3010 	if (IS_ERR(ipage))
3011 		return PTR_ERR(ipage);
3012 
3013 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3014 								i_projid)) {
3015 		err = -EOVERFLOW;
3016 		f2fs_put_page(ipage, 1);
3017 		return err;
3018 	}
3019 	f2fs_put_page(ipage, 1);
3020 
3021 	err = dquot_initialize(inode);
3022 	if (err)
3023 		return err;
3024 
3025 	f2fs_lock_op(sbi);
3026 	err = f2fs_transfer_project_quota(inode, kprojid);
3027 	if (err)
3028 		goto out_unlock;
3029 
3030 	F2FS_I(inode)->i_projid = kprojid;
3031 	inode->i_ctime = current_time(inode);
3032 	f2fs_mark_inode_dirty_sync(inode, true);
3033 out_unlock:
3034 	f2fs_unlock_op(sbi);
3035 	return err;
3036 }
3037 #else
3038 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3039 {
3040 	return 0;
3041 }
3042 
3043 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3044 {
3045 	if (projid != F2FS_DEF_PROJID)
3046 		return -EOPNOTSUPP;
3047 	return 0;
3048 }
3049 #endif
3050 
3051 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
3052 
3053 /*
3054  * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
3055  * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
3056  * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
3057  */
3058 
3059 static const struct {
3060 	u32 iflag;
3061 	u32 xflag;
3062 } f2fs_xflags_map[] = {
3063 	{ F2FS_SYNC_FL,		FS_XFLAG_SYNC },
3064 	{ F2FS_IMMUTABLE_FL,	FS_XFLAG_IMMUTABLE },
3065 	{ F2FS_APPEND_FL,	FS_XFLAG_APPEND },
3066 	{ F2FS_NODUMP_FL,	FS_XFLAG_NODUMP },
3067 	{ F2FS_NOATIME_FL,	FS_XFLAG_NOATIME },
3068 	{ F2FS_PROJINHERIT_FL,	FS_XFLAG_PROJINHERIT },
3069 };
3070 
3071 #define F2FS_SUPPORTED_XFLAGS (		\
3072 		FS_XFLAG_SYNC |		\
3073 		FS_XFLAG_IMMUTABLE |	\
3074 		FS_XFLAG_APPEND |	\
3075 		FS_XFLAG_NODUMP |	\
3076 		FS_XFLAG_NOATIME |	\
3077 		FS_XFLAG_PROJINHERIT)
3078 
3079 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
3080 static inline u32 f2fs_iflags_to_xflags(u32 iflags)
3081 {
3082 	u32 xflags = 0;
3083 	int i;
3084 
3085 	for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3086 		if (iflags & f2fs_xflags_map[i].iflag)
3087 			xflags |= f2fs_xflags_map[i].xflag;
3088 
3089 	return xflags;
3090 }
3091 
3092 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
3093 static inline u32 f2fs_xflags_to_iflags(u32 xflags)
3094 {
3095 	u32 iflags = 0;
3096 	int i;
3097 
3098 	for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3099 		if (xflags & f2fs_xflags_map[i].xflag)
3100 			iflags |= f2fs_xflags_map[i].iflag;
3101 
3102 	return iflags;
3103 }
3104 
3105 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
3106 {
3107 	struct f2fs_inode_info *fi = F2FS_I(inode);
3108 
3109 	simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
3110 
3111 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3112 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3113 }
3114 
3115 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
3116 {
3117 	struct inode *inode = file_inode(filp);
3118 	struct fsxattr fa;
3119 
3120 	f2fs_fill_fsxattr(inode, &fa);
3121 
3122 	if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
3123 		return -EFAULT;
3124 	return 0;
3125 }
3126 
3127 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
3128 {
3129 	struct inode *inode = file_inode(filp);
3130 	struct fsxattr fa, old_fa;
3131 	u32 iflags;
3132 	int err;
3133 
3134 	if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
3135 		return -EFAULT;
3136 
3137 	/* Make sure caller has proper permission */
3138 	if (!inode_owner_or_capable(inode))
3139 		return -EACCES;
3140 
3141 	if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
3142 		return -EOPNOTSUPP;
3143 
3144 	iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
3145 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3146 		return -EOPNOTSUPP;
3147 
3148 	err = mnt_want_write_file(filp);
3149 	if (err)
3150 		return err;
3151 
3152 	inode_lock(inode);
3153 
3154 	f2fs_fill_fsxattr(inode, &old_fa);
3155 	err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
3156 	if (err)
3157 		goto out;
3158 
3159 	err = f2fs_setflags_common(inode, iflags,
3160 			f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
3161 	if (err)
3162 		goto out;
3163 
3164 	err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3165 out:
3166 	inode_unlock(inode);
3167 	mnt_drop_write_file(filp);
3168 	return err;
3169 }
3170 
3171 int f2fs_pin_file_control(struct inode *inode, bool inc)
3172 {
3173 	struct f2fs_inode_info *fi = F2FS_I(inode);
3174 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3175 
3176 	/* Use i_gc_failures for normal file as a risk signal. */
3177 	if (inc)
3178 		f2fs_i_gc_failures_write(inode,
3179 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3180 
3181 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3182 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3183 			  __func__, inode->i_ino,
3184 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3185 		clear_inode_flag(inode, FI_PIN_FILE);
3186 		return -EAGAIN;
3187 	}
3188 	return 0;
3189 }
3190 
3191 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3192 {
3193 	struct inode *inode = file_inode(filp);
3194 	__u32 pin;
3195 	int ret = 0;
3196 
3197 	if (get_user(pin, (__u32 __user *)arg))
3198 		return -EFAULT;
3199 
3200 	if (!S_ISREG(inode->i_mode))
3201 		return -EINVAL;
3202 
3203 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3204 		return -EROFS;
3205 
3206 	ret = mnt_want_write_file(filp);
3207 	if (ret)
3208 		return ret;
3209 
3210 	inode_lock(inode);
3211 
3212 	if (f2fs_should_update_outplace(inode, NULL)) {
3213 		ret = -EINVAL;
3214 		goto out;
3215 	}
3216 
3217 	if (!pin) {
3218 		clear_inode_flag(inode, FI_PIN_FILE);
3219 		f2fs_i_gc_failures_write(inode, 0);
3220 		goto done;
3221 	}
3222 
3223 	if (f2fs_pin_file_control(inode, false)) {
3224 		ret = -EAGAIN;
3225 		goto out;
3226 	}
3227 
3228 	ret = f2fs_convert_inline_inode(inode);
3229 	if (ret)
3230 		goto out;
3231 
3232 	if (f2fs_disable_compressed_file(inode)) {
3233 		ret = -EOPNOTSUPP;
3234 		goto out;
3235 	}
3236 
3237 	set_inode_flag(inode, FI_PIN_FILE);
3238 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3239 done:
3240 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3241 out:
3242 	inode_unlock(inode);
3243 	mnt_drop_write_file(filp);
3244 	return ret;
3245 }
3246 
3247 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3248 {
3249 	struct inode *inode = file_inode(filp);
3250 	__u32 pin = 0;
3251 
3252 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3253 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3254 	return put_user(pin, (u32 __user *)arg);
3255 }
3256 
3257 int f2fs_precache_extents(struct inode *inode)
3258 {
3259 	struct f2fs_inode_info *fi = F2FS_I(inode);
3260 	struct f2fs_map_blocks map;
3261 	pgoff_t m_next_extent;
3262 	loff_t end;
3263 	int err;
3264 
3265 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3266 		return -EOPNOTSUPP;
3267 
3268 	map.m_lblk = 0;
3269 	map.m_next_pgofs = NULL;
3270 	map.m_next_extent = &m_next_extent;
3271 	map.m_seg_type = NO_CHECK_TYPE;
3272 	map.m_may_create = false;
3273 	end = F2FS_I_SB(inode)->max_file_blocks;
3274 
3275 	while (map.m_lblk < end) {
3276 		map.m_len = end - map.m_lblk;
3277 
3278 		down_write(&fi->i_gc_rwsem[WRITE]);
3279 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3280 		up_write(&fi->i_gc_rwsem[WRITE]);
3281 		if (err)
3282 			return err;
3283 
3284 		map.m_lblk = m_next_extent;
3285 	}
3286 
3287 	return err;
3288 }
3289 
3290 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3291 {
3292 	return f2fs_precache_extents(file_inode(filp));
3293 }
3294 
3295 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3296 {
3297 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3298 	__u64 block_count;
3299 	int ret;
3300 
3301 	if (!capable(CAP_SYS_ADMIN))
3302 		return -EPERM;
3303 
3304 	if (f2fs_readonly(sbi->sb))
3305 		return -EROFS;
3306 
3307 	if (copy_from_user(&block_count, (void __user *)arg,
3308 			   sizeof(block_count)))
3309 		return -EFAULT;
3310 
3311 	ret = f2fs_resize_fs(sbi, block_count);
3312 
3313 	return ret;
3314 }
3315 
3316 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3317 {
3318 	struct inode *inode = file_inode(filp);
3319 
3320 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3321 
3322 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3323 		f2fs_warn(F2FS_I_SB(inode),
3324 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3325 			  inode->i_ino);
3326 		return -EOPNOTSUPP;
3327 	}
3328 
3329 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3330 }
3331 
3332 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3333 {
3334 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3335 		return -EOPNOTSUPP;
3336 
3337 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3338 }
3339 
3340 static int f2fs_get_volume_name(struct file *filp, unsigned long arg)
3341 {
3342 	struct inode *inode = file_inode(filp);
3343 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3344 	char *vbuf;
3345 	int count;
3346 	int err = 0;
3347 
3348 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3349 	if (!vbuf)
3350 		return -ENOMEM;
3351 
3352 	down_read(&sbi->sb_lock);
3353 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3354 			ARRAY_SIZE(sbi->raw_super->volume_name),
3355 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3356 	up_read(&sbi->sb_lock);
3357 
3358 	if (copy_to_user((char __user *)arg, vbuf,
3359 				min(FSLABEL_MAX, count)))
3360 		err = -EFAULT;
3361 
3362 	kvfree(vbuf);
3363 	return err;
3364 }
3365 
3366 static int f2fs_set_volume_name(struct file *filp, unsigned long arg)
3367 {
3368 	struct inode *inode = file_inode(filp);
3369 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3370 	char *vbuf;
3371 	int err = 0;
3372 
3373 	if (!capable(CAP_SYS_ADMIN))
3374 		return -EPERM;
3375 
3376 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3377 	if (IS_ERR(vbuf))
3378 		return PTR_ERR(vbuf);
3379 
3380 	err = mnt_want_write_file(filp);
3381 	if (err)
3382 		goto out;
3383 
3384 	down_write(&sbi->sb_lock);
3385 
3386 	memset(sbi->raw_super->volume_name, 0,
3387 			sizeof(sbi->raw_super->volume_name));
3388 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3389 			sbi->raw_super->volume_name,
3390 			ARRAY_SIZE(sbi->raw_super->volume_name));
3391 
3392 	err = f2fs_commit_super(sbi, false);
3393 
3394 	up_write(&sbi->sb_lock);
3395 
3396 	mnt_drop_write_file(filp);
3397 out:
3398 	kfree(vbuf);
3399 	return err;
3400 }
3401 
3402 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
3403 {
3404 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
3405 		return -EIO;
3406 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
3407 		return -ENOSPC;
3408 
3409 	switch (cmd) {
3410 	case F2FS_IOC_GETFLAGS:
3411 		return f2fs_ioc_getflags(filp, arg);
3412 	case F2FS_IOC_SETFLAGS:
3413 		return f2fs_ioc_setflags(filp, arg);
3414 	case F2FS_IOC_GETVERSION:
3415 		return f2fs_ioc_getversion(filp, arg);
3416 	case F2FS_IOC_START_ATOMIC_WRITE:
3417 		return f2fs_ioc_start_atomic_write(filp);
3418 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3419 		return f2fs_ioc_commit_atomic_write(filp);
3420 	case F2FS_IOC_START_VOLATILE_WRITE:
3421 		return f2fs_ioc_start_volatile_write(filp);
3422 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3423 		return f2fs_ioc_release_volatile_write(filp);
3424 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
3425 		return f2fs_ioc_abort_volatile_write(filp);
3426 	case F2FS_IOC_SHUTDOWN:
3427 		return f2fs_ioc_shutdown(filp, arg);
3428 	case FITRIM:
3429 		return f2fs_ioc_fitrim(filp, arg);
3430 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
3431 		return f2fs_ioc_set_encryption_policy(filp, arg);
3432 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
3433 		return f2fs_ioc_get_encryption_policy(filp, arg);
3434 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3435 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
3436 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3437 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
3438 	case FS_IOC_ADD_ENCRYPTION_KEY:
3439 		return f2fs_ioc_add_encryption_key(filp, arg);
3440 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
3441 		return f2fs_ioc_remove_encryption_key(filp, arg);
3442 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3443 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
3444 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3445 		return f2fs_ioc_get_encryption_key_status(filp, arg);
3446 	case F2FS_IOC_GARBAGE_COLLECT:
3447 		return f2fs_ioc_gc(filp, arg);
3448 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3449 		return f2fs_ioc_gc_range(filp, arg);
3450 	case F2FS_IOC_WRITE_CHECKPOINT:
3451 		return f2fs_ioc_write_checkpoint(filp, arg);
3452 	case F2FS_IOC_DEFRAGMENT:
3453 		return f2fs_ioc_defragment(filp, arg);
3454 	case F2FS_IOC_MOVE_RANGE:
3455 		return f2fs_ioc_move_range(filp, arg);
3456 	case F2FS_IOC_FLUSH_DEVICE:
3457 		return f2fs_ioc_flush_device(filp, arg);
3458 	case F2FS_IOC_GET_FEATURES:
3459 		return f2fs_ioc_get_features(filp, arg);
3460 	case F2FS_IOC_FSGETXATTR:
3461 		return f2fs_ioc_fsgetxattr(filp, arg);
3462 	case F2FS_IOC_FSSETXATTR:
3463 		return f2fs_ioc_fssetxattr(filp, arg);
3464 	case F2FS_IOC_GET_PIN_FILE:
3465 		return f2fs_ioc_get_pin_file(filp, arg);
3466 	case F2FS_IOC_SET_PIN_FILE:
3467 		return f2fs_ioc_set_pin_file(filp, arg);
3468 	case F2FS_IOC_PRECACHE_EXTENTS:
3469 		return f2fs_ioc_precache_extents(filp, arg);
3470 	case F2FS_IOC_RESIZE_FS:
3471 		return f2fs_ioc_resize_fs(filp, arg);
3472 	case FS_IOC_ENABLE_VERITY:
3473 		return f2fs_ioc_enable_verity(filp, arg);
3474 	case FS_IOC_MEASURE_VERITY:
3475 		return f2fs_ioc_measure_verity(filp, arg);
3476 	case F2FS_IOC_GET_VOLUME_NAME:
3477 		return f2fs_get_volume_name(filp, arg);
3478 	case F2FS_IOC_SET_VOLUME_NAME:
3479 		return f2fs_set_volume_name(filp, arg);
3480 	default:
3481 		return -ENOTTY;
3482 	}
3483 }
3484 
3485 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
3486 {
3487 	struct file *file = iocb->ki_filp;
3488 	struct inode *inode = file_inode(file);
3489 
3490 	if (!f2fs_is_compress_backend_ready(inode))
3491 		return -EOPNOTSUPP;
3492 
3493 	return generic_file_read_iter(iocb, iter);
3494 }
3495 
3496 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3497 {
3498 	struct file *file = iocb->ki_filp;
3499 	struct inode *inode = file_inode(file);
3500 	ssize_t ret;
3501 
3502 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
3503 		ret = -EIO;
3504 		goto out;
3505 	}
3506 
3507 	if (!f2fs_is_compress_backend_ready(inode))
3508 		return -EOPNOTSUPP;
3509 
3510 	if (iocb->ki_flags & IOCB_NOWAIT) {
3511 		if (!inode_trylock(inode)) {
3512 			ret = -EAGAIN;
3513 			goto out;
3514 		}
3515 	} else {
3516 		inode_lock(inode);
3517 	}
3518 
3519 	ret = generic_write_checks(iocb, from);
3520 	if (ret > 0) {
3521 		bool preallocated = false;
3522 		size_t target_size = 0;
3523 		int err;
3524 
3525 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
3526 			set_inode_flag(inode, FI_NO_PREALLOC);
3527 
3528 		if ((iocb->ki_flags & IOCB_NOWAIT)) {
3529 			if (!f2fs_overwrite_io(inode, iocb->ki_pos,
3530 						iov_iter_count(from)) ||
3531 				f2fs_has_inline_data(inode) ||
3532 				f2fs_force_buffered_io(inode, iocb, from)) {
3533 				clear_inode_flag(inode, FI_NO_PREALLOC);
3534 				inode_unlock(inode);
3535 				ret = -EAGAIN;
3536 				goto out;
3537 			}
3538 			goto write;
3539 		}
3540 
3541 		if (is_inode_flag_set(inode, FI_NO_PREALLOC))
3542 			goto write;
3543 
3544 		if (iocb->ki_flags & IOCB_DIRECT) {
3545 			/*
3546 			 * Convert inline data for Direct I/O before entering
3547 			 * f2fs_direct_IO().
3548 			 */
3549 			err = f2fs_convert_inline_inode(inode);
3550 			if (err)
3551 				goto out_err;
3552 			/*
3553 			 * If force_buffere_io() is true, we have to allocate
3554 			 * blocks all the time, since f2fs_direct_IO will fall
3555 			 * back to buffered IO.
3556 			 */
3557 			if (!f2fs_force_buffered_io(inode, iocb, from) &&
3558 					allow_outplace_dio(inode, iocb, from))
3559 				goto write;
3560 		}
3561 		preallocated = true;
3562 		target_size = iocb->ki_pos + iov_iter_count(from);
3563 
3564 		err = f2fs_preallocate_blocks(iocb, from);
3565 		if (err) {
3566 out_err:
3567 			clear_inode_flag(inode, FI_NO_PREALLOC);
3568 			inode_unlock(inode);
3569 			ret = err;
3570 			goto out;
3571 		}
3572 write:
3573 		ret = __generic_file_write_iter(iocb, from);
3574 		clear_inode_flag(inode, FI_NO_PREALLOC);
3575 
3576 		/* if we couldn't write data, we should deallocate blocks. */
3577 		if (preallocated && i_size_read(inode) < target_size)
3578 			f2fs_truncate(inode);
3579 
3580 		if (ret > 0)
3581 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
3582 	}
3583 	inode_unlock(inode);
3584 out:
3585 	trace_f2fs_file_write_iter(inode, iocb->ki_pos,
3586 					iov_iter_count(from), ret);
3587 	if (ret > 0)
3588 		ret = generic_write_sync(iocb, ret);
3589 	return ret;
3590 }
3591 
3592 #ifdef CONFIG_COMPAT
3593 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3594 {
3595 	switch (cmd) {
3596 	case F2FS_IOC32_GETFLAGS:
3597 		cmd = F2FS_IOC_GETFLAGS;
3598 		break;
3599 	case F2FS_IOC32_SETFLAGS:
3600 		cmd = F2FS_IOC_SETFLAGS;
3601 		break;
3602 	case F2FS_IOC32_GETVERSION:
3603 		cmd = F2FS_IOC_GETVERSION;
3604 		break;
3605 	case F2FS_IOC_START_ATOMIC_WRITE:
3606 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3607 	case F2FS_IOC_START_VOLATILE_WRITE:
3608 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3609 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
3610 	case F2FS_IOC_SHUTDOWN:
3611 	case FITRIM:
3612 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
3613 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3614 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
3615 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3616 	case FS_IOC_ADD_ENCRYPTION_KEY:
3617 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
3618 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3619 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3620 	case F2FS_IOC_GARBAGE_COLLECT:
3621 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3622 	case F2FS_IOC_WRITE_CHECKPOINT:
3623 	case F2FS_IOC_DEFRAGMENT:
3624 	case F2FS_IOC_MOVE_RANGE:
3625 	case F2FS_IOC_FLUSH_DEVICE:
3626 	case F2FS_IOC_GET_FEATURES:
3627 	case F2FS_IOC_FSGETXATTR:
3628 	case F2FS_IOC_FSSETXATTR:
3629 	case F2FS_IOC_GET_PIN_FILE:
3630 	case F2FS_IOC_SET_PIN_FILE:
3631 	case F2FS_IOC_PRECACHE_EXTENTS:
3632 	case F2FS_IOC_RESIZE_FS:
3633 	case FS_IOC_ENABLE_VERITY:
3634 	case FS_IOC_MEASURE_VERITY:
3635 	case F2FS_IOC_GET_VOLUME_NAME:
3636 	case F2FS_IOC_SET_VOLUME_NAME:
3637 		break;
3638 	default:
3639 		return -ENOIOCTLCMD;
3640 	}
3641 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3642 }
3643 #endif
3644 
3645 const struct file_operations f2fs_file_operations = {
3646 	.llseek		= f2fs_llseek,
3647 	.read_iter	= f2fs_file_read_iter,
3648 	.write_iter	= f2fs_file_write_iter,
3649 	.open		= f2fs_file_open,
3650 	.release	= f2fs_release_file,
3651 	.mmap		= f2fs_file_mmap,
3652 	.flush		= f2fs_file_flush,
3653 	.fsync		= f2fs_sync_file,
3654 	.fallocate	= f2fs_fallocate,
3655 	.unlocked_ioctl	= f2fs_ioctl,
3656 #ifdef CONFIG_COMPAT
3657 	.compat_ioctl	= f2fs_compat_ioctl,
3658 #endif
3659 	.splice_read	= generic_file_splice_read,
3660 	.splice_write	= iter_file_splice_write,
3661 };
3662