xref: /openbmc/linux/fs/f2fs/file.c (revision 56d06fa2)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/random.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33 
34 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
35 						struct vm_fault *vmf)
36 {
37 	struct page *page = vmf->page;
38 	struct inode *inode = file_inode(vma->vm_file);
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	struct dnode_of_data dn;
41 	int err;
42 
43 	sb_start_pagefault(inode->i_sb);
44 
45 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
46 
47 	/* block allocation */
48 	f2fs_lock_op(sbi);
49 	set_new_dnode(&dn, inode, NULL, NULL, 0);
50 	err = f2fs_reserve_block(&dn, page->index);
51 	if (err) {
52 		f2fs_unlock_op(sbi);
53 		goto out;
54 	}
55 	f2fs_put_dnode(&dn);
56 	f2fs_unlock_op(sbi);
57 
58 	f2fs_balance_fs(sbi, dn.node_changed);
59 
60 	file_update_time(vma->vm_file);
61 	lock_page(page);
62 	if (unlikely(page->mapping != inode->i_mapping ||
63 			page_offset(page) > i_size_read(inode) ||
64 			!PageUptodate(page))) {
65 		unlock_page(page);
66 		err = -EFAULT;
67 		goto out;
68 	}
69 
70 	/*
71 	 * check to see if the page is mapped already (no holes)
72 	 */
73 	if (PageMappedToDisk(page))
74 		goto mapped;
75 
76 	/* page is wholly or partially inside EOF */
77 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
78 						i_size_read(inode)) {
79 		unsigned offset;
80 		offset = i_size_read(inode) & ~PAGE_MASK;
81 		zero_user_segment(page, offset, PAGE_SIZE);
82 	}
83 	set_page_dirty(page);
84 	SetPageUptodate(page);
85 
86 	trace_f2fs_vm_page_mkwrite(page, DATA);
87 mapped:
88 	/* fill the page */
89 	f2fs_wait_on_page_writeback(page, DATA, false);
90 
91 	/* wait for GCed encrypted page writeback */
92 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
93 		f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
94 
95 	/* if gced page is attached, don't write to cold segment */
96 	clear_cold_data(page);
97 out:
98 	sb_end_pagefault(inode->i_sb);
99 	f2fs_update_time(sbi, REQ_TIME);
100 	return block_page_mkwrite_return(err);
101 }
102 
103 static const struct vm_operations_struct f2fs_file_vm_ops = {
104 	.fault		= filemap_fault,
105 	.map_pages	= filemap_map_pages,
106 	.page_mkwrite	= f2fs_vm_page_mkwrite,
107 };
108 
109 static int get_parent_ino(struct inode *inode, nid_t *pino)
110 {
111 	struct dentry *dentry;
112 
113 	inode = igrab(inode);
114 	dentry = d_find_any_alias(inode);
115 	iput(inode);
116 	if (!dentry)
117 		return 0;
118 
119 	if (update_dent_inode(inode, inode, &dentry->d_name)) {
120 		dput(dentry);
121 		return 0;
122 	}
123 
124 	*pino = parent_ino(dentry);
125 	dput(dentry);
126 	return 1;
127 }
128 
129 static inline bool need_do_checkpoint(struct inode *inode)
130 {
131 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
132 	bool need_cp = false;
133 
134 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
135 		need_cp = true;
136 	else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
137 		need_cp = true;
138 	else if (file_wrong_pino(inode))
139 		need_cp = true;
140 	else if (!space_for_roll_forward(sbi))
141 		need_cp = true;
142 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
143 		need_cp = true;
144 	else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
145 		need_cp = true;
146 	else if (test_opt(sbi, FASTBOOT))
147 		need_cp = true;
148 	else if (sbi->active_logs == 2)
149 		need_cp = true;
150 
151 	return need_cp;
152 }
153 
154 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
155 {
156 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
157 	bool ret = false;
158 	/* But we need to avoid that there are some inode updates */
159 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
160 		ret = true;
161 	f2fs_put_page(i, 0);
162 	return ret;
163 }
164 
165 static void try_to_fix_pino(struct inode *inode)
166 {
167 	struct f2fs_inode_info *fi = F2FS_I(inode);
168 	nid_t pino;
169 
170 	down_write(&fi->i_sem);
171 	fi->xattr_ver = 0;
172 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
173 			get_parent_ino(inode, &pino)) {
174 		fi->i_pino = pino;
175 		file_got_pino(inode);
176 		up_write(&fi->i_sem);
177 
178 		mark_inode_dirty_sync(inode);
179 		f2fs_write_inode(inode, NULL);
180 	} else {
181 		up_write(&fi->i_sem);
182 	}
183 }
184 
185 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
186 {
187 	struct inode *inode = file->f_mapping->host;
188 	struct f2fs_inode_info *fi = F2FS_I(inode);
189 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 	nid_t ino = inode->i_ino;
191 	int ret = 0;
192 	bool need_cp = false;
193 	struct writeback_control wbc = {
194 		.sync_mode = WB_SYNC_ALL,
195 		.nr_to_write = LONG_MAX,
196 		.for_reclaim = 0,
197 	};
198 
199 	if (unlikely(f2fs_readonly(inode->i_sb)))
200 		return 0;
201 
202 	trace_f2fs_sync_file_enter(inode);
203 
204 	/* if fdatasync is triggered, let's do in-place-update */
205 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
206 		set_inode_flag(fi, FI_NEED_IPU);
207 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
208 	clear_inode_flag(fi, FI_NEED_IPU);
209 
210 	if (ret) {
211 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
212 		return ret;
213 	}
214 
215 	/* if the inode is dirty, let's recover all the time */
216 	if (!datasync) {
217 		f2fs_write_inode(inode, NULL);
218 		goto go_write;
219 	}
220 
221 	/*
222 	 * if there is no written data, don't waste time to write recovery info.
223 	 */
224 	if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
225 			!exist_written_data(sbi, ino, APPEND_INO)) {
226 
227 		/* it may call write_inode just prior to fsync */
228 		if (need_inode_page_update(sbi, ino))
229 			goto go_write;
230 
231 		if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
232 				exist_written_data(sbi, ino, UPDATE_INO))
233 			goto flush_out;
234 		goto out;
235 	}
236 go_write:
237 	/*
238 	 * Both of fdatasync() and fsync() are able to be recovered from
239 	 * sudden-power-off.
240 	 */
241 	down_read(&fi->i_sem);
242 	need_cp = need_do_checkpoint(inode);
243 	up_read(&fi->i_sem);
244 
245 	if (need_cp) {
246 		/* all the dirty node pages should be flushed for POR */
247 		ret = f2fs_sync_fs(inode->i_sb, 1);
248 
249 		/*
250 		 * We've secured consistency through sync_fs. Following pino
251 		 * will be used only for fsynced inodes after checkpoint.
252 		 */
253 		try_to_fix_pino(inode);
254 		clear_inode_flag(fi, FI_APPEND_WRITE);
255 		clear_inode_flag(fi, FI_UPDATE_WRITE);
256 		goto out;
257 	}
258 sync_nodes:
259 	sync_node_pages(sbi, ino, &wbc);
260 
261 	/* if cp_error was enabled, we should avoid infinite loop */
262 	if (unlikely(f2fs_cp_error(sbi))) {
263 		ret = -EIO;
264 		goto out;
265 	}
266 
267 	if (need_inode_block_update(sbi, ino)) {
268 		mark_inode_dirty_sync(inode);
269 		f2fs_write_inode(inode, NULL);
270 		goto sync_nodes;
271 	}
272 
273 	ret = wait_on_node_pages_writeback(sbi, ino);
274 	if (ret)
275 		goto out;
276 
277 	/* once recovery info is written, don't need to tack this */
278 	remove_ino_entry(sbi, ino, APPEND_INO);
279 	clear_inode_flag(fi, FI_APPEND_WRITE);
280 flush_out:
281 	remove_ino_entry(sbi, ino, UPDATE_INO);
282 	clear_inode_flag(fi, FI_UPDATE_WRITE);
283 	ret = f2fs_issue_flush(sbi);
284 	f2fs_update_time(sbi, REQ_TIME);
285 out:
286 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
287 	f2fs_trace_ios(NULL, 1);
288 	return ret;
289 }
290 
291 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
292 						pgoff_t pgofs, int whence)
293 {
294 	struct pagevec pvec;
295 	int nr_pages;
296 
297 	if (whence != SEEK_DATA)
298 		return 0;
299 
300 	/* find first dirty page index */
301 	pagevec_init(&pvec, 0);
302 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
303 					PAGECACHE_TAG_DIRTY, 1);
304 	pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
305 	pagevec_release(&pvec);
306 	return pgofs;
307 }
308 
309 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
310 							int whence)
311 {
312 	switch (whence) {
313 	case SEEK_DATA:
314 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
315 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
316 			return true;
317 		break;
318 	case SEEK_HOLE:
319 		if (blkaddr == NULL_ADDR)
320 			return true;
321 		break;
322 	}
323 	return false;
324 }
325 
326 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
327 {
328 	struct inode *inode = file->f_mapping->host;
329 	loff_t maxbytes = inode->i_sb->s_maxbytes;
330 	struct dnode_of_data dn;
331 	pgoff_t pgofs, end_offset, dirty;
332 	loff_t data_ofs = offset;
333 	loff_t isize;
334 	int err = 0;
335 
336 	inode_lock(inode);
337 
338 	isize = i_size_read(inode);
339 	if (offset >= isize)
340 		goto fail;
341 
342 	/* handle inline data case */
343 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
344 		if (whence == SEEK_HOLE)
345 			data_ofs = isize;
346 		goto found;
347 	}
348 
349 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
350 
351 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
352 
353 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
354 		set_new_dnode(&dn, inode, NULL, NULL, 0);
355 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
356 		if (err && err != -ENOENT) {
357 			goto fail;
358 		} else if (err == -ENOENT) {
359 			/* direct node does not exists */
360 			if (whence == SEEK_DATA) {
361 				pgofs = get_next_page_offset(&dn, pgofs);
362 				continue;
363 			} else {
364 				goto found;
365 			}
366 		}
367 
368 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
369 
370 		/* find data/hole in dnode block */
371 		for (; dn.ofs_in_node < end_offset;
372 				dn.ofs_in_node++, pgofs++,
373 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
374 			block_t blkaddr;
375 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
376 
377 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
378 				f2fs_put_dnode(&dn);
379 				goto found;
380 			}
381 		}
382 		f2fs_put_dnode(&dn);
383 	}
384 
385 	if (whence == SEEK_DATA)
386 		goto fail;
387 found:
388 	if (whence == SEEK_HOLE && data_ofs > isize)
389 		data_ofs = isize;
390 	inode_unlock(inode);
391 	return vfs_setpos(file, data_ofs, maxbytes);
392 fail:
393 	inode_unlock(inode);
394 	return -ENXIO;
395 }
396 
397 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
398 {
399 	struct inode *inode = file->f_mapping->host;
400 	loff_t maxbytes = inode->i_sb->s_maxbytes;
401 
402 	switch (whence) {
403 	case SEEK_SET:
404 	case SEEK_CUR:
405 	case SEEK_END:
406 		return generic_file_llseek_size(file, offset, whence,
407 						maxbytes, i_size_read(inode));
408 	case SEEK_DATA:
409 	case SEEK_HOLE:
410 		if (offset < 0)
411 			return -ENXIO;
412 		return f2fs_seek_block(file, offset, whence);
413 	}
414 
415 	return -EINVAL;
416 }
417 
418 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
419 {
420 	struct inode *inode = file_inode(file);
421 	int err;
422 
423 	if (f2fs_encrypted_inode(inode)) {
424 		err = fscrypt_get_encryption_info(inode);
425 		if (err)
426 			return 0;
427 		if (!f2fs_encrypted_inode(inode))
428 			return -ENOKEY;
429 	}
430 
431 	/* we don't need to use inline_data strictly */
432 	err = f2fs_convert_inline_inode(inode);
433 	if (err)
434 		return err;
435 
436 	file_accessed(file);
437 	vma->vm_ops = &f2fs_file_vm_ops;
438 	return 0;
439 }
440 
441 static int f2fs_file_open(struct inode *inode, struct file *filp)
442 {
443 	int ret = generic_file_open(inode, filp);
444 	struct dentry *dir;
445 
446 	if (!ret && f2fs_encrypted_inode(inode)) {
447 		ret = fscrypt_get_encryption_info(inode);
448 		if (ret)
449 			return -EACCES;
450 		if (!fscrypt_has_encryption_key(inode))
451 			return -ENOKEY;
452 	}
453 	dir = dget_parent(file_dentry(filp));
454 	if (f2fs_encrypted_inode(d_inode(dir)) &&
455 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
456 		dput(dir);
457 		return -EPERM;
458 	}
459 	dput(dir);
460 	return ret;
461 }
462 
463 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
464 {
465 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
466 	struct f2fs_node *raw_node;
467 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
468 	__le32 *addr;
469 
470 	raw_node = F2FS_NODE(dn->node_page);
471 	addr = blkaddr_in_node(raw_node) + ofs;
472 
473 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
474 		block_t blkaddr = le32_to_cpu(*addr);
475 		if (blkaddr == NULL_ADDR)
476 			continue;
477 
478 		dn->data_blkaddr = NULL_ADDR;
479 		set_data_blkaddr(dn);
480 		invalidate_blocks(sbi, blkaddr);
481 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
482 			clear_inode_flag(F2FS_I(dn->inode),
483 						FI_FIRST_BLOCK_WRITTEN);
484 		nr_free++;
485 	}
486 
487 	if (nr_free) {
488 		pgoff_t fofs;
489 		/*
490 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
491 		 * we will invalidate all blkaddr in the whole range.
492 		 */
493 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
494 							dn->inode) + ofs;
495 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
496 		dec_valid_block_count(sbi, dn->inode, nr_free);
497 		sync_inode_page(dn);
498 	}
499 	dn->ofs_in_node = ofs;
500 
501 	f2fs_update_time(sbi, REQ_TIME);
502 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
503 					 dn->ofs_in_node, nr_free);
504 	return nr_free;
505 }
506 
507 void truncate_data_blocks(struct dnode_of_data *dn)
508 {
509 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
510 }
511 
512 static int truncate_partial_data_page(struct inode *inode, u64 from,
513 								bool cache_only)
514 {
515 	unsigned offset = from & (PAGE_SIZE - 1);
516 	pgoff_t index = from >> PAGE_SHIFT;
517 	struct address_space *mapping = inode->i_mapping;
518 	struct page *page;
519 
520 	if (!offset && !cache_only)
521 		return 0;
522 
523 	if (cache_only) {
524 		page = f2fs_grab_cache_page(mapping, index, false);
525 		if (page && PageUptodate(page))
526 			goto truncate_out;
527 		f2fs_put_page(page, 1);
528 		return 0;
529 	}
530 
531 	page = get_lock_data_page(inode, index, true);
532 	if (IS_ERR(page))
533 		return 0;
534 truncate_out:
535 	f2fs_wait_on_page_writeback(page, DATA, true);
536 	zero_user(page, offset, PAGE_SIZE - offset);
537 	if (!cache_only || !f2fs_encrypted_inode(inode) ||
538 					!S_ISREG(inode->i_mode))
539 		set_page_dirty(page);
540 	f2fs_put_page(page, 1);
541 	return 0;
542 }
543 
544 int truncate_blocks(struct inode *inode, u64 from, bool lock)
545 {
546 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
547 	unsigned int blocksize = inode->i_sb->s_blocksize;
548 	struct dnode_of_data dn;
549 	pgoff_t free_from;
550 	int count = 0, err = 0;
551 	struct page *ipage;
552 	bool truncate_page = false;
553 
554 	trace_f2fs_truncate_blocks_enter(inode, from);
555 
556 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
557 
558 	if (lock)
559 		f2fs_lock_op(sbi);
560 
561 	ipage = get_node_page(sbi, inode->i_ino);
562 	if (IS_ERR(ipage)) {
563 		err = PTR_ERR(ipage);
564 		goto out;
565 	}
566 
567 	if (f2fs_has_inline_data(inode)) {
568 		if (truncate_inline_inode(ipage, from))
569 			set_page_dirty(ipage);
570 		f2fs_put_page(ipage, 1);
571 		truncate_page = true;
572 		goto out;
573 	}
574 
575 	set_new_dnode(&dn, inode, ipage, NULL, 0);
576 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
577 	if (err) {
578 		if (err == -ENOENT)
579 			goto free_next;
580 		goto out;
581 	}
582 
583 	count = ADDRS_PER_PAGE(dn.node_page, inode);
584 
585 	count -= dn.ofs_in_node;
586 	f2fs_bug_on(sbi, count < 0);
587 
588 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
589 		truncate_data_blocks_range(&dn, count);
590 		free_from += count;
591 	}
592 
593 	f2fs_put_dnode(&dn);
594 free_next:
595 	err = truncate_inode_blocks(inode, free_from);
596 out:
597 	if (lock)
598 		f2fs_unlock_op(sbi);
599 
600 	/* lastly zero out the first data page */
601 	if (!err)
602 		err = truncate_partial_data_page(inode, from, truncate_page);
603 
604 	trace_f2fs_truncate_blocks_exit(inode, err);
605 	return err;
606 }
607 
608 int f2fs_truncate(struct inode *inode, bool lock)
609 {
610 	int err;
611 
612 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
613 				S_ISLNK(inode->i_mode)))
614 		return 0;
615 
616 	trace_f2fs_truncate(inode);
617 
618 	/* we should check inline_data size */
619 	if (!f2fs_may_inline_data(inode)) {
620 		err = f2fs_convert_inline_inode(inode);
621 		if (err)
622 			return err;
623 	}
624 
625 	err = truncate_blocks(inode, i_size_read(inode), lock);
626 	if (err)
627 		return err;
628 
629 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
630 	mark_inode_dirty(inode);
631 	return 0;
632 }
633 
634 int f2fs_getattr(struct vfsmount *mnt,
635 			 struct dentry *dentry, struct kstat *stat)
636 {
637 	struct inode *inode = d_inode(dentry);
638 	generic_fillattr(inode, stat);
639 	stat->blocks <<= 3;
640 	return 0;
641 }
642 
643 #ifdef CONFIG_F2FS_FS_POSIX_ACL
644 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
645 {
646 	struct f2fs_inode_info *fi = F2FS_I(inode);
647 	unsigned int ia_valid = attr->ia_valid;
648 
649 	if (ia_valid & ATTR_UID)
650 		inode->i_uid = attr->ia_uid;
651 	if (ia_valid & ATTR_GID)
652 		inode->i_gid = attr->ia_gid;
653 	if (ia_valid & ATTR_ATIME)
654 		inode->i_atime = timespec_trunc(attr->ia_atime,
655 						inode->i_sb->s_time_gran);
656 	if (ia_valid & ATTR_MTIME)
657 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
658 						inode->i_sb->s_time_gran);
659 	if (ia_valid & ATTR_CTIME)
660 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
661 						inode->i_sb->s_time_gran);
662 	if (ia_valid & ATTR_MODE) {
663 		umode_t mode = attr->ia_mode;
664 
665 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
666 			mode &= ~S_ISGID;
667 		set_acl_inode(fi, mode);
668 	}
669 }
670 #else
671 #define __setattr_copy setattr_copy
672 #endif
673 
674 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
675 {
676 	struct inode *inode = d_inode(dentry);
677 	struct f2fs_inode_info *fi = F2FS_I(inode);
678 	int err;
679 
680 	err = inode_change_ok(inode, attr);
681 	if (err)
682 		return err;
683 
684 	if (attr->ia_valid & ATTR_SIZE) {
685 		if (f2fs_encrypted_inode(inode) &&
686 				fscrypt_get_encryption_info(inode))
687 			return -EACCES;
688 
689 		if (attr->ia_size <= i_size_read(inode)) {
690 			truncate_setsize(inode, attr->ia_size);
691 			err = f2fs_truncate(inode, true);
692 			if (err)
693 				return err;
694 			f2fs_balance_fs(F2FS_I_SB(inode), true);
695 		} else {
696 			/*
697 			 * do not trim all blocks after i_size if target size is
698 			 * larger than i_size.
699 			 */
700 			truncate_setsize(inode, attr->ia_size);
701 
702 			/* should convert inline inode here */
703 			if (!f2fs_may_inline_data(inode)) {
704 				err = f2fs_convert_inline_inode(inode);
705 				if (err)
706 					return err;
707 			}
708 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
709 		}
710 	}
711 
712 	__setattr_copy(inode, attr);
713 
714 	if (attr->ia_valid & ATTR_MODE) {
715 		err = posix_acl_chmod(inode, get_inode_mode(inode));
716 		if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
717 			inode->i_mode = fi->i_acl_mode;
718 			clear_inode_flag(fi, FI_ACL_MODE);
719 		}
720 	}
721 
722 	mark_inode_dirty(inode);
723 	return err;
724 }
725 
726 const struct inode_operations f2fs_file_inode_operations = {
727 	.getattr	= f2fs_getattr,
728 	.setattr	= f2fs_setattr,
729 	.get_acl	= f2fs_get_acl,
730 	.set_acl	= f2fs_set_acl,
731 #ifdef CONFIG_F2FS_FS_XATTR
732 	.setxattr	= generic_setxattr,
733 	.getxattr	= generic_getxattr,
734 	.listxattr	= f2fs_listxattr,
735 	.removexattr	= generic_removexattr,
736 #endif
737 	.fiemap		= f2fs_fiemap,
738 };
739 
740 static int fill_zero(struct inode *inode, pgoff_t index,
741 					loff_t start, loff_t len)
742 {
743 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
744 	struct page *page;
745 
746 	if (!len)
747 		return 0;
748 
749 	f2fs_balance_fs(sbi, true);
750 
751 	f2fs_lock_op(sbi);
752 	page = get_new_data_page(inode, NULL, index, false);
753 	f2fs_unlock_op(sbi);
754 
755 	if (IS_ERR(page))
756 		return PTR_ERR(page);
757 
758 	f2fs_wait_on_page_writeback(page, DATA, true);
759 	zero_user(page, start, len);
760 	set_page_dirty(page);
761 	f2fs_put_page(page, 1);
762 	return 0;
763 }
764 
765 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
766 {
767 	int err;
768 
769 	while (pg_start < pg_end) {
770 		struct dnode_of_data dn;
771 		pgoff_t end_offset, count;
772 
773 		set_new_dnode(&dn, inode, NULL, NULL, 0);
774 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
775 		if (err) {
776 			if (err == -ENOENT) {
777 				pg_start++;
778 				continue;
779 			}
780 			return err;
781 		}
782 
783 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
784 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
785 
786 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
787 
788 		truncate_data_blocks_range(&dn, count);
789 		f2fs_put_dnode(&dn);
790 
791 		pg_start += count;
792 	}
793 	return 0;
794 }
795 
796 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
797 {
798 	pgoff_t pg_start, pg_end;
799 	loff_t off_start, off_end;
800 	int ret;
801 
802 	ret = f2fs_convert_inline_inode(inode);
803 	if (ret)
804 		return ret;
805 
806 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
807 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
808 
809 	off_start = offset & (PAGE_SIZE - 1);
810 	off_end = (offset + len) & (PAGE_SIZE - 1);
811 
812 	if (pg_start == pg_end) {
813 		ret = fill_zero(inode, pg_start, off_start,
814 						off_end - off_start);
815 		if (ret)
816 			return ret;
817 	} else {
818 		if (off_start) {
819 			ret = fill_zero(inode, pg_start++, off_start,
820 						PAGE_SIZE - off_start);
821 			if (ret)
822 				return ret;
823 		}
824 		if (off_end) {
825 			ret = fill_zero(inode, pg_end, 0, off_end);
826 			if (ret)
827 				return ret;
828 		}
829 
830 		if (pg_start < pg_end) {
831 			struct address_space *mapping = inode->i_mapping;
832 			loff_t blk_start, blk_end;
833 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
834 
835 			f2fs_balance_fs(sbi, true);
836 
837 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
838 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
839 			truncate_inode_pages_range(mapping, blk_start,
840 					blk_end - 1);
841 
842 			f2fs_lock_op(sbi);
843 			ret = truncate_hole(inode, pg_start, pg_end);
844 			f2fs_unlock_op(sbi);
845 		}
846 	}
847 
848 	return ret;
849 }
850 
851 static int __exchange_data_block(struct inode *inode, pgoff_t src,
852 					pgoff_t dst, bool full)
853 {
854 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
855 	struct dnode_of_data dn;
856 	block_t new_addr;
857 	bool do_replace = false;
858 	int ret;
859 
860 	set_new_dnode(&dn, inode, NULL, NULL, 0);
861 	ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA);
862 	if (ret && ret != -ENOENT) {
863 		return ret;
864 	} else if (ret == -ENOENT) {
865 		new_addr = NULL_ADDR;
866 	} else {
867 		new_addr = dn.data_blkaddr;
868 		if (!is_checkpointed_data(sbi, new_addr)) {
869 			/* do not invalidate this block address */
870 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
871 			do_replace = true;
872 		}
873 		f2fs_put_dnode(&dn);
874 	}
875 
876 	if (new_addr == NULL_ADDR)
877 		return full ? truncate_hole(inode, dst, dst + 1) : 0;
878 
879 	if (do_replace) {
880 		struct page *ipage = get_node_page(sbi, inode->i_ino);
881 		struct node_info ni;
882 
883 		if (IS_ERR(ipage)) {
884 			ret = PTR_ERR(ipage);
885 			goto err_out;
886 		}
887 
888 		set_new_dnode(&dn, inode, ipage, NULL, 0);
889 		ret = f2fs_reserve_block(&dn, dst);
890 		if (ret)
891 			goto err_out;
892 
893 		truncate_data_blocks_range(&dn, 1);
894 
895 		get_node_info(sbi, dn.nid, &ni);
896 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
897 				ni.version, true, false);
898 		f2fs_put_dnode(&dn);
899 	} else {
900 		struct page *psrc, *pdst;
901 
902 		psrc = get_lock_data_page(inode, src, true);
903 		if (IS_ERR(psrc))
904 			return PTR_ERR(psrc);
905 		pdst = get_new_data_page(inode, NULL, dst, true);
906 		if (IS_ERR(pdst)) {
907 			f2fs_put_page(psrc, 1);
908 			return PTR_ERR(pdst);
909 		}
910 		f2fs_copy_page(psrc, pdst);
911 		set_page_dirty(pdst);
912 		f2fs_put_page(pdst, 1);
913 		f2fs_put_page(psrc, 1);
914 
915 		return truncate_hole(inode, src, src + 1);
916 	}
917 	return 0;
918 
919 err_out:
920 	if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) {
921 		f2fs_update_data_blkaddr(&dn, new_addr);
922 		f2fs_put_dnode(&dn);
923 	}
924 	return ret;
925 }
926 
927 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
928 {
929 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
930 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
931 	int ret = 0;
932 
933 	for (; end < nrpages; start++, end++) {
934 		f2fs_balance_fs(sbi, true);
935 		f2fs_lock_op(sbi);
936 		ret = __exchange_data_block(inode, end, start, true);
937 		f2fs_unlock_op(sbi);
938 		if (ret)
939 			break;
940 	}
941 	return ret;
942 }
943 
944 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
945 {
946 	pgoff_t pg_start, pg_end;
947 	loff_t new_size;
948 	int ret;
949 
950 	if (offset + len >= i_size_read(inode))
951 		return -EINVAL;
952 
953 	/* collapse range should be aligned to block size of f2fs. */
954 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
955 		return -EINVAL;
956 
957 	ret = f2fs_convert_inline_inode(inode);
958 	if (ret)
959 		return ret;
960 
961 	pg_start = offset >> PAGE_SHIFT;
962 	pg_end = (offset + len) >> PAGE_SHIFT;
963 
964 	/* write out all dirty pages from offset */
965 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
966 	if (ret)
967 		return ret;
968 
969 	truncate_pagecache(inode, offset);
970 
971 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
972 	if (ret)
973 		return ret;
974 
975 	/* write out all moved pages, if possible */
976 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
977 	truncate_pagecache(inode, offset);
978 
979 	new_size = i_size_read(inode) - len;
980 	truncate_pagecache(inode, new_size);
981 
982 	ret = truncate_blocks(inode, new_size, true);
983 	if (!ret)
984 		i_size_write(inode, new_size);
985 
986 	return ret;
987 }
988 
989 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
990 								int mode)
991 {
992 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
993 	struct address_space *mapping = inode->i_mapping;
994 	pgoff_t index, pg_start, pg_end;
995 	loff_t new_size = i_size_read(inode);
996 	loff_t off_start, off_end;
997 	int ret = 0;
998 
999 	ret = inode_newsize_ok(inode, (len + offset));
1000 	if (ret)
1001 		return ret;
1002 
1003 	ret = f2fs_convert_inline_inode(inode);
1004 	if (ret)
1005 		return ret;
1006 
1007 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1008 	if (ret)
1009 		return ret;
1010 
1011 	truncate_pagecache_range(inode, offset, offset + len - 1);
1012 
1013 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1014 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1015 
1016 	off_start = offset & (PAGE_SIZE - 1);
1017 	off_end = (offset + len) & (PAGE_SIZE - 1);
1018 
1019 	if (pg_start == pg_end) {
1020 		ret = fill_zero(inode, pg_start, off_start,
1021 						off_end - off_start);
1022 		if (ret)
1023 			return ret;
1024 
1025 		if (offset + len > new_size)
1026 			new_size = offset + len;
1027 		new_size = max_t(loff_t, new_size, offset + len);
1028 	} else {
1029 		if (off_start) {
1030 			ret = fill_zero(inode, pg_start++, off_start,
1031 						PAGE_SIZE - off_start);
1032 			if (ret)
1033 				return ret;
1034 
1035 			new_size = max_t(loff_t, new_size,
1036 					(loff_t)pg_start << PAGE_SHIFT);
1037 		}
1038 
1039 		for (index = pg_start; index < pg_end; index++) {
1040 			struct dnode_of_data dn;
1041 			struct page *ipage;
1042 
1043 			f2fs_lock_op(sbi);
1044 
1045 			ipage = get_node_page(sbi, inode->i_ino);
1046 			if (IS_ERR(ipage)) {
1047 				ret = PTR_ERR(ipage);
1048 				f2fs_unlock_op(sbi);
1049 				goto out;
1050 			}
1051 
1052 			set_new_dnode(&dn, inode, ipage, NULL, 0);
1053 			ret = f2fs_reserve_block(&dn, index);
1054 			if (ret) {
1055 				f2fs_unlock_op(sbi);
1056 				goto out;
1057 			}
1058 
1059 			if (dn.data_blkaddr != NEW_ADDR) {
1060 				invalidate_blocks(sbi, dn.data_blkaddr);
1061 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1062 			}
1063 			f2fs_put_dnode(&dn);
1064 			f2fs_unlock_op(sbi);
1065 
1066 			new_size = max_t(loff_t, new_size,
1067 				(loff_t)(index + 1) << PAGE_SHIFT);
1068 		}
1069 
1070 		if (off_end) {
1071 			ret = fill_zero(inode, pg_end, 0, off_end);
1072 			if (ret)
1073 				goto out;
1074 
1075 			new_size = max_t(loff_t, new_size, offset + len);
1076 		}
1077 	}
1078 
1079 out:
1080 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1081 		i_size_write(inode, new_size);
1082 		mark_inode_dirty(inode);
1083 		update_inode_page(inode);
1084 	}
1085 
1086 	return ret;
1087 }
1088 
1089 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1090 {
1091 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1092 	pgoff_t pg_start, pg_end, delta, nrpages, idx;
1093 	loff_t new_size;
1094 	int ret = 0;
1095 
1096 	new_size = i_size_read(inode) + len;
1097 	if (new_size > inode->i_sb->s_maxbytes)
1098 		return -EFBIG;
1099 
1100 	if (offset >= i_size_read(inode))
1101 		return -EINVAL;
1102 
1103 	/* insert range should be aligned to block size of f2fs. */
1104 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1105 		return -EINVAL;
1106 
1107 	ret = f2fs_convert_inline_inode(inode);
1108 	if (ret)
1109 		return ret;
1110 
1111 	f2fs_balance_fs(sbi, true);
1112 
1113 	ret = truncate_blocks(inode, i_size_read(inode), true);
1114 	if (ret)
1115 		return ret;
1116 
1117 	/* write out all dirty pages from offset */
1118 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1119 	if (ret)
1120 		return ret;
1121 
1122 	truncate_pagecache(inode, offset);
1123 
1124 	pg_start = offset >> PAGE_SHIFT;
1125 	pg_end = (offset + len) >> PAGE_SHIFT;
1126 	delta = pg_end - pg_start;
1127 	nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1128 
1129 	for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
1130 		f2fs_lock_op(sbi);
1131 		ret = __exchange_data_block(inode, idx, idx + delta, false);
1132 		f2fs_unlock_op(sbi);
1133 		if (ret)
1134 			break;
1135 	}
1136 
1137 	/* write out all moved pages, if possible */
1138 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1139 	truncate_pagecache(inode, offset);
1140 
1141 	if (!ret)
1142 		i_size_write(inode, new_size);
1143 	return ret;
1144 }
1145 
1146 static int expand_inode_data(struct inode *inode, loff_t offset,
1147 					loff_t len, int mode)
1148 {
1149 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1150 	pgoff_t index, pg_start, pg_end;
1151 	loff_t new_size = i_size_read(inode);
1152 	loff_t off_start, off_end;
1153 	int ret = 0;
1154 
1155 	ret = inode_newsize_ok(inode, (len + offset));
1156 	if (ret)
1157 		return ret;
1158 
1159 	ret = f2fs_convert_inline_inode(inode);
1160 	if (ret)
1161 		return ret;
1162 
1163 	f2fs_balance_fs(sbi, true);
1164 
1165 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1166 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1167 
1168 	off_start = offset & (PAGE_SIZE - 1);
1169 	off_end = (offset + len) & (PAGE_SIZE - 1);
1170 
1171 	f2fs_lock_op(sbi);
1172 
1173 	for (index = pg_start; index <= pg_end; index++) {
1174 		struct dnode_of_data dn;
1175 
1176 		if (index == pg_end && !off_end)
1177 			goto noalloc;
1178 
1179 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1180 		ret = f2fs_reserve_block(&dn, index);
1181 		if (ret)
1182 			break;
1183 noalloc:
1184 		if (pg_start == pg_end)
1185 			new_size = offset + len;
1186 		else if (index == pg_start && off_start)
1187 			new_size = (loff_t)(index + 1) << PAGE_SHIFT;
1188 		else if (index == pg_end)
1189 			new_size = ((loff_t)index << PAGE_SHIFT) +
1190 								off_end;
1191 		else
1192 			new_size += PAGE_SIZE;
1193 	}
1194 
1195 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1196 		i_size_read(inode) < new_size) {
1197 		i_size_write(inode, new_size);
1198 		mark_inode_dirty(inode);
1199 		update_inode_page(inode);
1200 	}
1201 	f2fs_unlock_op(sbi);
1202 
1203 	return ret;
1204 }
1205 
1206 static long f2fs_fallocate(struct file *file, int mode,
1207 				loff_t offset, loff_t len)
1208 {
1209 	struct inode *inode = file_inode(file);
1210 	long ret = 0;
1211 
1212 	/* f2fs only support ->fallocate for regular file */
1213 	if (!S_ISREG(inode->i_mode))
1214 		return -EINVAL;
1215 
1216 	if (f2fs_encrypted_inode(inode) &&
1217 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1218 		return -EOPNOTSUPP;
1219 
1220 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1221 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1222 			FALLOC_FL_INSERT_RANGE))
1223 		return -EOPNOTSUPP;
1224 
1225 	inode_lock(inode);
1226 
1227 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1228 		if (offset >= inode->i_size)
1229 			goto out;
1230 
1231 		ret = punch_hole(inode, offset, len);
1232 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1233 		ret = f2fs_collapse_range(inode, offset, len);
1234 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1235 		ret = f2fs_zero_range(inode, offset, len, mode);
1236 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1237 		ret = f2fs_insert_range(inode, offset, len);
1238 	} else {
1239 		ret = expand_inode_data(inode, offset, len, mode);
1240 	}
1241 
1242 	if (!ret) {
1243 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1244 		mark_inode_dirty(inode);
1245 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1246 	}
1247 
1248 out:
1249 	inode_unlock(inode);
1250 
1251 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1252 	return ret;
1253 }
1254 
1255 static int f2fs_release_file(struct inode *inode, struct file *filp)
1256 {
1257 	/* some remained atomic pages should discarded */
1258 	if (f2fs_is_atomic_file(inode))
1259 		drop_inmem_pages(inode);
1260 	if (f2fs_is_volatile_file(inode)) {
1261 		set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1262 		filemap_fdatawrite(inode->i_mapping);
1263 		clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1264 	}
1265 	return 0;
1266 }
1267 
1268 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1269 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1270 
1271 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1272 {
1273 	if (S_ISDIR(mode))
1274 		return flags;
1275 	else if (S_ISREG(mode))
1276 		return flags & F2FS_REG_FLMASK;
1277 	else
1278 		return flags & F2FS_OTHER_FLMASK;
1279 }
1280 
1281 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1282 {
1283 	struct inode *inode = file_inode(filp);
1284 	struct f2fs_inode_info *fi = F2FS_I(inode);
1285 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1286 	return put_user(flags, (int __user *)arg);
1287 }
1288 
1289 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1290 {
1291 	struct inode *inode = file_inode(filp);
1292 	struct f2fs_inode_info *fi = F2FS_I(inode);
1293 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1294 	unsigned int oldflags;
1295 	int ret;
1296 
1297 	ret = mnt_want_write_file(filp);
1298 	if (ret)
1299 		return ret;
1300 
1301 	if (!inode_owner_or_capable(inode)) {
1302 		ret = -EACCES;
1303 		goto out;
1304 	}
1305 
1306 	if (get_user(flags, (int __user *)arg)) {
1307 		ret = -EFAULT;
1308 		goto out;
1309 	}
1310 
1311 	flags = f2fs_mask_flags(inode->i_mode, flags);
1312 
1313 	inode_lock(inode);
1314 
1315 	oldflags = fi->i_flags;
1316 
1317 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1318 		if (!capable(CAP_LINUX_IMMUTABLE)) {
1319 			inode_unlock(inode);
1320 			ret = -EPERM;
1321 			goto out;
1322 		}
1323 	}
1324 
1325 	flags = flags & FS_FL_USER_MODIFIABLE;
1326 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1327 	fi->i_flags = flags;
1328 	inode_unlock(inode);
1329 
1330 	f2fs_set_inode_flags(inode);
1331 	inode->i_ctime = CURRENT_TIME;
1332 	mark_inode_dirty(inode);
1333 out:
1334 	mnt_drop_write_file(filp);
1335 	return ret;
1336 }
1337 
1338 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1339 {
1340 	struct inode *inode = file_inode(filp);
1341 
1342 	return put_user(inode->i_generation, (int __user *)arg);
1343 }
1344 
1345 static int f2fs_ioc_start_atomic_write(struct file *filp)
1346 {
1347 	struct inode *inode = file_inode(filp);
1348 	int ret;
1349 
1350 	if (!inode_owner_or_capable(inode))
1351 		return -EACCES;
1352 
1353 	if (f2fs_is_atomic_file(inode))
1354 		return 0;
1355 
1356 	ret = f2fs_convert_inline_inode(inode);
1357 	if (ret)
1358 		return ret;
1359 
1360 	set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1361 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1362 
1363 	return 0;
1364 }
1365 
1366 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1367 {
1368 	struct inode *inode = file_inode(filp);
1369 	int ret;
1370 
1371 	if (!inode_owner_or_capable(inode))
1372 		return -EACCES;
1373 
1374 	if (f2fs_is_volatile_file(inode))
1375 		return 0;
1376 
1377 	ret = mnt_want_write_file(filp);
1378 	if (ret)
1379 		return ret;
1380 
1381 	if (f2fs_is_atomic_file(inode)) {
1382 		clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1383 		ret = commit_inmem_pages(inode);
1384 		if (ret) {
1385 			set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1386 			goto err_out;
1387 		}
1388 	}
1389 
1390 	ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1391 err_out:
1392 	mnt_drop_write_file(filp);
1393 	return ret;
1394 }
1395 
1396 static int f2fs_ioc_start_volatile_write(struct file *filp)
1397 {
1398 	struct inode *inode = file_inode(filp);
1399 	int ret;
1400 
1401 	if (!inode_owner_or_capable(inode))
1402 		return -EACCES;
1403 
1404 	if (f2fs_is_volatile_file(inode))
1405 		return 0;
1406 
1407 	ret = f2fs_convert_inline_inode(inode);
1408 	if (ret)
1409 		return ret;
1410 
1411 	set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1412 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1413 	return 0;
1414 }
1415 
1416 static int f2fs_ioc_release_volatile_write(struct file *filp)
1417 {
1418 	struct inode *inode = file_inode(filp);
1419 
1420 	if (!inode_owner_or_capable(inode))
1421 		return -EACCES;
1422 
1423 	if (!f2fs_is_volatile_file(inode))
1424 		return 0;
1425 
1426 	if (!f2fs_is_first_block_written(inode))
1427 		return truncate_partial_data_page(inode, 0, true);
1428 
1429 	return punch_hole(inode, 0, F2FS_BLKSIZE);
1430 }
1431 
1432 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1433 {
1434 	struct inode *inode = file_inode(filp);
1435 	int ret;
1436 
1437 	if (!inode_owner_or_capable(inode))
1438 		return -EACCES;
1439 
1440 	ret = mnt_want_write_file(filp);
1441 	if (ret)
1442 		return ret;
1443 
1444 	if (f2fs_is_atomic_file(inode)) {
1445 		clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1446 		drop_inmem_pages(inode);
1447 	}
1448 	if (f2fs_is_volatile_file(inode)) {
1449 		clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1450 		ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1451 	}
1452 
1453 	mnt_drop_write_file(filp);
1454 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1455 	return ret;
1456 }
1457 
1458 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1459 {
1460 	struct inode *inode = file_inode(filp);
1461 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1462 	struct super_block *sb = sbi->sb;
1463 	__u32 in;
1464 
1465 	if (!capable(CAP_SYS_ADMIN))
1466 		return -EPERM;
1467 
1468 	if (get_user(in, (__u32 __user *)arg))
1469 		return -EFAULT;
1470 
1471 	switch (in) {
1472 	case F2FS_GOING_DOWN_FULLSYNC:
1473 		sb = freeze_bdev(sb->s_bdev);
1474 		if (sb && !IS_ERR(sb)) {
1475 			f2fs_stop_checkpoint(sbi);
1476 			thaw_bdev(sb->s_bdev, sb);
1477 		}
1478 		break;
1479 	case F2FS_GOING_DOWN_METASYNC:
1480 		/* do checkpoint only */
1481 		f2fs_sync_fs(sb, 1);
1482 		f2fs_stop_checkpoint(sbi);
1483 		break;
1484 	case F2FS_GOING_DOWN_NOSYNC:
1485 		f2fs_stop_checkpoint(sbi);
1486 		break;
1487 	case F2FS_GOING_DOWN_METAFLUSH:
1488 		sync_meta_pages(sbi, META, LONG_MAX);
1489 		f2fs_stop_checkpoint(sbi);
1490 		break;
1491 	default:
1492 		return -EINVAL;
1493 	}
1494 	f2fs_update_time(sbi, REQ_TIME);
1495 	return 0;
1496 }
1497 
1498 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1499 {
1500 	struct inode *inode = file_inode(filp);
1501 	struct super_block *sb = inode->i_sb;
1502 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1503 	struct fstrim_range range;
1504 	int ret;
1505 
1506 	if (!capable(CAP_SYS_ADMIN))
1507 		return -EPERM;
1508 
1509 	if (!blk_queue_discard(q))
1510 		return -EOPNOTSUPP;
1511 
1512 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1513 				sizeof(range)))
1514 		return -EFAULT;
1515 
1516 	range.minlen = max((unsigned int)range.minlen,
1517 				q->limits.discard_granularity);
1518 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1519 	if (ret < 0)
1520 		return ret;
1521 
1522 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1523 				sizeof(range)))
1524 		return -EFAULT;
1525 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1526 	return 0;
1527 }
1528 
1529 static bool uuid_is_nonzero(__u8 u[16])
1530 {
1531 	int i;
1532 
1533 	for (i = 0; i < 16; i++)
1534 		if (u[i])
1535 			return true;
1536 	return false;
1537 }
1538 
1539 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1540 {
1541 	struct fscrypt_policy policy;
1542 	struct inode *inode = file_inode(filp);
1543 
1544 	if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1545 							sizeof(policy)))
1546 		return -EFAULT;
1547 
1548 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1549 	return fscrypt_process_policy(inode, &policy);
1550 }
1551 
1552 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1553 {
1554 	struct fscrypt_policy policy;
1555 	struct inode *inode = file_inode(filp);
1556 	int err;
1557 
1558 	err = fscrypt_get_policy(inode, &policy);
1559 	if (err)
1560 		return err;
1561 
1562 	if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1563 		return -EFAULT;
1564 	return 0;
1565 }
1566 
1567 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1568 {
1569 	struct inode *inode = file_inode(filp);
1570 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1571 	int err;
1572 
1573 	if (!f2fs_sb_has_crypto(inode->i_sb))
1574 		return -EOPNOTSUPP;
1575 
1576 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1577 		goto got_it;
1578 
1579 	err = mnt_want_write_file(filp);
1580 	if (err)
1581 		return err;
1582 
1583 	/* update superblock with uuid */
1584 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1585 
1586 	err = f2fs_commit_super(sbi, false);
1587 	if (err) {
1588 		/* undo new data */
1589 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1590 		mnt_drop_write_file(filp);
1591 		return err;
1592 	}
1593 	mnt_drop_write_file(filp);
1594 got_it:
1595 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1596 									16))
1597 		return -EFAULT;
1598 	return 0;
1599 }
1600 
1601 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1602 {
1603 	struct inode *inode = file_inode(filp);
1604 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1605 	__u32 sync;
1606 
1607 	if (!capable(CAP_SYS_ADMIN))
1608 		return -EPERM;
1609 
1610 	if (get_user(sync, (__u32 __user *)arg))
1611 		return -EFAULT;
1612 
1613 	if (f2fs_readonly(sbi->sb))
1614 		return -EROFS;
1615 
1616 	if (!sync) {
1617 		if (!mutex_trylock(&sbi->gc_mutex))
1618 			return -EBUSY;
1619 	} else {
1620 		mutex_lock(&sbi->gc_mutex);
1621 	}
1622 
1623 	return f2fs_gc(sbi, sync);
1624 }
1625 
1626 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1627 {
1628 	struct inode *inode = file_inode(filp);
1629 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1630 
1631 	if (!capable(CAP_SYS_ADMIN))
1632 		return -EPERM;
1633 
1634 	if (f2fs_readonly(sbi->sb))
1635 		return -EROFS;
1636 
1637 	return f2fs_sync_fs(sbi->sb, 1);
1638 }
1639 
1640 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1641 					struct file *filp,
1642 					struct f2fs_defragment *range)
1643 {
1644 	struct inode *inode = file_inode(filp);
1645 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1646 	struct extent_info ei;
1647 	pgoff_t pg_start, pg_end;
1648 	unsigned int blk_per_seg = sbi->blocks_per_seg;
1649 	unsigned int total = 0, sec_num;
1650 	unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1651 	block_t blk_end = 0;
1652 	bool fragmented = false;
1653 	int err;
1654 
1655 	/* if in-place-update policy is enabled, don't waste time here */
1656 	if (need_inplace_update(inode))
1657 		return -EINVAL;
1658 
1659 	pg_start = range->start >> PAGE_SHIFT;
1660 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
1661 
1662 	f2fs_balance_fs(sbi, true);
1663 
1664 	inode_lock(inode);
1665 
1666 	/* writeback all dirty pages in the range */
1667 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1668 						range->start + range->len - 1);
1669 	if (err)
1670 		goto out;
1671 
1672 	/*
1673 	 * lookup mapping info in extent cache, skip defragmenting if physical
1674 	 * block addresses are continuous.
1675 	 */
1676 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1677 		if (ei.fofs + ei.len >= pg_end)
1678 			goto out;
1679 	}
1680 
1681 	map.m_lblk = pg_start;
1682 
1683 	/*
1684 	 * lookup mapping info in dnode page cache, skip defragmenting if all
1685 	 * physical block addresses are continuous even if there are hole(s)
1686 	 * in logical blocks.
1687 	 */
1688 	while (map.m_lblk < pg_end) {
1689 		map.m_len = pg_end - map.m_lblk;
1690 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1691 		if (err)
1692 			goto out;
1693 
1694 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1695 			map.m_lblk++;
1696 			continue;
1697 		}
1698 
1699 		if (blk_end && blk_end != map.m_pblk) {
1700 			fragmented = true;
1701 			break;
1702 		}
1703 		blk_end = map.m_pblk + map.m_len;
1704 
1705 		map.m_lblk += map.m_len;
1706 	}
1707 
1708 	if (!fragmented)
1709 		goto out;
1710 
1711 	map.m_lblk = pg_start;
1712 	map.m_len = pg_end - pg_start;
1713 
1714 	sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1715 
1716 	/*
1717 	 * make sure there are enough free section for LFS allocation, this can
1718 	 * avoid defragment running in SSR mode when free section are allocated
1719 	 * intensively
1720 	 */
1721 	if (has_not_enough_free_secs(sbi, sec_num)) {
1722 		err = -EAGAIN;
1723 		goto out;
1724 	}
1725 
1726 	while (map.m_lblk < pg_end) {
1727 		pgoff_t idx;
1728 		int cnt = 0;
1729 
1730 do_map:
1731 		map.m_len = pg_end - map.m_lblk;
1732 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1733 		if (err)
1734 			goto clear_out;
1735 
1736 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1737 			map.m_lblk++;
1738 			continue;
1739 		}
1740 
1741 		set_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1742 
1743 		idx = map.m_lblk;
1744 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1745 			struct page *page;
1746 
1747 			page = get_lock_data_page(inode, idx, true);
1748 			if (IS_ERR(page)) {
1749 				err = PTR_ERR(page);
1750 				goto clear_out;
1751 			}
1752 
1753 			set_page_dirty(page);
1754 			f2fs_put_page(page, 1);
1755 
1756 			idx++;
1757 			cnt++;
1758 			total++;
1759 		}
1760 
1761 		map.m_lblk = idx;
1762 
1763 		if (idx < pg_end && cnt < blk_per_seg)
1764 			goto do_map;
1765 
1766 		clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1767 
1768 		err = filemap_fdatawrite(inode->i_mapping);
1769 		if (err)
1770 			goto out;
1771 	}
1772 clear_out:
1773 	clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1774 out:
1775 	inode_unlock(inode);
1776 	if (!err)
1777 		range->len = (u64)total << PAGE_SHIFT;
1778 	return err;
1779 }
1780 
1781 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
1782 {
1783 	struct inode *inode = file_inode(filp);
1784 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1785 	struct f2fs_defragment range;
1786 	int err;
1787 
1788 	if (!capable(CAP_SYS_ADMIN))
1789 		return -EPERM;
1790 
1791 	if (!S_ISREG(inode->i_mode))
1792 		return -EINVAL;
1793 
1794 	err = mnt_want_write_file(filp);
1795 	if (err)
1796 		return err;
1797 
1798 	if (f2fs_readonly(sbi->sb)) {
1799 		err = -EROFS;
1800 		goto out;
1801 	}
1802 
1803 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
1804 							sizeof(range))) {
1805 		err = -EFAULT;
1806 		goto out;
1807 	}
1808 
1809 	/* verify alignment of offset & size */
1810 	if (range.start & (F2FS_BLKSIZE - 1) ||
1811 		range.len & (F2FS_BLKSIZE - 1)) {
1812 		err = -EINVAL;
1813 		goto out;
1814 	}
1815 
1816 	err = f2fs_defragment_range(sbi, filp, &range);
1817 	f2fs_update_time(sbi, REQ_TIME);
1818 	if (err < 0)
1819 		goto out;
1820 
1821 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
1822 							sizeof(range)))
1823 		err = -EFAULT;
1824 out:
1825 	mnt_drop_write_file(filp);
1826 	return err;
1827 }
1828 
1829 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1830 {
1831 	switch (cmd) {
1832 	case F2FS_IOC_GETFLAGS:
1833 		return f2fs_ioc_getflags(filp, arg);
1834 	case F2FS_IOC_SETFLAGS:
1835 		return f2fs_ioc_setflags(filp, arg);
1836 	case F2FS_IOC_GETVERSION:
1837 		return f2fs_ioc_getversion(filp, arg);
1838 	case F2FS_IOC_START_ATOMIC_WRITE:
1839 		return f2fs_ioc_start_atomic_write(filp);
1840 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1841 		return f2fs_ioc_commit_atomic_write(filp);
1842 	case F2FS_IOC_START_VOLATILE_WRITE:
1843 		return f2fs_ioc_start_volatile_write(filp);
1844 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1845 		return f2fs_ioc_release_volatile_write(filp);
1846 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
1847 		return f2fs_ioc_abort_volatile_write(filp);
1848 	case F2FS_IOC_SHUTDOWN:
1849 		return f2fs_ioc_shutdown(filp, arg);
1850 	case FITRIM:
1851 		return f2fs_ioc_fitrim(filp, arg);
1852 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
1853 		return f2fs_ioc_set_encryption_policy(filp, arg);
1854 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
1855 		return f2fs_ioc_get_encryption_policy(filp, arg);
1856 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1857 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1858 	case F2FS_IOC_GARBAGE_COLLECT:
1859 		return f2fs_ioc_gc(filp, arg);
1860 	case F2FS_IOC_WRITE_CHECKPOINT:
1861 		return f2fs_ioc_write_checkpoint(filp, arg);
1862 	case F2FS_IOC_DEFRAGMENT:
1863 		return f2fs_ioc_defragment(filp, arg);
1864 	default:
1865 		return -ENOTTY;
1866 	}
1867 }
1868 
1869 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1870 {
1871 	struct file *file = iocb->ki_filp;
1872 	struct inode *inode = file_inode(file);
1873 	ssize_t ret;
1874 
1875 	if (f2fs_encrypted_inode(inode) &&
1876 				!fscrypt_has_encryption_key(inode) &&
1877 				fscrypt_get_encryption_info(inode))
1878 		return -EACCES;
1879 
1880 	inode_lock(inode);
1881 	ret = generic_write_checks(iocb, from);
1882 	if (ret > 0) {
1883 		ret = f2fs_preallocate_blocks(iocb, from);
1884 		if (!ret)
1885 			ret = __generic_file_write_iter(iocb, from);
1886 	}
1887 	inode_unlock(inode);
1888 
1889 	if (ret > 0) {
1890 		ssize_t err;
1891 
1892 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1893 		if (err < 0)
1894 			ret = err;
1895 	}
1896 	return ret;
1897 }
1898 
1899 #ifdef CONFIG_COMPAT
1900 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1901 {
1902 	switch (cmd) {
1903 	case F2FS_IOC32_GETFLAGS:
1904 		cmd = F2FS_IOC_GETFLAGS;
1905 		break;
1906 	case F2FS_IOC32_SETFLAGS:
1907 		cmd = F2FS_IOC_SETFLAGS;
1908 		break;
1909 	case F2FS_IOC32_GETVERSION:
1910 		cmd = F2FS_IOC_GETVERSION;
1911 		break;
1912 	case F2FS_IOC_START_ATOMIC_WRITE:
1913 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1914 	case F2FS_IOC_START_VOLATILE_WRITE:
1915 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1916 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
1917 	case F2FS_IOC_SHUTDOWN:
1918 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
1919 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1920 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
1921 	case F2FS_IOC_GARBAGE_COLLECT:
1922 	case F2FS_IOC_WRITE_CHECKPOINT:
1923 	case F2FS_IOC_DEFRAGMENT:
1924 		break;
1925 	default:
1926 		return -ENOIOCTLCMD;
1927 	}
1928 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1929 }
1930 #endif
1931 
1932 const struct file_operations f2fs_file_operations = {
1933 	.llseek		= f2fs_llseek,
1934 	.read_iter	= generic_file_read_iter,
1935 	.write_iter	= f2fs_file_write_iter,
1936 	.open		= f2fs_file_open,
1937 	.release	= f2fs_release_file,
1938 	.mmap		= f2fs_file_mmap,
1939 	.fsync		= f2fs_sync_file,
1940 	.fallocate	= f2fs_fallocate,
1941 	.unlocked_ioctl	= f2fs_ioctl,
1942 #ifdef CONFIG_COMPAT
1943 	.compat_ioctl	= f2fs_compat_ioctl,
1944 #endif
1945 	.splice_read	= generic_file_splice_read,
1946 	.splice_write	= iter_file_splice_write,
1947 };
1948