1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "xattr.h" 30 #include "acl.h" 31 #include "gc.h" 32 #include "trace.h" 33 #include <trace/events/f2fs.h> 34 35 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 36 { 37 struct inode *inode = file_inode(vmf->vma->vm_file); 38 vm_fault_t ret; 39 40 down_read(&F2FS_I(inode)->i_mmap_sem); 41 ret = filemap_fault(vmf); 42 up_read(&F2FS_I(inode)->i_mmap_sem); 43 44 if (!ret) 45 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO, 46 F2FS_BLKSIZE); 47 48 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 49 50 return ret; 51 } 52 53 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 54 { 55 struct page *page = vmf->page; 56 struct inode *inode = file_inode(vmf->vma->vm_file); 57 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 58 struct dnode_of_data dn; 59 bool need_alloc = true; 60 int err = 0; 61 62 if (unlikely(f2fs_cp_error(sbi))) { 63 err = -EIO; 64 goto err; 65 } 66 67 if (!f2fs_is_checkpoint_ready(sbi)) { 68 err = -ENOSPC; 69 goto err; 70 } 71 72 #ifdef CONFIG_F2FS_FS_COMPRESSION 73 if (f2fs_compressed_file(inode)) { 74 int ret = f2fs_is_compressed_cluster(inode, page->index); 75 76 if (ret < 0) { 77 err = ret; 78 goto err; 79 } else if (ret) { 80 if (ret < F2FS_I(inode)->i_cluster_size) { 81 err = -EAGAIN; 82 goto err; 83 } 84 need_alloc = false; 85 } 86 } 87 #endif 88 /* should do out of any locked page */ 89 if (need_alloc) 90 f2fs_balance_fs(sbi, true); 91 92 sb_start_pagefault(inode->i_sb); 93 94 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 95 96 file_update_time(vmf->vma->vm_file); 97 down_read(&F2FS_I(inode)->i_mmap_sem); 98 lock_page(page); 99 if (unlikely(page->mapping != inode->i_mapping || 100 page_offset(page) > i_size_read(inode) || 101 !PageUptodate(page))) { 102 unlock_page(page); 103 err = -EFAULT; 104 goto out_sem; 105 } 106 107 if (need_alloc) { 108 /* block allocation */ 109 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 110 set_new_dnode(&dn, inode, NULL, NULL, 0); 111 err = f2fs_get_block(&dn, page->index); 112 f2fs_put_dnode(&dn); 113 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 114 } 115 116 #ifdef CONFIG_F2FS_FS_COMPRESSION 117 if (!need_alloc) { 118 set_new_dnode(&dn, inode, NULL, NULL, 0); 119 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 120 f2fs_put_dnode(&dn); 121 } 122 #endif 123 if (err) { 124 unlock_page(page); 125 goto out_sem; 126 } 127 128 f2fs_wait_on_page_writeback(page, DATA, false, true); 129 130 /* wait for GCed page writeback via META_MAPPING */ 131 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 132 133 /* 134 * check to see if the page is mapped already (no holes) 135 */ 136 if (PageMappedToDisk(page)) 137 goto out_sem; 138 139 /* page is wholly or partially inside EOF */ 140 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 141 i_size_read(inode)) { 142 loff_t offset; 143 144 offset = i_size_read(inode) & ~PAGE_MASK; 145 zero_user_segment(page, offset, PAGE_SIZE); 146 } 147 set_page_dirty(page); 148 if (!PageUptodate(page)) 149 SetPageUptodate(page); 150 151 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 152 f2fs_update_time(sbi, REQ_TIME); 153 154 trace_f2fs_vm_page_mkwrite(page, DATA); 155 out_sem: 156 up_read(&F2FS_I(inode)->i_mmap_sem); 157 158 sb_end_pagefault(inode->i_sb); 159 err: 160 return block_page_mkwrite_return(err); 161 } 162 163 static const struct vm_operations_struct f2fs_file_vm_ops = { 164 .fault = f2fs_filemap_fault, 165 .map_pages = filemap_map_pages, 166 .page_mkwrite = f2fs_vm_page_mkwrite, 167 }; 168 169 static int get_parent_ino(struct inode *inode, nid_t *pino) 170 { 171 struct dentry *dentry; 172 173 /* 174 * Make sure to get the non-deleted alias. The alias associated with 175 * the open file descriptor being fsync()'ed may be deleted already. 176 */ 177 dentry = d_find_alias(inode); 178 if (!dentry) 179 return 0; 180 181 *pino = parent_ino(dentry); 182 dput(dentry); 183 return 1; 184 } 185 186 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 187 { 188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 189 enum cp_reason_type cp_reason = CP_NO_NEEDED; 190 191 if (!S_ISREG(inode->i_mode)) 192 cp_reason = CP_NON_REGULAR; 193 else if (f2fs_compressed_file(inode)) 194 cp_reason = CP_COMPRESSED; 195 else if (inode->i_nlink != 1) 196 cp_reason = CP_HARDLINK; 197 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 198 cp_reason = CP_SB_NEED_CP; 199 else if (file_wrong_pino(inode)) 200 cp_reason = CP_WRONG_PINO; 201 else if (!f2fs_space_for_roll_forward(sbi)) 202 cp_reason = CP_NO_SPC_ROLL; 203 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 204 cp_reason = CP_NODE_NEED_CP; 205 else if (test_opt(sbi, FASTBOOT)) 206 cp_reason = CP_FASTBOOT_MODE; 207 else if (F2FS_OPTION(sbi).active_logs == 2) 208 cp_reason = CP_SPEC_LOG_NUM; 209 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 210 f2fs_need_dentry_mark(sbi, inode->i_ino) && 211 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 212 TRANS_DIR_INO)) 213 cp_reason = CP_RECOVER_DIR; 214 215 return cp_reason; 216 } 217 218 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 219 { 220 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 221 bool ret = false; 222 /* But we need to avoid that there are some inode updates */ 223 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 224 ret = true; 225 f2fs_put_page(i, 0); 226 return ret; 227 } 228 229 static void try_to_fix_pino(struct inode *inode) 230 { 231 struct f2fs_inode_info *fi = F2FS_I(inode); 232 nid_t pino; 233 234 down_write(&fi->i_sem); 235 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 236 get_parent_ino(inode, &pino)) { 237 f2fs_i_pino_write(inode, pino); 238 file_got_pino(inode); 239 } 240 up_write(&fi->i_sem); 241 } 242 243 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 244 int datasync, bool atomic) 245 { 246 struct inode *inode = file->f_mapping->host; 247 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 248 nid_t ino = inode->i_ino; 249 int ret = 0; 250 enum cp_reason_type cp_reason = 0; 251 struct writeback_control wbc = { 252 .sync_mode = WB_SYNC_ALL, 253 .nr_to_write = LONG_MAX, 254 .for_reclaim = 0, 255 }; 256 unsigned int seq_id = 0; 257 258 if (unlikely(f2fs_readonly(inode->i_sb) || 259 is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 260 return 0; 261 262 trace_f2fs_sync_file_enter(inode); 263 264 if (S_ISDIR(inode->i_mode)) 265 goto go_write; 266 267 /* if fdatasync is triggered, let's do in-place-update */ 268 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 269 set_inode_flag(inode, FI_NEED_IPU); 270 ret = file_write_and_wait_range(file, start, end); 271 clear_inode_flag(inode, FI_NEED_IPU); 272 273 if (ret) { 274 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 275 return ret; 276 } 277 278 /* if the inode is dirty, let's recover all the time */ 279 if (!f2fs_skip_inode_update(inode, datasync)) { 280 f2fs_write_inode(inode, NULL); 281 goto go_write; 282 } 283 284 /* 285 * if there is no written data, don't waste time to write recovery info. 286 */ 287 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 288 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 289 290 /* it may call write_inode just prior to fsync */ 291 if (need_inode_page_update(sbi, ino)) 292 goto go_write; 293 294 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 295 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 296 goto flush_out; 297 goto out; 298 } 299 go_write: 300 /* 301 * Both of fdatasync() and fsync() are able to be recovered from 302 * sudden-power-off. 303 */ 304 down_read(&F2FS_I(inode)->i_sem); 305 cp_reason = need_do_checkpoint(inode); 306 up_read(&F2FS_I(inode)->i_sem); 307 308 if (cp_reason) { 309 /* all the dirty node pages should be flushed for POR */ 310 ret = f2fs_sync_fs(inode->i_sb, 1); 311 312 /* 313 * We've secured consistency through sync_fs. Following pino 314 * will be used only for fsynced inodes after checkpoint. 315 */ 316 try_to_fix_pino(inode); 317 clear_inode_flag(inode, FI_APPEND_WRITE); 318 clear_inode_flag(inode, FI_UPDATE_WRITE); 319 goto out; 320 } 321 sync_nodes: 322 atomic_inc(&sbi->wb_sync_req[NODE]); 323 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 324 atomic_dec(&sbi->wb_sync_req[NODE]); 325 if (ret) 326 goto out; 327 328 /* if cp_error was enabled, we should avoid infinite loop */ 329 if (unlikely(f2fs_cp_error(sbi))) { 330 ret = -EIO; 331 goto out; 332 } 333 334 if (f2fs_need_inode_block_update(sbi, ino)) { 335 f2fs_mark_inode_dirty_sync(inode, true); 336 f2fs_write_inode(inode, NULL); 337 goto sync_nodes; 338 } 339 340 /* 341 * If it's atomic_write, it's just fine to keep write ordering. So 342 * here we don't need to wait for node write completion, since we use 343 * node chain which serializes node blocks. If one of node writes are 344 * reordered, we can see simply broken chain, resulting in stopping 345 * roll-forward recovery. It means we'll recover all or none node blocks 346 * given fsync mark. 347 */ 348 if (!atomic) { 349 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 350 if (ret) 351 goto out; 352 } 353 354 /* once recovery info is written, don't need to tack this */ 355 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 356 clear_inode_flag(inode, FI_APPEND_WRITE); 357 flush_out: 358 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 359 ret = f2fs_issue_flush(sbi, inode->i_ino); 360 if (!ret) { 361 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 362 clear_inode_flag(inode, FI_UPDATE_WRITE); 363 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 364 } 365 f2fs_update_time(sbi, REQ_TIME); 366 out: 367 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 368 f2fs_trace_ios(NULL, 1); 369 return ret; 370 } 371 372 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 373 { 374 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 375 return -EIO; 376 return f2fs_do_sync_file(file, start, end, datasync, false); 377 } 378 379 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 380 pgoff_t pgofs, int whence) 381 { 382 struct page *page; 383 int nr_pages; 384 385 if (whence != SEEK_DATA) 386 return 0; 387 388 /* find first dirty page index */ 389 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY, 390 1, &page); 391 if (!nr_pages) 392 return ULONG_MAX; 393 pgofs = page->index; 394 put_page(page); 395 return pgofs; 396 } 397 398 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr, 399 pgoff_t dirty, pgoff_t pgofs, int whence) 400 { 401 switch (whence) { 402 case SEEK_DATA: 403 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 404 __is_valid_data_blkaddr(blkaddr)) 405 return true; 406 break; 407 case SEEK_HOLE: 408 if (blkaddr == NULL_ADDR) 409 return true; 410 break; 411 } 412 return false; 413 } 414 415 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 416 { 417 struct inode *inode = file->f_mapping->host; 418 loff_t maxbytes = inode->i_sb->s_maxbytes; 419 struct dnode_of_data dn; 420 pgoff_t pgofs, end_offset, dirty; 421 loff_t data_ofs = offset; 422 loff_t isize; 423 int err = 0; 424 425 inode_lock(inode); 426 427 isize = i_size_read(inode); 428 if (offset >= isize) 429 goto fail; 430 431 /* handle inline data case */ 432 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 433 if (whence == SEEK_HOLE) 434 data_ofs = isize; 435 goto found; 436 } 437 438 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 439 440 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 441 442 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 443 set_new_dnode(&dn, inode, NULL, NULL, 0); 444 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 445 if (err && err != -ENOENT) { 446 goto fail; 447 } else if (err == -ENOENT) { 448 /* direct node does not exists */ 449 if (whence == SEEK_DATA) { 450 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 451 continue; 452 } else { 453 goto found; 454 } 455 } 456 457 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 458 459 /* find data/hole in dnode block */ 460 for (; dn.ofs_in_node < end_offset; 461 dn.ofs_in_node++, pgofs++, 462 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 463 block_t blkaddr; 464 465 blkaddr = f2fs_data_blkaddr(&dn); 466 467 if (__is_valid_data_blkaddr(blkaddr) && 468 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 469 blkaddr, DATA_GENERIC_ENHANCE)) { 470 f2fs_put_dnode(&dn); 471 goto fail; 472 } 473 474 if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty, 475 pgofs, whence)) { 476 f2fs_put_dnode(&dn); 477 goto found; 478 } 479 } 480 f2fs_put_dnode(&dn); 481 } 482 483 if (whence == SEEK_DATA) 484 goto fail; 485 found: 486 if (whence == SEEK_HOLE && data_ofs > isize) 487 data_ofs = isize; 488 inode_unlock(inode); 489 return vfs_setpos(file, data_ofs, maxbytes); 490 fail: 491 inode_unlock(inode); 492 return -ENXIO; 493 } 494 495 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 496 { 497 struct inode *inode = file->f_mapping->host; 498 loff_t maxbytes = inode->i_sb->s_maxbytes; 499 500 switch (whence) { 501 case SEEK_SET: 502 case SEEK_CUR: 503 case SEEK_END: 504 return generic_file_llseek_size(file, offset, whence, 505 maxbytes, i_size_read(inode)); 506 case SEEK_DATA: 507 case SEEK_HOLE: 508 if (offset < 0) 509 return -ENXIO; 510 return f2fs_seek_block(file, offset, whence); 511 } 512 513 return -EINVAL; 514 } 515 516 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 517 { 518 struct inode *inode = file_inode(file); 519 int err; 520 521 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 522 return -EIO; 523 524 if (!f2fs_is_compress_backend_ready(inode)) 525 return -EOPNOTSUPP; 526 527 /* we don't need to use inline_data strictly */ 528 err = f2fs_convert_inline_inode(inode); 529 if (err) 530 return err; 531 532 file_accessed(file); 533 vma->vm_ops = &f2fs_file_vm_ops; 534 set_inode_flag(inode, FI_MMAP_FILE); 535 return 0; 536 } 537 538 static int f2fs_file_open(struct inode *inode, struct file *filp) 539 { 540 int err = fscrypt_file_open(inode, filp); 541 542 if (err) 543 return err; 544 545 if (!f2fs_is_compress_backend_ready(inode)) 546 return -EOPNOTSUPP; 547 548 err = fsverity_file_open(inode, filp); 549 if (err) 550 return err; 551 552 filp->f_mode |= FMODE_NOWAIT; 553 554 return dquot_file_open(inode, filp); 555 } 556 557 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 558 { 559 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 560 struct f2fs_node *raw_node; 561 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 562 __le32 *addr; 563 int base = 0; 564 bool compressed_cluster = false; 565 int cluster_index = 0, valid_blocks = 0; 566 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 567 bool released = !F2FS_I(dn->inode)->i_compr_blocks; 568 569 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 570 base = get_extra_isize(dn->inode); 571 572 raw_node = F2FS_NODE(dn->node_page); 573 addr = blkaddr_in_node(raw_node) + base + ofs; 574 575 /* Assumption: truncateion starts with cluster */ 576 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 577 block_t blkaddr = le32_to_cpu(*addr); 578 579 if (f2fs_compressed_file(dn->inode) && 580 !(cluster_index & (cluster_size - 1))) { 581 if (compressed_cluster) 582 f2fs_i_compr_blocks_update(dn->inode, 583 valid_blocks, false); 584 compressed_cluster = (blkaddr == COMPRESS_ADDR); 585 valid_blocks = 0; 586 } 587 588 if (blkaddr == NULL_ADDR) 589 continue; 590 591 dn->data_blkaddr = NULL_ADDR; 592 f2fs_set_data_blkaddr(dn); 593 594 if (__is_valid_data_blkaddr(blkaddr)) { 595 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 596 DATA_GENERIC_ENHANCE)) 597 continue; 598 if (compressed_cluster) 599 valid_blocks++; 600 } 601 602 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 603 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 604 605 f2fs_invalidate_blocks(sbi, blkaddr); 606 607 if (!released || blkaddr != COMPRESS_ADDR) 608 nr_free++; 609 } 610 611 if (compressed_cluster) 612 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 613 614 if (nr_free) { 615 pgoff_t fofs; 616 /* 617 * once we invalidate valid blkaddr in range [ofs, ofs + count], 618 * we will invalidate all blkaddr in the whole range. 619 */ 620 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 621 dn->inode) + ofs; 622 f2fs_update_extent_cache_range(dn, fofs, 0, len); 623 dec_valid_block_count(sbi, dn->inode, nr_free); 624 } 625 dn->ofs_in_node = ofs; 626 627 f2fs_update_time(sbi, REQ_TIME); 628 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 629 dn->ofs_in_node, nr_free); 630 } 631 632 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 633 { 634 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 635 } 636 637 static int truncate_partial_data_page(struct inode *inode, u64 from, 638 bool cache_only) 639 { 640 loff_t offset = from & (PAGE_SIZE - 1); 641 pgoff_t index = from >> PAGE_SHIFT; 642 struct address_space *mapping = inode->i_mapping; 643 struct page *page; 644 645 if (!offset && !cache_only) 646 return 0; 647 648 if (cache_only) { 649 page = find_lock_page(mapping, index); 650 if (page && PageUptodate(page)) 651 goto truncate_out; 652 f2fs_put_page(page, 1); 653 return 0; 654 } 655 656 page = f2fs_get_lock_data_page(inode, index, true); 657 if (IS_ERR(page)) 658 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 659 truncate_out: 660 f2fs_wait_on_page_writeback(page, DATA, true, true); 661 zero_user(page, offset, PAGE_SIZE - offset); 662 663 /* An encrypted inode should have a key and truncate the last page. */ 664 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 665 if (!cache_only) 666 set_page_dirty(page); 667 f2fs_put_page(page, 1); 668 return 0; 669 } 670 671 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 672 { 673 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 674 struct dnode_of_data dn; 675 pgoff_t free_from; 676 int count = 0, err = 0; 677 struct page *ipage; 678 bool truncate_page = false; 679 680 trace_f2fs_truncate_blocks_enter(inode, from); 681 682 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 683 684 if (free_from >= sbi->max_file_blocks) 685 goto free_partial; 686 687 if (lock) 688 f2fs_lock_op(sbi); 689 690 ipage = f2fs_get_node_page(sbi, inode->i_ino); 691 if (IS_ERR(ipage)) { 692 err = PTR_ERR(ipage); 693 goto out; 694 } 695 696 if (f2fs_has_inline_data(inode)) { 697 f2fs_truncate_inline_inode(inode, ipage, from); 698 f2fs_put_page(ipage, 1); 699 truncate_page = true; 700 goto out; 701 } 702 703 set_new_dnode(&dn, inode, ipage, NULL, 0); 704 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 705 if (err) { 706 if (err == -ENOENT) 707 goto free_next; 708 goto out; 709 } 710 711 count = ADDRS_PER_PAGE(dn.node_page, inode); 712 713 count -= dn.ofs_in_node; 714 f2fs_bug_on(sbi, count < 0); 715 716 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 717 f2fs_truncate_data_blocks_range(&dn, count); 718 free_from += count; 719 } 720 721 f2fs_put_dnode(&dn); 722 free_next: 723 err = f2fs_truncate_inode_blocks(inode, free_from); 724 out: 725 if (lock) 726 f2fs_unlock_op(sbi); 727 free_partial: 728 /* lastly zero out the first data page */ 729 if (!err) 730 err = truncate_partial_data_page(inode, from, truncate_page); 731 732 trace_f2fs_truncate_blocks_exit(inode, err); 733 return err; 734 } 735 736 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 737 { 738 u64 free_from = from; 739 int err; 740 741 #ifdef CONFIG_F2FS_FS_COMPRESSION 742 /* 743 * for compressed file, only support cluster size 744 * aligned truncation. 745 */ 746 if (f2fs_compressed_file(inode)) 747 free_from = round_up(from, 748 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 749 #endif 750 751 err = f2fs_do_truncate_blocks(inode, free_from, lock); 752 if (err) 753 return err; 754 755 #ifdef CONFIG_F2FS_FS_COMPRESSION 756 if (from != free_from) 757 err = f2fs_truncate_partial_cluster(inode, from, lock); 758 #endif 759 760 return err; 761 } 762 763 int f2fs_truncate(struct inode *inode) 764 { 765 int err; 766 767 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 768 return -EIO; 769 770 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 771 S_ISLNK(inode->i_mode))) 772 return 0; 773 774 trace_f2fs_truncate(inode); 775 776 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 777 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 778 return -EIO; 779 } 780 781 /* we should check inline_data size */ 782 if (!f2fs_may_inline_data(inode)) { 783 err = f2fs_convert_inline_inode(inode); 784 if (err) 785 return err; 786 } 787 788 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 789 if (err) 790 return err; 791 792 inode->i_mtime = inode->i_ctime = current_time(inode); 793 f2fs_mark_inode_dirty_sync(inode, false); 794 return 0; 795 } 796 797 int f2fs_getattr(const struct path *path, struct kstat *stat, 798 u32 request_mask, unsigned int query_flags) 799 { 800 struct inode *inode = d_inode(path->dentry); 801 struct f2fs_inode_info *fi = F2FS_I(inode); 802 struct f2fs_inode *ri; 803 unsigned int flags; 804 805 if (f2fs_has_extra_attr(inode) && 806 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 807 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 808 stat->result_mask |= STATX_BTIME; 809 stat->btime.tv_sec = fi->i_crtime.tv_sec; 810 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 811 } 812 813 flags = fi->i_flags; 814 if (flags & F2FS_COMPR_FL) 815 stat->attributes |= STATX_ATTR_COMPRESSED; 816 if (flags & F2FS_APPEND_FL) 817 stat->attributes |= STATX_ATTR_APPEND; 818 if (IS_ENCRYPTED(inode)) 819 stat->attributes |= STATX_ATTR_ENCRYPTED; 820 if (flags & F2FS_IMMUTABLE_FL) 821 stat->attributes |= STATX_ATTR_IMMUTABLE; 822 if (flags & F2FS_NODUMP_FL) 823 stat->attributes |= STATX_ATTR_NODUMP; 824 if (IS_VERITY(inode)) 825 stat->attributes |= STATX_ATTR_VERITY; 826 827 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 828 STATX_ATTR_APPEND | 829 STATX_ATTR_ENCRYPTED | 830 STATX_ATTR_IMMUTABLE | 831 STATX_ATTR_NODUMP | 832 STATX_ATTR_VERITY); 833 834 generic_fillattr(inode, stat); 835 836 /* we need to show initial sectors used for inline_data/dentries */ 837 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 838 f2fs_has_inline_dentry(inode)) 839 stat->blocks += (stat->size + 511) >> 9; 840 841 return 0; 842 } 843 844 #ifdef CONFIG_F2FS_FS_POSIX_ACL 845 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 846 { 847 unsigned int ia_valid = attr->ia_valid; 848 849 if (ia_valid & ATTR_UID) 850 inode->i_uid = attr->ia_uid; 851 if (ia_valid & ATTR_GID) 852 inode->i_gid = attr->ia_gid; 853 if (ia_valid & ATTR_ATIME) 854 inode->i_atime = attr->ia_atime; 855 if (ia_valid & ATTR_MTIME) 856 inode->i_mtime = attr->ia_mtime; 857 if (ia_valid & ATTR_CTIME) 858 inode->i_ctime = attr->ia_ctime; 859 if (ia_valid & ATTR_MODE) { 860 umode_t mode = attr->ia_mode; 861 862 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 863 mode &= ~S_ISGID; 864 set_acl_inode(inode, mode); 865 } 866 } 867 #else 868 #define __setattr_copy setattr_copy 869 #endif 870 871 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 872 { 873 struct inode *inode = d_inode(dentry); 874 int err; 875 876 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 877 return -EIO; 878 879 if ((attr->ia_valid & ATTR_SIZE) && 880 !f2fs_is_compress_backend_ready(inode)) 881 return -EOPNOTSUPP; 882 883 err = setattr_prepare(dentry, attr); 884 if (err) 885 return err; 886 887 err = fscrypt_prepare_setattr(dentry, attr); 888 if (err) 889 return err; 890 891 err = fsverity_prepare_setattr(dentry, attr); 892 if (err) 893 return err; 894 895 if (is_quota_modification(inode, attr)) { 896 err = dquot_initialize(inode); 897 if (err) 898 return err; 899 } 900 if ((attr->ia_valid & ATTR_UID && 901 !uid_eq(attr->ia_uid, inode->i_uid)) || 902 (attr->ia_valid & ATTR_GID && 903 !gid_eq(attr->ia_gid, inode->i_gid))) { 904 f2fs_lock_op(F2FS_I_SB(inode)); 905 err = dquot_transfer(inode, attr); 906 if (err) { 907 set_sbi_flag(F2FS_I_SB(inode), 908 SBI_QUOTA_NEED_REPAIR); 909 f2fs_unlock_op(F2FS_I_SB(inode)); 910 return err; 911 } 912 /* 913 * update uid/gid under lock_op(), so that dquot and inode can 914 * be updated atomically. 915 */ 916 if (attr->ia_valid & ATTR_UID) 917 inode->i_uid = attr->ia_uid; 918 if (attr->ia_valid & ATTR_GID) 919 inode->i_gid = attr->ia_gid; 920 f2fs_mark_inode_dirty_sync(inode, true); 921 f2fs_unlock_op(F2FS_I_SB(inode)); 922 } 923 924 if (attr->ia_valid & ATTR_SIZE) { 925 loff_t old_size = i_size_read(inode); 926 927 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 928 /* 929 * should convert inline inode before i_size_write to 930 * keep smaller than inline_data size with inline flag. 931 */ 932 err = f2fs_convert_inline_inode(inode); 933 if (err) 934 return err; 935 } 936 937 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 938 down_write(&F2FS_I(inode)->i_mmap_sem); 939 940 truncate_setsize(inode, attr->ia_size); 941 942 if (attr->ia_size <= old_size) 943 err = f2fs_truncate(inode); 944 /* 945 * do not trim all blocks after i_size if target size is 946 * larger than i_size. 947 */ 948 up_write(&F2FS_I(inode)->i_mmap_sem); 949 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 950 if (err) 951 return err; 952 953 spin_lock(&F2FS_I(inode)->i_size_lock); 954 inode->i_mtime = inode->i_ctime = current_time(inode); 955 F2FS_I(inode)->last_disk_size = i_size_read(inode); 956 spin_unlock(&F2FS_I(inode)->i_size_lock); 957 } 958 959 __setattr_copy(inode, attr); 960 961 if (attr->ia_valid & ATTR_MODE) { 962 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode)); 963 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 964 inode->i_mode = F2FS_I(inode)->i_acl_mode; 965 clear_inode_flag(inode, FI_ACL_MODE); 966 } 967 } 968 969 /* file size may changed here */ 970 f2fs_mark_inode_dirty_sync(inode, true); 971 972 /* inode change will produce dirty node pages flushed by checkpoint */ 973 f2fs_balance_fs(F2FS_I_SB(inode), true); 974 975 return err; 976 } 977 978 const struct inode_operations f2fs_file_inode_operations = { 979 .getattr = f2fs_getattr, 980 .setattr = f2fs_setattr, 981 .get_acl = f2fs_get_acl, 982 .set_acl = f2fs_set_acl, 983 .listxattr = f2fs_listxattr, 984 .fiemap = f2fs_fiemap, 985 }; 986 987 static int fill_zero(struct inode *inode, pgoff_t index, 988 loff_t start, loff_t len) 989 { 990 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 991 struct page *page; 992 993 if (!len) 994 return 0; 995 996 f2fs_balance_fs(sbi, true); 997 998 f2fs_lock_op(sbi); 999 page = f2fs_get_new_data_page(inode, NULL, index, false); 1000 f2fs_unlock_op(sbi); 1001 1002 if (IS_ERR(page)) 1003 return PTR_ERR(page); 1004 1005 f2fs_wait_on_page_writeback(page, DATA, true, true); 1006 zero_user(page, start, len); 1007 set_page_dirty(page); 1008 f2fs_put_page(page, 1); 1009 return 0; 1010 } 1011 1012 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1013 { 1014 int err; 1015 1016 while (pg_start < pg_end) { 1017 struct dnode_of_data dn; 1018 pgoff_t end_offset, count; 1019 1020 set_new_dnode(&dn, inode, NULL, NULL, 0); 1021 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1022 if (err) { 1023 if (err == -ENOENT) { 1024 pg_start = f2fs_get_next_page_offset(&dn, 1025 pg_start); 1026 continue; 1027 } 1028 return err; 1029 } 1030 1031 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1032 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1033 1034 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1035 1036 f2fs_truncate_data_blocks_range(&dn, count); 1037 f2fs_put_dnode(&dn); 1038 1039 pg_start += count; 1040 } 1041 return 0; 1042 } 1043 1044 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1045 { 1046 pgoff_t pg_start, pg_end; 1047 loff_t off_start, off_end; 1048 int ret; 1049 1050 ret = f2fs_convert_inline_inode(inode); 1051 if (ret) 1052 return ret; 1053 1054 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1055 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1056 1057 off_start = offset & (PAGE_SIZE - 1); 1058 off_end = (offset + len) & (PAGE_SIZE - 1); 1059 1060 if (pg_start == pg_end) { 1061 ret = fill_zero(inode, pg_start, off_start, 1062 off_end - off_start); 1063 if (ret) 1064 return ret; 1065 } else { 1066 if (off_start) { 1067 ret = fill_zero(inode, pg_start++, off_start, 1068 PAGE_SIZE - off_start); 1069 if (ret) 1070 return ret; 1071 } 1072 if (off_end) { 1073 ret = fill_zero(inode, pg_end, 0, off_end); 1074 if (ret) 1075 return ret; 1076 } 1077 1078 if (pg_start < pg_end) { 1079 struct address_space *mapping = inode->i_mapping; 1080 loff_t blk_start, blk_end; 1081 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1082 1083 f2fs_balance_fs(sbi, true); 1084 1085 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1086 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1087 1088 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1089 down_write(&F2FS_I(inode)->i_mmap_sem); 1090 1091 truncate_inode_pages_range(mapping, blk_start, 1092 blk_end - 1); 1093 1094 f2fs_lock_op(sbi); 1095 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1096 f2fs_unlock_op(sbi); 1097 1098 up_write(&F2FS_I(inode)->i_mmap_sem); 1099 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1100 } 1101 } 1102 1103 return ret; 1104 } 1105 1106 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1107 int *do_replace, pgoff_t off, pgoff_t len) 1108 { 1109 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1110 struct dnode_of_data dn; 1111 int ret, done, i; 1112 1113 next_dnode: 1114 set_new_dnode(&dn, inode, NULL, NULL, 0); 1115 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1116 if (ret && ret != -ENOENT) { 1117 return ret; 1118 } else if (ret == -ENOENT) { 1119 if (dn.max_level == 0) 1120 return -ENOENT; 1121 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1122 dn.ofs_in_node, len); 1123 blkaddr += done; 1124 do_replace += done; 1125 goto next; 1126 } 1127 1128 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1129 dn.ofs_in_node, len); 1130 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1131 *blkaddr = f2fs_data_blkaddr(&dn); 1132 1133 if (__is_valid_data_blkaddr(*blkaddr) && 1134 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1135 DATA_GENERIC_ENHANCE)) { 1136 f2fs_put_dnode(&dn); 1137 return -EFSCORRUPTED; 1138 } 1139 1140 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1141 1142 if (f2fs_lfs_mode(sbi)) { 1143 f2fs_put_dnode(&dn); 1144 return -EOPNOTSUPP; 1145 } 1146 1147 /* do not invalidate this block address */ 1148 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1149 *do_replace = 1; 1150 } 1151 } 1152 f2fs_put_dnode(&dn); 1153 next: 1154 len -= done; 1155 off += done; 1156 if (len) 1157 goto next_dnode; 1158 return 0; 1159 } 1160 1161 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1162 int *do_replace, pgoff_t off, int len) 1163 { 1164 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1165 struct dnode_of_data dn; 1166 int ret, i; 1167 1168 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1169 if (*do_replace == 0) 1170 continue; 1171 1172 set_new_dnode(&dn, inode, NULL, NULL, 0); 1173 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1174 if (ret) { 1175 dec_valid_block_count(sbi, inode, 1); 1176 f2fs_invalidate_blocks(sbi, *blkaddr); 1177 } else { 1178 f2fs_update_data_blkaddr(&dn, *blkaddr); 1179 } 1180 f2fs_put_dnode(&dn); 1181 } 1182 return 0; 1183 } 1184 1185 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1186 block_t *blkaddr, int *do_replace, 1187 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1188 { 1189 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1190 pgoff_t i = 0; 1191 int ret; 1192 1193 while (i < len) { 1194 if (blkaddr[i] == NULL_ADDR && !full) { 1195 i++; 1196 continue; 1197 } 1198 1199 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1200 struct dnode_of_data dn; 1201 struct node_info ni; 1202 size_t new_size; 1203 pgoff_t ilen; 1204 1205 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1206 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1207 if (ret) 1208 return ret; 1209 1210 ret = f2fs_get_node_info(sbi, dn.nid, &ni); 1211 if (ret) { 1212 f2fs_put_dnode(&dn); 1213 return ret; 1214 } 1215 1216 ilen = min((pgoff_t) 1217 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1218 dn.ofs_in_node, len - i); 1219 do { 1220 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1221 f2fs_truncate_data_blocks_range(&dn, 1); 1222 1223 if (do_replace[i]) { 1224 f2fs_i_blocks_write(src_inode, 1225 1, false, false); 1226 f2fs_i_blocks_write(dst_inode, 1227 1, true, false); 1228 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1229 blkaddr[i], ni.version, true, false); 1230 1231 do_replace[i] = 0; 1232 } 1233 dn.ofs_in_node++; 1234 i++; 1235 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1236 if (dst_inode->i_size < new_size) 1237 f2fs_i_size_write(dst_inode, new_size); 1238 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1239 1240 f2fs_put_dnode(&dn); 1241 } else { 1242 struct page *psrc, *pdst; 1243 1244 psrc = f2fs_get_lock_data_page(src_inode, 1245 src + i, true); 1246 if (IS_ERR(psrc)) 1247 return PTR_ERR(psrc); 1248 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1249 true); 1250 if (IS_ERR(pdst)) { 1251 f2fs_put_page(psrc, 1); 1252 return PTR_ERR(pdst); 1253 } 1254 f2fs_copy_page(psrc, pdst); 1255 set_page_dirty(pdst); 1256 f2fs_put_page(pdst, 1); 1257 f2fs_put_page(psrc, 1); 1258 1259 ret = f2fs_truncate_hole(src_inode, 1260 src + i, src + i + 1); 1261 if (ret) 1262 return ret; 1263 i++; 1264 } 1265 } 1266 return 0; 1267 } 1268 1269 static int __exchange_data_block(struct inode *src_inode, 1270 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1271 pgoff_t len, bool full) 1272 { 1273 block_t *src_blkaddr; 1274 int *do_replace; 1275 pgoff_t olen; 1276 int ret; 1277 1278 while (len) { 1279 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1280 1281 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1282 array_size(olen, sizeof(block_t)), 1283 GFP_NOFS); 1284 if (!src_blkaddr) 1285 return -ENOMEM; 1286 1287 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1288 array_size(olen, sizeof(int)), 1289 GFP_NOFS); 1290 if (!do_replace) { 1291 kvfree(src_blkaddr); 1292 return -ENOMEM; 1293 } 1294 1295 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1296 do_replace, src, olen); 1297 if (ret) 1298 goto roll_back; 1299 1300 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1301 do_replace, src, dst, olen, full); 1302 if (ret) 1303 goto roll_back; 1304 1305 src += olen; 1306 dst += olen; 1307 len -= olen; 1308 1309 kvfree(src_blkaddr); 1310 kvfree(do_replace); 1311 } 1312 return 0; 1313 1314 roll_back: 1315 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1316 kvfree(src_blkaddr); 1317 kvfree(do_replace); 1318 return ret; 1319 } 1320 1321 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1322 { 1323 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1324 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1325 pgoff_t start = offset >> PAGE_SHIFT; 1326 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1327 int ret; 1328 1329 f2fs_balance_fs(sbi, true); 1330 1331 /* avoid gc operation during block exchange */ 1332 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1333 down_write(&F2FS_I(inode)->i_mmap_sem); 1334 1335 f2fs_lock_op(sbi); 1336 f2fs_drop_extent_tree(inode); 1337 truncate_pagecache(inode, offset); 1338 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1339 f2fs_unlock_op(sbi); 1340 1341 up_write(&F2FS_I(inode)->i_mmap_sem); 1342 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1343 return ret; 1344 } 1345 1346 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1347 { 1348 loff_t new_size; 1349 int ret; 1350 1351 if (offset + len >= i_size_read(inode)) 1352 return -EINVAL; 1353 1354 /* collapse range should be aligned to block size of f2fs. */ 1355 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1356 return -EINVAL; 1357 1358 ret = f2fs_convert_inline_inode(inode); 1359 if (ret) 1360 return ret; 1361 1362 /* write out all dirty pages from offset */ 1363 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1364 if (ret) 1365 return ret; 1366 1367 ret = f2fs_do_collapse(inode, offset, len); 1368 if (ret) 1369 return ret; 1370 1371 /* write out all moved pages, if possible */ 1372 down_write(&F2FS_I(inode)->i_mmap_sem); 1373 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1374 truncate_pagecache(inode, offset); 1375 1376 new_size = i_size_read(inode) - len; 1377 ret = f2fs_truncate_blocks(inode, new_size, true); 1378 up_write(&F2FS_I(inode)->i_mmap_sem); 1379 if (!ret) 1380 f2fs_i_size_write(inode, new_size); 1381 return ret; 1382 } 1383 1384 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1385 pgoff_t end) 1386 { 1387 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1388 pgoff_t index = start; 1389 unsigned int ofs_in_node = dn->ofs_in_node; 1390 blkcnt_t count = 0; 1391 int ret; 1392 1393 for (; index < end; index++, dn->ofs_in_node++) { 1394 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1395 count++; 1396 } 1397 1398 dn->ofs_in_node = ofs_in_node; 1399 ret = f2fs_reserve_new_blocks(dn, count); 1400 if (ret) 1401 return ret; 1402 1403 dn->ofs_in_node = ofs_in_node; 1404 for (index = start; index < end; index++, dn->ofs_in_node++) { 1405 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1406 /* 1407 * f2fs_reserve_new_blocks will not guarantee entire block 1408 * allocation. 1409 */ 1410 if (dn->data_blkaddr == NULL_ADDR) { 1411 ret = -ENOSPC; 1412 break; 1413 } 1414 if (dn->data_blkaddr != NEW_ADDR) { 1415 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1416 dn->data_blkaddr = NEW_ADDR; 1417 f2fs_set_data_blkaddr(dn); 1418 } 1419 } 1420 1421 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1422 1423 return ret; 1424 } 1425 1426 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1427 int mode) 1428 { 1429 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1430 struct address_space *mapping = inode->i_mapping; 1431 pgoff_t index, pg_start, pg_end; 1432 loff_t new_size = i_size_read(inode); 1433 loff_t off_start, off_end; 1434 int ret = 0; 1435 1436 ret = inode_newsize_ok(inode, (len + offset)); 1437 if (ret) 1438 return ret; 1439 1440 ret = f2fs_convert_inline_inode(inode); 1441 if (ret) 1442 return ret; 1443 1444 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1445 if (ret) 1446 return ret; 1447 1448 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1449 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1450 1451 off_start = offset & (PAGE_SIZE - 1); 1452 off_end = (offset + len) & (PAGE_SIZE - 1); 1453 1454 if (pg_start == pg_end) { 1455 ret = fill_zero(inode, pg_start, off_start, 1456 off_end - off_start); 1457 if (ret) 1458 return ret; 1459 1460 new_size = max_t(loff_t, new_size, offset + len); 1461 } else { 1462 if (off_start) { 1463 ret = fill_zero(inode, pg_start++, off_start, 1464 PAGE_SIZE - off_start); 1465 if (ret) 1466 return ret; 1467 1468 new_size = max_t(loff_t, new_size, 1469 (loff_t)pg_start << PAGE_SHIFT); 1470 } 1471 1472 for (index = pg_start; index < pg_end;) { 1473 struct dnode_of_data dn; 1474 unsigned int end_offset; 1475 pgoff_t end; 1476 1477 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1478 down_write(&F2FS_I(inode)->i_mmap_sem); 1479 1480 truncate_pagecache_range(inode, 1481 (loff_t)index << PAGE_SHIFT, 1482 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1483 1484 f2fs_lock_op(sbi); 1485 1486 set_new_dnode(&dn, inode, NULL, NULL, 0); 1487 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1488 if (ret) { 1489 f2fs_unlock_op(sbi); 1490 up_write(&F2FS_I(inode)->i_mmap_sem); 1491 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1492 goto out; 1493 } 1494 1495 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1496 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1497 1498 ret = f2fs_do_zero_range(&dn, index, end); 1499 f2fs_put_dnode(&dn); 1500 1501 f2fs_unlock_op(sbi); 1502 up_write(&F2FS_I(inode)->i_mmap_sem); 1503 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1504 1505 f2fs_balance_fs(sbi, dn.node_changed); 1506 1507 if (ret) 1508 goto out; 1509 1510 index = end; 1511 new_size = max_t(loff_t, new_size, 1512 (loff_t)index << PAGE_SHIFT); 1513 } 1514 1515 if (off_end) { 1516 ret = fill_zero(inode, pg_end, 0, off_end); 1517 if (ret) 1518 goto out; 1519 1520 new_size = max_t(loff_t, new_size, offset + len); 1521 } 1522 } 1523 1524 out: 1525 if (new_size > i_size_read(inode)) { 1526 if (mode & FALLOC_FL_KEEP_SIZE) 1527 file_set_keep_isize(inode); 1528 else 1529 f2fs_i_size_write(inode, new_size); 1530 } 1531 return ret; 1532 } 1533 1534 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1535 { 1536 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1537 pgoff_t nr, pg_start, pg_end, delta, idx; 1538 loff_t new_size; 1539 int ret = 0; 1540 1541 new_size = i_size_read(inode) + len; 1542 ret = inode_newsize_ok(inode, new_size); 1543 if (ret) 1544 return ret; 1545 1546 if (offset >= i_size_read(inode)) 1547 return -EINVAL; 1548 1549 /* insert range should be aligned to block size of f2fs. */ 1550 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1551 return -EINVAL; 1552 1553 ret = f2fs_convert_inline_inode(inode); 1554 if (ret) 1555 return ret; 1556 1557 f2fs_balance_fs(sbi, true); 1558 1559 down_write(&F2FS_I(inode)->i_mmap_sem); 1560 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1561 up_write(&F2FS_I(inode)->i_mmap_sem); 1562 if (ret) 1563 return ret; 1564 1565 /* write out all dirty pages from offset */ 1566 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1567 if (ret) 1568 return ret; 1569 1570 pg_start = offset >> PAGE_SHIFT; 1571 pg_end = (offset + len) >> PAGE_SHIFT; 1572 delta = pg_end - pg_start; 1573 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1574 1575 /* avoid gc operation during block exchange */ 1576 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1577 down_write(&F2FS_I(inode)->i_mmap_sem); 1578 truncate_pagecache(inode, offset); 1579 1580 while (!ret && idx > pg_start) { 1581 nr = idx - pg_start; 1582 if (nr > delta) 1583 nr = delta; 1584 idx -= nr; 1585 1586 f2fs_lock_op(sbi); 1587 f2fs_drop_extent_tree(inode); 1588 1589 ret = __exchange_data_block(inode, inode, idx, 1590 idx + delta, nr, false); 1591 f2fs_unlock_op(sbi); 1592 } 1593 up_write(&F2FS_I(inode)->i_mmap_sem); 1594 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1595 1596 /* write out all moved pages, if possible */ 1597 down_write(&F2FS_I(inode)->i_mmap_sem); 1598 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1599 truncate_pagecache(inode, offset); 1600 up_write(&F2FS_I(inode)->i_mmap_sem); 1601 1602 if (!ret) 1603 f2fs_i_size_write(inode, new_size); 1604 return ret; 1605 } 1606 1607 static int expand_inode_data(struct inode *inode, loff_t offset, 1608 loff_t len, int mode) 1609 { 1610 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1611 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1612 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1613 .m_may_create = true }; 1614 pgoff_t pg_end; 1615 loff_t new_size = i_size_read(inode); 1616 loff_t off_end; 1617 int err; 1618 1619 err = inode_newsize_ok(inode, (len + offset)); 1620 if (err) 1621 return err; 1622 1623 err = f2fs_convert_inline_inode(inode); 1624 if (err) 1625 return err; 1626 1627 f2fs_balance_fs(sbi, true); 1628 1629 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1630 off_end = (offset + len) & (PAGE_SIZE - 1); 1631 1632 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1633 map.m_len = pg_end - map.m_lblk; 1634 if (off_end) 1635 map.m_len++; 1636 1637 if (!map.m_len) 1638 return 0; 1639 1640 if (f2fs_is_pinned_file(inode)) { 1641 block_t len = (map.m_len >> sbi->log_blocks_per_seg) << 1642 sbi->log_blocks_per_seg; 1643 block_t done = 0; 1644 1645 if (map.m_len % sbi->blocks_per_seg) 1646 len += sbi->blocks_per_seg; 1647 1648 map.m_len = sbi->blocks_per_seg; 1649 next_alloc: 1650 if (has_not_enough_free_secs(sbi, 0, 1651 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1652 down_write(&sbi->gc_lock); 1653 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1654 if (err && err != -ENODATA && err != -EAGAIN) 1655 goto out_err; 1656 } 1657 1658 down_write(&sbi->pin_sem); 1659 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1660 1661 f2fs_lock_op(sbi); 1662 f2fs_allocate_new_segment(sbi, CURSEG_COLD_DATA); 1663 f2fs_unlock_op(sbi); 1664 1665 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1666 up_write(&sbi->pin_sem); 1667 1668 done += map.m_len; 1669 len -= map.m_len; 1670 map.m_lblk += map.m_len; 1671 if (!err && len) 1672 goto next_alloc; 1673 1674 map.m_len = done; 1675 } else { 1676 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1677 } 1678 out_err: 1679 if (err) { 1680 pgoff_t last_off; 1681 1682 if (!map.m_len) 1683 return err; 1684 1685 last_off = map.m_lblk + map.m_len - 1; 1686 1687 /* update new size to the failed position */ 1688 new_size = (last_off == pg_end) ? offset + len : 1689 (loff_t)(last_off + 1) << PAGE_SHIFT; 1690 } else { 1691 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1692 } 1693 1694 if (new_size > i_size_read(inode)) { 1695 if (mode & FALLOC_FL_KEEP_SIZE) 1696 file_set_keep_isize(inode); 1697 else 1698 f2fs_i_size_write(inode, new_size); 1699 } 1700 1701 return err; 1702 } 1703 1704 static long f2fs_fallocate(struct file *file, int mode, 1705 loff_t offset, loff_t len) 1706 { 1707 struct inode *inode = file_inode(file); 1708 long ret = 0; 1709 1710 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1711 return -EIO; 1712 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1713 return -ENOSPC; 1714 if (!f2fs_is_compress_backend_ready(inode)) 1715 return -EOPNOTSUPP; 1716 1717 /* f2fs only support ->fallocate for regular file */ 1718 if (!S_ISREG(inode->i_mode)) 1719 return -EINVAL; 1720 1721 if (IS_ENCRYPTED(inode) && 1722 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1723 return -EOPNOTSUPP; 1724 1725 if (f2fs_compressed_file(inode) && 1726 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1727 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1728 return -EOPNOTSUPP; 1729 1730 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1731 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1732 FALLOC_FL_INSERT_RANGE)) 1733 return -EOPNOTSUPP; 1734 1735 inode_lock(inode); 1736 1737 if (mode & FALLOC_FL_PUNCH_HOLE) { 1738 if (offset >= inode->i_size) 1739 goto out; 1740 1741 ret = punch_hole(inode, offset, len); 1742 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1743 ret = f2fs_collapse_range(inode, offset, len); 1744 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1745 ret = f2fs_zero_range(inode, offset, len, mode); 1746 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1747 ret = f2fs_insert_range(inode, offset, len); 1748 } else { 1749 ret = expand_inode_data(inode, offset, len, mode); 1750 } 1751 1752 if (!ret) { 1753 inode->i_mtime = inode->i_ctime = current_time(inode); 1754 f2fs_mark_inode_dirty_sync(inode, false); 1755 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1756 } 1757 1758 out: 1759 inode_unlock(inode); 1760 1761 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1762 return ret; 1763 } 1764 1765 static int f2fs_release_file(struct inode *inode, struct file *filp) 1766 { 1767 /* 1768 * f2fs_relase_file is called at every close calls. So we should 1769 * not drop any inmemory pages by close called by other process. 1770 */ 1771 if (!(filp->f_mode & FMODE_WRITE) || 1772 atomic_read(&inode->i_writecount) != 1) 1773 return 0; 1774 1775 /* some remained atomic pages should discarded */ 1776 if (f2fs_is_atomic_file(inode)) 1777 f2fs_drop_inmem_pages(inode); 1778 if (f2fs_is_volatile_file(inode)) { 1779 set_inode_flag(inode, FI_DROP_CACHE); 1780 filemap_fdatawrite(inode->i_mapping); 1781 clear_inode_flag(inode, FI_DROP_CACHE); 1782 clear_inode_flag(inode, FI_VOLATILE_FILE); 1783 stat_dec_volatile_write(inode); 1784 } 1785 return 0; 1786 } 1787 1788 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1789 { 1790 struct inode *inode = file_inode(file); 1791 1792 /* 1793 * If the process doing a transaction is crashed, we should do 1794 * roll-back. Otherwise, other reader/write can see corrupted database 1795 * until all the writers close its file. Since this should be done 1796 * before dropping file lock, it needs to do in ->flush. 1797 */ 1798 if (f2fs_is_atomic_file(inode) && 1799 F2FS_I(inode)->inmem_task == current) 1800 f2fs_drop_inmem_pages(inode); 1801 return 0; 1802 } 1803 1804 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1805 { 1806 struct f2fs_inode_info *fi = F2FS_I(inode); 1807 u32 masked_flags = fi->i_flags & mask; 1808 1809 f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask)); 1810 1811 /* Is it quota file? Do not allow user to mess with it */ 1812 if (IS_NOQUOTA(inode)) 1813 return -EPERM; 1814 1815 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1816 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1817 return -EOPNOTSUPP; 1818 if (!f2fs_empty_dir(inode)) 1819 return -ENOTEMPTY; 1820 } 1821 1822 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1823 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1824 return -EOPNOTSUPP; 1825 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1826 return -EINVAL; 1827 } 1828 1829 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1830 if (masked_flags & F2FS_COMPR_FL) { 1831 if (f2fs_disable_compressed_file(inode)) 1832 return -EINVAL; 1833 } 1834 if (iflags & F2FS_NOCOMP_FL) 1835 return -EINVAL; 1836 if (iflags & F2FS_COMPR_FL) { 1837 if (!f2fs_may_compress(inode)) 1838 return -EINVAL; 1839 1840 set_compress_context(inode); 1841 } 1842 } 1843 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) { 1844 if (masked_flags & F2FS_COMPR_FL) 1845 return -EINVAL; 1846 } 1847 1848 fi->i_flags = iflags | (fi->i_flags & ~mask); 1849 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1850 (fi->i_flags & F2FS_NOCOMP_FL)); 1851 1852 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1853 set_inode_flag(inode, FI_PROJ_INHERIT); 1854 else 1855 clear_inode_flag(inode, FI_PROJ_INHERIT); 1856 1857 inode->i_ctime = current_time(inode); 1858 f2fs_set_inode_flags(inode); 1859 f2fs_mark_inode_dirty_sync(inode, true); 1860 return 0; 1861 } 1862 1863 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */ 1864 1865 /* 1866 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1867 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1868 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1869 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1870 */ 1871 1872 static const struct { 1873 u32 iflag; 1874 u32 fsflag; 1875 } f2fs_fsflags_map[] = { 1876 { F2FS_COMPR_FL, FS_COMPR_FL }, 1877 { F2FS_SYNC_FL, FS_SYNC_FL }, 1878 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1879 { F2FS_APPEND_FL, FS_APPEND_FL }, 1880 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1881 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1882 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1883 { F2FS_INDEX_FL, FS_INDEX_FL }, 1884 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1885 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1886 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1887 }; 1888 1889 #define F2FS_GETTABLE_FS_FL ( \ 1890 FS_COMPR_FL | \ 1891 FS_SYNC_FL | \ 1892 FS_IMMUTABLE_FL | \ 1893 FS_APPEND_FL | \ 1894 FS_NODUMP_FL | \ 1895 FS_NOATIME_FL | \ 1896 FS_NOCOMP_FL | \ 1897 FS_INDEX_FL | \ 1898 FS_DIRSYNC_FL | \ 1899 FS_PROJINHERIT_FL | \ 1900 FS_ENCRYPT_FL | \ 1901 FS_INLINE_DATA_FL | \ 1902 FS_NOCOW_FL | \ 1903 FS_VERITY_FL | \ 1904 FS_CASEFOLD_FL) 1905 1906 #define F2FS_SETTABLE_FS_FL ( \ 1907 FS_COMPR_FL | \ 1908 FS_SYNC_FL | \ 1909 FS_IMMUTABLE_FL | \ 1910 FS_APPEND_FL | \ 1911 FS_NODUMP_FL | \ 1912 FS_NOATIME_FL | \ 1913 FS_NOCOMP_FL | \ 1914 FS_DIRSYNC_FL | \ 1915 FS_PROJINHERIT_FL | \ 1916 FS_CASEFOLD_FL) 1917 1918 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1919 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1920 { 1921 u32 fsflags = 0; 1922 int i; 1923 1924 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1925 if (iflags & f2fs_fsflags_map[i].iflag) 1926 fsflags |= f2fs_fsflags_map[i].fsflag; 1927 1928 return fsflags; 1929 } 1930 1931 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1932 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1933 { 1934 u32 iflags = 0; 1935 int i; 1936 1937 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1938 if (fsflags & f2fs_fsflags_map[i].fsflag) 1939 iflags |= f2fs_fsflags_map[i].iflag; 1940 1941 return iflags; 1942 } 1943 1944 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1945 { 1946 struct inode *inode = file_inode(filp); 1947 struct f2fs_inode_info *fi = F2FS_I(inode); 1948 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1949 1950 if (IS_ENCRYPTED(inode)) 1951 fsflags |= FS_ENCRYPT_FL; 1952 if (IS_VERITY(inode)) 1953 fsflags |= FS_VERITY_FL; 1954 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 1955 fsflags |= FS_INLINE_DATA_FL; 1956 if (is_inode_flag_set(inode, FI_PIN_FILE)) 1957 fsflags |= FS_NOCOW_FL; 1958 1959 fsflags &= F2FS_GETTABLE_FS_FL; 1960 1961 return put_user(fsflags, (int __user *)arg); 1962 } 1963 1964 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1965 { 1966 struct inode *inode = file_inode(filp); 1967 struct f2fs_inode_info *fi = F2FS_I(inode); 1968 u32 fsflags, old_fsflags; 1969 u32 iflags; 1970 int ret; 1971 1972 if (!inode_owner_or_capable(inode)) 1973 return -EACCES; 1974 1975 if (get_user(fsflags, (int __user *)arg)) 1976 return -EFAULT; 1977 1978 if (fsflags & ~F2FS_GETTABLE_FS_FL) 1979 return -EOPNOTSUPP; 1980 fsflags &= F2FS_SETTABLE_FS_FL; 1981 1982 iflags = f2fs_fsflags_to_iflags(fsflags); 1983 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 1984 return -EOPNOTSUPP; 1985 1986 ret = mnt_want_write_file(filp); 1987 if (ret) 1988 return ret; 1989 1990 inode_lock(inode); 1991 1992 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1993 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 1994 if (ret) 1995 goto out; 1996 1997 ret = f2fs_setflags_common(inode, iflags, 1998 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL)); 1999 out: 2000 inode_unlock(inode); 2001 mnt_drop_write_file(filp); 2002 return ret; 2003 } 2004 2005 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2006 { 2007 struct inode *inode = file_inode(filp); 2008 2009 return put_user(inode->i_generation, (int __user *)arg); 2010 } 2011 2012 static int f2fs_ioc_start_atomic_write(struct file *filp) 2013 { 2014 struct inode *inode = file_inode(filp); 2015 struct f2fs_inode_info *fi = F2FS_I(inode); 2016 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2017 int ret; 2018 2019 if (!inode_owner_or_capable(inode)) 2020 return -EACCES; 2021 2022 if (!S_ISREG(inode->i_mode)) 2023 return -EINVAL; 2024 2025 if (filp->f_flags & O_DIRECT) 2026 return -EINVAL; 2027 2028 ret = mnt_want_write_file(filp); 2029 if (ret) 2030 return ret; 2031 2032 inode_lock(inode); 2033 2034 f2fs_disable_compressed_file(inode); 2035 2036 if (f2fs_is_atomic_file(inode)) { 2037 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) 2038 ret = -EINVAL; 2039 goto out; 2040 } 2041 2042 ret = f2fs_convert_inline_inode(inode); 2043 if (ret) 2044 goto out; 2045 2046 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2047 2048 /* 2049 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2050 * f2fs_is_atomic_file. 2051 */ 2052 if (get_dirty_pages(inode)) 2053 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2054 inode->i_ino, get_dirty_pages(inode)); 2055 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2056 if (ret) { 2057 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2058 goto out; 2059 } 2060 2061 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 2062 if (list_empty(&fi->inmem_ilist)) 2063 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 2064 sbi->atomic_files++; 2065 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 2066 2067 /* add inode in inmem_list first and set atomic_file */ 2068 set_inode_flag(inode, FI_ATOMIC_FILE); 2069 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2070 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2071 2072 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2073 F2FS_I(inode)->inmem_task = current; 2074 stat_update_max_atomic_write(inode); 2075 out: 2076 inode_unlock(inode); 2077 mnt_drop_write_file(filp); 2078 return ret; 2079 } 2080 2081 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2082 { 2083 struct inode *inode = file_inode(filp); 2084 int ret; 2085 2086 if (!inode_owner_or_capable(inode)) 2087 return -EACCES; 2088 2089 ret = mnt_want_write_file(filp); 2090 if (ret) 2091 return ret; 2092 2093 f2fs_balance_fs(F2FS_I_SB(inode), true); 2094 2095 inode_lock(inode); 2096 2097 if (f2fs_is_volatile_file(inode)) { 2098 ret = -EINVAL; 2099 goto err_out; 2100 } 2101 2102 if (f2fs_is_atomic_file(inode)) { 2103 ret = f2fs_commit_inmem_pages(inode); 2104 if (ret) 2105 goto err_out; 2106 2107 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2108 if (!ret) 2109 f2fs_drop_inmem_pages(inode); 2110 } else { 2111 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2112 } 2113 err_out: 2114 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2115 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2116 ret = -EINVAL; 2117 } 2118 inode_unlock(inode); 2119 mnt_drop_write_file(filp); 2120 return ret; 2121 } 2122 2123 static int f2fs_ioc_start_volatile_write(struct file *filp) 2124 { 2125 struct inode *inode = file_inode(filp); 2126 int ret; 2127 2128 if (!inode_owner_or_capable(inode)) 2129 return -EACCES; 2130 2131 if (!S_ISREG(inode->i_mode)) 2132 return -EINVAL; 2133 2134 ret = mnt_want_write_file(filp); 2135 if (ret) 2136 return ret; 2137 2138 inode_lock(inode); 2139 2140 if (f2fs_is_volatile_file(inode)) 2141 goto out; 2142 2143 ret = f2fs_convert_inline_inode(inode); 2144 if (ret) 2145 goto out; 2146 2147 stat_inc_volatile_write(inode); 2148 stat_update_max_volatile_write(inode); 2149 2150 set_inode_flag(inode, FI_VOLATILE_FILE); 2151 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2152 out: 2153 inode_unlock(inode); 2154 mnt_drop_write_file(filp); 2155 return ret; 2156 } 2157 2158 static int f2fs_ioc_release_volatile_write(struct file *filp) 2159 { 2160 struct inode *inode = file_inode(filp); 2161 int ret; 2162 2163 if (!inode_owner_or_capable(inode)) 2164 return -EACCES; 2165 2166 ret = mnt_want_write_file(filp); 2167 if (ret) 2168 return ret; 2169 2170 inode_lock(inode); 2171 2172 if (!f2fs_is_volatile_file(inode)) 2173 goto out; 2174 2175 if (!f2fs_is_first_block_written(inode)) { 2176 ret = truncate_partial_data_page(inode, 0, true); 2177 goto out; 2178 } 2179 2180 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 2181 out: 2182 inode_unlock(inode); 2183 mnt_drop_write_file(filp); 2184 return ret; 2185 } 2186 2187 static int f2fs_ioc_abort_volatile_write(struct file *filp) 2188 { 2189 struct inode *inode = file_inode(filp); 2190 int ret; 2191 2192 if (!inode_owner_or_capable(inode)) 2193 return -EACCES; 2194 2195 ret = mnt_want_write_file(filp); 2196 if (ret) 2197 return ret; 2198 2199 inode_lock(inode); 2200 2201 if (f2fs_is_atomic_file(inode)) 2202 f2fs_drop_inmem_pages(inode); 2203 if (f2fs_is_volatile_file(inode)) { 2204 clear_inode_flag(inode, FI_VOLATILE_FILE); 2205 stat_dec_volatile_write(inode); 2206 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2207 } 2208 2209 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2210 2211 inode_unlock(inode); 2212 2213 mnt_drop_write_file(filp); 2214 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2215 return ret; 2216 } 2217 2218 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2219 { 2220 struct inode *inode = file_inode(filp); 2221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2222 struct super_block *sb = sbi->sb; 2223 __u32 in; 2224 int ret = 0; 2225 2226 if (!capable(CAP_SYS_ADMIN)) 2227 return -EPERM; 2228 2229 if (get_user(in, (__u32 __user *)arg)) 2230 return -EFAULT; 2231 2232 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2233 ret = mnt_want_write_file(filp); 2234 if (ret) { 2235 if (ret == -EROFS) { 2236 ret = 0; 2237 f2fs_stop_checkpoint(sbi, false); 2238 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2239 trace_f2fs_shutdown(sbi, in, ret); 2240 } 2241 return ret; 2242 } 2243 } 2244 2245 switch (in) { 2246 case F2FS_GOING_DOWN_FULLSYNC: 2247 sb = freeze_bdev(sb->s_bdev); 2248 if (IS_ERR(sb)) { 2249 ret = PTR_ERR(sb); 2250 goto out; 2251 } 2252 if (sb) { 2253 f2fs_stop_checkpoint(sbi, false); 2254 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2255 thaw_bdev(sb->s_bdev, sb); 2256 } 2257 break; 2258 case F2FS_GOING_DOWN_METASYNC: 2259 /* do checkpoint only */ 2260 ret = f2fs_sync_fs(sb, 1); 2261 if (ret) 2262 goto out; 2263 f2fs_stop_checkpoint(sbi, false); 2264 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2265 break; 2266 case F2FS_GOING_DOWN_NOSYNC: 2267 f2fs_stop_checkpoint(sbi, false); 2268 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2269 break; 2270 case F2FS_GOING_DOWN_METAFLUSH: 2271 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2272 f2fs_stop_checkpoint(sbi, false); 2273 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2274 break; 2275 case F2FS_GOING_DOWN_NEED_FSCK: 2276 set_sbi_flag(sbi, SBI_NEED_FSCK); 2277 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2278 set_sbi_flag(sbi, SBI_IS_DIRTY); 2279 /* do checkpoint only */ 2280 ret = f2fs_sync_fs(sb, 1); 2281 goto out; 2282 default: 2283 ret = -EINVAL; 2284 goto out; 2285 } 2286 2287 f2fs_stop_gc_thread(sbi); 2288 f2fs_stop_discard_thread(sbi); 2289 2290 f2fs_drop_discard_cmd(sbi); 2291 clear_opt(sbi, DISCARD); 2292 2293 f2fs_update_time(sbi, REQ_TIME); 2294 out: 2295 if (in != F2FS_GOING_DOWN_FULLSYNC) 2296 mnt_drop_write_file(filp); 2297 2298 trace_f2fs_shutdown(sbi, in, ret); 2299 2300 return ret; 2301 } 2302 2303 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2304 { 2305 struct inode *inode = file_inode(filp); 2306 struct super_block *sb = inode->i_sb; 2307 struct request_queue *q = bdev_get_queue(sb->s_bdev); 2308 struct fstrim_range range; 2309 int ret; 2310 2311 if (!capable(CAP_SYS_ADMIN)) 2312 return -EPERM; 2313 2314 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2315 return -EOPNOTSUPP; 2316 2317 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2318 sizeof(range))) 2319 return -EFAULT; 2320 2321 ret = mnt_want_write_file(filp); 2322 if (ret) 2323 return ret; 2324 2325 range.minlen = max((unsigned int)range.minlen, 2326 q->limits.discard_granularity); 2327 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2328 mnt_drop_write_file(filp); 2329 if (ret < 0) 2330 return ret; 2331 2332 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2333 sizeof(range))) 2334 return -EFAULT; 2335 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2336 return 0; 2337 } 2338 2339 static bool uuid_is_nonzero(__u8 u[16]) 2340 { 2341 int i; 2342 2343 for (i = 0; i < 16; i++) 2344 if (u[i]) 2345 return true; 2346 return false; 2347 } 2348 2349 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2350 { 2351 struct inode *inode = file_inode(filp); 2352 2353 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2354 return -EOPNOTSUPP; 2355 2356 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2357 2358 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2359 } 2360 2361 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2362 { 2363 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2364 return -EOPNOTSUPP; 2365 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2366 } 2367 2368 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2369 { 2370 struct inode *inode = file_inode(filp); 2371 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2372 int err; 2373 2374 if (!f2fs_sb_has_encrypt(sbi)) 2375 return -EOPNOTSUPP; 2376 2377 err = mnt_want_write_file(filp); 2378 if (err) 2379 return err; 2380 2381 down_write(&sbi->sb_lock); 2382 2383 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2384 goto got_it; 2385 2386 /* update superblock with uuid */ 2387 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2388 2389 err = f2fs_commit_super(sbi, false); 2390 if (err) { 2391 /* undo new data */ 2392 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2393 goto out_err; 2394 } 2395 got_it: 2396 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2397 16)) 2398 err = -EFAULT; 2399 out_err: 2400 up_write(&sbi->sb_lock); 2401 mnt_drop_write_file(filp); 2402 return err; 2403 } 2404 2405 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2406 unsigned long arg) 2407 { 2408 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2409 return -EOPNOTSUPP; 2410 2411 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2412 } 2413 2414 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2415 { 2416 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2417 return -EOPNOTSUPP; 2418 2419 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2420 } 2421 2422 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2423 { 2424 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2425 return -EOPNOTSUPP; 2426 2427 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2428 } 2429 2430 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2431 unsigned long arg) 2432 { 2433 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2434 return -EOPNOTSUPP; 2435 2436 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2437 } 2438 2439 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2440 unsigned long arg) 2441 { 2442 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2443 return -EOPNOTSUPP; 2444 2445 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2446 } 2447 2448 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2449 { 2450 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2451 return -EOPNOTSUPP; 2452 2453 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2454 } 2455 2456 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2457 { 2458 struct inode *inode = file_inode(filp); 2459 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2460 __u32 sync; 2461 int ret; 2462 2463 if (!capable(CAP_SYS_ADMIN)) 2464 return -EPERM; 2465 2466 if (get_user(sync, (__u32 __user *)arg)) 2467 return -EFAULT; 2468 2469 if (f2fs_readonly(sbi->sb)) 2470 return -EROFS; 2471 2472 ret = mnt_want_write_file(filp); 2473 if (ret) 2474 return ret; 2475 2476 if (!sync) { 2477 if (!down_write_trylock(&sbi->gc_lock)) { 2478 ret = -EBUSY; 2479 goto out; 2480 } 2481 } else { 2482 down_write(&sbi->gc_lock); 2483 } 2484 2485 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO); 2486 out: 2487 mnt_drop_write_file(filp); 2488 return ret; 2489 } 2490 2491 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2492 { 2493 struct inode *inode = file_inode(filp); 2494 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2495 struct f2fs_gc_range range; 2496 u64 end; 2497 int ret; 2498 2499 if (!capable(CAP_SYS_ADMIN)) 2500 return -EPERM; 2501 2502 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2503 sizeof(range))) 2504 return -EFAULT; 2505 2506 if (f2fs_readonly(sbi->sb)) 2507 return -EROFS; 2508 2509 end = range.start + range.len; 2510 if (end < range.start || range.start < MAIN_BLKADDR(sbi) || 2511 end >= MAX_BLKADDR(sbi)) 2512 return -EINVAL; 2513 2514 ret = mnt_want_write_file(filp); 2515 if (ret) 2516 return ret; 2517 2518 do_more: 2519 if (!range.sync) { 2520 if (!down_write_trylock(&sbi->gc_lock)) { 2521 ret = -EBUSY; 2522 goto out; 2523 } 2524 } else { 2525 down_write(&sbi->gc_lock); 2526 } 2527 2528 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start)); 2529 if (ret) { 2530 if (ret == -EBUSY) 2531 ret = -EAGAIN; 2532 goto out; 2533 } 2534 range.start += BLKS_PER_SEC(sbi); 2535 if (range.start <= end) 2536 goto do_more; 2537 out: 2538 mnt_drop_write_file(filp); 2539 return ret; 2540 } 2541 2542 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2543 { 2544 struct inode *inode = file_inode(filp); 2545 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2546 int ret; 2547 2548 if (!capable(CAP_SYS_ADMIN)) 2549 return -EPERM; 2550 2551 if (f2fs_readonly(sbi->sb)) 2552 return -EROFS; 2553 2554 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2555 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2556 return -EINVAL; 2557 } 2558 2559 ret = mnt_want_write_file(filp); 2560 if (ret) 2561 return ret; 2562 2563 ret = f2fs_sync_fs(sbi->sb, 1); 2564 2565 mnt_drop_write_file(filp); 2566 return ret; 2567 } 2568 2569 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2570 struct file *filp, 2571 struct f2fs_defragment *range) 2572 { 2573 struct inode *inode = file_inode(filp); 2574 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2575 .m_seg_type = NO_CHECK_TYPE , 2576 .m_may_create = false }; 2577 struct extent_info ei = {0, 0, 0}; 2578 pgoff_t pg_start, pg_end, next_pgofs; 2579 unsigned int blk_per_seg = sbi->blocks_per_seg; 2580 unsigned int total = 0, sec_num; 2581 block_t blk_end = 0; 2582 bool fragmented = false; 2583 int err; 2584 2585 /* if in-place-update policy is enabled, don't waste time here */ 2586 if (f2fs_should_update_inplace(inode, NULL)) 2587 return -EINVAL; 2588 2589 pg_start = range->start >> PAGE_SHIFT; 2590 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2591 2592 f2fs_balance_fs(sbi, true); 2593 2594 inode_lock(inode); 2595 2596 /* writeback all dirty pages in the range */ 2597 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2598 range->start + range->len - 1); 2599 if (err) 2600 goto out; 2601 2602 /* 2603 * lookup mapping info in extent cache, skip defragmenting if physical 2604 * block addresses are continuous. 2605 */ 2606 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2607 if (ei.fofs + ei.len >= pg_end) 2608 goto out; 2609 } 2610 2611 map.m_lblk = pg_start; 2612 map.m_next_pgofs = &next_pgofs; 2613 2614 /* 2615 * lookup mapping info in dnode page cache, skip defragmenting if all 2616 * physical block addresses are continuous even if there are hole(s) 2617 * in logical blocks. 2618 */ 2619 while (map.m_lblk < pg_end) { 2620 map.m_len = pg_end - map.m_lblk; 2621 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2622 if (err) 2623 goto out; 2624 2625 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2626 map.m_lblk = next_pgofs; 2627 continue; 2628 } 2629 2630 if (blk_end && blk_end != map.m_pblk) 2631 fragmented = true; 2632 2633 /* record total count of block that we're going to move */ 2634 total += map.m_len; 2635 2636 blk_end = map.m_pblk + map.m_len; 2637 2638 map.m_lblk += map.m_len; 2639 } 2640 2641 if (!fragmented) { 2642 total = 0; 2643 goto out; 2644 } 2645 2646 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi)); 2647 2648 /* 2649 * make sure there are enough free section for LFS allocation, this can 2650 * avoid defragment running in SSR mode when free section are allocated 2651 * intensively 2652 */ 2653 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2654 err = -EAGAIN; 2655 goto out; 2656 } 2657 2658 map.m_lblk = pg_start; 2659 map.m_len = pg_end - pg_start; 2660 total = 0; 2661 2662 while (map.m_lblk < pg_end) { 2663 pgoff_t idx; 2664 int cnt = 0; 2665 2666 do_map: 2667 map.m_len = pg_end - map.m_lblk; 2668 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2669 if (err) 2670 goto clear_out; 2671 2672 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2673 map.m_lblk = next_pgofs; 2674 goto check; 2675 } 2676 2677 set_inode_flag(inode, FI_DO_DEFRAG); 2678 2679 idx = map.m_lblk; 2680 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2681 struct page *page; 2682 2683 page = f2fs_get_lock_data_page(inode, idx, true); 2684 if (IS_ERR(page)) { 2685 err = PTR_ERR(page); 2686 goto clear_out; 2687 } 2688 2689 set_page_dirty(page); 2690 f2fs_put_page(page, 1); 2691 2692 idx++; 2693 cnt++; 2694 total++; 2695 } 2696 2697 map.m_lblk = idx; 2698 check: 2699 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2700 goto do_map; 2701 2702 clear_inode_flag(inode, FI_DO_DEFRAG); 2703 2704 err = filemap_fdatawrite(inode->i_mapping); 2705 if (err) 2706 goto out; 2707 } 2708 clear_out: 2709 clear_inode_flag(inode, FI_DO_DEFRAG); 2710 out: 2711 inode_unlock(inode); 2712 if (!err) 2713 range->len = (u64)total << PAGE_SHIFT; 2714 return err; 2715 } 2716 2717 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2718 { 2719 struct inode *inode = file_inode(filp); 2720 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2721 struct f2fs_defragment range; 2722 int err; 2723 2724 if (!capable(CAP_SYS_ADMIN)) 2725 return -EPERM; 2726 2727 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2728 return -EINVAL; 2729 2730 if (f2fs_readonly(sbi->sb)) 2731 return -EROFS; 2732 2733 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2734 sizeof(range))) 2735 return -EFAULT; 2736 2737 /* verify alignment of offset & size */ 2738 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2739 return -EINVAL; 2740 2741 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2742 sbi->max_file_blocks)) 2743 return -EINVAL; 2744 2745 err = mnt_want_write_file(filp); 2746 if (err) 2747 return err; 2748 2749 err = f2fs_defragment_range(sbi, filp, &range); 2750 mnt_drop_write_file(filp); 2751 2752 f2fs_update_time(sbi, REQ_TIME); 2753 if (err < 0) 2754 return err; 2755 2756 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2757 sizeof(range))) 2758 return -EFAULT; 2759 2760 return 0; 2761 } 2762 2763 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2764 struct file *file_out, loff_t pos_out, size_t len) 2765 { 2766 struct inode *src = file_inode(file_in); 2767 struct inode *dst = file_inode(file_out); 2768 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2769 size_t olen = len, dst_max_i_size = 0; 2770 size_t dst_osize; 2771 int ret; 2772 2773 if (file_in->f_path.mnt != file_out->f_path.mnt || 2774 src->i_sb != dst->i_sb) 2775 return -EXDEV; 2776 2777 if (unlikely(f2fs_readonly(src->i_sb))) 2778 return -EROFS; 2779 2780 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2781 return -EINVAL; 2782 2783 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2784 return -EOPNOTSUPP; 2785 2786 if (src == dst) { 2787 if (pos_in == pos_out) 2788 return 0; 2789 if (pos_out > pos_in && pos_out < pos_in + len) 2790 return -EINVAL; 2791 } 2792 2793 inode_lock(src); 2794 if (src != dst) { 2795 ret = -EBUSY; 2796 if (!inode_trylock(dst)) 2797 goto out; 2798 } 2799 2800 ret = -EINVAL; 2801 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2802 goto out_unlock; 2803 if (len == 0) 2804 olen = len = src->i_size - pos_in; 2805 if (pos_in + len == src->i_size) 2806 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2807 if (len == 0) { 2808 ret = 0; 2809 goto out_unlock; 2810 } 2811 2812 dst_osize = dst->i_size; 2813 if (pos_out + olen > dst->i_size) 2814 dst_max_i_size = pos_out + olen; 2815 2816 /* verify the end result is block aligned */ 2817 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2818 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2819 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2820 goto out_unlock; 2821 2822 ret = f2fs_convert_inline_inode(src); 2823 if (ret) 2824 goto out_unlock; 2825 2826 ret = f2fs_convert_inline_inode(dst); 2827 if (ret) 2828 goto out_unlock; 2829 2830 /* write out all dirty pages from offset */ 2831 ret = filemap_write_and_wait_range(src->i_mapping, 2832 pos_in, pos_in + len); 2833 if (ret) 2834 goto out_unlock; 2835 2836 ret = filemap_write_and_wait_range(dst->i_mapping, 2837 pos_out, pos_out + len); 2838 if (ret) 2839 goto out_unlock; 2840 2841 f2fs_balance_fs(sbi, true); 2842 2843 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2844 if (src != dst) { 2845 ret = -EBUSY; 2846 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2847 goto out_src; 2848 } 2849 2850 f2fs_lock_op(sbi); 2851 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2852 pos_out >> F2FS_BLKSIZE_BITS, 2853 len >> F2FS_BLKSIZE_BITS, false); 2854 2855 if (!ret) { 2856 if (dst_max_i_size) 2857 f2fs_i_size_write(dst, dst_max_i_size); 2858 else if (dst_osize != dst->i_size) 2859 f2fs_i_size_write(dst, dst_osize); 2860 } 2861 f2fs_unlock_op(sbi); 2862 2863 if (src != dst) 2864 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2865 out_src: 2866 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2867 out_unlock: 2868 if (src != dst) 2869 inode_unlock(dst); 2870 out: 2871 inode_unlock(src); 2872 return ret; 2873 } 2874 2875 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2876 { 2877 struct f2fs_move_range range; 2878 struct fd dst; 2879 int err; 2880 2881 if (!(filp->f_mode & FMODE_READ) || 2882 !(filp->f_mode & FMODE_WRITE)) 2883 return -EBADF; 2884 2885 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2886 sizeof(range))) 2887 return -EFAULT; 2888 2889 dst = fdget(range.dst_fd); 2890 if (!dst.file) 2891 return -EBADF; 2892 2893 if (!(dst.file->f_mode & FMODE_WRITE)) { 2894 err = -EBADF; 2895 goto err_out; 2896 } 2897 2898 err = mnt_want_write_file(filp); 2899 if (err) 2900 goto err_out; 2901 2902 err = f2fs_move_file_range(filp, range.pos_in, dst.file, 2903 range.pos_out, range.len); 2904 2905 mnt_drop_write_file(filp); 2906 if (err) 2907 goto err_out; 2908 2909 if (copy_to_user((struct f2fs_move_range __user *)arg, 2910 &range, sizeof(range))) 2911 err = -EFAULT; 2912 err_out: 2913 fdput(dst); 2914 return err; 2915 } 2916 2917 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2918 { 2919 struct inode *inode = file_inode(filp); 2920 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2921 struct sit_info *sm = SIT_I(sbi); 2922 unsigned int start_segno = 0, end_segno = 0; 2923 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2924 struct f2fs_flush_device range; 2925 int ret; 2926 2927 if (!capable(CAP_SYS_ADMIN)) 2928 return -EPERM; 2929 2930 if (f2fs_readonly(sbi->sb)) 2931 return -EROFS; 2932 2933 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2934 return -EINVAL; 2935 2936 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2937 sizeof(range))) 2938 return -EFAULT; 2939 2940 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2941 __is_large_section(sbi)) { 2942 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2943 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2944 return -EINVAL; 2945 } 2946 2947 ret = mnt_want_write_file(filp); 2948 if (ret) 2949 return ret; 2950 2951 if (range.dev_num != 0) 2952 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2953 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2954 2955 start_segno = sm->last_victim[FLUSH_DEVICE]; 2956 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2957 start_segno = dev_start_segno; 2958 end_segno = min(start_segno + range.segments, dev_end_segno); 2959 2960 while (start_segno < end_segno) { 2961 if (!down_write_trylock(&sbi->gc_lock)) { 2962 ret = -EBUSY; 2963 goto out; 2964 } 2965 sm->last_victim[GC_CB] = end_segno + 1; 2966 sm->last_victim[GC_GREEDY] = end_segno + 1; 2967 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2968 ret = f2fs_gc(sbi, true, true, start_segno); 2969 if (ret == -EAGAIN) 2970 ret = 0; 2971 else if (ret < 0) 2972 break; 2973 start_segno++; 2974 } 2975 out: 2976 mnt_drop_write_file(filp); 2977 return ret; 2978 } 2979 2980 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2981 { 2982 struct inode *inode = file_inode(filp); 2983 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2984 2985 /* Must validate to set it with SQLite behavior in Android. */ 2986 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2987 2988 return put_user(sb_feature, (u32 __user *)arg); 2989 } 2990 2991 #ifdef CONFIG_QUOTA 2992 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2993 { 2994 struct dquot *transfer_to[MAXQUOTAS] = {}; 2995 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2996 struct super_block *sb = sbi->sb; 2997 int err = 0; 2998 2999 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 3000 if (!IS_ERR(transfer_to[PRJQUOTA])) { 3001 err = __dquot_transfer(inode, transfer_to); 3002 if (err) 3003 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3004 dqput(transfer_to[PRJQUOTA]); 3005 } 3006 return err; 3007 } 3008 3009 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 3010 { 3011 struct inode *inode = file_inode(filp); 3012 struct f2fs_inode_info *fi = F2FS_I(inode); 3013 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3014 struct page *ipage; 3015 kprojid_t kprojid; 3016 int err; 3017 3018 if (!f2fs_sb_has_project_quota(sbi)) { 3019 if (projid != F2FS_DEF_PROJID) 3020 return -EOPNOTSUPP; 3021 else 3022 return 0; 3023 } 3024 3025 if (!f2fs_has_extra_attr(inode)) 3026 return -EOPNOTSUPP; 3027 3028 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3029 3030 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 3031 return 0; 3032 3033 err = -EPERM; 3034 /* Is it quota file? Do not allow user to mess with it */ 3035 if (IS_NOQUOTA(inode)) 3036 return err; 3037 3038 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3039 if (IS_ERR(ipage)) 3040 return PTR_ERR(ipage); 3041 3042 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 3043 i_projid)) { 3044 err = -EOVERFLOW; 3045 f2fs_put_page(ipage, 1); 3046 return err; 3047 } 3048 f2fs_put_page(ipage, 1); 3049 3050 err = dquot_initialize(inode); 3051 if (err) 3052 return err; 3053 3054 f2fs_lock_op(sbi); 3055 err = f2fs_transfer_project_quota(inode, kprojid); 3056 if (err) 3057 goto out_unlock; 3058 3059 F2FS_I(inode)->i_projid = kprojid; 3060 inode->i_ctime = current_time(inode); 3061 f2fs_mark_inode_dirty_sync(inode, true); 3062 out_unlock: 3063 f2fs_unlock_op(sbi); 3064 return err; 3065 } 3066 #else 3067 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3068 { 3069 return 0; 3070 } 3071 3072 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 3073 { 3074 if (projid != F2FS_DEF_PROJID) 3075 return -EOPNOTSUPP; 3076 return 0; 3077 } 3078 #endif 3079 3080 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */ 3081 3082 /* 3083 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable 3084 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its 3085 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS. 3086 */ 3087 3088 static const struct { 3089 u32 iflag; 3090 u32 xflag; 3091 } f2fs_xflags_map[] = { 3092 { F2FS_SYNC_FL, FS_XFLAG_SYNC }, 3093 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE }, 3094 { F2FS_APPEND_FL, FS_XFLAG_APPEND }, 3095 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP }, 3096 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME }, 3097 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT }, 3098 }; 3099 3100 #define F2FS_SUPPORTED_XFLAGS ( \ 3101 FS_XFLAG_SYNC | \ 3102 FS_XFLAG_IMMUTABLE | \ 3103 FS_XFLAG_APPEND | \ 3104 FS_XFLAG_NODUMP | \ 3105 FS_XFLAG_NOATIME | \ 3106 FS_XFLAG_PROJINHERIT) 3107 3108 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */ 3109 static inline u32 f2fs_iflags_to_xflags(u32 iflags) 3110 { 3111 u32 xflags = 0; 3112 int i; 3113 3114 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 3115 if (iflags & f2fs_xflags_map[i].iflag) 3116 xflags |= f2fs_xflags_map[i].xflag; 3117 3118 return xflags; 3119 } 3120 3121 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */ 3122 static inline u32 f2fs_xflags_to_iflags(u32 xflags) 3123 { 3124 u32 iflags = 0; 3125 int i; 3126 3127 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 3128 if (xflags & f2fs_xflags_map[i].xflag) 3129 iflags |= f2fs_xflags_map[i].iflag; 3130 3131 return iflags; 3132 } 3133 3134 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa) 3135 { 3136 struct f2fs_inode_info *fi = F2FS_I(inode); 3137 3138 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags)); 3139 3140 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3141 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3142 } 3143 3144 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg) 3145 { 3146 struct inode *inode = file_inode(filp); 3147 struct fsxattr fa; 3148 3149 f2fs_fill_fsxattr(inode, &fa); 3150 3151 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa))) 3152 return -EFAULT; 3153 return 0; 3154 } 3155 3156 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg) 3157 { 3158 struct inode *inode = file_inode(filp); 3159 struct fsxattr fa, old_fa; 3160 u32 iflags; 3161 int err; 3162 3163 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa))) 3164 return -EFAULT; 3165 3166 /* Make sure caller has proper permission */ 3167 if (!inode_owner_or_capable(inode)) 3168 return -EACCES; 3169 3170 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS) 3171 return -EOPNOTSUPP; 3172 3173 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags); 3174 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3175 return -EOPNOTSUPP; 3176 3177 err = mnt_want_write_file(filp); 3178 if (err) 3179 return err; 3180 3181 inode_lock(inode); 3182 3183 f2fs_fill_fsxattr(inode, &old_fa); 3184 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 3185 if (err) 3186 goto out; 3187 3188 err = f2fs_setflags_common(inode, iflags, 3189 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS)); 3190 if (err) 3191 goto out; 3192 3193 err = f2fs_ioc_setproject(filp, fa.fsx_projid); 3194 out: 3195 inode_unlock(inode); 3196 mnt_drop_write_file(filp); 3197 return err; 3198 } 3199 3200 int f2fs_pin_file_control(struct inode *inode, bool inc) 3201 { 3202 struct f2fs_inode_info *fi = F2FS_I(inode); 3203 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3204 3205 /* Use i_gc_failures for normal file as a risk signal. */ 3206 if (inc) 3207 f2fs_i_gc_failures_write(inode, 3208 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3209 3210 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3211 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3212 __func__, inode->i_ino, 3213 fi->i_gc_failures[GC_FAILURE_PIN]); 3214 clear_inode_flag(inode, FI_PIN_FILE); 3215 return -EAGAIN; 3216 } 3217 return 0; 3218 } 3219 3220 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3221 { 3222 struct inode *inode = file_inode(filp); 3223 __u32 pin; 3224 int ret = 0; 3225 3226 if (get_user(pin, (__u32 __user *)arg)) 3227 return -EFAULT; 3228 3229 if (!S_ISREG(inode->i_mode)) 3230 return -EINVAL; 3231 3232 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3233 return -EROFS; 3234 3235 ret = mnt_want_write_file(filp); 3236 if (ret) 3237 return ret; 3238 3239 inode_lock(inode); 3240 3241 if (f2fs_should_update_outplace(inode, NULL)) { 3242 ret = -EINVAL; 3243 goto out; 3244 } 3245 3246 if (!pin) { 3247 clear_inode_flag(inode, FI_PIN_FILE); 3248 f2fs_i_gc_failures_write(inode, 0); 3249 goto done; 3250 } 3251 3252 if (f2fs_pin_file_control(inode, false)) { 3253 ret = -EAGAIN; 3254 goto out; 3255 } 3256 3257 ret = f2fs_convert_inline_inode(inode); 3258 if (ret) 3259 goto out; 3260 3261 if (f2fs_disable_compressed_file(inode)) { 3262 ret = -EOPNOTSUPP; 3263 goto out; 3264 } 3265 3266 set_inode_flag(inode, FI_PIN_FILE); 3267 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3268 done: 3269 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3270 out: 3271 inode_unlock(inode); 3272 mnt_drop_write_file(filp); 3273 return ret; 3274 } 3275 3276 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3277 { 3278 struct inode *inode = file_inode(filp); 3279 __u32 pin = 0; 3280 3281 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3282 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3283 return put_user(pin, (u32 __user *)arg); 3284 } 3285 3286 int f2fs_precache_extents(struct inode *inode) 3287 { 3288 struct f2fs_inode_info *fi = F2FS_I(inode); 3289 struct f2fs_map_blocks map; 3290 pgoff_t m_next_extent; 3291 loff_t end; 3292 int err; 3293 3294 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3295 return -EOPNOTSUPP; 3296 3297 map.m_lblk = 0; 3298 map.m_next_pgofs = NULL; 3299 map.m_next_extent = &m_next_extent; 3300 map.m_seg_type = NO_CHECK_TYPE; 3301 map.m_may_create = false; 3302 end = F2FS_I_SB(inode)->max_file_blocks; 3303 3304 while (map.m_lblk < end) { 3305 map.m_len = end - map.m_lblk; 3306 3307 down_write(&fi->i_gc_rwsem[WRITE]); 3308 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3309 up_write(&fi->i_gc_rwsem[WRITE]); 3310 if (err) 3311 return err; 3312 3313 map.m_lblk = m_next_extent; 3314 } 3315 3316 return err; 3317 } 3318 3319 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3320 { 3321 return f2fs_precache_extents(file_inode(filp)); 3322 } 3323 3324 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3325 { 3326 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3327 __u64 block_count; 3328 3329 if (!capable(CAP_SYS_ADMIN)) 3330 return -EPERM; 3331 3332 if (f2fs_readonly(sbi->sb)) 3333 return -EROFS; 3334 3335 if (copy_from_user(&block_count, (void __user *)arg, 3336 sizeof(block_count))) 3337 return -EFAULT; 3338 3339 return f2fs_resize_fs(sbi, block_count); 3340 } 3341 3342 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3343 { 3344 struct inode *inode = file_inode(filp); 3345 3346 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3347 3348 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3349 f2fs_warn(F2FS_I_SB(inode), 3350 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n", 3351 inode->i_ino); 3352 return -EOPNOTSUPP; 3353 } 3354 3355 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3356 } 3357 3358 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3359 { 3360 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3361 return -EOPNOTSUPP; 3362 3363 return fsverity_ioctl_measure(filp, (void __user *)arg); 3364 } 3365 3366 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3367 { 3368 struct inode *inode = file_inode(filp); 3369 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3370 char *vbuf; 3371 int count; 3372 int err = 0; 3373 3374 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3375 if (!vbuf) 3376 return -ENOMEM; 3377 3378 down_read(&sbi->sb_lock); 3379 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3380 ARRAY_SIZE(sbi->raw_super->volume_name), 3381 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3382 up_read(&sbi->sb_lock); 3383 3384 if (copy_to_user((char __user *)arg, vbuf, 3385 min(FSLABEL_MAX, count))) 3386 err = -EFAULT; 3387 3388 kvfree(vbuf); 3389 return err; 3390 } 3391 3392 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3393 { 3394 struct inode *inode = file_inode(filp); 3395 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3396 char *vbuf; 3397 int err = 0; 3398 3399 if (!capable(CAP_SYS_ADMIN)) 3400 return -EPERM; 3401 3402 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3403 if (IS_ERR(vbuf)) 3404 return PTR_ERR(vbuf); 3405 3406 err = mnt_want_write_file(filp); 3407 if (err) 3408 goto out; 3409 3410 down_write(&sbi->sb_lock); 3411 3412 memset(sbi->raw_super->volume_name, 0, 3413 sizeof(sbi->raw_super->volume_name)); 3414 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3415 sbi->raw_super->volume_name, 3416 ARRAY_SIZE(sbi->raw_super->volume_name)); 3417 3418 err = f2fs_commit_super(sbi, false); 3419 3420 up_write(&sbi->sb_lock); 3421 3422 mnt_drop_write_file(filp); 3423 out: 3424 kfree(vbuf); 3425 return err; 3426 } 3427 3428 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3429 { 3430 struct inode *inode = file_inode(filp); 3431 __u64 blocks; 3432 3433 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3434 return -EOPNOTSUPP; 3435 3436 if (!f2fs_compressed_file(inode)) 3437 return -EINVAL; 3438 3439 blocks = F2FS_I(inode)->i_compr_blocks; 3440 return put_user(blocks, (u64 __user *)arg); 3441 } 3442 3443 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3444 { 3445 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3446 unsigned int released_blocks = 0; 3447 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3448 block_t blkaddr; 3449 int i; 3450 3451 for (i = 0; i < count; i++) { 3452 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3453 dn->ofs_in_node + i); 3454 3455 if (!__is_valid_data_blkaddr(blkaddr)) 3456 continue; 3457 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3458 DATA_GENERIC_ENHANCE))) 3459 return -EFSCORRUPTED; 3460 } 3461 3462 while (count) { 3463 int compr_blocks = 0; 3464 3465 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3466 blkaddr = f2fs_data_blkaddr(dn); 3467 3468 if (i == 0) { 3469 if (blkaddr == COMPRESS_ADDR) 3470 continue; 3471 dn->ofs_in_node += cluster_size; 3472 goto next; 3473 } 3474 3475 if (__is_valid_data_blkaddr(blkaddr)) 3476 compr_blocks++; 3477 3478 if (blkaddr != NEW_ADDR) 3479 continue; 3480 3481 dn->data_blkaddr = NULL_ADDR; 3482 f2fs_set_data_blkaddr(dn); 3483 } 3484 3485 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3486 dec_valid_block_count(sbi, dn->inode, 3487 cluster_size - compr_blocks); 3488 3489 released_blocks += cluster_size - compr_blocks; 3490 next: 3491 count -= cluster_size; 3492 } 3493 3494 return released_blocks; 3495 } 3496 3497 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3498 { 3499 struct inode *inode = file_inode(filp); 3500 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3501 pgoff_t page_idx = 0, last_idx; 3502 unsigned int released_blocks = 0; 3503 int ret; 3504 int writecount; 3505 3506 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3507 return -EOPNOTSUPP; 3508 3509 if (!f2fs_compressed_file(inode)) 3510 return -EINVAL; 3511 3512 if (f2fs_readonly(sbi->sb)) 3513 return -EROFS; 3514 3515 ret = mnt_want_write_file(filp); 3516 if (ret) 3517 return ret; 3518 3519 f2fs_balance_fs(F2FS_I_SB(inode), true); 3520 3521 inode_lock(inode); 3522 3523 writecount = atomic_read(&inode->i_writecount); 3524 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || writecount) { 3525 ret = -EBUSY; 3526 goto out; 3527 } 3528 3529 if (IS_IMMUTABLE(inode)) { 3530 ret = -EINVAL; 3531 goto out; 3532 } 3533 3534 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3535 if (ret) 3536 goto out; 3537 3538 F2FS_I(inode)->i_flags |= F2FS_IMMUTABLE_FL; 3539 f2fs_set_inode_flags(inode); 3540 inode->i_ctime = current_time(inode); 3541 f2fs_mark_inode_dirty_sync(inode, true); 3542 3543 if (!F2FS_I(inode)->i_compr_blocks) 3544 goto out; 3545 3546 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3547 down_write(&F2FS_I(inode)->i_mmap_sem); 3548 3549 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3550 3551 while (page_idx < last_idx) { 3552 struct dnode_of_data dn; 3553 pgoff_t end_offset, count; 3554 3555 set_new_dnode(&dn, inode, NULL, NULL, 0); 3556 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3557 if (ret) { 3558 if (ret == -ENOENT) { 3559 page_idx = f2fs_get_next_page_offset(&dn, 3560 page_idx); 3561 ret = 0; 3562 continue; 3563 } 3564 break; 3565 } 3566 3567 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3568 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3569 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3570 3571 ret = release_compress_blocks(&dn, count); 3572 3573 f2fs_put_dnode(&dn); 3574 3575 if (ret < 0) 3576 break; 3577 3578 page_idx += count; 3579 released_blocks += ret; 3580 } 3581 3582 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3583 up_write(&F2FS_I(inode)->i_mmap_sem); 3584 out: 3585 inode_unlock(inode); 3586 3587 mnt_drop_write_file(filp); 3588 3589 if (ret >= 0) { 3590 ret = put_user(released_blocks, (u64 __user *)arg); 3591 } else if (released_blocks && F2FS_I(inode)->i_compr_blocks) { 3592 set_sbi_flag(sbi, SBI_NEED_FSCK); 3593 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3594 "iblocks=%llu, released=%u, compr_blocks=%llu, " 3595 "run fsck to fix.", 3596 __func__, inode->i_ino, inode->i_blocks, 3597 released_blocks, 3598 F2FS_I(inode)->i_compr_blocks); 3599 } 3600 3601 return ret; 3602 } 3603 3604 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3605 { 3606 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3607 unsigned int reserved_blocks = 0; 3608 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3609 block_t blkaddr; 3610 int i; 3611 3612 for (i = 0; i < count; i++) { 3613 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3614 dn->ofs_in_node + i); 3615 3616 if (!__is_valid_data_blkaddr(blkaddr)) 3617 continue; 3618 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3619 DATA_GENERIC_ENHANCE))) 3620 return -EFSCORRUPTED; 3621 } 3622 3623 while (count) { 3624 int compr_blocks = 0; 3625 blkcnt_t reserved; 3626 int ret; 3627 3628 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3629 blkaddr = f2fs_data_blkaddr(dn); 3630 3631 if (i == 0) { 3632 if (blkaddr == COMPRESS_ADDR) 3633 continue; 3634 dn->ofs_in_node += cluster_size; 3635 goto next; 3636 } 3637 3638 if (__is_valid_data_blkaddr(blkaddr)) { 3639 compr_blocks++; 3640 continue; 3641 } 3642 3643 dn->data_blkaddr = NEW_ADDR; 3644 f2fs_set_data_blkaddr(dn); 3645 } 3646 3647 reserved = cluster_size - compr_blocks; 3648 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3649 if (ret) 3650 return ret; 3651 3652 if (reserved != cluster_size - compr_blocks) 3653 return -ENOSPC; 3654 3655 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3656 3657 reserved_blocks += reserved; 3658 next: 3659 count -= cluster_size; 3660 } 3661 3662 return reserved_blocks; 3663 } 3664 3665 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3666 { 3667 struct inode *inode = file_inode(filp); 3668 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3669 pgoff_t page_idx = 0, last_idx; 3670 unsigned int reserved_blocks = 0; 3671 int ret; 3672 3673 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3674 return -EOPNOTSUPP; 3675 3676 if (!f2fs_compressed_file(inode)) 3677 return -EINVAL; 3678 3679 if (f2fs_readonly(sbi->sb)) 3680 return -EROFS; 3681 3682 ret = mnt_want_write_file(filp); 3683 if (ret) 3684 return ret; 3685 3686 if (F2FS_I(inode)->i_compr_blocks) 3687 goto out; 3688 3689 f2fs_balance_fs(F2FS_I_SB(inode), true); 3690 3691 inode_lock(inode); 3692 3693 if (!IS_IMMUTABLE(inode)) { 3694 ret = -EINVAL; 3695 goto unlock_inode; 3696 } 3697 3698 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3699 down_write(&F2FS_I(inode)->i_mmap_sem); 3700 3701 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3702 3703 while (page_idx < last_idx) { 3704 struct dnode_of_data dn; 3705 pgoff_t end_offset, count; 3706 3707 set_new_dnode(&dn, inode, NULL, NULL, 0); 3708 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3709 if (ret) { 3710 if (ret == -ENOENT) { 3711 page_idx = f2fs_get_next_page_offset(&dn, 3712 page_idx); 3713 ret = 0; 3714 continue; 3715 } 3716 break; 3717 } 3718 3719 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3720 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3721 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3722 3723 ret = reserve_compress_blocks(&dn, count); 3724 3725 f2fs_put_dnode(&dn); 3726 3727 if (ret < 0) 3728 break; 3729 3730 page_idx += count; 3731 reserved_blocks += ret; 3732 } 3733 3734 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3735 up_write(&F2FS_I(inode)->i_mmap_sem); 3736 3737 if (ret >= 0) { 3738 F2FS_I(inode)->i_flags &= ~F2FS_IMMUTABLE_FL; 3739 f2fs_set_inode_flags(inode); 3740 inode->i_ctime = current_time(inode); 3741 f2fs_mark_inode_dirty_sync(inode, true); 3742 } 3743 unlock_inode: 3744 inode_unlock(inode); 3745 out: 3746 mnt_drop_write_file(filp); 3747 3748 if (ret >= 0) { 3749 ret = put_user(reserved_blocks, (u64 __user *)arg); 3750 } else if (reserved_blocks && F2FS_I(inode)->i_compr_blocks) { 3751 set_sbi_flag(sbi, SBI_NEED_FSCK); 3752 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3753 "iblocks=%llu, reserved=%u, compr_blocks=%llu, " 3754 "run fsck to fix.", 3755 __func__, inode->i_ino, inode->i_blocks, 3756 reserved_blocks, 3757 F2FS_I(inode)->i_compr_blocks); 3758 } 3759 3760 return ret; 3761 } 3762 3763 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3764 pgoff_t off, block_t block, block_t len, u32 flags) 3765 { 3766 struct request_queue *q = bdev_get_queue(bdev); 3767 sector_t sector = SECTOR_FROM_BLOCK(block); 3768 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3769 int ret = 0; 3770 3771 if (!q) 3772 return -ENXIO; 3773 3774 if (flags & F2FS_TRIM_FILE_DISCARD) 3775 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS, 3776 blk_queue_secure_erase(q) ? 3777 BLKDEV_DISCARD_SECURE : 0); 3778 3779 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3780 if (IS_ENCRYPTED(inode)) 3781 ret = fscrypt_zeroout_range(inode, off, block, len); 3782 else 3783 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3784 GFP_NOFS, 0); 3785 } 3786 3787 return ret; 3788 } 3789 3790 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3791 { 3792 struct inode *inode = file_inode(filp); 3793 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3794 struct address_space *mapping = inode->i_mapping; 3795 struct block_device *prev_bdev = NULL; 3796 struct f2fs_sectrim_range range; 3797 pgoff_t index, pg_end, prev_index = 0; 3798 block_t prev_block = 0, len = 0; 3799 loff_t end_addr; 3800 bool to_end = false; 3801 int ret = 0; 3802 3803 if (!(filp->f_mode & FMODE_WRITE)) 3804 return -EBADF; 3805 3806 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3807 sizeof(range))) 3808 return -EFAULT; 3809 3810 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3811 !S_ISREG(inode->i_mode)) 3812 return -EINVAL; 3813 3814 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3815 !f2fs_hw_support_discard(sbi)) || 3816 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3817 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3818 return -EOPNOTSUPP; 3819 3820 file_start_write(filp); 3821 inode_lock(inode); 3822 3823 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3824 range.start >= inode->i_size) { 3825 ret = -EINVAL; 3826 goto err; 3827 } 3828 3829 if (range.len == 0) 3830 goto err; 3831 3832 if (inode->i_size - range.start > range.len) { 3833 end_addr = range.start + range.len; 3834 } else { 3835 end_addr = range.len == (u64)-1 ? 3836 sbi->sb->s_maxbytes : inode->i_size; 3837 to_end = true; 3838 } 3839 3840 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3841 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3842 ret = -EINVAL; 3843 goto err; 3844 } 3845 3846 index = F2FS_BYTES_TO_BLK(range.start); 3847 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3848 3849 ret = f2fs_convert_inline_inode(inode); 3850 if (ret) 3851 goto err; 3852 3853 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3854 down_write(&F2FS_I(inode)->i_mmap_sem); 3855 3856 ret = filemap_write_and_wait_range(mapping, range.start, 3857 to_end ? LLONG_MAX : end_addr - 1); 3858 if (ret) 3859 goto out; 3860 3861 truncate_inode_pages_range(mapping, range.start, 3862 to_end ? -1 : end_addr - 1); 3863 3864 while (index < pg_end) { 3865 struct dnode_of_data dn; 3866 pgoff_t end_offset, count; 3867 int i; 3868 3869 set_new_dnode(&dn, inode, NULL, NULL, 0); 3870 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3871 if (ret) { 3872 if (ret == -ENOENT) { 3873 index = f2fs_get_next_page_offset(&dn, index); 3874 continue; 3875 } 3876 goto out; 3877 } 3878 3879 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3880 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3881 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3882 struct block_device *cur_bdev; 3883 block_t blkaddr = f2fs_data_blkaddr(&dn); 3884 3885 if (!__is_valid_data_blkaddr(blkaddr)) 3886 continue; 3887 3888 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3889 DATA_GENERIC_ENHANCE)) { 3890 ret = -EFSCORRUPTED; 3891 f2fs_put_dnode(&dn); 3892 goto out; 3893 } 3894 3895 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3896 if (f2fs_is_multi_device(sbi)) { 3897 int di = f2fs_target_device_index(sbi, blkaddr); 3898 3899 blkaddr -= FDEV(di).start_blk; 3900 } 3901 3902 if (len) { 3903 if (prev_bdev == cur_bdev && 3904 index == prev_index + len && 3905 blkaddr == prev_block + len) { 3906 len++; 3907 } else { 3908 ret = f2fs_secure_erase(prev_bdev, 3909 inode, prev_index, prev_block, 3910 len, range.flags); 3911 if (ret) { 3912 f2fs_put_dnode(&dn); 3913 goto out; 3914 } 3915 3916 len = 0; 3917 } 3918 } 3919 3920 if (!len) { 3921 prev_bdev = cur_bdev; 3922 prev_index = index; 3923 prev_block = blkaddr; 3924 len = 1; 3925 } 3926 } 3927 3928 f2fs_put_dnode(&dn); 3929 3930 if (fatal_signal_pending(current)) { 3931 ret = -EINTR; 3932 goto out; 3933 } 3934 cond_resched(); 3935 } 3936 3937 if (len) 3938 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3939 prev_block, len, range.flags); 3940 out: 3941 up_write(&F2FS_I(inode)->i_mmap_sem); 3942 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3943 err: 3944 inode_unlock(inode); 3945 file_end_write(filp); 3946 3947 return ret; 3948 } 3949 3950 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 3951 { 3952 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 3953 return -EIO; 3954 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 3955 return -ENOSPC; 3956 3957 switch (cmd) { 3958 case FS_IOC_GETFLAGS: 3959 return f2fs_ioc_getflags(filp, arg); 3960 case FS_IOC_SETFLAGS: 3961 return f2fs_ioc_setflags(filp, arg); 3962 case FS_IOC_GETVERSION: 3963 return f2fs_ioc_getversion(filp, arg); 3964 case F2FS_IOC_START_ATOMIC_WRITE: 3965 return f2fs_ioc_start_atomic_write(filp); 3966 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3967 return f2fs_ioc_commit_atomic_write(filp); 3968 case F2FS_IOC_START_VOLATILE_WRITE: 3969 return f2fs_ioc_start_volatile_write(filp); 3970 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3971 return f2fs_ioc_release_volatile_write(filp); 3972 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3973 return f2fs_ioc_abort_volatile_write(filp); 3974 case F2FS_IOC_SHUTDOWN: 3975 return f2fs_ioc_shutdown(filp, arg); 3976 case FITRIM: 3977 return f2fs_ioc_fitrim(filp, arg); 3978 case FS_IOC_SET_ENCRYPTION_POLICY: 3979 return f2fs_ioc_set_encryption_policy(filp, arg); 3980 case FS_IOC_GET_ENCRYPTION_POLICY: 3981 return f2fs_ioc_get_encryption_policy(filp, arg); 3982 case FS_IOC_GET_ENCRYPTION_PWSALT: 3983 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 3984 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 3985 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 3986 case FS_IOC_ADD_ENCRYPTION_KEY: 3987 return f2fs_ioc_add_encryption_key(filp, arg); 3988 case FS_IOC_REMOVE_ENCRYPTION_KEY: 3989 return f2fs_ioc_remove_encryption_key(filp, arg); 3990 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 3991 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 3992 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 3993 return f2fs_ioc_get_encryption_key_status(filp, arg); 3994 case FS_IOC_GET_ENCRYPTION_NONCE: 3995 return f2fs_ioc_get_encryption_nonce(filp, arg); 3996 case F2FS_IOC_GARBAGE_COLLECT: 3997 return f2fs_ioc_gc(filp, arg); 3998 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3999 return f2fs_ioc_gc_range(filp, arg); 4000 case F2FS_IOC_WRITE_CHECKPOINT: 4001 return f2fs_ioc_write_checkpoint(filp, arg); 4002 case F2FS_IOC_DEFRAGMENT: 4003 return f2fs_ioc_defragment(filp, arg); 4004 case F2FS_IOC_MOVE_RANGE: 4005 return f2fs_ioc_move_range(filp, arg); 4006 case F2FS_IOC_FLUSH_DEVICE: 4007 return f2fs_ioc_flush_device(filp, arg); 4008 case F2FS_IOC_GET_FEATURES: 4009 return f2fs_ioc_get_features(filp, arg); 4010 case FS_IOC_FSGETXATTR: 4011 return f2fs_ioc_fsgetxattr(filp, arg); 4012 case FS_IOC_FSSETXATTR: 4013 return f2fs_ioc_fssetxattr(filp, arg); 4014 case F2FS_IOC_GET_PIN_FILE: 4015 return f2fs_ioc_get_pin_file(filp, arg); 4016 case F2FS_IOC_SET_PIN_FILE: 4017 return f2fs_ioc_set_pin_file(filp, arg); 4018 case F2FS_IOC_PRECACHE_EXTENTS: 4019 return f2fs_ioc_precache_extents(filp, arg); 4020 case F2FS_IOC_RESIZE_FS: 4021 return f2fs_ioc_resize_fs(filp, arg); 4022 case FS_IOC_ENABLE_VERITY: 4023 return f2fs_ioc_enable_verity(filp, arg); 4024 case FS_IOC_MEASURE_VERITY: 4025 return f2fs_ioc_measure_verity(filp, arg); 4026 case FS_IOC_GETFSLABEL: 4027 return f2fs_ioc_getfslabel(filp, arg); 4028 case FS_IOC_SETFSLABEL: 4029 return f2fs_ioc_setfslabel(filp, arg); 4030 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4031 return f2fs_get_compress_blocks(filp, arg); 4032 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4033 return f2fs_release_compress_blocks(filp, arg); 4034 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4035 return f2fs_reserve_compress_blocks(filp, arg); 4036 case F2FS_IOC_SEC_TRIM_FILE: 4037 return f2fs_sec_trim_file(filp, arg); 4038 default: 4039 return -ENOTTY; 4040 } 4041 } 4042 4043 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 4044 { 4045 struct file *file = iocb->ki_filp; 4046 struct inode *inode = file_inode(file); 4047 int ret; 4048 4049 if (!f2fs_is_compress_backend_ready(inode)) 4050 return -EOPNOTSUPP; 4051 4052 ret = generic_file_read_iter(iocb, iter); 4053 4054 if (ret > 0) 4055 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret); 4056 4057 return ret; 4058 } 4059 4060 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4061 { 4062 struct file *file = iocb->ki_filp; 4063 struct inode *inode = file_inode(file); 4064 ssize_t ret; 4065 4066 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4067 ret = -EIO; 4068 goto out; 4069 } 4070 4071 if (!f2fs_is_compress_backend_ready(inode)) { 4072 ret = -EOPNOTSUPP; 4073 goto out; 4074 } 4075 4076 if (iocb->ki_flags & IOCB_NOWAIT) { 4077 if (!inode_trylock(inode)) { 4078 ret = -EAGAIN; 4079 goto out; 4080 } 4081 } else { 4082 inode_lock(inode); 4083 } 4084 4085 ret = generic_write_checks(iocb, from); 4086 if (ret > 0) { 4087 bool preallocated = false; 4088 size_t target_size = 0; 4089 int err; 4090 4091 if (iov_iter_fault_in_readable(from, iov_iter_count(from))) 4092 set_inode_flag(inode, FI_NO_PREALLOC); 4093 4094 if ((iocb->ki_flags & IOCB_NOWAIT)) { 4095 if (!f2fs_overwrite_io(inode, iocb->ki_pos, 4096 iov_iter_count(from)) || 4097 f2fs_has_inline_data(inode) || 4098 f2fs_force_buffered_io(inode, iocb, from)) { 4099 clear_inode_flag(inode, FI_NO_PREALLOC); 4100 inode_unlock(inode); 4101 ret = -EAGAIN; 4102 goto out; 4103 } 4104 goto write; 4105 } 4106 4107 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 4108 goto write; 4109 4110 if (iocb->ki_flags & IOCB_DIRECT) { 4111 /* 4112 * Convert inline data for Direct I/O before entering 4113 * f2fs_direct_IO(). 4114 */ 4115 err = f2fs_convert_inline_inode(inode); 4116 if (err) 4117 goto out_err; 4118 /* 4119 * If force_buffere_io() is true, we have to allocate 4120 * blocks all the time, since f2fs_direct_IO will fall 4121 * back to buffered IO. 4122 */ 4123 if (!f2fs_force_buffered_io(inode, iocb, from) && 4124 allow_outplace_dio(inode, iocb, from)) 4125 goto write; 4126 } 4127 preallocated = true; 4128 target_size = iocb->ki_pos + iov_iter_count(from); 4129 4130 err = f2fs_preallocate_blocks(iocb, from); 4131 if (err) { 4132 out_err: 4133 clear_inode_flag(inode, FI_NO_PREALLOC); 4134 inode_unlock(inode); 4135 ret = err; 4136 goto out; 4137 } 4138 write: 4139 ret = __generic_file_write_iter(iocb, from); 4140 clear_inode_flag(inode, FI_NO_PREALLOC); 4141 4142 /* if we couldn't write data, we should deallocate blocks. */ 4143 if (preallocated && i_size_read(inode) < target_size) 4144 f2fs_truncate(inode); 4145 4146 if (ret > 0) 4147 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); 4148 } 4149 inode_unlock(inode); 4150 out: 4151 trace_f2fs_file_write_iter(inode, iocb->ki_pos, 4152 iov_iter_count(from), ret); 4153 if (ret > 0) 4154 ret = generic_write_sync(iocb, ret); 4155 return ret; 4156 } 4157 4158 #ifdef CONFIG_COMPAT 4159 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4160 { 4161 switch (cmd) { 4162 case FS_IOC32_GETFLAGS: 4163 cmd = FS_IOC_GETFLAGS; 4164 break; 4165 case FS_IOC32_SETFLAGS: 4166 cmd = FS_IOC_SETFLAGS; 4167 break; 4168 case FS_IOC32_GETVERSION: 4169 cmd = FS_IOC_GETVERSION; 4170 break; 4171 case F2FS_IOC_START_ATOMIC_WRITE: 4172 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4173 case F2FS_IOC_START_VOLATILE_WRITE: 4174 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4175 case F2FS_IOC_ABORT_VOLATILE_WRITE: 4176 case F2FS_IOC_SHUTDOWN: 4177 case FITRIM: 4178 case FS_IOC_SET_ENCRYPTION_POLICY: 4179 case FS_IOC_GET_ENCRYPTION_PWSALT: 4180 case FS_IOC_GET_ENCRYPTION_POLICY: 4181 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4182 case FS_IOC_ADD_ENCRYPTION_KEY: 4183 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4184 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4185 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4186 case FS_IOC_GET_ENCRYPTION_NONCE: 4187 case F2FS_IOC_GARBAGE_COLLECT: 4188 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4189 case F2FS_IOC_WRITE_CHECKPOINT: 4190 case F2FS_IOC_DEFRAGMENT: 4191 case F2FS_IOC_MOVE_RANGE: 4192 case F2FS_IOC_FLUSH_DEVICE: 4193 case F2FS_IOC_GET_FEATURES: 4194 case FS_IOC_FSGETXATTR: 4195 case FS_IOC_FSSETXATTR: 4196 case F2FS_IOC_GET_PIN_FILE: 4197 case F2FS_IOC_SET_PIN_FILE: 4198 case F2FS_IOC_PRECACHE_EXTENTS: 4199 case F2FS_IOC_RESIZE_FS: 4200 case FS_IOC_ENABLE_VERITY: 4201 case FS_IOC_MEASURE_VERITY: 4202 case FS_IOC_GETFSLABEL: 4203 case FS_IOC_SETFSLABEL: 4204 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4205 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4206 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4207 case F2FS_IOC_SEC_TRIM_FILE: 4208 break; 4209 default: 4210 return -ENOIOCTLCMD; 4211 } 4212 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4213 } 4214 #endif 4215 4216 const struct file_operations f2fs_file_operations = { 4217 .llseek = f2fs_llseek, 4218 .read_iter = f2fs_file_read_iter, 4219 .write_iter = f2fs_file_write_iter, 4220 .open = f2fs_file_open, 4221 .release = f2fs_release_file, 4222 .mmap = f2fs_file_mmap, 4223 .flush = f2fs_file_flush, 4224 .fsync = f2fs_sync_file, 4225 .fallocate = f2fs_fallocate, 4226 .unlocked_ioctl = f2fs_ioctl, 4227 #ifdef CONFIG_COMPAT 4228 .compat_ioctl = f2fs_compat_ioctl, 4229 #endif 4230 .splice_read = generic_file_splice_read, 4231 .splice_write = iter_file_splice_write, 4232 }; 4233