1 /* 2 * fs/f2fs/file.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/stat.h> 14 #include <linux/buffer_head.h> 15 #include <linux/writeback.h> 16 #include <linux/blkdev.h> 17 #include <linux/falloc.h> 18 #include <linux/types.h> 19 #include <linux/compat.h> 20 #include <linux/uaccess.h> 21 #include <linux/mount.h> 22 #include <linux/pagevec.h> 23 #include <linux/uuid.h> 24 #include <linux/file.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "xattr.h" 30 #include "acl.h" 31 #include "gc.h" 32 #include "trace.h" 33 #include <trace/events/f2fs.h> 34 35 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf) 36 { 37 struct page *page = vmf->page; 38 struct inode *inode = file_inode(vmf->vma->vm_file); 39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 40 struct dnode_of_data dn; 41 int err; 42 43 sb_start_pagefault(inode->i_sb); 44 45 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 46 47 /* block allocation */ 48 f2fs_lock_op(sbi); 49 set_new_dnode(&dn, inode, NULL, NULL, 0); 50 err = f2fs_reserve_block(&dn, page->index); 51 if (err) { 52 f2fs_unlock_op(sbi); 53 goto out; 54 } 55 f2fs_put_dnode(&dn); 56 f2fs_unlock_op(sbi); 57 58 f2fs_balance_fs(sbi, dn.node_changed); 59 60 file_update_time(vmf->vma->vm_file); 61 lock_page(page); 62 if (unlikely(page->mapping != inode->i_mapping || 63 page_offset(page) > i_size_read(inode) || 64 !PageUptodate(page))) { 65 unlock_page(page); 66 err = -EFAULT; 67 goto out; 68 } 69 70 /* 71 * check to see if the page is mapped already (no holes) 72 */ 73 if (PageMappedToDisk(page)) 74 goto mapped; 75 76 /* page is wholly or partially inside EOF */ 77 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 78 i_size_read(inode)) { 79 unsigned offset; 80 offset = i_size_read(inode) & ~PAGE_MASK; 81 zero_user_segment(page, offset, PAGE_SIZE); 82 } 83 set_page_dirty(page); 84 if (!PageUptodate(page)) 85 SetPageUptodate(page); 86 87 trace_f2fs_vm_page_mkwrite(page, DATA); 88 mapped: 89 /* fill the page */ 90 f2fs_wait_on_page_writeback(page, DATA, false); 91 92 /* wait for GCed encrypted page writeback */ 93 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 94 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr); 95 96 out: 97 sb_end_pagefault(inode->i_sb); 98 f2fs_update_time(sbi, REQ_TIME); 99 return block_page_mkwrite_return(err); 100 } 101 102 static const struct vm_operations_struct f2fs_file_vm_ops = { 103 .fault = filemap_fault, 104 .map_pages = filemap_map_pages, 105 .page_mkwrite = f2fs_vm_page_mkwrite, 106 }; 107 108 static int get_parent_ino(struct inode *inode, nid_t *pino) 109 { 110 struct dentry *dentry; 111 112 inode = igrab(inode); 113 dentry = d_find_any_alias(inode); 114 iput(inode); 115 if (!dentry) 116 return 0; 117 118 if (update_dent_inode(inode, inode, &dentry->d_name)) { 119 dput(dentry); 120 return 0; 121 } 122 123 *pino = parent_ino(dentry); 124 dput(dentry); 125 return 1; 126 } 127 128 static inline bool need_do_checkpoint(struct inode *inode) 129 { 130 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 131 bool need_cp = false; 132 133 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1) 134 need_cp = true; 135 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 136 need_cp = true; 137 else if (file_wrong_pino(inode)) 138 need_cp = true; 139 else if (!space_for_roll_forward(sbi)) 140 need_cp = true; 141 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 142 need_cp = true; 143 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi))) 144 need_cp = true; 145 else if (test_opt(sbi, FASTBOOT)) 146 need_cp = true; 147 else if (sbi->active_logs == 2) 148 need_cp = true; 149 150 return need_cp; 151 } 152 153 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 154 { 155 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 156 bool ret = false; 157 /* But we need to avoid that there are some inode updates */ 158 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino)) 159 ret = true; 160 f2fs_put_page(i, 0); 161 return ret; 162 } 163 164 static void try_to_fix_pino(struct inode *inode) 165 { 166 struct f2fs_inode_info *fi = F2FS_I(inode); 167 nid_t pino; 168 169 down_write(&fi->i_sem); 170 fi->xattr_ver = 0; 171 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 172 get_parent_ino(inode, &pino)) { 173 f2fs_i_pino_write(inode, pino); 174 file_got_pino(inode); 175 } 176 up_write(&fi->i_sem); 177 } 178 179 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 180 int datasync, bool atomic) 181 { 182 struct inode *inode = file->f_mapping->host; 183 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 184 nid_t ino = inode->i_ino; 185 int ret = 0; 186 bool need_cp = false; 187 struct writeback_control wbc = { 188 .sync_mode = WB_SYNC_ALL, 189 .nr_to_write = LONG_MAX, 190 .for_reclaim = 0, 191 }; 192 193 if (unlikely(f2fs_readonly(inode->i_sb))) 194 return 0; 195 196 trace_f2fs_sync_file_enter(inode); 197 198 /* if fdatasync is triggered, let's do in-place-update */ 199 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 200 set_inode_flag(inode, FI_NEED_IPU); 201 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 202 clear_inode_flag(inode, FI_NEED_IPU); 203 204 if (ret) { 205 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); 206 return ret; 207 } 208 209 /* if the inode is dirty, let's recover all the time */ 210 if (!f2fs_skip_inode_update(inode, datasync)) { 211 f2fs_write_inode(inode, NULL); 212 goto go_write; 213 } 214 215 /* 216 * if there is no written data, don't waste time to write recovery info. 217 */ 218 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 219 !exist_written_data(sbi, ino, APPEND_INO)) { 220 221 /* it may call write_inode just prior to fsync */ 222 if (need_inode_page_update(sbi, ino)) 223 goto go_write; 224 225 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 226 exist_written_data(sbi, ino, UPDATE_INO)) 227 goto flush_out; 228 goto out; 229 } 230 go_write: 231 /* 232 * Both of fdatasync() and fsync() are able to be recovered from 233 * sudden-power-off. 234 */ 235 down_read(&F2FS_I(inode)->i_sem); 236 need_cp = need_do_checkpoint(inode); 237 up_read(&F2FS_I(inode)->i_sem); 238 239 if (need_cp) { 240 /* all the dirty node pages should be flushed for POR */ 241 ret = f2fs_sync_fs(inode->i_sb, 1); 242 243 /* 244 * We've secured consistency through sync_fs. Following pino 245 * will be used only for fsynced inodes after checkpoint. 246 */ 247 try_to_fix_pino(inode); 248 clear_inode_flag(inode, FI_APPEND_WRITE); 249 clear_inode_flag(inode, FI_UPDATE_WRITE); 250 goto out; 251 } 252 sync_nodes: 253 ret = fsync_node_pages(sbi, inode, &wbc, atomic); 254 if (ret) 255 goto out; 256 257 /* if cp_error was enabled, we should avoid infinite loop */ 258 if (unlikely(f2fs_cp_error(sbi))) { 259 ret = -EIO; 260 goto out; 261 } 262 263 if (need_inode_block_update(sbi, ino)) { 264 f2fs_mark_inode_dirty_sync(inode, true); 265 f2fs_write_inode(inode, NULL); 266 goto sync_nodes; 267 } 268 269 ret = wait_on_node_pages_writeback(sbi, ino); 270 if (ret) 271 goto out; 272 273 /* once recovery info is written, don't need to tack this */ 274 remove_ino_entry(sbi, ino, APPEND_INO); 275 clear_inode_flag(inode, FI_APPEND_WRITE); 276 flush_out: 277 remove_ino_entry(sbi, ino, UPDATE_INO); 278 clear_inode_flag(inode, FI_UPDATE_WRITE); 279 ret = f2fs_issue_flush(sbi); 280 f2fs_update_time(sbi, REQ_TIME); 281 out: 282 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); 283 f2fs_trace_ios(NULL, 1); 284 return ret; 285 } 286 287 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 288 { 289 return f2fs_do_sync_file(file, start, end, datasync, false); 290 } 291 292 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 293 pgoff_t pgofs, int whence) 294 { 295 struct pagevec pvec; 296 int nr_pages; 297 298 if (whence != SEEK_DATA) 299 return 0; 300 301 /* find first dirty page index */ 302 pagevec_init(&pvec, 0); 303 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs, 304 PAGECACHE_TAG_DIRTY, 1); 305 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX; 306 pagevec_release(&pvec); 307 return pgofs; 308 } 309 310 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs, 311 int whence) 312 { 313 switch (whence) { 314 case SEEK_DATA: 315 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 316 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR)) 317 return true; 318 break; 319 case SEEK_HOLE: 320 if (blkaddr == NULL_ADDR) 321 return true; 322 break; 323 } 324 return false; 325 } 326 327 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 328 { 329 struct inode *inode = file->f_mapping->host; 330 loff_t maxbytes = inode->i_sb->s_maxbytes; 331 struct dnode_of_data dn; 332 pgoff_t pgofs, end_offset, dirty; 333 loff_t data_ofs = offset; 334 loff_t isize; 335 int err = 0; 336 337 inode_lock(inode); 338 339 isize = i_size_read(inode); 340 if (offset >= isize) 341 goto fail; 342 343 /* handle inline data case */ 344 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 345 if (whence == SEEK_HOLE) 346 data_ofs = isize; 347 goto found; 348 } 349 350 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 351 352 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 353 354 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 355 set_new_dnode(&dn, inode, NULL, NULL, 0); 356 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 357 if (err && err != -ENOENT) { 358 goto fail; 359 } else if (err == -ENOENT) { 360 /* direct node does not exists */ 361 if (whence == SEEK_DATA) { 362 pgofs = get_next_page_offset(&dn, pgofs); 363 continue; 364 } else { 365 goto found; 366 } 367 } 368 369 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 370 371 /* find data/hole in dnode block */ 372 for (; dn.ofs_in_node < end_offset; 373 dn.ofs_in_node++, pgofs++, 374 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 375 block_t blkaddr; 376 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 377 378 if (__found_offset(blkaddr, dirty, pgofs, whence)) { 379 f2fs_put_dnode(&dn); 380 goto found; 381 } 382 } 383 f2fs_put_dnode(&dn); 384 } 385 386 if (whence == SEEK_DATA) 387 goto fail; 388 found: 389 if (whence == SEEK_HOLE && data_ofs > isize) 390 data_ofs = isize; 391 inode_unlock(inode); 392 return vfs_setpos(file, data_ofs, maxbytes); 393 fail: 394 inode_unlock(inode); 395 return -ENXIO; 396 } 397 398 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 399 { 400 struct inode *inode = file->f_mapping->host; 401 loff_t maxbytes = inode->i_sb->s_maxbytes; 402 403 switch (whence) { 404 case SEEK_SET: 405 case SEEK_CUR: 406 case SEEK_END: 407 return generic_file_llseek_size(file, offset, whence, 408 maxbytes, i_size_read(inode)); 409 case SEEK_DATA: 410 case SEEK_HOLE: 411 if (offset < 0) 412 return -ENXIO; 413 return f2fs_seek_block(file, offset, whence); 414 } 415 416 return -EINVAL; 417 } 418 419 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 420 { 421 struct inode *inode = file_inode(file); 422 int err; 423 424 if (f2fs_encrypted_inode(inode)) { 425 err = fscrypt_get_encryption_info(inode); 426 if (err) 427 return 0; 428 if (!f2fs_encrypted_inode(inode)) 429 return -ENOKEY; 430 } 431 432 /* we don't need to use inline_data strictly */ 433 err = f2fs_convert_inline_inode(inode); 434 if (err) 435 return err; 436 437 file_accessed(file); 438 vma->vm_ops = &f2fs_file_vm_ops; 439 return 0; 440 } 441 442 static int f2fs_file_open(struct inode *inode, struct file *filp) 443 { 444 int ret = generic_file_open(inode, filp); 445 struct dentry *dir; 446 447 if (!ret && f2fs_encrypted_inode(inode)) { 448 ret = fscrypt_get_encryption_info(inode); 449 if (ret) 450 return -EACCES; 451 if (!fscrypt_has_encryption_key(inode)) 452 return -ENOKEY; 453 } 454 dir = dget_parent(file_dentry(filp)); 455 if (f2fs_encrypted_inode(d_inode(dir)) && 456 !fscrypt_has_permitted_context(d_inode(dir), inode)) { 457 dput(dir); 458 return -EPERM; 459 } 460 dput(dir); 461 return ret; 462 } 463 464 int truncate_data_blocks_range(struct dnode_of_data *dn, int count) 465 { 466 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 467 struct f2fs_node *raw_node; 468 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 469 __le32 *addr; 470 471 raw_node = F2FS_NODE(dn->node_page); 472 addr = blkaddr_in_node(raw_node) + ofs; 473 474 for (; count > 0; count--, addr++, dn->ofs_in_node++) { 475 block_t blkaddr = le32_to_cpu(*addr); 476 if (blkaddr == NULL_ADDR) 477 continue; 478 479 dn->data_blkaddr = NULL_ADDR; 480 set_data_blkaddr(dn); 481 invalidate_blocks(sbi, blkaddr); 482 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 483 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 484 nr_free++; 485 } 486 487 if (nr_free) { 488 pgoff_t fofs; 489 /* 490 * once we invalidate valid blkaddr in range [ofs, ofs + count], 491 * we will invalidate all blkaddr in the whole range. 492 */ 493 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), 494 dn->inode) + ofs; 495 f2fs_update_extent_cache_range(dn, fofs, 0, len); 496 dec_valid_block_count(sbi, dn->inode, nr_free); 497 } 498 dn->ofs_in_node = ofs; 499 500 f2fs_update_time(sbi, REQ_TIME); 501 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 502 dn->ofs_in_node, nr_free); 503 return nr_free; 504 } 505 506 void truncate_data_blocks(struct dnode_of_data *dn) 507 { 508 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK); 509 } 510 511 static int truncate_partial_data_page(struct inode *inode, u64 from, 512 bool cache_only) 513 { 514 unsigned offset = from & (PAGE_SIZE - 1); 515 pgoff_t index = from >> PAGE_SHIFT; 516 struct address_space *mapping = inode->i_mapping; 517 struct page *page; 518 519 if (!offset && !cache_only) 520 return 0; 521 522 if (cache_only) { 523 page = find_lock_page(mapping, index); 524 if (page && PageUptodate(page)) 525 goto truncate_out; 526 f2fs_put_page(page, 1); 527 return 0; 528 } 529 530 page = get_lock_data_page(inode, index, true); 531 if (IS_ERR(page)) 532 return 0; 533 truncate_out: 534 f2fs_wait_on_page_writeback(page, DATA, true); 535 zero_user(page, offset, PAGE_SIZE - offset); 536 if (!cache_only || !f2fs_encrypted_inode(inode) || 537 !S_ISREG(inode->i_mode)) 538 set_page_dirty(page); 539 f2fs_put_page(page, 1); 540 return 0; 541 } 542 543 int truncate_blocks(struct inode *inode, u64 from, bool lock) 544 { 545 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 546 unsigned int blocksize = inode->i_sb->s_blocksize; 547 struct dnode_of_data dn; 548 pgoff_t free_from; 549 int count = 0, err = 0; 550 struct page *ipage; 551 bool truncate_page = false; 552 553 trace_f2fs_truncate_blocks_enter(inode, from); 554 555 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1); 556 557 if (free_from >= sbi->max_file_blocks) 558 goto free_partial; 559 560 if (lock) 561 f2fs_lock_op(sbi); 562 563 ipage = get_node_page(sbi, inode->i_ino); 564 if (IS_ERR(ipage)) { 565 err = PTR_ERR(ipage); 566 goto out; 567 } 568 569 if (f2fs_has_inline_data(inode)) { 570 if (truncate_inline_inode(ipage, from)) 571 set_page_dirty(ipage); 572 f2fs_put_page(ipage, 1); 573 truncate_page = true; 574 goto out; 575 } 576 577 set_new_dnode(&dn, inode, ipage, NULL, 0); 578 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 579 if (err) { 580 if (err == -ENOENT) 581 goto free_next; 582 goto out; 583 } 584 585 count = ADDRS_PER_PAGE(dn.node_page, inode); 586 587 count -= dn.ofs_in_node; 588 f2fs_bug_on(sbi, count < 0); 589 590 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 591 truncate_data_blocks_range(&dn, count); 592 free_from += count; 593 } 594 595 f2fs_put_dnode(&dn); 596 free_next: 597 err = truncate_inode_blocks(inode, free_from); 598 out: 599 if (lock) 600 f2fs_unlock_op(sbi); 601 free_partial: 602 /* lastly zero out the first data page */ 603 if (!err) 604 err = truncate_partial_data_page(inode, from, truncate_page); 605 606 trace_f2fs_truncate_blocks_exit(inode, err); 607 return err; 608 } 609 610 int f2fs_truncate(struct inode *inode) 611 { 612 int err; 613 614 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 615 S_ISLNK(inode->i_mode))) 616 return 0; 617 618 trace_f2fs_truncate(inode); 619 620 /* we should check inline_data size */ 621 if (!f2fs_may_inline_data(inode)) { 622 err = f2fs_convert_inline_inode(inode); 623 if (err) 624 return err; 625 } 626 627 err = truncate_blocks(inode, i_size_read(inode), true); 628 if (err) 629 return err; 630 631 inode->i_mtime = inode->i_ctime = current_time(inode); 632 f2fs_mark_inode_dirty_sync(inode, false); 633 return 0; 634 } 635 636 int f2fs_getattr(struct vfsmount *mnt, 637 struct dentry *dentry, struct kstat *stat) 638 { 639 struct inode *inode = d_inode(dentry); 640 generic_fillattr(inode, stat); 641 stat->blocks <<= 3; 642 return 0; 643 } 644 645 #ifdef CONFIG_F2FS_FS_POSIX_ACL 646 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 647 { 648 unsigned int ia_valid = attr->ia_valid; 649 650 if (ia_valid & ATTR_UID) 651 inode->i_uid = attr->ia_uid; 652 if (ia_valid & ATTR_GID) 653 inode->i_gid = attr->ia_gid; 654 if (ia_valid & ATTR_ATIME) 655 inode->i_atime = timespec_trunc(attr->ia_atime, 656 inode->i_sb->s_time_gran); 657 if (ia_valid & ATTR_MTIME) 658 inode->i_mtime = timespec_trunc(attr->ia_mtime, 659 inode->i_sb->s_time_gran); 660 if (ia_valid & ATTR_CTIME) 661 inode->i_ctime = timespec_trunc(attr->ia_ctime, 662 inode->i_sb->s_time_gran); 663 if (ia_valid & ATTR_MODE) { 664 umode_t mode = attr->ia_mode; 665 666 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 667 mode &= ~S_ISGID; 668 set_acl_inode(inode, mode); 669 } 670 } 671 #else 672 #define __setattr_copy setattr_copy 673 #endif 674 675 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 676 { 677 struct inode *inode = d_inode(dentry); 678 int err; 679 bool size_changed = false; 680 681 err = setattr_prepare(dentry, attr); 682 if (err) 683 return err; 684 685 if (attr->ia_valid & ATTR_SIZE) { 686 if (f2fs_encrypted_inode(inode) && 687 fscrypt_get_encryption_info(inode)) 688 return -EACCES; 689 690 if (attr->ia_size <= i_size_read(inode)) { 691 truncate_setsize(inode, attr->ia_size); 692 err = f2fs_truncate(inode); 693 if (err) 694 return err; 695 } else { 696 /* 697 * do not trim all blocks after i_size if target size is 698 * larger than i_size. 699 */ 700 truncate_setsize(inode, attr->ia_size); 701 702 /* should convert inline inode here */ 703 if (!f2fs_may_inline_data(inode)) { 704 err = f2fs_convert_inline_inode(inode); 705 if (err) 706 return err; 707 } 708 inode->i_mtime = inode->i_ctime = current_time(inode); 709 } 710 711 size_changed = true; 712 } 713 714 __setattr_copy(inode, attr); 715 716 if (attr->ia_valid & ATTR_MODE) { 717 err = posix_acl_chmod(inode, get_inode_mode(inode)); 718 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 719 inode->i_mode = F2FS_I(inode)->i_acl_mode; 720 clear_inode_flag(inode, FI_ACL_MODE); 721 } 722 } 723 724 /* file size may changed here */ 725 f2fs_mark_inode_dirty_sync(inode, size_changed); 726 727 /* inode change will produce dirty node pages flushed by checkpoint */ 728 f2fs_balance_fs(F2FS_I_SB(inode), true); 729 730 return err; 731 } 732 733 const struct inode_operations f2fs_file_inode_operations = { 734 .getattr = f2fs_getattr, 735 .setattr = f2fs_setattr, 736 .get_acl = f2fs_get_acl, 737 .set_acl = f2fs_set_acl, 738 #ifdef CONFIG_F2FS_FS_XATTR 739 .listxattr = f2fs_listxattr, 740 #endif 741 .fiemap = f2fs_fiemap, 742 }; 743 744 static int fill_zero(struct inode *inode, pgoff_t index, 745 loff_t start, loff_t len) 746 { 747 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 748 struct page *page; 749 750 if (!len) 751 return 0; 752 753 f2fs_balance_fs(sbi, true); 754 755 f2fs_lock_op(sbi); 756 page = get_new_data_page(inode, NULL, index, false); 757 f2fs_unlock_op(sbi); 758 759 if (IS_ERR(page)) 760 return PTR_ERR(page); 761 762 f2fs_wait_on_page_writeback(page, DATA, true); 763 zero_user(page, start, len); 764 set_page_dirty(page); 765 f2fs_put_page(page, 1); 766 return 0; 767 } 768 769 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 770 { 771 int err; 772 773 while (pg_start < pg_end) { 774 struct dnode_of_data dn; 775 pgoff_t end_offset, count; 776 777 set_new_dnode(&dn, inode, NULL, NULL, 0); 778 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 779 if (err) { 780 if (err == -ENOENT) { 781 pg_start++; 782 continue; 783 } 784 return err; 785 } 786 787 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 788 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 789 790 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 791 792 truncate_data_blocks_range(&dn, count); 793 f2fs_put_dnode(&dn); 794 795 pg_start += count; 796 } 797 return 0; 798 } 799 800 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 801 { 802 pgoff_t pg_start, pg_end; 803 loff_t off_start, off_end; 804 int ret; 805 806 ret = f2fs_convert_inline_inode(inode); 807 if (ret) 808 return ret; 809 810 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 811 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 812 813 off_start = offset & (PAGE_SIZE - 1); 814 off_end = (offset + len) & (PAGE_SIZE - 1); 815 816 if (pg_start == pg_end) { 817 ret = fill_zero(inode, pg_start, off_start, 818 off_end - off_start); 819 if (ret) 820 return ret; 821 } else { 822 if (off_start) { 823 ret = fill_zero(inode, pg_start++, off_start, 824 PAGE_SIZE - off_start); 825 if (ret) 826 return ret; 827 } 828 if (off_end) { 829 ret = fill_zero(inode, pg_end, 0, off_end); 830 if (ret) 831 return ret; 832 } 833 834 if (pg_start < pg_end) { 835 struct address_space *mapping = inode->i_mapping; 836 loff_t blk_start, blk_end; 837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 838 839 f2fs_balance_fs(sbi, true); 840 841 blk_start = (loff_t)pg_start << PAGE_SHIFT; 842 blk_end = (loff_t)pg_end << PAGE_SHIFT; 843 truncate_inode_pages_range(mapping, blk_start, 844 blk_end - 1); 845 846 f2fs_lock_op(sbi); 847 ret = truncate_hole(inode, pg_start, pg_end); 848 f2fs_unlock_op(sbi); 849 } 850 } 851 852 return ret; 853 } 854 855 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 856 int *do_replace, pgoff_t off, pgoff_t len) 857 { 858 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 859 struct dnode_of_data dn; 860 int ret, done, i; 861 862 next_dnode: 863 set_new_dnode(&dn, inode, NULL, NULL, 0); 864 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 865 if (ret && ret != -ENOENT) { 866 return ret; 867 } else if (ret == -ENOENT) { 868 if (dn.max_level == 0) 869 return -ENOENT; 870 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len); 871 blkaddr += done; 872 do_replace += done; 873 goto next; 874 } 875 876 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 877 dn.ofs_in_node, len); 878 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 879 *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 880 if (!is_checkpointed_data(sbi, *blkaddr)) { 881 882 if (test_opt(sbi, LFS)) { 883 f2fs_put_dnode(&dn); 884 return -ENOTSUPP; 885 } 886 887 /* do not invalidate this block address */ 888 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 889 *do_replace = 1; 890 } 891 } 892 f2fs_put_dnode(&dn); 893 next: 894 len -= done; 895 off += done; 896 if (len) 897 goto next_dnode; 898 return 0; 899 } 900 901 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 902 int *do_replace, pgoff_t off, int len) 903 { 904 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 905 struct dnode_of_data dn; 906 int ret, i; 907 908 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 909 if (*do_replace == 0) 910 continue; 911 912 set_new_dnode(&dn, inode, NULL, NULL, 0); 913 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 914 if (ret) { 915 dec_valid_block_count(sbi, inode, 1); 916 invalidate_blocks(sbi, *blkaddr); 917 } else { 918 f2fs_update_data_blkaddr(&dn, *blkaddr); 919 } 920 f2fs_put_dnode(&dn); 921 } 922 return 0; 923 } 924 925 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 926 block_t *blkaddr, int *do_replace, 927 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 928 { 929 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 930 pgoff_t i = 0; 931 int ret; 932 933 while (i < len) { 934 if (blkaddr[i] == NULL_ADDR && !full) { 935 i++; 936 continue; 937 } 938 939 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 940 struct dnode_of_data dn; 941 struct node_info ni; 942 size_t new_size; 943 pgoff_t ilen; 944 945 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 946 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 947 if (ret) 948 return ret; 949 950 get_node_info(sbi, dn.nid, &ni); 951 ilen = min((pgoff_t) 952 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 953 dn.ofs_in_node, len - i); 954 do { 955 dn.data_blkaddr = datablock_addr(dn.node_page, 956 dn.ofs_in_node); 957 truncate_data_blocks_range(&dn, 1); 958 959 if (do_replace[i]) { 960 f2fs_i_blocks_write(src_inode, 961 1, false); 962 f2fs_i_blocks_write(dst_inode, 963 1, true); 964 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 965 blkaddr[i], ni.version, true, false); 966 967 do_replace[i] = 0; 968 } 969 dn.ofs_in_node++; 970 i++; 971 new_size = (dst + i) << PAGE_SHIFT; 972 if (dst_inode->i_size < new_size) 973 f2fs_i_size_write(dst_inode, new_size); 974 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 975 976 f2fs_put_dnode(&dn); 977 } else { 978 struct page *psrc, *pdst; 979 980 psrc = get_lock_data_page(src_inode, src + i, true); 981 if (IS_ERR(psrc)) 982 return PTR_ERR(psrc); 983 pdst = get_new_data_page(dst_inode, NULL, dst + i, 984 true); 985 if (IS_ERR(pdst)) { 986 f2fs_put_page(psrc, 1); 987 return PTR_ERR(pdst); 988 } 989 f2fs_copy_page(psrc, pdst); 990 set_page_dirty(pdst); 991 f2fs_put_page(pdst, 1); 992 f2fs_put_page(psrc, 1); 993 994 ret = truncate_hole(src_inode, src + i, src + i + 1); 995 if (ret) 996 return ret; 997 i++; 998 } 999 } 1000 return 0; 1001 } 1002 1003 static int __exchange_data_block(struct inode *src_inode, 1004 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1005 pgoff_t len, bool full) 1006 { 1007 block_t *src_blkaddr; 1008 int *do_replace; 1009 pgoff_t olen; 1010 int ret; 1011 1012 while (len) { 1013 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len); 1014 1015 src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL); 1016 if (!src_blkaddr) 1017 return -ENOMEM; 1018 1019 do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL); 1020 if (!do_replace) { 1021 kvfree(src_blkaddr); 1022 return -ENOMEM; 1023 } 1024 1025 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1026 do_replace, src, olen); 1027 if (ret) 1028 goto roll_back; 1029 1030 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1031 do_replace, src, dst, olen, full); 1032 if (ret) 1033 goto roll_back; 1034 1035 src += olen; 1036 dst += olen; 1037 len -= olen; 1038 1039 kvfree(src_blkaddr); 1040 kvfree(do_replace); 1041 } 1042 return 0; 1043 1044 roll_back: 1045 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len); 1046 kvfree(src_blkaddr); 1047 kvfree(do_replace); 1048 return ret; 1049 } 1050 1051 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end) 1052 { 1053 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1054 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; 1055 int ret; 1056 1057 f2fs_balance_fs(sbi, true); 1058 f2fs_lock_op(sbi); 1059 1060 f2fs_drop_extent_tree(inode); 1061 1062 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1063 f2fs_unlock_op(sbi); 1064 return ret; 1065 } 1066 1067 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1068 { 1069 pgoff_t pg_start, pg_end; 1070 loff_t new_size; 1071 int ret; 1072 1073 if (offset + len >= i_size_read(inode)) 1074 return -EINVAL; 1075 1076 /* collapse range should be aligned to block size of f2fs. */ 1077 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1078 return -EINVAL; 1079 1080 ret = f2fs_convert_inline_inode(inode); 1081 if (ret) 1082 return ret; 1083 1084 pg_start = offset >> PAGE_SHIFT; 1085 pg_end = (offset + len) >> PAGE_SHIFT; 1086 1087 /* write out all dirty pages from offset */ 1088 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1089 if (ret) 1090 return ret; 1091 1092 truncate_pagecache(inode, offset); 1093 1094 ret = f2fs_do_collapse(inode, pg_start, pg_end); 1095 if (ret) 1096 return ret; 1097 1098 /* write out all moved pages, if possible */ 1099 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1100 truncate_pagecache(inode, offset); 1101 1102 new_size = i_size_read(inode) - len; 1103 truncate_pagecache(inode, new_size); 1104 1105 ret = truncate_blocks(inode, new_size, true); 1106 if (!ret) 1107 f2fs_i_size_write(inode, new_size); 1108 1109 return ret; 1110 } 1111 1112 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1113 pgoff_t end) 1114 { 1115 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1116 pgoff_t index = start; 1117 unsigned int ofs_in_node = dn->ofs_in_node; 1118 blkcnt_t count = 0; 1119 int ret; 1120 1121 for (; index < end; index++, dn->ofs_in_node++) { 1122 if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR) 1123 count++; 1124 } 1125 1126 dn->ofs_in_node = ofs_in_node; 1127 ret = reserve_new_blocks(dn, count); 1128 if (ret) 1129 return ret; 1130 1131 dn->ofs_in_node = ofs_in_node; 1132 for (index = start; index < end; index++, dn->ofs_in_node++) { 1133 dn->data_blkaddr = 1134 datablock_addr(dn->node_page, dn->ofs_in_node); 1135 /* 1136 * reserve_new_blocks will not guarantee entire block 1137 * allocation. 1138 */ 1139 if (dn->data_blkaddr == NULL_ADDR) { 1140 ret = -ENOSPC; 1141 break; 1142 } 1143 if (dn->data_blkaddr != NEW_ADDR) { 1144 invalidate_blocks(sbi, dn->data_blkaddr); 1145 dn->data_blkaddr = NEW_ADDR; 1146 set_data_blkaddr(dn); 1147 } 1148 } 1149 1150 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1151 1152 return ret; 1153 } 1154 1155 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1156 int mode) 1157 { 1158 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1159 struct address_space *mapping = inode->i_mapping; 1160 pgoff_t index, pg_start, pg_end; 1161 loff_t new_size = i_size_read(inode); 1162 loff_t off_start, off_end; 1163 int ret = 0; 1164 1165 ret = inode_newsize_ok(inode, (len + offset)); 1166 if (ret) 1167 return ret; 1168 1169 ret = f2fs_convert_inline_inode(inode); 1170 if (ret) 1171 return ret; 1172 1173 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1174 if (ret) 1175 return ret; 1176 1177 truncate_pagecache_range(inode, offset, offset + len - 1); 1178 1179 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1180 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1181 1182 off_start = offset & (PAGE_SIZE - 1); 1183 off_end = (offset + len) & (PAGE_SIZE - 1); 1184 1185 if (pg_start == pg_end) { 1186 ret = fill_zero(inode, pg_start, off_start, 1187 off_end - off_start); 1188 if (ret) 1189 return ret; 1190 1191 if (offset + len > new_size) 1192 new_size = offset + len; 1193 new_size = max_t(loff_t, new_size, offset + len); 1194 } else { 1195 if (off_start) { 1196 ret = fill_zero(inode, pg_start++, off_start, 1197 PAGE_SIZE - off_start); 1198 if (ret) 1199 return ret; 1200 1201 new_size = max_t(loff_t, new_size, 1202 (loff_t)pg_start << PAGE_SHIFT); 1203 } 1204 1205 for (index = pg_start; index < pg_end;) { 1206 struct dnode_of_data dn; 1207 unsigned int end_offset; 1208 pgoff_t end; 1209 1210 f2fs_lock_op(sbi); 1211 1212 set_new_dnode(&dn, inode, NULL, NULL, 0); 1213 ret = get_dnode_of_data(&dn, index, ALLOC_NODE); 1214 if (ret) { 1215 f2fs_unlock_op(sbi); 1216 goto out; 1217 } 1218 1219 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1220 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1221 1222 ret = f2fs_do_zero_range(&dn, index, end); 1223 f2fs_put_dnode(&dn); 1224 f2fs_unlock_op(sbi); 1225 1226 f2fs_balance_fs(sbi, dn.node_changed); 1227 1228 if (ret) 1229 goto out; 1230 1231 index = end; 1232 new_size = max_t(loff_t, new_size, 1233 (loff_t)index << PAGE_SHIFT); 1234 } 1235 1236 if (off_end) { 1237 ret = fill_zero(inode, pg_end, 0, off_end); 1238 if (ret) 1239 goto out; 1240 1241 new_size = max_t(loff_t, new_size, offset + len); 1242 } 1243 } 1244 1245 out: 1246 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) 1247 f2fs_i_size_write(inode, new_size); 1248 1249 return ret; 1250 } 1251 1252 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1253 { 1254 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1255 pgoff_t nr, pg_start, pg_end, delta, idx; 1256 loff_t new_size; 1257 int ret = 0; 1258 1259 new_size = i_size_read(inode) + len; 1260 if (new_size > inode->i_sb->s_maxbytes) 1261 return -EFBIG; 1262 1263 if (offset >= i_size_read(inode)) 1264 return -EINVAL; 1265 1266 /* insert range should be aligned to block size of f2fs. */ 1267 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1268 return -EINVAL; 1269 1270 ret = f2fs_convert_inline_inode(inode); 1271 if (ret) 1272 return ret; 1273 1274 f2fs_balance_fs(sbi, true); 1275 1276 ret = truncate_blocks(inode, i_size_read(inode), true); 1277 if (ret) 1278 return ret; 1279 1280 /* write out all dirty pages from offset */ 1281 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1282 if (ret) 1283 return ret; 1284 1285 truncate_pagecache(inode, offset); 1286 1287 pg_start = offset >> PAGE_SHIFT; 1288 pg_end = (offset + len) >> PAGE_SHIFT; 1289 delta = pg_end - pg_start; 1290 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; 1291 1292 while (!ret && idx > pg_start) { 1293 nr = idx - pg_start; 1294 if (nr > delta) 1295 nr = delta; 1296 idx -= nr; 1297 1298 f2fs_lock_op(sbi); 1299 f2fs_drop_extent_tree(inode); 1300 1301 ret = __exchange_data_block(inode, inode, idx, 1302 idx + delta, nr, false); 1303 f2fs_unlock_op(sbi); 1304 } 1305 1306 /* write out all moved pages, if possible */ 1307 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1308 truncate_pagecache(inode, offset); 1309 1310 if (!ret) 1311 f2fs_i_size_write(inode, new_size); 1312 return ret; 1313 } 1314 1315 static int expand_inode_data(struct inode *inode, loff_t offset, 1316 loff_t len, int mode) 1317 { 1318 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1319 struct f2fs_map_blocks map = { .m_next_pgofs = NULL }; 1320 pgoff_t pg_end; 1321 loff_t new_size = i_size_read(inode); 1322 loff_t off_end; 1323 int err; 1324 1325 err = inode_newsize_ok(inode, (len + offset)); 1326 if (err) 1327 return err; 1328 1329 err = f2fs_convert_inline_inode(inode); 1330 if (err) 1331 return err; 1332 1333 f2fs_balance_fs(sbi, true); 1334 1335 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1336 off_end = (offset + len) & (PAGE_SIZE - 1); 1337 1338 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1339 map.m_len = pg_end - map.m_lblk; 1340 if (off_end) 1341 map.m_len++; 1342 1343 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1344 if (err) { 1345 pgoff_t last_off; 1346 1347 if (!map.m_len) 1348 return err; 1349 1350 last_off = map.m_lblk + map.m_len - 1; 1351 1352 /* update new size to the failed position */ 1353 new_size = (last_off == pg_end) ? offset + len: 1354 (loff_t)(last_off + 1) << PAGE_SHIFT; 1355 } else { 1356 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1357 } 1358 1359 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) 1360 f2fs_i_size_write(inode, new_size); 1361 1362 return err; 1363 } 1364 1365 static long f2fs_fallocate(struct file *file, int mode, 1366 loff_t offset, loff_t len) 1367 { 1368 struct inode *inode = file_inode(file); 1369 long ret = 0; 1370 1371 /* f2fs only support ->fallocate for regular file */ 1372 if (!S_ISREG(inode->i_mode)) 1373 return -EINVAL; 1374 1375 if (f2fs_encrypted_inode(inode) && 1376 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1377 return -EOPNOTSUPP; 1378 1379 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1380 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1381 FALLOC_FL_INSERT_RANGE)) 1382 return -EOPNOTSUPP; 1383 1384 inode_lock(inode); 1385 1386 if (mode & FALLOC_FL_PUNCH_HOLE) { 1387 if (offset >= inode->i_size) 1388 goto out; 1389 1390 ret = punch_hole(inode, offset, len); 1391 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1392 ret = f2fs_collapse_range(inode, offset, len); 1393 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1394 ret = f2fs_zero_range(inode, offset, len, mode); 1395 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1396 ret = f2fs_insert_range(inode, offset, len); 1397 } else { 1398 ret = expand_inode_data(inode, offset, len, mode); 1399 } 1400 1401 if (!ret) { 1402 inode->i_mtime = inode->i_ctime = current_time(inode); 1403 f2fs_mark_inode_dirty_sync(inode, false); 1404 if (mode & FALLOC_FL_KEEP_SIZE) 1405 file_set_keep_isize(inode); 1406 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1407 } 1408 1409 out: 1410 inode_unlock(inode); 1411 1412 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1413 return ret; 1414 } 1415 1416 static int f2fs_release_file(struct inode *inode, struct file *filp) 1417 { 1418 /* 1419 * f2fs_relase_file is called at every close calls. So we should 1420 * not drop any inmemory pages by close called by other process. 1421 */ 1422 if (!(filp->f_mode & FMODE_WRITE) || 1423 atomic_read(&inode->i_writecount) != 1) 1424 return 0; 1425 1426 /* some remained atomic pages should discarded */ 1427 if (f2fs_is_atomic_file(inode)) 1428 drop_inmem_pages(inode); 1429 if (f2fs_is_volatile_file(inode)) { 1430 clear_inode_flag(inode, FI_VOLATILE_FILE); 1431 set_inode_flag(inode, FI_DROP_CACHE); 1432 filemap_fdatawrite(inode->i_mapping); 1433 clear_inode_flag(inode, FI_DROP_CACHE); 1434 } 1435 return 0; 1436 } 1437 1438 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 1439 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 1440 1441 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 1442 { 1443 if (S_ISDIR(mode)) 1444 return flags; 1445 else if (S_ISREG(mode)) 1446 return flags & F2FS_REG_FLMASK; 1447 else 1448 return flags & F2FS_OTHER_FLMASK; 1449 } 1450 1451 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1452 { 1453 struct inode *inode = file_inode(filp); 1454 struct f2fs_inode_info *fi = F2FS_I(inode); 1455 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE; 1456 return put_user(flags, (int __user *)arg); 1457 } 1458 1459 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1460 { 1461 struct inode *inode = file_inode(filp); 1462 struct f2fs_inode_info *fi = F2FS_I(inode); 1463 unsigned int flags; 1464 unsigned int oldflags; 1465 int ret; 1466 1467 if (!inode_owner_or_capable(inode)) 1468 return -EACCES; 1469 1470 if (get_user(flags, (int __user *)arg)) 1471 return -EFAULT; 1472 1473 ret = mnt_want_write_file(filp); 1474 if (ret) 1475 return ret; 1476 1477 flags = f2fs_mask_flags(inode->i_mode, flags); 1478 1479 inode_lock(inode); 1480 1481 oldflags = fi->i_flags; 1482 1483 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 1484 if (!capable(CAP_LINUX_IMMUTABLE)) { 1485 inode_unlock(inode); 1486 ret = -EPERM; 1487 goto out; 1488 } 1489 } 1490 1491 flags = flags & FS_FL_USER_MODIFIABLE; 1492 flags |= oldflags & ~FS_FL_USER_MODIFIABLE; 1493 fi->i_flags = flags; 1494 inode_unlock(inode); 1495 1496 inode->i_ctime = current_time(inode); 1497 f2fs_set_inode_flags(inode); 1498 out: 1499 mnt_drop_write_file(filp); 1500 return ret; 1501 } 1502 1503 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1504 { 1505 struct inode *inode = file_inode(filp); 1506 1507 return put_user(inode->i_generation, (int __user *)arg); 1508 } 1509 1510 static int f2fs_ioc_start_atomic_write(struct file *filp) 1511 { 1512 struct inode *inode = file_inode(filp); 1513 int ret; 1514 1515 if (!inode_owner_or_capable(inode)) 1516 return -EACCES; 1517 1518 ret = mnt_want_write_file(filp); 1519 if (ret) 1520 return ret; 1521 1522 inode_lock(inode); 1523 1524 if (f2fs_is_atomic_file(inode)) 1525 goto out; 1526 1527 ret = f2fs_convert_inline_inode(inode); 1528 if (ret) 1529 goto out; 1530 1531 set_inode_flag(inode, FI_ATOMIC_FILE); 1532 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1533 1534 if (!get_dirty_pages(inode)) 1535 goto out; 1536 1537 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING, 1538 "Unexpected flush for atomic writes: ino=%lu, npages=%u", 1539 inode->i_ino, get_dirty_pages(inode)); 1540 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 1541 if (ret) 1542 clear_inode_flag(inode, FI_ATOMIC_FILE); 1543 out: 1544 inode_unlock(inode); 1545 mnt_drop_write_file(filp); 1546 return ret; 1547 } 1548 1549 static int f2fs_ioc_commit_atomic_write(struct file *filp) 1550 { 1551 struct inode *inode = file_inode(filp); 1552 int ret; 1553 1554 if (!inode_owner_or_capable(inode)) 1555 return -EACCES; 1556 1557 ret = mnt_want_write_file(filp); 1558 if (ret) 1559 return ret; 1560 1561 inode_lock(inode); 1562 1563 if (f2fs_is_volatile_file(inode)) 1564 goto err_out; 1565 1566 if (f2fs_is_atomic_file(inode)) { 1567 clear_inode_flag(inode, FI_ATOMIC_FILE); 1568 ret = commit_inmem_pages(inode); 1569 if (ret) { 1570 set_inode_flag(inode, FI_ATOMIC_FILE); 1571 goto err_out; 1572 } 1573 } 1574 1575 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1576 err_out: 1577 inode_unlock(inode); 1578 mnt_drop_write_file(filp); 1579 return ret; 1580 } 1581 1582 static int f2fs_ioc_start_volatile_write(struct file *filp) 1583 { 1584 struct inode *inode = file_inode(filp); 1585 int ret; 1586 1587 if (!inode_owner_or_capable(inode)) 1588 return -EACCES; 1589 1590 ret = mnt_want_write_file(filp); 1591 if (ret) 1592 return ret; 1593 1594 inode_lock(inode); 1595 1596 if (f2fs_is_volatile_file(inode)) 1597 goto out; 1598 1599 ret = f2fs_convert_inline_inode(inode); 1600 if (ret) 1601 goto out; 1602 1603 set_inode_flag(inode, FI_VOLATILE_FILE); 1604 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1605 out: 1606 inode_unlock(inode); 1607 mnt_drop_write_file(filp); 1608 return ret; 1609 } 1610 1611 static int f2fs_ioc_release_volatile_write(struct file *filp) 1612 { 1613 struct inode *inode = file_inode(filp); 1614 int ret; 1615 1616 if (!inode_owner_or_capable(inode)) 1617 return -EACCES; 1618 1619 ret = mnt_want_write_file(filp); 1620 if (ret) 1621 return ret; 1622 1623 inode_lock(inode); 1624 1625 if (!f2fs_is_volatile_file(inode)) 1626 goto out; 1627 1628 if (!f2fs_is_first_block_written(inode)) { 1629 ret = truncate_partial_data_page(inode, 0, true); 1630 goto out; 1631 } 1632 1633 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 1634 out: 1635 inode_unlock(inode); 1636 mnt_drop_write_file(filp); 1637 return ret; 1638 } 1639 1640 static int f2fs_ioc_abort_volatile_write(struct file *filp) 1641 { 1642 struct inode *inode = file_inode(filp); 1643 int ret; 1644 1645 if (!inode_owner_or_capable(inode)) 1646 return -EACCES; 1647 1648 ret = mnt_want_write_file(filp); 1649 if (ret) 1650 return ret; 1651 1652 inode_lock(inode); 1653 1654 if (f2fs_is_atomic_file(inode)) 1655 drop_inmem_pages(inode); 1656 if (f2fs_is_volatile_file(inode)) { 1657 clear_inode_flag(inode, FI_VOLATILE_FILE); 1658 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1659 } 1660 1661 inode_unlock(inode); 1662 1663 mnt_drop_write_file(filp); 1664 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1665 return ret; 1666 } 1667 1668 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 1669 { 1670 struct inode *inode = file_inode(filp); 1671 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1672 struct super_block *sb = sbi->sb; 1673 __u32 in; 1674 int ret; 1675 1676 if (!capable(CAP_SYS_ADMIN)) 1677 return -EPERM; 1678 1679 if (get_user(in, (__u32 __user *)arg)) 1680 return -EFAULT; 1681 1682 ret = mnt_want_write_file(filp); 1683 if (ret) 1684 return ret; 1685 1686 switch (in) { 1687 case F2FS_GOING_DOWN_FULLSYNC: 1688 sb = freeze_bdev(sb->s_bdev); 1689 if (sb && !IS_ERR(sb)) { 1690 f2fs_stop_checkpoint(sbi, false); 1691 thaw_bdev(sb->s_bdev, sb); 1692 } 1693 break; 1694 case F2FS_GOING_DOWN_METASYNC: 1695 /* do checkpoint only */ 1696 f2fs_sync_fs(sb, 1); 1697 f2fs_stop_checkpoint(sbi, false); 1698 break; 1699 case F2FS_GOING_DOWN_NOSYNC: 1700 f2fs_stop_checkpoint(sbi, false); 1701 break; 1702 case F2FS_GOING_DOWN_METAFLUSH: 1703 sync_meta_pages(sbi, META, LONG_MAX); 1704 f2fs_stop_checkpoint(sbi, false); 1705 break; 1706 default: 1707 ret = -EINVAL; 1708 goto out; 1709 } 1710 f2fs_update_time(sbi, REQ_TIME); 1711 out: 1712 mnt_drop_write_file(filp); 1713 return ret; 1714 } 1715 1716 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 1717 { 1718 struct inode *inode = file_inode(filp); 1719 struct super_block *sb = inode->i_sb; 1720 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1721 struct fstrim_range range; 1722 int ret; 1723 1724 if (!capable(CAP_SYS_ADMIN)) 1725 return -EPERM; 1726 1727 if (!blk_queue_discard(q)) 1728 return -EOPNOTSUPP; 1729 1730 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 1731 sizeof(range))) 1732 return -EFAULT; 1733 1734 ret = mnt_want_write_file(filp); 1735 if (ret) 1736 return ret; 1737 1738 range.minlen = max((unsigned int)range.minlen, 1739 q->limits.discard_granularity); 1740 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 1741 mnt_drop_write_file(filp); 1742 if (ret < 0) 1743 return ret; 1744 1745 if (copy_to_user((struct fstrim_range __user *)arg, &range, 1746 sizeof(range))) 1747 return -EFAULT; 1748 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1749 return 0; 1750 } 1751 1752 static bool uuid_is_nonzero(__u8 u[16]) 1753 { 1754 int i; 1755 1756 for (i = 0; i < 16; i++) 1757 if (u[i]) 1758 return true; 1759 return false; 1760 } 1761 1762 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 1763 { 1764 struct inode *inode = file_inode(filp); 1765 1766 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1767 1768 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 1769 } 1770 1771 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 1772 { 1773 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 1774 } 1775 1776 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 1777 { 1778 struct inode *inode = file_inode(filp); 1779 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1780 int err; 1781 1782 if (!f2fs_sb_has_crypto(inode->i_sb)) 1783 return -EOPNOTSUPP; 1784 1785 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 1786 goto got_it; 1787 1788 err = mnt_want_write_file(filp); 1789 if (err) 1790 return err; 1791 1792 /* update superblock with uuid */ 1793 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 1794 1795 err = f2fs_commit_super(sbi, false); 1796 if (err) { 1797 /* undo new data */ 1798 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 1799 mnt_drop_write_file(filp); 1800 return err; 1801 } 1802 mnt_drop_write_file(filp); 1803 got_it: 1804 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 1805 16)) 1806 return -EFAULT; 1807 return 0; 1808 } 1809 1810 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 1811 { 1812 struct inode *inode = file_inode(filp); 1813 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1814 __u32 sync; 1815 int ret; 1816 1817 if (!capable(CAP_SYS_ADMIN)) 1818 return -EPERM; 1819 1820 if (get_user(sync, (__u32 __user *)arg)) 1821 return -EFAULT; 1822 1823 if (f2fs_readonly(sbi->sb)) 1824 return -EROFS; 1825 1826 ret = mnt_want_write_file(filp); 1827 if (ret) 1828 return ret; 1829 1830 if (!sync) { 1831 if (!mutex_trylock(&sbi->gc_mutex)) { 1832 ret = -EBUSY; 1833 goto out; 1834 } 1835 } else { 1836 mutex_lock(&sbi->gc_mutex); 1837 } 1838 1839 ret = f2fs_gc(sbi, sync, true); 1840 out: 1841 mnt_drop_write_file(filp); 1842 return ret; 1843 } 1844 1845 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 1846 { 1847 struct inode *inode = file_inode(filp); 1848 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1849 int ret; 1850 1851 if (!capable(CAP_SYS_ADMIN)) 1852 return -EPERM; 1853 1854 if (f2fs_readonly(sbi->sb)) 1855 return -EROFS; 1856 1857 ret = mnt_want_write_file(filp); 1858 if (ret) 1859 return ret; 1860 1861 ret = f2fs_sync_fs(sbi->sb, 1); 1862 1863 mnt_drop_write_file(filp); 1864 return ret; 1865 } 1866 1867 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 1868 struct file *filp, 1869 struct f2fs_defragment *range) 1870 { 1871 struct inode *inode = file_inode(filp); 1872 struct f2fs_map_blocks map = { .m_next_pgofs = NULL }; 1873 struct extent_info ei; 1874 pgoff_t pg_start, pg_end; 1875 unsigned int blk_per_seg = sbi->blocks_per_seg; 1876 unsigned int total = 0, sec_num; 1877 unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg; 1878 block_t blk_end = 0; 1879 bool fragmented = false; 1880 int err; 1881 1882 /* if in-place-update policy is enabled, don't waste time here */ 1883 if (need_inplace_update(inode)) 1884 return -EINVAL; 1885 1886 pg_start = range->start >> PAGE_SHIFT; 1887 pg_end = (range->start + range->len) >> PAGE_SHIFT; 1888 1889 f2fs_balance_fs(sbi, true); 1890 1891 inode_lock(inode); 1892 1893 /* writeback all dirty pages in the range */ 1894 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 1895 range->start + range->len - 1); 1896 if (err) 1897 goto out; 1898 1899 /* 1900 * lookup mapping info in extent cache, skip defragmenting if physical 1901 * block addresses are continuous. 1902 */ 1903 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 1904 if (ei.fofs + ei.len >= pg_end) 1905 goto out; 1906 } 1907 1908 map.m_lblk = pg_start; 1909 1910 /* 1911 * lookup mapping info in dnode page cache, skip defragmenting if all 1912 * physical block addresses are continuous even if there are hole(s) 1913 * in logical blocks. 1914 */ 1915 while (map.m_lblk < pg_end) { 1916 map.m_len = pg_end - map.m_lblk; 1917 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ); 1918 if (err) 1919 goto out; 1920 1921 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 1922 map.m_lblk++; 1923 continue; 1924 } 1925 1926 if (blk_end && blk_end != map.m_pblk) { 1927 fragmented = true; 1928 break; 1929 } 1930 blk_end = map.m_pblk + map.m_len; 1931 1932 map.m_lblk += map.m_len; 1933 } 1934 1935 if (!fragmented) 1936 goto out; 1937 1938 map.m_lblk = pg_start; 1939 map.m_len = pg_end - pg_start; 1940 1941 sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec; 1942 1943 /* 1944 * make sure there are enough free section for LFS allocation, this can 1945 * avoid defragment running in SSR mode when free section are allocated 1946 * intensively 1947 */ 1948 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 1949 err = -EAGAIN; 1950 goto out; 1951 } 1952 1953 while (map.m_lblk < pg_end) { 1954 pgoff_t idx; 1955 int cnt = 0; 1956 1957 do_map: 1958 map.m_len = pg_end - map.m_lblk; 1959 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ); 1960 if (err) 1961 goto clear_out; 1962 1963 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 1964 map.m_lblk++; 1965 continue; 1966 } 1967 1968 set_inode_flag(inode, FI_DO_DEFRAG); 1969 1970 idx = map.m_lblk; 1971 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 1972 struct page *page; 1973 1974 page = get_lock_data_page(inode, idx, true); 1975 if (IS_ERR(page)) { 1976 err = PTR_ERR(page); 1977 goto clear_out; 1978 } 1979 1980 set_page_dirty(page); 1981 f2fs_put_page(page, 1); 1982 1983 idx++; 1984 cnt++; 1985 total++; 1986 } 1987 1988 map.m_lblk = idx; 1989 1990 if (idx < pg_end && cnt < blk_per_seg) 1991 goto do_map; 1992 1993 clear_inode_flag(inode, FI_DO_DEFRAG); 1994 1995 err = filemap_fdatawrite(inode->i_mapping); 1996 if (err) 1997 goto out; 1998 } 1999 clear_out: 2000 clear_inode_flag(inode, FI_DO_DEFRAG); 2001 out: 2002 inode_unlock(inode); 2003 if (!err) 2004 range->len = (u64)total << PAGE_SHIFT; 2005 return err; 2006 } 2007 2008 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2009 { 2010 struct inode *inode = file_inode(filp); 2011 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2012 struct f2fs_defragment range; 2013 int err; 2014 2015 if (!capable(CAP_SYS_ADMIN)) 2016 return -EPERM; 2017 2018 if (!S_ISREG(inode->i_mode)) 2019 return -EINVAL; 2020 2021 err = mnt_want_write_file(filp); 2022 if (err) 2023 return err; 2024 2025 if (f2fs_readonly(sbi->sb)) { 2026 err = -EROFS; 2027 goto out; 2028 } 2029 2030 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2031 sizeof(range))) { 2032 err = -EFAULT; 2033 goto out; 2034 } 2035 2036 /* verify alignment of offset & size */ 2037 if (range.start & (F2FS_BLKSIZE - 1) || 2038 range.len & (F2FS_BLKSIZE - 1)) { 2039 err = -EINVAL; 2040 goto out; 2041 } 2042 2043 err = f2fs_defragment_range(sbi, filp, &range); 2044 f2fs_update_time(sbi, REQ_TIME); 2045 if (err < 0) 2046 goto out; 2047 2048 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2049 sizeof(range))) 2050 err = -EFAULT; 2051 out: 2052 mnt_drop_write_file(filp); 2053 return err; 2054 } 2055 2056 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2057 struct file *file_out, loff_t pos_out, size_t len) 2058 { 2059 struct inode *src = file_inode(file_in); 2060 struct inode *dst = file_inode(file_out); 2061 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2062 size_t olen = len, dst_max_i_size = 0; 2063 size_t dst_osize; 2064 int ret; 2065 2066 if (file_in->f_path.mnt != file_out->f_path.mnt || 2067 src->i_sb != dst->i_sb) 2068 return -EXDEV; 2069 2070 if (unlikely(f2fs_readonly(src->i_sb))) 2071 return -EROFS; 2072 2073 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2074 return -EINVAL; 2075 2076 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst)) 2077 return -EOPNOTSUPP; 2078 2079 if (src == dst) { 2080 if (pos_in == pos_out) 2081 return 0; 2082 if (pos_out > pos_in && pos_out < pos_in + len) 2083 return -EINVAL; 2084 } 2085 2086 inode_lock(src); 2087 if (src != dst) { 2088 if (!inode_trylock(dst)) { 2089 ret = -EBUSY; 2090 goto out; 2091 } 2092 } 2093 2094 ret = -EINVAL; 2095 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2096 goto out_unlock; 2097 if (len == 0) 2098 olen = len = src->i_size - pos_in; 2099 if (pos_in + len == src->i_size) 2100 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2101 if (len == 0) { 2102 ret = 0; 2103 goto out_unlock; 2104 } 2105 2106 dst_osize = dst->i_size; 2107 if (pos_out + olen > dst->i_size) 2108 dst_max_i_size = pos_out + olen; 2109 2110 /* verify the end result is block aligned */ 2111 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2112 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2113 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2114 goto out_unlock; 2115 2116 ret = f2fs_convert_inline_inode(src); 2117 if (ret) 2118 goto out_unlock; 2119 2120 ret = f2fs_convert_inline_inode(dst); 2121 if (ret) 2122 goto out_unlock; 2123 2124 /* write out all dirty pages from offset */ 2125 ret = filemap_write_and_wait_range(src->i_mapping, 2126 pos_in, pos_in + len); 2127 if (ret) 2128 goto out_unlock; 2129 2130 ret = filemap_write_and_wait_range(dst->i_mapping, 2131 pos_out, pos_out + len); 2132 if (ret) 2133 goto out_unlock; 2134 2135 f2fs_balance_fs(sbi, true); 2136 f2fs_lock_op(sbi); 2137 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2138 pos_out >> F2FS_BLKSIZE_BITS, 2139 len >> F2FS_BLKSIZE_BITS, false); 2140 2141 if (!ret) { 2142 if (dst_max_i_size) 2143 f2fs_i_size_write(dst, dst_max_i_size); 2144 else if (dst_osize != dst->i_size) 2145 f2fs_i_size_write(dst, dst_osize); 2146 } 2147 f2fs_unlock_op(sbi); 2148 out_unlock: 2149 if (src != dst) 2150 inode_unlock(dst); 2151 out: 2152 inode_unlock(src); 2153 return ret; 2154 } 2155 2156 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2157 { 2158 struct f2fs_move_range range; 2159 struct fd dst; 2160 int err; 2161 2162 if (!(filp->f_mode & FMODE_READ) || 2163 !(filp->f_mode & FMODE_WRITE)) 2164 return -EBADF; 2165 2166 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2167 sizeof(range))) 2168 return -EFAULT; 2169 2170 dst = fdget(range.dst_fd); 2171 if (!dst.file) 2172 return -EBADF; 2173 2174 if (!(dst.file->f_mode & FMODE_WRITE)) { 2175 err = -EBADF; 2176 goto err_out; 2177 } 2178 2179 err = mnt_want_write_file(filp); 2180 if (err) 2181 goto err_out; 2182 2183 err = f2fs_move_file_range(filp, range.pos_in, dst.file, 2184 range.pos_out, range.len); 2185 2186 mnt_drop_write_file(filp); 2187 2188 if (copy_to_user((struct f2fs_move_range __user *)arg, 2189 &range, sizeof(range))) 2190 err = -EFAULT; 2191 err_out: 2192 fdput(dst); 2193 return err; 2194 } 2195 2196 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 2197 { 2198 switch (cmd) { 2199 case F2FS_IOC_GETFLAGS: 2200 return f2fs_ioc_getflags(filp, arg); 2201 case F2FS_IOC_SETFLAGS: 2202 return f2fs_ioc_setflags(filp, arg); 2203 case F2FS_IOC_GETVERSION: 2204 return f2fs_ioc_getversion(filp, arg); 2205 case F2FS_IOC_START_ATOMIC_WRITE: 2206 return f2fs_ioc_start_atomic_write(filp); 2207 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 2208 return f2fs_ioc_commit_atomic_write(filp); 2209 case F2FS_IOC_START_VOLATILE_WRITE: 2210 return f2fs_ioc_start_volatile_write(filp); 2211 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 2212 return f2fs_ioc_release_volatile_write(filp); 2213 case F2FS_IOC_ABORT_VOLATILE_WRITE: 2214 return f2fs_ioc_abort_volatile_write(filp); 2215 case F2FS_IOC_SHUTDOWN: 2216 return f2fs_ioc_shutdown(filp, arg); 2217 case FITRIM: 2218 return f2fs_ioc_fitrim(filp, arg); 2219 case F2FS_IOC_SET_ENCRYPTION_POLICY: 2220 return f2fs_ioc_set_encryption_policy(filp, arg); 2221 case F2FS_IOC_GET_ENCRYPTION_POLICY: 2222 return f2fs_ioc_get_encryption_policy(filp, arg); 2223 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 2224 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 2225 case F2FS_IOC_GARBAGE_COLLECT: 2226 return f2fs_ioc_gc(filp, arg); 2227 case F2FS_IOC_WRITE_CHECKPOINT: 2228 return f2fs_ioc_write_checkpoint(filp, arg); 2229 case F2FS_IOC_DEFRAGMENT: 2230 return f2fs_ioc_defragment(filp, arg); 2231 case F2FS_IOC_MOVE_RANGE: 2232 return f2fs_ioc_move_range(filp, arg); 2233 default: 2234 return -ENOTTY; 2235 } 2236 } 2237 2238 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2239 { 2240 struct file *file = iocb->ki_filp; 2241 struct inode *inode = file_inode(file); 2242 struct blk_plug plug; 2243 ssize_t ret; 2244 2245 if (f2fs_encrypted_inode(inode) && 2246 !fscrypt_has_encryption_key(inode) && 2247 fscrypt_get_encryption_info(inode)) 2248 return -EACCES; 2249 2250 inode_lock(inode); 2251 ret = generic_write_checks(iocb, from); 2252 if (ret > 0) { 2253 int err = f2fs_preallocate_blocks(iocb, from); 2254 2255 if (err) { 2256 inode_unlock(inode); 2257 return err; 2258 } 2259 blk_start_plug(&plug); 2260 ret = __generic_file_write_iter(iocb, from); 2261 blk_finish_plug(&plug); 2262 } 2263 inode_unlock(inode); 2264 2265 if (ret > 0) 2266 ret = generic_write_sync(iocb, ret); 2267 return ret; 2268 } 2269 2270 #ifdef CONFIG_COMPAT 2271 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2272 { 2273 switch (cmd) { 2274 case F2FS_IOC32_GETFLAGS: 2275 cmd = F2FS_IOC_GETFLAGS; 2276 break; 2277 case F2FS_IOC32_SETFLAGS: 2278 cmd = F2FS_IOC_SETFLAGS; 2279 break; 2280 case F2FS_IOC32_GETVERSION: 2281 cmd = F2FS_IOC_GETVERSION; 2282 break; 2283 case F2FS_IOC_START_ATOMIC_WRITE: 2284 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 2285 case F2FS_IOC_START_VOLATILE_WRITE: 2286 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 2287 case F2FS_IOC_ABORT_VOLATILE_WRITE: 2288 case F2FS_IOC_SHUTDOWN: 2289 case F2FS_IOC_SET_ENCRYPTION_POLICY: 2290 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 2291 case F2FS_IOC_GET_ENCRYPTION_POLICY: 2292 case F2FS_IOC_GARBAGE_COLLECT: 2293 case F2FS_IOC_WRITE_CHECKPOINT: 2294 case F2FS_IOC_DEFRAGMENT: 2295 break; 2296 case F2FS_IOC_MOVE_RANGE: 2297 break; 2298 default: 2299 return -ENOIOCTLCMD; 2300 } 2301 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 2302 } 2303 #endif 2304 2305 const struct file_operations f2fs_file_operations = { 2306 .llseek = f2fs_llseek, 2307 .read_iter = generic_file_read_iter, 2308 .write_iter = f2fs_file_write_iter, 2309 .open = f2fs_file_open, 2310 .release = f2fs_release_file, 2311 .mmap = f2fs_file_mmap, 2312 .fsync = f2fs_sync_file, 2313 .fallocate = f2fs_fallocate, 2314 .unlocked_ioctl = f2fs_ioctl, 2315 #ifdef CONFIG_COMPAT 2316 .compat_ioctl = f2fs_compat_ioctl, 2317 #endif 2318 .splice_read = generic_file_splice_read, 2319 .splice_write = iter_file_splice_write, 2320 }; 2321