xref: /openbmc/linux/fs/f2fs/file.c (revision 4da722ca)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35 
36 static int f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 	struct inode *inode = file_inode(vmf->vma->vm_file);
39 	int err;
40 
41 	down_read(&F2FS_I(inode)->i_mmap_sem);
42 	err = filemap_fault(vmf);
43 	up_read(&F2FS_I(inode)->i_mmap_sem);
44 
45 	return err;
46 }
47 
48 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 	struct page *page = vmf->page;
51 	struct inode *inode = file_inode(vmf->vma->vm_file);
52 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 	struct dnode_of_data dn;
54 	int err;
55 
56 	sb_start_pagefault(inode->i_sb);
57 
58 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
59 
60 	/* block allocation */
61 	f2fs_lock_op(sbi);
62 	set_new_dnode(&dn, inode, NULL, NULL, 0);
63 	err = f2fs_reserve_block(&dn, page->index);
64 	if (err) {
65 		f2fs_unlock_op(sbi);
66 		goto out;
67 	}
68 	f2fs_put_dnode(&dn);
69 	f2fs_unlock_op(sbi);
70 
71 	f2fs_balance_fs(sbi, dn.node_changed);
72 
73 	file_update_time(vmf->vma->vm_file);
74 	down_read(&F2FS_I(inode)->i_mmap_sem);
75 	lock_page(page);
76 	if (unlikely(page->mapping != inode->i_mapping ||
77 			page_offset(page) > i_size_read(inode) ||
78 			!PageUptodate(page))) {
79 		unlock_page(page);
80 		err = -EFAULT;
81 		goto out_sem;
82 	}
83 
84 	/*
85 	 * check to see if the page is mapped already (no holes)
86 	 */
87 	if (PageMappedToDisk(page))
88 		goto mapped;
89 
90 	/* page is wholly or partially inside EOF */
91 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
92 						i_size_read(inode)) {
93 		unsigned offset;
94 		offset = i_size_read(inode) & ~PAGE_MASK;
95 		zero_user_segment(page, offset, PAGE_SIZE);
96 	}
97 	set_page_dirty(page);
98 	if (!PageUptodate(page))
99 		SetPageUptodate(page);
100 
101 	trace_f2fs_vm_page_mkwrite(page, DATA);
102 mapped:
103 	/* fill the page */
104 	f2fs_wait_on_page_writeback(page, DATA, false);
105 
106 	/* wait for GCed encrypted page writeback */
107 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
108 		f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
109 
110 out_sem:
111 	up_read(&F2FS_I(inode)->i_mmap_sem);
112 out:
113 	sb_end_pagefault(inode->i_sb);
114 	f2fs_update_time(sbi, REQ_TIME);
115 	return block_page_mkwrite_return(err);
116 }
117 
118 static const struct vm_operations_struct f2fs_file_vm_ops = {
119 	.fault		= f2fs_filemap_fault,
120 	.map_pages	= filemap_map_pages,
121 	.page_mkwrite	= f2fs_vm_page_mkwrite,
122 };
123 
124 static int get_parent_ino(struct inode *inode, nid_t *pino)
125 {
126 	struct dentry *dentry;
127 
128 	inode = igrab(inode);
129 	dentry = d_find_any_alias(inode);
130 	iput(inode);
131 	if (!dentry)
132 		return 0;
133 
134 	*pino = parent_ino(dentry);
135 	dput(dentry);
136 	return 1;
137 }
138 
139 static inline bool need_do_checkpoint(struct inode *inode)
140 {
141 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
142 	bool need_cp = false;
143 
144 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
145 		need_cp = true;
146 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
147 		need_cp = true;
148 	else if (file_wrong_pino(inode))
149 		need_cp = true;
150 	else if (!space_for_roll_forward(sbi))
151 		need_cp = true;
152 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
153 		need_cp = true;
154 	else if (test_opt(sbi, FASTBOOT))
155 		need_cp = true;
156 	else if (sbi->active_logs == 2)
157 		need_cp = true;
158 
159 	return need_cp;
160 }
161 
162 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
163 {
164 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
165 	bool ret = false;
166 	/* But we need to avoid that there are some inode updates */
167 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
168 		ret = true;
169 	f2fs_put_page(i, 0);
170 	return ret;
171 }
172 
173 static void try_to_fix_pino(struct inode *inode)
174 {
175 	struct f2fs_inode_info *fi = F2FS_I(inode);
176 	nid_t pino;
177 
178 	down_write(&fi->i_sem);
179 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
180 			get_parent_ino(inode, &pino)) {
181 		f2fs_i_pino_write(inode, pino);
182 		file_got_pino(inode);
183 	}
184 	up_write(&fi->i_sem);
185 }
186 
187 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
188 						int datasync, bool atomic)
189 {
190 	struct inode *inode = file->f_mapping->host;
191 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
192 	nid_t ino = inode->i_ino;
193 	int ret = 0;
194 	bool need_cp = false;
195 	struct writeback_control wbc = {
196 		.sync_mode = WB_SYNC_ALL,
197 		.nr_to_write = LONG_MAX,
198 		.for_reclaim = 0,
199 	};
200 
201 	if (unlikely(f2fs_readonly(inode->i_sb)))
202 		return 0;
203 
204 	trace_f2fs_sync_file_enter(inode);
205 
206 	/* if fdatasync is triggered, let's do in-place-update */
207 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
208 		set_inode_flag(inode, FI_NEED_IPU);
209 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
210 	clear_inode_flag(inode, FI_NEED_IPU);
211 
212 	if (ret) {
213 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
214 		return ret;
215 	}
216 
217 	/* if the inode is dirty, let's recover all the time */
218 	if (!f2fs_skip_inode_update(inode, datasync)) {
219 		f2fs_write_inode(inode, NULL);
220 		goto go_write;
221 	}
222 
223 	/*
224 	 * if there is no written data, don't waste time to write recovery info.
225 	 */
226 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
227 			!exist_written_data(sbi, ino, APPEND_INO)) {
228 
229 		/* it may call write_inode just prior to fsync */
230 		if (need_inode_page_update(sbi, ino))
231 			goto go_write;
232 
233 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
234 				exist_written_data(sbi, ino, UPDATE_INO))
235 			goto flush_out;
236 		goto out;
237 	}
238 go_write:
239 	/*
240 	 * Both of fdatasync() and fsync() are able to be recovered from
241 	 * sudden-power-off.
242 	 */
243 	down_read(&F2FS_I(inode)->i_sem);
244 	need_cp = need_do_checkpoint(inode);
245 	up_read(&F2FS_I(inode)->i_sem);
246 
247 	if (need_cp) {
248 		/* all the dirty node pages should be flushed for POR */
249 		ret = f2fs_sync_fs(inode->i_sb, 1);
250 
251 		/*
252 		 * We've secured consistency through sync_fs. Following pino
253 		 * will be used only for fsynced inodes after checkpoint.
254 		 */
255 		try_to_fix_pino(inode);
256 		clear_inode_flag(inode, FI_APPEND_WRITE);
257 		clear_inode_flag(inode, FI_UPDATE_WRITE);
258 		goto out;
259 	}
260 sync_nodes:
261 	ret = fsync_node_pages(sbi, inode, &wbc, atomic);
262 	if (ret)
263 		goto out;
264 
265 	/* if cp_error was enabled, we should avoid infinite loop */
266 	if (unlikely(f2fs_cp_error(sbi))) {
267 		ret = -EIO;
268 		goto out;
269 	}
270 
271 	if (need_inode_block_update(sbi, ino)) {
272 		f2fs_mark_inode_dirty_sync(inode, true);
273 		f2fs_write_inode(inode, NULL);
274 		goto sync_nodes;
275 	}
276 
277 	ret = wait_on_node_pages_writeback(sbi, ino);
278 	if (ret)
279 		goto out;
280 
281 	/* once recovery info is written, don't need to tack this */
282 	remove_ino_entry(sbi, ino, APPEND_INO);
283 	clear_inode_flag(inode, FI_APPEND_WRITE);
284 flush_out:
285 	remove_ino_entry(sbi, ino, UPDATE_INO);
286 	clear_inode_flag(inode, FI_UPDATE_WRITE);
287 	if (!atomic)
288 		ret = f2fs_issue_flush(sbi);
289 	f2fs_update_time(sbi, REQ_TIME);
290 out:
291 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
292 	f2fs_trace_ios(NULL, 1);
293 	return ret;
294 }
295 
296 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
297 {
298 	return f2fs_do_sync_file(file, start, end, datasync, false);
299 }
300 
301 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
302 						pgoff_t pgofs, int whence)
303 {
304 	struct pagevec pvec;
305 	int nr_pages;
306 
307 	if (whence != SEEK_DATA)
308 		return 0;
309 
310 	/* find first dirty page index */
311 	pagevec_init(&pvec, 0);
312 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
313 					PAGECACHE_TAG_DIRTY, 1);
314 	pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
315 	pagevec_release(&pvec);
316 	return pgofs;
317 }
318 
319 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
320 							int whence)
321 {
322 	switch (whence) {
323 	case SEEK_DATA:
324 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
325 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
326 			return true;
327 		break;
328 	case SEEK_HOLE:
329 		if (blkaddr == NULL_ADDR)
330 			return true;
331 		break;
332 	}
333 	return false;
334 }
335 
336 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
337 {
338 	struct inode *inode = file->f_mapping->host;
339 	loff_t maxbytes = inode->i_sb->s_maxbytes;
340 	struct dnode_of_data dn;
341 	pgoff_t pgofs, end_offset, dirty;
342 	loff_t data_ofs = offset;
343 	loff_t isize;
344 	int err = 0;
345 
346 	inode_lock(inode);
347 
348 	isize = i_size_read(inode);
349 	if (offset >= isize)
350 		goto fail;
351 
352 	/* handle inline data case */
353 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
354 		if (whence == SEEK_HOLE)
355 			data_ofs = isize;
356 		goto found;
357 	}
358 
359 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
360 
361 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
362 
363 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
364 		set_new_dnode(&dn, inode, NULL, NULL, 0);
365 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
366 		if (err && err != -ENOENT) {
367 			goto fail;
368 		} else if (err == -ENOENT) {
369 			/* direct node does not exists */
370 			if (whence == SEEK_DATA) {
371 				pgofs = get_next_page_offset(&dn, pgofs);
372 				continue;
373 			} else {
374 				goto found;
375 			}
376 		}
377 
378 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
379 
380 		/* find data/hole in dnode block */
381 		for (; dn.ofs_in_node < end_offset;
382 				dn.ofs_in_node++, pgofs++,
383 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
384 			block_t blkaddr;
385 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
386 
387 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
388 				f2fs_put_dnode(&dn);
389 				goto found;
390 			}
391 		}
392 		f2fs_put_dnode(&dn);
393 	}
394 
395 	if (whence == SEEK_DATA)
396 		goto fail;
397 found:
398 	if (whence == SEEK_HOLE && data_ofs > isize)
399 		data_ofs = isize;
400 	inode_unlock(inode);
401 	return vfs_setpos(file, data_ofs, maxbytes);
402 fail:
403 	inode_unlock(inode);
404 	return -ENXIO;
405 }
406 
407 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
408 {
409 	struct inode *inode = file->f_mapping->host;
410 	loff_t maxbytes = inode->i_sb->s_maxbytes;
411 
412 	switch (whence) {
413 	case SEEK_SET:
414 	case SEEK_CUR:
415 	case SEEK_END:
416 		return generic_file_llseek_size(file, offset, whence,
417 						maxbytes, i_size_read(inode));
418 	case SEEK_DATA:
419 	case SEEK_HOLE:
420 		if (offset < 0)
421 			return -ENXIO;
422 		return f2fs_seek_block(file, offset, whence);
423 	}
424 
425 	return -EINVAL;
426 }
427 
428 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
429 {
430 	struct inode *inode = file_inode(file);
431 	int err;
432 
433 	/* we don't need to use inline_data strictly */
434 	err = f2fs_convert_inline_inode(inode);
435 	if (err)
436 		return err;
437 
438 	file_accessed(file);
439 	vma->vm_ops = &f2fs_file_vm_ops;
440 	return 0;
441 }
442 
443 static int f2fs_file_open(struct inode *inode, struct file *filp)
444 {
445 	struct dentry *dir;
446 
447 	if (f2fs_encrypted_inode(inode)) {
448 		int ret = fscrypt_get_encryption_info(inode);
449 		if (ret)
450 			return -EACCES;
451 		if (!fscrypt_has_encryption_key(inode))
452 			return -ENOKEY;
453 	}
454 	dir = dget_parent(file_dentry(filp));
455 	if (f2fs_encrypted_inode(d_inode(dir)) &&
456 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
457 		dput(dir);
458 		return -EPERM;
459 	}
460 	dput(dir);
461 	return dquot_file_open(inode, filp);
462 }
463 
464 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
465 {
466 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
467 	struct f2fs_node *raw_node;
468 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
469 	__le32 *addr;
470 
471 	raw_node = F2FS_NODE(dn->node_page);
472 	addr = blkaddr_in_node(raw_node) + ofs;
473 
474 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
475 		block_t blkaddr = le32_to_cpu(*addr);
476 		if (blkaddr == NULL_ADDR)
477 			continue;
478 
479 		dn->data_blkaddr = NULL_ADDR;
480 		set_data_blkaddr(dn);
481 		invalidate_blocks(sbi, blkaddr);
482 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
483 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
484 		nr_free++;
485 	}
486 
487 	if (nr_free) {
488 		pgoff_t fofs;
489 		/*
490 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
491 		 * we will invalidate all blkaddr in the whole range.
492 		 */
493 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
494 							dn->inode) + ofs;
495 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
496 		dec_valid_block_count(sbi, dn->inode, nr_free);
497 	}
498 	dn->ofs_in_node = ofs;
499 
500 	f2fs_update_time(sbi, REQ_TIME);
501 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
502 					 dn->ofs_in_node, nr_free);
503 	return nr_free;
504 }
505 
506 void truncate_data_blocks(struct dnode_of_data *dn)
507 {
508 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
509 }
510 
511 static int truncate_partial_data_page(struct inode *inode, u64 from,
512 								bool cache_only)
513 {
514 	unsigned offset = from & (PAGE_SIZE - 1);
515 	pgoff_t index = from >> PAGE_SHIFT;
516 	struct address_space *mapping = inode->i_mapping;
517 	struct page *page;
518 
519 	if (!offset && !cache_only)
520 		return 0;
521 
522 	if (cache_only) {
523 		page = find_lock_page(mapping, index);
524 		if (page && PageUptodate(page))
525 			goto truncate_out;
526 		f2fs_put_page(page, 1);
527 		return 0;
528 	}
529 
530 	page = get_lock_data_page(inode, index, true);
531 	if (IS_ERR(page))
532 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
533 truncate_out:
534 	f2fs_wait_on_page_writeback(page, DATA, true);
535 	zero_user(page, offset, PAGE_SIZE - offset);
536 
537 	/* An encrypted inode should have a key and truncate the last page. */
538 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
539 	if (!cache_only)
540 		set_page_dirty(page);
541 	f2fs_put_page(page, 1);
542 	return 0;
543 }
544 
545 int truncate_blocks(struct inode *inode, u64 from, bool lock)
546 {
547 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
548 	unsigned int blocksize = inode->i_sb->s_blocksize;
549 	struct dnode_of_data dn;
550 	pgoff_t free_from;
551 	int count = 0, err = 0;
552 	struct page *ipage;
553 	bool truncate_page = false;
554 
555 	trace_f2fs_truncate_blocks_enter(inode, from);
556 
557 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
558 
559 	if (free_from >= sbi->max_file_blocks)
560 		goto free_partial;
561 
562 	if (lock)
563 		f2fs_lock_op(sbi);
564 
565 	ipage = get_node_page(sbi, inode->i_ino);
566 	if (IS_ERR(ipage)) {
567 		err = PTR_ERR(ipage);
568 		goto out;
569 	}
570 
571 	if (f2fs_has_inline_data(inode)) {
572 		truncate_inline_inode(inode, ipage, from);
573 		f2fs_put_page(ipage, 1);
574 		truncate_page = true;
575 		goto out;
576 	}
577 
578 	set_new_dnode(&dn, inode, ipage, NULL, 0);
579 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
580 	if (err) {
581 		if (err == -ENOENT)
582 			goto free_next;
583 		goto out;
584 	}
585 
586 	count = ADDRS_PER_PAGE(dn.node_page, inode);
587 
588 	count -= dn.ofs_in_node;
589 	f2fs_bug_on(sbi, count < 0);
590 
591 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
592 		truncate_data_blocks_range(&dn, count);
593 		free_from += count;
594 	}
595 
596 	f2fs_put_dnode(&dn);
597 free_next:
598 	err = truncate_inode_blocks(inode, free_from);
599 out:
600 	if (lock)
601 		f2fs_unlock_op(sbi);
602 free_partial:
603 	/* lastly zero out the first data page */
604 	if (!err)
605 		err = truncate_partial_data_page(inode, from, truncate_page);
606 
607 	trace_f2fs_truncate_blocks_exit(inode, err);
608 	return err;
609 }
610 
611 int f2fs_truncate(struct inode *inode)
612 {
613 	int err;
614 
615 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
616 				S_ISLNK(inode->i_mode)))
617 		return 0;
618 
619 	trace_f2fs_truncate(inode);
620 
621 #ifdef CONFIG_F2FS_FAULT_INJECTION
622 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
623 		f2fs_show_injection_info(FAULT_TRUNCATE);
624 		return -EIO;
625 	}
626 #endif
627 	/* we should check inline_data size */
628 	if (!f2fs_may_inline_data(inode)) {
629 		err = f2fs_convert_inline_inode(inode);
630 		if (err)
631 			return err;
632 	}
633 
634 	err = truncate_blocks(inode, i_size_read(inode), true);
635 	if (err)
636 		return err;
637 
638 	inode->i_mtime = inode->i_ctime = current_time(inode);
639 	f2fs_mark_inode_dirty_sync(inode, false);
640 	return 0;
641 }
642 
643 int f2fs_getattr(const struct path *path, struct kstat *stat,
644 		 u32 request_mask, unsigned int query_flags)
645 {
646 	struct inode *inode = d_inode(path->dentry);
647 	struct f2fs_inode_info *fi = F2FS_I(inode);
648 	unsigned int flags;
649 
650 	flags = fi->i_flags & FS_FL_USER_VISIBLE;
651 	if (flags & FS_APPEND_FL)
652 		stat->attributes |= STATX_ATTR_APPEND;
653 	if (flags & FS_COMPR_FL)
654 		stat->attributes |= STATX_ATTR_COMPRESSED;
655 	if (f2fs_encrypted_inode(inode))
656 		stat->attributes |= STATX_ATTR_ENCRYPTED;
657 	if (flags & FS_IMMUTABLE_FL)
658 		stat->attributes |= STATX_ATTR_IMMUTABLE;
659 	if (flags & FS_NODUMP_FL)
660 		stat->attributes |= STATX_ATTR_NODUMP;
661 
662 	stat->attributes_mask |= (STATX_ATTR_APPEND |
663 				  STATX_ATTR_COMPRESSED |
664 				  STATX_ATTR_ENCRYPTED |
665 				  STATX_ATTR_IMMUTABLE |
666 				  STATX_ATTR_NODUMP);
667 
668 	generic_fillattr(inode, stat);
669 	return 0;
670 }
671 
672 #ifdef CONFIG_F2FS_FS_POSIX_ACL
673 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
674 {
675 	unsigned int ia_valid = attr->ia_valid;
676 
677 	if (ia_valid & ATTR_UID)
678 		inode->i_uid = attr->ia_uid;
679 	if (ia_valid & ATTR_GID)
680 		inode->i_gid = attr->ia_gid;
681 	if (ia_valid & ATTR_ATIME)
682 		inode->i_atime = timespec_trunc(attr->ia_atime,
683 						inode->i_sb->s_time_gran);
684 	if (ia_valid & ATTR_MTIME)
685 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
686 						inode->i_sb->s_time_gran);
687 	if (ia_valid & ATTR_CTIME)
688 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
689 						inode->i_sb->s_time_gran);
690 	if (ia_valid & ATTR_MODE) {
691 		umode_t mode = attr->ia_mode;
692 
693 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
694 			mode &= ~S_ISGID;
695 		set_acl_inode(inode, mode);
696 	}
697 }
698 #else
699 #define __setattr_copy setattr_copy
700 #endif
701 
702 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
703 {
704 	struct inode *inode = d_inode(dentry);
705 	int err;
706 	bool size_changed = false;
707 
708 	err = setattr_prepare(dentry, attr);
709 	if (err)
710 		return err;
711 
712 	if (is_quota_modification(inode, attr)) {
713 		err = dquot_initialize(inode);
714 		if (err)
715 			return err;
716 	}
717 	if ((attr->ia_valid & ATTR_UID &&
718 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
719 		(attr->ia_valid & ATTR_GID &&
720 		!gid_eq(attr->ia_gid, inode->i_gid))) {
721 		err = dquot_transfer(inode, attr);
722 		if (err)
723 			return err;
724 	}
725 
726 	if (attr->ia_valid & ATTR_SIZE) {
727 		if (f2fs_encrypted_inode(inode)) {
728 			err = fscrypt_get_encryption_info(inode);
729 			if (err)
730 				return err;
731 			if (!fscrypt_has_encryption_key(inode))
732 				return -ENOKEY;
733 		}
734 
735 		if (attr->ia_size <= i_size_read(inode)) {
736 			down_write(&F2FS_I(inode)->i_mmap_sem);
737 			truncate_setsize(inode, attr->ia_size);
738 			err = f2fs_truncate(inode);
739 			up_write(&F2FS_I(inode)->i_mmap_sem);
740 			if (err)
741 				return err;
742 		} else {
743 			/*
744 			 * do not trim all blocks after i_size if target size is
745 			 * larger than i_size.
746 			 */
747 			down_write(&F2FS_I(inode)->i_mmap_sem);
748 			truncate_setsize(inode, attr->ia_size);
749 			up_write(&F2FS_I(inode)->i_mmap_sem);
750 
751 			/* should convert inline inode here */
752 			if (!f2fs_may_inline_data(inode)) {
753 				err = f2fs_convert_inline_inode(inode);
754 				if (err)
755 					return err;
756 			}
757 			inode->i_mtime = inode->i_ctime = current_time(inode);
758 		}
759 
760 		size_changed = true;
761 	}
762 
763 	__setattr_copy(inode, attr);
764 
765 	if (attr->ia_valid & ATTR_MODE) {
766 		err = posix_acl_chmod(inode, get_inode_mode(inode));
767 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
768 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
769 			clear_inode_flag(inode, FI_ACL_MODE);
770 		}
771 	}
772 
773 	/* file size may changed here */
774 	f2fs_mark_inode_dirty_sync(inode, size_changed);
775 
776 	/* inode change will produce dirty node pages flushed by checkpoint */
777 	f2fs_balance_fs(F2FS_I_SB(inode), true);
778 
779 	return err;
780 }
781 
782 const struct inode_operations f2fs_file_inode_operations = {
783 	.getattr	= f2fs_getattr,
784 	.setattr	= f2fs_setattr,
785 	.get_acl	= f2fs_get_acl,
786 	.set_acl	= f2fs_set_acl,
787 #ifdef CONFIG_F2FS_FS_XATTR
788 	.listxattr	= f2fs_listxattr,
789 #endif
790 	.fiemap		= f2fs_fiemap,
791 };
792 
793 static int fill_zero(struct inode *inode, pgoff_t index,
794 					loff_t start, loff_t len)
795 {
796 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
797 	struct page *page;
798 
799 	if (!len)
800 		return 0;
801 
802 	f2fs_balance_fs(sbi, true);
803 
804 	f2fs_lock_op(sbi);
805 	page = get_new_data_page(inode, NULL, index, false);
806 	f2fs_unlock_op(sbi);
807 
808 	if (IS_ERR(page))
809 		return PTR_ERR(page);
810 
811 	f2fs_wait_on_page_writeback(page, DATA, true);
812 	zero_user(page, start, len);
813 	set_page_dirty(page);
814 	f2fs_put_page(page, 1);
815 	return 0;
816 }
817 
818 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
819 {
820 	int err;
821 
822 	while (pg_start < pg_end) {
823 		struct dnode_of_data dn;
824 		pgoff_t end_offset, count;
825 
826 		set_new_dnode(&dn, inode, NULL, NULL, 0);
827 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
828 		if (err) {
829 			if (err == -ENOENT) {
830 				pg_start++;
831 				continue;
832 			}
833 			return err;
834 		}
835 
836 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
837 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
838 
839 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
840 
841 		truncate_data_blocks_range(&dn, count);
842 		f2fs_put_dnode(&dn);
843 
844 		pg_start += count;
845 	}
846 	return 0;
847 }
848 
849 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
850 {
851 	pgoff_t pg_start, pg_end;
852 	loff_t off_start, off_end;
853 	int ret;
854 
855 	ret = f2fs_convert_inline_inode(inode);
856 	if (ret)
857 		return ret;
858 
859 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
860 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
861 
862 	off_start = offset & (PAGE_SIZE - 1);
863 	off_end = (offset + len) & (PAGE_SIZE - 1);
864 
865 	if (pg_start == pg_end) {
866 		ret = fill_zero(inode, pg_start, off_start,
867 						off_end - off_start);
868 		if (ret)
869 			return ret;
870 	} else {
871 		if (off_start) {
872 			ret = fill_zero(inode, pg_start++, off_start,
873 						PAGE_SIZE - off_start);
874 			if (ret)
875 				return ret;
876 		}
877 		if (off_end) {
878 			ret = fill_zero(inode, pg_end, 0, off_end);
879 			if (ret)
880 				return ret;
881 		}
882 
883 		if (pg_start < pg_end) {
884 			struct address_space *mapping = inode->i_mapping;
885 			loff_t blk_start, blk_end;
886 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
887 
888 			f2fs_balance_fs(sbi, true);
889 
890 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
891 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
892 			down_write(&F2FS_I(inode)->i_mmap_sem);
893 			truncate_inode_pages_range(mapping, blk_start,
894 					blk_end - 1);
895 
896 			f2fs_lock_op(sbi);
897 			ret = truncate_hole(inode, pg_start, pg_end);
898 			f2fs_unlock_op(sbi);
899 			up_write(&F2FS_I(inode)->i_mmap_sem);
900 		}
901 	}
902 
903 	return ret;
904 }
905 
906 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
907 				int *do_replace, pgoff_t off, pgoff_t len)
908 {
909 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
910 	struct dnode_of_data dn;
911 	int ret, done, i;
912 
913 next_dnode:
914 	set_new_dnode(&dn, inode, NULL, NULL, 0);
915 	ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
916 	if (ret && ret != -ENOENT) {
917 		return ret;
918 	} else if (ret == -ENOENT) {
919 		if (dn.max_level == 0)
920 			return -ENOENT;
921 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
922 		blkaddr += done;
923 		do_replace += done;
924 		goto next;
925 	}
926 
927 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
928 							dn.ofs_in_node, len);
929 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
930 		*blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
931 		if (!is_checkpointed_data(sbi, *blkaddr)) {
932 
933 			if (test_opt(sbi, LFS)) {
934 				f2fs_put_dnode(&dn);
935 				return -ENOTSUPP;
936 			}
937 
938 			/* do not invalidate this block address */
939 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
940 			*do_replace = 1;
941 		}
942 	}
943 	f2fs_put_dnode(&dn);
944 next:
945 	len -= done;
946 	off += done;
947 	if (len)
948 		goto next_dnode;
949 	return 0;
950 }
951 
952 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
953 				int *do_replace, pgoff_t off, int len)
954 {
955 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
956 	struct dnode_of_data dn;
957 	int ret, i;
958 
959 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
960 		if (*do_replace == 0)
961 			continue;
962 
963 		set_new_dnode(&dn, inode, NULL, NULL, 0);
964 		ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
965 		if (ret) {
966 			dec_valid_block_count(sbi, inode, 1);
967 			invalidate_blocks(sbi, *blkaddr);
968 		} else {
969 			f2fs_update_data_blkaddr(&dn, *blkaddr);
970 		}
971 		f2fs_put_dnode(&dn);
972 	}
973 	return 0;
974 }
975 
976 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
977 			block_t *blkaddr, int *do_replace,
978 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
979 {
980 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
981 	pgoff_t i = 0;
982 	int ret;
983 
984 	while (i < len) {
985 		if (blkaddr[i] == NULL_ADDR && !full) {
986 			i++;
987 			continue;
988 		}
989 
990 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
991 			struct dnode_of_data dn;
992 			struct node_info ni;
993 			size_t new_size;
994 			pgoff_t ilen;
995 
996 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
997 			ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
998 			if (ret)
999 				return ret;
1000 
1001 			get_node_info(sbi, dn.nid, &ni);
1002 			ilen = min((pgoff_t)
1003 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1004 						dn.ofs_in_node, len - i);
1005 			do {
1006 				dn.data_blkaddr = datablock_addr(dn.node_page,
1007 								dn.ofs_in_node);
1008 				truncate_data_blocks_range(&dn, 1);
1009 
1010 				if (do_replace[i]) {
1011 					f2fs_i_blocks_write(src_inode,
1012 							1, false, false);
1013 					f2fs_i_blocks_write(dst_inode,
1014 							1, true, false);
1015 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1016 					blkaddr[i], ni.version, true, false);
1017 
1018 					do_replace[i] = 0;
1019 				}
1020 				dn.ofs_in_node++;
1021 				i++;
1022 				new_size = (dst + i) << PAGE_SHIFT;
1023 				if (dst_inode->i_size < new_size)
1024 					f2fs_i_size_write(dst_inode, new_size);
1025 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1026 
1027 			f2fs_put_dnode(&dn);
1028 		} else {
1029 			struct page *psrc, *pdst;
1030 
1031 			psrc = get_lock_data_page(src_inode, src + i, true);
1032 			if (IS_ERR(psrc))
1033 				return PTR_ERR(psrc);
1034 			pdst = get_new_data_page(dst_inode, NULL, dst + i,
1035 								true);
1036 			if (IS_ERR(pdst)) {
1037 				f2fs_put_page(psrc, 1);
1038 				return PTR_ERR(pdst);
1039 			}
1040 			f2fs_copy_page(psrc, pdst);
1041 			set_page_dirty(pdst);
1042 			f2fs_put_page(pdst, 1);
1043 			f2fs_put_page(psrc, 1);
1044 
1045 			ret = truncate_hole(src_inode, src + i, src + i + 1);
1046 			if (ret)
1047 				return ret;
1048 			i++;
1049 		}
1050 	}
1051 	return 0;
1052 }
1053 
1054 static int __exchange_data_block(struct inode *src_inode,
1055 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1056 			pgoff_t len, bool full)
1057 {
1058 	block_t *src_blkaddr;
1059 	int *do_replace;
1060 	pgoff_t olen;
1061 	int ret;
1062 
1063 	while (len) {
1064 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1065 
1066 		src_blkaddr = kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1067 		if (!src_blkaddr)
1068 			return -ENOMEM;
1069 
1070 		do_replace = kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1071 		if (!do_replace) {
1072 			kvfree(src_blkaddr);
1073 			return -ENOMEM;
1074 		}
1075 
1076 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1077 					do_replace, src, olen);
1078 		if (ret)
1079 			goto roll_back;
1080 
1081 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1082 					do_replace, src, dst, olen, full);
1083 		if (ret)
1084 			goto roll_back;
1085 
1086 		src += olen;
1087 		dst += olen;
1088 		len -= olen;
1089 
1090 		kvfree(src_blkaddr);
1091 		kvfree(do_replace);
1092 	}
1093 	return 0;
1094 
1095 roll_back:
1096 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1097 	kvfree(src_blkaddr);
1098 	kvfree(do_replace);
1099 	return ret;
1100 }
1101 
1102 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1103 {
1104 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1105 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1106 	int ret;
1107 
1108 	f2fs_balance_fs(sbi, true);
1109 	f2fs_lock_op(sbi);
1110 
1111 	f2fs_drop_extent_tree(inode);
1112 
1113 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1114 	f2fs_unlock_op(sbi);
1115 	return ret;
1116 }
1117 
1118 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1119 {
1120 	pgoff_t pg_start, pg_end;
1121 	loff_t new_size;
1122 	int ret;
1123 
1124 	if (offset + len >= i_size_read(inode))
1125 		return -EINVAL;
1126 
1127 	/* collapse range should be aligned to block size of f2fs. */
1128 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1129 		return -EINVAL;
1130 
1131 	ret = f2fs_convert_inline_inode(inode);
1132 	if (ret)
1133 		return ret;
1134 
1135 	pg_start = offset >> PAGE_SHIFT;
1136 	pg_end = (offset + len) >> PAGE_SHIFT;
1137 
1138 	down_write(&F2FS_I(inode)->i_mmap_sem);
1139 	/* write out all dirty pages from offset */
1140 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1141 	if (ret)
1142 		goto out;
1143 
1144 	truncate_pagecache(inode, offset);
1145 
1146 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1147 	if (ret)
1148 		goto out;
1149 
1150 	/* write out all moved pages, if possible */
1151 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1152 	truncate_pagecache(inode, offset);
1153 
1154 	new_size = i_size_read(inode) - len;
1155 	truncate_pagecache(inode, new_size);
1156 
1157 	ret = truncate_blocks(inode, new_size, true);
1158 	if (!ret)
1159 		f2fs_i_size_write(inode, new_size);
1160 
1161 out:
1162 	up_write(&F2FS_I(inode)->i_mmap_sem);
1163 	return ret;
1164 }
1165 
1166 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1167 								pgoff_t end)
1168 {
1169 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1170 	pgoff_t index = start;
1171 	unsigned int ofs_in_node = dn->ofs_in_node;
1172 	blkcnt_t count = 0;
1173 	int ret;
1174 
1175 	for (; index < end; index++, dn->ofs_in_node++) {
1176 		if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1177 			count++;
1178 	}
1179 
1180 	dn->ofs_in_node = ofs_in_node;
1181 	ret = reserve_new_blocks(dn, count);
1182 	if (ret)
1183 		return ret;
1184 
1185 	dn->ofs_in_node = ofs_in_node;
1186 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1187 		dn->data_blkaddr =
1188 				datablock_addr(dn->node_page, dn->ofs_in_node);
1189 		/*
1190 		 * reserve_new_blocks will not guarantee entire block
1191 		 * allocation.
1192 		 */
1193 		if (dn->data_blkaddr == NULL_ADDR) {
1194 			ret = -ENOSPC;
1195 			break;
1196 		}
1197 		if (dn->data_blkaddr != NEW_ADDR) {
1198 			invalidate_blocks(sbi, dn->data_blkaddr);
1199 			dn->data_blkaddr = NEW_ADDR;
1200 			set_data_blkaddr(dn);
1201 		}
1202 	}
1203 
1204 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1205 
1206 	return ret;
1207 }
1208 
1209 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1210 								int mode)
1211 {
1212 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1213 	struct address_space *mapping = inode->i_mapping;
1214 	pgoff_t index, pg_start, pg_end;
1215 	loff_t new_size = i_size_read(inode);
1216 	loff_t off_start, off_end;
1217 	int ret = 0;
1218 
1219 	ret = inode_newsize_ok(inode, (len + offset));
1220 	if (ret)
1221 		return ret;
1222 
1223 	ret = f2fs_convert_inline_inode(inode);
1224 	if (ret)
1225 		return ret;
1226 
1227 	down_write(&F2FS_I(inode)->i_mmap_sem);
1228 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1229 	if (ret)
1230 		goto out_sem;
1231 
1232 	truncate_pagecache_range(inode, offset, offset + len - 1);
1233 
1234 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1235 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1236 
1237 	off_start = offset & (PAGE_SIZE - 1);
1238 	off_end = (offset + len) & (PAGE_SIZE - 1);
1239 
1240 	if (pg_start == pg_end) {
1241 		ret = fill_zero(inode, pg_start, off_start,
1242 						off_end - off_start);
1243 		if (ret)
1244 			goto out_sem;
1245 
1246 		new_size = max_t(loff_t, new_size, offset + len);
1247 	} else {
1248 		if (off_start) {
1249 			ret = fill_zero(inode, pg_start++, off_start,
1250 						PAGE_SIZE - off_start);
1251 			if (ret)
1252 				goto out_sem;
1253 
1254 			new_size = max_t(loff_t, new_size,
1255 					(loff_t)pg_start << PAGE_SHIFT);
1256 		}
1257 
1258 		for (index = pg_start; index < pg_end;) {
1259 			struct dnode_of_data dn;
1260 			unsigned int end_offset;
1261 			pgoff_t end;
1262 
1263 			f2fs_lock_op(sbi);
1264 
1265 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1266 			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1267 			if (ret) {
1268 				f2fs_unlock_op(sbi);
1269 				goto out;
1270 			}
1271 
1272 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1273 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1274 
1275 			ret = f2fs_do_zero_range(&dn, index, end);
1276 			f2fs_put_dnode(&dn);
1277 			f2fs_unlock_op(sbi);
1278 
1279 			f2fs_balance_fs(sbi, dn.node_changed);
1280 
1281 			if (ret)
1282 				goto out;
1283 
1284 			index = end;
1285 			new_size = max_t(loff_t, new_size,
1286 					(loff_t)index << PAGE_SHIFT);
1287 		}
1288 
1289 		if (off_end) {
1290 			ret = fill_zero(inode, pg_end, 0, off_end);
1291 			if (ret)
1292 				goto out;
1293 
1294 			new_size = max_t(loff_t, new_size, offset + len);
1295 		}
1296 	}
1297 
1298 out:
1299 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1300 		f2fs_i_size_write(inode, new_size);
1301 out_sem:
1302 	up_write(&F2FS_I(inode)->i_mmap_sem);
1303 
1304 	return ret;
1305 }
1306 
1307 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1308 {
1309 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1310 	pgoff_t nr, pg_start, pg_end, delta, idx;
1311 	loff_t new_size;
1312 	int ret = 0;
1313 
1314 	new_size = i_size_read(inode) + len;
1315 	ret = inode_newsize_ok(inode, new_size);
1316 	if (ret)
1317 		return ret;
1318 
1319 	if (offset >= i_size_read(inode))
1320 		return -EINVAL;
1321 
1322 	/* insert range should be aligned to block size of f2fs. */
1323 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1324 		return -EINVAL;
1325 
1326 	ret = f2fs_convert_inline_inode(inode);
1327 	if (ret)
1328 		return ret;
1329 
1330 	f2fs_balance_fs(sbi, true);
1331 
1332 	down_write(&F2FS_I(inode)->i_mmap_sem);
1333 	ret = truncate_blocks(inode, i_size_read(inode), true);
1334 	if (ret)
1335 		goto out;
1336 
1337 	/* write out all dirty pages from offset */
1338 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1339 	if (ret)
1340 		goto out;
1341 
1342 	truncate_pagecache(inode, offset);
1343 
1344 	pg_start = offset >> PAGE_SHIFT;
1345 	pg_end = (offset + len) >> PAGE_SHIFT;
1346 	delta = pg_end - pg_start;
1347 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1348 
1349 	while (!ret && idx > pg_start) {
1350 		nr = idx - pg_start;
1351 		if (nr > delta)
1352 			nr = delta;
1353 		idx -= nr;
1354 
1355 		f2fs_lock_op(sbi);
1356 		f2fs_drop_extent_tree(inode);
1357 
1358 		ret = __exchange_data_block(inode, inode, idx,
1359 					idx + delta, nr, false);
1360 		f2fs_unlock_op(sbi);
1361 	}
1362 
1363 	/* write out all moved pages, if possible */
1364 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1365 	truncate_pagecache(inode, offset);
1366 
1367 	if (!ret)
1368 		f2fs_i_size_write(inode, new_size);
1369 out:
1370 	up_write(&F2FS_I(inode)->i_mmap_sem);
1371 	return ret;
1372 }
1373 
1374 static int expand_inode_data(struct inode *inode, loff_t offset,
1375 					loff_t len, int mode)
1376 {
1377 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1378 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1379 	pgoff_t pg_end;
1380 	loff_t new_size = i_size_read(inode);
1381 	loff_t off_end;
1382 	int err;
1383 
1384 	err = inode_newsize_ok(inode, (len + offset));
1385 	if (err)
1386 		return err;
1387 
1388 	err = f2fs_convert_inline_inode(inode);
1389 	if (err)
1390 		return err;
1391 
1392 	f2fs_balance_fs(sbi, true);
1393 
1394 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1395 	off_end = (offset + len) & (PAGE_SIZE - 1);
1396 
1397 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1398 	map.m_len = pg_end - map.m_lblk;
1399 	if (off_end)
1400 		map.m_len++;
1401 
1402 	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1403 	if (err) {
1404 		pgoff_t last_off;
1405 
1406 		if (!map.m_len)
1407 			return err;
1408 
1409 		last_off = map.m_lblk + map.m_len - 1;
1410 
1411 		/* update new size to the failed position */
1412 		new_size = (last_off == pg_end) ? offset + len:
1413 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1414 	} else {
1415 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1416 	}
1417 
1418 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1419 		f2fs_i_size_write(inode, new_size);
1420 
1421 	return err;
1422 }
1423 
1424 static long f2fs_fallocate(struct file *file, int mode,
1425 				loff_t offset, loff_t len)
1426 {
1427 	struct inode *inode = file_inode(file);
1428 	long ret = 0;
1429 
1430 	/* f2fs only support ->fallocate for regular file */
1431 	if (!S_ISREG(inode->i_mode))
1432 		return -EINVAL;
1433 
1434 	if (f2fs_encrypted_inode(inode) &&
1435 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1436 		return -EOPNOTSUPP;
1437 
1438 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1439 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1440 			FALLOC_FL_INSERT_RANGE))
1441 		return -EOPNOTSUPP;
1442 
1443 	inode_lock(inode);
1444 
1445 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1446 		if (offset >= inode->i_size)
1447 			goto out;
1448 
1449 		ret = punch_hole(inode, offset, len);
1450 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1451 		ret = f2fs_collapse_range(inode, offset, len);
1452 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1453 		ret = f2fs_zero_range(inode, offset, len, mode);
1454 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1455 		ret = f2fs_insert_range(inode, offset, len);
1456 	} else {
1457 		ret = expand_inode_data(inode, offset, len, mode);
1458 	}
1459 
1460 	if (!ret) {
1461 		inode->i_mtime = inode->i_ctime = current_time(inode);
1462 		f2fs_mark_inode_dirty_sync(inode, false);
1463 		if (mode & FALLOC_FL_KEEP_SIZE)
1464 			file_set_keep_isize(inode);
1465 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1466 	}
1467 
1468 out:
1469 	inode_unlock(inode);
1470 
1471 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1472 	return ret;
1473 }
1474 
1475 static int f2fs_release_file(struct inode *inode, struct file *filp)
1476 {
1477 	/*
1478 	 * f2fs_relase_file is called at every close calls. So we should
1479 	 * not drop any inmemory pages by close called by other process.
1480 	 */
1481 	if (!(filp->f_mode & FMODE_WRITE) ||
1482 			atomic_read(&inode->i_writecount) != 1)
1483 		return 0;
1484 
1485 	/* some remained atomic pages should discarded */
1486 	if (f2fs_is_atomic_file(inode))
1487 		drop_inmem_pages(inode);
1488 	if (f2fs_is_volatile_file(inode)) {
1489 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1490 		stat_dec_volatile_write(inode);
1491 		set_inode_flag(inode, FI_DROP_CACHE);
1492 		filemap_fdatawrite(inode->i_mapping);
1493 		clear_inode_flag(inode, FI_DROP_CACHE);
1494 	}
1495 	return 0;
1496 }
1497 
1498 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1499 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1500 
1501 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1502 {
1503 	if (S_ISDIR(mode))
1504 		return flags;
1505 	else if (S_ISREG(mode))
1506 		return flags & F2FS_REG_FLMASK;
1507 	else
1508 		return flags & F2FS_OTHER_FLMASK;
1509 }
1510 
1511 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1512 {
1513 	struct inode *inode = file_inode(filp);
1514 	struct f2fs_inode_info *fi = F2FS_I(inode);
1515 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1516 	return put_user(flags, (int __user *)arg);
1517 }
1518 
1519 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1520 {
1521 	struct inode *inode = file_inode(filp);
1522 	struct f2fs_inode_info *fi = F2FS_I(inode);
1523 	unsigned int flags;
1524 	unsigned int oldflags;
1525 	int ret;
1526 
1527 	if (!inode_owner_or_capable(inode))
1528 		return -EACCES;
1529 
1530 	if (get_user(flags, (int __user *)arg))
1531 		return -EFAULT;
1532 
1533 	ret = mnt_want_write_file(filp);
1534 	if (ret)
1535 		return ret;
1536 
1537 	inode_lock(inode);
1538 
1539 	/* Is it quota file? Do not allow user to mess with it */
1540 	if (IS_NOQUOTA(inode)) {
1541 		inode_unlock(inode);
1542 		ret = -EPERM;
1543 		goto unlock_out;
1544 	}
1545 
1546 	flags = f2fs_mask_flags(inode->i_mode, flags);
1547 
1548 	oldflags = fi->i_flags;
1549 
1550 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1551 		if (!capable(CAP_LINUX_IMMUTABLE)) {
1552 			inode_unlock(inode);
1553 			ret = -EPERM;
1554 			goto out;
1555 		}
1556 	}
1557 
1558 	flags = flags & FS_FL_USER_MODIFIABLE;
1559 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1560 	fi->i_flags = flags;
1561 
1562 	inode->i_ctime = current_time(inode);
1563 	f2fs_set_inode_flags(inode);
1564 	f2fs_mark_inode_dirty_sync(inode, false);
1565 unlock_out:
1566 	inode_unlock(inode);
1567 out:
1568 	mnt_drop_write_file(filp);
1569 	return ret;
1570 }
1571 
1572 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1573 {
1574 	struct inode *inode = file_inode(filp);
1575 
1576 	return put_user(inode->i_generation, (int __user *)arg);
1577 }
1578 
1579 static int f2fs_ioc_start_atomic_write(struct file *filp)
1580 {
1581 	struct inode *inode = file_inode(filp);
1582 	int ret;
1583 
1584 	if (!inode_owner_or_capable(inode))
1585 		return -EACCES;
1586 
1587 	if (!S_ISREG(inode->i_mode))
1588 		return -EINVAL;
1589 
1590 	ret = mnt_want_write_file(filp);
1591 	if (ret)
1592 		return ret;
1593 
1594 	inode_lock(inode);
1595 
1596 	if (f2fs_is_atomic_file(inode))
1597 		goto out;
1598 
1599 	ret = f2fs_convert_inline_inode(inode);
1600 	if (ret)
1601 		goto out;
1602 
1603 	set_inode_flag(inode, FI_ATOMIC_FILE);
1604 	set_inode_flag(inode, FI_HOT_DATA);
1605 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1606 
1607 	if (!get_dirty_pages(inode))
1608 		goto inc_stat;
1609 
1610 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1611 		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1612 					inode->i_ino, get_dirty_pages(inode));
1613 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1614 	if (ret) {
1615 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1616 		goto out;
1617 	}
1618 
1619 inc_stat:
1620 	stat_inc_atomic_write(inode);
1621 	stat_update_max_atomic_write(inode);
1622 out:
1623 	inode_unlock(inode);
1624 	mnt_drop_write_file(filp);
1625 	return ret;
1626 }
1627 
1628 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1629 {
1630 	struct inode *inode = file_inode(filp);
1631 	int ret;
1632 
1633 	if (!inode_owner_or_capable(inode))
1634 		return -EACCES;
1635 
1636 	ret = mnt_want_write_file(filp);
1637 	if (ret)
1638 		return ret;
1639 
1640 	inode_lock(inode);
1641 
1642 	if (f2fs_is_volatile_file(inode))
1643 		goto err_out;
1644 
1645 	if (f2fs_is_atomic_file(inode)) {
1646 		ret = commit_inmem_pages(inode);
1647 		if (ret)
1648 			goto err_out;
1649 
1650 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1651 		if (!ret) {
1652 			clear_inode_flag(inode, FI_ATOMIC_FILE);
1653 			stat_dec_atomic_write(inode);
1654 		}
1655 	} else {
1656 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1657 	}
1658 err_out:
1659 	inode_unlock(inode);
1660 	mnt_drop_write_file(filp);
1661 	return ret;
1662 }
1663 
1664 static int f2fs_ioc_start_volatile_write(struct file *filp)
1665 {
1666 	struct inode *inode = file_inode(filp);
1667 	int ret;
1668 
1669 	if (!inode_owner_or_capable(inode))
1670 		return -EACCES;
1671 
1672 	if (!S_ISREG(inode->i_mode))
1673 		return -EINVAL;
1674 
1675 	ret = mnt_want_write_file(filp);
1676 	if (ret)
1677 		return ret;
1678 
1679 	inode_lock(inode);
1680 
1681 	if (f2fs_is_volatile_file(inode))
1682 		goto out;
1683 
1684 	ret = f2fs_convert_inline_inode(inode);
1685 	if (ret)
1686 		goto out;
1687 
1688 	stat_inc_volatile_write(inode);
1689 	stat_update_max_volatile_write(inode);
1690 
1691 	set_inode_flag(inode, FI_VOLATILE_FILE);
1692 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1693 out:
1694 	inode_unlock(inode);
1695 	mnt_drop_write_file(filp);
1696 	return ret;
1697 }
1698 
1699 static int f2fs_ioc_release_volatile_write(struct file *filp)
1700 {
1701 	struct inode *inode = file_inode(filp);
1702 	int ret;
1703 
1704 	if (!inode_owner_or_capable(inode))
1705 		return -EACCES;
1706 
1707 	ret = mnt_want_write_file(filp);
1708 	if (ret)
1709 		return ret;
1710 
1711 	inode_lock(inode);
1712 
1713 	if (!f2fs_is_volatile_file(inode))
1714 		goto out;
1715 
1716 	if (!f2fs_is_first_block_written(inode)) {
1717 		ret = truncate_partial_data_page(inode, 0, true);
1718 		goto out;
1719 	}
1720 
1721 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1722 out:
1723 	inode_unlock(inode);
1724 	mnt_drop_write_file(filp);
1725 	return ret;
1726 }
1727 
1728 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1729 {
1730 	struct inode *inode = file_inode(filp);
1731 	int ret;
1732 
1733 	if (!inode_owner_or_capable(inode))
1734 		return -EACCES;
1735 
1736 	ret = mnt_want_write_file(filp);
1737 	if (ret)
1738 		return ret;
1739 
1740 	inode_lock(inode);
1741 
1742 	if (f2fs_is_atomic_file(inode))
1743 		drop_inmem_pages(inode);
1744 	if (f2fs_is_volatile_file(inode)) {
1745 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1746 		stat_dec_volatile_write(inode);
1747 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1748 	}
1749 
1750 	inode_unlock(inode);
1751 
1752 	mnt_drop_write_file(filp);
1753 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1754 	return ret;
1755 }
1756 
1757 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1758 {
1759 	struct inode *inode = file_inode(filp);
1760 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1761 	struct super_block *sb = sbi->sb;
1762 	__u32 in;
1763 	int ret;
1764 
1765 	if (!capable(CAP_SYS_ADMIN))
1766 		return -EPERM;
1767 
1768 	if (get_user(in, (__u32 __user *)arg))
1769 		return -EFAULT;
1770 
1771 	ret = mnt_want_write_file(filp);
1772 	if (ret)
1773 		return ret;
1774 
1775 	switch (in) {
1776 	case F2FS_GOING_DOWN_FULLSYNC:
1777 		sb = freeze_bdev(sb->s_bdev);
1778 		if (sb && !IS_ERR(sb)) {
1779 			f2fs_stop_checkpoint(sbi, false);
1780 			thaw_bdev(sb->s_bdev, sb);
1781 		}
1782 		break;
1783 	case F2FS_GOING_DOWN_METASYNC:
1784 		/* do checkpoint only */
1785 		f2fs_sync_fs(sb, 1);
1786 		f2fs_stop_checkpoint(sbi, false);
1787 		break;
1788 	case F2FS_GOING_DOWN_NOSYNC:
1789 		f2fs_stop_checkpoint(sbi, false);
1790 		break;
1791 	case F2FS_GOING_DOWN_METAFLUSH:
1792 		sync_meta_pages(sbi, META, LONG_MAX);
1793 		f2fs_stop_checkpoint(sbi, false);
1794 		break;
1795 	default:
1796 		ret = -EINVAL;
1797 		goto out;
1798 	}
1799 	f2fs_update_time(sbi, REQ_TIME);
1800 out:
1801 	mnt_drop_write_file(filp);
1802 	return ret;
1803 }
1804 
1805 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1806 {
1807 	struct inode *inode = file_inode(filp);
1808 	struct super_block *sb = inode->i_sb;
1809 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1810 	struct fstrim_range range;
1811 	int ret;
1812 
1813 	if (!capable(CAP_SYS_ADMIN))
1814 		return -EPERM;
1815 
1816 	if (!blk_queue_discard(q))
1817 		return -EOPNOTSUPP;
1818 
1819 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1820 				sizeof(range)))
1821 		return -EFAULT;
1822 
1823 	ret = mnt_want_write_file(filp);
1824 	if (ret)
1825 		return ret;
1826 
1827 	range.minlen = max((unsigned int)range.minlen,
1828 				q->limits.discard_granularity);
1829 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1830 	mnt_drop_write_file(filp);
1831 	if (ret < 0)
1832 		return ret;
1833 
1834 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1835 				sizeof(range)))
1836 		return -EFAULT;
1837 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1838 	return 0;
1839 }
1840 
1841 static bool uuid_is_nonzero(__u8 u[16])
1842 {
1843 	int i;
1844 
1845 	for (i = 0; i < 16; i++)
1846 		if (u[i])
1847 			return true;
1848 	return false;
1849 }
1850 
1851 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1852 {
1853 	struct inode *inode = file_inode(filp);
1854 
1855 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1856 
1857 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1858 }
1859 
1860 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1861 {
1862 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1863 }
1864 
1865 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1866 {
1867 	struct inode *inode = file_inode(filp);
1868 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1869 	int err;
1870 
1871 	if (!f2fs_sb_has_crypto(inode->i_sb))
1872 		return -EOPNOTSUPP;
1873 
1874 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1875 		goto got_it;
1876 
1877 	err = mnt_want_write_file(filp);
1878 	if (err)
1879 		return err;
1880 
1881 	/* update superblock with uuid */
1882 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1883 
1884 	err = f2fs_commit_super(sbi, false);
1885 	if (err) {
1886 		/* undo new data */
1887 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1888 		mnt_drop_write_file(filp);
1889 		return err;
1890 	}
1891 	mnt_drop_write_file(filp);
1892 got_it:
1893 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1894 									16))
1895 		return -EFAULT;
1896 	return 0;
1897 }
1898 
1899 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1900 {
1901 	struct inode *inode = file_inode(filp);
1902 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1903 	__u32 sync;
1904 	int ret;
1905 
1906 	if (!capable(CAP_SYS_ADMIN))
1907 		return -EPERM;
1908 
1909 	if (get_user(sync, (__u32 __user *)arg))
1910 		return -EFAULT;
1911 
1912 	if (f2fs_readonly(sbi->sb))
1913 		return -EROFS;
1914 
1915 	ret = mnt_want_write_file(filp);
1916 	if (ret)
1917 		return ret;
1918 
1919 	if (!sync) {
1920 		if (!mutex_trylock(&sbi->gc_mutex)) {
1921 			ret = -EBUSY;
1922 			goto out;
1923 		}
1924 	} else {
1925 		mutex_lock(&sbi->gc_mutex);
1926 	}
1927 
1928 	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
1929 out:
1930 	mnt_drop_write_file(filp);
1931 	return ret;
1932 }
1933 
1934 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
1935 {
1936 	struct inode *inode = file_inode(filp);
1937 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1938 	struct f2fs_gc_range range;
1939 	u64 end;
1940 	int ret;
1941 
1942 	if (!capable(CAP_SYS_ADMIN))
1943 		return -EPERM;
1944 
1945 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
1946 							sizeof(range)))
1947 		return -EFAULT;
1948 
1949 	if (f2fs_readonly(sbi->sb))
1950 		return -EROFS;
1951 
1952 	ret = mnt_want_write_file(filp);
1953 	if (ret)
1954 		return ret;
1955 
1956 	end = range.start + range.len;
1957 	if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi))
1958 		return -EINVAL;
1959 do_more:
1960 	if (!range.sync) {
1961 		if (!mutex_trylock(&sbi->gc_mutex)) {
1962 			ret = -EBUSY;
1963 			goto out;
1964 		}
1965 	} else {
1966 		mutex_lock(&sbi->gc_mutex);
1967 	}
1968 
1969 	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
1970 	range.start += sbi->blocks_per_seg;
1971 	if (range.start <= end)
1972 		goto do_more;
1973 out:
1974 	mnt_drop_write_file(filp);
1975 	return ret;
1976 }
1977 
1978 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1979 {
1980 	struct inode *inode = file_inode(filp);
1981 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1982 	int ret;
1983 
1984 	if (!capable(CAP_SYS_ADMIN))
1985 		return -EPERM;
1986 
1987 	if (f2fs_readonly(sbi->sb))
1988 		return -EROFS;
1989 
1990 	ret = mnt_want_write_file(filp);
1991 	if (ret)
1992 		return ret;
1993 
1994 	ret = f2fs_sync_fs(sbi->sb, 1);
1995 
1996 	mnt_drop_write_file(filp);
1997 	return ret;
1998 }
1999 
2000 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2001 					struct file *filp,
2002 					struct f2fs_defragment *range)
2003 {
2004 	struct inode *inode = file_inode(filp);
2005 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
2006 	struct extent_info ei = {0,0,0};
2007 	pgoff_t pg_start, pg_end;
2008 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2009 	unsigned int total = 0, sec_num;
2010 	block_t blk_end = 0;
2011 	bool fragmented = false;
2012 	int err;
2013 
2014 	/* if in-place-update policy is enabled, don't waste time here */
2015 	if (need_inplace_update_policy(inode, NULL))
2016 		return -EINVAL;
2017 
2018 	pg_start = range->start >> PAGE_SHIFT;
2019 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2020 
2021 	f2fs_balance_fs(sbi, true);
2022 
2023 	inode_lock(inode);
2024 
2025 	/* writeback all dirty pages in the range */
2026 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2027 						range->start + range->len - 1);
2028 	if (err)
2029 		goto out;
2030 
2031 	/*
2032 	 * lookup mapping info in extent cache, skip defragmenting if physical
2033 	 * block addresses are continuous.
2034 	 */
2035 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2036 		if (ei.fofs + ei.len >= pg_end)
2037 			goto out;
2038 	}
2039 
2040 	map.m_lblk = pg_start;
2041 
2042 	/*
2043 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2044 	 * physical block addresses are continuous even if there are hole(s)
2045 	 * in logical blocks.
2046 	 */
2047 	while (map.m_lblk < pg_end) {
2048 		map.m_len = pg_end - map.m_lblk;
2049 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
2050 		if (err)
2051 			goto out;
2052 
2053 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2054 			map.m_lblk++;
2055 			continue;
2056 		}
2057 
2058 		if (blk_end && blk_end != map.m_pblk) {
2059 			fragmented = true;
2060 			break;
2061 		}
2062 		blk_end = map.m_pblk + map.m_len;
2063 
2064 		map.m_lblk += map.m_len;
2065 	}
2066 
2067 	if (!fragmented)
2068 		goto out;
2069 
2070 	map.m_lblk = pg_start;
2071 	map.m_len = pg_end - pg_start;
2072 
2073 	sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2074 
2075 	/*
2076 	 * make sure there are enough free section for LFS allocation, this can
2077 	 * avoid defragment running in SSR mode when free section are allocated
2078 	 * intensively
2079 	 */
2080 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2081 		err = -EAGAIN;
2082 		goto out;
2083 	}
2084 
2085 	while (map.m_lblk < pg_end) {
2086 		pgoff_t idx;
2087 		int cnt = 0;
2088 
2089 do_map:
2090 		map.m_len = pg_end - map.m_lblk;
2091 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
2092 		if (err)
2093 			goto clear_out;
2094 
2095 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2096 			map.m_lblk++;
2097 			continue;
2098 		}
2099 
2100 		set_inode_flag(inode, FI_DO_DEFRAG);
2101 
2102 		idx = map.m_lblk;
2103 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2104 			struct page *page;
2105 
2106 			page = get_lock_data_page(inode, idx, true);
2107 			if (IS_ERR(page)) {
2108 				err = PTR_ERR(page);
2109 				goto clear_out;
2110 			}
2111 
2112 			set_page_dirty(page);
2113 			f2fs_put_page(page, 1);
2114 
2115 			idx++;
2116 			cnt++;
2117 			total++;
2118 		}
2119 
2120 		map.m_lblk = idx;
2121 
2122 		if (idx < pg_end && cnt < blk_per_seg)
2123 			goto do_map;
2124 
2125 		clear_inode_flag(inode, FI_DO_DEFRAG);
2126 
2127 		err = filemap_fdatawrite(inode->i_mapping);
2128 		if (err)
2129 			goto out;
2130 	}
2131 clear_out:
2132 	clear_inode_flag(inode, FI_DO_DEFRAG);
2133 out:
2134 	inode_unlock(inode);
2135 	if (!err)
2136 		range->len = (u64)total << PAGE_SHIFT;
2137 	return err;
2138 }
2139 
2140 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2141 {
2142 	struct inode *inode = file_inode(filp);
2143 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2144 	struct f2fs_defragment range;
2145 	int err;
2146 
2147 	if (!capable(CAP_SYS_ADMIN))
2148 		return -EPERM;
2149 
2150 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2151 		return -EINVAL;
2152 
2153 	if (f2fs_readonly(sbi->sb))
2154 		return -EROFS;
2155 
2156 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2157 							sizeof(range)))
2158 		return -EFAULT;
2159 
2160 	/* verify alignment of offset & size */
2161 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2162 		return -EINVAL;
2163 
2164 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2165 					sbi->max_file_blocks))
2166 		return -EINVAL;
2167 
2168 	err = mnt_want_write_file(filp);
2169 	if (err)
2170 		return err;
2171 
2172 	err = f2fs_defragment_range(sbi, filp, &range);
2173 	mnt_drop_write_file(filp);
2174 
2175 	f2fs_update_time(sbi, REQ_TIME);
2176 	if (err < 0)
2177 		return err;
2178 
2179 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2180 							sizeof(range)))
2181 		return -EFAULT;
2182 
2183 	return 0;
2184 }
2185 
2186 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2187 			struct file *file_out, loff_t pos_out, size_t len)
2188 {
2189 	struct inode *src = file_inode(file_in);
2190 	struct inode *dst = file_inode(file_out);
2191 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2192 	size_t olen = len, dst_max_i_size = 0;
2193 	size_t dst_osize;
2194 	int ret;
2195 
2196 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2197 				src->i_sb != dst->i_sb)
2198 		return -EXDEV;
2199 
2200 	if (unlikely(f2fs_readonly(src->i_sb)))
2201 		return -EROFS;
2202 
2203 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2204 		return -EINVAL;
2205 
2206 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2207 		return -EOPNOTSUPP;
2208 
2209 	if (src == dst) {
2210 		if (pos_in == pos_out)
2211 			return 0;
2212 		if (pos_out > pos_in && pos_out < pos_in + len)
2213 			return -EINVAL;
2214 	}
2215 
2216 	inode_lock(src);
2217 	if (src != dst) {
2218 		if (!inode_trylock(dst)) {
2219 			ret = -EBUSY;
2220 			goto out;
2221 		}
2222 	}
2223 
2224 	ret = -EINVAL;
2225 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2226 		goto out_unlock;
2227 	if (len == 0)
2228 		olen = len = src->i_size - pos_in;
2229 	if (pos_in + len == src->i_size)
2230 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2231 	if (len == 0) {
2232 		ret = 0;
2233 		goto out_unlock;
2234 	}
2235 
2236 	dst_osize = dst->i_size;
2237 	if (pos_out + olen > dst->i_size)
2238 		dst_max_i_size = pos_out + olen;
2239 
2240 	/* verify the end result is block aligned */
2241 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2242 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2243 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2244 		goto out_unlock;
2245 
2246 	ret = f2fs_convert_inline_inode(src);
2247 	if (ret)
2248 		goto out_unlock;
2249 
2250 	ret = f2fs_convert_inline_inode(dst);
2251 	if (ret)
2252 		goto out_unlock;
2253 
2254 	/* write out all dirty pages from offset */
2255 	ret = filemap_write_and_wait_range(src->i_mapping,
2256 					pos_in, pos_in + len);
2257 	if (ret)
2258 		goto out_unlock;
2259 
2260 	ret = filemap_write_and_wait_range(dst->i_mapping,
2261 					pos_out, pos_out + len);
2262 	if (ret)
2263 		goto out_unlock;
2264 
2265 	f2fs_balance_fs(sbi, true);
2266 	f2fs_lock_op(sbi);
2267 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2268 				pos_out >> F2FS_BLKSIZE_BITS,
2269 				len >> F2FS_BLKSIZE_BITS, false);
2270 
2271 	if (!ret) {
2272 		if (dst_max_i_size)
2273 			f2fs_i_size_write(dst, dst_max_i_size);
2274 		else if (dst_osize != dst->i_size)
2275 			f2fs_i_size_write(dst, dst_osize);
2276 	}
2277 	f2fs_unlock_op(sbi);
2278 out_unlock:
2279 	if (src != dst)
2280 		inode_unlock(dst);
2281 out:
2282 	inode_unlock(src);
2283 	return ret;
2284 }
2285 
2286 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2287 {
2288 	struct f2fs_move_range range;
2289 	struct fd dst;
2290 	int err;
2291 
2292 	if (!(filp->f_mode & FMODE_READ) ||
2293 			!(filp->f_mode & FMODE_WRITE))
2294 		return -EBADF;
2295 
2296 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2297 							sizeof(range)))
2298 		return -EFAULT;
2299 
2300 	dst = fdget(range.dst_fd);
2301 	if (!dst.file)
2302 		return -EBADF;
2303 
2304 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2305 		err = -EBADF;
2306 		goto err_out;
2307 	}
2308 
2309 	err = mnt_want_write_file(filp);
2310 	if (err)
2311 		goto err_out;
2312 
2313 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2314 					range.pos_out, range.len);
2315 
2316 	mnt_drop_write_file(filp);
2317 	if (err)
2318 		goto err_out;
2319 
2320 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2321 						&range, sizeof(range)))
2322 		err = -EFAULT;
2323 err_out:
2324 	fdput(dst);
2325 	return err;
2326 }
2327 
2328 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2329 {
2330 	struct inode *inode = file_inode(filp);
2331 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2332 	struct sit_info *sm = SIT_I(sbi);
2333 	unsigned int start_segno = 0, end_segno = 0;
2334 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2335 	struct f2fs_flush_device range;
2336 	int ret;
2337 
2338 	if (!capable(CAP_SYS_ADMIN))
2339 		return -EPERM;
2340 
2341 	if (f2fs_readonly(sbi->sb))
2342 		return -EROFS;
2343 
2344 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2345 							sizeof(range)))
2346 		return -EFAULT;
2347 
2348 	if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2349 			sbi->segs_per_sec != 1) {
2350 		f2fs_msg(sbi->sb, KERN_WARNING,
2351 			"Can't flush %u in %d for segs_per_sec %u != 1\n",
2352 				range.dev_num, sbi->s_ndevs,
2353 				sbi->segs_per_sec);
2354 		return -EINVAL;
2355 	}
2356 
2357 	ret = mnt_want_write_file(filp);
2358 	if (ret)
2359 		return ret;
2360 
2361 	if (range.dev_num != 0)
2362 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2363 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2364 
2365 	start_segno = sm->last_victim[FLUSH_DEVICE];
2366 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2367 		start_segno = dev_start_segno;
2368 	end_segno = min(start_segno + range.segments, dev_end_segno);
2369 
2370 	while (start_segno < end_segno) {
2371 		if (!mutex_trylock(&sbi->gc_mutex)) {
2372 			ret = -EBUSY;
2373 			goto out;
2374 		}
2375 		sm->last_victim[GC_CB] = end_segno + 1;
2376 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2377 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2378 		ret = f2fs_gc(sbi, true, true, start_segno);
2379 		if (ret == -EAGAIN)
2380 			ret = 0;
2381 		else if (ret < 0)
2382 			break;
2383 		start_segno++;
2384 	}
2385 out:
2386 	mnt_drop_write_file(filp);
2387 	return ret;
2388 }
2389 
2390 
2391 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2392 {
2393 	switch (cmd) {
2394 	case F2FS_IOC_GETFLAGS:
2395 		return f2fs_ioc_getflags(filp, arg);
2396 	case F2FS_IOC_SETFLAGS:
2397 		return f2fs_ioc_setflags(filp, arg);
2398 	case F2FS_IOC_GETVERSION:
2399 		return f2fs_ioc_getversion(filp, arg);
2400 	case F2FS_IOC_START_ATOMIC_WRITE:
2401 		return f2fs_ioc_start_atomic_write(filp);
2402 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2403 		return f2fs_ioc_commit_atomic_write(filp);
2404 	case F2FS_IOC_START_VOLATILE_WRITE:
2405 		return f2fs_ioc_start_volatile_write(filp);
2406 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2407 		return f2fs_ioc_release_volatile_write(filp);
2408 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2409 		return f2fs_ioc_abort_volatile_write(filp);
2410 	case F2FS_IOC_SHUTDOWN:
2411 		return f2fs_ioc_shutdown(filp, arg);
2412 	case FITRIM:
2413 		return f2fs_ioc_fitrim(filp, arg);
2414 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2415 		return f2fs_ioc_set_encryption_policy(filp, arg);
2416 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2417 		return f2fs_ioc_get_encryption_policy(filp, arg);
2418 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2419 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2420 	case F2FS_IOC_GARBAGE_COLLECT:
2421 		return f2fs_ioc_gc(filp, arg);
2422 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2423 		return f2fs_ioc_gc_range(filp, arg);
2424 	case F2FS_IOC_WRITE_CHECKPOINT:
2425 		return f2fs_ioc_write_checkpoint(filp, arg);
2426 	case F2FS_IOC_DEFRAGMENT:
2427 		return f2fs_ioc_defragment(filp, arg);
2428 	case F2FS_IOC_MOVE_RANGE:
2429 		return f2fs_ioc_move_range(filp, arg);
2430 	case F2FS_IOC_FLUSH_DEVICE:
2431 		return f2fs_ioc_flush_device(filp, arg);
2432 	default:
2433 		return -ENOTTY;
2434 	}
2435 }
2436 
2437 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2438 {
2439 	struct file *file = iocb->ki_filp;
2440 	struct inode *inode = file_inode(file);
2441 	struct blk_plug plug;
2442 	ssize_t ret;
2443 
2444 	inode_lock(inode);
2445 	ret = generic_write_checks(iocb, from);
2446 	if (ret > 0) {
2447 		int err;
2448 
2449 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2450 			set_inode_flag(inode, FI_NO_PREALLOC);
2451 
2452 		err = f2fs_preallocate_blocks(iocb, from);
2453 		if (err) {
2454 			inode_unlock(inode);
2455 			return err;
2456 		}
2457 		blk_start_plug(&plug);
2458 		ret = __generic_file_write_iter(iocb, from);
2459 		blk_finish_plug(&plug);
2460 		clear_inode_flag(inode, FI_NO_PREALLOC);
2461 	}
2462 	inode_unlock(inode);
2463 
2464 	if (ret > 0)
2465 		ret = generic_write_sync(iocb, ret);
2466 	return ret;
2467 }
2468 
2469 #ifdef CONFIG_COMPAT
2470 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2471 {
2472 	switch (cmd) {
2473 	case F2FS_IOC32_GETFLAGS:
2474 		cmd = F2FS_IOC_GETFLAGS;
2475 		break;
2476 	case F2FS_IOC32_SETFLAGS:
2477 		cmd = F2FS_IOC_SETFLAGS;
2478 		break;
2479 	case F2FS_IOC32_GETVERSION:
2480 		cmd = F2FS_IOC_GETVERSION;
2481 		break;
2482 	case F2FS_IOC_START_ATOMIC_WRITE:
2483 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2484 	case F2FS_IOC_START_VOLATILE_WRITE:
2485 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2486 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2487 	case F2FS_IOC_SHUTDOWN:
2488 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2489 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2490 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2491 	case F2FS_IOC_GARBAGE_COLLECT:
2492 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2493 	case F2FS_IOC_WRITE_CHECKPOINT:
2494 	case F2FS_IOC_DEFRAGMENT:
2495 	case F2FS_IOC_MOVE_RANGE:
2496 	case F2FS_IOC_FLUSH_DEVICE:
2497 		break;
2498 	default:
2499 		return -ENOIOCTLCMD;
2500 	}
2501 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2502 }
2503 #endif
2504 
2505 const struct file_operations f2fs_file_operations = {
2506 	.llseek		= f2fs_llseek,
2507 	.read_iter	= generic_file_read_iter,
2508 	.write_iter	= f2fs_file_write_iter,
2509 	.open		= f2fs_file_open,
2510 	.release	= f2fs_release_file,
2511 	.mmap		= f2fs_file_mmap,
2512 	.fsync		= f2fs_sync_file,
2513 	.fallocate	= f2fs_fallocate,
2514 	.unlocked_ioctl	= f2fs_ioctl,
2515 #ifdef CONFIG_COMPAT
2516 	.compat_ioctl	= f2fs_compat_ioctl,
2517 #endif
2518 	.splice_read	= generic_file_splice_read,
2519 	.splice_write	= iter_file_splice_write,
2520 };
2521