1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 #include <linux/fadvise.h> 27 #include <linux/iomap.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "acl.h" 34 #include "gc.h" 35 #include "iostat.h" 36 #include <trace/events/f2fs.h> 37 #include <uapi/linux/f2fs.h> 38 39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 40 { 41 struct inode *inode = file_inode(vmf->vma->vm_file); 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (ret & VM_FAULT_LOCKED) 46 f2fs_update_iostat(F2FS_I_SB(inode), inode, 47 APP_MAPPED_READ_IO, F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(IS_IMMUTABLE(inode))) 64 return VM_FAULT_SIGBUS; 65 66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 67 return VM_FAULT_SIGBUS; 68 69 if (unlikely(f2fs_cp_error(sbi))) { 70 err = -EIO; 71 goto err; 72 } 73 74 if (!f2fs_is_checkpoint_ready(sbi)) { 75 err = -ENOSPC; 76 goto err; 77 } 78 79 err = f2fs_convert_inline_inode(inode); 80 if (err) 81 goto err; 82 83 #ifdef CONFIG_F2FS_FS_COMPRESSION 84 if (f2fs_compressed_file(inode)) { 85 int ret = f2fs_is_compressed_cluster(inode, page->index); 86 87 if (ret < 0) { 88 err = ret; 89 goto err; 90 } else if (ret) { 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 filemap_invalidate_lock_shared(inode->i_mapping); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 set_new_dnode(&dn, inode, NULL, NULL, 0); 117 err = f2fs_get_block_locked(&dn, page->index); 118 } 119 120 #ifdef CONFIG_F2FS_FS_COMPRESSION 121 if (!need_alloc) { 122 set_new_dnode(&dn, inode, NULL, NULL, 0); 123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 124 f2fs_put_dnode(&dn); 125 } 126 #endif 127 if (err) { 128 unlock_page(page); 129 goto out_sem; 130 } 131 132 f2fs_wait_on_page_writeback(page, DATA, false, true); 133 134 /* wait for GCed page writeback via META_MAPPING */ 135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 136 137 /* 138 * check to see if the page is mapped already (no holes) 139 */ 140 if (PageMappedToDisk(page)) 141 goto out_sem; 142 143 /* page is wholly or partially inside EOF */ 144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 145 i_size_read(inode)) { 146 loff_t offset; 147 148 offset = i_size_read(inode) & ~PAGE_MASK; 149 zero_user_segment(page, offset, PAGE_SIZE); 150 } 151 set_page_dirty(page); 152 153 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE); 154 f2fs_update_time(sbi, REQ_TIME); 155 156 trace_f2fs_vm_page_mkwrite(page, DATA); 157 out_sem: 158 filemap_invalidate_unlock_shared(inode->i_mapping); 159 160 sb_end_pagefault(inode->i_sb); 161 err: 162 return vmf_fs_error(err); 163 } 164 165 static const struct vm_operations_struct f2fs_file_vm_ops = { 166 .fault = f2fs_filemap_fault, 167 .map_pages = filemap_map_pages, 168 .page_mkwrite = f2fs_vm_page_mkwrite, 169 }; 170 171 static int get_parent_ino(struct inode *inode, nid_t *pino) 172 { 173 struct dentry *dentry; 174 175 /* 176 * Make sure to get the non-deleted alias. The alias associated with 177 * the open file descriptor being fsync()'ed may be deleted already. 178 */ 179 dentry = d_find_alias(inode); 180 if (!dentry) 181 return 0; 182 183 *pino = parent_ino(dentry); 184 dput(dentry); 185 return 1; 186 } 187 188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 189 { 190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 191 enum cp_reason_type cp_reason = CP_NO_NEEDED; 192 193 if (!S_ISREG(inode->i_mode)) 194 cp_reason = CP_NON_REGULAR; 195 else if (f2fs_compressed_file(inode)) 196 cp_reason = CP_COMPRESSED; 197 else if (inode->i_nlink != 1) 198 cp_reason = CP_HARDLINK; 199 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 200 cp_reason = CP_SB_NEED_CP; 201 else if (file_wrong_pino(inode)) 202 cp_reason = CP_WRONG_PINO; 203 else if (!f2fs_space_for_roll_forward(sbi)) 204 cp_reason = CP_NO_SPC_ROLL; 205 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 206 cp_reason = CP_NODE_NEED_CP; 207 else if (test_opt(sbi, FASTBOOT)) 208 cp_reason = CP_FASTBOOT_MODE; 209 else if (F2FS_OPTION(sbi).active_logs == 2) 210 cp_reason = CP_SPEC_LOG_NUM; 211 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 212 f2fs_need_dentry_mark(sbi, inode->i_ino) && 213 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 214 TRANS_DIR_INO)) 215 cp_reason = CP_RECOVER_DIR; 216 else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 217 XATTR_DIR_INO)) 218 cp_reason = CP_XATTR_DIR; 219 220 return cp_reason; 221 } 222 223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 224 { 225 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 226 bool ret = false; 227 /* But we need to avoid that there are some inode updates */ 228 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 229 ret = true; 230 f2fs_put_page(i, 0); 231 return ret; 232 } 233 234 static void try_to_fix_pino(struct inode *inode) 235 { 236 struct f2fs_inode_info *fi = F2FS_I(inode); 237 nid_t pino; 238 239 f2fs_down_write(&fi->i_sem); 240 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 241 get_parent_ino(inode, &pino)) { 242 f2fs_i_pino_write(inode, pino); 243 file_got_pino(inode); 244 } 245 f2fs_up_write(&fi->i_sem); 246 } 247 248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 249 int datasync, bool atomic) 250 { 251 struct inode *inode = file->f_mapping->host; 252 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 253 nid_t ino = inode->i_ino; 254 int ret = 0; 255 enum cp_reason_type cp_reason = 0; 256 struct writeback_control wbc = { 257 .sync_mode = WB_SYNC_ALL, 258 .nr_to_write = LONG_MAX, 259 .for_reclaim = 0, 260 }; 261 unsigned int seq_id = 0; 262 263 if (unlikely(f2fs_readonly(inode->i_sb))) 264 return 0; 265 266 trace_f2fs_sync_file_enter(inode); 267 268 if (S_ISDIR(inode->i_mode)) 269 goto go_write; 270 271 /* if fdatasync is triggered, let's do in-place-update */ 272 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 273 set_inode_flag(inode, FI_NEED_IPU); 274 ret = file_write_and_wait_range(file, start, end); 275 clear_inode_flag(inode, FI_NEED_IPU); 276 277 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 278 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 279 return ret; 280 } 281 282 /* if the inode is dirty, let's recover all the time */ 283 if (!f2fs_skip_inode_update(inode, datasync)) { 284 f2fs_write_inode(inode, NULL); 285 goto go_write; 286 } 287 288 /* 289 * if there is no written data, don't waste time to write recovery info. 290 */ 291 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 292 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 293 294 /* it may call write_inode just prior to fsync */ 295 if (need_inode_page_update(sbi, ino)) 296 goto go_write; 297 298 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 299 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 300 goto flush_out; 301 goto out; 302 } else { 303 /* 304 * for OPU case, during fsync(), node can be persisted before 305 * data when lower device doesn't support write barrier, result 306 * in data corruption after SPO. 307 * So for strict fsync mode, force to use atomic write semantics 308 * to keep write order in between data/node and last node to 309 * avoid potential data corruption. 310 */ 311 if (F2FS_OPTION(sbi).fsync_mode == 312 FSYNC_MODE_STRICT && !atomic) 313 atomic = true; 314 } 315 go_write: 316 /* 317 * Both of fdatasync() and fsync() are able to be recovered from 318 * sudden-power-off. 319 */ 320 f2fs_down_read(&F2FS_I(inode)->i_sem); 321 cp_reason = need_do_checkpoint(inode); 322 f2fs_up_read(&F2FS_I(inode)->i_sem); 323 324 if (cp_reason) { 325 /* all the dirty node pages should be flushed for POR */ 326 ret = f2fs_sync_fs(inode->i_sb, 1); 327 328 /* 329 * We've secured consistency through sync_fs. Following pino 330 * will be used only for fsynced inodes after checkpoint. 331 */ 332 try_to_fix_pino(inode); 333 clear_inode_flag(inode, FI_APPEND_WRITE); 334 clear_inode_flag(inode, FI_UPDATE_WRITE); 335 goto out; 336 } 337 sync_nodes: 338 atomic_inc(&sbi->wb_sync_req[NODE]); 339 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 340 atomic_dec(&sbi->wb_sync_req[NODE]); 341 if (ret) 342 goto out; 343 344 /* if cp_error was enabled, we should avoid infinite loop */ 345 if (unlikely(f2fs_cp_error(sbi))) { 346 ret = -EIO; 347 goto out; 348 } 349 350 if (f2fs_need_inode_block_update(sbi, ino)) { 351 f2fs_mark_inode_dirty_sync(inode, true); 352 f2fs_write_inode(inode, NULL); 353 goto sync_nodes; 354 } 355 356 /* 357 * If it's atomic_write, it's just fine to keep write ordering. So 358 * here we don't need to wait for node write completion, since we use 359 * node chain which serializes node blocks. If one of node writes are 360 * reordered, we can see simply broken chain, resulting in stopping 361 * roll-forward recovery. It means we'll recover all or none node blocks 362 * given fsync mark. 363 */ 364 if (!atomic) { 365 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 366 if (ret) 367 goto out; 368 } 369 370 /* once recovery info is written, don't need to tack this */ 371 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 372 clear_inode_flag(inode, FI_APPEND_WRITE); 373 flush_out: 374 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) || 375 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi))) 376 ret = f2fs_issue_flush(sbi, inode->i_ino); 377 if (!ret) { 378 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 379 clear_inode_flag(inode, FI_UPDATE_WRITE); 380 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 381 } 382 f2fs_update_time(sbi, REQ_TIME); 383 out: 384 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 385 return ret; 386 } 387 388 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 389 { 390 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 391 return -EIO; 392 return f2fs_do_sync_file(file, start, end, datasync, false); 393 } 394 395 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 396 pgoff_t index, int whence) 397 { 398 switch (whence) { 399 case SEEK_DATA: 400 if (__is_valid_data_blkaddr(blkaddr)) 401 return true; 402 if (blkaddr == NEW_ADDR && 403 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 404 return true; 405 break; 406 case SEEK_HOLE: 407 if (blkaddr == NULL_ADDR) 408 return true; 409 break; 410 } 411 return false; 412 } 413 414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 415 { 416 struct inode *inode = file->f_mapping->host; 417 loff_t maxbytes = inode->i_sb->s_maxbytes; 418 struct dnode_of_data dn; 419 pgoff_t pgofs, end_offset; 420 loff_t data_ofs = offset; 421 loff_t isize; 422 int err = 0; 423 424 inode_lock(inode); 425 426 isize = i_size_read(inode); 427 if (offset >= isize) 428 goto fail; 429 430 /* handle inline data case */ 431 if (f2fs_has_inline_data(inode)) { 432 if (whence == SEEK_HOLE) { 433 data_ofs = isize; 434 goto found; 435 } else if (whence == SEEK_DATA) { 436 data_ofs = offset; 437 goto found; 438 } 439 } 440 441 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 442 443 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 444 set_new_dnode(&dn, inode, NULL, NULL, 0); 445 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 446 if (err && err != -ENOENT) { 447 goto fail; 448 } else if (err == -ENOENT) { 449 /* direct node does not exists */ 450 if (whence == SEEK_DATA) { 451 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 452 continue; 453 } else { 454 goto found; 455 } 456 } 457 458 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 459 460 /* find data/hole in dnode block */ 461 for (; dn.ofs_in_node < end_offset; 462 dn.ofs_in_node++, pgofs++, 463 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 464 block_t blkaddr; 465 466 blkaddr = f2fs_data_blkaddr(&dn); 467 468 if (__is_valid_data_blkaddr(blkaddr) && 469 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 470 blkaddr, DATA_GENERIC_ENHANCE)) { 471 f2fs_put_dnode(&dn); 472 goto fail; 473 } 474 475 if (__found_offset(file->f_mapping, blkaddr, 476 pgofs, whence)) { 477 f2fs_put_dnode(&dn); 478 goto found; 479 } 480 } 481 f2fs_put_dnode(&dn); 482 } 483 484 if (whence == SEEK_DATA) 485 goto fail; 486 found: 487 if (whence == SEEK_HOLE && data_ofs > isize) 488 data_ofs = isize; 489 inode_unlock(inode); 490 return vfs_setpos(file, data_ofs, maxbytes); 491 fail: 492 inode_unlock(inode); 493 return -ENXIO; 494 } 495 496 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 497 { 498 struct inode *inode = file->f_mapping->host; 499 loff_t maxbytes = inode->i_sb->s_maxbytes; 500 501 if (f2fs_compressed_file(inode)) 502 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 503 504 switch (whence) { 505 case SEEK_SET: 506 case SEEK_CUR: 507 case SEEK_END: 508 return generic_file_llseek_size(file, offset, whence, 509 maxbytes, i_size_read(inode)); 510 case SEEK_DATA: 511 case SEEK_HOLE: 512 if (offset < 0) 513 return -ENXIO; 514 return f2fs_seek_block(file, offset, whence); 515 } 516 517 return -EINVAL; 518 } 519 520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 521 { 522 struct inode *inode = file_inode(file); 523 524 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 525 return -EIO; 526 527 if (!f2fs_is_compress_backend_ready(inode)) 528 return -EOPNOTSUPP; 529 530 file_accessed(file); 531 vma->vm_ops = &f2fs_file_vm_ops; 532 533 f2fs_down_read(&F2FS_I(inode)->i_sem); 534 set_inode_flag(inode, FI_MMAP_FILE); 535 f2fs_up_read(&F2FS_I(inode)->i_sem); 536 537 return 0; 538 } 539 540 static int finish_preallocate_blocks(struct inode *inode) 541 { 542 int ret; 543 544 inode_lock(inode); 545 if (is_inode_flag_set(inode, FI_OPENED_FILE)) { 546 inode_unlock(inode); 547 return 0; 548 } 549 550 if (!file_should_truncate(inode)) { 551 set_inode_flag(inode, FI_OPENED_FILE); 552 inode_unlock(inode); 553 return 0; 554 } 555 556 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 557 filemap_invalidate_lock(inode->i_mapping); 558 559 truncate_setsize(inode, i_size_read(inode)); 560 ret = f2fs_truncate(inode); 561 562 filemap_invalidate_unlock(inode->i_mapping); 563 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 564 565 if (!ret) 566 set_inode_flag(inode, FI_OPENED_FILE); 567 568 inode_unlock(inode); 569 if (ret) 570 return ret; 571 572 file_dont_truncate(inode); 573 return 0; 574 } 575 576 static int f2fs_file_open(struct inode *inode, struct file *filp) 577 { 578 int err = fscrypt_file_open(inode, filp); 579 580 if (err) 581 return err; 582 583 if (!f2fs_is_compress_backend_ready(inode)) 584 return -EOPNOTSUPP; 585 586 err = fsverity_file_open(inode, filp); 587 if (err) 588 return err; 589 590 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 591 filp->f_mode |= FMODE_CAN_ODIRECT; 592 593 err = dquot_file_open(inode, filp); 594 if (err) 595 return err; 596 597 return finish_preallocate_blocks(inode); 598 } 599 600 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 601 { 602 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 603 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 604 __le32 *addr; 605 bool compressed_cluster = false; 606 int cluster_index = 0, valid_blocks = 0; 607 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 608 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 609 610 addr = get_dnode_addr(dn->inode, dn->node_page) + ofs; 611 612 /* Assumption: truncation starts with cluster */ 613 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 614 block_t blkaddr = le32_to_cpu(*addr); 615 616 if (f2fs_compressed_file(dn->inode) && 617 !(cluster_index & (cluster_size - 1))) { 618 if (compressed_cluster) 619 f2fs_i_compr_blocks_update(dn->inode, 620 valid_blocks, false); 621 compressed_cluster = (blkaddr == COMPRESS_ADDR); 622 valid_blocks = 0; 623 } 624 625 if (blkaddr == NULL_ADDR) 626 continue; 627 628 f2fs_set_data_blkaddr(dn, NULL_ADDR); 629 630 if (__is_valid_data_blkaddr(blkaddr)) { 631 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 632 DATA_GENERIC_ENHANCE)) 633 continue; 634 if (compressed_cluster) 635 valid_blocks++; 636 } 637 638 f2fs_invalidate_blocks(sbi, blkaddr); 639 640 if (!released || blkaddr != COMPRESS_ADDR) 641 nr_free++; 642 } 643 644 if (compressed_cluster) 645 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 646 647 if (nr_free) { 648 pgoff_t fofs; 649 /* 650 * once we invalidate valid blkaddr in range [ofs, ofs + count], 651 * we will invalidate all blkaddr in the whole range. 652 */ 653 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 654 dn->inode) + ofs; 655 f2fs_update_read_extent_cache_range(dn, fofs, 0, len); 656 f2fs_update_age_extent_cache_range(dn, fofs, len); 657 dec_valid_block_count(sbi, dn->inode, nr_free); 658 } 659 dn->ofs_in_node = ofs; 660 661 f2fs_update_time(sbi, REQ_TIME); 662 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 663 dn->ofs_in_node, nr_free); 664 } 665 666 static int truncate_partial_data_page(struct inode *inode, u64 from, 667 bool cache_only) 668 { 669 loff_t offset = from & (PAGE_SIZE - 1); 670 pgoff_t index = from >> PAGE_SHIFT; 671 struct address_space *mapping = inode->i_mapping; 672 struct page *page; 673 674 if (!offset && !cache_only) 675 return 0; 676 677 if (cache_only) { 678 page = find_lock_page(mapping, index); 679 if (page && PageUptodate(page)) 680 goto truncate_out; 681 f2fs_put_page(page, 1); 682 return 0; 683 } 684 685 page = f2fs_get_lock_data_page(inode, index, true); 686 if (IS_ERR(page)) 687 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 688 truncate_out: 689 f2fs_wait_on_page_writeback(page, DATA, true, true); 690 zero_user(page, offset, PAGE_SIZE - offset); 691 692 /* An encrypted inode should have a key and truncate the last page. */ 693 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 694 if (!cache_only) 695 set_page_dirty(page); 696 f2fs_put_page(page, 1); 697 return 0; 698 } 699 700 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 701 { 702 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 703 struct dnode_of_data dn; 704 pgoff_t free_from; 705 int count = 0, err = 0; 706 struct page *ipage; 707 bool truncate_page = false; 708 709 trace_f2fs_truncate_blocks_enter(inode, from); 710 711 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 712 713 if (free_from >= max_file_blocks(inode)) 714 goto free_partial; 715 716 if (lock) 717 f2fs_lock_op(sbi); 718 719 ipage = f2fs_get_node_page(sbi, inode->i_ino); 720 if (IS_ERR(ipage)) { 721 err = PTR_ERR(ipage); 722 goto out; 723 } 724 725 if (f2fs_has_inline_data(inode)) { 726 f2fs_truncate_inline_inode(inode, ipage, from); 727 f2fs_put_page(ipage, 1); 728 truncate_page = true; 729 goto out; 730 } 731 732 set_new_dnode(&dn, inode, ipage, NULL, 0); 733 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 734 if (err) { 735 if (err == -ENOENT) 736 goto free_next; 737 goto out; 738 } 739 740 count = ADDRS_PER_PAGE(dn.node_page, inode); 741 742 count -= dn.ofs_in_node; 743 f2fs_bug_on(sbi, count < 0); 744 745 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 746 f2fs_truncate_data_blocks_range(&dn, count); 747 free_from += count; 748 } 749 750 f2fs_put_dnode(&dn); 751 free_next: 752 err = f2fs_truncate_inode_blocks(inode, free_from); 753 out: 754 if (lock) 755 f2fs_unlock_op(sbi); 756 free_partial: 757 /* lastly zero out the first data page */ 758 if (!err) 759 err = truncate_partial_data_page(inode, from, truncate_page); 760 761 trace_f2fs_truncate_blocks_exit(inode, err); 762 return err; 763 } 764 765 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 766 { 767 u64 free_from = from; 768 int err; 769 770 #ifdef CONFIG_F2FS_FS_COMPRESSION 771 /* 772 * for compressed file, only support cluster size 773 * aligned truncation. 774 */ 775 if (f2fs_compressed_file(inode)) 776 free_from = round_up(from, 777 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 778 #endif 779 780 err = f2fs_do_truncate_blocks(inode, free_from, lock); 781 if (err) 782 return err; 783 784 #ifdef CONFIG_F2FS_FS_COMPRESSION 785 /* 786 * For compressed file, after release compress blocks, don't allow write 787 * direct, but we should allow write direct after truncate to zero. 788 */ 789 if (f2fs_compressed_file(inode) && !free_from 790 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 791 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 792 793 if (from != free_from) { 794 err = f2fs_truncate_partial_cluster(inode, from, lock); 795 if (err) 796 return err; 797 } 798 #endif 799 800 return 0; 801 } 802 803 int f2fs_truncate(struct inode *inode) 804 { 805 int err; 806 807 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 808 return -EIO; 809 810 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 811 S_ISLNK(inode->i_mode))) 812 return 0; 813 814 trace_f2fs_truncate(inode); 815 816 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) 817 return -EIO; 818 819 err = f2fs_dquot_initialize(inode); 820 if (err) 821 return err; 822 823 /* we should check inline_data size */ 824 if (!f2fs_may_inline_data(inode)) { 825 err = f2fs_convert_inline_inode(inode); 826 if (err) 827 return err; 828 } 829 830 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 831 if (err) 832 return err; 833 834 inode->i_mtime = inode_set_ctime_current(inode); 835 f2fs_mark_inode_dirty_sync(inode, false); 836 return 0; 837 } 838 839 static bool f2fs_force_buffered_io(struct inode *inode, int rw) 840 { 841 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 842 843 if (!fscrypt_dio_supported(inode)) 844 return true; 845 if (fsverity_active(inode)) 846 return true; 847 if (f2fs_compressed_file(inode)) 848 return true; 849 if (f2fs_has_inline_data(inode)) 850 return true; 851 852 /* disallow direct IO if any of devices has unaligned blksize */ 853 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 854 return true; 855 /* 856 * for blkzoned device, fallback direct IO to buffered IO, so 857 * all IOs can be serialized by log-structured write. 858 */ 859 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE)) 860 return true; 861 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 862 return true; 863 864 return false; 865 } 866 867 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 868 struct kstat *stat, u32 request_mask, unsigned int query_flags) 869 { 870 struct inode *inode = d_inode(path->dentry); 871 struct f2fs_inode_info *fi = F2FS_I(inode); 872 struct f2fs_inode *ri = NULL; 873 unsigned int flags; 874 875 if (f2fs_has_extra_attr(inode) && 876 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 877 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 878 stat->result_mask |= STATX_BTIME; 879 stat->btime.tv_sec = fi->i_crtime.tv_sec; 880 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 881 } 882 883 /* 884 * Return the DIO alignment restrictions if requested. We only return 885 * this information when requested, since on encrypted files it might 886 * take a fair bit of work to get if the file wasn't opened recently. 887 * 888 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN 889 * cannot represent that, so in that case we report no DIO support. 890 */ 891 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 892 unsigned int bsize = i_blocksize(inode); 893 894 stat->result_mask |= STATX_DIOALIGN; 895 if (!f2fs_force_buffered_io(inode, WRITE)) { 896 stat->dio_mem_align = bsize; 897 stat->dio_offset_align = bsize; 898 } 899 } 900 901 flags = fi->i_flags; 902 if (flags & F2FS_COMPR_FL) 903 stat->attributes |= STATX_ATTR_COMPRESSED; 904 if (flags & F2FS_APPEND_FL) 905 stat->attributes |= STATX_ATTR_APPEND; 906 if (IS_ENCRYPTED(inode)) 907 stat->attributes |= STATX_ATTR_ENCRYPTED; 908 if (flags & F2FS_IMMUTABLE_FL) 909 stat->attributes |= STATX_ATTR_IMMUTABLE; 910 if (flags & F2FS_NODUMP_FL) 911 stat->attributes |= STATX_ATTR_NODUMP; 912 if (IS_VERITY(inode)) 913 stat->attributes |= STATX_ATTR_VERITY; 914 915 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 916 STATX_ATTR_APPEND | 917 STATX_ATTR_ENCRYPTED | 918 STATX_ATTR_IMMUTABLE | 919 STATX_ATTR_NODUMP | 920 STATX_ATTR_VERITY); 921 922 generic_fillattr(idmap, request_mask, inode, stat); 923 924 /* we need to show initial sectors used for inline_data/dentries */ 925 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 926 f2fs_has_inline_dentry(inode)) 927 stat->blocks += (stat->size + 511) >> 9; 928 929 return 0; 930 } 931 932 #ifdef CONFIG_F2FS_FS_POSIX_ACL 933 static void __setattr_copy(struct mnt_idmap *idmap, 934 struct inode *inode, const struct iattr *attr) 935 { 936 unsigned int ia_valid = attr->ia_valid; 937 938 i_uid_update(idmap, attr, inode); 939 i_gid_update(idmap, attr, inode); 940 if (ia_valid & ATTR_ATIME) 941 inode->i_atime = attr->ia_atime; 942 if (ia_valid & ATTR_MTIME) 943 inode->i_mtime = attr->ia_mtime; 944 if (ia_valid & ATTR_CTIME) 945 inode_set_ctime_to_ts(inode, attr->ia_ctime); 946 if (ia_valid & ATTR_MODE) { 947 umode_t mode = attr->ia_mode; 948 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 949 950 if (!vfsgid_in_group_p(vfsgid) && 951 !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 952 mode &= ~S_ISGID; 953 set_acl_inode(inode, mode); 954 } 955 } 956 #else 957 #define __setattr_copy setattr_copy 958 #endif 959 960 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 961 struct iattr *attr) 962 { 963 struct inode *inode = d_inode(dentry); 964 int err; 965 966 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 967 return -EIO; 968 969 if (unlikely(IS_IMMUTABLE(inode))) 970 return -EPERM; 971 972 if (unlikely(IS_APPEND(inode) && 973 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 974 ATTR_GID | ATTR_TIMES_SET)))) 975 return -EPERM; 976 977 if ((attr->ia_valid & ATTR_SIZE)) { 978 if (!f2fs_is_compress_backend_ready(inode)) 979 return -EOPNOTSUPP; 980 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) && 981 !IS_ALIGNED(attr->ia_size, 982 F2FS_BLK_TO_BYTES(F2FS_I(inode)->i_cluster_size))) 983 return -EINVAL; 984 } 985 986 err = setattr_prepare(idmap, dentry, attr); 987 if (err) 988 return err; 989 990 err = fscrypt_prepare_setattr(dentry, attr); 991 if (err) 992 return err; 993 994 err = fsverity_prepare_setattr(dentry, attr); 995 if (err) 996 return err; 997 998 if (is_quota_modification(idmap, inode, attr)) { 999 err = f2fs_dquot_initialize(inode); 1000 if (err) 1001 return err; 1002 } 1003 if (i_uid_needs_update(idmap, attr, inode) || 1004 i_gid_needs_update(idmap, attr, inode)) { 1005 f2fs_lock_op(F2FS_I_SB(inode)); 1006 err = dquot_transfer(idmap, inode, attr); 1007 if (err) { 1008 set_sbi_flag(F2FS_I_SB(inode), 1009 SBI_QUOTA_NEED_REPAIR); 1010 f2fs_unlock_op(F2FS_I_SB(inode)); 1011 return err; 1012 } 1013 /* 1014 * update uid/gid under lock_op(), so that dquot and inode can 1015 * be updated atomically. 1016 */ 1017 i_uid_update(idmap, attr, inode); 1018 i_gid_update(idmap, attr, inode); 1019 f2fs_mark_inode_dirty_sync(inode, true); 1020 f2fs_unlock_op(F2FS_I_SB(inode)); 1021 } 1022 1023 if (attr->ia_valid & ATTR_SIZE) { 1024 loff_t old_size = i_size_read(inode); 1025 1026 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 1027 /* 1028 * should convert inline inode before i_size_write to 1029 * keep smaller than inline_data size with inline flag. 1030 */ 1031 err = f2fs_convert_inline_inode(inode); 1032 if (err) 1033 return err; 1034 } 1035 1036 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1037 filemap_invalidate_lock(inode->i_mapping); 1038 1039 truncate_setsize(inode, attr->ia_size); 1040 1041 if (attr->ia_size <= old_size) 1042 err = f2fs_truncate(inode); 1043 /* 1044 * do not trim all blocks after i_size if target size is 1045 * larger than i_size. 1046 */ 1047 filemap_invalidate_unlock(inode->i_mapping); 1048 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1049 if (err) 1050 return err; 1051 1052 spin_lock(&F2FS_I(inode)->i_size_lock); 1053 inode->i_mtime = inode_set_ctime_current(inode); 1054 F2FS_I(inode)->last_disk_size = i_size_read(inode); 1055 spin_unlock(&F2FS_I(inode)->i_size_lock); 1056 } 1057 1058 __setattr_copy(idmap, inode, attr); 1059 1060 if (attr->ia_valid & ATTR_MODE) { 1061 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode)); 1062 1063 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 1064 if (!err) 1065 inode->i_mode = F2FS_I(inode)->i_acl_mode; 1066 clear_inode_flag(inode, FI_ACL_MODE); 1067 } 1068 } 1069 1070 /* file size may changed here */ 1071 f2fs_mark_inode_dirty_sync(inode, true); 1072 1073 /* inode change will produce dirty node pages flushed by checkpoint */ 1074 f2fs_balance_fs(F2FS_I_SB(inode), true); 1075 1076 return err; 1077 } 1078 1079 const struct inode_operations f2fs_file_inode_operations = { 1080 .getattr = f2fs_getattr, 1081 .setattr = f2fs_setattr, 1082 .get_inode_acl = f2fs_get_acl, 1083 .set_acl = f2fs_set_acl, 1084 .listxattr = f2fs_listxattr, 1085 .fiemap = f2fs_fiemap, 1086 .fileattr_get = f2fs_fileattr_get, 1087 .fileattr_set = f2fs_fileattr_set, 1088 }; 1089 1090 static int fill_zero(struct inode *inode, pgoff_t index, 1091 loff_t start, loff_t len) 1092 { 1093 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1094 struct page *page; 1095 1096 if (!len) 1097 return 0; 1098 1099 f2fs_balance_fs(sbi, true); 1100 1101 f2fs_lock_op(sbi); 1102 page = f2fs_get_new_data_page(inode, NULL, index, false); 1103 f2fs_unlock_op(sbi); 1104 1105 if (IS_ERR(page)) 1106 return PTR_ERR(page); 1107 1108 f2fs_wait_on_page_writeback(page, DATA, true, true); 1109 zero_user(page, start, len); 1110 set_page_dirty(page); 1111 f2fs_put_page(page, 1); 1112 return 0; 1113 } 1114 1115 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1116 { 1117 int err; 1118 1119 while (pg_start < pg_end) { 1120 struct dnode_of_data dn; 1121 pgoff_t end_offset, count; 1122 1123 set_new_dnode(&dn, inode, NULL, NULL, 0); 1124 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1125 if (err) { 1126 if (err == -ENOENT) { 1127 pg_start = f2fs_get_next_page_offset(&dn, 1128 pg_start); 1129 continue; 1130 } 1131 return err; 1132 } 1133 1134 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1135 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1136 1137 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1138 1139 f2fs_truncate_data_blocks_range(&dn, count); 1140 f2fs_put_dnode(&dn); 1141 1142 pg_start += count; 1143 } 1144 return 0; 1145 } 1146 1147 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 1148 { 1149 pgoff_t pg_start, pg_end; 1150 loff_t off_start, off_end; 1151 int ret; 1152 1153 ret = f2fs_convert_inline_inode(inode); 1154 if (ret) 1155 return ret; 1156 1157 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1158 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1159 1160 off_start = offset & (PAGE_SIZE - 1); 1161 off_end = (offset + len) & (PAGE_SIZE - 1); 1162 1163 if (pg_start == pg_end) { 1164 ret = fill_zero(inode, pg_start, off_start, 1165 off_end - off_start); 1166 if (ret) 1167 return ret; 1168 } else { 1169 if (off_start) { 1170 ret = fill_zero(inode, pg_start++, off_start, 1171 PAGE_SIZE - off_start); 1172 if (ret) 1173 return ret; 1174 } 1175 if (off_end) { 1176 ret = fill_zero(inode, pg_end, 0, off_end); 1177 if (ret) 1178 return ret; 1179 } 1180 1181 if (pg_start < pg_end) { 1182 loff_t blk_start, blk_end; 1183 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1184 1185 f2fs_balance_fs(sbi, true); 1186 1187 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1188 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1189 1190 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1191 filemap_invalidate_lock(inode->i_mapping); 1192 1193 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1194 1195 f2fs_lock_op(sbi); 1196 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1197 f2fs_unlock_op(sbi); 1198 1199 filemap_invalidate_unlock(inode->i_mapping); 1200 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1201 } 1202 } 1203 1204 return ret; 1205 } 1206 1207 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1208 int *do_replace, pgoff_t off, pgoff_t len) 1209 { 1210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1211 struct dnode_of_data dn; 1212 int ret, done, i; 1213 1214 next_dnode: 1215 set_new_dnode(&dn, inode, NULL, NULL, 0); 1216 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1217 if (ret && ret != -ENOENT) { 1218 return ret; 1219 } else if (ret == -ENOENT) { 1220 if (dn.max_level == 0) 1221 return -ENOENT; 1222 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1223 dn.ofs_in_node, len); 1224 blkaddr += done; 1225 do_replace += done; 1226 goto next; 1227 } 1228 1229 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1230 dn.ofs_in_node, len); 1231 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1232 *blkaddr = f2fs_data_blkaddr(&dn); 1233 1234 if (__is_valid_data_blkaddr(*blkaddr) && 1235 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1236 DATA_GENERIC_ENHANCE)) { 1237 f2fs_put_dnode(&dn); 1238 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1239 return -EFSCORRUPTED; 1240 } 1241 1242 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1243 1244 if (f2fs_lfs_mode(sbi)) { 1245 f2fs_put_dnode(&dn); 1246 return -EOPNOTSUPP; 1247 } 1248 1249 /* do not invalidate this block address */ 1250 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1251 *do_replace = 1; 1252 } 1253 } 1254 f2fs_put_dnode(&dn); 1255 next: 1256 len -= done; 1257 off += done; 1258 if (len) 1259 goto next_dnode; 1260 return 0; 1261 } 1262 1263 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1264 int *do_replace, pgoff_t off, int len) 1265 { 1266 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1267 struct dnode_of_data dn; 1268 int ret, i; 1269 1270 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1271 if (*do_replace == 0) 1272 continue; 1273 1274 set_new_dnode(&dn, inode, NULL, NULL, 0); 1275 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1276 if (ret) { 1277 dec_valid_block_count(sbi, inode, 1); 1278 f2fs_invalidate_blocks(sbi, *blkaddr); 1279 } else { 1280 f2fs_update_data_blkaddr(&dn, *blkaddr); 1281 } 1282 f2fs_put_dnode(&dn); 1283 } 1284 return 0; 1285 } 1286 1287 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1288 block_t *blkaddr, int *do_replace, 1289 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1290 { 1291 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1292 pgoff_t i = 0; 1293 int ret; 1294 1295 while (i < len) { 1296 if (blkaddr[i] == NULL_ADDR && !full) { 1297 i++; 1298 continue; 1299 } 1300 1301 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1302 struct dnode_of_data dn; 1303 struct node_info ni; 1304 size_t new_size; 1305 pgoff_t ilen; 1306 1307 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1308 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1309 if (ret) 1310 return ret; 1311 1312 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1313 if (ret) { 1314 f2fs_put_dnode(&dn); 1315 return ret; 1316 } 1317 1318 ilen = min((pgoff_t) 1319 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1320 dn.ofs_in_node, len - i); 1321 do { 1322 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1323 f2fs_truncate_data_blocks_range(&dn, 1); 1324 1325 if (do_replace[i]) { 1326 f2fs_i_blocks_write(src_inode, 1327 1, false, false); 1328 f2fs_i_blocks_write(dst_inode, 1329 1, true, false); 1330 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1331 blkaddr[i], ni.version, true, false); 1332 1333 do_replace[i] = 0; 1334 } 1335 dn.ofs_in_node++; 1336 i++; 1337 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1338 if (dst_inode->i_size < new_size) 1339 f2fs_i_size_write(dst_inode, new_size); 1340 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1341 1342 f2fs_put_dnode(&dn); 1343 } else { 1344 struct page *psrc, *pdst; 1345 1346 psrc = f2fs_get_lock_data_page(src_inode, 1347 src + i, true); 1348 if (IS_ERR(psrc)) 1349 return PTR_ERR(psrc); 1350 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1351 true); 1352 if (IS_ERR(pdst)) { 1353 f2fs_put_page(psrc, 1); 1354 return PTR_ERR(pdst); 1355 } 1356 1357 f2fs_wait_on_page_writeback(pdst, DATA, true, true); 1358 1359 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); 1360 set_page_dirty(pdst); 1361 set_page_private_gcing(pdst); 1362 f2fs_put_page(pdst, 1); 1363 f2fs_put_page(psrc, 1); 1364 1365 ret = f2fs_truncate_hole(src_inode, 1366 src + i, src + i + 1); 1367 if (ret) 1368 return ret; 1369 i++; 1370 } 1371 } 1372 return 0; 1373 } 1374 1375 static int __exchange_data_block(struct inode *src_inode, 1376 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1377 pgoff_t len, bool full) 1378 { 1379 block_t *src_blkaddr; 1380 int *do_replace; 1381 pgoff_t olen; 1382 int ret; 1383 1384 while (len) { 1385 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1386 1387 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1388 array_size(olen, sizeof(block_t)), 1389 GFP_NOFS); 1390 if (!src_blkaddr) 1391 return -ENOMEM; 1392 1393 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1394 array_size(olen, sizeof(int)), 1395 GFP_NOFS); 1396 if (!do_replace) { 1397 kvfree(src_blkaddr); 1398 return -ENOMEM; 1399 } 1400 1401 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1402 do_replace, src, olen); 1403 if (ret) 1404 goto roll_back; 1405 1406 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1407 do_replace, src, dst, olen, full); 1408 if (ret) 1409 goto roll_back; 1410 1411 src += olen; 1412 dst += olen; 1413 len -= olen; 1414 1415 kvfree(src_blkaddr); 1416 kvfree(do_replace); 1417 } 1418 return 0; 1419 1420 roll_back: 1421 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1422 kvfree(src_blkaddr); 1423 kvfree(do_replace); 1424 return ret; 1425 } 1426 1427 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1428 { 1429 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1430 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1431 pgoff_t start = offset >> PAGE_SHIFT; 1432 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1433 int ret; 1434 1435 f2fs_balance_fs(sbi, true); 1436 1437 /* avoid gc operation during block exchange */ 1438 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1439 filemap_invalidate_lock(inode->i_mapping); 1440 1441 f2fs_lock_op(sbi); 1442 f2fs_drop_extent_tree(inode); 1443 truncate_pagecache(inode, offset); 1444 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1445 f2fs_unlock_op(sbi); 1446 1447 filemap_invalidate_unlock(inode->i_mapping); 1448 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1449 return ret; 1450 } 1451 1452 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1453 { 1454 loff_t new_size; 1455 int ret; 1456 1457 if (offset + len >= i_size_read(inode)) 1458 return -EINVAL; 1459 1460 /* collapse range should be aligned to block size of f2fs. */ 1461 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1462 return -EINVAL; 1463 1464 ret = f2fs_convert_inline_inode(inode); 1465 if (ret) 1466 return ret; 1467 1468 /* write out all dirty pages from offset */ 1469 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1470 if (ret) 1471 return ret; 1472 1473 ret = f2fs_do_collapse(inode, offset, len); 1474 if (ret) 1475 return ret; 1476 1477 /* write out all moved pages, if possible */ 1478 filemap_invalidate_lock(inode->i_mapping); 1479 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1480 truncate_pagecache(inode, offset); 1481 1482 new_size = i_size_read(inode) - len; 1483 ret = f2fs_truncate_blocks(inode, new_size, true); 1484 filemap_invalidate_unlock(inode->i_mapping); 1485 if (!ret) 1486 f2fs_i_size_write(inode, new_size); 1487 return ret; 1488 } 1489 1490 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1491 pgoff_t end) 1492 { 1493 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1494 pgoff_t index = start; 1495 unsigned int ofs_in_node = dn->ofs_in_node; 1496 blkcnt_t count = 0; 1497 int ret; 1498 1499 for (; index < end; index++, dn->ofs_in_node++) { 1500 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1501 count++; 1502 } 1503 1504 dn->ofs_in_node = ofs_in_node; 1505 ret = f2fs_reserve_new_blocks(dn, count); 1506 if (ret) 1507 return ret; 1508 1509 dn->ofs_in_node = ofs_in_node; 1510 for (index = start; index < end; index++, dn->ofs_in_node++) { 1511 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1512 /* 1513 * f2fs_reserve_new_blocks will not guarantee entire block 1514 * allocation. 1515 */ 1516 if (dn->data_blkaddr == NULL_ADDR) { 1517 ret = -ENOSPC; 1518 break; 1519 } 1520 1521 if (dn->data_blkaddr == NEW_ADDR) 1522 continue; 1523 1524 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1525 DATA_GENERIC_ENHANCE)) { 1526 ret = -EFSCORRUPTED; 1527 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1528 break; 1529 } 1530 1531 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1532 f2fs_set_data_blkaddr(dn, NEW_ADDR); 1533 } 1534 1535 f2fs_update_read_extent_cache_range(dn, start, 0, index - start); 1536 f2fs_update_age_extent_cache_range(dn, start, index - start); 1537 1538 return ret; 1539 } 1540 1541 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1542 int mode) 1543 { 1544 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1545 struct address_space *mapping = inode->i_mapping; 1546 pgoff_t index, pg_start, pg_end; 1547 loff_t new_size = i_size_read(inode); 1548 loff_t off_start, off_end; 1549 int ret = 0; 1550 1551 ret = inode_newsize_ok(inode, (len + offset)); 1552 if (ret) 1553 return ret; 1554 1555 ret = f2fs_convert_inline_inode(inode); 1556 if (ret) 1557 return ret; 1558 1559 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1560 if (ret) 1561 return ret; 1562 1563 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1564 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1565 1566 off_start = offset & (PAGE_SIZE - 1); 1567 off_end = (offset + len) & (PAGE_SIZE - 1); 1568 1569 if (pg_start == pg_end) { 1570 ret = fill_zero(inode, pg_start, off_start, 1571 off_end - off_start); 1572 if (ret) 1573 return ret; 1574 1575 new_size = max_t(loff_t, new_size, offset + len); 1576 } else { 1577 if (off_start) { 1578 ret = fill_zero(inode, pg_start++, off_start, 1579 PAGE_SIZE - off_start); 1580 if (ret) 1581 return ret; 1582 1583 new_size = max_t(loff_t, new_size, 1584 (loff_t)pg_start << PAGE_SHIFT); 1585 } 1586 1587 for (index = pg_start; index < pg_end;) { 1588 struct dnode_of_data dn; 1589 unsigned int end_offset; 1590 pgoff_t end; 1591 1592 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1593 filemap_invalidate_lock(mapping); 1594 1595 truncate_pagecache_range(inode, 1596 (loff_t)index << PAGE_SHIFT, 1597 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1598 1599 f2fs_lock_op(sbi); 1600 1601 set_new_dnode(&dn, inode, NULL, NULL, 0); 1602 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1603 if (ret) { 1604 f2fs_unlock_op(sbi); 1605 filemap_invalidate_unlock(mapping); 1606 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1607 goto out; 1608 } 1609 1610 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1611 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1612 1613 ret = f2fs_do_zero_range(&dn, index, end); 1614 f2fs_put_dnode(&dn); 1615 1616 f2fs_unlock_op(sbi); 1617 filemap_invalidate_unlock(mapping); 1618 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1619 1620 f2fs_balance_fs(sbi, dn.node_changed); 1621 1622 if (ret) 1623 goto out; 1624 1625 index = end; 1626 new_size = max_t(loff_t, new_size, 1627 (loff_t)index << PAGE_SHIFT); 1628 } 1629 1630 if (off_end) { 1631 ret = fill_zero(inode, pg_end, 0, off_end); 1632 if (ret) 1633 goto out; 1634 1635 new_size = max_t(loff_t, new_size, offset + len); 1636 } 1637 } 1638 1639 out: 1640 if (new_size > i_size_read(inode)) { 1641 if (mode & FALLOC_FL_KEEP_SIZE) 1642 file_set_keep_isize(inode); 1643 else 1644 f2fs_i_size_write(inode, new_size); 1645 } 1646 return ret; 1647 } 1648 1649 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1650 { 1651 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1652 struct address_space *mapping = inode->i_mapping; 1653 pgoff_t nr, pg_start, pg_end, delta, idx; 1654 loff_t new_size; 1655 int ret = 0; 1656 1657 new_size = i_size_read(inode) + len; 1658 ret = inode_newsize_ok(inode, new_size); 1659 if (ret) 1660 return ret; 1661 1662 if (offset >= i_size_read(inode)) 1663 return -EINVAL; 1664 1665 /* insert range should be aligned to block size of f2fs. */ 1666 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1667 return -EINVAL; 1668 1669 ret = f2fs_convert_inline_inode(inode); 1670 if (ret) 1671 return ret; 1672 1673 f2fs_balance_fs(sbi, true); 1674 1675 filemap_invalidate_lock(mapping); 1676 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1677 filemap_invalidate_unlock(mapping); 1678 if (ret) 1679 return ret; 1680 1681 /* write out all dirty pages from offset */ 1682 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1683 if (ret) 1684 return ret; 1685 1686 pg_start = offset >> PAGE_SHIFT; 1687 pg_end = (offset + len) >> PAGE_SHIFT; 1688 delta = pg_end - pg_start; 1689 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1690 1691 /* avoid gc operation during block exchange */ 1692 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1693 filemap_invalidate_lock(mapping); 1694 truncate_pagecache(inode, offset); 1695 1696 while (!ret && idx > pg_start) { 1697 nr = idx - pg_start; 1698 if (nr > delta) 1699 nr = delta; 1700 idx -= nr; 1701 1702 f2fs_lock_op(sbi); 1703 f2fs_drop_extent_tree(inode); 1704 1705 ret = __exchange_data_block(inode, inode, idx, 1706 idx + delta, nr, false); 1707 f2fs_unlock_op(sbi); 1708 } 1709 filemap_invalidate_unlock(mapping); 1710 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1711 1712 /* write out all moved pages, if possible */ 1713 filemap_invalidate_lock(mapping); 1714 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1715 truncate_pagecache(inode, offset); 1716 filemap_invalidate_unlock(mapping); 1717 1718 if (!ret) 1719 f2fs_i_size_write(inode, new_size); 1720 return ret; 1721 } 1722 1723 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset, 1724 loff_t len, int mode) 1725 { 1726 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1727 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1728 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1729 .m_may_create = true }; 1730 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1731 .init_gc_type = FG_GC, 1732 .should_migrate_blocks = false, 1733 .err_gc_skipped = true, 1734 .nr_free_secs = 0 }; 1735 pgoff_t pg_start, pg_end; 1736 loff_t new_size; 1737 loff_t off_end; 1738 block_t expanded = 0; 1739 int err; 1740 1741 err = inode_newsize_ok(inode, (len + offset)); 1742 if (err) 1743 return err; 1744 1745 err = f2fs_convert_inline_inode(inode); 1746 if (err) 1747 return err; 1748 1749 f2fs_balance_fs(sbi, true); 1750 1751 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1752 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1753 off_end = (offset + len) & (PAGE_SIZE - 1); 1754 1755 map.m_lblk = pg_start; 1756 map.m_len = pg_end - pg_start; 1757 if (off_end) 1758 map.m_len++; 1759 1760 if (!map.m_len) 1761 return 0; 1762 1763 if (f2fs_is_pinned_file(inode)) { 1764 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1765 block_t sec_len = roundup(map.m_len, sec_blks); 1766 1767 map.m_len = sec_blks; 1768 next_alloc: 1769 if (has_not_enough_free_secs(sbi, 0, 1770 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1771 f2fs_down_write(&sbi->gc_lock); 1772 stat_inc_gc_call_count(sbi, FOREGROUND); 1773 err = f2fs_gc(sbi, &gc_control); 1774 if (err && err != -ENODATA) 1775 goto out_err; 1776 } 1777 1778 f2fs_down_write(&sbi->pin_sem); 1779 1780 err = f2fs_allocate_pinning_section(sbi); 1781 if (err) { 1782 f2fs_up_write(&sbi->pin_sem); 1783 goto out_err; 1784 } 1785 1786 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1787 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO); 1788 file_dont_truncate(inode); 1789 1790 f2fs_up_write(&sbi->pin_sem); 1791 1792 expanded += map.m_len; 1793 sec_len -= map.m_len; 1794 map.m_lblk += map.m_len; 1795 if (!err && sec_len) 1796 goto next_alloc; 1797 1798 map.m_len = expanded; 1799 } else { 1800 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO); 1801 expanded = map.m_len; 1802 } 1803 out_err: 1804 if (err) { 1805 pgoff_t last_off; 1806 1807 if (!expanded) 1808 return err; 1809 1810 last_off = pg_start + expanded - 1; 1811 1812 /* update new size to the failed position */ 1813 new_size = (last_off == pg_end) ? offset + len : 1814 (loff_t)(last_off + 1) << PAGE_SHIFT; 1815 } else { 1816 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1817 } 1818 1819 if (new_size > i_size_read(inode)) { 1820 if (mode & FALLOC_FL_KEEP_SIZE) 1821 file_set_keep_isize(inode); 1822 else 1823 f2fs_i_size_write(inode, new_size); 1824 } 1825 1826 return err; 1827 } 1828 1829 static long f2fs_fallocate(struct file *file, int mode, 1830 loff_t offset, loff_t len) 1831 { 1832 struct inode *inode = file_inode(file); 1833 long ret = 0; 1834 1835 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1836 return -EIO; 1837 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1838 return -ENOSPC; 1839 if (!f2fs_is_compress_backend_ready(inode)) 1840 return -EOPNOTSUPP; 1841 1842 /* f2fs only support ->fallocate for regular file */ 1843 if (!S_ISREG(inode->i_mode)) 1844 return -EINVAL; 1845 1846 if (IS_ENCRYPTED(inode) && 1847 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1848 return -EOPNOTSUPP; 1849 1850 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1851 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1852 FALLOC_FL_INSERT_RANGE)) 1853 return -EOPNOTSUPP; 1854 1855 inode_lock(inode); 1856 1857 /* 1858 * Pinned file should not support partial truncation since the block 1859 * can be used by applications. 1860 */ 1861 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1862 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1863 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) { 1864 ret = -EOPNOTSUPP; 1865 goto out; 1866 } 1867 1868 ret = file_modified(file); 1869 if (ret) 1870 goto out; 1871 1872 if (mode & FALLOC_FL_PUNCH_HOLE) { 1873 if (offset >= inode->i_size) 1874 goto out; 1875 1876 ret = f2fs_punch_hole(inode, offset, len); 1877 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1878 ret = f2fs_collapse_range(inode, offset, len); 1879 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1880 ret = f2fs_zero_range(inode, offset, len, mode); 1881 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1882 ret = f2fs_insert_range(inode, offset, len); 1883 } else { 1884 ret = f2fs_expand_inode_data(inode, offset, len, mode); 1885 } 1886 1887 if (!ret) { 1888 inode->i_mtime = inode_set_ctime_current(inode); 1889 f2fs_mark_inode_dirty_sync(inode, false); 1890 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1891 } 1892 1893 out: 1894 inode_unlock(inode); 1895 1896 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1897 return ret; 1898 } 1899 1900 static int f2fs_release_file(struct inode *inode, struct file *filp) 1901 { 1902 /* 1903 * f2fs_release_file is called at every close calls. So we should 1904 * not drop any inmemory pages by close called by other process. 1905 */ 1906 if (!(filp->f_mode & FMODE_WRITE) || 1907 atomic_read(&inode->i_writecount) != 1) 1908 return 0; 1909 1910 inode_lock(inode); 1911 f2fs_abort_atomic_write(inode, true); 1912 inode_unlock(inode); 1913 1914 return 0; 1915 } 1916 1917 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1918 { 1919 struct inode *inode = file_inode(file); 1920 1921 /* 1922 * If the process doing a transaction is crashed, we should do 1923 * roll-back. Otherwise, other reader/write can see corrupted database 1924 * until all the writers close its file. Since this should be done 1925 * before dropping file lock, it needs to do in ->flush. 1926 */ 1927 if (F2FS_I(inode)->atomic_write_task == current && 1928 (current->flags & PF_EXITING)) { 1929 inode_lock(inode); 1930 f2fs_abort_atomic_write(inode, true); 1931 inode_unlock(inode); 1932 } 1933 1934 return 0; 1935 } 1936 1937 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1938 { 1939 struct f2fs_inode_info *fi = F2FS_I(inode); 1940 u32 masked_flags = fi->i_flags & mask; 1941 1942 /* mask can be shrunk by flags_valid selector */ 1943 iflags &= mask; 1944 1945 /* Is it quota file? Do not allow user to mess with it */ 1946 if (IS_NOQUOTA(inode)) 1947 return -EPERM; 1948 1949 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1950 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1951 return -EOPNOTSUPP; 1952 if (!f2fs_empty_dir(inode)) 1953 return -ENOTEMPTY; 1954 } 1955 1956 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1957 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1958 return -EOPNOTSUPP; 1959 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1960 return -EINVAL; 1961 } 1962 1963 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1964 if (masked_flags & F2FS_COMPR_FL) { 1965 if (!f2fs_disable_compressed_file(inode)) 1966 return -EINVAL; 1967 } else { 1968 /* try to convert inline_data to support compression */ 1969 int err = f2fs_convert_inline_inode(inode); 1970 if (err) 1971 return err; 1972 1973 f2fs_down_write(&F2FS_I(inode)->i_sem); 1974 if (!f2fs_may_compress(inode) || 1975 (S_ISREG(inode->i_mode) && 1976 F2FS_HAS_BLOCKS(inode))) { 1977 f2fs_up_write(&F2FS_I(inode)->i_sem); 1978 return -EINVAL; 1979 } 1980 err = set_compress_context(inode); 1981 f2fs_up_write(&F2FS_I(inode)->i_sem); 1982 1983 if (err) 1984 return err; 1985 } 1986 } 1987 1988 fi->i_flags = iflags | (fi->i_flags & ~mask); 1989 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1990 (fi->i_flags & F2FS_NOCOMP_FL)); 1991 1992 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1993 set_inode_flag(inode, FI_PROJ_INHERIT); 1994 else 1995 clear_inode_flag(inode, FI_PROJ_INHERIT); 1996 1997 inode_set_ctime_current(inode); 1998 f2fs_set_inode_flags(inode); 1999 f2fs_mark_inode_dirty_sync(inode, true); 2000 return 0; 2001 } 2002 2003 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 2004 2005 /* 2006 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 2007 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 2008 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 2009 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 2010 * 2011 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 2012 * FS_IOC_FSSETXATTR is done by the VFS. 2013 */ 2014 2015 static const struct { 2016 u32 iflag; 2017 u32 fsflag; 2018 } f2fs_fsflags_map[] = { 2019 { F2FS_COMPR_FL, FS_COMPR_FL }, 2020 { F2FS_SYNC_FL, FS_SYNC_FL }, 2021 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 2022 { F2FS_APPEND_FL, FS_APPEND_FL }, 2023 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 2024 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 2025 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 2026 { F2FS_INDEX_FL, FS_INDEX_FL }, 2027 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 2028 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 2029 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 2030 }; 2031 2032 #define F2FS_GETTABLE_FS_FL ( \ 2033 FS_COMPR_FL | \ 2034 FS_SYNC_FL | \ 2035 FS_IMMUTABLE_FL | \ 2036 FS_APPEND_FL | \ 2037 FS_NODUMP_FL | \ 2038 FS_NOATIME_FL | \ 2039 FS_NOCOMP_FL | \ 2040 FS_INDEX_FL | \ 2041 FS_DIRSYNC_FL | \ 2042 FS_PROJINHERIT_FL | \ 2043 FS_ENCRYPT_FL | \ 2044 FS_INLINE_DATA_FL | \ 2045 FS_NOCOW_FL | \ 2046 FS_VERITY_FL | \ 2047 FS_CASEFOLD_FL) 2048 2049 #define F2FS_SETTABLE_FS_FL ( \ 2050 FS_COMPR_FL | \ 2051 FS_SYNC_FL | \ 2052 FS_IMMUTABLE_FL | \ 2053 FS_APPEND_FL | \ 2054 FS_NODUMP_FL | \ 2055 FS_NOATIME_FL | \ 2056 FS_NOCOMP_FL | \ 2057 FS_DIRSYNC_FL | \ 2058 FS_PROJINHERIT_FL | \ 2059 FS_CASEFOLD_FL) 2060 2061 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 2062 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 2063 { 2064 u32 fsflags = 0; 2065 int i; 2066 2067 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2068 if (iflags & f2fs_fsflags_map[i].iflag) 2069 fsflags |= f2fs_fsflags_map[i].fsflag; 2070 2071 return fsflags; 2072 } 2073 2074 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 2075 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 2076 { 2077 u32 iflags = 0; 2078 int i; 2079 2080 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2081 if (fsflags & f2fs_fsflags_map[i].fsflag) 2082 iflags |= f2fs_fsflags_map[i].iflag; 2083 2084 return iflags; 2085 } 2086 2087 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2088 { 2089 struct inode *inode = file_inode(filp); 2090 2091 return put_user(inode->i_generation, (int __user *)arg); 2092 } 2093 2094 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate) 2095 { 2096 struct inode *inode = file_inode(filp); 2097 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2098 struct f2fs_inode_info *fi = F2FS_I(inode); 2099 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2100 loff_t isize; 2101 int ret; 2102 2103 if (!(filp->f_mode & FMODE_WRITE)) 2104 return -EBADF; 2105 2106 if (!inode_owner_or_capable(idmap, inode)) 2107 return -EACCES; 2108 2109 if (!S_ISREG(inode->i_mode)) 2110 return -EINVAL; 2111 2112 if (filp->f_flags & O_DIRECT) 2113 return -EINVAL; 2114 2115 ret = mnt_want_write_file(filp); 2116 if (ret) 2117 return ret; 2118 2119 inode_lock(inode); 2120 2121 if (!f2fs_disable_compressed_file(inode)) { 2122 ret = -EINVAL; 2123 goto out; 2124 } 2125 2126 if (f2fs_is_atomic_file(inode)) 2127 goto out; 2128 2129 ret = f2fs_convert_inline_inode(inode); 2130 if (ret) 2131 goto out; 2132 2133 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2134 2135 /* 2136 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2137 * f2fs_is_atomic_file. 2138 */ 2139 if (get_dirty_pages(inode)) 2140 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2141 inode->i_ino, get_dirty_pages(inode)); 2142 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2143 if (ret) { 2144 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2145 goto out; 2146 } 2147 2148 /* Check if the inode already has a COW inode */ 2149 if (fi->cow_inode == NULL) { 2150 /* Create a COW inode for atomic write */ 2151 struct dentry *dentry = file_dentry(filp); 2152 struct inode *dir = d_inode(dentry->d_parent); 2153 2154 ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode); 2155 if (ret) { 2156 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2157 goto out; 2158 } 2159 2160 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2161 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2162 2163 /* Set the COW inode's atomic_inode to the atomic inode */ 2164 F2FS_I(fi->cow_inode)->atomic_inode = inode; 2165 } else { 2166 /* Reuse the already created COW inode */ 2167 f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode)); 2168 2169 invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1); 2170 2171 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true); 2172 if (ret) { 2173 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2174 goto out; 2175 } 2176 } 2177 2178 f2fs_write_inode(inode, NULL); 2179 2180 stat_inc_atomic_inode(inode); 2181 2182 set_inode_flag(inode, FI_ATOMIC_FILE); 2183 2184 isize = i_size_read(inode); 2185 fi->original_i_size = isize; 2186 if (truncate) { 2187 set_inode_flag(inode, FI_ATOMIC_REPLACE); 2188 truncate_inode_pages_final(inode->i_mapping); 2189 f2fs_i_size_write(inode, 0); 2190 isize = 0; 2191 } 2192 f2fs_i_size_write(fi->cow_inode, isize); 2193 2194 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2195 2196 f2fs_update_time(sbi, REQ_TIME); 2197 fi->atomic_write_task = current; 2198 stat_update_max_atomic_write(inode); 2199 fi->atomic_write_cnt = 0; 2200 out: 2201 inode_unlock(inode); 2202 mnt_drop_write_file(filp); 2203 return ret; 2204 } 2205 2206 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2207 { 2208 struct inode *inode = file_inode(filp); 2209 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2210 int ret; 2211 2212 if (!(filp->f_mode & FMODE_WRITE)) 2213 return -EBADF; 2214 2215 if (!inode_owner_or_capable(idmap, inode)) 2216 return -EACCES; 2217 2218 ret = mnt_want_write_file(filp); 2219 if (ret) 2220 return ret; 2221 2222 f2fs_balance_fs(F2FS_I_SB(inode), true); 2223 2224 inode_lock(inode); 2225 2226 if (f2fs_is_atomic_file(inode)) { 2227 ret = f2fs_commit_atomic_write(inode); 2228 if (!ret) 2229 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2230 2231 f2fs_abort_atomic_write(inode, ret); 2232 } else { 2233 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2234 } 2235 2236 inode_unlock(inode); 2237 mnt_drop_write_file(filp); 2238 return ret; 2239 } 2240 2241 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2242 { 2243 struct inode *inode = file_inode(filp); 2244 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2245 int ret; 2246 2247 if (!(filp->f_mode & FMODE_WRITE)) 2248 return -EBADF; 2249 2250 if (!inode_owner_or_capable(idmap, inode)) 2251 return -EACCES; 2252 2253 ret = mnt_want_write_file(filp); 2254 if (ret) 2255 return ret; 2256 2257 inode_lock(inode); 2258 2259 f2fs_abort_atomic_write(inode, true); 2260 2261 inode_unlock(inode); 2262 2263 mnt_drop_write_file(filp); 2264 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2265 return ret; 2266 } 2267 2268 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag, 2269 bool readonly, bool need_lock) 2270 { 2271 struct super_block *sb = sbi->sb; 2272 int ret = 0; 2273 2274 switch (flag) { 2275 case F2FS_GOING_DOWN_FULLSYNC: 2276 ret = freeze_bdev(sb->s_bdev); 2277 if (ret) 2278 goto out; 2279 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2280 thaw_bdev(sb->s_bdev); 2281 break; 2282 case F2FS_GOING_DOWN_METASYNC: 2283 /* do checkpoint only */ 2284 ret = f2fs_sync_fs(sb, 1); 2285 if (ret) 2286 goto out; 2287 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2288 break; 2289 case F2FS_GOING_DOWN_NOSYNC: 2290 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2291 break; 2292 case F2FS_GOING_DOWN_METAFLUSH: 2293 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2294 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2295 break; 2296 case F2FS_GOING_DOWN_NEED_FSCK: 2297 set_sbi_flag(sbi, SBI_NEED_FSCK); 2298 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2299 set_sbi_flag(sbi, SBI_IS_DIRTY); 2300 /* do checkpoint only */ 2301 ret = f2fs_sync_fs(sb, 1); 2302 goto out; 2303 default: 2304 ret = -EINVAL; 2305 goto out; 2306 } 2307 2308 if (readonly) 2309 goto out; 2310 2311 /* grab sb->s_umount to avoid racing w/ remount() */ 2312 if (need_lock) 2313 down_read(&sbi->sb->s_umount); 2314 2315 f2fs_stop_gc_thread(sbi); 2316 f2fs_stop_discard_thread(sbi); 2317 2318 f2fs_drop_discard_cmd(sbi); 2319 clear_opt(sbi, DISCARD); 2320 2321 if (need_lock) 2322 up_read(&sbi->sb->s_umount); 2323 2324 f2fs_update_time(sbi, REQ_TIME); 2325 out: 2326 2327 trace_f2fs_shutdown(sbi, flag, ret); 2328 2329 return ret; 2330 } 2331 2332 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2333 { 2334 struct inode *inode = file_inode(filp); 2335 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2336 __u32 in; 2337 int ret; 2338 bool need_drop = false, readonly = false; 2339 2340 if (!capable(CAP_SYS_ADMIN)) 2341 return -EPERM; 2342 2343 if (get_user(in, (__u32 __user *)arg)) 2344 return -EFAULT; 2345 2346 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2347 ret = mnt_want_write_file(filp); 2348 if (ret) { 2349 if (ret != -EROFS) 2350 return ret; 2351 2352 /* fallback to nosync shutdown for readonly fs */ 2353 in = F2FS_GOING_DOWN_NOSYNC; 2354 readonly = true; 2355 } else { 2356 need_drop = true; 2357 } 2358 } 2359 2360 ret = f2fs_do_shutdown(sbi, in, readonly, true); 2361 2362 if (need_drop) 2363 mnt_drop_write_file(filp); 2364 2365 return ret; 2366 } 2367 2368 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2369 { 2370 struct inode *inode = file_inode(filp); 2371 struct super_block *sb = inode->i_sb; 2372 struct fstrim_range range; 2373 int ret; 2374 2375 if (!capable(CAP_SYS_ADMIN)) 2376 return -EPERM; 2377 2378 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2379 return -EOPNOTSUPP; 2380 2381 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2382 sizeof(range))) 2383 return -EFAULT; 2384 2385 ret = mnt_want_write_file(filp); 2386 if (ret) 2387 return ret; 2388 2389 range.minlen = max((unsigned int)range.minlen, 2390 bdev_discard_granularity(sb->s_bdev)); 2391 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2392 mnt_drop_write_file(filp); 2393 if (ret < 0) 2394 return ret; 2395 2396 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2397 sizeof(range))) 2398 return -EFAULT; 2399 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2400 return 0; 2401 } 2402 2403 static bool uuid_is_nonzero(__u8 u[16]) 2404 { 2405 int i; 2406 2407 for (i = 0; i < 16; i++) 2408 if (u[i]) 2409 return true; 2410 return false; 2411 } 2412 2413 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2414 { 2415 struct inode *inode = file_inode(filp); 2416 2417 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2418 return -EOPNOTSUPP; 2419 2420 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2421 2422 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2423 } 2424 2425 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2426 { 2427 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2428 return -EOPNOTSUPP; 2429 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2430 } 2431 2432 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2433 { 2434 struct inode *inode = file_inode(filp); 2435 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2436 u8 encrypt_pw_salt[16]; 2437 int err; 2438 2439 if (!f2fs_sb_has_encrypt(sbi)) 2440 return -EOPNOTSUPP; 2441 2442 err = mnt_want_write_file(filp); 2443 if (err) 2444 return err; 2445 2446 f2fs_down_write(&sbi->sb_lock); 2447 2448 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2449 goto got_it; 2450 2451 /* update superblock with uuid */ 2452 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2453 2454 err = f2fs_commit_super(sbi, false); 2455 if (err) { 2456 /* undo new data */ 2457 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2458 goto out_err; 2459 } 2460 got_it: 2461 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16); 2462 out_err: 2463 f2fs_up_write(&sbi->sb_lock); 2464 mnt_drop_write_file(filp); 2465 2466 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16)) 2467 err = -EFAULT; 2468 2469 return err; 2470 } 2471 2472 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2473 unsigned long arg) 2474 { 2475 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2476 return -EOPNOTSUPP; 2477 2478 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2479 } 2480 2481 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2482 { 2483 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2484 return -EOPNOTSUPP; 2485 2486 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2487 } 2488 2489 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2490 { 2491 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2492 return -EOPNOTSUPP; 2493 2494 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2495 } 2496 2497 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2498 unsigned long arg) 2499 { 2500 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2501 return -EOPNOTSUPP; 2502 2503 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2504 } 2505 2506 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2507 unsigned long arg) 2508 { 2509 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2510 return -EOPNOTSUPP; 2511 2512 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2513 } 2514 2515 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2516 { 2517 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2518 return -EOPNOTSUPP; 2519 2520 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2521 } 2522 2523 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2524 { 2525 struct inode *inode = file_inode(filp); 2526 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2527 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2528 .no_bg_gc = false, 2529 .should_migrate_blocks = false, 2530 .nr_free_secs = 0 }; 2531 __u32 sync; 2532 int ret; 2533 2534 if (!capable(CAP_SYS_ADMIN)) 2535 return -EPERM; 2536 2537 if (get_user(sync, (__u32 __user *)arg)) 2538 return -EFAULT; 2539 2540 if (f2fs_readonly(sbi->sb)) 2541 return -EROFS; 2542 2543 ret = mnt_want_write_file(filp); 2544 if (ret) 2545 return ret; 2546 2547 if (!sync) { 2548 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2549 ret = -EBUSY; 2550 goto out; 2551 } 2552 } else { 2553 f2fs_down_write(&sbi->gc_lock); 2554 } 2555 2556 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2557 gc_control.err_gc_skipped = sync; 2558 stat_inc_gc_call_count(sbi, FOREGROUND); 2559 ret = f2fs_gc(sbi, &gc_control); 2560 out: 2561 mnt_drop_write_file(filp); 2562 return ret; 2563 } 2564 2565 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2566 { 2567 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2568 struct f2fs_gc_control gc_control = { 2569 .init_gc_type = range->sync ? FG_GC : BG_GC, 2570 .no_bg_gc = false, 2571 .should_migrate_blocks = false, 2572 .err_gc_skipped = range->sync, 2573 .nr_free_secs = 0 }; 2574 u64 end; 2575 int ret; 2576 2577 if (!capable(CAP_SYS_ADMIN)) 2578 return -EPERM; 2579 if (f2fs_readonly(sbi->sb)) 2580 return -EROFS; 2581 2582 end = range->start + range->len; 2583 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2584 end >= MAX_BLKADDR(sbi)) 2585 return -EINVAL; 2586 2587 ret = mnt_want_write_file(filp); 2588 if (ret) 2589 return ret; 2590 2591 do_more: 2592 if (!range->sync) { 2593 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2594 ret = -EBUSY; 2595 goto out; 2596 } 2597 } else { 2598 f2fs_down_write(&sbi->gc_lock); 2599 } 2600 2601 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2602 stat_inc_gc_call_count(sbi, FOREGROUND); 2603 ret = f2fs_gc(sbi, &gc_control); 2604 if (ret) { 2605 if (ret == -EBUSY) 2606 ret = -EAGAIN; 2607 goto out; 2608 } 2609 range->start += CAP_BLKS_PER_SEC(sbi); 2610 if (range->start <= end) 2611 goto do_more; 2612 out: 2613 mnt_drop_write_file(filp); 2614 return ret; 2615 } 2616 2617 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2618 { 2619 struct f2fs_gc_range range; 2620 2621 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2622 sizeof(range))) 2623 return -EFAULT; 2624 return __f2fs_ioc_gc_range(filp, &range); 2625 } 2626 2627 static int f2fs_ioc_write_checkpoint(struct file *filp) 2628 { 2629 struct inode *inode = file_inode(filp); 2630 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2631 int ret; 2632 2633 if (!capable(CAP_SYS_ADMIN)) 2634 return -EPERM; 2635 2636 if (f2fs_readonly(sbi->sb)) 2637 return -EROFS; 2638 2639 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2640 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2641 return -EINVAL; 2642 } 2643 2644 ret = mnt_want_write_file(filp); 2645 if (ret) 2646 return ret; 2647 2648 ret = f2fs_sync_fs(sbi->sb, 1); 2649 2650 mnt_drop_write_file(filp); 2651 return ret; 2652 } 2653 2654 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2655 struct file *filp, 2656 struct f2fs_defragment *range) 2657 { 2658 struct inode *inode = file_inode(filp); 2659 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2660 .m_seg_type = NO_CHECK_TYPE, 2661 .m_may_create = false }; 2662 struct extent_info ei = {}; 2663 pgoff_t pg_start, pg_end, next_pgofs; 2664 unsigned int total = 0, sec_num; 2665 block_t blk_end = 0; 2666 bool fragmented = false; 2667 int err; 2668 2669 pg_start = range->start >> PAGE_SHIFT; 2670 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2671 2672 f2fs_balance_fs(sbi, true); 2673 2674 inode_lock(inode); 2675 2676 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) || 2677 f2fs_is_atomic_file(inode)) { 2678 err = -EINVAL; 2679 goto unlock_out; 2680 } 2681 2682 /* if in-place-update policy is enabled, don't waste time here */ 2683 set_inode_flag(inode, FI_OPU_WRITE); 2684 if (f2fs_should_update_inplace(inode, NULL)) { 2685 err = -EINVAL; 2686 goto out; 2687 } 2688 2689 /* writeback all dirty pages in the range */ 2690 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2691 range->start + range->len - 1); 2692 if (err) 2693 goto out; 2694 2695 /* 2696 * lookup mapping info in extent cache, skip defragmenting if physical 2697 * block addresses are continuous. 2698 */ 2699 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) { 2700 if ((pgoff_t)ei.fofs + ei.len >= pg_end) 2701 goto out; 2702 } 2703 2704 map.m_lblk = pg_start; 2705 map.m_next_pgofs = &next_pgofs; 2706 2707 /* 2708 * lookup mapping info in dnode page cache, skip defragmenting if all 2709 * physical block addresses are continuous even if there are hole(s) 2710 * in logical blocks. 2711 */ 2712 while (map.m_lblk < pg_end) { 2713 map.m_len = pg_end - map.m_lblk; 2714 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2715 if (err) 2716 goto out; 2717 2718 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2719 map.m_lblk = next_pgofs; 2720 continue; 2721 } 2722 2723 if (blk_end && blk_end != map.m_pblk) 2724 fragmented = true; 2725 2726 /* record total count of block that we're going to move */ 2727 total += map.m_len; 2728 2729 blk_end = map.m_pblk + map.m_len; 2730 2731 map.m_lblk += map.m_len; 2732 } 2733 2734 if (!fragmented) { 2735 total = 0; 2736 goto out; 2737 } 2738 2739 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2740 2741 /* 2742 * make sure there are enough free section for LFS allocation, this can 2743 * avoid defragment running in SSR mode when free section are allocated 2744 * intensively 2745 */ 2746 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2747 err = -EAGAIN; 2748 goto out; 2749 } 2750 2751 map.m_lblk = pg_start; 2752 map.m_len = pg_end - pg_start; 2753 total = 0; 2754 2755 while (map.m_lblk < pg_end) { 2756 pgoff_t idx; 2757 int cnt = 0; 2758 2759 do_map: 2760 map.m_len = pg_end - map.m_lblk; 2761 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2762 if (err) 2763 goto clear_out; 2764 2765 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2766 map.m_lblk = next_pgofs; 2767 goto check; 2768 } 2769 2770 set_inode_flag(inode, FI_SKIP_WRITES); 2771 2772 idx = map.m_lblk; 2773 while (idx < map.m_lblk + map.m_len && 2774 cnt < BLKS_PER_SEG(sbi)) { 2775 struct page *page; 2776 2777 page = f2fs_get_lock_data_page(inode, idx, true); 2778 if (IS_ERR(page)) { 2779 err = PTR_ERR(page); 2780 goto clear_out; 2781 } 2782 2783 f2fs_wait_on_page_writeback(page, DATA, true, true); 2784 2785 set_page_dirty(page); 2786 set_page_private_gcing(page); 2787 f2fs_put_page(page, 1); 2788 2789 idx++; 2790 cnt++; 2791 total++; 2792 } 2793 2794 map.m_lblk = idx; 2795 check: 2796 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi)) 2797 goto do_map; 2798 2799 clear_inode_flag(inode, FI_SKIP_WRITES); 2800 2801 err = filemap_fdatawrite(inode->i_mapping); 2802 if (err) 2803 goto out; 2804 } 2805 clear_out: 2806 clear_inode_flag(inode, FI_SKIP_WRITES); 2807 out: 2808 clear_inode_flag(inode, FI_OPU_WRITE); 2809 unlock_out: 2810 inode_unlock(inode); 2811 if (!err) 2812 range->len = (u64)total << PAGE_SHIFT; 2813 return err; 2814 } 2815 2816 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2817 { 2818 struct inode *inode = file_inode(filp); 2819 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2820 struct f2fs_defragment range; 2821 int err; 2822 2823 if (!capable(CAP_SYS_ADMIN)) 2824 return -EPERM; 2825 2826 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2827 return -EINVAL; 2828 2829 if (f2fs_readonly(sbi->sb)) 2830 return -EROFS; 2831 2832 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2833 sizeof(range))) 2834 return -EFAULT; 2835 2836 /* verify alignment of offset & size */ 2837 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2838 return -EINVAL; 2839 2840 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2841 max_file_blocks(inode))) 2842 return -EINVAL; 2843 2844 err = mnt_want_write_file(filp); 2845 if (err) 2846 return err; 2847 2848 err = f2fs_defragment_range(sbi, filp, &range); 2849 mnt_drop_write_file(filp); 2850 2851 f2fs_update_time(sbi, REQ_TIME); 2852 if (err < 0) 2853 return err; 2854 2855 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2856 sizeof(range))) 2857 return -EFAULT; 2858 2859 return 0; 2860 } 2861 2862 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2863 struct file *file_out, loff_t pos_out, size_t len) 2864 { 2865 struct inode *src = file_inode(file_in); 2866 struct inode *dst = file_inode(file_out); 2867 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2868 size_t olen = len, dst_max_i_size = 0; 2869 size_t dst_osize; 2870 int ret; 2871 2872 if (file_in->f_path.mnt != file_out->f_path.mnt || 2873 src->i_sb != dst->i_sb) 2874 return -EXDEV; 2875 2876 if (unlikely(f2fs_readonly(src->i_sb))) 2877 return -EROFS; 2878 2879 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2880 return -EINVAL; 2881 2882 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2883 return -EOPNOTSUPP; 2884 2885 if (pos_out < 0 || pos_in < 0) 2886 return -EINVAL; 2887 2888 if (src == dst) { 2889 if (pos_in == pos_out) 2890 return 0; 2891 if (pos_out > pos_in && pos_out < pos_in + len) 2892 return -EINVAL; 2893 } 2894 2895 inode_lock(src); 2896 if (src != dst) { 2897 ret = -EBUSY; 2898 if (!inode_trylock(dst)) 2899 goto out; 2900 } 2901 2902 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) || 2903 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) { 2904 ret = -EOPNOTSUPP; 2905 goto out_unlock; 2906 } 2907 2908 if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) { 2909 ret = -EINVAL; 2910 goto out_unlock; 2911 } 2912 2913 ret = -EINVAL; 2914 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2915 goto out_unlock; 2916 if (len == 0) 2917 olen = len = src->i_size - pos_in; 2918 if (pos_in + len == src->i_size) 2919 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2920 if (len == 0) { 2921 ret = 0; 2922 goto out_unlock; 2923 } 2924 2925 dst_osize = dst->i_size; 2926 if (pos_out + olen > dst->i_size) 2927 dst_max_i_size = pos_out + olen; 2928 2929 /* verify the end result is block aligned */ 2930 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2931 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2932 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2933 goto out_unlock; 2934 2935 ret = f2fs_convert_inline_inode(src); 2936 if (ret) 2937 goto out_unlock; 2938 2939 ret = f2fs_convert_inline_inode(dst); 2940 if (ret) 2941 goto out_unlock; 2942 2943 /* write out all dirty pages from offset */ 2944 ret = filemap_write_and_wait_range(src->i_mapping, 2945 pos_in, pos_in + len); 2946 if (ret) 2947 goto out_unlock; 2948 2949 ret = filemap_write_and_wait_range(dst->i_mapping, 2950 pos_out, pos_out + len); 2951 if (ret) 2952 goto out_unlock; 2953 2954 f2fs_balance_fs(sbi, true); 2955 2956 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2957 if (src != dst) { 2958 ret = -EBUSY; 2959 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2960 goto out_src; 2961 } 2962 2963 f2fs_lock_op(sbi); 2964 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2965 pos_out >> F2FS_BLKSIZE_BITS, 2966 len >> F2FS_BLKSIZE_BITS, false); 2967 2968 if (!ret) { 2969 if (dst_max_i_size) 2970 f2fs_i_size_write(dst, dst_max_i_size); 2971 else if (dst_osize != dst->i_size) 2972 f2fs_i_size_write(dst, dst_osize); 2973 } 2974 f2fs_unlock_op(sbi); 2975 2976 if (src != dst) 2977 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2978 out_src: 2979 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2980 if (ret) 2981 goto out_unlock; 2982 2983 src->i_mtime = inode_set_ctime_current(src); 2984 f2fs_mark_inode_dirty_sync(src, false); 2985 if (src != dst) { 2986 dst->i_mtime = inode_set_ctime_current(dst); 2987 f2fs_mark_inode_dirty_sync(dst, false); 2988 } 2989 f2fs_update_time(sbi, REQ_TIME); 2990 2991 out_unlock: 2992 if (src != dst) 2993 inode_unlock(dst); 2994 out: 2995 inode_unlock(src); 2996 return ret; 2997 } 2998 2999 static int __f2fs_ioc_move_range(struct file *filp, 3000 struct f2fs_move_range *range) 3001 { 3002 struct fd dst; 3003 int err; 3004 3005 if (!(filp->f_mode & FMODE_READ) || 3006 !(filp->f_mode & FMODE_WRITE)) 3007 return -EBADF; 3008 3009 dst = fdget(range->dst_fd); 3010 if (!dst.file) 3011 return -EBADF; 3012 3013 if (!(dst.file->f_mode & FMODE_WRITE)) { 3014 err = -EBADF; 3015 goto err_out; 3016 } 3017 3018 err = mnt_want_write_file(filp); 3019 if (err) 3020 goto err_out; 3021 3022 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 3023 range->pos_out, range->len); 3024 3025 mnt_drop_write_file(filp); 3026 err_out: 3027 fdput(dst); 3028 return err; 3029 } 3030 3031 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 3032 { 3033 struct f2fs_move_range range; 3034 3035 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 3036 sizeof(range))) 3037 return -EFAULT; 3038 return __f2fs_ioc_move_range(filp, &range); 3039 } 3040 3041 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 3042 { 3043 struct inode *inode = file_inode(filp); 3044 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3045 struct sit_info *sm = SIT_I(sbi); 3046 unsigned int start_segno = 0, end_segno = 0; 3047 unsigned int dev_start_segno = 0, dev_end_segno = 0; 3048 struct f2fs_flush_device range; 3049 struct f2fs_gc_control gc_control = { 3050 .init_gc_type = FG_GC, 3051 .should_migrate_blocks = true, 3052 .err_gc_skipped = true, 3053 .nr_free_secs = 0 }; 3054 int ret; 3055 3056 if (!capable(CAP_SYS_ADMIN)) 3057 return -EPERM; 3058 3059 if (f2fs_readonly(sbi->sb)) 3060 return -EROFS; 3061 3062 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3063 return -EINVAL; 3064 3065 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 3066 sizeof(range))) 3067 return -EFAULT; 3068 3069 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 3070 __is_large_section(sbi)) { 3071 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1", 3072 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi)); 3073 return -EINVAL; 3074 } 3075 3076 ret = mnt_want_write_file(filp); 3077 if (ret) 3078 return ret; 3079 3080 if (range.dev_num != 0) 3081 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 3082 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 3083 3084 start_segno = sm->last_victim[FLUSH_DEVICE]; 3085 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 3086 start_segno = dev_start_segno; 3087 end_segno = min(start_segno + range.segments, dev_end_segno); 3088 3089 while (start_segno < end_segno) { 3090 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 3091 ret = -EBUSY; 3092 goto out; 3093 } 3094 sm->last_victim[GC_CB] = end_segno + 1; 3095 sm->last_victim[GC_GREEDY] = end_segno + 1; 3096 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 3097 3098 gc_control.victim_segno = start_segno; 3099 stat_inc_gc_call_count(sbi, FOREGROUND); 3100 ret = f2fs_gc(sbi, &gc_control); 3101 if (ret == -EAGAIN) 3102 ret = 0; 3103 else if (ret < 0) 3104 break; 3105 start_segno++; 3106 } 3107 out: 3108 mnt_drop_write_file(filp); 3109 return ret; 3110 } 3111 3112 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 3113 { 3114 struct inode *inode = file_inode(filp); 3115 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 3116 3117 /* Must validate to set it with SQLite behavior in Android. */ 3118 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 3119 3120 return put_user(sb_feature, (u32 __user *)arg); 3121 } 3122 3123 #ifdef CONFIG_QUOTA 3124 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3125 { 3126 struct dquot *transfer_to[MAXQUOTAS] = {}; 3127 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3128 struct super_block *sb = sbi->sb; 3129 int err; 3130 3131 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 3132 if (IS_ERR(transfer_to[PRJQUOTA])) 3133 return PTR_ERR(transfer_to[PRJQUOTA]); 3134 3135 err = __dquot_transfer(inode, transfer_to); 3136 if (err) 3137 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3138 dqput(transfer_to[PRJQUOTA]); 3139 return err; 3140 } 3141 3142 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3143 { 3144 struct f2fs_inode_info *fi = F2FS_I(inode); 3145 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3146 struct f2fs_inode *ri = NULL; 3147 kprojid_t kprojid; 3148 int err; 3149 3150 if (!f2fs_sb_has_project_quota(sbi)) { 3151 if (projid != F2FS_DEF_PROJID) 3152 return -EOPNOTSUPP; 3153 else 3154 return 0; 3155 } 3156 3157 if (!f2fs_has_extra_attr(inode)) 3158 return -EOPNOTSUPP; 3159 3160 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3161 3162 if (projid_eq(kprojid, fi->i_projid)) 3163 return 0; 3164 3165 err = -EPERM; 3166 /* Is it quota file? Do not allow user to mess with it */ 3167 if (IS_NOQUOTA(inode)) 3168 return err; 3169 3170 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 3171 return -EOVERFLOW; 3172 3173 err = f2fs_dquot_initialize(inode); 3174 if (err) 3175 return err; 3176 3177 f2fs_lock_op(sbi); 3178 err = f2fs_transfer_project_quota(inode, kprojid); 3179 if (err) 3180 goto out_unlock; 3181 3182 fi->i_projid = kprojid; 3183 inode_set_ctime_current(inode); 3184 f2fs_mark_inode_dirty_sync(inode, true); 3185 out_unlock: 3186 f2fs_unlock_op(sbi); 3187 return err; 3188 } 3189 #else 3190 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3191 { 3192 return 0; 3193 } 3194 3195 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3196 { 3197 if (projid != F2FS_DEF_PROJID) 3198 return -EOPNOTSUPP; 3199 return 0; 3200 } 3201 #endif 3202 3203 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3204 { 3205 struct inode *inode = d_inode(dentry); 3206 struct f2fs_inode_info *fi = F2FS_I(inode); 3207 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3208 3209 if (IS_ENCRYPTED(inode)) 3210 fsflags |= FS_ENCRYPT_FL; 3211 if (IS_VERITY(inode)) 3212 fsflags |= FS_VERITY_FL; 3213 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3214 fsflags |= FS_INLINE_DATA_FL; 3215 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3216 fsflags |= FS_NOCOW_FL; 3217 3218 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3219 3220 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3221 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3222 3223 return 0; 3224 } 3225 3226 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3227 struct dentry *dentry, struct fileattr *fa) 3228 { 3229 struct inode *inode = d_inode(dentry); 3230 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3231 u32 iflags; 3232 int err; 3233 3234 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3235 return -EIO; 3236 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3237 return -ENOSPC; 3238 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3239 return -EOPNOTSUPP; 3240 fsflags &= F2FS_SETTABLE_FS_FL; 3241 if (!fa->flags_valid) 3242 mask &= FS_COMMON_FL; 3243 3244 iflags = f2fs_fsflags_to_iflags(fsflags); 3245 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3246 return -EOPNOTSUPP; 3247 3248 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3249 if (!err) 3250 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3251 3252 return err; 3253 } 3254 3255 int f2fs_pin_file_control(struct inode *inode, bool inc) 3256 { 3257 struct f2fs_inode_info *fi = F2FS_I(inode); 3258 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3259 3260 /* Use i_gc_failures for normal file as a risk signal. */ 3261 if (inc) 3262 f2fs_i_gc_failures_write(inode, 3263 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3264 3265 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3266 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3267 __func__, inode->i_ino, 3268 fi->i_gc_failures[GC_FAILURE_PIN]); 3269 clear_inode_flag(inode, FI_PIN_FILE); 3270 return -EAGAIN; 3271 } 3272 return 0; 3273 } 3274 3275 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3276 { 3277 struct inode *inode = file_inode(filp); 3278 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3279 __u32 pin; 3280 int ret = 0; 3281 3282 if (get_user(pin, (__u32 __user *)arg)) 3283 return -EFAULT; 3284 3285 if (!S_ISREG(inode->i_mode)) 3286 return -EINVAL; 3287 3288 if (f2fs_readonly(sbi->sb)) 3289 return -EROFS; 3290 3291 ret = mnt_want_write_file(filp); 3292 if (ret) 3293 return ret; 3294 3295 inode_lock(inode); 3296 3297 if (f2fs_is_atomic_file(inode)) { 3298 ret = -EINVAL; 3299 goto out; 3300 } 3301 3302 if (!pin) { 3303 clear_inode_flag(inode, FI_PIN_FILE); 3304 f2fs_i_gc_failures_write(inode, 0); 3305 goto done; 3306 } else if (f2fs_is_pinned_file(inode)) { 3307 goto done; 3308 } 3309 3310 if (f2fs_sb_has_blkzoned(sbi) && F2FS_HAS_BLOCKS(inode)) { 3311 ret = -EFBIG; 3312 goto out; 3313 } 3314 3315 /* Let's allow file pinning on zoned device. */ 3316 if (!f2fs_sb_has_blkzoned(sbi) && 3317 f2fs_should_update_outplace(inode, NULL)) { 3318 ret = -EINVAL; 3319 goto out; 3320 } 3321 3322 if (f2fs_pin_file_control(inode, false)) { 3323 ret = -EAGAIN; 3324 goto out; 3325 } 3326 3327 ret = f2fs_convert_inline_inode(inode); 3328 if (ret) 3329 goto out; 3330 3331 if (!f2fs_disable_compressed_file(inode)) { 3332 ret = -EOPNOTSUPP; 3333 goto out; 3334 } 3335 3336 set_inode_flag(inode, FI_PIN_FILE); 3337 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3338 done: 3339 f2fs_update_time(sbi, REQ_TIME); 3340 out: 3341 inode_unlock(inode); 3342 mnt_drop_write_file(filp); 3343 return ret; 3344 } 3345 3346 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3347 { 3348 struct inode *inode = file_inode(filp); 3349 __u32 pin = 0; 3350 3351 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3352 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3353 return put_user(pin, (u32 __user *)arg); 3354 } 3355 3356 int f2fs_precache_extents(struct inode *inode) 3357 { 3358 struct f2fs_inode_info *fi = F2FS_I(inode); 3359 struct f2fs_map_blocks map; 3360 pgoff_t m_next_extent; 3361 loff_t end; 3362 int err; 3363 3364 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3365 return -EOPNOTSUPP; 3366 3367 map.m_lblk = 0; 3368 map.m_pblk = 0; 3369 map.m_next_pgofs = NULL; 3370 map.m_next_extent = &m_next_extent; 3371 map.m_seg_type = NO_CHECK_TYPE; 3372 map.m_may_create = false; 3373 end = max_file_blocks(inode); 3374 3375 while (map.m_lblk < end) { 3376 map.m_len = end - map.m_lblk; 3377 3378 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3379 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE); 3380 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3381 if (err) 3382 return err; 3383 3384 map.m_lblk = m_next_extent; 3385 } 3386 3387 return 0; 3388 } 3389 3390 static int f2fs_ioc_precache_extents(struct file *filp) 3391 { 3392 return f2fs_precache_extents(file_inode(filp)); 3393 } 3394 3395 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3396 { 3397 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3398 __u64 block_count; 3399 3400 if (!capable(CAP_SYS_ADMIN)) 3401 return -EPERM; 3402 3403 if (f2fs_readonly(sbi->sb)) 3404 return -EROFS; 3405 3406 if (copy_from_user(&block_count, (void __user *)arg, 3407 sizeof(block_count))) 3408 return -EFAULT; 3409 3410 return f2fs_resize_fs(filp, block_count); 3411 } 3412 3413 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3414 { 3415 struct inode *inode = file_inode(filp); 3416 3417 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3418 3419 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3420 f2fs_warn(F2FS_I_SB(inode), 3421 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3422 inode->i_ino); 3423 return -EOPNOTSUPP; 3424 } 3425 3426 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3427 } 3428 3429 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3430 { 3431 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3432 return -EOPNOTSUPP; 3433 3434 return fsverity_ioctl_measure(filp, (void __user *)arg); 3435 } 3436 3437 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3438 { 3439 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3440 return -EOPNOTSUPP; 3441 3442 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3443 } 3444 3445 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3446 { 3447 struct inode *inode = file_inode(filp); 3448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3449 char *vbuf; 3450 int count; 3451 int err = 0; 3452 3453 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3454 if (!vbuf) 3455 return -ENOMEM; 3456 3457 f2fs_down_read(&sbi->sb_lock); 3458 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3459 ARRAY_SIZE(sbi->raw_super->volume_name), 3460 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3461 f2fs_up_read(&sbi->sb_lock); 3462 3463 if (copy_to_user((char __user *)arg, vbuf, 3464 min(FSLABEL_MAX, count))) 3465 err = -EFAULT; 3466 3467 kfree(vbuf); 3468 return err; 3469 } 3470 3471 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3472 { 3473 struct inode *inode = file_inode(filp); 3474 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3475 char *vbuf; 3476 int err = 0; 3477 3478 if (!capable(CAP_SYS_ADMIN)) 3479 return -EPERM; 3480 3481 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3482 if (IS_ERR(vbuf)) 3483 return PTR_ERR(vbuf); 3484 3485 err = mnt_want_write_file(filp); 3486 if (err) 3487 goto out; 3488 3489 f2fs_down_write(&sbi->sb_lock); 3490 3491 memset(sbi->raw_super->volume_name, 0, 3492 sizeof(sbi->raw_super->volume_name)); 3493 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3494 sbi->raw_super->volume_name, 3495 ARRAY_SIZE(sbi->raw_super->volume_name)); 3496 3497 err = f2fs_commit_super(sbi, false); 3498 3499 f2fs_up_write(&sbi->sb_lock); 3500 3501 mnt_drop_write_file(filp); 3502 out: 3503 kfree(vbuf); 3504 return err; 3505 } 3506 3507 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks) 3508 { 3509 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3510 return -EOPNOTSUPP; 3511 3512 if (!f2fs_compressed_file(inode)) 3513 return -EINVAL; 3514 3515 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3516 3517 return 0; 3518 } 3519 3520 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg) 3521 { 3522 struct inode *inode = file_inode(filp); 3523 __u64 blocks; 3524 int ret; 3525 3526 ret = f2fs_get_compress_blocks(inode, &blocks); 3527 if (ret < 0) 3528 return ret; 3529 3530 return put_user(blocks, (u64 __user *)arg); 3531 } 3532 3533 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3534 { 3535 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3536 unsigned int released_blocks = 0; 3537 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3538 block_t blkaddr; 3539 int i; 3540 3541 for (i = 0; i < count; i++) { 3542 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3543 dn->ofs_in_node + i); 3544 3545 if (!__is_valid_data_blkaddr(blkaddr)) 3546 continue; 3547 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3548 DATA_GENERIC_ENHANCE))) { 3549 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3550 return -EFSCORRUPTED; 3551 } 3552 } 3553 3554 while (count) { 3555 int compr_blocks = 0; 3556 3557 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3558 blkaddr = f2fs_data_blkaddr(dn); 3559 3560 if (i == 0) { 3561 if (blkaddr == COMPRESS_ADDR) 3562 continue; 3563 dn->ofs_in_node += cluster_size; 3564 goto next; 3565 } 3566 3567 if (__is_valid_data_blkaddr(blkaddr)) 3568 compr_blocks++; 3569 3570 if (blkaddr != NEW_ADDR) 3571 continue; 3572 3573 f2fs_set_data_blkaddr(dn, NULL_ADDR); 3574 } 3575 3576 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3577 dec_valid_block_count(sbi, dn->inode, 3578 cluster_size - compr_blocks); 3579 3580 released_blocks += cluster_size - compr_blocks; 3581 next: 3582 count -= cluster_size; 3583 } 3584 3585 return released_blocks; 3586 } 3587 3588 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3589 { 3590 struct inode *inode = file_inode(filp); 3591 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3592 pgoff_t page_idx = 0, last_idx; 3593 unsigned int released_blocks = 0; 3594 int ret; 3595 int writecount; 3596 3597 if (!f2fs_sb_has_compression(sbi)) 3598 return -EOPNOTSUPP; 3599 3600 if (f2fs_readonly(sbi->sb)) 3601 return -EROFS; 3602 3603 ret = mnt_want_write_file(filp); 3604 if (ret) 3605 return ret; 3606 3607 f2fs_balance_fs(sbi, true); 3608 3609 inode_lock(inode); 3610 3611 writecount = atomic_read(&inode->i_writecount); 3612 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3613 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3614 ret = -EBUSY; 3615 goto out; 3616 } 3617 3618 if (!f2fs_compressed_file(inode) || 3619 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3620 ret = -EINVAL; 3621 goto out; 3622 } 3623 3624 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3625 if (ret) 3626 goto out; 3627 3628 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3629 ret = -EPERM; 3630 goto out; 3631 } 3632 3633 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3634 inode_set_ctime_current(inode); 3635 f2fs_mark_inode_dirty_sync(inode, true); 3636 3637 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3638 filemap_invalidate_lock(inode->i_mapping); 3639 3640 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3641 3642 while (page_idx < last_idx) { 3643 struct dnode_of_data dn; 3644 pgoff_t end_offset, count; 3645 3646 f2fs_lock_op(sbi); 3647 3648 set_new_dnode(&dn, inode, NULL, NULL, 0); 3649 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3650 if (ret) { 3651 f2fs_unlock_op(sbi); 3652 if (ret == -ENOENT) { 3653 page_idx = f2fs_get_next_page_offset(&dn, 3654 page_idx); 3655 ret = 0; 3656 continue; 3657 } 3658 break; 3659 } 3660 3661 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3662 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3663 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3664 3665 ret = release_compress_blocks(&dn, count); 3666 3667 f2fs_put_dnode(&dn); 3668 3669 f2fs_unlock_op(sbi); 3670 3671 if (ret < 0) 3672 break; 3673 3674 page_idx += count; 3675 released_blocks += ret; 3676 } 3677 3678 filemap_invalidate_unlock(inode->i_mapping); 3679 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3680 out: 3681 inode_unlock(inode); 3682 3683 mnt_drop_write_file(filp); 3684 3685 if (ret >= 0) { 3686 ret = put_user(released_blocks, (u64 __user *)arg); 3687 } else if (released_blocks && 3688 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3689 set_sbi_flag(sbi, SBI_NEED_FSCK); 3690 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3691 "iblocks=%llu, released=%u, compr_blocks=%u, " 3692 "run fsck to fix.", 3693 __func__, inode->i_ino, inode->i_blocks, 3694 released_blocks, 3695 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3696 } 3697 3698 return ret; 3699 } 3700 3701 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count, 3702 unsigned int *reserved_blocks) 3703 { 3704 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3705 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3706 block_t blkaddr; 3707 int i; 3708 3709 for (i = 0; i < count; i++) { 3710 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3711 dn->ofs_in_node + i); 3712 3713 if (!__is_valid_data_blkaddr(blkaddr)) 3714 continue; 3715 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3716 DATA_GENERIC_ENHANCE))) { 3717 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3718 return -EFSCORRUPTED; 3719 } 3720 } 3721 3722 while (count) { 3723 int compr_blocks = 0; 3724 blkcnt_t reserved = 0; 3725 blkcnt_t to_reserved; 3726 int ret; 3727 3728 for (i = 0; i < cluster_size; i++) { 3729 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3730 dn->ofs_in_node + i); 3731 3732 if (i == 0) { 3733 if (blkaddr != COMPRESS_ADDR) { 3734 dn->ofs_in_node += cluster_size; 3735 goto next; 3736 } 3737 continue; 3738 } 3739 3740 /* 3741 * compressed cluster was not released due to it 3742 * fails in release_compress_blocks(), so NEW_ADDR 3743 * is a possible case. 3744 */ 3745 if (blkaddr == NEW_ADDR) { 3746 reserved++; 3747 continue; 3748 } 3749 if (__is_valid_data_blkaddr(blkaddr)) { 3750 compr_blocks++; 3751 continue; 3752 } 3753 } 3754 3755 to_reserved = cluster_size - compr_blocks - reserved; 3756 3757 /* for the case all blocks in cluster were reserved */ 3758 if (to_reserved == 1) { 3759 dn->ofs_in_node += cluster_size; 3760 goto next; 3761 } 3762 3763 ret = inc_valid_block_count(sbi, dn->inode, 3764 &to_reserved, false); 3765 if (unlikely(ret)) 3766 return ret; 3767 3768 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3769 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 3770 f2fs_set_data_blkaddr(dn, NEW_ADDR); 3771 } 3772 3773 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3774 3775 *reserved_blocks += to_reserved; 3776 next: 3777 count -= cluster_size; 3778 } 3779 3780 return 0; 3781 } 3782 3783 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3784 { 3785 struct inode *inode = file_inode(filp); 3786 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3787 pgoff_t page_idx = 0, last_idx; 3788 unsigned int reserved_blocks = 0; 3789 int ret; 3790 3791 if (!f2fs_sb_has_compression(sbi)) 3792 return -EOPNOTSUPP; 3793 3794 if (f2fs_readonly(sbi->sb)) 3795 return -EROFS; 3796 3797 ret = mnt_want_write_file(filp); 3798 if (ret) 3799 return ret; 3800 3801 f2fs_balance_fs(sbi, true); 3802 3803 inode_lock(inode); 3804 3805 if (!f2fs_compressed_file(inode) || 3806 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3807 ret = -EINVAL; 3808 goto unlock_inode; 3809 } 3810 3811 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3812 goto unlock_inode; 3813 3814 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3815 filemap_invalidate_lock(inode->i_mapping); 3816 3817 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3818 3819 while (page_idx < last_idx) { 3820 struct dnode_of_data dn; 3821 pgoff_t end_offset, count; 3822 3823 f2fs_lock_op(sbi); 3824 3825 set_new_dnode(&dn, inode, NULL, NULL, 0); 3826 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3827 if (ret) { 3828 f2fs_unlock_op(sbi); 3829 if (ret == -ENOENT) { 3830 page_idx = f2fs_get_next_page_offset(&dn, 3831 page_idx); 3832 ret = 0; 3833 continue; 3834 } 3835 break; 3836 } 3837 3838 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3839 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3840 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3841 3842 ret = reserve_compress_blocks(&dn, count, &reserved_blocks); 3843 3844 f2fs_put_dnode(&dn); 3845 3846 f2fs_unlock_op(sbi); 3847 3848 if (ret < 0) 3849 break; 3850 3851 page_idx += count; 3852 } 3853 3854 filemap_invalidate_unlock(inode->i_mapping); 3855 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3856 3857 if (!ret) { 3858 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3859 inode_set_ctime_current(inode); 3860 f2fs_mark_inode_dirty_sync(inode, true); 3861 } 3862 unlock_inode: 3863 inode_unlock(inode); 3864 mnt_drop_write_file(filp); 3865 3866 if (!ret) { 3867 ret = put_user(reserved_blocks, (u64 __user *)arg); 3868 } else if (reserved_blocks && 3869 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3870 set_sbi_flag(sbi, SBI_NEED_FSCK); 3871 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3872 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3873 "run fsck to fix.", 3874 __func__, inode->i_ino, inode->i_blocks, 3875 reserved_blocks, 3876 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3877 } 3878 3879 return ret; 3880 } 3881 3882 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3883 pgoff_t off, block_t block, block_t len, u32 flags) 3884 { 3885 sector_t sector = SECTOR_FROM_BLOCK(block); 3886 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3887 int ret = 0; 3888 3889 if (flags & F2FS_TRIM_FILE_DISCARD) { 3890 if (bdev_max_secure_erase_sectors(bdev)) 3891 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3892 GFP_NOFS); 3893 else 3894 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3895 GFP_NOFS); 3896 } 3897 3898 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3899 if (IS_ENCRYPTED(inode)) 3900 ret = fscrypt_zeroout_range(inode, off, block, len); 3901 else 3902 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3903 GFP_NOFS, 0); 3904 } 3905 3906 return ret; 3907 } 3908 3909 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3910 { 3911 struct inode *inode = file_inode(filp); 3912 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3913 struct address_space *mapping = inode->i_mapping; 3914 struct block_device *prev_bdev = NULL; 3915 struct f2fs_sectrim_range range; 3916 pgoff_t index, pg_end, prev_index = 0; 3917 block_t prev_block = 0, len = 0; 3918 loff_t end_addr; 3919 bool to_end = false; 3920 int ret = 0; 3921 3922 if (!(filp->f_mode & FMODE_WRITE)) 3923 return -EBADF; 3924 3925 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3926 sizeof(range))) 3927 return -EFAULT; 3928 3929 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3930 !S_ISREG(inode->i_mode)) 3931 return -EINVAL; 3932 3933 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3934 !f2fs_hw_support_discard(sbi)) || 3935 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3936 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3937 return -EOPNOTSUPP; 3938 3939 file_start_write(filp); 3940 inode_lock(inode); 3941 3942 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3943 range.start >= inode->i_size) { 3944 ret = -EINVAL; 3945 goto err; 3946 } 3947 3948 if (range.len == 0) 3949 goto err; 3950 3951 if (inode->i_size - range.start > range.len) { 3952 end_addr = range.start + range.len; 3953 } else { 3954 end_addr = range.len == (u64)-1 ? 3955 sbi->sb->s_maxbytes : inode->i_size; 3956 to_end = true; 3957 } 3958 3959 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3960 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3961 ret = -EINVAL; 3962 goto err; 3963 } 3964 3965 index = F2FS_BYTES_TO_BLK(range.start); 3966 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3967 3968 ret = f2fs_convert_inline_inode(inode); 3969 if (ret) 3970 goto err; 3971 3972 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3973 filemap_invalidate_lock(mapping); 3974 3975 ret = filemap_write_and_wait_range(mapping, range.start, 3976 to_end ? LLONG_MAX : end_addr - 1); 3977 if (ret) 3978 goto out; 3979 3980 truncate_inode_pages_range(mapping, range.start, 3981 to_end ? -1 : end_addr - 1); 3982 3983 while (index < pg_end) { 3984 struct dnode_of_data dn; 3985 pgoff_t end_offset, count; 3986 int i; 3987 3988 set_new_dnode(&dn, inode, NULL, NULL, 0); 3989 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3990 if (ret) { 3991 if (ret == -ENOENT) { 3992 index = f2fs_get_next_page_offset(&dn, index); 3993 continue; 3994 } 3995 goto out; 3996 } 3997 3998 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3999 count = min(end_offset - dn.ofs_in_node, pg_end - index); 4000 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 4001 struct block_device *cur_bdev; 4002 block_t blkaddr = f2fs_data_blkaddr(&dn); 4003 4004 if (!__is_valid_data_blkaddr(blkaddr)) 4005 continue; 4006 4007 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 4008 DATA_GENERIC_ENHANCE)) { 4009 ret = -EFSCORRUPTED; 4010 f2fs_put_dnode(&dn); 4011 f2fs_handle_error(sbi, 4012 ERROR_INVALID_BLKADDR); 4013 goto out; 4014 } 4015 4016 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 4017 if (f2fs_is_multi_device(sbi)) { 4018 int di = f2fs_target_device_index(sbi, blkaddr); 4019 4020 blkaddr -= FDEV(di).start_blk; 4021 } 4022 4023 if (len) { 4024 if (prev_bdev == cur_bdev && 4025 index == prev_index + len && 4026 blkaddr == prev_block + len) { 4027 len++; 4028 } else { 4029 ret = f2fs_secure_erase(prev_bdev, 4030 inode, prev_index, prev_block, 4031 len, range.flags); 4032 if (ret) { 4033 f2fs_put_dnode(&dn); 4034 goto out; 4035 } 4036 4037 len = 0; 4038 } 4039 } 4040 4041 if (!len) { 4042 prev_bdev = cur_bdev; 4043 prev_index = index; 4044 prev_block = blkaddr; 4045 len = 1; 4046 } 4047 } 4048 4049 f2fs_put_dnode(&dn); 4050 4051 if (fatal_signal_pending(current)) { 4052 ret = -EINTR; 4053 goto out; 4054 } 4055 cond_resched(); 4056 } 4057 4058 if (len) 4059 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 4060 prev_block, len, range.flags); 4061 out: 4062 filemap_invalidate_unlock(mapping); 4063 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4064 err: 4065 inode_unlock(inode); 4066 file_end_write(filp); 4067 4068 return ret; 4069 } 4070 4071 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 4072 { 4073 struct inode *inode = file_inode(filp); 4074 struct f2fs_comp_option option; 4075 4076 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 4077 return -EOPNOTSUPP; 4078 4079 inode_lock_shared(inode); 4080 4081 if (!f2fs_compressed_file(inode)) { 4082 inode_unlock_shared(inode); 4083 return -ENODATA; 4084 } 4085 4086 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 4087 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 4088 4089 inode_unlock_shared(inode); 4090 4091 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 4092 sizeof(option))) 4093 return -EFAULT; 4094 4095 return 0; 4096 } 4097 4098 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 4099 { 4100 struct inode *inode = file_inode(filp); 4101 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4102 struct f2fs_comp_option option; 4103 int ret = 0; 4104 4105 if (!f2fs_sb_has_compression(sbi)) 4106 return -EOPNOTSUPP; 4107 4108 if (!(filp->f_mode & FMODE_WRITE)) 4109 return -EBADF; 4110 4111 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 4112 sizeof(option))) 4113 return -EFAULT; 4114 4115 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 4116 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 4117 option.algorithm >= COMPRESS_MAX) 4118 return -EINVAL; 4119 4120 file_start_write(filp); 4121 inode_lock(inode); 4122 4123 f2fs_down_write(&F2FS_I(inode)->i_sem); 4124 if (!f2fs_compressed_file(inode)) { 4125 ret = -EINVAL; 4126 goto out; 4127 } 4128 4129 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 4130 ret = -EBUSY; 4131 goto out; 4132 } 4133 4134 if (F2FS_HAS_BLOCKS(inode)) { 4135 ret = -EFBIG; 4136 goto out; 4137 } 4138 4139 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 4140 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 4141 F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size); 4142 /* Set default level */ 4143 if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) 4144 F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 4145 else 4146 F2FS_I(inode)->i_compress_level = 0; 4147 /* Adjust mount option level */ 4148 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm && 4149 F2FS_OPTION(sbi).compress_level) 4150 F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level; 4151 f2fs_mark_inode_dirty_sync(inode, true); 4152 4153 if (!f2fs_is_compress_backend_ready(inode)) 4154 f2fs_warn(sbi, "compression algorithm is successfully set, " 4155 "but current kernel doesn't support this algorithm."); 4156 out: 4157 f2fs_up_write(&F2FS_I(inode)->i_sem); 4158 inode_unlock(inode); 4159 file_end_write(filp); 4160 4161 return ret; 4162 } 4163 4164 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 4165 { 4166 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 4167 struct address_space *mapping = inode->i_mapping; 4168 struct page *page; 4169 pgoff_t redirty_idx = page_idx; 4170 int i, page_len = 0, ret = 0; 4171 4172 page_cache_ra_unbounded(&ractl, len, 0); 4173 4174 for (i = 0; i < len; i++, page_idx++) { 4175 page = read_cache_page(mapping, page_idx, NULL, NULL); 4176 if (IS_ERR(page)) { 4177 ret = PTR_ERR(page); 4178 break; 4179 } 4180 page_len++; 4181 } 4182 4183 for (i = 0; i < page_len; i++, redirty_idx++) { 4184 page = find_lock_page(mapping, redirty_idx); 4185 4186 /* It will never fail, when page has pinned above */ 4187 f2fs_bug_on(F2FS_I_SB(inode), !page); 4188 4189 f2fs_wait_on_page_writeback(page, DATA, true, true); 4190 4191 set_page_dirty(page); 4192 set_page_private_gcing(page); 4193 f2fs_put_page(page, 1); 4194 f2fs_put_page(page, 0); 4195 } 4196 4197 return ret; 4198 } 4199 4200 static int f2fs_ioc_decompress_file(struct file *filp) 4201 { 4202 struct inode *inode = file_inode(filp); 4203 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4204 struct f2fs_inode_info *fi = F2FS_I(inode); 4205 pgoff_t page_idx = 0, last_idx, cluster_idx; 4206 int ret; 4207 4208 if (!f2fs_sb_has_compression(sbi) || 4209 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4210 return -EOPNOTSUPP; 4211 4212 if (!(filp->f_mode & FMODE_WRITE)) 4213 return -EBADF; 4214 4215 f2fs_balance_fs(sbi, true); 4216 4217 file_start_write(filp); 4218 inode_lock(inode); 4219 4220 if (!f2fs_is_compress_backend_ready(inode)) { 4221 ret = -EOPNOTSUPP; 4222 goto out; 4223 } 4224 4225 if (!f2fs_compressed_file(inode) || 4226 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4227 ret = -EINVAL; 4228 goto out; 4229 } 4230 4231 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4232 if (ret) 4233 goto out; 4234 4235 if (!atomic_read(&fi->i_compr_blocks)) 4236 goto out; 4237 4238 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4239 last_idx >>= fi->i_log_cluster_size; 4240 4241 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) { 4242 page_idx = cluster_idx << fi->i_log_cluster_size; 4243 4244 if (!f2fs_is_compressed_cluster(inode, page_idx)) 4245 continue; 4246 4247 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size); 4248 if (ret < 0) 4249 break; 4250 4251 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) { 4252 ret = filemap_fdatawrite(inode->i_mapping); 4253 if (ret < 0) 4254 break; 4255 } 4256 4257 cond_resched(); 4258 if (fatal_signal_pending(current)) { 4259 ret = -EINTR; 4260 break; 4261 } 4262 } 4263 4264 if (!ret) 4265 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4266 LLONG_MAX); 4267 4268 if (ret) 4269 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4270 __func__, ret); 4271 out: 4272 inode_unlock(inode); 4273 file_end_write(filp); 4274 4275 return ret; 4276 } 4277 4278 static int f2fs_ioc_compress_file(struct file *filp) 4279 { 4280 struct inode *inode = file_inode(filp); 4281 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4282 struct f2fs_inode_info *fi = F2FS_I(inode); 4283 pgoff_t page_idx = 0, last_idx, cluster_idx; 4284 int ret; 4285 4286 if (!f2fs_sb_has_compression(sbi) || 4287 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4288 return -EOPNOTSUPP; 4289 4290 if (!(filp->f_mode & FMODE_WRITE)) 4291 return -EBADF; 4292 4293 f2fs_balance_fs(sbi, true); 4294 4295 file_start_write(filp); 4296 inode_lock(inode); 4297 4298 if (!f2fs_is_compress_backend_ready(inode)) { 4299 ret = -EOPNOTSUPP; 4300 goto out; 4301 } 4302 4303 if (!f2fs_compressed_file(inode) || 4304 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4305 ret = -EINVAL; 4306 goto out; 4307 } 4308 4309 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4310 if (ret) 4311 goto out; 4312 4313 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4314 4315 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4316 last_idx >>= fi->i_log_cluster_size; 4317 4318 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) { 4319 page_idx = cluster_idx << fi->i_log_cluster_size; 4320 4321 if (f2fs_is_sparse_cluster(inode, page_idx)) 4322 continue; 4323 4324 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size); 4325 if (ret < 0) 4326 break; 4327 4328 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) { 4329 ret = filemap_fdatawrite(inode->i_mapping); 4330 if (ret < 0) 4331 break; 4332 } 4333 4334 cond_resched(); 4335 if (fatal_signal_pending(current)) { 4336 ret = -EINTR; 4337 break; 4338 } 4339 } 4340 4341 if (!ret) 4342 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4343 LLONG_MAX); 4344 4345 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4346 4347 if (ret) 4348 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4349 __func__, ret); 4350 out: 4351 inode_unlock(inode); 4352 file_end_write(filp); 4353 4354 return ret; 4355 } 4356 4357 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4358 { 4359 switch (cmd) { 4360 case FS_IOC_GETVERSION: 4361 return f2fs_ioc_getversion(filp, arg); 4362 case F2FS_IOC_START_ATOMIC_WRITE: 4363 return f2fs_ioc_start_atomic_write(filp, false); 4364 case F2FS_IOC_START_ATOMIC_REPLACE: 4365 return f2fs_ioc_start_atomic_write(filp, true); 4366 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4367 return f2fs_ioc_commit_atomic_write(filp); 4368 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4369 return f2fs_ioc_abort_atomic_write(filp); 4370 case F2FS_IOC_START_VOLATILE_WRITE: 4371 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4372 return -EOPNOTSUPP; 4373 case F2FS_IOC_SHUTDOWN: 4374 return f2fs_ioc_shutdown(filp, arg); 4375 case FITRIM: 4376 return f2fs_ioc_fitrim(filp, arg); 4377 case FS_IOC_SET_ENCRYPTION_POLICY: 4378 return f2fs_ioc_set_encryption_policy(filp, arg); 4379 case FS_IOC_GET_ENCRYPTION_POLICY: 4380 return f2fs_ioc_get_encryption_policy(filp, arg); 4381 case FS_IOC_GET_ENCRYPTION_PWSALT: 4382 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4383 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4384 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4385 case FS_IOC_ADD_ENCRYPTION_KEY: 4386 return f2fs_ioc_add_encryption_key(filp, arg); 4387 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4388 return f2fs_ioc_remove_encryption_key(filp, arg); 4389 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4390 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4391 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4392 return f2fs_ioc_get_encryption_key_status(filp, arg); 4393 case FS_IOC_GET_ENCRYPTION_NONCE: 4394 return f2fs_ioc_get_encryption_nonce(filp, arg); 4395 case F2FS_IOC_GARBAGE_COLLECT: 4396 return f2fs_ioc_gc(filp, arg); 4397 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4398 return f2fs_ioc_gc_range(filp, arg); 4399 case F2FS_IOC_WRITE_CHECKPOINT: 4400 return f2fs_ioc_write_checkpoint(filp); 4401 case F2FS_IOC_DEFRAGMENT: 4402 return f2fs_ioc_defragment(filp, arg); 4403 case F2FS_IOC_MOVE_RANGE: 4404 return f2fs_ioc_move_range(filp, arg); 4405 case F2FS_IOC_FLUSH_DEVICE: 4406 return f2fs_ioc_flush_device(filp, arg); 4407 case F2FS_IOC_GET_FEATURES: 4408 return f2fs_ioc_get_features(filp, arg); 4409 case F2FS_IOC_GET_PIN_FILE: 4410 return f2fs_ioc_get_pin_file(filp, arg); 4411 case F2FS_IOC_SET_PIN_FILE: 4412 return f2fs_ioc_set_pin_file(filp, arg); 4413 case F2FS_IOC_PRECACHE_EXTENTS: 4414 return f2fs_ioc_precache_extents(filp); 4415 case F2FS_IOC_RESIZE_FS: 4416 return f2fs_ioc_resize_fs(filp, arg); 4417 case FS_IOC_ENABLE_VERITY: 4418 return f2fs_ioc_enable_verity(filp, arg); 4419 case FS_IOC_MEASURE_VERITY: 4420 return f2fs_ioc_measure_verity(filp, arg); 4421 case FS_IOC_READ_VERITY_METADATA: 4422 return f2fs_ioc_read_verity_metadata(filp, arg); 4423 case FS_IOC_GETFSLABEL: 4424 return f2fs_ioc_getfslabel(filp, arg); 4425 case FS_IOC_SETFSLABEL: 4426 return f2fs_ioc_setfslabel(filp, arg); 4427 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4428 return f2fs_ioc_get_compress_blocks(filp, arg); 4429 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4430 return f2fs_release_compress_blocks(filp, arg); 4431 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4432 return f2fs_reserve_compress_blocks(filp, arg); 4433 case F2FS_IOC_SEC_TRIM_FILE: 4434 return f2fs_sec_trim_file(filp, arg); 4435 case F2FS_IOC_GET_COMPRESS_OPTION: 4436 return f2fs_ioc_get_compress_option(filp, arg); 4437 case F2FS_IOC_SET_COMPRESS_OPTION: 4438 return f2fs_ioc_set_compress_option(filp, arg); 4439 case F2FS_IOC_DECOMPRESS_FILE: 4440 return f2fs_ioc_decompress_file(filp); 4441 case F2FS_IOC_COMPRESS_FILE: 4442 return f2fs_ioc_compress_file(filp); 4443 default: 4444 return -ENOTTY; 4445 } 4446 } 4447 4448 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4449 { 4450 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4451 return -EIO; 4452 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4453 return -ENOSPC; 4454 4455 return __f2fs_ioctl(filp, cmd, arg); 4456 } 4457 4458 /* 4459 * Return %true if the given read or write request should use direct I/O, or 4460 * %false if it should use buffered I/O. 4461 */ 4462 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4463 struct iov_iter *iter) 4464 { 4465 unsigned int align; 4466 4467 if (!(iocb->ki_flags & IOCB_DIRECT)) 4468 return false; 4469 4470 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) 4471 return false; 4472 4473 /* 4474 * Direct I/O not aligned to the disk's logical_block_size will be 4475 * attempted, but will fail with -EINVAL. 4476 * 4477 * f2fs additionally requires that direct I/O be aligned to the 4478 * filesystem block size, which is often a stricter requirement. 4479 * However, f2fs traditionally falls back to buffered I/O on requests 4480 * that are logical_block_size-aligned but not fs-block aligned. 4481 * 4482 * The below logic implements this behavior. 4483 */ 4484 align = iocb->ki_pos | iov_iter_alignment(iter); 4485 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4486 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4487 return false; 4488 4489 return true; 4490 } 4491 4492 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4493 unsigned int flags) 4494 { 4495 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4496 4497 dec_page_count(sbi, F2FS_DIO_READ); 4498 if (error) 4499 return error; 4500 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size); 4501 return 0; 4502 } 4503 4504 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4505 .end_io = f2fs_dio_read_end_io, 4506 }; 4507 4508 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4509 { 4510 struct file *file = iocb->ki_filp; 4511 struct inode *inode = file_inode(file); 4512 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4513 struct f2fs_inode_info *fi = F2FS_I(inode); 4514 const loff_t pos = iocb->ki_pos; 4515 const size_t count = iov_iter_count(to); 4516 struct iomap_dio *dio; 4517 ssize_t ret; 4518 4519 if (count == 0) 4520 return 0; /* skip atime update */ 4521 4522 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4523 4524 if (iocb->ki_flags & IOCB_NOWAIT) { 4525 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4526 ret = -EAGAIN; 4527 goto out; 4528 } 4529 } else { 4530 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4531 } 4532 4533 /* 4534 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4535 * the higher-level function iomap_dio_rw() in order to ensure that the 4536 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4537 */ 4538 inc_page_count(sbi, F2FS_DIO_READ); 4539 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4540 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4541 if (IS_ERR_OR_NULL(dio)) { 4542 ret = PTR_ERR_OR_ZERO(dio); 4543 if (ret != -EIOCBQUEUED) 4544 dec_page_count(sbi, F2FS_DIO_READ); 4545 } else { 4546 ret = iomap_dio_complete(dio); 4547 } 4548 4549 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4550 4551 file_accessed(file); 4552 out: 4553 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4554 return ret; 4555 } 4556 4557 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count, 4558 int rw) 4559 { 4560 struct inode *inode = file_inode(file); 4561 char *buf, *path; 4562 4563 buf = f2fs_getname(F2FS_I_SB(inode)); 4564 if (!buf) 4565 return; 4566 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX); 4567 if (IS_ERR(path)) 4568 goto free_buf; 4569 if (rw == WRITE) 4570 trace_f2fs_datawrite_start(inode, pos, count, 4571 current->pid, path, current->comm); 4572 else 4573 trace_f2fs_dataread_start(inode, pos, count, 4574 current->pid, path, current->comm); 4575 free_buf: 4576 f2fs_putname(buf); 4577 } 4578 4579 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4580 { 4581 struct inode *inode = file_inode(iocb->ki_filp); 4582 const loff_t pos = iocb->ki_pos; 4583 ssize_t ret; 4584 4585 if (!f2fs_is_compress_backend_ready(inode)) 4586 return -EOPNOTSUPP; 4587 4588 if (trace_f2fs_dataread_start_enabled()) 4589 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 4590 iov_iter_count(to), READ); 4591 4592 /* In LFS mode, if there is inflight dio, wait for its completion */ 4593 if (f2fs_lfs_mode(F2FS_I_SB(inode))) 4594 inode_dio_wait(inode); 4595 4596 if (f2fs_should_use_dio(inode, iocb, to)) { 4597 ret = f2fs_dio_read_iter(iocb, to); 4598 } else { 4599 ret = filemap_read(iocb, to, 0); 4600 if (ret > 0) 4601 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4602 APP_BUFFERED_READ_IO, ret); 4603 } 4604 if (trace_f2fs_dataread_end_enabled()) 4605 trace_f2fs_dataread_end(inode, pos, ret); 4606 return ret; 4607 } 4608 4609 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos, 4610 struct pipe_inode_info *pipe, 4611 size_t len, unsigned int flags) 4612 { 4613 struct inode *inode = file_inode(in); 4614 const loff_t pos = *ppos; 4615 ssize_t ret; 4616 4617 if (!f2fs_is_compress_backend_ready(inode)) 4618 return -EOPNOTSUPP; 4619 4620 if (trace_f2fs_dataread_start_enabled()) 4621 f2fs_trace_rw_file_path(in, pos, len, READ); 4622 4623 ret = filemap_splice_read(in, ppos, pipe, len, flags); 4624 if (ret > 0) 4625 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4626 APP_BUFFERED_READ_IO, ret); 4627 4628 if (trace_f2fs_dataread_end_enabled()) 4629 trace_f2fs_dataread_end(inode, pos, ret); 4630 return ret; 4631 } 4632 4633 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4634 { 4635 struct file *file = iocb->ki_filp; 4636 struct inode *inode = file_inode(file); 4637 ssize_t count; 4638 int err; 4639 4640 if (IS_IMMUTABLE(inode)) 4641 return -EPERM; 4642 4643 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4644 return -EPERM; 4645 4646 count = generic_write_checks(iocb, from); 4647 if (count <= 0) 4648 return count; 4649 4650 err = file_modified(file); 4651 if (err) 4652 return err; 4653 return count; 4654 } 4655 4656 /* 4657 * Preallocate blocks for a write request, if it is possible and helpful to do 4658 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4659 * blocks were preallocated, or a negative errno value if something went 4660 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4661 * requested blocks (not just some of them) have been allocated. 4662 */ 4663 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4664 bool dio) 4665 { 4666 struct inode *inode = file_inode(iocb->ki_filp); 4667 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4668 const loff_t pos = iocb->ki_pos; 4669 const size_t count = iov_iter_count(iter); 4670 struct f2fs_map_blocks map = {}; 4671 int flag; 4672 int ret; 4673 4674 /* If it will be an out-of-place direct write, don't bother. */ 4675 if (dio && f2fs_lfs_mode(sbi)) 4676 return 0; 4677 /* 4678 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4679 * buffered IO, if DIO meets any holes. 4680 */ 4681 if (dio && i_size_read(inode) && 4682 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4683 return 0; 4684 4685 /* No-wait I/O can't allocate blocks. */ 4686 if (iocb->ki_flags & IOCB_NOWAIT) 4687 return 0; 4688 4689 /* If it will be a short write, don't bother. */ 4690 if (fault_in_iov_iter_readable(iter, count)) 4691 return 0; 4692 4693 if (f2fs_has_inline_data(inode)) { 4694 /* If the data will fit inline, don't bother. */ 4695 if (pos + count <= MAX_INLINE_DATA(inode)) 4696 return 0; 4697 ret = f2fs_convert_inline_inode(inode); 4698 if (ret) 4699 return ret; 4700 } 4701 4702 /* Do not preallocate blocks that will be written partially in 4KB. */ 4703 map.m_lblk = F2FS_BLK_ALIGN(pos); 4704 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4705 if (map.m_len > map.m_lblk) 4706 map.m_len -= map.m_lblk; 4707 else 4708 map.m_len = 0; 4709 map.m_may_create = true; 4710 if (dio) { 4711 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4712 flag = F2FS_GET_BLOCK_PRE_DIO; 4713 } else { 4714 map.m_seg_type = NO_CHECK_TYPE; 4715 flag = F2FS_GET_BLOCK_PRE_AIO; 4716 } 4717 4718 ret = f2fs_map_blocks(inode, &map, flag); 4719 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4720 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4721 return ret; 4722 if (ret == 0) 4723 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4724 return map.m_len; 4725 } 4726 4727 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4728 struct iov_iter *from) 4729 { 4730 struct file *file = iocb->ki_filp; 4731 struct inode *inode = file_inode(file); 4732 ssize_t ret; 4733 4734 if (iocb->ki_flags & IOCB_NOWAIT) 4735 return -EOPNOTSUPP; 4736 4737 ret = generic_perform_write(iocb, from); 4738 4739 if (ret > 0) { 4740 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4741 APP_BUFFERED_IO, ret); 4742 } 4743 return ret; 4744 } 4745 4746 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4747 unsigned int flags) 4748 { 4749 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4750 4751 dec_page_count(sbi, F2FS_DIO_WRITE); 4752 if (error) 4753 return error; 4754 f2fs_update_time(sbi, REQ_TIME); 4755 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size); 4756 return 0; 4757 } 4758 4759 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4760 .end_io = f2fs_dio_write_end_io, 4761 }; 4762 4763 static void f2fs_flush_buffered_write(struct address_space *mapping, 4764 loff_t start_pos, loff_t end_pos) 4765 { 4766 int ret; 4767 4768 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos); 4769 if (ret < 0) 4770 return; 4771 invalidate_mapping_pages(mapping, 4772 start_pos >> PAGE_SHIFT, 4773 end_pos >> PAGE_SHIFT); 4774 } 4775 4776 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4777 bool *may_need_sync) 4778 { 4779 struct file *file = iocb->ki_filp; 4780 struct inode *inode = file_inode(file); 4781 struct f2fs_inode_info *fi = F2FS_I(inode); 4782 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4783 const bool do_opu = f2fs_lfs_mode(sbi); 4784 const loff_t pos = iocb->ki_pos; 4785 const ssize_t count = iov_iter_count(from); 4786 unsigned int dio_flags; 4787 struct iomap_dio *dio; 4788 ssize_t ret; 4789 4790 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4791 4792 if (iocb->ki_flags & IOCB_NOWAIT) { 4793 /* f2fs_convert_inline_inode() and block allocation can block */ 4794 if (f2fs_has_inline_data(inode) || 4795 !f2fs_overwrite_io(inode, pos, count)) { 4796 ret = -EAGAIN; 4797 goto out; 4798 } 4799 4800 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4801 ret = -EAGAIN; 4802 goto out; 4803 } 4804 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4805 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4806 ret = -EAGAIN; 4807 goto out; 4808 } 4809 } else { 4810 ret = f2fs_convert_inline_inode(inode); 4811 if (ret) 4812 goto out; 4813 4814 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4815 if (do_opu) 4816 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4817 } 4818 4819 /* 4820 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4821 * the higher-level function iomap_dio_rw() in order to ensure that the 4822 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4823 */ 4824 inc_page_count(sbi, F2FS_DIO_WRITE); 4825 dio_flags = 0; 4826 if (pos + count > inode->i_size) 4827 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4828 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4829 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4830 if (IS_ERR_OR_NULL(dio)) { 4831 ret = PTR_ERR_OR_ZERO(dio); 4832 if (ret == -ENOTBLK) 4833 ret = 0; 4834 if (ret != -EIOCBQUEUED) 4835 dec_page_count(sbi, F2FS_DIO_WRITE); 4836 } else { 4837 ret = iomap_dio_complete(dio); 4838 } 4839 4840 if (do_opu) 4841 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4842 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4843 4844 if (ret < 0) 4845 goto out; 4846 if (pos + ret > inode->i_size) 4847 f2fs_i_size_write(inode, pos + ret); 4848 if (!do_opu) 4849 set_inode_flag(inode, FI_UPDATE_WRITE); 4850 4851 if (iov_iter_count(from)) { 4852 ssize_t ret2; 4853 loff_t bufio_start_pos = iocb->ki_pos; 4854 4855 /* 4856 * The direct write was partial, so we need to fall back to a 4857 * buffered write for the remainder. 4858 */ 4859 4860 ret2 = f2fs_buffered_write_iter(iocb, from); 4861 if (iov_iter_count(from)) 4862 f2fs_write_failed(inode, iocb->ki_pos); 4863 if (ret2 < 0) 4864 goto out; 4865 4866 /* 4867 * Ensure that the pagecache pages are written to disk and 4868 * invalidated to preserve the expected O_DIRECT semantics. 4869 */ 4870 if (ret2 > 0) { 4871 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4872 4873 ret += ret2; 4874 4875 f2fs_flush_buffered_write(file->f_mapping, 4876 bufio_start_pos, 4877 bufio_end_pos); 4878 } 4879 } else { 4880 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4881 *may_need_sync = false; 4882 } 4883 out: 4884 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4885 return ret; 4886 } 4887 4888 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4889 { 4890 struct inode *inode = file_inode(iocb->ki_filp); 4891 const loff_t orig_pos = iocb->ki_pos; 4892 const size_t orig_count = iov_iter_count(from); 4893 loff_t target_size; 4894 bool dio; 4895 bool may_need_sync = true; 4896 int preallocated; 4897 ssize_t ret; 4898 4899 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4900 ret = -EIO; 4901 goto out; 4902 } 4903 4904 if (!f2fs_is_compress_backend_ready(inode)) { 4905 ret = -EOPNOTSUPP; 4906 goto out; 4907 } 4908 4909 if (iocb->ki_flags & IOCB_NOWAIT) { 4910 if (!inode_trylock(inode)) { 4911 ret = -EAGAIN; 4912 goto out; 4913 } 4914 } else { 4915 inode_lock(inode); 4916 } 4917 4918 ret = f2fs_write_checks(iocb, from); 4919 if (ret <= 0) 4920 goto out_unlock; 4921 4922 /* Determine whether we will do a direct write or a buffered write. */ 4923 dio = f2fs_should_use_dio(inode, iocb, from); 4924 4925 /* Possibly preallocate the blocks for the write. */ 4926 target_size = iocb->ki_pos + iov_iter_count(from); 4927 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 4928 if (preallocated < 0) { 4929 ret = preallocated; 4930 } else { 4931 if (trace_f2fs_datawrite_start_enabled()) 4932 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 4933 orig_count, WRITE); 4934 4935 /* Do the actual write. */ 4936 ret = dio ? 4937 f2fs_dio_write_iter(iocb, from, &may_need_sync) : 4938 f2fs_buffered_write_iter(iocb, from); 4939 4940 if (trace_f2fs_datawrite_end_enabled()) 4941 trace_f2fs_datawrite_end(inode, orig_pos, ret); 4942 } 4943 4944 /* Don't leave any preallocated blocks around past i_size. */ 4945 if (preallocated && i_size_read(inode) < target_size) { 4946 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4947 filemap_invalidate_lock(inode->i_mapping); 4948 if (!f2fs_truncate(inode)) 4949 file_dont_truncate(inode); 4950 filemap_invalidate_unlock(inode->i_mapping); 4951 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4952 } else { 4953 file_dont_truncate(inode); 4954 } 4955 4956 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 4957 out_unlock: 4958 inode_unlock(inode); 4959 out: 4960 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 4961 4962 if (ret > 0 && may_need_sync) 4963 ret = generic_write_sync(iocb, ret); 4964 4965 /* If buffered IO was forced, flush and drop the data from 4966 * the page cache to preserve O_DIRECT semantics 4967 */ 4968 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT)) 4969 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping, 4970 orig_pos, 4971 orig_pos + ret - 1); 4972 4973 return ret; 4974 } 4975 4976 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 4977 int advice) 4978 { 4979 struct address_space *mapping; 4980 struct backing_dev_info *bdi; 4981 struct inode *inode = file_inode(filp); 4982 int err; 4983 4984 if (advice == POSIX_FADV_SEQUENTIAL) { 4985 if (S_ISFIFO(inode->i_mode)) 4986 return -ESPIPE; 4987 4988 mapping = filp->f_mapping; 4989 if (!mapping || len < 0) 4990 return -EINVAL; 4991 4992 bdi = inode_to_bdi(mapping->host); 4993 filp->f_ra.ra_pages = bdi->ra_pages * 4994 F2FS_I_SB(inode)->seq_file_ra_mul; 4995 spin_lock(&filp->f_lock); 4996 filp->f_mode &= ~FMODE_RANDOM; 4997 spin_unlock(&filp->f_lock); 4998 return 0; 4999 } 5000 5001 err = generic_fadvise(filp, offset, len, advice); 5002 if (!err && advice == POSIX_FADV_DONTNEED && 5003 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 5004 f2fs_compressed_file(inode)) 5005 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 5006 5007 return err; 5008 } 5009 5010 #ifdef CONFIG_COMPAT 5011 struct compat_f2fs_gc_range { 5012 u32 sync; 5013 compat_u64 start; 5014 compat_u64 len; 5015 }; 5016 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 5017 struct compat_f2fs_gc_range) 5018 5019 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 5020 { 5021 struct compat_f2fs_gc_range __user *urange; 5022 struct f2fs_gc_range range; 5023 int err; 5024 5025 urange = compat_ptr(arg); 5026 err = get_user(range.sync, &urange->sync); 5027 err |= get_user(range.start, &urange->start); 5028 err |= get_user(range.len, &urange->len); 5029 if (err) 5030 return -EFAULT; 5031 5032 return __f2fs_ioc_gc_range(file, &range); 5033 } 5034 5035 struct compat_f2fs_move_range { 5036 u32 dst_fd; 5037 compat_u64 pos_in; 5038 compat_u64 pos_out; 5039 compat_u64 len; 5040 }; 5041 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 5042 struct compat_f2fs_move_range) 5043 5044 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 5045 { 5046 struct compat_f2fs_move_range __user *urange; 5047 struct f2fs_move_range range; 5048 int err; 5049 5050 urange = compat_ptr(arg); 5051 err = get_user(range.dst_fd, &urange->dst_fd); 5052 err |= get_user(range.pos_in, &urange->pos_in); 5053 err |= get_user(range.pos_out, &urange->pos_out); 5054 err |= get_user(range.len, &urange->len); 5055 if (err) 5056 return -EFAULT; 5057 5058 return __f2fs_ioc_move_range(file, &range); 5059 } 5060 5061 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5062 { 5063 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 5064 return -EIO; 5065 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 5066 return -ENOSPC; 5067 5068 switch (cmd) { 5069 case FS_IOC32_GETVERSION: 5070 cmd = FS_IOC_GETVERSION; 5071 break; 5072 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 5073 return f2fs_compat_ioc_gc_range(file, arg); 5074 case F2FS_IOC32_MOVE_RANGE: 5075 return f2fs_compat_ioc_move_range(file, arg); 5076 case F2FS_IOC_START_ATOMIC_WRITE: 5077 case F2FS_IOC_START_ATOMIC_REPLACE: 5078 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 5079 case F2FS_IOC_START_VOLATILE_WRITE: 5080 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 5081 case F2FS_IOC_ABORT_ATOMIC_WRITE: 5082 case F2FS_IOC_SHUTDOWN: 5083 case FITRIM: 5084 case FS_IOC_SET_ENCRYPTION_POLICY: 5085 case FS_IOC_GET_ENCRYPTION_PWSALT: 5086 case FS_IOC_GET_ENCRYPTION_POLICY: 5087 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 5088 case FS_IOC_ADD_ENCRYPTION_KEY: 5089 case FS_IOC_REMOVE_ENCRYPTION_KEY: 5090 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 5091 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 5092 case FS_IOC_GET_ENCRYPTION_NONCE: 5093 case F2FS_IOC_GARBAGE_COLLECT: 5094 case F2FS_IOC_WRITE_CHECKPOINT: 5095 case F2FS_IOC_DEFRAGMENT: 5096 case F2FS_IOC_FLUSH_DEVICE: 5097 case F2FS_IOC_GET_FEATURES: 5098 case F2FS_IOC_GET_PIN_FILE: 5099 case F2FS_IOC_SET_PIN_FILE: 5100 case F2FS_IOC_PRECACHE_EXTENTS: 5101 case F2FS_IOC_RESIZE_FS: 5102 case FS_IOC_ENABLE_VERITY: 5103 case FS_IOC_MEASURE_VERITY: 5104 case FS_IOC_READ_VERITY_METADATA: 5105 case FS_IOC_GETFSLABEL: 5106 case FS_IOC_SETFSLABEL: 5107 case F2FS_IOC_GET_COMPRESS_BLOCKS: 5108 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 5109 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 5110 case F2FS_IOC_SEC_TRIM_FILE: 5111 case F2FS_IOC_GET_COMPRESS_OPTION: 5112 case F2FS_IOC_SET_COMPRESS_OPTION: 5113 case F2FS_IOC_DECOMPRESS_FILE: 5114 case F2FS_IOC_COMPRESS_FILE: 5115 break; 5116 default: 5117 return -ENOIOCTLCMD; 5118 } 5119 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5120 } 5121 #endif 5122 5123 const struct file_operations f2fs_file_operations = { 5124 .llseek = f2fs_llseek, 5125 .read_iter = f2fs_file_read_iter, 5126 .write_iter = f2fs_file_write_iter, 5127 .iopoll = iocb_bio_iopoll, 5128 .open = f2fs_file_open, 5129 .release = f2fs_release_file, 5130 .mmap = f2fs_file_mmap, 5131 .flush = f2fs_file_flush, 5132 .fsync = f2fs_sync_file, 5133 .fallocate = f2fs_fallocate, 5134 .unlocked_ioctl = f2fs_ioctl, 5135 #ifdef CONFIG_COMPAT 5136 .compat_ioctl = f2fs_compat_ioctl, 5137 #endif 5138 .splice_read = f2fs_file_splice_read, 5139 .splice_write = iter_file_splice_write, 5140 .fadvise = f2fs_file_fadvise, 5141 }; 5142