xref: /openbmc/linux/fs/f2fs/file.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (ret & VM_FAULT_LOCKED)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		set_new_dnode(&dn, inode, NULL, NULL, 0);
117 		err = f2fs_get_block_locked(&dn, page->index);
118 	}
119 
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 	if (!need_alloc) {
122 		set_new_dnode(&dn, inode, NULL, NULL, 0);
123 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 		f2fs_put_dnode(&dn);
125 	}
126 #endif
127 	if (err) {
128 		unlock_page(page);
129 		goto out_sem;
130 	}
131 
132 	f2fs_wait_on_page_writeback(page, DATA, false, true);
133 
134 	/* wait for GCed page writeback via META_MAPPING */
135 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136 
137 	/*
138 	 * check to see if the page is mapped already (no holes)
139 	 */
140 	if (PageMappedToDisk(page))
141 		goto out_sem;
142 
143 	/* page is wholly or partially inside EOF */
144 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 						i_size_read(inode)) {
146 		loff_t offset;
147 
148 		offset = i_size_read(inode) & ~PAGE_MASK;
149 		zero_user_segment(page, offset, PAGE_SIZE);
150 	}
151 	set_page_dirty(page);
152 
153 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154 	f2fs_update_time(sbi, REQ_TIME);
155 
156 	trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158 	filemap_invalidate_unlock_shared(inode->i_mapping);
159 
160 	sb_end_pagefault(inode->i_sb);
161 err:
162 	return vmf_fs_error(err);
163 }
164 
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166 	.fault		= f2fs_filemap_fault,
167 	.map_pages	= filemap_map_pages,
168 	.page_mkwrite	= f2fs_vm_page_mkwrite,
169 };
170 
171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173 	struct dentry *dentry;
174 
175 	/*
176 	 * Make sure to get the non-deleted alias.  The alias associated with
177 	 * the open file descriptor being fsync()'ed may be deleted already.
178 	 */
179 	dentry = d_find_alias(inode);
180 	if (!dentry)
181 		return 0;
182 
183 	*pino = parent_ino(dentry);
184 	dput(dentry);
185 	return 1;
186 }
187 
188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
192 
193 	if (!S_ISREG(inode->i_mode))
194 		cp_reason = CP_NON_REGULAR;
195 	else if (f2fs_compressed_file(inode))
196 		cp_reason = CP_COMPRESSED;
197 	else if (inode->i_nlink != 1)
198 		cp_reason = CP_HARDLINK;
199 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200 		cp_reason = CP_SB_NEED_CP;
201 	else if (file_wrong_pino(inode))
202 		cp_reason = CP_WRONG_PINO;
203 	else if (!f2fs_space_for_roll_forward(sbi))
204 		cp_reason = CP_NO_SPC_ROLL;
205 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206 		cp_reason = CP_NODE_NEED_CP;
207 	else if (test_opt(sbi, FASTBOOT))
208 		cp_reason = CP_FASTBOOT_MODE;
209 	else if (F2FS_OPTION(sbi).active_logs == 2)
210 		cp_reason = CP_SPEC_LOG_NUM;
211 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214 							TRANS_DIR_INO))
215 		cp_reason = CP_RECOVER_DIR;
216 
217 	return cp_reason;
218 }
219 
220 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
221 {
222 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
223 	bool ret = false;
224 	/* But we need to avoid that there are some inode updates */
225 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
226 		ret = true;
227 	f2fs_put_page(i, 0);
228 	return ret;
229 }
230 
231 static void try_to_fix_pino(struct inode *inode)
232 {
233 	struct f2fs_inode_info *fi = F2FS_I(inode);
234 	nid_t pino;
235 
236 	f2fs_down_write(&fi->i_sem);
237 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
238 			get_parent_ino(inode, &pino)) {
239 		f2fs_i_pino_write(inode, pino);
240 		file_got_pino(inode);
241 	}
242 	f2fs_up_write(&fi->i_sem);
243 }
244 
245 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
246 						int datasync, bool atomic)
247 {
248 	struct inode *inode = file->f_mapping->host;
249 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
250 	nid_t ino = inode->i_ino;
251 	int ret = 0;
252 	enum cp_reason_type cp_reason = 0;
253 	struct writeback_control wbc = {
254 		.sync_mode = WB_SYNC_ALL,
255 		.nr_to_write = LONG_MAX,
256 		.for_reclaim = 0,
257 	};
258 	unsigned int seq_id = 0;
259 
260 	if (unlikely(f2fs_readonly(inode->i_sb)))
261 		return 0;
262 
263 	trace_f2fs_sync_file_enter(inode);
264 
265 	if (S_ISDIR(inode->i_mode))
266 		goto go_write;
267 
268 	/* if fdatasync is triggered, let's do in-place-update */
269 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
270 		set_inode_flag(inode, FI_NEED_IPU);
271 	ret = file_write_and_wait_range(file, start, end);
272 	clear_inode_flag(inode, FI_NEED_IPU);
273 
274 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
275 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
276 		return ret;
277 	}
278 
279 	/* if the inode is dirty, let's recover all the time */
280 	if (!f2fs_skip_inode_update(inode, datasync)) {
281 		f2fs_write_inode(inode, NULL);
282 		goto go_write;
283 	}
284 
285 	/*
286 	 * if there is no written data, don't waste time to write recovery info.
287 	 */
288 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
289 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
290 
291 		/* it may call write_inode just prior to fsync */
292 		if (need_inode_page_update(sbi, ino))
293 			goto go_write;
294 
295 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
296 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
297 			goto flush_out;
298 		goto out;
299 	} else {
300 		/*
301 		 * for OPU case, during fsync(), node can be persisted before
302 		 * data when lower device doesn't support write barrier, result
303 		 * in data corruption after SPO.
304 		 * So for strict fsync mode, force to use atomic write semantics
305 		 * to keep write order in between data/node and last node to
306 		 * avoid potential data corruption.
307 		 */
308 		if (F2FS_OPTION(sbi).fsync_mode ==
309 				FSYNC_MODE_STRICT && !atomic)
310 			atomic = true;
311 	}
312 go_write:
313 	/*
314 	 * Both of fdatasync() and fsync() are able to be recovered from
315 	 * sudden-power-off.
316 	 */
317 	f2fs_down_read(&F2FS_I(inode)->i_sem);
318 	cp_reason = need_do_checkpoint(inode);
319 	f2fs_up_read(&F2FS_I(inode)->i_sem);
320 
321 	if (cp_reason) {
322 		/* all the dirty node pages should be flushed for POR */
323 		ret = f2fs_sync_fs(inode->i_sb, 1);
324 
325 		/*
326 		 * We've secured consistency through sync_fs. Following pino
327 		 * will be used only for fsynced inodes after checkpoint.
328 		 */
329 		try_to_fix_pino(inode);
330 		clear_inode_flag(inode, FI_APPEND_WRITE);
331 		clear_inode_flag(inode, FI_UPDATE_WRITE);
332 		goto out;
333 	}
334 sync_nodes:
335 	atomic_inc(&sbi->wb_sync_req[NODE]);
336 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
337 	atomic_dec(&sbi->wb_sync_req[NODE]);
338 	if (ret)
339 		goto out;
340 
341 	/* if cp_error was enabled, we should avoid infinite loop */
342 	if (unlikely(f2fs_cp_error(sbi))) {
343 		ret = -EIO;
344 		goto out;
345 	}
346 
347 	if (f2fs_need_inode_block_update(sbi, ino)) {
348 		f2fs_mark_inode_dirty_sync(inode, true);
349 		f2fs_write_inode(inode, NULL);
350 		goto sync_nodes;
351 	}
352 
353 	/*
354 	 * If it's atomic_write, it's just fine to keep write ordering. So
355 	 * here we don't need to wait for node write completion, since we use
356 	 * node chain which serializes node blocks. If one of node writes are
357 	 * reordered, we can see simply broken chain, resulting in stopping
358 	 * roll-forward recovery. It means we'll recover all or none node blocks
359 	 * given fsync mark.
360 	 */
361 	if (!atomic) {
362 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
363 		if (ret)
364 			goto out;
365 	}
366 
367 	/* once recovery info is written, don't need to tack this */
368 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
369 	clear_inode_flag(inode, FI_APPEND_WRITE);
370 flush_out:
371 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
372 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
373 		ret = f2fs_issue_flush(sbi, inode->i_ino);
374 	if (!ret) {
375 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
376 		clear_inode_flag(inode, FI_UPDATE_WRITE);
377 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
378 	}
379 	f2fs_update_time(sbi, REQ_TIME);
380 out:
381 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
382 	return ret;
383 }
384 
385 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
386 {
387 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
388 		return -EIO;
389 	return f2fs_do_sync_file(file, start, end, datasync, false);
390 }
391 
392 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
393 				pgoff_t index, int whence)
394 {
395 	switch (whence) {
396 	case SEEK_DATA:
397 		if (__is_valid_data_blkaddr(blkaddr))
398 			return true;
399 		if (blkaddr == NEW_ADDR &&
400 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
401 			return true;
402 		break;
403 	case SEEK_HOLE:
404 		if (blkaddr == NULL_ADDR)
405 			return true;
406 		break;
407 	}
408 	return false;
409 }
410 
411 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
412 {
413 	struct inode *inode = file->f_mapping->host;
414 	loff_t maxbytes = inode->i_sb->s_maxbytes;
415 	struct dnode_of_data dn;
416 	pgoff_t pgofs, end_offset;
417 	loff_t data_ofs = offset;
418 	loff_t isize;
419 	int err = 0;
420 
421 	inode_lock(inode);
422 
423 	isize = i_size_read(inode);
424 	if (offset >= isize)
425 		goto fail;
426 
427 	/* handle inline data case */
428 	if (f2fs_has_inline_data(inode)) {
429 		if (whence == SEEK_HOLE) {
430 			data_ofs = isize;
431 			goto found;
432 		} else if (whence == SEEK_DATA) {
433 			data_ofs = offset;
434 			goto found;
435 		}
436 	}
437 
438 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
439 
440 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
441 		set_new_dnode(&dn, inode, NULL, NULL, 0);
442 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
443 		if (err && err != -ENOENT) {
444 			goto fail;
445 		} else if (err == -ENOENT) {
446 			/* direct node does not exists */
447 			if (whence == SEEK_DATA) {
448 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
449 				continue;
450 			} else {
451 				goto found;
452 			}
453 		}
454 
455 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
456 
457 		/* find data/hole in dnode block */
458 		for (; dn.ofs_in_node < end_offset;
459 				dn.ofs_in_node++, pgofs++,
460 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461 			block_t blkaddr;
462 
463 			blkaddr = f2fs_data_blkaddr(&dn);
464 
465 			if (__is_valid_data_blkaddr(blkaddr) &&
466 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
467 					blkaddr, DATA_GENERIC_ENHANCE)) {
468 				f2fs_put_dnode(&dn);
469 				goto fail;
470 			}
471 
472 			if (__found_offset(file->f_mapping, blkaddr,
473 							pgofs, whence)) {
474 				f2fs_put_dnode(&dn);
475 				goto found;
476 			}
477 		}
478 		f2fs_put_dnode(&dn);
479 	}
480 
481 	if (whence == SEEK_DATA)
482 		goto fail;
483 found:
484 	if (whence == SEEK_HOLE && data_ofs > isize)
485 		data_ofs = isize;
486 	inode_unlock(inode);
487 	return vfs_setpos(file, data_ofs, maxbytes);
488 fail:
489 	inode_unlock(inode);
490 	return -ENXIO;
491 }
492 
493 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
494 {
495 	struct inode *inode = file->f_mapping->host;
496 	loff_t maxbytes = inode->i_sb->s_maxbytes;
497 
498 	if (f2fs_compressed_file(inode))
499 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
500 
501 	switch (whence) {
502 	case SEEK_SET:
503 	case SEEK_CUR:
504 	case SEEK_END:
505 		return generic_file_llseek_size(file, offset, whence,
506 						maxbytes, i_size_read(inode));
507 	case SEEK_DATA:
508 	case SEEK_HOLE:
509 		if (offset < 0)
510 			return -ENXIO;
511 		return f2fs_seek_block(file, offset, whence);
512 	}
513 
514 	return -EINVAL;
515 }
516 
517 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
518 {
519 	struct inode *inode = file_inode(file);
520 
521 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
522 		return -EIO;
523 
524 	if (!f2fs_is_compress_backend_ready(inode))
525 		return -EOPNOTSUPP;
526 
527 	file_accessed(file);
528 	vma->vm_ops = &f2fs_file_vm_ops;
529 
530 	f2fs_down_read(&F2FS_I(inode)->i_sem);
531 	set_inode_flag(inode, FI_MMAP_FILE);
532 	f2fs_up_read(&F2FS_I(inode)->i_sem);
533 
534 	return 0;
535 }
536 
537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539 	int err = fscrypt_file_open(inode, filp);
540 
541 	if (err)
542 		return err;
543 
544 	if (!f2fs_is_compress_backend_ready(inode))
545 		return -EOPNOTSUPP;
546 
547 	err = fsverity_file_open(inode, filp);
548 	if (err)
549 		return err;
550 
551 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
552 	filp->f_mode |= FMODE_CAN_ODIRECT;
553 
554 	return dquot_file_open(inode, filp);
555 }
556 
557 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
558 {
559 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
560 	struct f2fs_node *raw_node;
561 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
562 	__le32 *addr;
563 	int base = 0;
564 	bool compressed_cluster = false;
565 	int cluster_index = 0, valid_blocks = 0;
566 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
567 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
568 
569 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
570 		base = get_extra_isize(dn->inode);
571 
572 	raw_node = F2FS_NODE(dn->node_page);
573 	addr = blkaddr_in_node(raw_node) + base + ofs;
574 
575 	/* Assumption: truncation starts with cluster */
576 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
577 		block_t blkaddr = le32_to_cpu(*addr);
578 
579 		if (f2fs_compressed_file(dn->inode) &&
580 					!(cluster_index & (cluster_size - 1))) {
581 			if (compressed_cluster)
582 				f2fs_i_compr_blocks_update(dn->inode,
583 							valid_blocks, false);
584 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
585 			valid_blocks = 0;
586 		}
587 
588 		if (blkaddr == NULL_ADDR)
589 			continue;
590 
591 		dn->data_blkaddr = NULL_ADDR;
592 		f2fs_set_data_blkaddr(dn);
593 
594 		if (__is_valid_data_blkaddr(blkaddr)) {
595 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
596 					DATA_GENERIC_ENHANCE))
597 				continue;
598 			if (compressed_cluster)
599 				valid_blocks++;
600 		}
601 
602 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
603 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
604 
605 		f2fs_invalidate_blocks(sbi, blkaddr);
606 
607 		if (!released || blkaddr != COMPRESS_ADDR)
608 			nr_free++;
609 	}
610 
611 	if (compressed_cluster)
612 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
613 
614 	if (nr_free) {
615 		pgoff_t fofs;
616 		/*
617 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
618 		 * we will invalidate all blkaddr in the whole range.
619 		 */
620 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
621 							dn->inode) + ofs;
622 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
623 		f2fs_update_age_extent_cache_range(dn, fofs, len);
624 		dec_valid_block_count(sbi, dn->inode, nr_free);
625 	}
626 	dn->ofs_in_node = ofs;
627 
628 	f2fs_update_time(sbi, REQ_TIME);
629 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
630 					 dn->ofs_in_node, nr_free);
631 }
632 
633 static int truncate_partial_data_page(struct inode *inode, u64 from,
634 								bool cache_only)
635 {
636 	loff_t offset = from & (PAGE_SIZE - 1);
637 	pgoff_t index = from >> PAGE_SHIFT;
638 	struct address_space *mapping = inode->i_mapping;
639 	struct page *page;
640 
641 	if (!offset && !cache_only)
642 		return 0;
643 
644 	if (cache_only) {
645 		page = find_lock_page(mapping, index);
646 		if (page && PageUptodate(page))
647 			goto truncate_out;
648 		f2fs_put_page(page, 1);
649 		return 0;
650 	}
651 
652 	page = f2fs_get_lock_data_page(inode, index, true);
653 	if (IS_ERR(page))
654 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
655 truncate_out:
656 	f2fs_wait_on_page_writeback(page, DATA, true, true);
657 	zero_user(page, offset, PAGE_SIZE - offset);
658 
659 	/* An encrypted inode should have a key and truncate the last page. */
660 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
661 	if (!cache_only)
662 		set_page_dirty(page);
663 	f2fs_put_page(page, 1);
664 	return 0;
665 }
666 
667 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
668 {
669 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
670 	struct dnode_of_data dn;
671 	pgoff_t free_from;
672 	int count = 0, err = 0;
673 	struct page *ipage;
674 	bool truncate_page = false;
675 
676 	trace_f2fs_truncate_blocks_enter(inode, from);
677 
678 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
679 
680 	if (free_from >= max_file_blocks(inode))
681 		goto free_partial;
682 
683 	if (lock)
684 		f2fs_lock_op(sbi);
685 
686 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
687 	if (IS_ERR(ipage)) {
688 		err = PTR_ERR(ipage);
689 		goto out;
690 	}
691 
692 	if (f2fs_has_inline_data(inode)) {
693 		f2fs_truncate_inline_inode(inode, ipage, from);
694 		f2fs_put_page(ipage, 1);
695 		truncate_page = true;
696 		goto out;
697 	}
698 
699 	set_new_dnode(&dn, inode, ipage, NULL, 0);
700 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
701 	if (err) {
702 		if (err == -ENOENT)
703 			goto free_next;
704 		goto out;
705 	}
706 
707 	count = ADDRS_PER_PAGE(dn.node_page, inode);
708 
709 	count -= dn.ofs_in_node;
710 	f2fs_bug_on(sbi, count < 0);
711 
712 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
713 		f2fs_truncate_data_blocks_range(&dn, count);
714 		free_from += count;
715 	}
716 
717 	f2fs_put_dnode(&dn);
718 free_next:
719 	err = f2fs_truncate_inode_blocks(inode, free_from);
720 out:
721 	if (lock)
722 		f2fs_unlock_op(sbi);
723 free_partial:
724 	/* lastly zero out the first data page */
725 	if (!err)
726 		err = truncate_partial_data_page(inode, from, truncate_page);
727 
728 	trace_f2fs_truncate_blocks_exit(inode, err);
729 	return err;
730 }
731 
732 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
733 {
734 	u64 free_from = from;
735 	int err;
736 
737 #ifdef CONFIG_F2FS_FS_COMPRESSION
738 	/*
739 	 * for compressed file, only support cluster size
740 	 * aligned truncation.
741 	 */
742 	if (f2fs_compressed_file(inode))
743 		free_from = round_up(from,
744 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
745 #endif
746 
747 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
748 	if (err)
749 		return err;
750 
751 #ifdef CONFIG_F2FS_FS_COMPRESSION
752 	/*
753 	 * For compressed file, after release compress blocks, don't allow write
754 	 * direct, but we should allow write direct after truncate to zero.
755 	 */
756 	if (f2fs_compressed_file(inode) && !free_from
757 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
758 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
759 
760 	if (from != free_from) {
761 		err = f2fs_truncate_partial_cluster(inode, from, lock);
762 		if (err)
763 			return err;
764 	}
765 #endif
766 
767 	return 0;
768 }
769 
770 int f2fs_truncate(struct inode *inode)
771 {
772 	int err;
773 
774 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
775 		return -EIO;
776 
777 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
778 				S_ISLNK(inode->i_mode)))
779 		return 0;
780 
781 	trace_f2fs_truncate(inode);
782 
783 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
784 		return -EIO;
785 
786 	err = f2fs_dquot_initialize(inode);
787 	if (err)
788 		return err;
789 
790 	/* we should check inline_data size */
791 	if (!f2fs_may_inline_data(inode)) {
792 		err = f2fs_convert_inline_inode(inode);
793 		if (err)
794 			return err;
795 	}
796 
797 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
798 	if (err)
799 		return err;
800 
801 	inode->i_mtime = inode_set_ctime_current(inode);
802 	f2fs_mark_inode_dirty_sync(inode, false);
803 	return 0;
804 }
805 
806 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
807 {
808 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
809 
810 	if (!fscrypt_dio_supported(inode))
811 		return true;
812 	if (fsverity_active(inode))
813 		return true;
814 	if (f2fs_compressed_file(inode))
815 		return true;
816 
817 	/* disallow direct IO if any of devices has unaligned blksize */
818 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
819 		return true;
820 	/*
821 	 * for blkzoned device, fallback direct IO to buffered IO, so
822 	 * all IOs can be serialized by log-structured write.
823 	 */
824 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
825 		return true;
826 	if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
827 		return true;
828 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
829 		return true;
830 
831 	return false;
832 }
833 
834 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
835 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
836 {
837 	struct inode *inode = d_inode(path->dentry);
838 	struct f2fs_inode_info *fi = F2FS_I(inode);
839 	struct f2fs_inode *ri = NULL;
840 	unsigned int flags;
841 
842 	if (f2fs_has_extra_attr(inode) &&
843 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
844 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
845 		stat->result_mask |= STATX_BTIME;
846 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
847 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
848 	}
849 
850 	/*
851 	 * Return the DIO alignment restrictions if requested.  We only return
852 	 * this information when requested, since on encrypted files it might
853 	 * take a fair bit of work to get if the file wasn't opened recently.
854 	 *
855 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
856 	 * cannot represent that, so in that case we report no DIO support.
857 	 */
858 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
859 		unsigned int bsize = i_blocksize(inode);
860 
861 		stat->result_mask |= STATX_DIOALIGN;
862 		if (!f2fs_force_buffered_io(inode, WRITE)) {
863 			stat->dio_mem_align = bsize;
864 			stat->dio_offset_align = bsize;
865 		}
866 	}
867 
868 	flags = fi->i_flags;
869 	if (flags & F2FS_COMPR_FL)
870 		stat->attributes |= STATX_ATTR_COMPRESSED;
871 	if (flags & F2FS_APPEND_FL)
872 		stat->attributes |= STATX_ATTR_APPEND;
873 	if (IS_ENCRYPTED(inode))
874 		stat->attributes |= STATX_ATTR_ENCRYPTED;
875 	if (flags & F2FS_IMMUTABLE_FL)
876 		stat->attributes |= STATX_ATTR_IMMUTABLE;
877 	if (flags & F2FS_NODUMP_FL)
878 		stat->attributes |= STATX_ATTR_NODUMP;
879 	if (IS_VERITY(inode))
880 		stat->attributes |= STATX_ATTR_VERITY;
881 
882 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
883 				  STATX_ATTR_APPEND |
884 				  STATX_ATTR_ENCRYPTED |
885 				  STATX_ATTR_IMMUTABLE |
886 				  STATX_ATTR_NODUMP |
887 				  STATX_ATTR_VERITY);
888 
889 	generic_fillattr(idmap, request_mask, inode, stat);
890 
891 	/* we need to show initial sectors used for inline_data/dentries */
892 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
893 					f2fs_has_inline_dentry(inode))
894 		stat->blocks += (stat->size + 511) >> 9;
895 
896 	return 0;
897 }
898 
899 #ifdef CONFIG_F2FS_FS_POSIX_ACL
900 static void __setattr_copy(struct mnt_idmap *idmap,
901 			   struct inode *inode, const struct iattr *attr)
902 {
903 	unsigned int ia_valid = attr->ia_valid;
904 
905 	i_uid_update(idmap, attr, inode);
906 	i_gid_update(idmap, attr, inode);
907 	if (ia_valid & ATTR_ATIME)
908 		inode->i_atime = attr->ia_atime;
909 	if (ia_valid & ATTR_MTIME)
910 		inode->i_mtime = attr->ia_mtime;
911 	if (ia_valid & ATTR_CTIME)
912 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
913 	if (ia_valid & ATTR_MODE) {
914 		umode_t mode = attr->ia_mode;
915 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
916 
917 		if (!vfsgid_in_group_p(vfsgid) &&
918 		    !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
919 			mode &= ~S_ISGID;
920 		set_acl_inode(inode, mode);
921 	}
922 }
923 #else
924 #define __setattr_copy setattr_copy
925 #endif
926 
927 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
928 		 struct iattr *attr)
929 {
930 	struct inode *inode = d_inode(dentry);
931 	int err;
932 
933 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
934 		return -EIO;
935 
936 	if (unlikely(IS_IMMUTABLE(inode)))
937 		return -EPERM;
938 
939 	if (unlikely(IS_APPEND(inode) &&
940 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
941 				  ATTR_GID | ATTR_TIMES_SET))))
942 		return -EPERM;
943 
944 	if ((attr->ia_valid & ATTR_SIZE) &&
945 		!f2fs_is_compress_backend_ready(inode))
946 		return -EOPNOTSUPP;
947 
948 	err = setattr_prepare(idmap, dentry, attr);
949 	if (err)
950 		return err;
951 
952 	err = fscrypt_prepare_setattr(dentry, attr);
953 	if (err)
954 		return err;
955 
956 	err = fsverity_prepare_setattr(dentry, attr);
957 	if (err)
958 		return err;
959 
960 	if (is_quota_modification(idmap, inode, attr)) {
961 		err = f2fs_dquot_initialize(inode);
962 		if (err)
963 			return err;
964 	}
965 	if (i_uid_needs_update(idmap, attr, inode) ||
966 	    i_gid_needs_update(idmap, attr, inode)) {
967 		f2fs_lock_op(F2FS_I_SB(inode));
968 		err = dquot_transfer(idmap, inode, attr);
969 		if (err) {
970 			set_sbi_flag(F2FS_I_SB(inode),
971 					SBI_QUOTA_NEED_REPAIR);
972 			f2fs_unlock_op(F2FS_I_SB(inode));
973 			return err;
974 		}
975 		/*
976 		 * update uid/gid under lock_op(), so that dquot and inode can
977 		 * be updated atomically.
978 		 */
979 		i_uid_update(idmap, attr, inode);
980 		i_gid_update(idmap, attr, inode);
981 		f2fs_mark_inode_dirty_sync(inode, true);
982 		f2fs_unlock_op(F2FS_I_SB(inode));
983 	}
984 
985 	if (attr->ia_valid & ATTR_SIZE) {
986 		loff_t old_size = i_size_read(inode);
987 
988 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
989 			/*
990 			 * should convert inline inode before i_size_write to
991 			 * keep smaller than inline_data size with inline flag.
992 			 */
993 			err = f2fs_convert_inline_inode(inode);
994 			if (err)
995 				return err;
996 		}
997 
998 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
999 		filemap_invalidate_lock(inode->i_mapping);
1000 
1001 		truncate_setsize(inode, attr->ia_size);
1002 
1003 		if (attr->ia_size <= old_size)
1004 			err = f2fs_truncate(inode);
1005 		/*
1006 		 * do not trim all blocks after i_size if target size is
1007 		 * larger than i_size.
1008 		 */
1009 		filemap_invalidate_unlock(inode->i_mapping);
1010 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1011 		if (err)
1012 			return err;
1013 
1014 		spin_lock(&F2FS_I(inode)->i_size_lock);
1015 		inode->i_mtime = inode_set_ctime_current(inode);
1016 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1017 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1018 	}
1019 
1020 	__setattr_copy(idmap, inode, attr);
1021 
1022 	if (attr->ia_valid & ATTR_MODE) {
1023 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1024 
1025 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1026 			if (!err)
1027 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1028 			clear_inode_flag(inode, FI_ACL_MODE);
1029 		}
1030 	}
1031 
1032 	/* file size may changed here */
1033 	f2fs_mark_inode_dirty_sync(inode, true);
1034 
1035 	/* inode change will produce dirty node pages flushed by checkpoint */
1036 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1037 
1038 	return err;
1039 }
1040 
1041 const struct inode_operations f2fs_file_inode_operations = {
1042 	.getattr	= f2fs_getattr,
1043 	.setattr	= f2fs_setattr,
1044 	.get_inode_acl	= f2fs_get_acl,
1045 	.set_acl	= f2fs_set_acl,
1046 	.listxattr	= f2fs_listxattr,
1047 	.fiemap		= f2fs_fiemap,
1048 	.fileattr_get	= f2fs_fileattr_get,
1049 	.fileattr_set	= f2fs_fileattr_set,
1050 };
1051 
1052 static int fill_zero(struct inode *inode, pgoff_t index,
1053 					loff_t start, loff_t len)
1054 {
1055 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1056 	struct page *page;
1057 
1058 	if (!len)
1059 		return 0;
1060 
1061 	f2fs_balance_fs(sbi, true);
1062 
1063 	f2fs_lock_op(sbi);
1064 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1065 	f2fs_unlock_op(sbi);
1066 
1067 	if (IS_ERR(page))
1068 		return PTR_ERR(page);
1069 
1070 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1071 	zero_user(page, start, len);
1072 	set_page_dirty(page);
1073 	f2fs_put_page(page, 1);
1074 	return 0;
1075 }
1076 
1077 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1078 {
1079 	int err;
1080 
1081 	while (pg_start < pg_end) {
1082 		struct dnode_of_data dn;
1083 		pgoff_t end_offset, count;
1084 
1085 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1086 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1087 		if (err) {
1088 			if (err == -ENOENT) {
1089 				pg_start = f2fs_get_next_page_offset(&dn,
1090 								pg_start);
1091 				continue;
1092 			}
1093 			return err;
1094 		}
1095 
1096 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1097 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1098 
1099 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1100 
1101 		f2fs_truncate_data_blocks_range(&dn, count);
1102 		f2fs_put_dnode(&dn);
1103 
1104 		pg_start += count;
1105 	}
1106 	return 0;
1107 }
1108 
1109 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1110 {
1111 	pgoff_t pg_start, pg_end;
1112 	loff_t off_start, off_end;
1113 	int ret;
1114 
1115 	ret = f2fs_convert_inline_inode(inode);
1116 	if (ret)
1117 		return ret;
1118 
1119 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1120 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1121 
1122 	off_start = offset & (PAGE_SIZE - 1);
1123 	off_end = (offset + len) & (PAGE_SIZE - 1);
1124 
1125 	if (pg_start == pg_end) {
1126 		ret = fill_zero(inode, pg_start, off_start,
1127 						off_end - off_start);
1128 		if (ret)
1129 			return ret;
1130 	} else {
1131 		if (off_start) {
1132 			ret = fill_zero(inode, pg_start++, off_start,
1133 						PAGE_SIZE - off_start);
1134 			if (ret)
1135 				return ret;
1136 		}
1137 		if (off_end) {
1138 			ret = fill_zero(inode, pg_end, 0, off_end);
1139 			if (ret)
1140 				return ret;
1141 		}
1142 
1143 		if (pg_start < pg_end) {
1144 			loff_t blk_start, blk_end;
1145 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1146 
1147 			f2fs_balance_fs(sbi, true);
1148 
1149 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1150 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1151 
1152 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1153 			filemap_invalidate_lock(inode->i_mapping);
1154 
1155 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1156 
1157 			f2fs_lock_op(sbi);
1158 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1159 			f2fs_unlock_op(sbi);
1160 
1161 			filemap_invalidate_unlock(inode->i_mapping);
1162 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1163 		}
1164 	}
1165 
1166 	return ret;
1167 }
1168 
1169 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1170 				int *do_replace, pgoff_t off, pgoff_t len)
1171 {
1172 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1173 	struct dnode_of_data dn;
1174 	int ret, done, i;
1175 
1176 next_dnode:
1177 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1178 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1179 	if (ret && ret != -ENOENT) {
1180 		return ret;
1181 	} else if (ret == -ENOENT) {
1182 		if (dn.max_level == 0)
1183 			return -ENOENT;
1184 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1185 						dn.ofs_in_node, len);
1186 		blkaddr += done;
1187 		do_replace += done;
1188 		goto next;
1189 	}
1190 
1191 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1192 							dn.ofs_in_node, len);
1193 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1194 		*blkaddr = f2fs_data_blkaddr(&dn);
1195 
1196 		if (__is_valid_data_blkaddr(*blkaddr) &&
1197 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1198 					DATA_GENERIC_ENHANCE)) {
1199 			f2fs_put_dnode(&dn);
1200 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1201 			return -EFSCORRUPTED;
1202 		}
1203 
1204 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1205 
1206 			if (f2fs_lfs_mode(sbi)) {
1207 				f2fs_put_dnode(&dn);
1208 				return -EOPNOTSUPP;
1209 			}
1210 
1211 			/* do not invalidate this block address */
1212 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1213 			*do_replace = 1;
1214 		}
1215 	}
1216 	f2fs_put_dnode(&dn);
1217 next:
1218 	len -= done;
1219 	off += done;
1220 	if (len)
1221 		goto next_dnode;
1222 	return 0;
1223 }
1224 
1225 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1226 				int *do_replace, pgoff_t off, int len)
1227 {
1228 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1229 	struct dnode_of_data dn;
1230 	int ret, i;
1231 
1232 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1233 		if (*do_replace == 0)
1234 			continue;
1235 
1236 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1237 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1238 		if (ret) {
1239 			dec_valid_block_count(sbi, inode, 1);
1240 			f2fs_invalidate_blocks(sbi, *blkaddr);
1241 		} else {
1242 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1243 		}
1244 		f2fs_put_dnode(&dn);
1245 	}
1246 	return 0;
1247 }
1248 
1249 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1250 			block_t *blkaddr, int *do_replace,
1251 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1252 {
1253 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1254 	pgoff_t i = 0;
1255 	int ret;
1256 
1257 	while (i < len) {
1258 		if (blkaddr[i] == NULL_ADDR && !full) {
1259 			i++;
1260 			continue;
1261 		}
1262 
1263 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1264 			struct dnode_of_data dn;
1265 			struct node_info ni;
1266 			size_t new_size;
1267 			pgoff_t ilen;
1268 
1269 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1270 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1271 			if (ret)
1272 				return ret;
1273 
1274 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1275 			if (ret) {
1276 				f2fs_put_dnode(&dn);
1277 				return ret;
1278 			}
1279 
1280 			ilen = min((pgoff_t)
1281 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1282 						dn.ofs_in_node, len - i);
1283 			do {
1284 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1285 				f2fs_truncate_data_blocks_range(&dn, 1);
1286 
1287 				if (do_replace[i]) {
1288 					f2fs_i_blocks_write(src_inode,
1289 							1, false, false);
1290 					f2fs_i_blocks_write(dst_inode,
1291 							1, true, false);
1292 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1293 					blkaddr[i], ni.version, true, false);
1294 
1295 					do_replace[i] = 0;
1296 				}
1297 				dn.ofs_in_node++;
1298 				i++;
1299 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1300 				if (dst_inode->i_size < new_size)
1301 					f2fs_i_size_write(dst_inode, new_size);
1302 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1303 
1304 			f2fs_put_dnode(&dn);
1305 		} else {
1306 			struct page *psrc, *pdst;
1307 
1308 			psrc = f2fs_get_lock_data_page(src_inode,
1309 							src + i, true);
1310 			if (IS_ERR(psrc))
1311 				return PTR_ERR(psrc);
1312 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1313 								true);
1314 			if (IS_ERR(pdst)) {
1315 				f2fs_put_page(psrc, 1);
1316 				return PTR_ERR(pdst);
1317 			}
1318 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1319 			set_page_dirty(pdst);
1320 			f2fs_put_page(pdst, 1);
1321 			f2fs_put_page(psrc, 1);
1322 
1323 			ret = f2fs_truncate_hole(src_inode,
1324 						src + i, src + i + 1);
1325 			if (ret)
1326 				return ret;
1327 			i++;
1328 		}
1329 	}
1330 	return 0;
1331 }
1332 
1333 static int __exchange_data_block(struct inode *src_inode,
1334 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1335 			pgoff_t len, bool full)
1336 {
1337 	block_t *src_blkaddr;
1338 	int *do_replace;
1339 	pgoff_t olen;
1340 	int ret;
1341 
1342 	while (len) {
1343 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1344 
1345 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1346 					array_size(olen, sizeof(block_t)),
1347 					GFP_NOFS);
1348 		if (!src_blkaddr)
1349 			return -ENOMEM;
1350 
1351 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1352 					array_size(olen, sizeof(int)),
1353 					GFP_NOFS);
1354 		if (!do_replace) {
1355 			kvfree(src_blkaddr);
1356 			return -ENOMEM;
1357 		}
1358 
1359 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1360 					do_replace, src, olen);
1361 		if (ret)
1362 			goto roll_back;
1363 
1364 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1365 					do_replace, src, dst, olen, full);
1366 		if (ret)
1367 			goto roll_back;
1368 
1369 		src += olen;
1370 		dst += olen;
1371 		len -= olen;
1372 
1373 		kvfree(src_blkaddr);
1374 		kvfree(do_replace);
1375 	}
1376 	return 0;
1377 
1378 roll_back:
1379 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1380 	kvfree(src_blkaddr);
1381 	kvfree(do_replace);
1382 	return ret;
1383 }
1384 
1385 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1386 {
1387 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1388 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1389 	pgoff_t start = offset >> PAGE_SHIFT;
1390 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1391 	int ret;
1392 
1393 	f2fs_balance_fs(sbi, true);
1394 
1395 	/* avoid gc operation during block exchange */
1396 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1397 	filemap_invalidate_lock(inode->i_mapping);
1398 
1399 	f2fs_lock_op(sbi);
1400 	f2fs_drop_extent_tree(inode);
1401 	truncate_pagecache(inode, offset);
1402 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1403 	f2fs_unlock_op(sbi);
1404 
1405 	filemap_invalidate_unlock(inode->i_mapping);
1406 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1407 	return ret;
1408 }
1409 
1410 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1411 {
1412 	loff_t new_size;
1413 	int ret;
1414 
1415 	if (offset + len >= i_size_read(inode))
1416 		return -EINVAL;
1417 
1418 	/* collapse range should be aligned to block size of f2fs. */
1419 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1420 		return -EINVAL;
1421 
1422 	ret = f2fs_convert_inline_inode(inode);
1423 	if (ret)
1424 		return ret;
1425 
1426 	/* write out all dirty pages from offset */
1427 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1428 	if (ret)
1429 		return ret;
1430 
1431 	ret = f2fs_do_collapse(inode, offset, len);
1432 	if (ret)
1433 		return ret;
1434 
1435 	/* write out all moved pages, if possible */
1436 	filemap_invalidate_lock(inode->i_mapping);
1437 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1438 	truncate_pagecache(inode, offset);
1439 
1440 	new_size = i_size_read(inode) - len;
1441 	ret = f2fs_truncate_blocks(inode, new_size, true);
1442 	filemap_invalidate_unlock(inode->i_mapping);
1443 	if (!ret)
1444 		f2fs_i_size_write(inode, new_size);
1445 	return ret;
1446 }
1447 
1448 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1449 								pgoff_t end)
1450 {
1451 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1452 	pgoff_t index = start;
1453 	unsigned int ofs_in_node = dn->ofs_in_node;
1454 	blkcnt_t count = 0;
1455 	int ret;
1456 
1457 	for (; index < end; index++, dn->ofs_in_node++) {
1458 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1459 			count++;
1460 	}
1461 
1462 	dn->ofs_in_node = ofs_in_node;
1463 	ret = f2fs_reserve_new_blocks(dn, count);
1464 	if (ret)
1465 		return ret;
1466 
1467 	dn->ofs_in_node = ofs_in_node;
1468 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1469 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1470 		/*
1471 		 * f2fs_reserve_new_blocks will not guarantee entire block
1472 		 * allocation.
1473 		 */
1474 		if (dn->data_blkaddr == NULL_ADDR) {
1475 			ret = -ENOSPC;
1476 			break;
1477 		}
1478 
1479 		if (dn->data_blkaddr == NEW_ADDR)
1480 			continue;
1481 
1482 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1483 					DATA_GENERIC_ENHANCE)) {
1484 			ret = -EFSCORRUPTED;
1485 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1486 			break;
1487 		}
1488 
1489 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1490 		dn->data_blkaddr = NEW_ADDR;
1491 		f2fs_set_data_blkaddr(dn);
1492 	}
1493 
1494 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1495 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1496 
1497 	return ret;
1498 }
1499 
1500 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1501 								int mode)
1502 {
1503 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1504 	struct address_space *mapping = inode->i_mapping;
1505 	pgoff_t index, pg_start, pg_end;
1506 	loff_t new_size = i_size_read(inode);
1507 	loff_t off_start, off_end;
1508 	int ret = 0;
1509 
1510 	ret = inode_newsize_ok(inode, (len + offset));
1511 	if (ret)
1512 		return ret;
1513 
1514 	ret = f2fs_convert_inline_inode(inode);
1515 	if (ret)
1516 		return ret;
1517 
1518 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1519 	if (ret)
1520 		return ret;
1521 
1522 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1523 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1524 
1525 	off_start = offset & (PAGE_SIZE - 1);
1526 	off_end = (offset + len) & (PAGE_SIZE - 1);
1527 
1528 	if (pg_start == pg_end) {
1529 		ret = fill_zero(inode, pg_start, off_start,
1530 						off_end - off_start);
1531 		if (ret)
1532 			return ret;
1533 
1534 		new_size = max_t(loff_t, new_size, offset + len);
1535 	} else {
1536 		if (off_start) {
1537 			ret = fill_zero(inode, pg_start++, off_start,
1538 						PAGE_SIZE - off_start);
1539 			if (ret)
1540 				return ret;
1541 
1542 			new_size = max_t(loff_t, new_size,
1543 					(loff_t)pg_start << PAGE_SHIFT);
1544 		}
1545 
1546 		for (index = pg_start; index < pg_end;) {
1547 			struct dnode_of_data dn;
1548 			unsigned int end_offset;
1549 			pgoff_t end;
1550 
1551 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1552 			filemap_invalidate_lock(mapping);
1553 
1554 			truncate_pagecache_range(inode,
1555 				(loff_t)index << PAGE_SHIFT,
1556 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1557 
1558 			f2fs_lock_op(sbi);
1559 
1560 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1561 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1562 			if (ret) {
1563 				f2fs_unlock_op(sbi);
1564 				filemap_invalidate_unlock(mapping);
1565 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1566 				goto out;
1567 			}
1568 
1569 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1570 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1571 
1572 			ret = f2fs_do_zero_range(&dn, index, end);
1573 			f2fs_put_dnode(&dn);
1574 
1575 			f2fs_unlock_op(sbi);
1576 			filemap_invalidate_unlock(mapping);
1577 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1578 
1579 			f2fs_balance_fs(sbi, dn.node_changed);
1580 
1581 			if (ret)
1582 				goto out;
1583 
1584 			index = end;
1585 			new_size = max_t(loff_t, new_size,
1586 					(loff_t)index << PAGE_SHIFT);
1587 		}
1588 
1589 		if (off_end) {
1590 			ret = fill_zero(inode, pg_end, 0, off_end);
1591 			if (ret)
1592 				goto out;
1593 
1594 			new_size = max_t(loff_t, new_size, offset + len);
1595 		}
1596 	}
1597 
1598 out:
1599 	if (new_size > i_size_read(inode)) {
1600 		if (mode & FALLOC_FL_KEEP_SIZE)
1601 			file_set_keep_isize(inode);
1602 		else
1603 			f2fs_i_size_write(inode, new_size);
1604 	}
1605 	return ret;
1606 }
1607 
1608 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1609 {
1610 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1611 	struct address_space *mapping = inode->i_mapping;
1612 	pgoff_t nr, pg_start, pg_end, delta, idx;
1613 	loff_t new_size;
1614 	int ret = 0;
1615 
1616 	new_size = i_size_read(inode) + len;
1617 	ret = inode_newsize_ok(inode, new_size);
1618 	if (ret)
1619 		return ret;
1620 
1621 	if (offset >= i_size_read(inode))
1622 		return -EINVAL;
1623 
1624 	/* insert range should be aligned to block size of f2fs. */
1625 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1626 		return -EINVAL;
1627 
1628 	ret = f2fs_convert_inline_inode(inode);
1629 	if (ret)
1630 		return ret;
1631 
1632 	f2fs_balance_fs(sbi, true);
1633 
1634 	filemap_invalidate_lock(mapping);
1635 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1636 	filemap_invalidate_unlock(mapping);
1637 	if (ret)
1638 		return ret;
1639 
1640 	/* write out all dirty pages from offset */
1641 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1642 	if (ret)
1643 		return ret;
1644 
1645 	pg_start = offset >> PAGE_SHIFT;
1646 	pg_end = (offset + len) >> PAGE_SHIFT;
1647 	delta = pg_end - pg_start;
1648 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1649 
1650 	/* avoid gc operation during block exchange */
1651 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1652 	filemap_invalidate_lock(mapping);
1653 	truncate_pagecache(inode, offset);
1654 
1655 	while (!ret && idx > pg_start) {
1656 		nr = idx - pg_start;
1657 		if (nr > delta)
1658 			nr = delta;
1659 		idx -= nr;
1660 
1661 		f2fs_lock_op(sbi);
1662 		f2fs_drop_extent_tree(inode);
1663 
1664 		ret = __exchange_data_block(inode, inode, idx,
1665 					idx + delta, nr, false);
1666 		f2fs_unlock_op(sbi);
1667 	}
1668 	filemap_invalidate_unlock(mapping);
1669 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1670 
1671 	/* write out all moved pages, if possible */
1672 	filemap_invalidate_lock(mapping);
1673 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1674 	truncate_pagecache(inode, offset);
1675 	filemap_invalidate_unlock(mapping);
1676 
1677 	if (!ret)
1678 		f2fs_i_size_write(inode, new_size);
1679 	return ret;
1680 }
1681 
1682 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1683 					loff_t len, int mode)
1684 {
1685 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1686 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1687 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1688 			.m_may_create = true };
1689 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1690 			.init_gc_type = FG_GC,
1691 			.should_migrate_blocks = false,
1692 			.err_gc_skipped = true,
1693 			.nr_free_secs = 0 };
1694 	pgoff_t pg_start, pg_end;
1695 	loff_t new_size;
1696 	loff_t off_end;
1697 	block_t expanded = 0;
1698 	int err;
1699 
1700 	err = inode_newsize_ok(inode, (len + offset));
1701 	if (err)
1702 		return err;
1703 
1704 	err = f2fs_convert_inline_inode(inode);
1705 	if (err)
1706 		return err;
1707 
1708 	f2fs_balance_fs(sbi, true);
1709 
1710 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1711 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1712 	off_end = (offset + len) & (PAGE_SIZE - 1);
1713 
1714 	map.m_lblk = pg_start;
1715 	map.m_len = pg_end - pg_start;
1716 	if (off_end)
1717 		map.m_len++;
1718 
1719 	if (!map.m_len)
1720 		return 0;
1721 
1722 	if (f2fs_is_pinned_file(inode)) {
1723 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1724 		block_t sec_len = roundup(map.m_len, sec_blks);
1725 
1726 		map.m_len = sec_blks;
1727 next_alloc:
1728 		if (has_not_enough_free_secs(sbi, 0,
1729 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1730 			f2fs_down_write(&sbi->gc_lock);
1731 			stat_inc_gc_call_count(sbi, FOREGROUND);
1732 			err = f2fs_gc(sbi, &gc_control);
1733 			if (err && err != -ENODATA)
1734 				goto out_err;
1735 		}
1736 
1737 		f2fs_down_write(&sbi->pin_sem);
1738 
1739 		f2fs_lock_op(sbi);
1740 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1741 		f2fs_unlock_op(sbi);
1742 
1743 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1744 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1745 		file_dont_truncate(inode);
1746 
1747 		f2fs_up_write(&sbi->pin_sem);
1748 
1749 		expanded += map.m_len;
1750 		sec_len -= map.m_len;
1751 		map.m_lblk += map.m_len;
1752 		if (!err && sec_len)
1753 			goto next_alloc;
1754 
1755 		map.m_len = expanded;
1756 	} else {
1757 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1758 		expanded = map.m_len;
1759 	}
1760 out_err:
1761 	if (err) {
1762 		pgoff_t last_off;
1763 
1764 		if (!expanded)
1765 			return err;
1766 
1767 		last_off = pg_start + expanded - 1;
1768 
1769 		/* update new size to the failed position */
1770 		new_size = (last_off == pg_end) ? offset + len :
1771 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1772 	} else {
1773 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1774 	}
1775 
1776 	if (new_size > i_size_read(inode)) {
1777 		if (mode & FALLOC_FL_KEEP_SIZE)
1778 			file_set_keep_isize(inode);
1779 		else
1780 			f2fs_i_size_write(inode, new_size);
1781 	}
1782 
1783 	return err;
1784 }
1785 
1786 static long f2fs_fallocate(struct file *file, int mode,
1787 				loff_t offset, loff_t len)
1788 {
1789 	struct inode *inode = file_inode(file);
1790 	long ret = 0;
1791 
1792 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1793 		return -EIO;
1794 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1795 		return -ENOSPC;
1796 	if (!f2fs_is_compress_backend_ready(inode))
1797 		return -EOPNOTSUPP;
1798 
1799 	/* f2fs only support ->fallocate for regular file */
1800 	if (!S_ISREG(inode->i_mode))
1801 		return -EINVAL;
1802 
1803 	if (IS_ENCRYPTED(inode) &&
1804 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1805 		return -EOPNOTSUPP;
1806 
1807 	/*
1808 	 * Pinned file should not support partial truncation since the block
1809 	 * can be used by applications.
1810 	 */
1811 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1812 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1813 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1814 		return -EOPNOTSUPP;
1815 
1816 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1817 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1818 			FALLOC_FL_INSERT_RANGE))
1819 		return -EOPNOTSUPP;
1820 
1821 	inode_lock(inode);
1822 
1823 	ret = file_modified(file);
1824 	if (ret)
1825 		goto out;
1826 
1827 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1828 		if (offset >= inode->i_size)
1829 			goto out;
1830 
1831 		ret = f2fs_punch_hole(inode, offset, len);
1832 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1833 		ret = f2fs_collapse_range(inode, offset, len);
1834 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1835 		ret = f2fs_zero_range(inode, offset, len, mode);
1836 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1837 		ret = f2fs_insert_range(inode, offset, len);
1838 	} else {
1839 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1840 	}
1841 
1842 	if (!ret) {
1843 		inode->i_mtime = inode_set_ctime_current(inode);
1844 		f2fs_mark_inode_dirty_sync(inode, false);
1845 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1846 	}
1847 
1848 out:
1849 	inode_unlock(inode);
1850 
1851 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1852 	return ret;
1853 }
1854 
1855 static int f2fs_release_file(struct inode *inode, struct file *filp)
1856 {
1857 	/*
1858 	 * f2fs_release_file is called at every close calls. So we should
1859 	 * not drop any inmemory pages by close called by other process.
1860 	 */
1861 	if (!(filp->f_mode & FMODE_WRITE) ||
1862 			atomic_read(&inode->i_writecount) != 1)
1863 		return 0;
1864 
1865 	inode_lock(inode);
1866 	f2fs_abort_atomic_write(inode, true);
1867 	inode_unlock(inode);
1868 
1869 	return 0;
1870 }
1871 
1872 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1873 {
1874 	struct inode *inode = file_inode(file);
1875 
1876 	/*
1877 	 * If the process doing a transaction is crashed, we should do
1878 	 * roll-back. Otherwise, other reader/write can see corrupted database
1879 	 * until all the writers close its file. Since this should be done
1880 	 * before dropping file lock, it needs to do in ->flush.
1881 	 */
1882 	if (F2FS_I(inode)->atomic_write_task == current &&
1883 				(current->flags & PF_EXITING)) {
1884 		inode_lock(inode);
1885 		f2fs_abort_atomic_write(inode, true);
1886 		inode_unlock(inode);
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1893 {
1894 	struct f2fs_inode_info *fi = F2FS_I(inode);
1895 	u32 masked_flags = fi->i_flags & mask;
1896 
1897 	/* mask can be shrunk by flags_valid selector */
1898 	iflags &= mask;
1899 
1900 	/* Is it quota file? Do not allow user to mess with it */
1901 	if (IS_NOQUOTA(inode))
1902 		return -EPERM;
1903 
1904 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1905 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1906 			return -EOPNOTSUPP;
1907 		if (!f2fs_empty_dir(inode))
1908 			return -ENOTEMPTY;
1909 	}
1910 
1911 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1912 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1913 			return -EOPNOTSUPP;
1914 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1915 			return -EINVAL;
1916 	}
1917 
1918 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1919 		if (masked_flags & F2FS_COMPR_FL) {
1920 			if (!f2fs_disable_compressed_file(inode))
1921 				return -EINVAL;
1922 		} else {
1923 			/* try to convert inline_data to support compression */
1924 			int err = f2fs_convert_inline_inode(inode);
1925 			if (err)
1926 				return err;
1927 
1928 			f2fs_down_write(&F2FS_I(inode)->i_sem);
1929 			if (!f2fs_may_compress(inode) ||
1930 					(S_ISREG(inode->i_mode) &&
1931 					F2FS_HAS_BLOCKS(inode))) {
1932 				f2fs_up_write(&F2FS_I(inode)->i_sem);
1933 				return -EINVAL;
1934 			}
1935 			err = set_compress_context(inode);
1936 			f2fs_up_write(&F2FS_I(inode)->i_sem);
1937 
1938 			if (err)
1939 				return err;
1940 		}
1941 	}
1942 
1943 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1944 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1945 					(fi->i_flags & F2FS_NOCOMP_FL));
1946 
1947 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1948 		set_inode_flag(inode, FI_PROJ_INHERIT);
1949 	else
1950 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1951 
1952 	inode_set_ctime_current(inode);
1953 	f2fs_set_inode_flags(inode);
1954 	f2fs_mark_inode_dirty_sync(inode, true);
1955 	return 0;
1956 }
1957 
1958 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1959 
1960 /*
1961  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1962  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1963  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1964  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1965  *
1966  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1967  * FS_IOC_FSSETXATTR is done by the VFS.
1968  */
1969 
1970 static const struct {
1971 	u32 iflag;
1972 	u32 fsflag;
1973 } f2fs_fsflags_map[] = {
1974 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1975 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1976 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1977 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1978 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1979 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1980 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1981 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1982 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1983 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1984 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1985 };
1986 
1987 #define F2FS_GETTABLE_FS_FL (		\
1988 		FS_COMPR_FL |		\
1989 		FS_SYNC_FL |		\
1990 		FS_IMMUTABLE_FL |	\
1991 		FS_APPEND_FL |		\
1992 		FS_NODUMP_FL |		\
1993 		FS_NOATIME_FL |		\
1994 		FS_NOCOMP_FL |		\
1995 		FS_INDEX_FL |		\
1996 		FS_DIRSYNC_FL |		\
1997 		FS_PROJINHERIT_FL |	\
1998 		FS_ENCRYPT_FL |		\
1999 		FS_INLINE_DATA_FL |	\
2000 		FS_NOCOW_FL |		\
2001 		FS_VERITY_FL |		\
2002 		FS_CASEFOLD_FL)
2003 
2004 #define F2FS_SETTABLE_FS_FL (		\
2005 		FS_COMPR_FL |		\
2006 		FS_SYNC_FL |		\
2007 		FS_IMMUTABLE_FL |	\
2008 		FS_APPEND_FL |		\
2009 		FS_NODUMP_FL |		\
2010 		FS_NOATIME_FL |		\
2011 		FS_NOCOMP_FL |		\
2012 		FS_DIRSYNC_FL |		\
2013 		FS_PROJINHERIT_FL |	\
2014 		FS_CASEFOLD_FL)
2015 
2016 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2017 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2018 {
2019 	u32 fsflags = 0;
2020 	int i;
2021 
2022 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2023 		if (iflags & f2fs_fsflags_map[i].iflag)
2024 			fsflags |= f2fs_fsflags_map[i].fsflag;
2025 
2026 	return fsflags;
2027 }
2028 
2029 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2030 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2031 {
2032 	u32 iflags = 0;
2033 	int i;
2034 
2035 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2036 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2037 			iflags |= f2fs_fsflags_map[i].iflag;
2038 
2039 	return iflags;
2040 }
2041 
2042 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2043 {
2044 	struct inode *inode = file_inode(filp);
2045 
2046 	return put_user(inode->i_generation, (int __user *)arg);
2047 }
2048 
2049 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2050 {
2051 	struct inode *inode = file_inode(filp);
2052 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2053 	struct f2fs_inode_info *fi = F2FS_I(inode);
2054 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2055 	struct inode *pinode;
2056 	loff_t isize;
2057 	int ret;
2058 
2059 	if (!inode_owner_or_capable(idmap, inode))
2060 		return -EACCES;
2061 
2062 	if (!S_ISREG(inode->i_mode))
2063 		return -EINVAL;
2064 
2065 	if (filp->f_flags & O_DIRECT)
2066 		return -EINVAL;
2067 
2068 	ret = mnt_want_write_file(filp);
2069 	if (ret)
2070 		return ret;
2071 
2072 	inode_lock(inode);
2073 
2074 	if (!f2fs_disable_compressed_file(inode)) {
2075 		ret = -EINVAL;
2076 		goto out;
2077 	}
2078 
2079 	if (f2fs_is_atomic_file(inode))
2080 		goto out;
2081 
2082 	ret = f2fs_convert_inline_inode(inode);
2083 	if (ret)
2084 		goto out;
2085 
2086 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2087 
2088 	/*
2089 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2090 	 * f2fs_is_atomic_file.
2091 	 */
2092 	if (get_dirty_pages(inode))
2093 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2094 			  inode->i_ino, get_dirty_pages(inode));
2095 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2096 	if (ret) {
2097 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2098 		goto out;
2099 	}
2100 
2101 	/* Check if the inode already has a COW inode */
2102 	if (fi->cow_inode == NULL) {
2103 		/* Create a COW inode for atomic write */
2104 		pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2105 		if (IS_ERR(pinode)) {
2106 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2107 			ret = PTR_ERR(pinode);
2108 			goto out;
2109 		}
2110 
2111 		ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2112 		iput(pinode);
2113 		if (ret) {
2114 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2115 			goto out;
2116 		}
2117 
2118 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2119 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2120 	} else {
2121 		/* Reuse the already created COW inode */
2122 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2123 		if (ret) {
2124 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2125 			goto out;
2126 		}
2127 	}
2128 
2129 	f2fs_write_inode(inode, NULL);
2130 
2131 	stat_inc_atomic_inode(inode);
2132 
2133 	set_inode_flag(inode, FI_ATOMIC_FILE);
2134 
2135 	isize = i_size_read(inode);
2136 	fi->original_i_size = isize;
2137 	if (truncate) {
2138 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2139 		truncate_inode_pages_final(inode->i_mapping);
2140 		f2fs_i_size_write(inode, 0);
2141 		isize = 0;
2142 	}
2143 	f2fs_i_size_write(fi->cow_inode, isize);
2144 
2145 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2146 
2147 	f2fs_update_time(sbi, REQ_TIME);
2148 	fi->atomic_write_task = current;
2149 	stat_update_max_atomic_write(inode);
2150 	fi->atomic_write_cnt = 0;
2151 out:
2152 	inode_unlock(inode);
2153 	mnt_drop_write_file(filp);
2154 	return ret;
2155 }
2156 
2157 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2158 {
2159 	struct inode *inode = file_inode(filp);
2160 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2161 	int ret;
2162 
2163 	if (!inode_owner_or_capable(idmap, inode))
2164 		return -EACCES;
2165 
2166 	ret = mnt_want_write_file(filp);
2167 	if (ret)
2168 		return ret;
2169 
2170 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2171 
2172 	inode_lock(inode);
2173 
2174 	if (f2fs_is_atomic_file(inode)) {
2175 		ret = f2fs_commit_atomic_write(inode);
2176 		if (!ret)
2177 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2178 
2179 		f2fs_abort_atomic_write(inode, ret);
2180 	} else {
2181 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2182 	}
2183 
2184 	inode_unlock(inode);
2185 	mnt_drop_write_file(filp);
2186 	return ret;
2187 }
2188 
2189 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2190 {
2191 	struct inode *inode = file_inode(filp);
2192 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2193 	int ret;
2194 
2195 	if (!inode_owner_or_capable(idmap, inode))
2196 		return -EACCES;
2197 
2198 	ret = mnt_want_write_file(filp);
2199 	if (ret)
2200 		return ret;
2201 
2202 	inode_lock(inode);
2203 
2204 	f2fs_abort_atomic_write(inode, true);
2205 
2206 	inode_unlock(inode);
2207 
2208 	mnt_drop_write_file(filp);
2209 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2210 	return ret;
2211 }
2212 
2213 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2214 {
2215 	struct inode *inode = file_inode(filp);
2216 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2217 	struct super_block *sb = sbi->sb;
2218 	__u32 in;
2219 	int ret = 0;
2220 
2221 	if (!capable(CAP_SYS_ADMIN))
2222 		return -EPERM;
2223 
2224 	if (get_user(in, (__u32 __user *)arg))
2225 		return -EFAULT;
2226 
2227 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2228 		ret = mnt_want_write_file(filp);
2229 		if (ret) {
2230 			if (ret == -EROFS) {
2231 				ret = 0;
2232 				f2fs_stop_checkpoint(sbi, false,
2233 						STOP_CP_REASON_SHUTDOWN);
2234 				trace_f2fs_shutdown(sbi, in, ret);
2235 			}
2236 			return ret;
2237 		}
2238 	}
2239 
2240 	switch (in) {
2241 	case F2FS_GOING_DOWN_FULLSYNC:
2242 		ret = freeze_bdev(sb->s_bdev);
2243 		if (ret)
2244 			goto out;
2245 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2246 		thaw_bdev(sb->s_bdev);
2247 		break;
2248 	case F2FS_GOING_DOWN_METASYNC:
2249 		/* do checkpoint only */
2250 		ret = f2fs_sync_fs(sb, 1);
2251 		if (ret)
2252 			goto out;
2253 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2254 		break;
2255 	case F2FS_GOING_DOWN_NOSYNC:
2256 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2257 		break;
2258 	case F2FS_GOING_DOWN_METAFLUSH:
2259 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2260 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2261 		break;
2262 	case F2FS_GOING_DOWN_NEED_FSCK:
2263 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2264 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2265 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2266 		/* do checkpoint only */
2267 		ret = f2fs_sync_fs(sb, 1);
2268 		goto out;
2269 	default:
2270 		ret = -EINVAL;
2271 		goto out;
2272 	}
2273 
2274 	f2fs_stop_gc_thread(sbi);
2275 	f2fs_stop_discard_thread(sbi);
2276 
2277 	f2fs_drop_discard_cmd(sbi);
2278 	clear_opt(sbi, DISCARD);
2279 
2280 	f2fs_update_time(sbi, REQ_TIME);
2281 out:
2282 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2283 		mnt_drop_write_file(filp);
2284 
2285 	trace_f2fs_shutdown(sbi, in, ret);
2286 
2287 	return ret;
2288 }
2289 
2290 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2291 {
2292 	struct inode *inode = file_inode(filp);
2293 	struct super_block *sb = inode->i_sb;
2294 	struct fstrim_range range;
2295 	int ret;
2296 
2297 	if (!capable(CAP_SYS_ADMIN))
2298 		return -EPERM;
2299 
2300 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2301 		return -EOPNOTSUPP;
2302 
2303 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2304 				sizeof(range)))
2305 		return -EFAULT;
2306 
2307 	ret = mnt_want_write_file(filp);
2308 	if (ret)
2309 		return ret;
2310 
2311 	range.minlen = max((unsigned int)range.minlen,
2312 			   bdev_discard_granularity(sb->s_bdev));
2313 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2314 	mnt_drop_write_file(filp);
2315 	if (ret < 0)
2316 		return ret;
2317 
2318 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2319 				sizeof(range)))
2320 		return -EFAULT;
2321 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2322 	return 0;
2323 }
2324 
2325 static bool uuid_is_nonzero(__u8 u[16])
2326 {
2327 	int i;
2328 
2329 	for (i = 0; i < 16; i++)
2330 		if (u[i])
2331 			return true;
2332 	return false;
2333 }
2334 
2335 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2336 {
2337 	struct inode *inode = file_inode(filp);
2338 
2339 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2340 		return -EOPNOTSUPP;
2341 
2342 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2343 
2344 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2345 }
2346 
2347 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2348 {
2349 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2350 		return -EOPNOTSUPP;
2351 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2352 }
2353 
2354 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2355 {
2356 	struct inode *inode = file_inode(filp);
2357 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2358 	u8 encrypt_pw_salt[16];
2359 	int err;
2360 
2361 	if (!f2fs_sb_has_encrypt(sbi))
2362 		return -EOPNOTSUPP;
2363 
2364 	err = mnt_want_write_file(filp);
2365 	if (err)
2366 		return err;
2367 
2368 	f2fs_down_write(&sbi->sb_lock);
2369 
2370 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2371 		goto got_it;
2372 
2373 	/* update superblock with uuid */
2374 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2375 
2376 	err = f2fs_commit_super(sbi, false);
2377 	if (err) {
2378 		/* undo new data */
2379 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2380 		goto out_err;
2381 	}
2382 got_it:
2383 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2384 out_err:
2385 	f2fs_up_write(&sbi->sb_lock);
2386 	mnt_drop_write_file(filp);
2387 
2388 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2389 		err = -EFAULT;
2390 
2391 	return err;
2392 }
2393 
2394 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2395 					     unsigned long arg)
2396 {
2397 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2398 		return -EOPNOTSUPP;
2399 
2400 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2401 }
2402 
2403 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2404 {
2405 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2406 		return -EOPNOTSUPP;
2407 
2408 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2409 }
2410 
2411 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2412 {
2413 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2414 		return -EOPNOTSUPP;
2415 
2416 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2417 }
2418 
2419 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2420 						    unsigned long arg)
2421 {
2422 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2423 		return -EOPNOTSUPP;
2424 
2425 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2426 }
2427 
2428 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2429 					      unsigned long arg)
2430 {
2431 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2432 		return -EOPNOTSUPP;
2433 
2434 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2435 }
2436 
2437 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2438 {
2439 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2440 		return -EOPNOTSUPP;
2441 
2442 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2443 }
2444 
2445 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2446 {
2447 	struct inode *inode = file_inode(filp);
2448 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2449 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2450 			.no_bg_gc = false,
2451 			.should_migrate_blocks = false,
2452 			.nr_free_secs = 0 };
2453 	__u32 sync;
2454 	int ret;
2455 
2456 	if (!capable(CAP_SYS_ADMIN))
2457 		return -EPERM;
2458 
2459 	if (get_user(sync, (__u32 __user *)arg))
2460 		return -EFAULT;
2461 
2462 	if (f2fs_readonly(sbi->sb))
2463 		return -EROFS;
2464 
2465 	ret = mnt_want_write_file(filp);
2466 	if (ret)
2467 		return ret;
2468 
2469 	if (!sync) {
2470 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2471 			ret = -EBUSY;
2472 			goto out;
2473 		}
2474 	} else {
2475 		f2fs_down_write(&sbi->gc_lock);
2476 	}
2477 
2478 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2479 	gc_control.err_gc_skipped = sync;
2480 	stat_inc_gc_call_count(sbi, FOREGROUND);
2481 	ret = f2fs_gc(sbi, &gc_control);
2482 out:
2483 	mnt_drop_write_file(filp);
2484 	return ret;
2485 }
2486 
2487 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2488 {
2489 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2490 	struct f2fs_gc_control gc_control = {
2491 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2492 			.no_bg_gc = false,
2493 			.should_migrate_blocks = false,
2494 			.err_gc_skipped = range->sync,
2495 			.nr_free_secs = 0 };
2496 	u64 end;
2497 	int ret;
2498 
2499 	if (!capable(CAP_SYS_ADMIN))
2500 		return -EPERM;
2501 	if (f2fs_readonly(sbi->sb))
2502 		return -EROFS;
2503 
2504 	end = range->start + range->len;
2505 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2506 					end >= MAX_BLKADDR(sbi))
2507 		return -EINVAL;
2508 
2509 	ret = mnt_want_write_file(filp);
2510 	if (ret)
2511 		return ret;
2512 
2513 do_more:
2514 	if (!range->sync) {
2515 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2516 			ret = -EBUSY;
2517 			goto out;
2518 		}
2519 	} else {
2520 		f2fs_down_write(&sbi->gc_lock);
2521 	}
2522 
2523 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2524 	stat_inc_gc_call_count(sbi, FOREGROUND);
2525 	ret = f2fs_gc(sbi, &gc_control);
2526 	if (ret) {
2527 		if (ret == -EBUSY)
2528 			ret = -EAGAIN;
2529 		goto out;
2530 	}
2531 	range->start += CAP_BLKS_PER_SEC(sbi);
2532 	if (range->start <= end)
2533 		goto do_more;
2534 out:
2535 	mnt_drop_write_file(filp);
2536 	return ret;
2537 }
2538 
2539 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2540 {
2541 	struct f2fs_gc_range range;
2542 
2543 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2544 							sizeof(range)))
2545 		return -EFAULT;
2546 	return __f2fs_ioc_gc_range(filp, &range);
2547 }
2548 
2549 static int f2fs_ioc_write_checkpoint(struct file *filp)
2550 {
2551 	struct inode *inode = file_inode(filp);
2552 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2553 	int ret;
2554 
2555 	if (!capable(CAP_SYS_ADMIN))
2556 		return -EPERM;
2557 
2558 	if (f2fs_readonly(sbi->sb))
2559 		return -EROFS;
2560 
2561 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2562 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2563 		return -EINVAL;
2564 	}
2565 
2566 	ret = mnt_want_write_file(filp);
2567 	if (ret)
2568 		return ret;
2569 
2570 	ret = f2fs_sync_fs(sbi->sb, 1);
2571 
2572 	mnt_drop_write_file(filp);
2573 	return ret;
2574 }
2575 
2576 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2577 					struct file *filp,
2578 					struct f2fs_defragment *range)
2579 {
2580 	struct inode *inode = file_inode(filp);
2581 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2582 					.m_seg_type = NO_CHECK_TYPE,
2583 					.m_may_create = false };
2584 	struct extent_info ei = {};
2585 	pgoff_t pg_start, pg_end, next_pgofs;
2586 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2587 	unsigned int total = 0, sec_num;
2588 	block_t blk_end = 0;
2589 	bool fragmented = false;
2590 	int err;
2591 
2592 	pg_start = range->start >> PAGE_SHIFT;
2593 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2594 
2595 	f2fs_balance_fs(sbi, true);
2596 
2597 	inode_lock(inode);
2598 
2599 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2600 		err = -EINVAL;
2601 		goto unlock_out;
2602 	}
2603 
2604 	/* if in-place-update policy is enabled, don't waste time here */
2605 	set_inode_flag(inode, FI_OPU_WRITE);
2606 	if (f2fs_should_update_inplace(inode, NULL)) {
2607 		err = -EINVAL;
2608 		goto out;
2609 	}
2610 
2611 	/* writeback all dirty pages in the range */
2612 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2613 						range->start + range->len - 1);
2614 	if (err)
2615 		goto out;
2616 
2617 	/*
2618 	 * lookup mapping info in extent cache, skip defragmenting if physical
2619 	 * block addresses are continuous.
2620 	 */
2621 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2622 		if (ei.fofs + ei.len >= pg_end)
2623 			goto out;
2624 	}
2625 
2626 	map.m_lblk = pg_start;
2627 	map.m_next_pgofs = &next_pgofs;
2628 
2629 	/*
2630 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2631 	 * physical block addresses are continuous even if there are hole(s)
2632 	 * in logical blocks.
2633 	 */
2634 	while (map.m_lblk < pg_end) {
2635 		map.m_len = pg_end - map.m_lblk;
2636 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2637 		if (err)
2638 			goto out;
2639 
2640 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2641 			map.m_lblk = next_pgofs;
2642 			continue;
2643 		}
2644 
2645 		if (blk_end && blk_end != map.m_pblk)
2646 			fragmented = true;
2647 
2648 		/* record total count of block that we're going to move */
2649 		total += map.m_len;
2650 
2651 		blk_end = map.m_pblk + map.m_len;
2652 
2653 		map.m_lblk += map.m_len;
2654 	}
2655 
2656 	if (!fragmented) {
2657 		total = 0;
2658 		goto out;
2659 	}
2660 
2661 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2662 
2663 	/*
2664 	 * make sure there are enough free section for LFS allocation, this can
2665 	 * avoid defragment running in SSR mode when free section are allocated
2666 	 * intensively
2667 	 */
2668 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2669 		err = -EAGAIN;
2670 		goto out;
2671 	}
2672 
2673 	map.m_lblk = pg_start;
2674 	map.m_len = pg_end - pg_start;
2675 	total = 0;
2676 
2677 	while (map.m_lblk < pg_end) {
2678 		pgoff_t idx;
2679 		int cnt = 0;
2680 
2681 do_map:
2682 		map.m_len = pg_end - map.m_lblk;
2683 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2684 		if (err)
2685 			goto clear_out;
2686 
2687 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2688 			map.m_lblk = next_pgofs;
2689 			goto check;
2690 		}
2691 
2692 		set_inode_flag(inode, FI_SKIP_WRITES);
2693 
2694 		idx = map.m_lblk;
2695 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2696 			struct page *page;
2697 
2698 			page = f2fs_get_lock_data_page(inode, idx, true);
2699 			if (IS_ERR(page)) {
2700 				err = PTR_ERR(page);
2701 				goto clear_out;
2702 			}
2703 
2704 			set_page_dirty(page);
2705 			set_page_private_gcing(page);
2706 			f2fs_put_page(page, 1);
2707 
2708 			idx++;
2709 			cnt++;
2710 			total++;
2711 		}
2712 
2713 		map.m_lblk = idx;
2714 check:
2715 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2716 			goto do_map;
2717 
2718 		clear_inode_flag(inode, FI_SKIP_WRITES);
2719 
2720 		err = filemap_fdatawrite(inode->i_mapping);
2721 		if (err)
2722 			goto out;
2723 	}
2724 clear_out:
2725 	clear_inode_flag(inode, FI_SKIP_WRITES);
2726 out:
2727 	clear_inode_flag(inode, FI_OPU_WRITE);
2728 unlock_out:
2729 	inode_unlock(inode);
2730 	if (!err)
2731 		range->len = (u64)total << PAGE_SHIFT;
2732 	return err;
2733 }
2734 
2735 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2736 {
2737 	struct inode *inode = file_inode(filp);
2738 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2739 	struct f2fs_defragment range;
2740 	int err;
2741 
2742 	if (!capable(CAP_SYS_ADMIN))
2743 		return -EPERM;
2744 
2745 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2746 		return -EINVAL;
2747 
2748 	if (f2fs_readonly(sbi->sb))
2749 		return -EROFS;
2750 
2751 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2752 							sizeof(range)))
2753 		return -EFAULT;
2754 
2755 	/* verify alignment of offset & size */
2756 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2757 		return -EINVAL;
2758 
2759 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2760 					max_file_blocks(inode)))
2761 		return -EINVAL;
2762 
2763 	err = mnt_want_write_file(filp);
2764 	if (err)
2765 		return err;
2766 
2767 	err = f2fs_defragment_range(sbi, filp, &range);
2768 	mnt_drop_write_file(filp);
2769 
2770 	f2fs_update_time(sbi, REQ_TIME);
2771 	if (err < 0)
2772 		return err;
2773 
2774 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2775 							sizeof(range)))
2776 		return -EFAULT;
2777 
2778 	return 0;
2779 }
2780 
2781 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2782 			struct file *file_out, loff_t pos_out, size_t len)
2783 {
2784 	struct inode *src = file_inode(file_in);
2785 	struct inode *dst = file_inode(file_out);
2786 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2787 	size_t olen = len, dst_max_i_size = 0;
2788 	size_t dst_osize;
2789 	int ret;
2790 
2791 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2792 				src->i_sb != dst->i_sb)
2793 		return -EXDEV;
2794 
2795 	if (unlikely(f2fs_readonly(src->i_sb)))
2796 		return -EROFS;
2797 
2798 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2799 		return -EINVAL;
2800 
2801 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2802 		return -EOPNOTSUPP;
2803 
2804 	if (pos_out < 0 || pos_in < 0)
2805 		return -EINVAL;
2806 
2807 	if (src == dst) {
2808 		if (pos_in == pos_out)
2809 			return 0;
2810 		if (pos_out > pos_in && pos_out < pos_in + len)
2811 			return -EINVAL;
2812 	}
2813 
2814 	inode_lock(src);
2815 	if (src != dst) {
2816 		ret = -EBUSY;
2817 		if (!inode_trylock(dst))
2818 			goto out;
2819 	}
2820 
2821 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst)) {
2822 		ret = -EOPNOTSUPP;
2823 		goto out_unlock;
2824 	}
2825 
2826 	ret = -EINVAL;
2827 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2828 		goto out_unlock;
2829 	if (len == 0)
2830 		olen = len = src->i_size - pos_in;
2831 	if (pos_in + len == src->i_size)
2832 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2833 	if (len == 0) {
2834 		ret = 0;
2835 		goto out_unlock;
2836 	}
2837 
2838 	dst_osize = dst->i_size;
2839 	if (pos_out + olen > dst->i_size)
2840 		dst_max_i_size = pos_out + olen;
2841 
2842 	/* verify the end result is block aligned */
2843 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2844 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2845 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2846 		goto out_unlock;
2847 
2848 	ret = f2fs_convert_inline_inode(src);
2849 	if (ret)
2850 		goto out_unlock;
2851 
2852 	ret = f2fs_convert_inline_inode(dst);
2853 	if (ret)
2854 		goto out_unlock;
2855 
2856 	/* write out all dirty pages from offset */
2857 	ret = filemap_write_and_wait_range(src->i_mapping,
2858 					pos_in, pos_in + len);
2859 	if (ret)
2860 		goto out_unlock;
2861 
2862 	ret = filemap_write_and_wait_range(dst->i_mapping,
2863 					pos_out, pos_out + len);
2864 	if (ret)
2865 		goto out_unlock;
2866 
2867 	f2fs_balance_fs(sbi, true);
2868 
2869 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2870 	if (src != dst) {
2871 		ret = -EBUSY;
2872 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2873 			goto out_src;
2874 	}
2875 
2876 	f2fs_lock_op(sbi);
2877 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2878 				pos_out >> F2FS_BLKSIZE_BITS,
2879 				len >> F2FS_BLKSIZE_BITS, false);
2880 
2881 	if (!ret) {
2882 		if (dst_max_i_size)
2883 			f2fs_i_size_write(dst, dst_max_i_size);
2884 		else if (dst_osize != dst->i_size)
2885 			f2fs_i_size_write(dst, dst_osize);
2886 	}
2887 	f2fs_unlock_op(sbi);
2888 
2889 	if (src != dst)
2890 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2891 out_src:
2892 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2893 	if (ret)
2894 		goto out_unlock;
2895 
2896 	src->i_mtime = inode_set_ctime_current(src);
2897 	f2fs_mark_inode_dirty_sync(src, false);
2898 	if (src != dst) {
2899 		dst->i_mtime = inode_set_ctime_current(dst);
2900 		f2fs_mark_inode_dirty_sync(dst, false);
2901 	}
2902 	f2fs_update_time(sbi, REQ_TIME);
2903 
2904 out_unlock:
2905 	if (src != dst)
2906 		inode_unlock(dst);
2907 out:
2908 	inode_unlock(src);
2909 	return ret;
2910 }
2911 
2912 static int __f2fs_ioc_move_range(struct file *filp,
2913 				struct f2fs_move_range *range)
2914 {
2915 	struct fd dst;
2916 	int err;
2917 
2918 	if (!(filp->f_mode & FMODE_READ) ||
2919 			!(filp->f_mode & FMODE_WRITE))
2920 		return -EBADF;
2921 
2922 	dst = fdget(range->dst_fd);
2923 	if (!dst.file)
2924 		return -EBADF;
2925 
2926 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2927 		err = -EBADF;
2928 		goto err_out;
2929 	}
2930 
2931 	err = mnt_want_write_file(filp);
2932 	if (err)
2933 		goto err_out;
2934 
2935 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2936 					range->pos_out, range->len);
2937 
2938 	mnt_drop_write_file(filp);
2939 err_out:
2940 	fdput(dst);
2941 	return err;
2942 }
2943 
2944 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2945 {
2946 	struct f2fs_move_range range;
2947 
2948 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2949 							sizeof(range)))
2950 		return -EFAULT;
2951 	return __f2fs_ioc_move_range(filp, &range);
2952 }
2953 
2954 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2955 {
2956 	struct inode *inode = file_inode(filp);
2957 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2958 	struct sit_info *sm = SIT_I(sbi);
2959 	unsigned int start_segno = 0, end_segno = 0;
2960 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2961 	struct f2fs_flush_device range;
2962 	struct f2fs_gc_control gc_control = {
2963 			.init_gc_type = FG_GC,
2964 			.should_migrate_blocks = true,
2965 			.err_gc_skipped = true,
2966 			.nr_free_secs = 0 };
2967 	int ret;
2968 
2969 	if (!capable(CAP_SYS_ADMIN))
2970 		return -EPERM;
2971 
2972 	if (f2fs_readonly(sbi->sb))
2973 		return -EROFS;
2974 
2975 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2976 		return -EINVAL;
2977 
2978 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2979 							sizeof(range)))
2980 		return -EFAULT;
2981 
2982 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2983 			__is_large_section(sbi)) {
2984 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2985 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2986 		return -EINVAL;
2987 	}
2988 
2989 	ret = mnt_want_write_file(filp);
2990 	if (ret)
2991 		return ret;
2992 
2993 	if (range.dev_num != 0)
2994 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2995 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2996 
2997 	start_segno = sm->last_victim[FLUSH_DEVICE];
2998 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2999 		start_segno = dev_start_segno;
3000 	end_segno = min(start_segno + range.segments, dev_end_segno);
3001 
3002 	while (start_segno < end_segno) {
3003 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3004 			ret = -EBUSY;
3005 			goto out;
3006 		}
3007 		sm->last_victim[GC_CB] = end_segno + 1;
3008 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3009 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3010 
3011 		gc_control.victim_segno = start_segno;
3012 		stat_inc_gc_call_count(sbi, FOREGROUND);
3013 		ret = f2fs_gc(sbi, &gc_control);
3014 		if (ret == -EAGAIN)
3015 			ret = 0;
3016 		else if (ret < 0)
3017 			break;
3018 		start_segno++;
3019 	}
3020 out:
3021 	mnt_drop_write_file(filp);
3022 	return ret;
3023 }
3024 
3025 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3026 {
3027 	struct inode *inode = file_inode(filp);
3028 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3029 
3030 	/* Must validate to set it with SQLite behavior in Android. */
3031 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3032 
3033 	return put_user(sb_feature, (u32 __user *)arg);
3034 }
3035 
3036 #ifdef CONFIG_QUOTA
3037 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3038 {
3039 	struct dquot *transfer_to[MAXQUOTAS] = {};
3040 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3041 	struct super_block *sb = sbi->sb;
3042 	int err;
3043 
3044 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3045 	if (IS_ERR(transfer_to[PRJQUOTA]))
3046 		return PTR_ERR(transfer_to[PRJQUOTA]);
3047 
3048 	err = __dquot_transfer(inode, transfer_to);
3049 	if (err)
3050 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3051 	dqput(transfer_to[PRJQUOTA]);
3052 	return err;
3053 }
3054 
3055 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3056 {
3057 	struct f2fs_inode_info *fi = F2FS_I(inode);
3058 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3059 	struct f2fs_inode *ri = NULL;
3060 	kprojid_t kprojid;
3061 	int err;
3062 
3063 	if (!f2fs_sb_has_project_quota(sbi)) {
3064 		if (projid != F2FS_DEF_PROJID)
3065 			return -EOPNOTSUPP;
3066 		else
3067 			return 0;
3068 	}
3069 
3070 	if (!f2fs_has_extra_attr(inode))
3071 		return -EOPNOTSUPP;
3072 
3073 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3074 
3075 	if (projid_eq(kprojid, fi->i_projid))
3076 		return 0;
3077 
3078 	err = -EPERM;
3079 	/* Is it quota file? Do not allow user to mess with it */
3080 	if (IS_NOQUOTA(inode))
3081 		return err;
3082 
3083 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3084 		return -EOVERFLOW;
3085 
3086 	err = f2fs_dquot_initialize(inode);
3087 	if (err)
3088 		return err;
3089 
3090 	f2fs_lock_op(sbi);
3091 	err = f2fs_transfer_project_quota(inode, kprojid);
3092 	if (err)
3093 		goto out_unlock;
3094 
3095 	fi->i_projid = kprojid;
3096 	inode_set_ctime_current(inode);
3097 	f2fs_mark_inode_dirty_sync(inode, true);
3098 out_unlock:
3099 	f2fs_unlock_op(sbi);
3100 	return err;
3101 }
3102 #else
3103 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3104 {
3105 	return 0;
3106 }
3107 
3108 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3109 {
3110 	if (projid != F2FS_DEF_PROJID)
3111 		return -EOPNOTSUPP;
3112 	return 0;
3113 }
3114 #endif
3115 
3116 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3117 {
3118 	struct inode *inode = d_inode(dentry);
3119 	struct f2fs_inode_info *fi = F2FS_I(inode);
3120 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3121 
3122 	if (IS_ENCRYPTED(inode))
3123 		fsflags |= FS_ENCRYPT_FL;
3124 	if (IS_VERITY(inode))
3125 		fsflags |= FS_VERITY_FL;
3126 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3127 		fsflags |= FS_INLINE_DATA_FL;
3128 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3129 		fsflags |= FS_NOCOW_FL;
3130 
3131 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3132 
3133 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3134 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3135 
3136 	return 0;
3137 }
3138 
3139 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3140 		      struct dentry *dentry, struct fileattr *fa)
3141 {
3142 	struct inode *inode = d_inode(dentry);
3143 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3144 	u32 iflags;
3145 	int err;
3146 
3147 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3148 		return -EIO;
3149 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3150 		return -ENOSPC;
3151 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3152 		return -EOPNOTSUPP;
3153 	fsflags &= F2FS_SETTABLE_FS_FL;
3154 	if (!fa->flags_valid)
3155 		mask &= FS_COMMON_FL;
3156 
3157 	iflags = f2fs_fsflags_to_iflags(fsflags);
3158 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3159 		return -EOPNOTSUPP;
3160 
3161 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3162 	if (!err)
3163 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3164 
3165 	return err;
3166 }
3167 
3168 int f2fs_pin_file_control(struct inode *inode, bool inc)
3169 {
3170 	struct f2fs_inode_info *fi = F2FS_I(inode);
3171 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3172 
3173 	/* Use i_gc_failures for normal file as a risk signal. */
3174 	if (inc)
3175 		f2fs_i_gc_failures_write(inode,
3176 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3177 
3178 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3179 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3180 			  __func__, inode->i_ino,
3181 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3182 		clear_inode_flag(inode, FI_PIN_FILE);
3183 		return -EAGAIN;
3184 	}
3185 	return 0;
3186 }
3187 
3188 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3189 {
3190 	struct inode *inode = file_inode(filp);
3191 	__u32 pin;
3192 	int ret = 0;
3193 
3194 	if (get_user(pin, (__u32 __user *)arg))
3195 		return -EFAULT;
3196 
3197 	if (!S_ISREG(inode->i_mode))
3198 		return -EINVAL;
3199 
3200 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3201 		return -EROFS;
3202 
3203 	ret = mnt_want_write_file(filp);
3204 	if (ret)
3205 		return ret;
3206 
3207 	inode_lock(inode);
3208 
3209 	if (!pin) {
3210 		clear_inode_flag(inode, FI_PIN_FILE);
3211 		f2fs_i_gc_failures_write(inode, 0);
3212 		goto done;
3213 	}
3214 
3215 	if (f2fs_should_update_outplace(inode, NULL)) {
3216 		ret = -EINVAL;
3217 		goto out;
3218 	}
3219 
3220 	if (f2fs_pin_file_control(inode, false)) {
3221 		ret = -EAGAIN;
3222 		goto out;
3223 	}
3224 
3225 	ret = f2fs_convert_inline_inode(inode);
3226 	if (ret)
3227 		goto out;
3228 
3229 	if (!f2fs_disable_compressed_file(inode)) {
3230 		ret = -EOPNOTSUPP;
3231 		goto out;
3232 	}
3233 
3234 	set_inode_flag(inode, FI_PIN_FILE);
3235 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3236 done:
3237 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3238 out:
3239 	inode_unlock(inode);
3240 	mnt_drop_write_file(filp);
3241 	return ret;
3242 }
3243 
3244 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3245 {
3246 	struct inode *inode = file_inode(filp);
3247 	__u32 pin = 0;
3248 
3249 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3250 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3251 	return put_user(pin, (u32 __user *)arg);
3252 }
3253 
3254 int f2fs_precache_extents(struct inode *inode)
3255 {
3256 	struct f2fs_inode_info *fi = F2FS_I(inode);
3257 	struct f2fs_map_blocks map;
3258 	pgoff_t m_next_extent;
3259 	loff_t end;
3260 	int err;
3261 
3262 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3263 		return -EOPNOTSUPP;
3264 
3265 	map.m_lblk = 0;
3266 	map.m_pblk = 0;
3267 	map.m_next_pgofs = NULL;
3268 	map.m_next_extent = &m_next_extent;
3269 	map.m_seg_type = NO_CHECK_TYPE;
3270 	map.m_may_create = false;
3271 	end = max_file_blocks(inode);
3272 
3273 	while (map.m_lblk < end) {
3274 		map.m_len = end - map.m_lblk;
3275 
3276 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3277 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3278 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3279 		if (err)
3280 			return err;
3281 
3282 		map.m_lblk = m_next_extent;
3283 	}
3284 
3285 	return 0;
3286 }
3287 
3288 static int f2fs_ioc_precache_extents(struct file *filp)
3289 {
3290 	return f2fs_precache_extents(file_inode(filp));
3291 }
3292 
3293 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3294 {
3295 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3296 	__u64 block_count;
3297 
3298 	if (!capable(CAP_SYS_ADMIN))
3299 		return -EPERM;
3300 
3301 	if (f2fs_readonly(sbi->sb))
3302 		return -EROFS;
3303 
3304 	if (copy_from_user(&block_count, (void __user *)arg,
3305 			   sizeof(block_count)))
3306 		return -EFAULT;
3307 
3308 	return f2fs_resize_fs(filp, block_count);
3309 }
3310 
3311 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3312 {
3313 	struct inode *inode = file_inode(filp);
3314 
3315 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3316 
3317 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3318 		f2fs_warn(F2FS_I_SB(inode),
3319 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3320 			  inode->i_ino);
3321 		return -EOPNOTSUPP;
3322 	}
3323 
3324 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3325 }
3326 
3327 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3328 {
3329 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3330 		return -EOPNOTSUPP;
3331 
3332 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3333 }
3334 
3335 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3336 {
3337 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3338 		return -EOPNOTSUPP;
3339 
3340 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3341 }
3342 
3343 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3344 {
3345 	struct inode *inode = file_inode(filp);
3346 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3347 	char *vbuf;
3348 	int count;
3349 	int err = 0;
3350 
3351 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3352 	if (!vbuf)
3353 		return -ENOMEM;
3354 
3355 	f2fs_down_read(&sbi->sb_lock);
3356 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3357 			ARRAY_SIZE(sbi->raw_super->volume_name),
3358 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3359 	f2fs_up_read(&sbi->sb_lock);
3360 
3361 	if (copy_to_user((char __user *)arg, vbuf,
3362 				min(FSLABEL_MAX, count)))
3363 		err = -EFAULT;
3364 
3365 	kfree(vbuf);
3366 	return err;
3367 }
3368 
3369 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3370 {
3371 	struct inode *inode = file_inode(filp);
3372 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3373 	char *vbuf;
3374 	int err = 0;
3375 
3376 	if (!capable(CAP_SYS_ADMIN))
3377 		return -EPERM;
3378 
3379 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3380 	if (IS_ERR(vbuf))
3381 		return PTR_ERR(vbuf);
3382 
3383 	err = mnt_want_write_file(filp);
3384 	if (err)
3385 		goto out;
3386 
3387 	f2fs_down_write(&sbi->sb_lock);
3388 
3389 	memset(sbi->raw_super->volume_name, 0,
3390 			sizeof(sbi->raw_super->volume_name));
3391 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3392 			sbi->raw_super->volume_name,
3393 			ARRAY_SIZE(sbi->raw_super->volume_name));
3394 
3395 	err = f2fs_commit_super(sbi, false);
3396 
3397 	f2fs_up_write(&sbi->sb_lock);
3398 
3399 	mnt_drop_write_file(filp);
3400 out:
3401 	kfree(vbuf);
3402 	return err;
3403 }
3404 
3405 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3406 {
3407 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3408 		return -EOPNOTSUPP;
3409 
3410 	if (!f2fs_compressed_file(inode))
3411 		return -EINVAL;
3412 
3413 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3414 
3415 	return 0;
3416 }
3417 
3418 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3419 {
3420 	struct inode *inode = file_inode(filp);
3421 	__u64 blocks;
3422 	int ret;
3423 
3424 	ret = f2fs_get_compress_blocks(inode, &blocks);
3425 	if (ret < 0)
3426 		return ret;
3427 
3428 	return put_user(blocks, (u64 __user *)arg);
3429 }
3430 
3431 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3432 {
3433 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3434 	unsigned int released_blocks = 0;
3435 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3436 	block_t blkaddr;
3437 	int i;
3438 
3439 	for (i = 0; i < count; i++) {
3440 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3441 						dn->ofs_in_node + i);
3442 
3443 		if (!__is_valid_data_blkaddr(blkaddr))
3444 			continue;
3445 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3446 					DATA_GENERIC_ENHANCE))) {
3447 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3448 			return -EFSCORRUPTED;
3449 		}
3450 	}
3451 
3452 	while (count) {
3453 		int compr_blocks = 0;
3454 
3455 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3456 			blkaddr = f2fs_data_blkaddr(dn);
3457 
3458 			if (i == 0) {
3459 				if (blkaddr == COMPRESS_ADDR)
3460 					continue;
3461 				dn->ofs_in_node += cluster_size;
3462 				goto next;
3463 			}
3464 
3465 			if (__is_valid_data_blkaddr(blkaddr))
3466 				compr_blocks++;
3467 
3468 			if (blkaddr != NEW_ADDR)
3469 				continue;
3470 
3471 			dn->data_blkaddr = NULL_ADDR;
3472 			f2fs_set_data_blkaddr(dn);
3473 		}
3474 
3475 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3476 		dec_valid_block_count(sbi, dn->inode,
3477 					cluster_size - compr_blocks);
3478 
3479 		released_blocks += cluster_size - compr_blocks;
3480 next:
3481 		count -= cluster_size;
3482 	}
3483 
3484 	return released_blocks;
3485 }
3486 
3487 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3488 {
3489 	struct inode *inode = file_inode(filp);
3490 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3491 	pgoff_t page_idx = 0, last_idx;
3492 	unsigned int released_blocks = 0;
3493 	int ret;
3494 	int writecount;
3495 
3496 	if (!f2fs_sb_has_compression(sbi))
3497 		return -EOPNOTSUPP;
3498 
3499 	if (!f2fs_compressed_file(inode))
3500 		return -EINVAL;
3501 
3502 	if (f2fs_readonly(sbi->sb))
3503 		return -EROFS;
3504 
3505 	ret = mnt_want_write_file(filp);
3506 	if (ret)
3507 		return ret;
3508 
3509 	f2fs_balance_fs(sbi, true);
3510 
3511 	inode_lock(inode);
3512 
3513 	writecount = atomic_read(&inode->i_writecount);
3514 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3515 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3516 		ret = -EBUSY;
3517 		goto out;
3518 	}
3519 
3520 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3521 		ret = -EINVAL;
3522 		goto out;
3523 	}
3524 
3525 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3526 	if (ret)
3527 		goto out;
3528 
3529 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3530 		ret = -EPERM;
3531 		goto out;
3532 	}
3533 
3534 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3535 	inode_set_ctime_current(inode);
3536 	f2fs_mark_inode_dirty_sync(inode, true);
3537 
3538 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3539 	filemap_invalidate_lock(inode->i_mapping);
3540 
3541 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3542 
3543 	while (page_idx < last_idx) {
3544 		struct dnode_of_data dn;
3545 		pgoff_t end_offset, count;
3546 
3547 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3548 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3549 		if (ret) {
3550 			if (ret == -ENOENT) {
3551 				page_idx = f2fs_get_next_page_offset(&dn,
3552 								page_idx);
3553 				ret = 0;
3554 				continue;
3555 			}
3556 			break;
3557 		}
3558 
3559 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3560 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3561 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3562 
3563 		ret = release_compress_blocks(&dn, count);
3564 
3565 		f2fs_put_dnode(&dn);
3566 
3567 		if (ret < 0)
3568 			break;
3569 
3570 		page_idx += count;
3571 		released_blocks += ret;
3572 	}
3573 
3574 	filemap_invalidate_unlock(inode->i_mapping);
3575 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3576 out:
3577 	inode_unlock(inode);
3578 
3579 	mnt_drop_write_file(filp);
3580 
3581 	if (ret >= 0) {
3582 		ret = put_user(released_blocks, (u64 __user *)arg);
3583 	} else if (released_blocks &&
3584 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3585 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3586 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3587 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3588 			"run fsck to fix.",
3589 			__func__, inode->i_ino, inode->i_blocks,
3590 			released_blocks,
3591 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3592 	}
3593 
3594 	return ret;
3595 }
3596 
3597 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3598 {
3599 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3600 	unsigned int reserved_blocks = 0;
3601 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3602 	block_t blkaddr;
3603 	int i;
3604 
3605 	for (i = 0; i < count; i++) {
3606 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3607 						dn->ofs_in_node + i);
3608 
3609 		if (!__is_valid_data_blkaddr(blkaddr))
3610 			continue;
3611 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3612 					DATA_GENERIC_ENHANCE))) {
3613 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3614 			return -EFSCORRUPTED;
3615 		}
3616 	}
3617 
3618 	while (count) {
3619 		int compr_blocks = 0;
3620 		blkcnt_t reserved;
3621 		int ret;
3622 
3623 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3624 			blkaddr = f2fs_data_blkaddr(dn);
3625 
3626 			if (i == 0) {
3627 				if (blkaddr == COMPRESS_ADDR)
3628 					continue;
3629 				dn->ofs_in_node += cluster_size;
3630 				goto next;
3631 			}
3632 
3633 			if (__is_valid_data_blkaddr(blkaddr)) {
3634 				compr_blocks++;
3635 				continue;
3636 			}
3637 
3638 			dn->data_blkaddr = NEW_ADDR;
3639 			f2fs_set_data_blkaddr(dn);
3640 		}
3641 
3642 		reserved = cluster_size - compr_blocks;
3643 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3644 		if (ret)
3645 			return ret;
3646 
3647 		if (reserved != cluster_size - compr_blocks)
3648 			return -ENOSPC;
3649 
3650 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3651 
3652 		reserved_blocks += reserved;
3653 next:
3654 		count -= cluster_size;
3655 	}
3656 
3657 	return reserved_blocks;
3658 }
3659 
3660 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3661 {
3662 	struct inode *inode = file_inode(filp);
3663 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3664 	pgoff_t page_idx = 0, last_idx;
3665 	unsigned int reserved_blocks = 0;
3666 	int ret;
3667 
3668 	if (!f2fs_sb_has_compression(sbi))
3669 		return -EOPNOTSUPP;
3670 
3671 	if (!f2fs_compressed_file(inode))
3672 		return -EINVAL;
3673 
3674 	if (f2fs_readonly(sbi->sb))
3675 		return -EROFS;
3676 
3677 	ret = mnt_want_write_file(filp);
3678 	if (ret)
3679 		return ret;
3680 
3681 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3682 		goto out;
3683 
3684 	f2fs_balance_fs(sbi, true);
3685 
3686 	inode_lock(inode);
3687 
3688 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3689 		ret = -EINVAL;
3690 		goto unlock_inode;
3691 	}
3692 
3693 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3694 	filemap_invalidate_lock(inode->i_mapping);
3695 
3696 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3697 
3698 	while (page_idx < last_idx) {
3699 		struct dnode_of_data dn;
3700 		pgoff_t end_offset, count;
3701 
3702 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3703 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3704 		if (ret) {
3705 			if (ret == -ENOENT) {
3706 				page_idx = f2fs_get_next_page_offset(&dn,
3707 								page_idx);
3708 				ret = 0;
3709 				continue;
3710 			}
3711 			break;
3712 		}
3713 
3714 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3715 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3716 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3717 
3718 		ret = reserve_compress_blocks(&dn, count);
3719 
3720 		f2fs_put_dnode(&dn);
3721 
3722 		if (ret < 0)
3723 			break;
3724 
3725 		page_idx += count;
3726 		reserved_blocks += ret;
3727 	}
3728 
3729 	filemap_invalidate_unlock(inode->i_mapping);
3730 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3731 
3732 	if (ret >= 0) {
3733 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3734 		inode_set_ctime_current(inode);
3735 		f2fs_mark_inode_dirty_sync(inode, true);
3736 	}
3737 unlock_inode:
3738 	inode_unlock(inode);
3739 out:
3740 	mnt_drop_write_file(filp);
3741 
3742 	if (ret >= 0) {
3743 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3744 	} else if (reserved_blocks &&
3745 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3746 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3747 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3748 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3749 			"run fsck to fix.",
3750 			__func__, inode->i_ino, inode->i_blocks,
3751 			reserved_blocks,
3752 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3753 	}
3754 
3755 	return ret;
3756 }
3757 
3758 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3759 		pgoff_t off, block_t block, block_t len, u32 flags)
3760 {
3761 	sector_t sector = SECTOR_FROM_BLOCK(block);
3762 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3763 	int ret = 0;
3764 
3765 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3766 		if (bdev_max_secure_erase_sectors(bdev))
3767 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3768 					GFP_NOFS);
3769 		else
3770 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3771 					GFP_NOFS);
3772 	}
3773 
3774 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3775 		if (IS_ENCRYPTED(inode))
3776 			ret = fscrypt_zeroout_range(inode, off, block, len);
3777 		else
3778 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3779 					GFP_NOFS, 0);
3780 	}
3781 
3782 	return ret;
3783 }
3784 
3785 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3786 {
3787 	struct inode *inode = file_inode(filp);
3788 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3789 	struct address_space *mapping = inode->i_mapping;
3790 	struct block_device *prev_bdev = NULL;
3791 	struct f2fs_sectrim_range range;
3792 	pgoff_t index, pg_end, prev_index = 0;
3793 	block_t prev_block = 0, len = 0;
3794 	loff_t end_addr;
3795 	bool to_end = false;
3796 	int ret = 0;
3797 
3798 	if (!(filp->f_mode & FMODE_WRITE))
3799 		return -EBADF;
3800 
3801 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3802 				sizeof(range)))
3803 		return -EFAULT;
3804 
3805 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3806 			!S_ISREG(inode->i_mode))
3807 		return -EINVAL;
3808 
3809 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3810 			!f2fs_hw_support_discard(sbi)) ||
3811 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3812 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3813 		return -EOPNOTSUPP;
3814 
3815 	file_start_write(filp);
3816 	inode_lock(inode);
3817 
3818 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3819 			range.start >= inode->i_size) {
3820 		ret = -EINVAL;
3821 		goto err;
3822 	}
3823 
3824 	if (range.len == 0)
3825 		goto err;
3826 
3827 	if (inode->i_size - range.start > range.len) {
3828 		end_addr = range.start + range.len;
3829 	} else {
3830 		end_addr = range.len == (u64)-1 ?
3831 			sbi->sb->s_maxbytes : inode->i_size;
3832 		to_end = true;
3833 	}
3834 
3835 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3836 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3837 		ret = -EINVAL;
3838 		goto err;
3839 	}
3840 
3841 	index = F2FS_BYTES_TO_BLK(range.start);
3842 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3843 
3844 	ret = f2fs_convert_inline_inode(inode);
3845 	if (ret)
3846 		goto err;
3847 
3848 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3849 	filemap_invalidate_lock(mapping);
3850 
3851 	ret = filemap_write_and_wait_range(mapping, range.start,
3852 			to_end ? LLONG_MAX : end_addr - 1);
3853 	if (ret)
3854 		goto out;
3855 
3856 	truncate_inode_pages_range(mapping, range.start,
3857 			to_end ? -1 : end_addr - 1);
3858 
3859 	while (index < pg_end) {
3860 		struct dnode_of_data dn;
3861 		pgoff_t end_offset, count;
3862 		int i;
3863 
3864 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3865 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3866 		if (ret) {
3867 			if (ret == -ENOENT) {
3868 				index = f2fs_get_next_page_offset(&dn, index);
3869 				continue;
3870 			}
3871 			goto out;
3872 		}
3873 
3874 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3875 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3876 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3877 			struct block_device *cur_bdev;
3878 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3879 
3880 			if (!__is_valid_data_blkaddr(blkaddr))
3881 				continue;
3882 
3883 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3884 						DATA_GENERIC_ENHANCE)) {
3885 				ret = -EFSCORRUPTED;
3886 				f2fs_put_dnode(&dn);
3887 				f2fs_handle_error(sbi,
3888 						ERROR_INVALID_BLKADDR);
3889 				goto out;
3890 			}
3891 
3892 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3893 			if (f2fs_is_multi_device(sbi)) {
3894 				int di = f2fs_target_device_index(sbi, blkaddr);
3895 
3896 				blkaddr -= FDEV(di).start_blk;
3897 			}
3898 
3899 			if (len) {
3900 				if (prev_bdev == cur_bdev &&
3901 						index == prev_index + len &&
3902 						blkaddr == prev_block + len) {
3903 					len++;
3904 				} else {
3905 					ret = f2fs_secure_erase(prev_bdev,
3906 						inode, prev_index, prev_block,
3907 						len, range.flags);
3908 					if (ret) {
3909 						f2fs_put_dnode(&dn);
3910 						goto out;
3911 					}
3912 
3913 					len = 0;
3914 				}
3915 			}
3916 
3917 			if (!len) {
3918 				prev_bdev = cur_bdev;
3919 				prev_index = index;
3920 				prev_block = blkaddr;
3921 				len = 1;
3922 			}
3923 		}
3924 
3925 		f2fs_put_dnode(&dn);
3926 
3927 		if (fatal_signal_pending(current)) {
3928 			ret = -EINTR;
3929 			goto out;
3930 		}
3931 		cond_resched();
3932 	}
3933 
3934 	if (len)
3935 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3936 				prev_block, len, range.flags);
3937 out:
3938 	filemap_invalidate_unlock(mapping);
3939 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3940 err:
3941 	inode_unlock(inode);
3942 	file_end_write(filp);
3943 
3944 	return ret;
3945 }
3946 
3947 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3948 {
3949 	struct inode *inode = file_inode(filp);
3950 	struct f2fs_comp_option option;
3951 
3952 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3953 		return -EOPNOTSUPP;
3954 
3955 	inode_lock_shared(inode);
3956 
3957 	if (!f2fs_compressed_file(inode)) {
3958 		inode_unlock_shared(inode);
3959 		return -ENODATA;
3960 	}
3961 
3962 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3963 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3964 
3965 	inode_unlock_shared(inode);
3966 
3967 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3968 				sizeof(option)))
3969 		return -EFAULT;
3970 
3971 	return 0;
3972 }
3973 
3974 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3975 {
3976 	struct inode *inode = file_inode(filp);
3977 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3978 	struct f2fs_comp_option option;
3979 	int ret = 0;
3980 
3981 	if (!f2fs_sb_has_compression(sbi))
3982 		return -EOPNOTSUPP;
3983 
3984 	if (!(filp->f_mode & FMODE_WRITE))
3985 		return -EBADF;
3986 
3987 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3988 				sizeof(option)))
3989 		return -EFAULT;
3990 
3991 	if (!f2fs_compressed_file(inode) ||
3992 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3993 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3994 			option.algorithm >= COMPRESS_MAX)
3995 		return -EINVAL;
3996 
3997 	file_start_write(filp);
3998 	inode_lock(inode);
3999 
4000 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4001 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4002 		ret = -EBUSY;
4003 		goto out;
4004 	}
4005 
4006 	if (F2FS_HAS_BLOCKS(inode)) {
4007 		ret = -EFBIG;
4008 		goto out;
4009 	}
4010 
4011 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4012 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4013 	F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4014 	/* Set default level */
4015 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4016 		F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4017 	else
4018 		F2FS_I(inode)->i_compress_level = 0;
4019 	/* Adjust mount option level */
4020 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4021 	    F2FS_OPTION(sbi).compress_level)
4022 		F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4023 	f2fs_mark_inode_dirty_sync(inode, true);
4024 
4025 	if (!f2fs_is_compress_backend_ready(inode))
4026 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4027 			"but current kernel doesn't support this algorithm.");
4028 out:
4029 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4030 	inode_unlock(inode);
4031 	file_end_write(filp);
4032 
4033 	return ret;
4034 }
4035 
4036 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4037 {
4038 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4039 	struct address_space *mapping = inode->i_mapping;
4040 	struct page *page;
4041 	pgoff_t redirty_idx = page_idx;
4042 	int i, page_len = 0, ret = 0;
4043 
4044 	page_cache_ra_unbounded(&ractl, len, 0);
4045 
4046 	for (i = 0; i < len; i++, page_idx++) {
4047 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4048 		if (IS_ERR(page)) {
4049 			ret = PTR_ERR(page);
4050 			break;
4051 		}
4052 		page_len++;
4053 	}
4054 
4055 	for (i = 0; i < page_len; i++, redirty_idx++) {
4056 		page = find_lock_page(mapping, redirty_idx);
4057 
4058 		/* It will never fail, when page has pinned above */
4059 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4060 
4061 		set_page_dirty(page);
4062 		f2fs_put_page(page, 1);
4063 		f2fs_put_page(page, 0);
4064 	}
4065 
4066 	return ret;
4067 }
4068 
4069 static int f2fs_ioc_decompress_file(struct file *filp)
4070 {
4071 	struct inode *inode = file_inode(filp);
4072 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4073 	struct f2fs_inode_info *fi = F2FS_I(inode);
4074 	pgoff_t page_idx = 0, last_idx;
4075 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4076 	int cluster_size = fi->i_cluster_size;
4077 	int count, ret;
4078 
4079 	if (!f2fs_sb_has_compression(sbi) ||
4080 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4081 		return -EOPNOTSUPP;
4082 
4083 	if (!(filp->f_mode & FMODE_WRITE))
4084 		return -EBADF;
4085 
4086 	if (!f2fs_compressed_file(inode))
4087 		return -EINVAL;
4088 
4089 	f2fs_balance_fs(sbi, true);
4090 
4091 	file_start_write(filp);
4092 	inode_lock(inode);
4093 
4094 	if (!f2fs_is_compress_backend_ready(inode)) {
4095 		ret = -EOPNOTSUPP;
4096 		goto out;
4097 	}
4098 
4099 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4100 		ret = -EINVAL;
4101 		goto out;
4102 	}
4103 
4104 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4105 	if (ret)
4106 		goto out;
4107 
4108 	if (!atomic_read(&fi->i_compr_blocks))
4109 		goto out;
4110 
4111 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4112 
4113 	count = last_idx - page_idx;
4114 	while (count && count >= cluster_size) {
4115 		ret = redirty_blocks(inode, page_idx, cluster_size);
4116 		if (ret < 0)
4117 			break;
4118 
4119 		if (get_dirty_pages(inode) >= blk_per_seg) {
4120 			ret = filemap_fdatawrite(inode->i_mapping);
4121 			if (ret < 0)
4122 				break;
4123 		}
4124 
4125 		count -= cluster_size;
4126 		page_idx += cluster_size;
4127 
4128 		cond_resched();
4129 		if (fatal_signal_pending(current)) {
4130 			ret = -EINTR;
4131 			break;
4132 		}
4133 	}
4134 
4135 	if (!ret)
4136 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4137 							LLONG_MAX);
4138 
4139 	if (ret)
4140 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4141 			  __func__, ret);
4142 out:
4143 	inode_unlock(inode);
4144 	file_end_write(filp);
4145 
4146 	return ret;
4147 }
4148 
4149 static int f2fs_ioc_compress_file(struct file *filp)
4150 {
4151 	struct inode *inode = file_inode(filp);
4152 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4153 	pgoff_t page_idx = 0, last_idx;
4154 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4155 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4156 	int count, ret;
4157 
4158 	if (!f2fs_sb_has_compression(sbi) ||
4159 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4160 		return -EOPNOTSUPP;
4161 
4162 	if (!(filp->f_mode & FMODE_WRITE))
4163 		return -EBADF;
4164 
4165 	if (!f2fs_compressed_file(inode))
4166 		return -EINVAL;
4167 
4168 	f2fs_balance_fs(sbi, true);
4169 
4170 	file_start_write(filp);
4171 	inode_lock(inode);
4172 
4173 	if (!f2fs_is_compress_backend_ready(inode)) {
4174 		ret = -EOPNOTSUPP;
4175 		goto out;
4176 	}
4177 
4178 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4179 		ret = -EINVAL;
4180 		goto out;
4181 	}
4182 
4183 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4184 	if (ret)
4185 		goto out;
4186 
4187 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4188 
4189 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4190 
4191 	count = last_idx - page_idx;
4192 	while (count && count >= cluster_size) {
4193 		ret = redirty_blocks(inode, page_idx, cluster_size);
4194 		if (ret < 0)
4195 			break;
4196 
4197 		if (get_dirty_pages(inode) >= blk_per_seg) {
4198 			ret = filemap_fdatawrite(inode->i_mapping);
4199 			if (ret < 0)
4200 				break;
4201 		}
4202 
4203 		count -= cluster_size;
4204 		page_idx += cluster_size;
4205 
4206 		cond_resched();
4207 		if (fatal_signal_pending(current)) {
4208 			ret = -EINTR;
4209 			break;
4210 		}
4211 	}
4212 
4213 	if (!ret)
4214 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4215 							LLONG_MAX);
4216 
4217 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4218 
4219 	if (ret)
4220 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4221 			  __func__, ret);
4222 out:
4223 	inode_unlock(inode);
4224 	file_end_write(filp);
4225 
4226 	return ret;
4227 }
4228 
4229 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4230 {
4231 	switch (cmd) {
4232 	case FS_IOC_GETVERSION:
4233 		return f2fs_ioc_getversion(filp, arg);
4234 	case F2FS_IOC_START_ATOMIC_WRITE:
4235 		return f2fs_ioc_start_atomic_write(filp, false);
4236 	case F2FS_IOC_START_ATOMIC_REPLACE:
4237 		return f2fs_ioc_start_atomic_write(filp, true);
4238 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4239 		return f2fs_ioc_commit_atomic_write(filp);
4240 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4241 		return f2fs_ioc_abort_atomic_write(filp);
4242 	case F2FS_IOC_START_VOLATILE_WRITE:
4243 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4244 		return -EOPNOTSUPP;
4245 	case F2FS_IOC_SHUTDOWN:
4246 		return f2fs_ioc_shutdown(filp, arg);
4247 	case FITRIM:
4248 		return f2fs_ioc_fitrim(filp, arg);
4249 	case FS_IOC_SET_ENCRYPTION_POLICY:
4250 		return f2fs_ioc_set_encryption_policy(filp, arg);
4251 	case FS_IOC_GET_ENCRYPTION_POLICY:
4252 		return f2fs_ioc_get_encryption_policy(filp, arg);
4253 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4254 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4255 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4256 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4257 	case FS_IOC_ADD_ENCRYPTION_KEY:
4258 		return f2fs_ioc_add_encryption_key(filp, arg);
4259 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4260 		return f2fs_ioc_remove_encryption_key(filp, arg);
4261 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4262 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4263 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4264 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4265 	case FS_IOC_GET_ENCRYPTION_NONCE:
4266 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4267 	case F2FS_IOC_GARBAGE_COLLECT:
4268 		return f2fs_ioc_gc(filp, arg);
4269 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4270 		return f2fs_ioc_gc_range(filp, arg);
4271 	case F2FS_IOC_WRITE_CHECKPOINT:
4272 		return f2fs_ioc_write_checkpoint(filp);
4273 	case F2FS_IOC_DEFRAGMENT:
4274 		return f2fs_ioc_defragment(filp, arg);
4275 	case F2FS_IOC_MOVE_RANGE:
4276 		return f2fs_ioc_move_range(filp, arg);
4277 	case F2FS_IOC_FLUSH_DEVICE:
4278 		return f2fs_ioc_flush_device(filp, arg);
4279 	case F2FS_IOC_GET_FEATURES:
4280 		return f2fs_ioc_get_features(filp, arg);
4281 	case F2FS_IOC_GET_PIN_FILE:
4282 		return f2fs_ioc_get_pin_file(filp, arg);
4283 	case F2FS_IOC_SET_PIN_FILE:
4284 		return f2fs_ioc_set_pin_file(filp, arg);
4285 	case F2FS_IOC_PRECACHE_EXTENTS:
4286 		return f2fs_ioc_precache_extents(filp);
4287 	case F2FS_IOC_RESIZE_FS:
4288 		return f2fs_ioc_resize_fs(filp, arg);
4289 	case FS_IOC_ENABLE_VERITY:
4290 		return f2fs_ioc_enable_verity(filp, arg);
4291 	case FS_IOC_MEASURE_VERITY:
4292 		return f2fs_ioc_measure_verity(filp, arg);
4293 	case FS_IOC_READ_VERITY_METADATA:
4294 		return f2fs_ioc_read_verity_metadata(filp, arg);
4295 	case FS_IOC_GETFSLABEL:
4296 		return f2fs_ioc_getfslabel(filp, arg);
4297 	case FS_IOC_SETFSLABEL:
4298 		return f2fs_ioc_setfslabel(filp, arg);
4299 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4300 		return f2fs_ioc_get_compress_blocks(filp, arg);
4301 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4302 		return f2fs_release_compress_blocks(filp, arg);
4303 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4304 		return f2fs_reserve_compress_blocks(filp, arg);
4305 	case F2FS_IOC_SEC_TRIM_FILE:
4306 		return f2fs_sec_trim_file(filp, arg);
4307 	case F2FS_IOC_GET_COMPRESS_OPTION:
4308 		return f2fs_ioc_get_compress_option(filp, arg);
4309 	case F2FS_IOC_SET_COMPRESS_OPTION:
4310 		return f2fs_ioc_set_compress_option(filp, arg);
4311 	case F2FS_IOC_DECOMPRESS_FILE:
4312 		return f2fs_ioc_decompress_file(filp);
4313 	case F2FS_IOC_COMPRESS_FILE:
4314 		return f2fs_ioc_compress_file(filp);
4315 	default:
4316 		return -ENOTTY;
4317 	}
4318 }
4319 
4320 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4321 {
4322 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4323 		return -EIO;
4324 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4325 		return -ENOSPC;
4326 
4327 	return __f2fs_ioctl(filp, cmd, arg);
4328 }
4329 
4330 /*
4331  * Return %true if the given read or write request should use direct I/O, or
4332  * %false if it should use buffered I/O.
4333  */
4334 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4335 				struct iov_iter *iter)
4336 {
4337 	unsigned int align;
4338 
4339 	if (!(iocb->ki_flags & IOCB_DIRECT))
4340 		return false;
4341 
4342 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4343 		return false;
4344 
4345 	/*
4346 	 * Direct I/O not aligned to the disk's logical_block_size will be
4347 	 * attempted, but will fail with -EINVAL.
4348 	 *
4349 	 * f2fs additionally requires that direct I/O be aligned to the
4350 	 * filesystem block size, which is often a stricter requirement.
4351 	 * However, f2fs traditionally falls back to buffered I/O on requests
4352 	 * that are logical_block_size-aligned but not fs-block aligned.
4353 	 *
4354 	 * The below logic implements this behavior.
4355 	 */
4356 	align = iocb->ki_pos | iov_iter_alignment(iter);
4357 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4358 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4359 		return false;
4360 
4361 	return true;
4362 }
4363 
4364 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4365 				unsigned int flags)
4366 {
4367 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4368 
4369 	dec_page_count(sbi, F2FS_DIO_READ);
4370 	if (error)
4371 		return error;
4372 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4373 	return 0;
4374 }
4375 
4376 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4377 	.end_io = f2fs_dio_read_end_io,
4378 };
4379 
4380 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4381 {
4382 	struct file *file = iocb->ki_filp;
4383 	struct inode *inode = file_inode(file);
4384 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4385 	struct f2fs_inode_info *fi = F2FS_I(inode);
4386 	const loff_t pos = iocb->ki_pos;
4387 	const size_t count = iov_iter_count(to);
4388 	struct iomap_dio *dio;
4389 	ssize_t ret;
4390 
4391 	if (count == 0)
4392 		return 0; /* skip atime update */
4393 
4394 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4395 
4396 	if (iocb->ki_flags & IOCB_NOWAIT) {
4397 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4398 			ret = -EAGAIN;
4399 			goto out;
4400 		}
4401 	} else {
4402 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4403 	}
4404 
4405 	/*
4406 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4407 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4408 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4409 	 */
4410 	inc_page_count(sbi, F2FS_DIO_READ);
4411 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4412 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4413 	if (IS_ERR_OR_NULL(dio)) {
4414 		ret = PTR_ERR_OR_ZERO(dio);
4415 		if (ret != -EIOCBQUEUED)
4416 			dec_page_count(sbi, F2FS_DIO_READ);
4417 	} else {
4418 		ret = iomap_dio_complete(dio);
4419 	}
4420 
4421 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4422 
4423 	file_accessed(file);
4424 out:
4425 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4426 	return ret;
4427 }
4428 
4429 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4430 				    int rw)
4431 {
4432 	struct inode *inode = file_inode(file);
4433 	char *buf, *path;
4434 
4435 	buf = f2fs_getname(F2FS_I_SB(inode));
4436 	if (!buf)
4437 		return;
4438 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4439 	if (IS_ERR(path))
4440 		goto free_buf;
4441 	if (rw == WRITE)
4442 		trace_f2fs_datawrite_start(inode, pos, count,
4443 				current->pid, path, current->comm);
4444 	else
4445 		trace_f2fs_dataread_start(inode, pos, count,
4446 				current->pid, path, current->comm);
4447 free_buf:
4448 	f2fs_putname(buf);
4449 }
4450 
4451 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4452 {
4453 	struct inode *inode = file_inode(iocb->ki_filp);
4454 	const loff_t pos = iocb->ki_pos;
4455 	ssize_t ret;
4456 
4457 	if (!f2fs_is_compress_backend_ready(inode))
4458 		return -EOPNOTSUPP;
4459 
4460 	if (trace_f2fs_dataread_start_enabled())
4461 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4462 					iov_iter_count(to), READ);
4463 
4464 	if (f2fs_should_use_dio(inode, iocb, to)) {
4465 		ret = f2fs_dio_read_iter(iocb, to);
4466 	} else {
4467 		ret = filemap_read(iocb, to, 0);
4468 		if (ret > 0)
4469 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4470 						APP_BUFFERED_READ_IO, ret);
4471 	}
4472 	if (trace_f2fs_dataread_end_enabled())
4473 		trace_f2fs_dataread_end(inode, pos, ret);
4474 	return ret;
4475 }
4476 
4477 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4478 				     struct pipe_inode_info *pipe,
4479 				     size_t len, unsigned int flags)
4480 {
4481 	struct inode *inode = file_inode(in);
4482 	const loff_t pos = *ppos;
4483 	ssize_t ret;
4484 
4485 	if (!f2fs_is_compress_backend_ready(inode))
4486 		return -EOPNOTSUPP;
4487 
4488 	if (trace_f2fs_dataread_start_enabled())
4489 		f2fs_trace_rw_file_path(in, pos, len, READ);
4490 
4491 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4492 	if (ret > 0)
4493 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4494 				   APP_BUFFERED_READ_IO, ret);
4495 
4496 	if (trace_f2fs_dataread_end_enabled())
4497 		trace_f2fs_dataread_end(inode, pos, ret);
4498 	return ret;
4499 }
4500 
4501 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4502 {
4503 	struct file *file = iocb->ki_filp;
4504 	struct inode *inode = file_inode(file);
4505 	ssize_t count;
4506 	int err;
4507 
4508 	if (IS_IMMUTABLE(inode))
4509 		return -EPERM;
4510 
4511 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4512 		return -EPERM;
4513 
4514 	count = generic_write_checks(iocb, from);
4515 	if (count <= 0)
4516 		return count;
4517 
4518 	err = file_modified(file);
4519 	if (err)
4520 		return err;
4521 	return count;
4522 }
4523 
4524 /*
4525  * Preallocate blocks for a write request, if it is possible and helpful to do
4526  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4527  * blocks were preallocated, or a negative errno value if something went
4528  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4529  * requested blocks (not just some of them) have been allocated.
4530  */
4531 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4532 				   bool dio)
4533 {
4534 	struct inode *inode = file_inode(iocb->ki_filp);
4535 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4536 	const loff_t pos = iocb->ki_pos;
4537 	const size_t count = iov_iter_count(iter);
4538 	struct f2fs_map_blocks map = {};
4539 	int flag;
4540 	int ret;
4541 
4542 	/* If it will be an out-of-place direct write, don't bother. */
4543 	if (dio && f2fs_lfs_mode(sbi))
4544 		return 0;
4545 	/*
4546 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4547 	 * buffered IO, if DIO meets any holes.
4548 	 */
4549 	if (dio && i_size_read(inode) &&
4550 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4551 		return 0;
4552 
4553 	/* No-wait I/O can't allocate blocks. */
4554 	if (iocb->ki_flags & IOCB_NOWAIT)
4555 		return 0;
4556 
4557 	/* If it will be a short write, don't bother. */
4558 	if (fault_in_iov_iter_readable(iter, count))
4559 		return 0;
4560 
4561 	if (f2fs_has_inline_data(inode)) {
4562 		/* If the data will fit inline, don't bother. */
4563 		if (pos + count <= MAX_INLINE_DATA(inode))
4564 			return 0;
4565 		ret = f2fs_convert_inline_inode(inode);
4566 		if (ret)
4567 			return ret;
4568 	}
4569 
4570 	/* Do not preallocate blocks that will be written partially in 4KB. */
4571 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4572 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4573 	if (map.m_len > map.m_lblk)
4574 		map.m_len -= map.m_lblk;
4575 	else
4576 		map.m_len = 0;
4577 	map.m_may_create = true;
4578 	if (dio) {
4579 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4580 		flag = F2FS_GET_BLOCK_PRE_DIO;
4581 	} else {
4582 		map.m_seg_type = NO_CHECK_TYPE;
4583 		flag = F2FS_GET_BLOCK_PRE_AIO;
4584 	}
4585 
4586 	ret = f2fs_map_blocks(inode, &map, flag);
4587 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4588 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4589 		return ret;
4590 	if (ret == 0)
4591 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4592 	return map.m_len;
4593 }
4594 
4595 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4596 					struct iov_iter *from)
4597 {
4598 	struct file *file = iocb->ki_filp;
4599 	struct inode *inode = file_inode(file);
4600 	ssize_t ret;
4601 
4602 	if (iocb->ki_flags & IOCB_NOWAIT)
4603 		return -EOPNOTSUPP;
4604 
4605 	ret = generic_perform_write(iocb, from);
4606 
4607 	if (ret > 0) {
4608 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4609 						APP_BUFFERED_IO, ret);
4610 	}
4611 	return ret;
4612 }
4613 
4614 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4615 				 unsigned int flags)
4616 {
4617 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4618 
4619 	dec_page_count(sbi, F2FS_DIO_WRITE);
4620 	if (error)
4621 		return error;
4622 	f2fs_update_time(sbi, REQ_TIME);
4623 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4624 	return 0;
4625 }
4626 
4627 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4628 	.end_io = f2fs_dio_write_end_io,
4629 };
4630 
4631 static void f2fs_flush_buffered_write(struct address_space *mapping,
4632 				      loff_t start_pos, loff_t end_pos)
4633 {
4634 	int ret;
4635 
4636 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4637 	if (ret < 0)
4638 		return;
4639 	invalidate_mapping_pages(mapping,
4640 				 start_pos >> PAGE_SHIFT,
4641 				 end_pos >> PAGE_SHIFT);
4642 }
4643 
4644 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4645 				   bool *may_need_sync)
4646 {
4647 	struct file *file = iocb->ki_filp;
4648 	struct inode *inode = file_inode(file);
4649 	struct f2fs_inode_info *fi = F2FS_I(inode);
4650 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4651 	const bool do_opu = f2fs_lfs_mode(sbi);
4652 	const loff_t pos = iocb->ki_pos;
4653 	const ssize_t count = iov_iter_count(from);
4654 	unsigned int dio_flags;
4655 	struct iomap_dio *dio;
4656 	ssize_t ret;
4657 
4658 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4659 
4660 	if (iocb->ki_flags & IOCB_NOWAIT) {
4661 		/* f2fs_convert_inline_inode() and block allocation can block */
4662 		if (f2fs_has_inline_data(inode) ||
4663 		    !f2fs_overwrite_io(inode, pos, count)) {
4664 			ret = -EAGAIN;
4665 			goto out;
4666 		}
4667 
4668 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4669 			ret = -EAGAIN;
4670 			goto out;
4671 		}
4672 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4673 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4674 			ret = -EAGAIN;
4675 			goto out;
4676 		}
4677 	} else {
4678 		ret = f2fs_convert_inline_inode(inode);
4679 		if (ret)
4680 			goto out;
4681 
4682 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4683 		if (do_opu)
4684 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4685 	}
4686 
4687 	/*
4688 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4689 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4690 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4691 	 */
4692 	inc_page_count(sbi, F2FS_DIO_WRITE);
4693 	dio_flags = 0;
4694 	if (pos + count > inode->i_size)
4695 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4696 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4697 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4698 	if (IS_ERR_OR_NULL(dio)) {
4699 		ret = PTR_ERR_OR_ZERO(dio);
4700 		if (ret == -ENOTBLK)
4701 			ret = 0;
4702 		if (ret != -EIOCBQUEUED)
4703 			dec_page_count(sbi, F2FS_DIO_WRITE);
4704 	} else {
4705 		ret = iomap_dio_complete(dio);
4706 	}
4707 
4708 	if (do_opu)
4709 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4710 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4711 
4712 	if (ret < 0)
4713 		goto out;
4714 	if (pos + ret > inode->i_size)
4715 		f2fs_i_size_write(inode, pos + ret);
4716 	if (!do_opu)
4717 		set_inode_flag(inode, FI_UPDATE_WRITE);
4718 
4719 	if (iov_iter_count(from)) {
4720 		ssize_t ret2;
4721 		loff_t bufio_start_pos = iocb->ki_pos;
4722 
4723 		/*
4724 		 * The direct write was partial, so we need to fall back to a
4725 		 * buffered write for the remainder.
4726 		 */
4727 
4728 		ret2 = f2fs_buffered_write_iter(iocb, from);
4729 		if (iov_iter_count(from))
4730 			f2fs_write_failed(inode, iocb->ki_pos);
4731 		if (ret2 < 0)
4732 			goto out;
4733 
4734 		/*
4735 		 * Ensure that the pagecache pages are written to disk and
4736 		 * invalidated to preserve the expected O_DIRECT semantics.
4737 		 */
4738 		if (ret2 > 0) {
4739 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4740 
4741 			ret += ret2;
4742 
4743 			f2fs_flush_buffered_write(file->f_mapping,
4744 						  bufio_start_pos,
4745 						  bufio_end_pos);
4746 		}
4747 	} else {
4748 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4749 		*may_need_sync = false;
4750 	}
4751 out:
4752 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4753 	return ret;
4754 }
4755 
4756 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4757 {
4758 	struct inode *inode = file_inode(iocb->ki_filp);
4759 	const loff_t orig_pos = iocb->ki_pos;
4760 	const size_t orig_count = iov_iter_count(from);
4761 	loff_t target_size;
4762 	bool dio;
4763 	bool may_need_sync = true;
4764 	int preallocated;
4765 	ssize_t ret;
4766 
4767 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4768 		ret = -EIO;
4769 		goto out;
4770 	}
4771 
4772 	if (!f2fs_is_compress_backend_ready(inode)) {
4773 		ret = -EOPNOTSUPP;
4774 		goto out;
4775 	}
4776 
4777 	if (iocb->ki_flags & IOCB_NOWAIT) {
4778 		if (!inode_trylock(inode)) {
4779 			ret = -EAGAIN;
4780 			goto out;
4781 		}
4782 	} else {
4783 		inode_lock(inode);
4784 	}
4785 
4786 	ret = f2fs_write_checks(iocb, from);
4787 	if (ret <= 0)
4788 		goto out_unlock;
4789 
4790 	/* Determine whether we will do a direct write or a buffered write. */
4791 	dio = f2fs_should_use_dio(inode, iocb, from);
4792 
4793 	/* Possibly preallocate the blocks for the write. */
4794 	target_size = iocb->ki_pos + iov_iter_count(from);
4795 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4796 	if (preallocated < 0) {
4797 		ret = preallocated;
4798 	} else {
4799 		if (trace_f2fs_datawrite_start_enabled())
4800 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4801 						orig_count, WRITE);
4802 
4803 		/* Do the actual write. */
4804 		ret = dio ?
4805 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4806 			f2fs_buffered_write_iter(iocb, from);
4807 
4808 		if (trace_f2fs_datawrite_end_enabled())
4809 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4810 	}
4811 
4812 	/* Don't leave any preallocated blocks around past i_size. */
4813 	if (preallocated && i_size_read(inode) < target_size) {
4814 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4815 		filemap_invalidate_lock(inode->i_mapping);
4816 		if (!f2fs_truncate(inode))
4817 			file_dont_truncate(inode);
4818 		filemap_invalidate_unlock(inode->i_mapping);
4819 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4820 	} else {
4821 		file_dont_truncate(inode);
4822 	}
4823 
4824 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4825 out_unlock:
4826 	inode_unlock(inode);
4827 out:
4828 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4829 
4830 	if (ret > 0 && may_need_sync)
4831 		ret = generic_write_sync(iocb, ret);
4832 
4833 	/* If buffered IO was forced, flush and drop the data from
4834 	 * the page cache to preserve O_DIRECT semantics
4835 	 */
4836 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4837 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4838 					  orig_pos,
4839 					  orig_pos + ret - 1);
4840 
4841 	return ret;
4842 }
4843 
4844 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4845 		int advice)
4846 {
4847 	struct address_space *mapping;
4848 	struct backing_dev_info *bdi;
4849 	struct inode *inode = file_inode(filp);
4850 	int err;
4851 
4852 	if (advice == POSIX_FADV_SEQUENTIAL) {
4853 		if (S_ISFIFO(inode->i_mode))
4854 			return -ESPIPE;
4855 
4856 		mapping = filp->f_mapping;
4857 		if (!mapping || len < 0)
4858 			return -EINVAL;
4859 
4860 		bdi = inode_to_bdi(mapping->host);
4861 		filp->f_ra.ra_pages = bdi->ra_pages *
4862 			F2FS_I_SB(inode)->seq_file_ra_mul;
4863 		spin_lock(&filp->f_lock);
4864 		filp->f_mode &= ~FMODE_RANDOM;
4865 		spin_unlock(&filp->f_lock);
4866 		return 0;
4867 	}
4868 
4869 	err = generic_fadvise(filp, offset, len, advice);
4870 	if (!err && advice == POSIX_FADV_DONTNEED &&
4871 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4872 		f2fs_compressed_file(inode))
4873 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4874 
4875 	return err;
4876 }
4877 
4878 #ifdef CONFIG_COMPAT
4879 struct compat_f2fs_gc_range {
4880 	u32 sync;
4881 	compat_u64 start;
4882 	compat_u64 len;
4883 };
4884 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4885 						struct compat_f2fs_gc_range)
4886 
4887 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4888 {
4889 	struct compat_f2fs_gc_range __user *urange;
4890 	struct f2fs_gc_range range;
4891 	int err;
4892 
4893 	urange = compat_ptr(arg);
4894 	err = get_user(range.sync, &urange->sync);
4895 	err |= get_user(range.start, &urange->start);
4896 	err |= get_user(range.len, &urange->len);
4897 	if (err)
4898 		return -EFAULT;
4899 
4900 	return __f2fs_ioc_gc_range(file, &range);
4901 }
4902 
4903 struct compat_f2fs_move_range {
4904 	u32 dst_fd;
4905 	compat_u64 pos_in;
4906 	compat_u64 pos_out;
4907 	compat_u64 len;
4908 };
4909 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4910 					struct compat_f2fs_move_range)
4911 
4912 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4913 {
4914 	struct compat_f2fs_move_range __user *urange;
4915 	struct f2fs_move_range range;
4916 	int err;
4917 
4918 	urange = compat_ptr(arg);
4919 	err = get_user(range.dst_fd, &urange->dst_fd);
4920 	err |= get_user(range.pos_in, &urange->pos_in);
4921 	err |= get_user(range.pos_out, &urange->pos_out);
4922 	err |= get_user(range.len, &urange->len);
4923 	if (err)
4924 		return -EFAULT;
4925 
4926 	return __f2fs_ioc_move_range(file, &range);
4927 }
4928 
4929 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4930 {
4931 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4932 		return -EIO;
4933 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4934 		return -ENOSPC;
4935 
4936 	switch (cmd) {
4937 	case FS_IOC32_GETVERSION:
4938 		cmd = FS_IOC_GETVERSION;
4939 		break;
4940 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4941 		return f2fs_compat_ioc_gc_range(file, arg);
4942 	case F2FS_IOC32_MOVE_RANGE:
4943 		return f2fs_compat_ioc_move_range(file, arg);
4944 	case F2FS_IOC_START_ATOMIC_WRITE:
4945 	case F2FS_IOC_START_ATOMIC_REPLACE:
4946 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4947 	case F2FS_IOC_START_VOLATILE_WRITE:
4948 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4949 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4950 	case F2FS_IOC_SHUTDOWN:
4951 	case FITRIM:
4952 	case FS_IOC_SET_ENCRYPTION_POLICY:
4953 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4954 	case FS_IOC_GET_ENCRYPTION_POLICY:
4955 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4956 	case FS_IOC_ADD_ENCRYPTION_KEY:
4957 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4958 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4959 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4960 	case FS_IOC_GET_ENCRYPTION_NONCE:
4961 	case F2FS_IOC_GARBAGE_COLLECT:
4962 	case F2FS_IOC_WRITE_CHECKPOINT:
4963 	case F2FS_IOC_DEFRAGMENT:
4964 	case F2FS_IOC_FLUSH_DEVICE:
4965 	case F2FS_IOC_GET_FEATURES:
4966 	case F2FS_IOC_GET_PIN_FILE:
4967 	case F2FS_IOC_SET_PIN_FILE:
4968 	case F2FS_IOC_PRECACHE_EXTENTS:
4969 	case F2FS_IOC_RESIZE_FS:
4970 	case FS_IOC_ENABLE_VERITY:
4971 	case FS_IOC_MEASURE_VERITY:
4972 	case FS_IOC_READ_VERITY_METADATA:
4973 	case FS_IOC_GETFSLABEL:
4974 	case FS_IOC_SETFSLABEL:
4975 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4976 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4977 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4978 	case F2FS_IOC_SEC_TRIM_FILE:
4979 	case F2FS_IOC_GET_COMPRESS_OPTION:
4980 	case F2FS_IOC_SET_COMPRESS_OPTION:
4981 	case F2FS_IOC_DECOMPRESS_FILE:
4982 	case F2FS_IOC_COMPRESS_FILE:
4983 		break;
4984 	default:
4985 		return -ENOIOCTLCMD;
4986 	}
4987 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4988 }
4989 #endif
4990 
4991 const struct file_operations f2fs_file_operations = {
4992 	.llseek		= f2fs_llseek,
4993 	.read_iter	= f2fs_file_read_iter,
4994 	.write_iter	= f2fs_file_write_iter,
4995 	.iopoll		= iocb_bio_iopoll,
4996 	.open		= f2fs_file_open,
4997 	.release	= f2fs_release_file,
4998 	.mmap		= f2fs_file_mmap,
4999 	.flush		= f2fs_file_flush,
5000 	.fsync		= f2fs_sync_file,
5001 	.fallocate	= f2fs_fallocate,
5002 	.unlocked_ioctl	= f2fs_ioctl,
5003 #ifdef CONFIG_COMPAT
5004 	.compat_ioctl	= f2fs_compat_ioctl,
5005 #endif
5006 	.splice_read	= f2fs_file_splice_read,
5007 	.splice_write	= iter_file_splice_write,
5008 	.fadvise	= f2fs_file_fadvise,
5009 };
5010