xref: /openbmc/linux/fs/f2fs/file.c (revision 32bc7297d855608fcb13af62a95739a079b4f8e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (!ret)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		set_new_dnode(&dn, inode, NULL, NULL, 0);
117 		err = f2fs_get_block_locked(&dn, page->index);
118 	}
119 
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 	if (!need_alloc) {
122 		set_new_dnode(&dn, inode, NULL, NULL, 0);
123 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 		f2fs_put_dnode(&dn);
125 	}
126 #endif
127 	if (err) {
128 		unlock_page(page);
129 		goto out_sem;
130 	}
131 
132 	f2fs_wait_on_page_writeback(page, DATA, false, true);
133 
134 	/* wait for GCed page writeback via META_MAPPING */
135 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136 
137 	/*
138 	 * check to see if the page is mapped already (no holes)
139 	 */
140 	if (PageMappedToDisk(page))
141 		goto out_sem;
142 
143 	/* page is wholly or partially inside EOF */
144 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 						i_size_read(inode)) {
146 		loff_t offset;
147 
148 		offset = i_size_read(inode) & ~PAGE_MASK;
149 		zero_user_segment(page, offset, PAGE_SIZE);
150 	}
151 	set_page_dirty(page);
152 
153 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154 	f2fs_update_time(sbi, REQ_TIME);
155 
156 	trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158 	filemap_invalidate_unlock_shared(inode->i_mapping);
159 
160 	sb_end_pagefault(inode->i_sb);
161 err:
162 	return block_page_mkwrite_return(err);
163 }
164 
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166 	.fault		= f2fs_filemap_fault,
167 	.map_pages	= filemap_map_pages,
168 	.page_mkwrite	= f2fs_vm_page_mkwrite,
169 };
170 
171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173 	struct dentry *dentry;
174 
175 	/*
176 	 * Make sure to get the non-deleted alias.  The alias associated with
177 	 * the open file descriptor being fsync()'ed may be deleted already.
178 	 */
179 	dentry = d_find_alias(inode);
180 	if (!dentry)
181 		return 0;
182 
183 	*pino = parent_ino(dentry);
184 	dput(dentry);
185 	return 1;
186 }
187 
188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
192 
193 	if (!S_ISREG(inode->i_mode))
194 		cp_reason = CP_NON_REGULAR;
195 	else if (f2fs_compressed_file(inode))
196 		cp_reason = CP_COMPRESSED;
197 	else if (inode->i_nlink != 1)
198 		cp_reason = CP_HARDLINK;
199 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200 		cp_reason = CP_SB_NEED_CP;
201 	else if (file_wrong_pino(inode))
202 		cp_reason = CP_WRONG_PINO;
203 	else if (!f2fs_space_for_roll_forward(sbi))
204 		cp_reason = CP_NO_SPC_ROLL;
205 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206 		cp_reason = CP_NODE_NEED_CP;
207 	else if (test_opt(sbi, FASTBOOT))
208 		cp_reason = CP_FASTBOOT_MODE;
209 	else if (F2FS_OPTION(sbi).active_logs == 2)
210 		cp_reason = CP_SPEC_LOG_NUM;
211 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214 							TRANS_DIR_INO))
215 		cp_reason = CP_RECOVER_DIR;
216 
217 	return cp_reason;
218 }
219 
220 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
221 {
222 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
223 	bool ret = false;
224 	/* But we need to avoid that there are some inode updates */
225 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
226 		ret = true;
227 	f2fs_put_page(i, 0);
228 	return ret;
229 }
230 
231 static void try_to_fix_pino(struct inode *inode)
232 {
233 	struct f2fs_inode_info *fi = F2FS_I(inode);
234 	nid_t pino;
235 
236 	f2fs_down_write(&fi->i_sem);
237 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
238 			get_parent_ino(inode, &pino)) {
239 		f2fs_i_pino_write(inode, pino);
240 		file_got_pino(inode);
241 	}
242 	f2fs_up_write(&fi->i_sem);
243 }
244 
245 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
246 						int datasync, bool atomic)
247 {
248 	struct inode *inode = file->f_mapping->host;
249 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
250 	nid_t ino = inode->i_ino;
251 	int ret = 0;
252 	enum cp_reason_type cp_reason = 0;
253 	struct writeback_control wbc = {
254 		.sync_mode = WB_SYNC_ALL,
255 		.nr_to_write = LONG_MAX,
256 		.for_reclaim = 0,
257 	};
258 	unsigned int seq_id = 0;
259 
260 	if (unlikely(f2fs_readonly(inode->i_sb)))
261 		return 0;
262 
263 	trace_f2fs_sync_file_enter(inode);
264 
265 	if (S_ISDIR(inode->i_mode))
266 		goto go_write;
267 
268 	/* if fdatasync is triggered, let's do in-place-update */
269 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
270 		set_inode_flag(inode, FI_NEED_IPU);
271 	ret = file_write_and_wait_range(file, start, end);
272 	clear_inode_flag(inode, FI_NEED_IPU);
273 
274 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
275 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
276 		return ret;
277 	}
278 
279 	/* if the inode is dirty, let's recover all the time */
280 	if (!f2fs_skip_inode_update(inode, datasync)) {
281 		f2fs_write_inode(inode, NULL);
282 		goto go_write;
283 	}
284 
285 	/*
286 	 * if there is no written data, don't waste time to write recovery info.
287 	 */
288 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
289 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
290 
291 		/* it may call write_inode just prior to fsync */
292 		if (need_inode_page_update(sbi, ino))
293 			goto go_write;
294 
295 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
296 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
297 			goto flush_out;
298 		goto out;
299 	} else {
300 		/*
301 		 * for OPU case, during fsync(), node can be persisted before
302 		 * data when lower device doesn't support write barrier, result
303 		 * in data corruption after SPO.
304 		 * So for strict fsync mode, force to use atomic write semantics
305 		 * to keep write order in between data/node and last node to
306 		 * avoid potential data corruption.
307 		 */
308 		if (F2FS_OPTION(sbi).fsync_mode ==
309 				FSYNC_MODE_STRICT && !atomic)
310 			atomic = true;
311 	}
312 go_write:
313 	/*
314 	 * Both of fdatasync() and fsync() are able to be recovered from
315 	 * sudden-power-off.
316 	 */
317 	f2fs_down_read(&F2FS_I(inode)->i_sem);
318 	cp_reason = need_do_checkpoint(inode);
319 	f2fs_up_read(&F2FS_I(inode)->i_sem);
320 
321 	if (cp_reason) {
322 		/* all the dirty node pages should be flushed for POR */
323 		ret = f2fs_sync_fs(inode->i_sb, 1);
324 
325 		/*
326 		 * We've secured consistency through sync_fs. Following pino
327 		 * will be used only for fsynced inodes after checkpoint.
328 		 */
329 		try_to_fix_pino(inode);
330 		clear_inode_flag(inode, FI_APPEND_WRITE);
331 		clear_inode_flag(inode, FI_UPDATE_WRITE);
332 		goto out;
333 	}
334 sync_nodes:
335 	atomic_inc(&sbi->wb_sync_req[NODE]);
336 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
337 	atomic_dec(&sbi->wb_sync_req[NODE]);
338 	if (ret)
339 		goto out;
340 
341 	/* if cp_error was enabled, we should avoid infinite loop */
342 	if (unlikely(f2fs_cp_error(sbi))) {
343 		ret = -EIO;
344 		goto out;
345 	}
346 
347 	if (f2fs_need_inode_block_update(sbi, ino)) {
348 		f2fs_mark_inode_dirty_sync(inode, true);
349 		f2fs_write_inode(inode, NULL);
350 		goto sync_nodes;
351 	}
352 
353 	/*
354 	 * If it's atomic_write, it's just fine to keep write ordering. So
355 	 * here we don't need to wait for node write completion, since we use
356 	 * node chain which serializes node blocks. If one of node writes are
357 	 * reordered, we can see simply broken chain, resulting in stopping
358 	 * roll-forward recovery. It means we'll recover all or none node blocks
359 	 * given fsync mark.
360 	 */
361 	if (!atomic) {
362 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
363 		if (ret)
364 			goto out;
365 	}
366 
367 	/* once recovery info is written, don't need to tack this */
368 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
369 	clear_inode_flag(inode, FI_APPEND_WRITE);
370 flush_out:
371 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
372 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
373 		ret = f2fs_issue_flush(sbi, inode->i_ino);
374 	if (!ret) {
375 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
376 		clear_inode_flag(inode, FI_UPDATE_WRITE);
377 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
378 	}
379 	f2fs_update_time(sbi, REQ_TIME);
380 out:
381 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
382 	return ret;
383 }
384 
385 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
386 {
387 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
388 		return -EIO;
389 	return f2fs_do_sync_file(file, start, end, datasync, false);
390 }
391 
392 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
393 				pgoff_t index, int whence)
394 {
395 	switch (whence) {
396 	case SEEK_DATA:
397 		if (__is_valid_data_blkaddr(blkaddr))
398 			return true;
399 		if (blkaddr == NEW_ADDR &&
400 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
401 			return true;
402 		break;
403 	case SEEK_HOLE:
404 		if (blkaddr == NULL_ADDR)
405 			return true;
406 		break;
407 	}
408 	return false;
409 }
410 
411 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
412 {
413 	struct inode *inode = file->f_mapping->host;
414 	loff_t maxbytes = inode->i_sb->s_maxbytes;
415 	struct dnode_of_data dn;
416 	pgoff_t pgofs, end_offset;
417 	loff_t data_ofs = offset;
418 	loff_t isize;
419 	int err = 0;
420 
421 	inode_lock(inode);
422 
423 	isize = i_size_read(inode);
424 	if (offset >= isize)
425 		goto fail;
426 
427 	/* handle inline data case */
428 	if (f2fs_has_inline_data(inode)) {
429 		if (whence == SEEK_HOLE) {
430 			data_ofs = isize;
431 			goto found;
432 		} else if (whence == SEEK_DATA) {
433 			data_ofs = offset;
434 			goto found;
435 		}
436 	}
437 
438 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
439 
440 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
441 		set_new_dnode(&dn, inode, NULL, NULL, 0);
442 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
443 		if (err && err != -ENOENT) {
444 			goto fail;
445 		} else if (err == -ENOENT) {
446 			/* direct node does not exists */
447 			if (whence == SEEK_DATA) {
448 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
449 				continue;
450 			} else {
451 				goto found;
452 			}
453 		}
454 
455 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
456 
457 		/* find data/hole in dnode block */
458 		for (; dn.ofs_in_node < end_offset;
459 				dn.ofs_in_node++, pgofs++,
460 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461 			block_t blkaddr;
462 
463 			blkaddr = f2fs_data_blkaddr(&dn);
464 
465 			if (__is_valid_data_blkaddr(blkaddr) &&
466 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
467 					blkaddr, DATA_GENERIC_ENHANCE)) {
468 				f2fs_put_dnode(&dn);
469 				goto fail;
470 			}
471 
472 			if (__found_offset(file->f_mapping, blkaddr,
473 							pgofs, whence)) {
474 				f2fs_put_dnode(&dn);
475 				goto found;
476 			}
477 		}
478 		f2fs_put_dnode(&dn);
479 	}
480 
481 	if (whence == SEEK_DATA)
482 		goto fail;
483 found:
484 	if (whence == SEEK_HOLE && data_ofs > isize)
485 		data_ofs = isize;
486 	inode_unlock(inode);
487 	return vfs_setpos(file, data_ofs, maxbytes);
488 fail:
489 	inode_unlock(inode);
490 	return -ENXIO;
491 }
492 
493 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
494 {
495 	struct inode *inode = file->f_mapping->host;
496 	loff_t maxbytes = inode->i_sb->s_maxbytes;
497 
498 	if (f2fs_compressed_file(inode))
499 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
500 
501 	switch (whence) {
502 	case SEEK_SET:
503 	case SEEK_CUR:
504 	case SEEK_END:
505 		return generic_file_llseek_size(file, offset, whence,
506 						maxbytes, i_size_read(inode));
507 	case SEEK_DATA:
508 	case SEEK_HOLE:
509 		if (offset < 0)
510 			return -ENXIO;
511 		return f2fs_seek_block(file, offset, whence);
512 	}
513 
514 	return -EINVAL;
515 }
516 
517 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
518 {
519 	struct inode *inode = file_inode(file);
520 
521 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
522 		return -EIO;
523 
524 	if (!f2fs_is_compress_backend_ready(inode))
525 		return -EOPNOTSUPP;
526 
527 	file_accessed(file);
528 	vma->vm_ops = &f2fs_file_vm_ops;
529 	set_inode_flag(inode, FI_MMAP_FILE);
530 	return 0;
531 }
532 
533 static int f2fs_file_open(struct inode *inode, struct file *filp)
534 {
535 	int err = fscrypt_file_open(inode, filp);
536 
537 	if (err)
538 		return err;
539 
540 	if (!f2fs_is_compress_backend_ready(inode))
541 		return -EOPNOTSUPP;
542 
543 	err = fsverity_file_open(inode, filp);
544 	if (err)
545 		return err;
546 
547 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
548 	filp->f_mode |= FMODE_CAN_ODIRECT;
549 
550 	return dquot_file_open(inode, filp);
551 }
552 
553 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
554 {
555 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
556 	struct f2fs_node *raw_node;
557 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
558 	__le32 *addr;
559 	int base = 0;
560 	bool compressed_cluster = false;
561 	int cluster_index = 0, valid_blocks = 0;
562 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
563 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
564 
565 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
566 		base = get_extra_isize(dn->inode);
567 
568 	raw_node = F2FS_NODE(dn->node_page);
569 	addr = blkaddr_in_node(raw_node) + base + ofs;
570 
571 	/* Assumption: truncation starts with cluster */
572 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
573 		block_t blkaddr = le32_to_cpu(*addr);
574 
575 		if (f2fs_compressed_file(dn->inode) &&
576 					!(cluster_index & (cluster_size - 1))) {
577 			if (compressed_cluster)
578 				f2fs_i_compr_blocks_update(dn->inode,
579 							valid_blocks, false);
580 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
581 			valid_blocks = 0;
582 		}
583 
584 		if (blkaddr == NULL_ADDR)
585 			continue;
586 
587 		dn->data_blkaddr = NULL_ADDR;
588 		f2fs_set_data_blkaddr(dn);
589 
590 		if (__is_valid_data_blkaddr(blkaddr)) {
591 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
592 					DATA_GENERIC_ENHANCE))
593 				continue;
594 			if (compressed_cluster)
595 				valid_blocks++;
596 		}
597 
598 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
599 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
600 
601 		f2fs_invalidate_blocks(sbi, blkaddr);
602 
603 		if (!released || blkaddr != COMPRESS_ADDR)
604 			nr_free++;
605 	}
606 
607 	if (compressed_cluster)
608 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
609 
610 	if (nr_free) {
611 		pgoff_t fofs;
612 		/*
613 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
614 		 * we will invalidate all blkaddr in the whole range.
615 		 */
616 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
617 							dn->inode) + ofs;
618 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
619 		f2fs_update_age_extent_cache_range(dn, fofs, len);
620 		dec_valid_block_count(sbi, dn->inode, nr_free);
621 	}
622 	dn->ofs_in_node = ofs;
623 
624 	f2fs_update_time(sbi, REQ_TIME);
625 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
626 					 dn->ofs_in_node, nr_free);
627 }
628 
629 static int truncate_partial_data_page(struct inode *inode, u64 from,
630 								bool cache_only)
631 {
632 	loff_t offset = from & (PAGE_SIZE - 1);
633 	pgoff_t index = from >> PAGE_SHIFT;
634 	struct address_space *mapping = inode->i_mapping;
635 	struct page *page;
636 
637 	if (!offset && !cache_only)
638 		return 0;
639 
640 	if (cache_only) {
641 		page = find_lock_page(mapping, index);
642 		if (page && PageUptodate(page))
643 			goto truncate_out;
644 		f2fs_put_page(page, 1);
645 		return 0;
646 	}
647 
648 	page = f2fs_get_lock_data_page(inode, index, true);
649 	if (IS_ERR(page))
650 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
651 truncate_out:
652 	f2fs_wait_on_page_writeback(page, DATA, true, true);
653 	zero_user(page, offset, PAGE_SIZE - offset);
654 
655 	/* An encrypted inode should have a key and truncate the last page. */
656 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
657 	if (!cache_only)
658 		set_page_dirty(page);
659 	f2fs_put_page(page, 1);
660 	return 0;
661 }
662 
663 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
664 {
665 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
666 	struct dnode_of_data dn;
667 	pgoff_t free_from;
668 	int count = 0, err = 0;
669 	struct page *ipage;
670 	bool truncate_page = false;
671 
672 	trace_f2fs_truncate_blocks_enter(inode, from);
673 
674 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
675 
676 	if (free_from >= max_file_blocks(inode))
677 		goto free_partial;
678 
679 	if (lock)
680 		f2fs_lock_op(sbi);
681 
682 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
683 	if (IS_ERR(ipage)) {
684 		err = PTR_ERR(ipage);
685 		goto out;
686 	}
687 
688 	if (f2fs_has_inline_data(inode)) {
689 		f2fs_truncate_inline_inode(inode, ipage, from);
690 		f2fs_put_page(ipage, 1);
691 		truncate_page = true;
692 		goto out;
693 	}
694 
695 	set_new_dnode(&dn, inode, ipage, NULL, 0);
696 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
697 	if (err) {
698 		if (err == -ENOENT)
699 			goto free_next;
700 		goto out;
701 	}
702 
703 	count = ADDRS_PER_PAGE(dn.node_page, inode);
704 
705 	count -= dn.ofs_in_node;
706 	f2fs_bug_on(sbi, count < 0);
707 
708 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
709 		f2fs_truncate_data_blocks_range(&dn, count);
710 		free_from += count;
711 	}
712 
713 	f2fs_put_dnode(&dn);
714 free_next:
715 	err = f2fs_truncate_inode_blocks(inode, free_from);
716 out:
717 	if (lock)
718 		f2fs_unlock_op(sbi);
719 free_partial:
720 	/* lastly zero out the first data page */
721 	if (!err)
722 		err = truncate_partial_data_page(inode, from, truncate_page);
723 
724 	trace_f2fs_truncate_blocks_exit(inode, err);
725 	return err;
726 }
727 
728 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
729 {
730 	u64 free_from = from;
731 	int err;
732 
733 #ifdef CONFIG_F2FS_FS_COMPRESSION
734 	/*
735 	 * for compressed file, only support cluster size
736 	 * aligned truncation.
737 	 */
738 	if (f2fs_compressed_file(inode))
739 		free_from = round_up(from,
740 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
741 #endif
742 
743 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
744 	if (err)
745 		return err;
746 
747 #ifdef CONFIG_F2FS_FS_COMPRESSION
748 	/*
749 	 * For compressed file, after release compress blocks, don't allow write
750 	 * direct, but we should allow write direct after truncate to zero.
751 	 */
752 	if (f2fs_compressed_file(inode) && !free_from
753 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
754 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
755 
756 	if (from != free_from) {
757 		err = f2fs_truncate_partial_cluster(inode, from, lock);
758 		if (err)
759 			return err;
760 	}
761 #endif
762 
763 	return 0;
764 }
765 
766 int f2fs_truncate(struct inode *inode)
767 {
768 	int err;
769 
770 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
771 		return -EIO;
772 
773 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
774 				S_ISLNK(inode->i_mode)))
775 		return 0;
776 
777 	trace_f2fs_truncate(inode);
778 
779 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
780 		return -EIO;
781 
782 	err = f2fs_dquot_initialize(inode);
783 	if (err)
784 		return err;
785 
786 	/* we should check inline_data size */
787 	if (!f2fs_may_inline_data(inode)) {
788 		err = f2fs_convert_inline_inode(inode);
789 		if (err)
790 			return err;
791 	}
792 
793 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
794 	if (err)
795 		return err;
796 
797 	inode->i_mtime = inode->i_ctime = current_time(inode);
798 	f2fs_mark_inode_dirty_sync(inode, false);
799 	return 0;
800 }
801 
802 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
803 {
804 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
805 
806 	if (!fscrypt_dio_supported(inode))
807 		return true;
808 	if (fsverity_active(inode))
809 		return true;
810 	if (f2fs_compressed_file(inode))
811 		return true;
812 
813 	/* disallow direct IO if any of devices has unaligned blksize */
814 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
815 		return true;
816 	/*
817 	 * for blkzoned device, fallback direct IO to buffered IO, so
818 	 * all IOs can be serialized by log-structured write.
819 	 */
820 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
821 		return true;
822 	if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
823 		return true;
824 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
825 		return true;
826 
827 	return false;
828 }
829 
830 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
831 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
832 {
833 	struct inode *inode = d_inode(path->dentry);
834 	struct f2fs_inode_info *fi = F2FS_I(inode);
835 	struct f2fs_inode *ri = NULL;
836 	unsigned int flags;
837 
838 	if (f2fs_has_extra_attr(inode) &&
839 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
840 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
841 		stat->result_mask |= STATX_BTIME;
842 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
843 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
844 	}
845 
846 	/*
847 	 * Return the DIO alignment restrictions if requested.  We only return
848 	 * this information when requested, since on encrypted files it might
849 	 * take a fair bit of work to get if the file wasn't opened recently.
850 	 *
851 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
852 	 * cannot represent that, so in that case we report no DIO support.
853 	 */
854 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
855 		unsigned int bsize = i_blocksize(inode);
856 
857 		stat->result_mask |= STATX_DIOALIGN;
858 		if (!f2fs_force_buffered_io(inode, WRITE)) {
859 			stat->dio_mem_align = bsize;
860 			stat->dio_offset_align = bsize;
861 		}
862 	}
863 
864 	flags = fi->i_flags;
865 	if (flags & F2FS_COMPR_FL)
866 		stat->attributes |= STATX_ATTR_COMPRESSED;
867 	if (flags & F2FS_APPEND_FL)
868 		stat->attributes |= STATX_ATTR_APPEND;
869 	if (IS_ENCRYPTED(inode))
870 		stat->attributes |= STATX_ATTR_ENCRYPTED;
871 	if (flags & F2FS_IMMUTABLE_FL)
872 		stat->attributes |= STATX_ATTR_IMMUTABLE;
873 	if (flags & F2FS_NODUMP_FL)
874 		stat->attributes |= STATX_ATTR_NODUMP;
875 	if (IS_VERITY(inode))
876 		stat->attributes |= STATX_ATTR_VERITY;
877 
878 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
879 				  STATX_ATTR_APPEND |
880 				  STATX_ATTR_ENCRYPTED |
881 				  STATX_ATTR_IMMUTABLE |
882 				  STATX_ATTR_NODUMP |
883 				  STATX_ATTR_VERITY);
884 
885 	generic_fillattr(idmap, inode, stat);
886 
887 	/* we need to show initial sectors used for inline_data/dentries */
888 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
889 					f2fs_has_inline_dentry(inode))
890 		stat->blocks += (stat->size + 511) >> 9;
891 
892 	return 0;
893 }
894 
895 #ifdef CONFIG_F2FS_FS_POSIX_ACL
896 static void __setattr_copy(struct mnt_idmap *idmap,
897 			   struct inode *inode, const struct iattr *attr)
898 {
899 	unsigned int ia_valid = attr->ia_valid;
900 
901 	i_uid_update(idmap, attr, inode);
902 	i_gid_update(idmap, attr, inode);
903 	if (ia_valid & ATTR_ATIME)
904 		inode->i_atime = attr->ia_atime;
905 	if (ia_valid & ATTR_MTIME)
906 		inode->i_mtime = attr->ia_mtime;
907 	if (ia_valid & ATTR_CTIME)
908 		inode->i_ctime = attr->ia_ctime;
909 	if (ia_valid & ATTR_MODE) {
910 		umode_t mode = attr->ia_mode;
911 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
912 
913 		if (!vfsgid_in_group_p(vfsgid) &&
914 		    !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
915 			mode &= ~S_ISGID;
916 		set_acl_inode(inode, mode);
917 	}
918 }
919 #else
920 #define __setattr_copy setattr_copy
921 #endif
922 
923 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
924 		 struct iattr *attr)
925 {
926 	struct inode *inode = d_inode(dentry);
927 	int err;
928 
929 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
930 		return -EIO;
931 
932 	if (unlikely(IS_IMMUTABLE(inode)))
933 		return -EPERM;
934 
935 	if (unlikely(IS_APPEND(inode) &&
936 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
937 				  ATTR_GID | ATTR_TIMES_SET))))
938 		return -EPERM;
939 
940 	if ((attr->ia_valid & ATTR_SIZE) &&
941 		!f2fs_is_compress_backend_ready(inode))
942 		return -EOPNOTSUPP;
943 
944 	err = setattr_prepare(idmap, dentry, attr);
945 	if (err)
946 		return err;
947 
948 	err = fscrypt_prepare_setattr(dentry, attr);
949 	if (err)
950 		return err;
951 
952 	err = fsverity_prepare_setattr(dentry, attr);
953 	if (err)
954 		return err;
955 
956 	if (is_quota_modification(idmap, inode, attr)) {
957 		err = f2fs_dquot_initialize(inode);
958 		if (err)
959 			return err;
960 	}
961 	if (i_uid_needs_update(idmap, attr, inode) ||
962 	    i_gid_needs_update(idmap, attr, inode)) {
963 		f2fs_lock_op(F2FS_I_SB(inode));
964 		err = dquot_transfer(idmap, inode, attr);
965 		if (err) {
966 			set_sbi_flag(F2FS_I_SB(inode),
967 					SBI_QUOTA_NEED_REPAIR);
968 			f2fs_unlock_op(F2FS_I_SB(inode));
969 			return err;
970 		}
971 		/*
972 		 * update uid/gid under lock_op(), so that dquot and inode can
973 		 * be updated atomically.
974 		 */
975 		i_uid_update(idmap, attr, inode);
976 		i_gid_update(idmap, attr, inode);
977 		f2fs_mark_inode_dirty_sync(inode, true);
978 		f2fs_unlock_op(F2FS_I_SB(inode));
979 	}
980 
981 	if (attr->ia_valid & ATTR_SIZE) {
982 		loff_t old_size = i_size_read(inode);
983 
984 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
985 			/*
986 			 * should convert inline inode before i_size_write to
987 			 * keep smaller than inline_data size with inline flag.
988 			 */
989 			err = f2fs_convert_inline_inode(inode);
990 			if (err)
991 				return err;
992 		}
993 
994 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
995 		filemap_invalidate_lock(inode->i_mapping);
996 
997 		truncate_setsize(inode, attr->ia_size);
998 
999 		if (attr->ia_size <= old_size)
1000 			err = f2fs_truncate(inode);
1001 		/*
1002 		 * do not trim all blocks after i_size if target size is
1003 		 * larger than i_size.
1004 		 */
1005 		filemap_invalidate_unlock(inode->i_mapping);
1006 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1007 		if (err)
1008 			return err;
1009 
1010 		spin_lock(&F2FS_I(inode)->i_size_lock);
1011 		inode->i_mtime = inode->i_ctime = current_time(inode);
1012 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1013 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1014 	}
1015 
1016 	__setattr_copy(idmap, inode, attr);
1017 
1018 	if (attr->ia_valid & ATTR_MODE) {
1019 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1020 
1021 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1022 			if (!err)
1023 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1024 			clear_inode_flag(inode, FI_ACL_MODE);
1025 		}
1026 	}
1027 
1028 	/* file size may changed here */
1029 	f2fs_mark_inode_dirty_sync(inode, true);
1030 
1031 	/* inode change will produce dirty node pages flushed by checkpoint */
1032 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1033 
1034 	return err;
1035 }
1036 
1037 const struct inode_operations f2fs_file_inode_operations = {
1038 	.getattr	= f2fs_getattr,
1039 	.setattr	= f2fs_setattr,
1040 	.get_inode_acl	= f2fs_get_acl,
1041 	.set_acl	= f2fs_set_acl,
1042 	.listxattr	= f2fs_listxattr,
1043 	.fiemap		= f2fs_fiemap,
1044 	.fileattr_get	= f2fs_fileattr_get,
1045 	.fileattr_set	= f2fs_fileattr_set,
1046 };
1047 
1048 static int fill_zero(struct inode *inode, pgoff_t index,
1049 					loff_t start, loff_t len)
1050 {
1051 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1052 	struct page *page;
1053 
1054 	if (!len)
1055 		return 0;
1056 
1057 	f2fs_balance_fs(sbi, true);
1058 
1059 	f2fs_lock_op(sbi);
1060 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1061 	f2fs_unlock_op(sbi);
1062 
1063 	if (IS_ERR(page))
1064 		return PTR_ERR(page);
1065 
1066 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1067 	zero_user(page, start, len);
1068 	set_page_dirty(page);
1069 	f2fs_put_page(page, 1);
1070 	return 0;
1071 }
1072 
1073 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1074 {
1075 	int err;
1076 
1077 	while (pg_start < pg_end) {
1078 		struct dnode_of_data dn;
1079 		pgoff_t end_offset, count;
1080 
1081 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1082 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1083 		if (err) {
1084 			if (err == -ENOENT) {
1085 				pg_start = f2fs_get_next_page_offset(&dn,
1086 								pg_start);
1087 				continue;
1088 			}
1089 			return err;
1090 		}
1091 
1092 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1093 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1094 
1095 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1096 
1097 		f2fs_truncate_data_blocks_range(&dn, count);
1098 		f2fs_put_dnode(&dn);
1099 
1100 		pg_start += count;
1101 	}
1102 	return 0;
1103 }
1104 
1105 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1106 {
1107 	pgoff_t pg_start, pg_end;
1108 	loff_t off_start, off_end;
1109 	int ret;
1110 
1111 	ret = f2fs_convert_inline_inode(inode);
1112 	if (ret)
1113 		return ret;
1114 
1115 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1116 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1117 
1118 	off_start = offset & (PAGE_SIZE - 1);
1119 	off_end = (offset + len) & (PAGE_SIZE - 1);
1120 
1121 	if (pg_start == pg_end) {
1122 		ret = fill_zero(inode, pg_start, off_start,
1123 						off_end - off_start);
1124 		if (ret)
1125 			return ret;
1126 	} else {
1127 		if (off_start) {
1128 			ret = fill_zero(inode, pg_start++, off_start,
1129 						PAGE_SIZE - off_start);
1130 			if (ret)
1131 				return ret;
1132 		}
1133 		if (off_end) {
1134 			ret = fill_zero(inode, pg_end, 0, off_end);
1135 			if (ret)
1136 				return ret;
1137 		}
1138 
1139 		if (pg_start < pg_end) {
1140 			loff_t blk_start, blk_end;
1141 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1142 
1143 			f2fs_balance_fs(sbi, true);
1144 
1145 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1146 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1147 
1148 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1149 			filemap_invalidate_lock(inode->i_mapping);
1150 
1151 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1152 
1153 			f2fs_lock_op(sbi);
1154 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1155 			f2fs_unlock_op(sbi);
1156 
1157 			filemap_invalidate_unlock(inode->i_mapping);
1158 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1159 		}
1160 	}
1161 
1162 	return ret;
1163 }
1164 
1165 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1166 				int *do_replace, pgoff_t off, pgoff_t len)
1167 {
1168 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1169 	struct dnode_of_data dn;
1170 	int ret, done, i;
1171 
1172 next_dnode:
1173 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1174 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1175 	if (ret && ret != -ENOENT) {
1176 		return ret;
1177 	} else if (ret == -ENOENT) {
1178 		if (dn.max_level == 0)
1179 			return -ENOENT;
1180 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1181 						dn.ofs_in_node, len);
1182 		blkaddr += done;
1183 		do_replace += done;
1184 		goto next;
1185 	}
1186 
1187 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1188 							dn.ofs_in_node, len);
1189 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1190 		*blkaddr = f2fs_data_blkaddr(&dn);
1191 
1192 		if (__is_valid_data_blkaddr(*blkaddr) &&
1193 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1194 					DATA_GENERIC_ENHANCE)) {
1195 			f2fs_put_dnode(&dn);
1196 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1197 			return -EFSCORRUPTED;
1198 		}
1199 
1200 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1201 
1202 			if (f2fs_lfs_mode(sbi)) {
1203 				f2fs_put_dnode(&dn);
1204 				return -EOPNOTSUPP;
1205 			}
1206 
1207 			/* do not invalidate this block address */
1208 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1209 			*do_replace = 1;
1210 		}
1211 	}
1212 	f2fs_put_dnode(&dn);
1213 next:
1214 	len -= done;
1215 	off += done;
1216 	if (len)
1217 		goto next_dnode;
1218 	return 0;
1219 }
1220 
1221 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1222 				int *do_replace, pgoff_t off, int len)
1223 {
1224 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1225 	struct dnode_of_data dn;
1226 	int ret, i;
1227 
1228 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1229 		if (*do_replace == 0)
1230 			continue;
1231 
1232 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1233 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1234 		if (ret) {
1235 			dec_valid_block_count(sbi, inode, 1);
1236 			f2fs_invalidate_blocks(sbi, *blkaddr);
1237 		} else {
1238 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1239 		}
1240 		f2fs_put_dnode(&dn);
1241 	}
1242 	return 0;
1243 }
1244 
1245 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1246 			block_t *blkaddr, int *do_replace,
1247 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1248 {
1249 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1250 	pgoff_t i = 0;
1251 	int ret;
1252 
1253 	while (i < len) {
1254 		if (blkaddr[i] == NULL_ADDR && !full) {
1255 			i++;
1256 			continue;
1257 		}
1258 
1259 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1260 			struct dnode_of_data dn;
1261 			struct node_info ni;
1262 			size_t new_size;
1263 			pgoff_t ilen;
1264 
1265 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1266 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1267 			if (ret)
1268 				return ret;
1269 
1270 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1271 			if (ret) {
1272 				f2fs_put_dnode(&dn);
1273 				return ret;
1274 			}
1275 
1276 			ilen = min((pgoff_t)
1277 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1278 						dn.ofs_in_node, len - i);
1279 			do {
1280 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1281 				f2fs_truncate_data_blocks_range(&dn, 1);
1282 
1283 				if (do_replace[i]) {
1284 					f2fs_i_blocks_write(src_inode,
1285 							1, false, false);
1286 					f2fs_i_blocks_write(dst_inode,
1287 							1, true, false);
1288 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1289 					blkaddr[i], ni.version, true, false);
1290 
1291 					do_replace[i] = 0;
1292 				}
1293 				dn.ofs_in_node++;
1294 				i++;
1295 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1296 				if (dst_inode->i_size < new_size)
1297 					f2fs_i_size_write(dst_inode, new_size);
1298 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1299 
1300 			f2fs_put_dnode(&dn);
1301 		} else {
1302 			struct page *psrc, *pdst;
1303 
1304 			psrc = f2fs_get_lock_data_page(src_inode,
1305 							src + i, true);
1306 			if (IS_ERR(psrc))
1307 				return PTR_ERR(psrc);
1308 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1309 								true);
1310 			if (IS_ERR(pdst)) {
1311 				f2fs_put_page(psrc, 1);
1312 				return PTR_ERR(pdst);
1313 			}
1314 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1315 			set_page_dirty(pdst);
1316 			f2fs_put_page(pdst, 1);
1317 			f2fs_put_page(psrc, 1);
1318 
1319 			ret = f2fs_truncate_hole(src_inode,
1320 						src + i, src + i + 1);
1321 			if (ret)
1322 				return ret;
1323 			i++;
1324 		}
1325 	}
1326 	return 0;
1327 }
1328 
1329 static int __exchange_data_block(struct inode *src_inode,
1330 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1331 			pgoff_t len, bool full)
1332 {
1333 	block_t *src_blkaddr;
1334 	int *do_replace;
1335 	pgoff_t olen;
1336 	int ret;
1337 
1338 	while (len) {
1339 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1340 
1341 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1342 					array_size(olen, sizeof(block_t)),
1343 					GFP_NOFS);
1344 		if (!src_blkaddr)
1345 			return -ENOMEM;
1346 
1347 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1348 					array_size(olen, sizeof(int)),
1349 					GFP_NOFS);
1350 		if (!do_replace) {
1351 			kvfree(src_blkaddr);
1352 			return -ENOMEM;
1353 		}
1354 
1355 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1356 					do_replace, src, olen);
1357 		if (ret)
1358 			goto roll_back;
1359 
1360 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1361 					do_replace, src, dst, olen, full);
1362 		if (ret)
1363 			goto roll_back;
1364 
1365 		src += olen;
1366 		dst += olen;
1367 		len -= olen;
1368 
1369 		kvfree(src_blkaddr);
1370 		kvfree(do_replace);
1371 	}
1372 	return 0;
1373 
1374 roll_back:
1375 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1376 	kvfree(src_blkaddr);
1377 	kvfree(do_replace);
1378 	return ret;
1379 }
1380 
1381 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1382 {
1383 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1384 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1385 	pgoff_t start = offset >> PAGE_SHIFT;
1386 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1387 	int ret;
1388 
1389 	f2fs_balance_fs(sbi, true);
1390 
1391 	/* avoid gc operation during block exchange */
1392 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1393 	filemap_invalidate_lock(inode->i_mapping);
1394 
1395 	f2fs_lock_op(sbi);
1396 	f2fs_drop_extent_tree(inode);
1397 	truncate_pagecache(inode, offset);
1398 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1399 	f2fs_unlock_op(sbi);
1400 
1401 	filemap_invalidate_unlock(inode->i_mapping);
1402 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1403 	return ret;
1404 }
1405 
1406 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1407 {
1408 	loff_t new_size;
1409 	int ret;
1410 
1411 	if (offset + len >= i_size_read(inode))
1412 		return -EINVAL;
1413 
1414 	/* collapse range should be aligned to block size of f2fs. */
1415 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1416 		return -EINVAL;
1417 
1418 	ret = f2fs_convert_inline_inode(inode);
1419 	if (ret)
1420 		return ret;
1421 
1422 	/* write out all dirty pages from offset */
1423 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1424 	if (ret)
1425 		return ret;
1426 
1427 	ret = f2fs_do_collapse(inode, offset, len);
1428 	if (ret)
1429 		return ret;
1430 
1431 	/* write out all moved pages, if possible */
1432 	filemap_invalidate_lock(inode->i_mapping);
1433 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1434 	truncate_pagecache(inode, offset);
1435 
1436 	new_size = i_size_read(inode) - len;
1437 	ret = f2fs_truncate_blocks(inode, new_size, true);
1438 	filemap_invalidate_unlock(inode->i_mapping);
1439 	if (!ret)
1440 		f2fs_i_size_write(inode, new_size);
1441 	return ret;
1442 }
1443 
1444 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1445 								pgoff_t end)
1446 {
1447 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1448 	pgoff_t index = start;
1449 	unsigned int ofs_in_node = dn->ofs_in_node;
1450 	blkcnt_t count = 0;
1451 	int ret;
1452 
1453 	for (; index < end; index++, dn->ofs_in_node++) {
1454 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1455 			count++;
1456 	}
1457 
1458 	dn->ofs_in_node = ofs_in_node;
1459 	ret = f2fs_reserve_new_blocks(dn, count);
1460 	if (ret)
1461 		return ret;
1462 
1463 	dn->ofs_in_node = ofs_in_node;
1464 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1465 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1466 		/*
1467 		 * f2fs_reserve_new_blocks will not guarantee entire block
1468 		 * allocation.
1469 		 */
1470 		if (dn->data_blkaddr == NULL_ADDR) {
1471 			ret = -ENOSPC;
1472 			break;
1473 		}
1474 
1475 		if (dn->data_blkaddr == NEW_ADDR)
1476 			continue;
1477 
1478 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1479 					DATA_GENERIC_ENHANCE)) {
1480 			ret = -EFSCORRUPTED;
1481 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1482 			break;
1483 		}
1484 
1485 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1486 		dn->data_blkaddr = NEW_ADDR;
1487 		f2fs_set_data_blkaddr(dn);
1488 	}
1489 
1490 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1491 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1492 
1493 	return ret;
1494 }
1495 
1496 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1497 								int mode)
1498 {
1499 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1500 	struct address_space *mapping = inode->i_mapping;
1501 	pgoff_t index, pg_start, pg_end;
1502 	loff_t new_size = i_size_read(inode);
1503 	loff_t off_start, off_end;
1504 	int ret = 0;
1505 
1506 	ret = inode_newsize_ok(inode, (len + offset));
1507 	if (ret)
1508 		return ret;
1509 
1510 	ret = f2fs_convert_inline_inode(inode);
1511 	if (ret)
1512 		return ret;
1513 
1514 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1515 	if (ret)
1516 		return ret;
1517 
1518 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1519 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1520 
1521 	off_start = offset & (PAGE_SIZE - 1);
1522 	off_end = (offset + len) & (PAGE_SIZE - 1);
1523 
1524 	if (pg_start == pg_end) {
1525 		ret = fill_zero(inode, pg_start, off_start,
1526 						off_end - off_start);
1527 		if (ret)
1528 			return ret;
1529 
1530 		new_size = max_t(loff_t, new_size, offset + len);
1531 	} else {
1532 		if (off_start) {
1533 			ret = fill_zero(inode, pg_start++, off_start,
1534 						PAGE_SIZE - off_start);
1535 			if (ret)
1536 				return ret;
1537 
1538 			new_size = max_t(loff_t, new_size,
1539 					(loff_t)pg_start << PAGE_SHIFT);
1540 		}
1541 
1542 		for (index = pg_start; index < pg_end;) {
1543 			struct dnode_of_data dn;
1544 			unsigned int end_offset;
1545 			pgoff_t end;
1546 
1547 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1548 			filemap_invalidate_lock(mapping);
1549 
1550 			truncate_pagecache_range(inode,
1551 				(loff_t)index << PAGE_SHIFT,
1552 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1553 
1554 			f2fs_lock_op(sbi);
1555 
1556 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1557 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1558 			if (ret) {
1559 				f2fs_unlock_op(sbi);
1560 				filemap_invalidate_unlock(mapping);
1561 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1562 				goto out;
1563 			}
1564 
1565 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1566 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1567 
1568 			ret = f2fs_do_zero_range(&dn, index, end);
1569 			f2fs_put_dnode(&dn);
1570 
1571 			f2fs_unlock_op(sbi);
1572 			filemap_invalidate_unlock(mapping);
1573 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1574 
1575 			f2fs_balance_fs(sbi, dn.node_changed);
1576 
1577 			if (ret)
1578 				goto out;
1579 
1580 			index = end;
1581 			new_size = max_t(loff_t, new_size,
1582 					(loff_t)index << PAGE_SHIFT);
1583 		}
1584 
1585 		if (off_end) {
1586 			ret = fill_zero(inode, pg_end, 0, off_end);
1587 			if (ret)
1588 				goto out;
1589 
1590 			new_size = max_t(loff_t, new_size, offset + len);
1591 		}
1592 	}
1593 
1594 out:
1595 	if (new_size > i_size_read(inode)) {
1596 		if (mode & FALLOC_FL_KEEP_SIZE)
1597 			file_set_keep_isize(inode);
1598 		else
1599 			f2fs_i_size_write(inode, new_size);
1600 	}
1601 	return ret;
1602 }
1603 
1604 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1605 {
1606 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1607 	struct address_space *mapping = inode->i_mapping;
1608 	pgoff_t nr, pg_start, pg_end, delta, idx;
1609 	loff_t new_size;
1610 	int ret = 0;
1611 
1612 	new_size = i_size_read(inode) + len;
1613 	ret = inode_newsize_ok(inode, new_size);
1614 	if (ret)
1615 		return ret;
1616 
1617 	if (offset >= i_size_read(inode))
1618 		return -EINVAL;
1619 
1620 	/* insert range should be aligned to block size of f2fs. */
1621 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1622 		return -EINVAL;
1623 
1624 	ret = f2fs_convert_inline_inode(inode);
1625 	if (ret)
1626 		return ret;
1627 
1628 	f2fs_balance_fs(sbi, true);
1629 
1630 	filemap_invalidate_lock(mapping);
1631 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1632 	filemap_invalidate_unlock(mapping);
1633 	if (ret)
1634 		return ret;
1635 
1636 	/* write out all dirty pages from offset */
1637 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1638 	if (ret)
1639 		return ret;
1640 
1641 	pg_start = offset >> PAGE_SHIFT;
1642 	pg_end = (offset + len) >> PAGE_SHIFT;
1643 	delta = pg_end - pg_start;
1644 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1645 
1646 	/* avoid gc operation during block exchange */
1647 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1648 	filemap_invalidate_lock(mapping);
1649 	truncate_pagecache(inode, offset);
1650 
1651 	while (!ret && idx > pg_start) {
1652 		nr = idx - pg_start;
1653 		if (nr > delta)
1654 			nr = delta;
1655 		idx -= nr;
1656 
1657 		f2fs_lock_op(sbi);
1658 		f2fs_drop_extent_tree(inode);
1659 
1660 		ret = __exchange_data_block(inode, inode, idx,
1661 					idx + delta, nr, false);
1662 		f2fs_unlock_op(sbi);
1663 	}
1664 	filemap_invalidate_unlock(mapping);
1665 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1666 
1667 	/* write out all moved pages, if possible */
1668 	filemap_invalidate_lock(mapping);
1669 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1670 	truncate_pagecache(inode, offset);
1671 	filemap_invalidate_unlock(mapping);
1672 
1673 	if (!ret)
1674 		f2fs_i_size_write(inode, new_size);
1675 	return ret;
1676 }
1677 
1678 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1679 					loff_t len, int mode)
1680 {
1681 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1682 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1683 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1684 			.m_may_create = true };
1685 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1686 			.init_gc_type = FG_GC,
1687 			.should_migrate_blocks = false,
1688 			.err_gc_skipped = true,
1689 			.nr_free_secs = 0 };
1690 	pgoff_t pg_start, pg_end;
1691 	loff_t new_size;
1692 	loff_t off_end;
1693 	block_t expanded = 0;
1694 	int err;
1695 
1696 	err = inode_newsize_ok(inode, (len + offset));
1697 	if (err)
1698 		return err;
1699 
1700 	err = f2fs_convert_inline_inode(inode);
1701 	if (err)
1702 		return err;
1703 
1704 	f2fs_balance_fs(sbi, true);
1705 
1706 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1707 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1708 	off_end = (offset + len) & (PAGE_SIZE - 1);
1709 
1710 	map.m_lblk = pg_start;
1711 	map.m_len = pg_end - pg_start;
1712 	if (off_end)
1713 		map.m_len++;
1714 
1715 	if (!map.m_len)
1716 		return 0;
1717 
1718 	if (f2fs_is_pinned_file(inode)) {
1719 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1720 		block_t sec_len = roundup(map.m_len, sec_blks);
1721 
1722 		map.m_len = sec_blks;
1723 next_alloc:
1724 		if (has_not_enough_free_secs(sbi, 0,
1725 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1726 			f2fs_down_write(&sbi->gc_lock);
1727 			err = f2fs_gc(sbi, &gc_control);
1728 			if (err && err != -ENODATA)
1729 				goto out_err;
1730 		}
1731 
1732 		f2fs_down_write(&sbi->pin_sem);
1733 
1734 		f2fs_lock_op(sbi);
1735 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1736 		f2fs_unlock_op(sbi);
1737 
1738 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1739 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1740 		file_dont_truncate(inode);
1741 
1742 		f2fs_up_write(&sbi->pin_sem);
1743 
1744 		expanded += map.m_len;
1745 		sec_len -= map.m_len;
1746 		map.m_lblk += map.m_len;
1747 		if (!err && sec_len)
1748 			goto next_alloc;
1749 
1750 		map.m_len = expanded;
1751 	} else {
1752 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1753 		expanded = map.m_len;
1754 	}
1755 out_err:
1756 	if (err) {
1757 		pgoff_t last_off;
1758 
1759 		if (!expanded)
1760 			return err;
1761 
1762 		last_off = pg_start + expanded - 1;
1763 
1764 		/* update new size to the failed position */
1765 		new_size = (last_off == pg_end) ? offset + len :
1766 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1767 	} else {
1768 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1769 	}
1770 
1771 	if (new_size > i_size_read(inode)) {
1772 		if (mode & FALLOC_FL_KEEP_SIZE)
1773 			file_set_keep_isize(inode);
1774 		else
1775 			f2fs_i_size_write(inode, new_size);
1776 	}
1777 
1778 	return err;
1779 }
1780 
1781 static long f2fs_fallocate(struct file *file, int mode,
1782 				loff_t offset, loff_t len)
1783 {
1784 	struct inode *inode = file_inode(file);
1785 	long ret = 0;
1786 
1787 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1788 		return -EIO;
1789 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1790 		return -ENOSPC;
1791 	if (!f2fs_is_compress_backend_ready(inode))
1792 		return -EOPNOTSUPP;
1793 
1794 	/* f2fs only support ->fallocate for regular file */
1795 	if (!S_ISREG(inode->i_mode))
1796 		return -EINVAL;
1797 
1798 	if (IS_ENCRYPTED(inode) &&
1799 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1800 		return -EOPNOTSUPP;
1801 
1802 	/*
1803 	 * Pinned file should not support partial truncation since the block
1804 	 * can be used by applications.
1805 	 */
1806 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1807 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1808 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1809 		return -EOPNOTSUPP;
1810 
1811 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1812 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1813 			FALLOC_FL_INSERT_RANGE))
1814 		return -EOPNOTSUPP;
1815 
1816 	inode_lock(inode);
1817 
1818 	ret = file_modified(file);
1819 	if (ret)
1820 		goto out;
1821 
1822 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1823 		if (offset >= inode->i_size)
1824 			goto out;
1825 
1826 		ret = f2fs_punch_hole(inode, offset, len);
1827 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1828 		ret = f2fs_collapse_range(inode, offset, len);
1829 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1830 		ret = f2fs_zero_range(inode, offset, len, mode);
1831 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1832 		ret = f2fs_insert_range(inode, offset, len);
1833 	} else {
1834 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1835 	}
1836 
1837 	if (!ret) {
1838 		inode->i_mtime = inode->i_ctime = current_time(inode);
1839 		f2fs_mark_inode_dirty_sync(inode, false);
1840 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1841 	}
1842 
1843 out:
1844 	inode_unlock(inode);
1845 
1846 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1847 	return ret;
1848 }
1849 
1850 static int f2fs_release_file(struct inode *inode, struct file *filp)
1851 {
1852 	/*
1853 	 * f2fs_release_file is called at every close calls. So we should
1854 	 * not drop any inmemory pages by close called by other process.
1855 	 */
1856 	if (!(filp->f_mode & FMODE_WRITE) ||
1857 			atomic_read(&inode->i_writecount) != 1)
1858 		return 0;
1859 
1860 	inode_lock(inode);
1861 	f2fs_abort_atomic_write(inode, true);
1862 	inode_unlock(inode);
1863 
1864 	return 0;
1865 }
1866 
1867 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1868 {
1869 	struct inode *inode = file_inode(file);
1870 
1871 	/*
1872 	 * If the process doing a transaction is crashed, we should do
1873 	 * roll-back. Otherwise, other reader/write can see corrupted database
1874 	 * until all the writers close its file. Since this should be done
1875 	 * before dropping file lock, it needs to do in ->flush.
1876 	 */
1877 	if (F2FS_I(inode)->atomic_write_task == current &&
1878 				(current->flags & PF_EXITING)) {
1879 		inode_lock(inode);
1880 		f2fs_abort_atomic_write(inode, true);
1881 		inode_unlock(inode);
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1888 {
1889 	struct f2fs_inode_info *fi = F2FS_I(inode);
1890 	u32 masked_flags = fi->i_flags & mask;
1891 
1892 	/* mask can be shrunk by flags_valid selector */
1893 	iflags &= mask;
1894 
1895 	/* Is it quota file? Do not allow user to mess with it */
1896 	if (IS_NOQUOTA(inode))
1897 		return -EPERM;
1898 
1899 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1900 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1901 			return -EOPNOTSUPP;
1902 		if (!f2fs_empty_dir(inode))
1903 			return -ENOTEMPTY;
1904 	}
1905 
1906 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1907 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1908 			return -EOPNOTSUPP;
1909 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1910 			return -EINVAL;
1911 	}
1912 
1913 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1914 		if (masked_flags & F2FS_COMPR_FL) {
1915 			if (!f2fs_disable_compressed_file(inode))
1916 				return -EINVAL;
1917 		} else {
1918 			/* try to convert inline_data to support compression */
1919 			int err = f2fs_convert_inline_inode(inode);
1920 			if (err)
1921 				return err;
1922 			if (!f2fs_may_compress(inode))
1923 				return -EINVAL;
1924 			if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
1925 				return -EINVAL;
1926 			if (set_compress_context(inode))
1927 				return -EOPNOTSUPP;
1928 		}
1929 	}
1930 
1931 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1932 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1933 					(fi->i_flags & F2FS_NOCOMP_FL));
1934 
1935 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1936 		set_inode_flag(inode, FI_PROJ_INHERIT);
1937 	else
1938 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1939 
1940 	inode->i_ctime = current_time(inode);
1941 	f2fs_set_inode_flags(inode);
1942 	f2fs_mark_inode_dirty_sync(inode, true);
1943 	return 0;
1944 }
1945 
1946 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1947 
1948 /*
1949  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1950  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1951  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1952  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1953  *
1954  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1955  * FS_IOC_FSSETXATTR is done by the VFS.
1956  */
1957 
1958 static const struct {
1959 	u32 iflag;
1960 	u32 fsflag;
1961 } f2fs_fsflags_map[] = {
1962 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1963 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1964 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1965 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1966 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1967 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1968 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1969 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1970 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1971 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1972 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1973 };
1974 
1975 #define F2FS_GETTABLE_FS_FL (		\
1976 		FS_COMPR_FL |		\
1977 		FS_SYNC_FL |		\
1978 		FS_IMMUTABLE_FL |	\
1979 		FS_APPEND_FL |		\
1980 		FS_NODUMP_FL |		\
1981 		FS_NOATIME_FL |		\
1982 		FS_NOCOMP_FL |		\
1983 		FS_INDEX_FL |		\
1984 		FS_DIRSYNC_FL |		\
1985 		FS_PROJINHERIT_FL |	\
1986 		FS_ENCRYPT_FL |		\
1987 		FS_INLINE_DATA_FL |	\
1988 		FS_NOCOW_FL |		\
1989 		FS_VERITY_FL |		\
1990 		FS_CASEFOLD_FL)
1991 
1992 #define F2FS_SETTABLE_FS_FL (		\
1993 		FS_COMPR_FL |		\
1994 		FS_SYNC_FL |		\
1995 		FS_IMMUTABLE_FL |	\
1996 		FS_APPEND_FL |		\
1997 		FS_NODUMP_FL |		\
1998 		FS_NOATIME_FL |		\
1999 		FS_NOCOMP_FL |		\
2000 		FS_DIRSYNC_FL |		\
2001 		FS_PROJINHERIT_FL |	\
2002 		FS_CASEFOLD_FL)
2003 
2004 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2005 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2006 {
2007 	u32 fsflags = 0;
2008 	int i;
2009 
2010 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2011 		if (iflags & f2fs_fsflags_map[i].iflag)
2012 			fsflags |= f2fs_fsflags_map[i].fsflag;
2013 
2014 	return fsflags;
2015 }
2016 
2017 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2018 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2019 {
2020 	u32 iflags = 0;
2021 	int i;
2022 
2023 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2024 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2025 			iflags |= f2fs_fsflags_map[i].iflag;
2026 
2027 	return iflags;
2028 }
2029 
2030 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2031 {
2032 	struct inode *inode = file_inode(filp);
2033 
2034 	return put_user(inode->i_generation, (int __user *)arg);
2035 }
2036 
2037 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2038 {
2039 	struct inode *inode = file_inode(filp);
2040 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2041 	struct f2fs_inode_info *fi = F2FS_I(inode);
2042 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2043 	struct inode *pinode;
2044 	loff_t isize;
2045 	int ret;
2046 
2047 	if (!inode_owner_or_capable(idmap, inode))
2048 		return -EACCES;
2049 
2050 	if (!S_ISREG(inode->i_mode))
2051 		return -EINVAL;
2052 
2053 	if (filp->f_flags & O_DIRECT)
2054 		return -EINVAL;
2055 
2056 	ret = mnt_want_write_file(filp);
2057 	if (ret)
2058 		return ret;
2059 
2060 	inode_lock(inode);
2061 
2062 	if (!f2fs_disable_compressed_file(inode)) {
2063 		ret = -EINVAL;
2064 		goto out;
2065 	}
2066 
2067 	if (f2fs_is_atomic_file(inode))
2068 		goto out;
2069 
2070 	ret = f2fs_convert_inline_inode(inode);
2071 	if (ret)
2072 		goto out;
2073 
2074 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2075 
2076 	/*
2077 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2078 	 * f2fs_is_atomic_file.
2079 	 */
2080 	if (get_dirty_pages(inode))
2081 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2082 			  inode->i_ino, get_dirty_pages(inode));
2083 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2084 	if (ret) {
2085 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2086 		goto out;
2087 	}
2088 
2089 	/* Check if the inode already has a COW inode */
2090 	if (fi->cow_inode == NULL) {
2091 		/* Create a COW inode for atomic write */
2092 		pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2093 		if (IS_ERR(pinode)) {
2094 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2095 			ret = PTR_ERR(pinode);
2096 			goto out;
2097 		}
2098 
2099 		ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2100 		iput(pinode);
2101 		if (ret) {
2102 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2103 			goto out;
2104 		}
2105 
2106 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2107 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2108 	} else {
2109 		/* Reuse the already created COW inode */
2110 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2111 		if (ret) {
2112 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2113 			goto out;
2114 		}
2115 	}
2116 
2117 	f2fs_write_inode(inode, NULL);
2118 
2119 	stat_inc_atomic_inode(inode);
2120 
2121 	set_inode_flag(inode, FI_ATOMIC_FILE);
2122 
2123 	isize = i_size_read(inode);
2124 	fi->original_i_size = isize;
2125 	if (truncate) {
2126 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2127 		truncate_inode_pages_final(inode->i_mapping);
2128 		f2fs_i_size_write(inode, 0);
2129 		isize = 0;
2130 	}
2131 	f2fs_i_size_write(fi->cow_inode, isize);
2132 
2133 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2134 
2135 	f2fs_update_time(sbi, REQ_TIME);
2136 	fi->atomic_write_task = current;
2137 	stat_update_max_atomic_write(inode);
2138 	fi->atomic_write_cnt = 0;
2139 out:
2140 	inode_unlock(inode);
2141 	mnt_drop_write_file(filp);
2142 	return ret;
2143 }
2144 
2145 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2146 {
2147 	struct inode *inode = file_inode(filp);
2148 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2149 	int ret;
2150 
2151 	if (!inode_owner_or_capable(idmap, inode))
2152 		return -EACCES;
2153 
2154 	ret = mnt_want_write_file(filp);
2155 	if (ret)
2156 		return ret;
2157 
2158 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2159 
2160 	inode_lock(inode);
2161 
2162 	if (f2fs_is_atomic_file(inode)) {
2163 		ret = f2fs_commit_atomic_write(inode);
2164 		if (!ret)
2165 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2166 
2167 		f2fs_abort_atomic_write(inode, ret);
2168 	} else {
2169 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2170 	}
2171 
2172 	inode_unlock(inode);
2173 	mnt_drop_write_file(filp);
2174 	return ret;
2175 }
2176 
2177 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2178 {
2179 	struct inode *inode = file_inode(filp);
2180 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2181 	int ret;
2182 
2183 	if (!inode_owner_or_capable(idmap, inode))
2184 		return -EACCES;
2185 
2186 	ret = mnt_want_write_file(filp);
2187 	if (ret)
2188 		return ret;
2189 
2190 	inode_lock(inode);
2191 
2192 	f2fs_abort_atomic_write(inode, true);
2193 
2194 	inode_unlock(inode);
2195 
2196 	mnt_drop_write_file(filp);
2197 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2198 	return ret;
2199 }
2200 
2201 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2202 {
2203 	struct inode *inode = file_inode(filp);
2204 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2205 	struct super_block *sb = sbi->sb;
2206 	__u32 in;
2207 	int ret = 0;
2208 
2209 	if (!capable(CAP_SYS_ADMIN))
2210 		return -EPERM;
2211 
2212 	if (get_user(in, (__u32 __user *)arg))
2213 		return -EFAULT;
2214 
2215 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2216 		ret = mnt_want_write_file(filp);
2217 		if (ret) {
2218 			if (ret == -EROFS) {
2219 				ret = 0;
2220 				f2fs_stop_checkpoint(sbi, false,
2221 						STOP_CP_REASON_SHUTDOWN);
2222 				trace_f2fs_shutdown(sbi, in, ret);
2223 			}
2224 			return ret;
2225 		}
2226 	}
2227 
2228 	switch (in) {
2229 	case F2FS_GOING_DOWN_FULLSYNC:
2230 		ret = freeze_bdev(sb->s_bdev);
2231 		if (ret)
2232 			goto out;
2233 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2234 		thaw_bdev(sb->s_bdev);
2235 		break;
2236 	case F2FS_GOING_DOWN_METASYNC:
2237 		/* do checkpoint only */
2238 		ret = f2fs_sync_fs(sb, 1);
2239 		if (ret)
2240 			goto out;
2241 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2242 		break;
2243 	case F2FS_GOING_DOWN_NOSYNC:
2244 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2245 		break;
2246 	case F2FS_GOING_DOWN_METAFLUSH:
2247 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2248 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2249 		break;
2250 	case F2FS_GOING_DOWN_NEED_FSCK:
2251 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2252 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2253 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2254 		/* do checkpoint only */
2255 		ret = f2fs_sync_fs(sb, 1);
2256 		goto out;
2257 	default:
2258 		ret = -EINVAL;
2259 		goto out;
2260 	}
2261 
2262 	f2fs_stop_gc_thread(sbi);
2263 	f2fs_stop_discard_thread(sbi);
2264 
2265 	f2fs_drop_discard_cmd(sbi);
2266 	clear_opt(sbi, DISCARD);
2267 
2268 	f2fs_update_time(sbi, REQ_TIME);
2269 out:
2270 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2271 		mnt_drop_write_file(filp);
2272 
2273 	trace_f2fs_shutdown(sbi, in, ret);
2274 
2275 	return ret;
2276 }
2277 
2278 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2279 {
2280 	struct inode *inode = file_inode(filp);
2281 	struct super_block *sb = inode->i_sb;
2282 	struct fstrim_range range;
2283 	int ret;
2284 
2285 	if (!capable(CAP_SYS_ADMIN))
2286 		return -EPERM;
2287 
2288 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2289 		return -EOPNOTSUPP;
2290 
2291 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2292 				sizeof(range)))
2293 		return -EFAULT;
2294 
2295 	ret = mnt_want_write_file(filp);
2296 	if (ret)
2297 		return ret;
2298 
2299 	range.minlen = max((unsigned int)range.minlen,
2300 			   bdev_discard_granularity(sb->s_bdev));
2301 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2302 	mnt_drop_write_file(filp);
2303 	if (ret < 0)
2304 		return ret;
2305 
2306 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2307 				sizeof(range)))
2308 		return -EFAULT;
2309 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2310 	return 0;
2311 }
2312 
2313 static bool uuid_is_nonzero(__u8 u[16])
2314 {
2315 	int i;
2316 
2317 	for (i = 0; i < 16; i++)
2318 		if (u[i])
2319 			return true;
2320 	return false;
2321 }
2322 
2323 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2324 {
2325 	struct inode *inode = file_inode(filp);
2326 
2327 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2328 		return -EOPNOTSUPP;
2329 
2330 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2331 
2332 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2333 }
2334 
2335 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2336 {
2337 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2338 		return -EOPNOTSUPP;
2339 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2340 }
2341 
2342 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2343 {
2344 	struct inode *inode = file_inode(filp);
2345 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2346 	u8 encrypt_pw_salt[16];
2347 	int err;
2348 
2349 	if (!f2fs_sb_has_encrypt(sbi))
2350 		return -EOPNOTSUPP;
2351 
2352 	err = mnt_want_write_file(filp);
2353 	if (err)
2354 		return err;
2355 
2356 	f2fs_down_write(&sbi->sb_lock);
2357 
2358 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2359 		goto got_it;
2360 
2361 	/* update superblock with uuid */
2362 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2363 
2364 	err = f2fs_commit_super(sbi, false);
2365 	if (err) {
2366 		/* undo new data */
2367 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2368 		goto out_err;
2369 	}
2370 got_it:
2371 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2372 out_err:
2373 	f2fs_up_write(&sbi->sb_lock);
2374 	mnt_drop_write_file(filp);
2375 
2376 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2377 		err = -EFAULT;
2378 
2379 	return err;
2380 }
2381 
2382 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2383 					     unsigned long arg)
2384 {
2385 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2386 		return -EOPNOTSUPP;
2387 
2388 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2389 }
2390 
2391 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2392 {
2393 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2394 		return -EOPNOTSUPP;
2395 
2396 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2397 }
2398 
2399 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2400 {
2401 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2402 		return -EOPNOTSUPP;
2403 
2404 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2405 }
2406 
2407 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2408 						    unsigned long arg)
2409 {
2410 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2411 		return -EOPNOTSUPP;
2412 
2413 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2414 }
2415 
2416 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2417 					      unsigned long arg)
2418 {
2419 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2420 		return -EOPNOTSUPP;
2421 
2422 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2423 }
2424 
2425 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2426 {
2427 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2428 		return -EOPNOTSUPP;
2429 
2430 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2431 }
2432 
2433 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2434 {
2435 	struct inode *inode = file_inode(filp);
2436 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2437 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2438 			.no_bg_gc = false,
2439 			.should_migrate_blocks = false,
2440 			.nr_free_secs = 0 };
2441 	__u32 sync;
2442 	int ret;
2443 
2444 	if (!capable(CAP_SYS_ADMIN))
2445 		return -EPERM;
2446 
2447 	if (get_user(sync, (__u32 __user *)arg))
2448 		return -EFAULT;
2449 
2450 	if (f2fs_readonly(sbi->sb))
2451 		return -EROFS;
2452 
2453 	ret = mnt_want_write_file(filp);
2454 	if (ret)
2455 		return ret;
2456 
2457 	if (!sync) {
2458 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2459 			ret = -EBUSY;
2460 			goto out;
2461 		}
2462 	} else {
2463 		f2fs_down_write(&sbi->gc_lock);
2464 	}
2465 
2466 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2467 	gc_control.err_gc_skipped = sync;
2468 	ret = f2fs_gc(sbi, &gc_control);
2469 out:
2470 	mnt_drop_write_file(filp);
2471 	return ret;
2472 }
2473 
2474 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2475 {
2476 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2477 	struct f2fs_gc_control gc_control = {
2478 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2479 			.no_bg_gc = false,
2480 			.should_migrate_blocks = false,
2481 			.err_gc_skipped = range->sync,
2482 			.nr_free_secs = 0 };
2483 	u64 end;
2484 	int ret;
2485 
2486 	if (!capable(CAP_SYS_ADMIN))
2487 		return -EPERM;
2488 	if (f2fs_readonly(sbi->sb))
2489 		return -EROFS;
2490 
2491 	end = range->start + range->len;
2492 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2493 					end >= MAX_BLKADDR(sbi))
2494 		return -EINVAL;
2495 
2496 	ret = mnt_want_write_file(filp);
2497 	if (ret)
2498 		return ret;
2499 
2500 do_more:
2501 	if (!range->sync) {
2502 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2503 			ret = -EBUSY;
2504 			goto out;
2505 		}
2506 	} else {
2507 		f2fs_down_write(&sbi->gc_lock);
2508 	}
2509 
2510 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2511 	ret = f2fs_gc(sbi, &gc_control);
2512 	if (ret) {
2513 		if (ret == -EBUSY)
2514 			ret = -EAGAIN;
2515 		goto out;
2516 	}
2517 	range->start += CAP_BLKS_PER_SEC(sbi);
2518 	if (range->start <= end)
2519 		goto do_more;
2520 out:
2521 	mnt_drop_write_file(filp);
2522 	return ret;
2523 }
2524 
2525 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2526 {
2527 	struct f2fs_gc_range range;
2528 
2529 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2530 							sizeof(range)))
2531 		return -EFAULT;
2532 	return __f2fs_ioc_gc_range(filp, &range);
2533 }
2534 
2535 static int f2fs_ioc_write_checkpoint(struct file *filp)
2536 {
2537 	struct inode *inode = file_inode(filp);
2538 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2539 	int ret;
2540 
2541 	if (!capable(CAP_SYS_ADMIN))
2542 		return -EPERM;
2543 
2544 	if (f2fs_readonly(sbi->sb))
2545 		return -EROFS;
2546 
2547 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2548 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2549 		return -EINVAL;
2550 	}
2551 
2552 	ret = mnt_want_write_file(filp);
2553 	if (ret)
2554 		return ret;
2555 
2556 	ret = f2fs_sync_fs(sbi->sb, 1);
2557 
2558 	mnt_drop_write_file(filp);
2559 	return ret;
2560 }
2561 
2562 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2563 					struct file *filp,
2564 					struct f2fs_defragment *range)
2565 {
2566 	struct inode *inode = file_inode(filp);
2567 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2568 					.m_seg_type = NO_CHECK_TYPE,
2569 					.m_may_create = false };
2570 	struct extent_info ei = {};
2571 	pgoff_t pg_start, pg_end, next_pgofs;
2572 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2573 	unsigned int total = 0, sec_num;
2574 	block_t blk_end = 0;
2575 	bool fragmented = false;
2576 	int err;
2577 
2578 	pg_start = range->start >> PAGE_SHIFT;
2579 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2580 
2581 	f2fs_balance_fs(sbi, true);
2582 
2583 	inode_lock(inode);
2584 
2585 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2586 		err = -EINVAL;
2587 		goto unlock_out;
2588 	}
2589 
2590 	/* if in-place-update policy is enabled, don't waste time here */
2591 	set_inode_flag(inode, FI_OPU_WRITE);
2592 	if (f2fs_should_update_inplace(inode, NULL)) {
2593 		err = -EINVAL;
2594 		goto out;
2595 	}
2596 
2597 	/* writeback all dirty pages in the range */
2598 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2599 						range->start + range->len - 1);
2600 	if (err)
2601 		goto out;
2602 
2603 	/*
2604 	 * lookup mapping info in extent cache, skip defragmenting if physical
2605 	 * block addresses are continuous.
2606 	 */
2607 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2608 		if (ei.fofs + ei.len >= pg_end)
2609 			goto out;
2610 	}
2611 
2612 	map.m_lblk = pg_start;
2613 	map.m_next_pgofs = &next_pgofs;
2614 
2615 	/*
2616 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2617 	 * physical block addresses are continuous even if there are hole(s)
2618 	 * in logical blocks.
2619 	 */
2620 	while (map.m_lblk < pg_end) {
2621 		map.m_len = pg_end - map.m_lblk;
2622 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2623 		if (err)
2624 			goto out;
2625 
2626 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2627 			map.m_lblk = next_pgofs;
2628 			continue;
2629 		}
2630 
2631 		if (blk_end && blk_end != map.m_pblk)
2632 			fragmented = true;
2633 
2634 		/* record total count of block that we're going to move */
2635 		total += map.m_len;
2636 
2637 		blk_end = map.m_pblk + map.m_len;
2638 
2639 		map.m_lblk += map.m_len;
2640 	}
2641 
2642 	if (!fragmented) {
2643 		total = 0;
2644 		goto out;
2645 	}
2646 
2647 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2648 
2649 	/*
2650 	 * make sure there are enough free section for LFS allocation, this can
2651 	 * avoid defragment running in SSR mode when free section are allocated
2652 	 * intensively
2653 	 */
2654 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2655 		err = -EAGAIN;
2656 		goto out;
2657 	}
2658 
2659 	map.m_lblk = pg_start;
2660 	map.m_len = pg_end - pg_start;
2661 	total = 0;
2662 
2663 	while (map.m_lblk < pg_end) {
2664 		pgoff_t idx;
2665 		int cnt = 0;
2666 
2667 do_map:
2668 		map.m_len = pg_end - map.m_lblk;
2669 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2670 		if (err)
2671 			goto clear_out;
2672 
2673 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2674 			map.m_lblk = next_pgofs;
2675 			goto check;
2676 		}
2677 
2678 		set_inode_flag(inode, FI_SKIP_WRITES);
2679 
2680 		idx = map.m_lblk;
2681 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2682 			struct page *page;
2683 
2684 			page = f2fs_get_lock_data_page(inode, idx, true);
2685 			if (IS_ERR(page)) {
2686 				err = PTR_ERR(page);
2687 				goto clear_out;
2688 			}
2689 
2690 			set_page_dirty(page);
2691 			set_page_private_gcing(page);
2692 			f2fs_put_page(page, 1);
2693 
2694 			idx++;
2695 			cnt++;
2696 			total++;
2697 		}
2698 
2699 		map.m_lblk = idx;
2700 check:
2701 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2702 			goto do_map;
2703 
2704 		clear_inode_flag(inode, FI_SKIP_WRITES);
2705 
2706 		err = filemap_fdatawrite(inode->i_mapping);
2707 		if (err)
2708 			goto out;
2709 	}
2710 clear_out:
2711 	clear_inode_flag(inode, FI_SKIP_WRITES);
2712 out:
2713 	clear_inode_flag(inode, FI_OPU_WRITE);
2714 unlock_out:
2715 	inode_unlock(inode);
2716 	if (!err)
2717 		range->len = (u64)total << PAGE_SHIFT;
2718 	return err;
2719 }
2720 
2721 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2722 {
2723 	struct inode *inode = file_inode(filp);
2724 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2725 	struct f2fs_defragment range;
2726 	int err;
2727 
2728 	if (!capable(CAP_SYS_ADMIN))
2729 		return -EPERM;
2730 
2731 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2732 		return -EINVAL;
2733 
2734 	if (f2fs_readonly(sbi->sb))
2735 		return -EROFS;
2736 
2737 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2738 							sizeof(range)))
2739 		return -EFAULT;
2740 
2741 	/* verify alignment of offset & size */
2742 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2743 		return -EINVAL;
2744 
2745 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2746 					max_file_blocks(inode)))
2747 		return -EINVAL;
2748 
2749 	err = mnt_want_write_file(filp);
2750 	if (err)
2751 		return err;
2752 
2753 	err = f2fs_defragment_range(sbi, filp, &range);
2754 	mnt_drop_write_file(filp);
2755 
2756 	f2fs_update_time(sbi, REQ_TIME);
2757 	if (err < 0)
2758 		return err;
2759 
2760 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2761 							sizeof(range)))
2762 		return -EFAULT;
2763 
2764 	return 0;
2765 }
2766 
2767 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2768 			struct file *file_out, loff_t pos_out, size_t len)
2769 {
2770 	struct inode *src = file_inode(file_in);
2771 	struct inode *dst = file_inode(file_out);
2772 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2773 	size_t olen = len, dst_max_i_size = 0;
2774 	size_t dst_osize;
2775 	int ret;
2776 
2777 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2778 				src->i_sb != dst->i_sb)
2779 		return -EXDEV;
2780 
2781 	if (unlikely(f2fs_readonly(src->i_sb)))
2782 		return -EROFS;
2783 
2784 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2785 		return -EINVAL;
2786 
2787 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2788 		return -EOPNOTSUPP;
2789 
2790 	if (pos_out < 0 || pos_in < 0)
2791 		return -EINVAL;
2792 
2793 	if (src == dst) {
2794 		if (pos_in == pos_out)
2795 			return 0;
2796 		if (pos_out > pos_in && pos_out < pos_in + len)
2797 			return -EINVAL;
2798 	}
2799 
2800 	inode_lock(src);
2801 	if (src != dst) {
2802 		ret = -EBUSY;
2803 		if (!inode_trylock(dst))
2804 			goto out;
2805 	}
2806 
2807 	ret = -EINVAL;
2808 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2809 		goto out_unlock;
2810 	if (len == 0)
2811 		olen = len = src->i_size - pos_in;
2812 	if (pos_in + len == src->i_size)
2813 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2814 	if (len == 0) {
2815 		ret = 0;
2816 		goto out_unlock;
2817 	}
2818 
2819 	dst_osize = dst->i_size;
2820 	if (pos_out + olen > dst->i_size)
2821 		dst_max_i_size = pos_out + olen;
2822 
2823 	/* verify the end result is block aligned */
2824 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2825 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2826 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2827 		goto out_unlock;
2828 
2829 	ret = f2fs_convert_inline_inode(src);
2830 	if (ret)
2831 		goto out_unlock;
2832 
2833 	ret = f2fs_convert_inline_inode(dst);
2834 	if (ret)
2835 		goto out_unlock;
2836 
2837 	/* write out all dirty pages from offset */
2838 	ret = filemap_write_and_wait_range(src->i_mapping,
2839 					pos_in, pos_in + len);
2840 	if (ret)
2841 		goto out_unlock;
2842 
2843 	ret = filemap_write_and_wait_range(dst->i_mapping,
2844 					pos_out, pos_out + len);
2845 	if (ret)
2846 		goto out_unlock;
2847 
2848 	f2fs_balance_fs(sbi, true);
2849 
2850 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2851 	if (src != dst) {
2852 		ret = -EBUSY;
2853 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2854 			goto out_src;
2855 	}
2856 
2857 	f2fs_lock_op(sbi);
2858 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2859 				pos_out >> F2FS_BLKSIZE_BITS,
2860 				len >> F2FS_BLKSIZE_BITS, false);
2861 
2862 	if (!ret) {
2863 		if (dst_max_i_size)
2864 			f2fs_i_size_write(dst, dst_max_i_size);
2865 		else if (dst_osize != dst->i_size)
2866 			f2fs_i_size_write(dst, dst_osize);
2867 	}
2868 	f2fs_unlock_op(sbi);
2869 
2870 	if (src != dst)
2871 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2872 out_src:
2873 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2874 	if (ret)
2875 		goto out_unlock;
2876 
2877 	src->i_mtime = src->i_ctime = current_time(src);
2878 	f2fs_mark_inode_dirty_sync(src, false);
2879 	if (src != dst) {
2880 		dst->i_mtime = dst->i_ctime = current_time(dst);
2881 		f2fs_mark_inode_dirty_sync(dst, false);
2882 	}
2883 	f2fs_update_time(sbi, REQ_TIME);
2884 
2885 out_unlock:
2886 	if (src != dst)
2887 		inode_unlock(dst);
2888 out:
2889 	inode_unlock(src);
2890 	return ret;
2891 }
2892 
2893 static int __f2fs_ioc_move_range(struct file *filp,
2894 				struct f2fs_move_range *range)
2895 {
2896 	struct fd dst;
2897 	int err;
2898 
2899 	if (!(filp->f_mode & FMODE_READ) ||
2900 			!(filp->f_mode & FMODE_WRITE))
2901 		return -EBADF;
2902 
2903 	dst = fdget(range->dst_fd);
2904 	if (!dst.file)
2905 		return -EBADF;
2906 
2907 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2908 		err = -EBADF;
2909 		goto err_out;
2910 	}
2911 
2912 	err = mnt_want_write_file(filp);
2913 	if (err)
2914 		goto err_out;
2915 
2916 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2917 					range->pos_out, range->len);
2918 
2919 	mnt_drop_write_file(filp);
2920 err_out:
2921 	fdput(dst);
2922 	return err;
2923 }
2924 
2925 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2926 {
2927 	struct f2fs_move_range range;
2928 
2929 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2930 							sizeof(range)))
2931 		return -EFAULT;
2932 	return __f2fs_ioc_move_range(filp, &range);
2933 }
2934 
2935 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2936 {
2937 	struct inode *inode = file_inode(filp);
2938 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2939 	struct sit_info *sm = SIT_I(sbi);
2940 	unsigned int start_segno = 0, end_segno = 0;
2941 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2942 	struct f2fs_flush_device range;
2943 	struct f2fs_gc_control gc_control = {
2944 			.init_gc_type = FG_GC,
2945 			.should_migrate_blocks = true,
2946 			.err_gc_skipped = true,
2947 			.nr_free_secs = 0 };
2948 	int ret;
2949 
2950 	if (!capable(CAP_SYS_ADMIN))
2951 		return -EPERM;
2952 
2953 	if (f2fs_readonly(sbi->sb))
2954 		return -EROFS;
2955 
2956 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2957 		return -EINVAL;
2958 
2959 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2960 							sizeof(range)))
2961 		return -EFAULT;
2962 
2963 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2964 			__is_large_section(sbi)) {
2965 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2966 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2967 		return -EINVAL;
2968 	}
2969 
2970 	ret = mnt_want_write_file(filp);
2971 	if (ret)
2972 		return ret;
2973 
2974 	if (range.dev_num != 0)
2975 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2976 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2977 
2978 	start_segno = sm->last_victim[FLUSH_DEVICE];
2979 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2980 		start_segno = dev_start_segno;
2981 	end_segno = min(start_segno + range.segments, dev_end_segno);
2982 
2983 	while (start_segno < end_segno) {
2984 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2985 			ret = -EBUSY;
2986 			goto out;
2987 		}
2988 		sm->last_victim[GC_CB] = end_segno + 1;
2989 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2990 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2991 
2992 		gc_control.victim_segno = start_segno;
2993 		ret = f2fs_gc(sbi, &gc_control);
2994 		if (ret == -EAGAIN)
2995 			ret = 0;
2996 		else if (ret < 0)
2997 			break;
2998 		start_segno++;
2999 	}
3000 out:
3001 	mnt_drop_write_file(filp);
3002 	return ret;
3003 }
3004 
3005 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3006 {
3007 	struct inode *inode = file_inode(filp);
3008 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3009 
3010 	/* Must validate to set it with SQLite behavior in Android. */
3011 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3012 
3013 	return put_user(sb_feature, (u32 __user *)arg);
3014 }
3015 
3016 #ifdef CONFIG_QUOTA
3017 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3018 {
3019 	struct dquot *transfer_to[MAXQUOTAS] = {};
3020 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3021 	struct super_block *sb = sbi->sb;
3022 	int err;
3023 
3024 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3025 	if (IS_ERR(transfer_to[PRJQUOTA]))
3026 		return PTR_ERR(transfer_to[PRJQUOTA]);
3027 
3028 	err = __dquot_transfer(inode, transfer_to);
3029 	if (err)
3030 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3031 	dqput(transfer_to[PRJQUOTA]);
3032 	return err;
3033 }
3034 
3035 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3036 {
3037 	struct f2fs_inode_info *fi = F2FS_I(inode);
3038 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3039 	struct f2fs_inode *ri = NULL;
3040 	kprojid_t kprojid;
3041 	int err;
3042 
3043 	if (!f2fs_sb_has_project_quota(sbi)) {
3044 		if (projid != F2FS_DEF_PROJID)
3045 			return -EOPNOTSUPP;
3046 		else
3047 			return 0;
3048 	}
3049 
3050 	if (!f2fs_has_extra_attr(inode))
3051 		return -EOPNOTSUPP;
3052 
3053 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3054 
3055 	if (projid_eq(kprojid, fi->i_projid))
3056 		return 0;
3057 
3058 	err = -EPERM;
3059 	/* Is it quota file? Do not allow user to mess with it */
3060 	if (IS_NOQUOTA(inode))
3061 		return err;
3062 
3063 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3064 		return -EOVERFLOW;
3065 
3066 	err = f2fs_dquot_initialize(inode);
3067 	if (err)
3068 		return err;
3069 
3070 	f2fs_lock_op(sbi);
3071 	err = f2fs_transfer_project_quota(inode, kprojid);
3072 	if (err)
3073 		goto out_unlock;
3074 
3075 	fi->i_projid = kprojid;
3076 	inode->i_ctime = current_time(inode);
3077 	f2fs_mark_inode_dirty_sync(inode, true);
3078 out_unlock:
3079 	f2fs_unlock_op(sbi);
3080 	return err;
3081 }
3082 #else
3083 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3084 {
3085 	return 0;
3086 }
3087 
3088 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3089 {
3090 	if (projid != F2FS_DEF_PROJID)
3091 		return -EOPNOTSUPP;
3092 	return 0;
3093 }
3094 #endif
3095 
3096 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3097 {
3098 	struct inode *inode = d_inode(dentry);
3099 	struct f2fs_inode_info *fi = F2FS_I(inode);
3100 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3101 
3102 	if (IS_ENCRYPTED(inode))
3103 		fsflags |= FS_ENCRYPT_FL;
3104 	if (IS_VERITY(inode))
3105 		fsflags |= FS_VERITY_FL;
3106 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3107 		fsflags |= FS_INLINE_DATA_FL;
3108 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3109 		fsflags |= FS_NOCOW_FL;
3110 
3111 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3112 
3113 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3114 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3115 
3116 	return 0;
3117 }
3118 
3119 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3120 		      struct dentry *dentry, struct fileattr *fa)
3121 {
3122 	struct inode *inode = d_inode(dentry);
3123 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3124 	u32 iflags;
3125 	int err;
3126 
3127 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3128 		return -EIO;
3129 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3130 		return -ENOSPC;
3131 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3132 		return -EOPNOTSUPP;
3133 	fsflags &= F2FS_SETTABLE_FS_FL;
3134 	if (!fa->flags_valid)
3135 		mask &= FS_COMMON_FL;
3136 
3137 	iflags = f2fs_fsflags_to_iflags(fsflags);
3138 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3139 		return -EOPNOTSUPP;
3140 
3141 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3142 	if (!err)
3143 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3144 
3145 	return err;
3146 }
3147 
3148 int f2fs_pin_file_control(struct inode *inode, bool inc)
3149 {
3150 	struct f2fs_inode_info *fi = F2FS_I(inode);
3151 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3152 
3153 	/* Use i_gc_failures for normal file as a risk signal. */
3154 	if (inc)
3155 		f2fs_i_gc_failures_write(inode,
3156 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3157 
3158 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3159 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3160 			  __func__, inode->i_ino,
3161 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3162 		clear_inode_flag(inode, FI_PIN_FILE);
3163 		return -EAGAIN;
3164 	}
3165 	return 0;
3166 }
3167 
3168 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3169 {
3170 	struct inode *inode = file_inode(filp);
3171 	__u32 pin;
3172 	int ret = 0;
3173 
3174 	if (get_user(pin, (__u32 __user *)arg))
3175 		return -EFAULT;
3176 
3177 	if (!S_ISREG(inode->i_mode))
3178 		return -EINVAL;
3179 
3180 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3181 		return -EROFS;
3182 
3183 	ret = mnt_want_write_file(filp);
3184 	if (ret)
3185 		return ret;
3186 
3187 	inode_lock(inode);
3188 
3189 	if (!pin) {
3190 		clear_inode_flag(inode, FI_PIN_FILE);
3191 		f2fs_i_gc_failures_write(inode, 0);
3192 		goto done;
3193 	}
3194 
3195 	if (f2fs_should_update_outplace(inode, NULL)) {
3196 		ret = -EINVAL;
3197 		goto out;
3198 	}
3199 
3200 	if (f2fs_pin_file_control(inode, false)) {
3201 		ret = -EAGAIN;
3202 		goto out;
3203 	}
3204 
3205 	ret = f2fs_convert_inline_inode(inode);
3206 	if (ret)
3207 		goto out;
3208 
3209 	if (!f2fs_disable_compressed_file(inode)) {
3210 		ret = -EOPNOTSUPP;
3211 		goto out;
3212 	}
3213 
3214 	set_inode_flag(inode, FI_PIN_FILE);
3215 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3216 done:
3217 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3218 out:
3219 	inode_unlock(inode);
3220 	mnt_drop_write_file(filp);
3221 	return ret;
3222 }
3223 
3224 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3225 {
3226 	struct inode *inode = file_inode(filp);
3227 	__u32 pin = 0;
3228 
3229 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3230 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3231 	return put_user(pin, (u32 __user *)arg);
3232 }
3233 
3234 int f2fs_precache_extents(struct inode *inode)
3235 {
3236 	struct f2fs_inode_info *fi = F2FS_I(inode);
3237 	struct f2fs_map_blocks map;
3238 	pgoff_t m_next_extent;
3239 	loff_t end;
3240 	int err;
3241 
3242 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3243 		return -EOPNOTSUPP;
3244 
3245 	map.m_lblk = 0;
3246 	map.m_next_pgofs = NULL;
3247 	map.m_next_extent = &m_next_extent;
3248 	map.m_seg_type = NO_CHECK_TYPE;
3249 	map.m_may_create = false;
3250 	end = max_file_blocks(inode);
3251 
3252 	while (map.m_lblk < end) {
3253 		map.m_len = end - map.m_lblk;
3254 
3255 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3256 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3257 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3258 		if (err)
3259 			return err;
3260 
3261 		map.m_lblk = m_next_extent;
3262 	}
3263 
3264 	return 0;
3265 }
3266 
3267 static int f2fs_ioc_precache_extents(struct file *filp)
3268 {
3269 	return f2fs_precache_extents(file_inode(filp));
3270 }
3271 
3272 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3273 {
3274 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3275 	__u64 block_count;
3276 
3277 	if (!capable(CAP_SYS_ADMIN))
3278 		return -EPERM;
3279 
3280 	if (f2fs_readonly(sbi->sb))
3281 		return -EROFS;
3282 
3283 	if (copy_from_user(&block_count, (void __user *)arg,
3284 			   sizeof(block_count)))
3285 		return -EFAULT;
3286 
3287 	return f2fs_resize_fs(filp, block_count);
3288 }
3289 
3290 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3291 {
3292 	struct inode *inode = file_inode(filp);
3293 
3294 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3295 
3296 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3297 		f2fs_warn(F2FS_I_SB(inode),
3298 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3299 			  inode->i_ino);
3300 		return -EOPNOTSUPP;
3301 	}
3302 
3303 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3304 }
3305 
3306 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3307 {
3308 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3309 		return -EOPNOTSUPP;
3310 
3311 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3312 }
3313 
3314 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3315 {
3316 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3317 		return -EOPNOTSUPP;
3318 
3319 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3320 }
3321 
3322 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3323 {
3324 	struct inode *inode = file_inode(filp);
3325 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3326 	char *vbuf;
3327 	int count;
3328 	int err = 0;
3329 
3330 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3331 	if (!vbuf)
3332 		return -ENOMEM;
3333 
3334 	f2fs_down_read(&sbi->sb_lock);
3335 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3336 			ARRAY_SIZE(sbi->raw_super->volume_name),
3337 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3338 	f2fs_up_read(&sbi->sb_lock);
3339 
3340 	if (copy_to_user((char __user *)arg, vbuf,
3341 				min(FSLABEL_MAX, count)))
3342 		err = -EFAULT;
3343 
3344 	kfree(vbuf);
3345 	return err;
3346 }
3347 
3348 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3349 {
3350 	struct inode *inode = file_inode(filp);
3351 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3352 	char *vbuf;
3353 	int err = 0;
3354 
3355 	if (!capable(CAP_SYS_ADMIN))
3356 		return -EPERM;
3357 
3358 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3359 	if (IS_ERR(vbuf))
3360 		return PTR_ERR(vbuf);
3361 
3362 	err = mnt_want_write_file(filp);
3363 	if (err)
3364 		goto out;
3365 
3366 	f2fs_down_write(&sbi->sb_lock);
3367 
3368 	memset(sbi->raw_super->volume_name, 0,
3369 			sizeof(sbi->raw_super->volume_name));
3370 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3371 			sbi->raw_super->volume_name,
3372 			ARRAY_SIZE(sbi->raw_super->volume_name));
3373 
3374 	err = f2fs_commit_super(sbi, false);
3375 
3376 	f2fs_up_write(&sbi->sb_lock);
3377 
3378 	mnt_drop_write_file(filp);
3379 out:
3380 	kfree(vbuf);
3381 	return err;
3382 }
3383 
3384 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3385 {
3386 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3387 		return -EOPNOTSUPP;
3388 
3389 	if (!f2fs_compressed_file(inode))
3390 		return -EINVAL;
3391 
3392 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3393 
3394 	return 0;
3395 }
3396 
3397 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3398 {
3399 	struct inode *inode = file_inode(filp);
3400 	__u64 blocks;
3401 	int ret;
3402 
3403 	ret = f2fs_get_compress_blocks(inode, &blocks);
3404 	if (ret < 0)
3405 		return ret;
3406 
3407 	return put_user(blocks, (u64 __user *)arg);
3408 }
3409 
3410 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3411 {
3412 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3413 	unsigned int released_blocks = 0;
3414 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3415 	block_t blkaddr;
3416 	int i;
3417 
3418 	for (i = 0; i < count; i++) {
3419 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3420 						dn->ofs_in_node + i);
3421 
3422 		if (!__is_valid_data_blkaddr(blkaddr))
3423 			continue;
3424 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3425 					DATA_GENERIC_ENHANCE))) {
3426 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3427 			return -EFSCORRUPTED;
3428 		}
3429 	}
3430 
3431 	while (count) {
3432 		int compr_blocks = 0;
3433 
3434 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3435 			blkaddr = f2fs_data_blkaddr(dn);
3436 
3437 			if (i == 0) {
3438 				if (blkaddr == COMPRESS_ADDR)
3439 					continue;
3440 				dn->ofs_in_node += cluster_size;
3441 				goto next;
3442 			}
3443 
3444 			if (__is_valid_data_blkaddr(blkaddr))
3445 				compr_blocks++;
3446 
3447 			if (blkaddr != NEW_ADDR)
3448 				continue;
3449 
3450 			dn->data_blkaddr = NULL_ADDR;
3451 			f2fs_set_data_blkaddr(dn);
3452 		}
3453 
3454 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3455 		dec_valid_block_count(sbi, dn->inode,
3456 					cluster_size - compr_blocks);
3457 
3458 		released_blocks += cluster_size - compr_blocks;
3459 next:
3460 		count -= cluster_size;
3461 	}
3462 
3463 	return released_blocks;
3464 }
3465 
3466 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3467 {
3468 	struct inode *inode = file_inode(filp);
3469 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3470 	pgoff_t page_idx = 0, last_idx;
3471 	unsigned int released_blocks = 0;
3472 	int ret;
3473 	int writecount;
3474 
3475 	if (!f2fs_sb_has_compression(sbi))
3476 		return -EOPNOTSUPP;
3477 
3478 	if (!f2fs_compressed_file(inode))
3479 		return -EINVAL;
3480 
3481 	if (f2fs_readonly(sbi->sb))
3482 		return -EROFS;
3483 
3484 	ret = mnt_want_write_file(filp);
3485 	if (ret)
3486 		return ret;
3487 
3488 	f2fs_balance_fs(sbi, true);
3489 
3490 	inode_lock(inode);
3491 
3492 	writecount = atomic_read(&inode->i_writecount);
3493 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3494 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3495 		ret = -EBUSY;
3496 		goto out;
3497 	}
3498 
3499 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3500 		ret = -EINVAL;
3501 		goto out;
3502 	}
3503 
3504 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3505 	if (ret)
3506 		goto out;
3507 
3508 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3509 		ret = -EPERM;
3510 		goto out;
3511 	}
3512 
3513 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3514 	inode->i_ctime = current_time(inode);
3515 	f2fs_mark_inode_dirty_sync(inode, true);
3516 
3517 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3518 	filemap_invalidate_lock(inode->i_mapping);
3519 
3520 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3521 
3522 	while (page_idx < last_idx) {
3523 		struct dnode_of_data dn;
3524 		pgoff_t end_offset, count;
3525 
3526 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3527 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3528 		if (ret) {
3529 			if (ret == -ENOENT) {
3530 				page_idx = f2fs_get_next_page_offset(&dn,
3531 								page_idx);
3532 				ret = 0;
3533 				continue;
3534 			}
3535 			break;
3536 		}
3537 
3538 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3539 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3540 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3541 
3542 		ret = release_compress_blocks(&dn, count);
3543 
3544 		f2fs_put_dnode(&dn);
3545 
3546 		if (ret < 0)
3547 			break;
3548 
3549 		page_idx += count;
3550 		released_blocks += ret;
3551 	}
3552 
3553 	filemap_invalidate_unlock(inode->i_mapping);
3554 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3555 out:
3556 	inode_unlock(inode);
3557 
3558 	mnt_drop_write_file(filp);
3559 
3560 	if (ret >= 0) {
3561 		ret = put_user(released_blocks, (u64 __user *)arg);
3562 	} else if (released_blocks &&
3563 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3564 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3565 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3566 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3567 			"run fsck to fix.",
3568 			__func__, inode->i_ino, inode->i_blocks,
3569 			released_blocks,
3570 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3571 	}
3572 
3573 	return ret;
3574 }
3575 
3576 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3577 {
3578 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3579 	unsigned int reserved_blocks = 0;
3580 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3581 	block_t blkaddr;
3582 	int i;
3583 
3584 	for (i = 0; i < count; i++) {
3585 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3586 						dn->ofs_in_node + i);
3587 
3588 		if (!__is_valid_data_blkaddr(blkaddr))
3589 			continue;
3590 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3591 					DATA_GENERIC_ENHANCE))) {
3592 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3593 			return -EFSCORRUPTED;
3594 		}
3595 	}
3596 
3597 	while (count) {
3598 		int compr_blocks = 0;
3599 		blkcnt_t reserved;
3600 		int ret;
3601 
3602 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3603 			blkaddr = f2fs_data_blkaddr(dn);
3604 
3605 			if (i == 0) {
3606 				if (blkaddr == COMPRESS_ADDR)
3607 					continue;
3608 				dn->ofs_in_node += cluster_size;
3609 				goto next;
3610 			}
3611 
3612 			if (__is_valid_data_blkaddr(blkaddr)) {
3613 				compr_blocks++;
3614 				continue;
3615 			}
3616 
3617 			dn->data_blkaddr = NEW_ADDR;
3618 			f2fs_set_data_blkaddr(dn);
3619 		}
3620 
3621 		reserved = cluster_size - compr_blocks;
3622 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3623 		if (ret)
3624 			return ret;
3625 
3626 		if (reserved != cluster_size - compr_blocks)
3627 			return -ENOSPC;
3628 
3629 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3630 
3631 		reserved_blocks += reserved;
3632 next:
3633 		count -= cluster_size;
3634 	}
3635 
3636 	return reserved_blocks;
3637 }
3638 
3639 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3640 {
3641 	struct inode *inode = file_inode(filp);
3642 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3643 	pgoff_t page_idx = 0, last_idx;
3644 	unsigned int reserved_blocks = 0;
3645 	int ret;
3646 
3647 	if (!f2fs_sb_has_compression(sbi))
3648 		return -EOPNOTSUPP;
3649 
3650 	if (!f2fs_compressed_file(inode))
3651 		return -EINVAL;
3652 
3653 	if (f2fs_readonly(sbi->sb))
3654 		return -EROFS;
3655 
3656 	ret = mnt_want_write_file(filp);
3657 	if (ret)
3658 		return ret;
3659 
3660 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3661 		goto out;
3662 
3663 	f2fs_balance_fs(sbi, true);
3664 
3665 	inode_lock(inode);
3666 
3667 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3668 		ret = -EINVAL;
3669 		goto unlock_inode;
3670 	}
3671 
3672 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3673 	filemap_invalidate_lock(inode->i_mapping);
3674 
3675 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3676 
3677 	while (page_idx < last_idx) {
3678 		struct dnode_of_data dn;
3679 		pgoff_t end_offset, count;
3680 
3681 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3682 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3683 		if (ret) {
3684 			if (ret == -ENOENT) {
3685 				page_idx = f2fs_get_next_page_offset(&dn,
3686 								page_idx);
3687 				ret = 0;
3688 				continue;
3689 			}
3690 			break;
3691 		}
3692 
3693 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3694 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3695 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3696 
3697 		ret = reserve_compress_blocks(&dn, count);
3698 
3699 		f2fs_put_dnode(&dn);
3700 
3701 		if (ret < 0)
3702 			break;
3703 
3704 		page_idx += count;
3705 		reserved_blocks += ret;
3706 	}
3707 
3708 	filemap_invalidate_unlock(inode->i_mapping);
3709 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3710 
3711 	if (ret >= 0) {
3712 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3713 		inode->i_ctime = current_time(inode);
3714 		f2fs_mark_inode_dirty_sync(inode, true);
3715 	}
3716 unlock_inode:
3717 	inode_unlock(inode);
3718 out:
3719 	mnt_drop_write_file(filp);
3720 
3721 	if (ret >= 0) {
3722 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3723 	} else if (reserved_blocks &&
3724 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3725 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3726 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3727 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3728 			"run fsck to fix.",
3729 			__func__, inode->i_ino, inode->i_blocks,
3730 			reserved_blocks,
3731 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3732 	}
3733 
3734 	return ret;
3735 }
3736 
3737 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3738 		pgoff_t off, block_t block, block_t len, u32 flags)
3739 {
3740 	sector_t sector = SECTOR_FROM_BLOCK(block);
3741 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3742 	int ret = 0;
3743 
3744 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3745 		if (bdev_max_secure_erase_sectors(bdev))
3746 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3747 					GFP_NOFS);
3748 		else
3749 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3750 					GFP_NOFS);
3751 	}
3752 
3753 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3754 		if (IS_ENCRYPTED(inode))
3755 			ret = fscrypt_zeroout_range(inode, off, block, len);
3756 		else
3757 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3758 					GFP_NOFS, 0);
3759 	}
3760 
3761 	return ret;
3762 }
3763 
3764 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3765 {
3766 	struct inode *inode = file_inode(filp);
3767 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3768 	struct address_space *mapping = inode->i_mapping;
3769 	struct block_device *prev_bdev = NULL;
3770 	struct f2fs_sectrim_range range;
3771 	pgoff_t index, pg_end, prev_index = 0;
3772 	block_t prev_block = 0, len = 0;
3773 	loff_t end_addr;
3774 	bool to_end = false;
3775 	int ret = 0;
3776 
3777 	if (!(filp->f_mode & FMODE_WRITE))
3778 		return -EBADF;
3779 
3780 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3781 				sizeof(range)))
3782 		return -EFAULT;
3783 
3784 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3785 			!S_ISREG(inode->i_mode))
3786 		return -EINVAL;
3787 
3788 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3789 			!f2fs_hw_support_discard(sbi)) ||
3790 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3791 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3792 		return -EOPNOTSUPP;
3793 
3794 	file_start_write(filp);
3795 	inode_lock(inode);
3796 
3797 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3798 			range.start >= inode->i_size) {
3799 		ret = -EINVAL;
3800 		goto err;
3801 	}
3802 
3803 	if (range.len == 0)
3804 		goto err;
3805 
3806 	if (inode->i_size - range.start > range.len) {
3807 		end_addr = range.start + range.len;
3808 	} else {
3809 		end_addr = range.len == (u64)-1 ?
3810 			sbi->sb->s_maxbytes : inode->i_size;
3811 		to_end = true;
3812 	}
3813 
3814 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3815 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3816 		ret = -EINVAL;
3817 		goto err;
3818 	}
3819 
3820 	index = F2FS_BYTES_TO_BLK(range.start);
3821 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3822 
3823 	ret = f2fs_convert_inline_inode(inode);
3824 	if (ret)
3825 		goto err;
3826 
3827 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3828 	filemap_invalidate_lock(mapping);
3829 
3830 	ret = filemap_write_and_wait_range(mapping, range.start,
3831 			to_end ? LLONG_MAX : end_addr - 1);
3832 	if (ret)
3833 		goto out;
3834 
3835 	truncate_inode_pages_range(mapping, range.start,
3836 			to_end ? -1 : end_addr - 1);
3837 
3838 	while (index < pg_end) {
3839 		struct dnode_of_data dn;
3840 		pgoff_t end_offset, count;
3841 		int i;
3842 
3843 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3844 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3845 		if (ret) {
3846 			if (ret == -ENOENT) {
3847 				index = f2fs_get_next_page_offset(&dn, index);
3848 				continue;
3849 			}
3850 			goto out;
3851 		}
3852 
3853 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3854 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3855 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3856 			struct block_device *cur_bdev;
3857 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3858 
3859 			if (!__is_valid_data_blkaddr(blkaddr))
3860 				continue;
3861 
3862 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3863 						DATA_GENERIC_ENHANCE)) {
3864 				ret = -EFSCORRUPTED;
3865 				f2fs_put_dnode(&dn);
3866 				f2fs_handle_error(sbi,
3867 						ERROR_INVALID_BLKADDR);
3868 				goto out;
3869 			}
3870 
3871 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3872 			if (f2fs_is_multi_device(sbi)) {
3873 				int di = f2fs_target_device_index(sbi, blkaddr);
3874 
3875 				blkaddr -= FDEV(di).start_blk;
3876 			}
3877 
3878 			if (len) {
3879 				if (prev_bdev == cur_bdev &&
3880 						index == prev_index + len &&
3881 						blkaddr == prev_block + len) {
3882 					len++;
3883 				} else {
3884 					ret = f2fs_secure_erase(prev_bdev,
3885 						inode, prev_index, prev_block,
3886 						len, range.flags);
3887 					if (ret) {
3888 						f2fs_put_dnode(&dn);
3889 						goto out;
3890 					}
3891 
3892 					len = 0;
3893 				}
3894 			}
3895 
3896 			if (!len) {
3897 				prev_bdev = cur_bdev;
3898 				prev_index = index;
3899 				prev_block = blkaddr;
3900 				len = 1;
3901 			}
3902 		}
3903 
3904 		f2fs_put_dnode(&dn);
3905 
3906 		if (fatal_signal_pending(current)) {
3907 			ret = -EINTR;
3908 			goto out;
3909 		}
3910 		cond_resched();
3911 	}
3912 
3913 	if (len)
3914 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3915 				prev_block, len, range.flags);
3916 out:
3917 	filemap_invalidate_unlock(mapping);
3918 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3919 err:
3920 	inode_unlock(inode);
3921 	file_end_write(filp);
3922 
3923 	return ret;
3924 }
3925 
3926 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3927 {
3928 	struct inode *inode = file_inode(filp);
3929 	struct f2fs_comp_option option;
3930 
3931 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3932 		return -EOPNOTSUPP;
3933 
3934 	inode_lock_shared(inode);
3935 
3936 	if (!f2fs_compressed_file(inode)) {
3937 		inode_unlock_shared(inode);
3938 		return -ENODATA;
3939 	}
3940 
3941 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3942 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3943 
3944 	inode_unlock_shared(inode);
3945 
3946 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3947 				sizeof(option)))
3948 		return -EFAULT;
3949 
3950 	return 0;
3951 }
3952 
3953 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3954 {
3955 	struct inode *inode = file_inode(filp);
3956 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3957 	struct f2fs_comp_option option;
3958 	int ret = 0;
3959 
3960 	if (!f2fs_sb_has_compression(sbi))
3961 		return -EOPNOTSUPP;
3962 
3963 	if (!(filp->f_mode & FMODE_WRITE))
3964 		return -EBADF;
3965 
3966 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3967 				sizeof(option)))
3968 		return -EFAULT;
3969 
3970 	if (!f2fs_compressed_file(inode) ||
3971 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3972 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3973 			option.algorithm >= COMPRESS_MAX)
3974 		return -EINVAL;
3975 
3976 	file_start_write(filp);
3977 	inode_lock(inode);
3978 
3979 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3980 		ret = -EBUSY;
3981 		goto out;
3982 	}
3983 
3984 	if (F2FS_HAS_BLOCKS(inode)) {
3985 		ret = -EFBIG;
3986 		goto out;
3987 	}
3988 
3989 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3990 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3991 	F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
3992 	f2fs_mark_inode_dirty_sync(inode, true);
3993 
3994 	if (!f2fs_is_compress_backend_ready(inode))
3995 		f2fs_warn(sbi, "compression algorithm is successfully set, "
3996 			"but current kernel doesn't support this algorithm.");
3997 out:
3998 	inode_unlock(inode);
3999 	file_end_write(filp);
4000 
4001 	return ret;
4002 }
4003 
4004 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4005 {
4006 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4007 	struct address_space *mapping = inode->i_mapping;
4008 	struct page *page;
4009 	pgoff_t redirty_idx = page_idx;
4010 	int i, page_len = 0, ret = 0;
4011 
4012 	page_cache_ra_unbounded(&ractl, len, 0);
4013 
4014 	for (i = 0; i < len; i++, page_idx++) {
4015 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4016 		if (IS_ERR(page)) {
4017 			ret = PTR_ERR(page);
4018 			break;
4019 		}
4020 		page_len++;
4021 	}
4022 
4023 	for (i = 0; i < page_len; i++, redirty_idx++) {
4024 		page = find_lock_page(mapping, redirty_idx);
4025 
4026 		/* It will never fail, when page has pinned above */
4027 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4028 
4029 		set_page_dirty(page);
4030 		f2fs_put_page(page, 1);
4031 		f2fs_put_page(page, 0);
4032 	}
4033 
4034 	return ret;
4035 }
4036 
4037 static int f2fs_ioc_decompress_file(struct file *filp)
4038 {
4039 	struct inode *inode = file_inode(filp);
4040 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4041 	struct f2fs_inode_info *fi = F2FS_I(inode);
4042 	pgoff_t page_idx = 0, last_idx;
4043 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4044 	int cluster_size = fi->i_cluster_size;
4045 	int count, ret;
4046 
4047 	if (!f2fs_sb_has_compression(sbi) ||
4048 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4049 		return -EOPNOTSUPP;
4050 
4051 	if (!(filp->f_mode & FMODE_WRITE))
4052 		return -EBADF;
4053 
4054 	if (!f2fs_compressed_file(inode))
4055 		return -EINVAL;
4056 
4057 	f2fs_balance_fs(sbi, true);
4058 
4059 	file_start_write(filp);
4060 	inode_lock(inode);
4061 
4062 	if (!f2fs_is_compress_backend_ready(inode)) {
4063 		ret = -EOPNOTSUPP;
4064 		goto out;
4065 	}
4066 
4067 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4068 		ret = -EINVAL;
4069 		goto out;
4070 	}
4071 
4072 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4073 	if (ret)
4074 		goto out;
4075 
4076 	if (!atomic_read(&fi->i_compr_blocks))
4077 		goto out;
4078 
4079 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4080 
4081 	count = last_idx - page_idx;
4082 	while (count) {
4083 		int len = min(cluster_size, count);
4084 
4085 		ret = redirty_blocks(inode, page_idx, len);
4086 		if (ret < 0)
4087 			break;
4088 
4089 		if (get_dirty_pages(inode) >= blk_per_seg) {
4090 			ret = filemap_fdatawrite(inode->i_mapping);
4091 			if (ret < 0)
4092 				break;
4093 		}
4094 
4095 		count -= len;
4096 		page_idx += len;
4097 	}
4098 
4099 	if (!ret)
4100 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4101 							LLONG_MAX);
4102 
4103 	if (ret)
4104 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4105 			  __func__, ret);
4106 out:
4107 	inode_unlock(inode);
4108 	file_end_write(filp);
4109 
4110 	return ret;
4111 }
4112 
4113 static int f2fs_ioc_compress_file(struct file *filp)
4114 {
4115 	struct inode *inode = file_inode(filp);
4116 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4117 	pgoff_t page_idx = 0, last_idx;
4118 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4119 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4120 	int count, ret;
4121 
4122 	if (!f2fs_sb_has_compression(sbi) ||
4123 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4124 		return -EOPNOTSUPP;
4125 
4126 	if (!(filp->f_mode & FMODE_WRITE))
4127 		return -EBADF;
4128 
4129 	if (!f2fs_compressed_file(inode))
4130 		return -EINVAL;
4131 
4132 	f2fs_balance_fs(sbi, true);
4133 
4134 	file_start_write(filp);
4135 	inode_lock(inode);
4136 
4137 	if (!f2fs_is_compress_backend_ready(inode)) {
4138 		ret = -EOPNOTSUPP;
4139 		goto out;
4140 	}
4141 
4142 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4143 		ret = -EINVAL;
4144 		goto out;
4145 	}
4146 
4147 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4148 	if (ret)
4149 		goto out;
4150 
4151 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4152 
4153 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4154 
4155 	count = last_idx - page_idx;
4156 	while (count) {
4157 		int len = min(cluster_size, count);
4158 
4159 		ret = redirty_blocks(inode, page_idx, len);
4160 		if (ret < 0)
4161 			break;
4162 
4163 		if (get_dirty_pages(inode) >= blk_per_seg) {
4164 			ret = filemap_fdatawrite(inode->i_mapping);
4165 			if (ret < 0)
4166 				break;
4167 		}
4168 
4169 		count -= len;
4170 		page_idx += len;
4171 	}
4172 
4173 	if (!ret)
4174 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4175 							LLONG_MAX);
4176 
4177 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4178 
4179 	if (ret)
4180 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4181 			  __func__, ret);
4182 out:
4183 	inode_unlock(inode);
4184 	file_end_write(filp);
4185 
4186 	return ret;
4187 }
4188 
4189 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4190 {
4191 	switch (cmd) {
4192 	case FS_IOC_GETVERSION:
4193 		return f2fs_ioc_getversion(filp, arg);
4194 	case F2FS_IOC_START_ATOMIC_WRITE:
4195 		return f2fs_ioc_start_atomic_write(filp, false);
4196 	case F2FS_IOC_START_ATOMIC_REPLACE:
4197 		return f2fs_ioc_start_atomic_write(filp, true);
4198 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4199 		return f2fs_ioc_commit_atomic_write(filp);
4200 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4201 		return f2fs_ioc_abort_atomic_write(filp);
4202 	case F2FS_IOC_START_VOLATILE_WRITE:
4203 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4204 		return -EOPNOTSUPP;
4205 	case F2FS_IOC_SHUTDOWN:
4206 		return f2fs_ioc_shutdown(filp, arg);
4207 	case FITRIM:
4208 		return f2fs_ioc_fitrim(filp, arg);
4209 	case FS_IOC_SET_ENCRYPTION_POLICY:
4210 		return f2fs_ioc_set_encryption_policy(filp, arg);
4211 	case FS_IOC_GET_ENCRYPTION_POLICY:
4212 		return f2fs_ioc_get_encryption_policy(filp, arg);
4213 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4214 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4215 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4216 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4217 	case FS_IOC_ADD_ENCRYPTION_KEY:
4218 		return f2fs_ioc_add_encryption_key(filp, arg);
4219 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4220 		return f2fs_ioc_remove_encryption_key(filp, arg);
4221 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4222 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4223 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4224 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4225 	case FS_IOC_GET_ENCRYPTION_NONCE:
4226 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4227 	case F2FS_IOC_GARBAGE_COLLECT:
4228 		return f2fs_ioc_gc(filp, arg);
4229 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4230 		return f2fs_ioc_gc_range(filp, arg);
4231 	case F2FS_IOC_WRITE_CHECKPOINT:
4232 		return f2fs_ioc_write_checkpoint(filp);
4233 	case F2FS_IOC_DEFRAGMENT:
4234 		return f2fs_ioc_defragment(filp, arg);
4235 	case F2FS_IOC_MOVE_RANGE:
4236 		return f2fs_ioc_move_range(filp, arg);
4237 	case F2FS_IOC_FLUSH_DEVICE:
4238 		return f2fs_ioc_flush_device(filp, arg);
4239 	case F2FS_IOC_GET_FEATURES:
4240 		return f2fs_ioc_get_features(filp, arg);
4241 	case F2FS_IOC_GET_PIN_FILE:
4242 		return f2fs_ioc_get_pin_file(filp, arg);
4243 	case F2FS_IOC_SET_PIN_FILE:
4244 		return f2fs_ioc_set_pin_file(filp, arg);
4245 	case F2FS_IOC_PRECACHE_EXTENTS:
4246 		return f2fs_ioc_precache_extents(filp);
4247 	case F2FS_IOC_RESIZE_FS:
4248 		return f2fs_ioc_resize_fs(filp, arg);
4249 	case FS_IOC_ENABLE_VERITY:
4250 		return f2fs_ioc_enable_verity(filp, arg);
4251 	case FS_IOC_MEASURE_VERITY:
4252 		return f2fs_ioc_measure_verity(filp, arg);
4253 	case FS_IOC_READ_VERITY_METADATA:
4254 		return f2fs_ioc_read_verity_metadata(filp, arg);
4255 	case FS_IOC_GETFSLABEL:
4256 		return f2fs_ioc_getfslabel(filp, arg);
4257 	case FS_IOC_SETFSLABEL:
4258 		return f2fs_ioc_setfslabel(filp, arg);
4259 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4260 		return f2fs_ioc_get_compress_blocks(filp, arg);
4261 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4262 		return f2fs_release_compress_blocks(filp, arg);
4263 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4264 		return f2fs_reserve_compress_blocks(filp, arg);
4265 	case F2FS_IOC_SEC_TRIM_FILE:
4266 		return f2fs_sec_trim_file(filp, arg);
4267 	case F2FS_IOC_GET_COMPRESS_OPTION:
4268 		return f2fs_ioc_get_compress_option(filp, arg);
4269 	case F2FS_IOC_SET_COMPRESS_OPTION:
4270 		return f2fs_ioc_set_compress_option(filp, arg);
4271 	case F2FS_IOC_DECOMPRESS_FILE:
4272 		return f2fs_ioc_decompress_file(filp);
4273 	case F2FS_IOC_COMPRESS_FILE:
4274 		return f2fs_ioc_compress_file(filp);
4275 	default:
4276 		return -ENOTTY;
4277 	}
4278 }
4279 
4280 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4281 {
4282 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4283 		return -EIO;
4284 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4285 		return -ENOSPC;
4286 
4287 	return __f2fs_ioctl(filp, cmd, arg);
4288 }
4289 
4290 /*
4291  * Return %true if the given read or write request should use direct I/O, or
4292  * %false if it should use buffered I/O.
4293  */
4294 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4295 				struct iov_iter *iter)
4296 {
4297 	unsigned int align;
4298 
4299 	if (!(iocb->ki_flags & IOCB_DIRECT))
4300 		return false;
4301 
4302 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4303 		return false;
4304 
4305 	/*
4306 	 * Direct I/O not aligned to the disk's logical_block_size will be
4307 	 * attempted, but will fail with -EINVAL.
4308 	 *
4309 	 * f2fs additionally requires that direct I/O be aligned to the
4310 	 * filesystem block size, which is often a stricter requirement.
4311 	 * However, f2fs traditionally falls back to buffered I/O on requests
4312 	 * that are logical_block_size-aligned but not fs-block aligned.
4313 	 *
4314 	 * The below logic implements this behavior.
4315 	 */
4316 	align = iocb->ki_pos | iov_iter_alignment(iter);
4317 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4318 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4319 		return false;
4320 
4321 	return true;
4322 }
4323 
4324 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4325 				unsigned int flags)
4326 {
4327 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4328 
4329 	dec_page_count(sbi, F2FS_DIO_READ);
4330 	if (error)
4331 		return error;
4332 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4333 	return 0;
4334 }
4335 
4336 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4337 	.end_io = f2fs_dio_read_end_io,
4338 };
4339 
4340 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4341 {
4342 	struct file *file = iocb->ki_filp;
4343 	struct inode *inode = file_inode(file);
4344 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4345 	struct f2fs_inode_info *fi = F2FS_I(inode);
4346 	const loff_t pos = iocb->ki_pos;
4347 	const size_t count = iov_iter_count(to);
4348 	struct iomap_dio *dio;
4349 	ssize_t ret;
4350 
4351 	if (count == 0)
4352 		return 0; /* skip atime update */
4353 
4354 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4355 
4356 	if (iocb->ki_flags & IOCB_NOWAIT) {
4357 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4358 			ret = -EAGAIN;
4359 			goto out;
4360 		}
4361 	} else {
4362 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4363 	}
4364 
4365 	/*
4366 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4367 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4368 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4369 	 */
4370 	inc_page_count(sbi, F2FS_DIO_READ);
4371 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4372 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4373 	if (IS_ERR_OR_NULL(dio)) {
4374 		ret = PTR_ERR_OR_ZERO(dio);
4375 		if (ret != -EIOCBQUEUED)
4376 			dec_page_count(sbi, F2FS_DIO_READ);
4377 	} else {
4378 		ret = iomap_dio_complete(dio);
4379 	}
4380 
4381 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4382 
4383 	file_accessed(file);
4384 out:
4385 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4386 	return ret;
4387 }
4388 
4389 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4390 				    int rw)
4391 {
4392 	struct inode *inode = file_inode(file);
4393 	char *buf, *path;
4394 
4395 	buf = f2fs_getname(F2FS_I_SB(inode));
4396 	if (!buf)
4397 		return;
4398 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4399 	if (IS_ERR(path))
4400 		goto free_buf;
4401 	if (rw == WRITE)
4402 		trace_f2fs_datawrite_start(inode, pos, count,
4403 				current->pid, path, current->comm);
4404 	else
4405 		trace_f2fs_dataread_start(inode, pos, count,
4406 				current->pid, path, current->comm);
4407 free_buf:
4408 	f2fs_putname(buf);
4409 }
4410 
4411 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4412 {
4413 	struct inode *inode = file_inode(iocb->ki_filp);
4414 	const loff_t pos = iocb->ki_pos;
4415 	ssize_t ret;
4416 
4417 	if (!f2fs_is_compress_backend_ready(inode))
4418 		return -EOPNOTSUPP;
4419 
4420 	if (trace_f2fs_dataread_start_enabled())
4421 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4422 					iov_iter_count(to), READ);
4423 
4424 	if (f2fs_should_use_dio(inode, iocb, to)) {
4425 		ret = f2fs_dio_read_iter(iocb, to);
4426 	} else {
4427 		ret = filemap_read(iocb, to, 0);
4428 		if (ret > 0)
4429 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4430 						APP_BUFFERED_READ_IO, ret);
4431 	}
4432 	if (trace_f2fs_dataread_end_enabled())
4433 		trace_f2fs_dataread_end(inode, pos, ret);
4434 	return ret;
4435 }
4436 
4437 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4438 				     struct pipe_inode_info *pipe,
4439 				     size_t len, unsigned int flags)
4440 {
4441 	struct inode *inode = file_inode(in);
4442 	const loff_t pos = *ppos;
4443 	ssize_t ret;
4444 
4445 	if (!f2fs_is_compress_backend_ready(inode))
4446 		return -EOPNOTSUPP;
4447 
4448 	if (trace_f2fs_dataread_start_enabled())
4449 		f2fs_trace_rw_file_path(in, pos, len, READ);
4450 
4451 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4452 	if (ret > 0)
4453 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4454 				   APP_BUFFERED_READ_IO, ret);
4455 
4456 	if (trace_f2fs_dataread_end_enabled())
4457 		trace_f2fs_dataread_end(inode, pos, ret);
4458 	return ret;
4459 }
4460 
4461 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4462 {
4463 	struct file *file = iocb->ki_filp;
4464 	struct inode *inode = file_inode(file);
4465 	ssize_t count;
4466 	int err;
4467 
4468 	if (IS_IMMUTABLE(inode))
4469 		return -EPERM;
4470 
4471 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4472 		return -EPERM;
4473 
4474 	count = generic_write_checks(iocb, from);
4475 	if (count <= 0)
4476 		return count;
4477 
4478 	err = file_modified(file);
4479 	if (err)
4480 		return err;
4481 	return count;
4482 }
4483 
4484 /*
4485  * Preallocate blocks for a write request, if it is possible and helpful to do
4486  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4487  * blocks were preallocated, or a negative errno value if something went
4488  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4489  * requested blocks (not just some of them) have been allocated.
4490  */
4491 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4492 				   bool dio)
4493 {
4494 	struct inode *inode = file_inode(iocb->ki_filp);
4495 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4496 	const loff_t pos = iocb->ki_pos;
4497 	const size_t count = iov_iter_count(iter);
4498 	struct f2fs_map_blocks map = {};
4499 	int flag;
4500 	int ret;
4501 
4502 	/* If it will be an out-of-place direct write, don't bother. */
4503 	if (dio && f2fs_lfs_mode(sbi))
4504 		return 0;
4505 	/*
4506 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4507 	 * buffered IO, if DIO meets any holes.
4508 	 */
4509 	if (dio && i_size_read(inode) &&
4510 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4511 		return 0;
4512 
4513 	/* No-wait I/O can't allocate blocks. */
4514 	if (iocb->ki_flags & IOCB_NOWAIT)
4515 		return 0;
4516 
4517 	/* If it will be a short write, don't bother. */
4518 	if (fault_in_iov_iter_readable(iter, count))
4519 		return 0;
4520 
4521 	if (f2fs_has_inline_data(inode)) {
4522 		/* If the data will fit inline, don't bother. */
4523 		if (pos + count <= MAX_INLINE_DATA(inode))
4524 			return 0;
4525 		ret = f2fs_convert_inline_inode(inode);
4526 		if (ret)
4527 			return ret;
4528 	}
4529 
4530 	/* Do not preallocate blocks that will be written partially in 4KB. */
4531 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4532 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4533 	if (map.m_len > map.m_lblk)
4534 		map.m_len -= map.m_lblk;
4535 	else
4536 		map.m_len = 0;
4537 	map.m_may_create = true;
4538 	if (dio) {
4539 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4540 		flag = F2FS_GET_BLOCK_PRE_DIO;
4541 	} else {
4542 		map.m_seg_type = NO_CHECK_TYPE;
4543 		flag = F2FS_GET_BLOCK_PRE_AIO;
4544 	}
4545 
4546 	ret = f2fs_map_blocks(inode, &map, flag);
4547 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4548 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4549 		return ret;
4550 	if (ret == 0)
4551 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4552 	return map.m_len;
4553 }
4554 
4555 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4556 					struct iov_iter *from)
4557 {
4558 	struct file *file = iocb->ki_filp;
4559 	struct inode *inode = file_inode(file);
4560 	ssize_t ret;
4561 
4562 	if (iocb->ki_flags & IOCB_NOWAIT)
4563 		return -EOPNOTSUPP;
4564 
4565 	ret = generic_perform_write(iocb, from);
4566 
4567 	if (ret > 0) {
4568 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4569 						APP_BUFFERED_IO, ret);
4570 	}
4571 	return ret;
4572 }
4573 
4574 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4575 				 unsigned int flags)
4576 {
4577 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4578 
4579 	dec_page_count(sbi, F2FS_DIO_WRITE);
4580 	if (error)
4581 		return error;
4582 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4583 	return 0;
4584 }
4585 
4586 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4587 	.end_io = f2fs_dio_write_end_io,
4588 };
4589 
4590 static void f2fs_flush_buffered_write(struct address_space *mapping,
4591 				      loff_t start_pos, loff_t end_pos)
4592 {
4593 	int ret;
4594 
4595 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4596 	if (ret < 0)
4597 		return;
4598 	invalidate_mapping_pages(mapping,
4599 				 start_pos >> PAGE_SHIFT,
4600 				 end_pos >> PAGE_SHIFT);
4601 }
4602 
4603 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4604 				   bool *may_need_sync)
4605 {
4606 	struct file *file = iocb->ki_filp;
4607 	struct inode *inode = file_inode(file);
4608 	struct f2fs_inode_info *fi = F2FS_I(inode);
4609 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4610 	const bool do_opu = f2fs_lfs_mode(sbi);
4611 	const loff_t pos = iocb->ki_pos;
4612 	const ssize_t count = iov_iter_count(from);
4613 	unsigned int dio_flags;
4614 	struct iomap_dio *dio;
4615 	ssize_t ret;
4616 
4617 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4618 
4619 	if (iocb->ki_flags & IOCB_NOWAIT) {
4620 		/* f2fs_convert_inline_inode() and block allocation can block */
4621 		if (f2fs_has_inline_data(inode) ||
4622 		    !f2fs_overwrite_io(inode, pos, count)) {
4623 			ret = -EAGAIN;
4624 			goto out;
4625 		}
4626 
4627 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4628 			ret = -EAGAIN;
4629 			goto out;
4630 		}
4631 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4632 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4633 			ret = -EAGAIN;
4634 			goto out;
4635 		}
4636 	} else {
4637 		ret = f2fs_convert_inline_inode(inode);
4638 		if (ret)
4639 			goto out;
4640 
4641 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4642 		if (do_opu)
4643 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4644 	}
4645 
4646 	/*
4647 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4648 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4649 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4650 	 */
4651 	inc_page_count(sbi, F2FS_DIO_WRITE);
4652 	dio_flags = 0;
4653 	if (pos + count > inode->i_size)
4654 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4655 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4656 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4657 	if (IS_ERR_OR_NULL(dio)) {
4658 		ret = PTR_ERR_OR_ZERO(dio);
4659 		if (ret == -ENOTBLK)
4660 			ret = 0;
4661 		if (ret != -EIOCBQUEUED)
4662 			dec_page_count(sbi, F2FS_DIO_WRITE);
4663 	} else {
4664 		ret = iomap_dio_complete(dio);
4665 	}
4666 
4667 	if (do_opu)
4668 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4669 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4670 
4671 	if (ret < 0)
4672 		goto out;
4673 	if (pos + ret > inode->i_size)
4674 		f2fs_i_size_write(inode, pos + ret);
4675 	if (!do_opu)
4676 		set_inode_flag(inode, FI_UPDATE_WRITE);
4677 
4678 	if (iov_iter_count(from)) {
4679 		ssize_t ret2;
4680 		loff_t bufio_start_pos = iocb->ki_pos;
4681 
4682 		/*
4683 		 * The direct write was partial, so we need to fall back to a
4684 		 * buffered write for the remainder.
4685 		 */
4686 
4687 		ret2 = f2fs_buffered_write_iter(iocb, from);
4688 		if (iov_iter_count(from))
4689 			f2fs_write_failed(inode, iocb->ki_pos);
4690 		if (ret2 < 0)
4691 			goto out;
4692 
4693 		/*
4694 		 * Ensure that the pagecache pages are written to disk and
4695 		 * invalidated to preserve the expected O_DIRECT semantics.
4696 		 */
4697 		if (ret2 > 0) {
4698 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4699 
4700 			ret += ret2;
4701 
4702 			f2fs_flush_buffered_write(file->f_mapping,
4703 						  bufio_start_pos,
4704 						  bufio_end_pos);
4705 		}
4706 	} else {
4707 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4708 		*may_need_sync = false;
4709 	}
4710 out:
4711 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4712 	return ret;
4713 }
4714 
4715 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4716 {
4717 	struct inode *inode = file_inode(iocb->ki_filp);
4718 	const loff_t orig_pos = iocb->ki_pos;
4719 	const size_t orig_count = iov_iter_count(from);
4720 	loff_t target_size;
4721 	bool dio;
4722 	bool may_need_sync = true;
4723 	int preallocated;
4724 	ssize_t ret;
4725 
4726 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4727 		ret = -EIO;
4728 		goto out;
4729 	}
4730 
4731 	if (!f2fs_is_compress_backend_ready(inode)) {
4732 		ret = -EOPNOTSUPP;
4733 		goto out;
4734 	}
4735 
4736 	if (iocb->ki_flags & IOCB_NOWAIT) {
4737 		if (!inode_trylock(inode)) {
4738 			ret = -EAGAIN;
4739 			goto out;
4740 		}
4741 	} else {
4742 		inode_lock(inode);
4743 	}
4744 
4745 	ret = f2fs_write_checks(iocb, from);
4746 	if (ret <= 0)
4747 		goto out_unlock;
4748 
4749 	/* Determine whether we will do a direct write or a buffered write. */
4750 	dio = f2fs_should_use_dio(inode, iocb, from);
4751 
4752 	/* Possibly preallocate the blocks for the write. */
4753 	target_size = iocb->ki_pos + iov_iter_count(from);
4754 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4755 	if (preallocated < 0) {
4756 		ret = preallocated;
4757 	} else {
4758 		if (trace_f2fs_datawrite_start_enabled())
4759 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4760 						orig_count, WRITE);
4761 
4762 		/* Do the actual write. */
4763 		ret = dio ?
4764 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4765 			f2fs_buffered_write_iter(iocb, from);
4766 
4767 		if (trace_f2fs_datawrite_end_enabled())
4768 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4769 	}
4770 
4771 	/* Don't leave any preallocated blocks around past i_size. */
4772 	if (preallocated && i_size_read(inode) < target_size) {
4773 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4774 		filemap_invalidate_lock(inode->i_mapping);
4775 		if (!f2fs_truncate(inode))
4776 			file_dont_truncate(inode);
4777 		filemap_invalidate_unlock(inode->i_mapping);
4778 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4779 	} else {
4780 		file_dont_truncate(inode);
4781 	}
4782 
4783 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4784 out_unlock:
4785 	inode_unlock(inode);
4786 out:
4787 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4788 
4789 	if (ret > 0 && may_need_sync)
4790 		ret = generic_write_sync(iocb, ret);
4791 
4792 	/* If buffered IO was forced, flush and drop the data from
4793 	 * the page cache to preserve O_DIRECT semantics
4794 	 */
4795 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4796 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4797 					  orig_pos,
4798 					  orig_pos + ret - 1);
4799 
4800 	return ret;
4801 }
4802 
4803 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4804 		int advice)
4805 {
4806 	struct address_space *mapping;
4807 	struct backing_dev_info *bdi;
4808 	struct inode *inode = file_inode(filp);
4809 	int err;
4810 
4811 	if (advice == POSIX_FADV_SEQUENTIAL) {
4812 		if (S_ISFIFO(inode->i_mode))
4813 			return -ESPIPE;
4814 
4815 		mapping = filp->f_mapping;
4816 		if (!mapping || len < 0)
4817 			return -EINVAL;
4818 
4819 		bdi = inode_to_bdi(mapping->host);
4820 		filp->f_ra.ra_pages = bdi->ra_pages *
4821 			F2FS_I_SB(inode)->seq_file_ra_mul;
4822 		spin_lock(&filp->f_lock);
4823 		filp->f_mode &= ~FMODE_RANDOM;
4824 		spin_unlock(&filp->f_lock);
4825 		return 0;
4826 	}
4827 
4828 	err = generic_fadvise(filp, offset, len, advice);
4829 	if (!err && advice == POSIX_FADV_DONTNEED &&
4830 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4831 		f2fs_compressed_file(inode))
4832 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4833 
4834 	return err;
4835 }
4836 
4837 #ifdef CONFIG_COMPAT
4838 struct compat_f2fs_gc_range {
4839 	u32 sync;
4840 	compat_u64 start;
4841 	compat_u64 len;
4842 };
4843 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4844 						struct compat_f2fs_gc_range)
4845 
4846 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4847 {
4848 	struct compat_f2fs_gc_range __user *urange;
4849 	struct f2fs_gc_range range;
4850 	int err;
4851 
4852 	urange = compat_ptr(arg);
4853 	err = get_user(range.sync, &urange->sync);
4854 	err |= get_user(range.start, &urange->start);
4855 	err |= get_user(range.len, &urange->len);
4856 	if (err)
4857 		return -EFAULT;
4858 
4859 	return __f2fs_ioc_gc_range(file, &range);
4860 }
4861 
4862 struct compat_f2fs_move_range {
4863 	u32 dst_fd;
4864 	compat_u64 pos_in;
4865 	compat_u64 pos_out;
4866 	compat_u64 len;
4867 };
4868 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4869 					struct compat_f2fs_move_range)
4870 
4871 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4872 {
4873 	struct compat_f2fs_move_range __user *urange;
4874 	struct f2fs_move_range range;
4875 	int err;
4876 
4877 	urange = compat_ptr(arg);
4878 	err = get_user(range.dst_fd, &urange->dst_fd);
4879 	err |= get_user(range.pos_in, &urange->pos_in);
4880 	err |= get_user(range.pos_out, &urange->pos_out);
4881 	err |= get_user(range.len, &urange->len);
4882 	if (err)
4883 		return -EFAULT;
4884 
4885 	return __f2fs_ioc_move_range(file, &range);
4886 }
4887 
4888 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4889 {
4890 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4891 		return -EIO;
4892 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4893 		return -ENOSPC;
4894 
4895 	switch (cmd) {
4896 	case FS_IOC32_GETVERSION:
4897 		cmd = FS_IOC_GETVERSION;
4898 		break;
4899 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4900 		return f2fs_compat_ioc_gc_range(file, arg);
4901 	case F2FS_IOC32_MOVE_RANGE:
4902 		return f2fs_compat_ioc_move_range(file, arg);
4903 	case F2FS_IOC_START_ATOMIC_WRITE:
4904 	case F2FS_IOC_START_ATOMIC_REPLACE:
4905 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4906 	case F2FS_IOC_START_VOLATILE_WRITE:
4907 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4908 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4909 	case F2FS_IOC_SHUTDOWN:
4910 	case FITRIM:
4911 	case FS_IOC_SET_ENCRYPTION_POLICY:
4912 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4913 	case FS_IOC_GET_ENCRYPTION_POLICY:
4914 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4915 	case FS_IOC_ADD_ENCRYPTION_KEY:
4916 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4917 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4918 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4919 	case FS_IOC_GET_ENCRYPTION_NONCE:
4920 	case F2FS_IOC_GARBAGE_COLLECT:
4921 	case F2FS_IOC_WRITE_CHECKPOINT:
4922 	case F2FS_IOC_DEFRAGMENT:
4923 	case F2FS_IOC_FLUSH_DEVICE:
4924 	case F2FS_IOC_GET_FEATURES:
4925 	case F2FS_IOC_GET_PIN_FILE:
4926 	case F2FS_IOC_SET_PIN_FILE:
4927 	case F2FS_IOC_PRECACHE_EXTENTS:
4928 	case F2FS_IOC_RESIZE_FS:
4929 	case FS_IOC_ENABLE_VERITY:
4930 	case FS_IOC_MEASURE_VERITY:
4931 	case FS_IOC_READ_VERITY_METADATA:
4932 	case FS_IOC_GETFSLABEL:
4933 	case FS_IOC_SETFSLABEL:
4934 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4935 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4936 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4937 	case F2FS_IOC_SEC_TRIM_FILE:
4938 	case F2FS_IOC_GET_COMPRESS_OPTION:
4939 	case F2FS_IOC_SET_COMPRESS_OPTION:
4940 	case F2FS_IOC_DECOMPRESS_FILE:
4941 	case F2FS_IOC_COMPRESS_FILE:
4942 		break;
4943 	default:
4944 		return -ENOIOCTLCMD;
4945 	}
4946 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4947 }
4948 #endif
4949 
4950 const struct file_operations f2fs_file_operations = {
4951 	.llseek		= f2fs_llseek,
4952 	.read_iter	= f2fs_file_read_iter,
4953 	.write_iter	= f2fs_file_write_iter,
4954 	.iopoll		= iocb_bio_iopoll,
4955 	.open		= f2fs_file_open,
4956 	.release	= f2fs_release_file,
4957 	.mmap		= f2fs_file_mmap,
4958 	.flush		= f2fs_file_flush,
4959 	.fsync		= f2fs_sync_file,
4960 	.fallocate	= f2fs_fallocate,
4961 	.unlocked_ioctl	= f2fs_ioctl,
4962 #ifdef CONFIG_COMPAT
4963 	.compat_ioctl	= f2fs_compat_ioctl,
4964 #endif
4965 	.splice_read	= f2fs_file_splice_read,
4966 	.splice_write	= iter_file_splice_write,
4967 	.fadvise	= f2fs_file_fadvise,
4968 };
4969