xref: /openbmc/linux/fs/f2fs/file.c (revision 2eb0f624b709e78ec8e2f4c3412947703db99301)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35 
36 static int f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 	struct inode *inode = file_inode(vmf->vma->vm_file);
39 	int err;
40 
41 	down_read(&F2FS_I(inode)->i_mmap_sem);
42 	err = filemap_fault(vmf);
43 	up_read(&F2FS_I(inode)->i_mmap_sem);
44 
45 	return err;
46 }
47 
48 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 	struct page *page = vmf->page;
51 	struct inode *inode = file_inode(vmf->vma->vm_file);
52 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 	struct dnode_of_data dn;
54 	int err;
55 
56 	if (unlikely(f2fs_cp_error(sbi))) {
57 		err = -EIO;
58 		goto err;
59 	}
60 
61 	sb_start_pagefault(inode->i_sb);
62 
63 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
64 
65 	/* block allocation */
66 	f2fs_lock_op(sbi);
67 	set_new_dnode(&dn, inode, NULL, NULL, 0);
68 	err = f2fs_reserve_block(&dn, page->index);
69 	if (err) {
70 		f2fs_unlock_op(sbi);
71 		goto out;
72 	}
73 	f2fs_put_dnode(&dn);
74 	f2fs_unlock_op(sbi);
75 
76 	f2fs_balance_fs(sbi, dn.node_changed);
77 
78 	file_update_time(vmf->vma->vm_file);
79 	down_read(&F2FS_I(inode)->i_mmap_sem);
80 	lock_page(page);
81 	if (unlikely(page->mapping != inode->i_mapping ||
82 			page_offset(page) > i_size_read(inode) ||
83 			!PageUptodate(page))) {
84 		unlock_page(page);
85 		err = -EFAULT;
86 		goto out_sem;
87 	}
88 
89 	/*
90 	 * check to see if the page is mapped already (no holes)
91 	 */
92 	if (PageMappedToDisk(page))
93 		goto mapped;
94 
95 	/* page is wholly or partially inside EOF */
96 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
97 						i_size_read(inode)) {
98 		unsigned offset;
99 		offset = i_size_read(inode) & ~PAGE_MASK;
100 		zero_user_segment(page, offset, PAGE_SIZE);
101 	}
102 	set_page_dirty(page);
103 	if (!PageUptodate(page))
104 		SetPageUptodate(page);
105 
106 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
107 
108 	trace_f2fs_vm_page_mkwrite(page, DATA);
109 mapped:
110 	/* fill the page */
111 	f2fs_wait_on_page_writeback(page, DATA, false);
112 
113 	/* wait for GCed encrypted page writeback */
114 	if (f2fs_encrypted_file(inode))
115 		f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
116 
117 out_sem:
118 	up_read(&F2FS_I(inode)->i_mmap_sem);
119 out:
120 	sb_end_pagefault(inode->i_sb);
121 	f2fs_update_time(sbi, REQ_TIME);
122 err:
123 	return block_page_mkwrite_return(err);
124 }
125 
126 static const struct vm_operations_struct f2fs_file_vm_ops = {
127 	.fault		= f2fs_filemap_fault,
128 	.map_pages	= filemap_map_pages,
129 	.page_mkwrite	= f2fs_vm_page_mkwrite,
130 };
131 
132 static int get_parent_ino(struct inode *inode, nid_t *pino)
133 {
134 	struct dentry *dentry;
135 
136 	inode = igrab(inode);
137 	dentry = d_find_any_alias(inode);
138 	iput(inode);
139 	if (!dentry)
140 		return 0;
141 
142 	*pino = parent_ino(dentry);
143 	dput(dentry);
144 	return 1;
145 }
146 
147 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
148 {
149 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
150 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
151 
152 	if (!S_ISREG(inode->i_mode))
153 		cp_reason = CP_NON_REGULAR;
154 	else if (inode->i_nlink != 1)
155 		cp_reason = CP_HARDLINK;
156 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
157 		cp_reason = CP_SB_NEED_CP;
158 	else if (file_wrong_pino(inode))
159 		cp_reason = CP_WRONG_PINO;
160 	else if (!space_for_roll_forward(sbi))
161 		cp_reason = CP_NO_SPC_ROLL;
162 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
163 		cp_reason = CP_NODE_NEED_CP;
164 	else if (test_opt(sbi, FASTBOOT))
165 		cp_reason = CP_FASTBOOT_MODE;
166 	else if (F2FS_OPTION(sbi).active_logs == 2)
167 		cp_reason = CP_SPEC_LOG_NUM;
168 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
169 		need_dentry_mark(sbi, inode->i_ino) &&
170 		exist_written_data(sbi, F2FS_I(inode)->i_pino, TRANS_DIR_INO))
171 		cp_reason = CP_RECOVER_DIR;
172 
173 	return cp_reason;
174 }
175 
176 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
177 {
178 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
179 	bool ret = false;
180 	/* But we need to avoid that there are some inode updates */
181 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
182 		ret = true;
183 	f2fs_put_page(i, 0);
184 	return ret;
185 }
186 
187 static void try_to_fix_pino(struct inode *inode)
188 {
189 	struct f2fs_inode_info *fi = F2FS_I(inode);
190 	nid_t pino;
191 
192 	down_write(&fi->i_sem);
193 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
194 			get_parent_ino(inode, &pino)) {
195 		f2fs_i_pino_write(inode, pino);
196 		file_got_pino(inode);
197 	}
198 	up_write(&fi->i_sem);
199 }
200 
201 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
202 						int datasync, bool atomic)
203 {
204 	struct inode *inode = file->f_mapping->host;
205 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
206 	nid_t ino = inode->i_ino;
207 	int ret = 0;
208 	enum cp_reason_type cp_reason = 0;
209 	struct writeback_control wbc = {
210 		.sync_mode = WB_SYNC_ALL,
211 		.nr_to_write = LONG_MAX,
212 		.for_reclaim = 0,
213 	};
214 
215 	if (unlikely(f2fs_readonly(inode->i_sb)))
216 		return 0;
217 
218 	trace_f2fs_sync_file_enter(inode);
219 
220 	/* if fdatasync is triggered, let's do in-place-update */
221 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
222 		set_inode_flag(inode, FI_NEED_IPU);
223 	ret = file_write_and_wait_range(file, start, end);
224 	clear_inode_flag(inode, FI_NEED_IPU);
225 
226 	if (ret) {
227 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
228 		return ret;
229 	}
230 
231 	/* if the inode is dirty, let's recover all the time */
232 	if (!f2fs_skip_inode_update(inode, datasync)) {
233 		f2fs_write_inode(inode, NULL);
234 		goto go_write;
235 	}
236 
237 	/*
238 	 * if there is no written data, don't waste time to write recovery info.
239 	 */
240 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
241 			!exist_written_data(sbi, ino, APPEND_INO)) {
242 
243 		/* it may call write_inode just prior to fsync */
244 		if (need_inode_page_update(sbi, ino))
245 			goto go_write;
246 
247 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
248 				exist_written_data(sbi, ino, UPDATE_INO))
249 			goto flush_out;
250 		goto out;
251 	}
252 go_write:
253 	/*
254 	 * Both of fdatasync() and fsync() are able to be recovered from
255 	 * sudden-power-off.
256 	 */
257 	down_read(&F2FS_I(inode)->i_sem);
258 	cp_reason = need_do_checkpoint(inode);
259 	up_read(&F2FS_I(inode)->i_sem);
260 
261 	if (cp_reason) {
262 		/* all the dirty node pages should be flushed for POR */
263 		ret = f2fs_sync_fs(inode->i_sb, 1);
264 
265 		/*
266 		 * We've secured consistency through sync_fs. Following pino
267 		 * will be used only for fsynced inodes after checkpoint.
268 		 */
269 		try_to_fix_pino(inode);
270 		clear_inode_flag(inode, FI_APPEND_WRITE);
271 		clear_inode_flag(inode, FI_UPDATE_WRITE);
272 		goto out;
273 	}
274 sync_nodes:
275 	ret = fsync_node_pages(sbi, inode, &wbc, atomic);
276 	if (ret)
277 		goto out;
278 
279 	/* if cp_error was enabled, we should avoid infinite loop */
280 	if (unlikely(f2fs_cp_error(sbi))) {
281 		ret = -EIO;
282 		goto out;
283 	}
284 
285 	if (need_inode_block_update(sbi, ino)) {
286 		f2fs_mark_inode_dirty_sync(inode, true);
287 		f2fs_write_inode(inode, NULL);
288 		goto sync_nodes;
289 	}
290 
291 	/*
292 	 * If it's atomic_write, it's just fine to keep write ordering. So
293 	 * here we don't need to wait for node write completion, since we use
294 	 * node chain which serializes node blocks. If one of node writes are
295 	 * reordered, we can see simply broken chain, resulting in stopping
296 	 * roll-forward recovery. It means we'll recover all or none node blocks
297 	 * given fsync mark.
298 	 */
299 	if (!atomic) {
300 		ret = wait_on_node_pages_writeback(sbi, ino);
301 		if (ret)
302 			goto out;
303 	}
304 
305 	/* once recovery info is written, don't need to tack this */
306 	remove_ino_entry(sbi, ino, APPEND_INO);
307 	clear_inode_flag(inode, FI_APPEND_WRITE);
308 flush_out:
309 	if (!atomic)
310 		ret = f2fs_issue_flush(sbi, inode->i_ino);
311 	if (!ret) {
312 		remove_ino_entry(sbi, ino, UPDATE_INO);
313 		clear_inode_flag(inode, FI_UPDATE_WRITE);
314 		remove_ino_entry(sbi, ino, FLUSH_INO);
315 	}
316 	f2fs_update_time(sbi, REQ_TIME);
317 out:
318 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
319 	f2fs_trace_ios(NULL, 1);
320 	return ret;
321 }
322 
323 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
324 {
325 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
326 		return -EIO;
327 	return f2fs_do_sync_file(file, start, end, datasync, false);
328 }
329 
330 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
331 						pgoff_t pgofs, int whence)
332 {
333 	struct page *page;
334 	int nr_pages;
335 
336 	if (whence != SEEK_DATA)
337 		return 0;
338 
339 	/* find first dirty page index */
340 	nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
341 				      1, &page);
342 	if (!nr_pages)
343 		return ULONG_MAX;
344 	pgofs = page->index;
345 	put_page(page);
346 	return pgofs;
347 }
348 
349 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
350 							int whence)
351 {
352 	switch (whence) {
353 	case SEEK_DATA:
354 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
355 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
356 			return true;
357 		break;
358 	case SEEK_HOLE:
359 		if (blkaddr == NULL_ADDR)
360 			return true;
361 		break;
362 	}
363 	return false;
364 }
365 
366 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
367 {
368 	struct inode *inode = file->f_mapping->host;
369 	loff_t maxbytes = inode->i_sb->s_maxbytes;
370 	struct dnode_of_data dn;
371 	pgoff_t pgofs, end_offset, dirty;
372 	loff_t data_ofs = offset;
373 	loff_t isize;
374 	int err = 0;
375 
376 	inode_lock(inode);
377 
378 	isize = i_size_read(inode);
379 	if (offset >= isize)
380 		goto fail;
381 
382 	/* handle inline data case */
383 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
384 		if (whence == SEEK_HOLE)
385 			data_ofs = isize;
386 		goto found;
387 	}
388 
389 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
390 
391 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
392 
393 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
394 		set_new_dnode(&dn, inode, NULL, NULL, 0);
395 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
396 		if (err && err != -ENOENT) {
397 			goto fail;
398 		} else if (err == -ENOENT) {
399 			/* direct node does not exists */
400 			if (whence == SEEK_DATA) {
401 				pgofs = get_next_page_offset(&dn, pgofs);
402 				continue;
403 			} else {
404 				goto found;
405 			}
406 		}
407 
408 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
409 
410 		/* find data/hole in dnode block */
411 		for (; dn.ofs_in_node < end_offset;
412 				dn.ofs_in_node++, pgofs++,
413 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
414 			block_t blkaddr;
415 			blkaddr = datablock_addr(dn.inode,
416 					dn.node_page, dn.ofs_in_node);
417 
418 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
419 				f2fs_put_dnode(&dn);
420 				goto found;
421 			}
422 		}
423 		f2fs_put_dnode(&dn);
424 	}
425 
426 	if (whence == SEEK_DATA)
427 		goto fail;
428 found:
429 	if (whence == SEEK_HOLE && data_ofs > isize)
430 		data_ofs = isize;
431 	inode_unlock(inode);
432 	return vfs_setpos(file, data_ofs, maxbytes);
433 fail:
434 	inode_unlock(inode);
435 	return -ENXIO;
436 }
437 
438 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
439 {
440 	struct inode *inode = file->f_mapping->host;
441 	loff_t maxbytes = inode->i_sb->s_maxbytes;
442 
443 	switch (whence) {
444 	case SEEK_SET:
445 	case SEEK_CUR:
446 	case SEEK_END:
447 		return generic_file_llseek_size(file, offset, whence,
448 						maxbytes, i_size_read(inode));
449 	case SEEK_DATA:
450 	case SEEK_HOLE:
451 		if (offset < 0)
452 			return -ENXIO;
453 		return f2fs_seek_block(file, offset, whence);
454 	}
455 
456 	return -EINVAL;
457 }
458 
459 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
460 {
461 	struct inode *inode = file_inode(file);
462 	int err;
463 
464 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
465 		return -EIO;
466 
467 	/* we don't need to use inline_data strictly */
468 	err = f2fs_convert_inline_inode(inode);
469 	if (err)
470 		return err;
471 
472 	file_accessed(file);
473 	vma->vm_ops = &f2fs_file_vm_ops;
474 	return 0;
475 }
476 
477 static int f2fs_file_open(struct inode *inode, struct file *filp)
478 {
479 	int err = fscrypt_file_open(inode, filp);
480 
481 	if (err)
482 		return err;
483 
484 	filp->f_mode |= FMODE_NOWAIT;
485 
486 	return dquot_file_open(inode, filp);
487 }
488 
489 void truncate_data_blocks_range(struct dnode_of_data *dn, int count)
490 {
491 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
492 	struct f2fs_node *raw_node;
493 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
494 	__le32 *addr;
495 	int base = 0;
496 
497 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
498 		base = get_extra_isize(dn->inode);
499 
500 	raw_node = F2FS_NODE(dn->node_page);
501 	addr = blkaddr_in_node(raw_node) + base + ofs;
502 
503 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
504 		block_t blkaddr = le32_to_cpu(*addr);
505 		if (blkaddr == NULL_ADDR)
506 			continue;
507 
508 		dn->data_blkaddr = NULL_ADDR;
509 		set_data_blkaddr(dn);
510 		invalidate_blocks(sbi, blkaddr);
511 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
512 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
513 		nr_free++;
514 	}
515 
516 	if (nr_free) {
517 		pgoff_t fofs;
518 		/*
519 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
520 		 * we will invalidate all blkaddr in the whole range.
521 		 */
522 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
523 							dn->inode) + ofs;
524 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
525 		dec_valid_block_count(sbi, dn->inode, nr_free);
526 	}
527 	dn->ofs_in_node = ofs;
528 
529 	f2fs_update_time(sbi, REQ_TIME);
530 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
531 					 dn->ofs_in_node, nr_free);
532 }
533 
534 void truncate_data_blocks(struct dnode_of_data *dn)
535 {
536 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
537 }
538 
539 static int truncate_partial_data_page(struct inode *inode, u64 from,
540 								bool cache_only)
541 {
542 	unsigned offset = from & (PAGE_SIZE - 1);
543 	pgoff_t index = from >> PAGE_SHIFT;
544 	struct address_space *mapping = inode->i_mapping;
545 	struct page *page;
546 
547 	if (!offset && !cache_only)
548 		return 0;
549 
550 	if (cache_only) {
551 		page = find_lock_page(mapping, index);
552 		if (page && PageUptodate(page))
553 			goto truncate_out;
554 		f2fs_put_page(page, 1);
555 		return 0;
556 	}
557 
558 	page = get_lock_data_page(inode, index, true);
559 	if (IS_ERR(page))
560 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
561 truncate_out:
562 	f2fs_wait_on_page_writeback(page, DATA, true);
563 	zero_user(page, offset, PAGE_SIZE - offset);
564 
565 	/* An encrypted inode should have a key and truncate the last page. */
566 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
567 	if (!cache_only)
568 		set_page_dirty(page);
569 	f2fs_put_page(page, 1);
570 	return 0;
571 }
572 
573 int truncate_blocks(struct inode *inode, u64 from, bool lock)
574 {
575 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
576 	struct dnode_of_data dn;
577 	pgoff_t free_from;
578 	int count = 0, err = 0;
579 	struct page *ipage;
580 	bool truncate_page = false;
581 
582 	trace_f2fs_truncate_blocks_enter(inode, from);
583 
584 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
585 
586 	if (free_from >= sbi->max_file_blocks)
587 		goto free_partial;
588 
589 	if (lock)
590 		f2fs_lock_op(sbi);
591 
592 	ipage = get_node_page(sbi, inode->i_ino);
593 	if (IS_ERR(ipage)) {
594 		err = PTR_ERR(ipage);
595 		goto out;
596 	}
597 
598 	if (f2fs_has_inline_data(inode)) {
599 		truncate_inline_inode(inode, ipage, from);
600 		f2fs_put_page(ipage, 1);
601 		truncate_page = true;
602 		goto out;
603 	}
604 
605 	set_new_dnode(&dn, inode, ipage, NULL, 0);
606 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
607 	if (err) {
608 		if (err == -ENOENT)
609 			goto free_next;
610 		goto out;
611 	}
612 
613 	count = ADDRS_PER_PAGE(dn.node_page, inode);
614 
615 	count -= dn.ofs_in_node;
616 	f2fs_bug_on(sbi, count < 0);
617 
618 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
619 		truncate_data_blocks_range(&dn, count);
620 		free_from += count;
621 	}
622 
623 	f2fs_put_dnode(&dn);
624 free_next:
625 	err = truncate_inode_blocks(inode, free_from);
626 out:
627 	if (lock)
628 		f2fs_unlock_op(sbi);
629 free_partial:
630 	/* lastly zero out the first data page */
631 	if (!err)
632 		err = truncate_partial_data_page(inode, from, truncate_page);
633 
634 	trace_f2fs_truncate_blocks_exit(inode, err);
635 	return err;
636 }
637 
638 int f2fs_truncate(struct inode *inode)
639 {
640 	int err;
641 
642 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
643 		return -EIO;
644 
645 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
646 				S_ISLNK(inode->i_mode)))
647 		return 0;
648 
649 	trace_f2fs_truncate(inode);
650 
651 #ifdef CONFIG_F2FS_FAULT_INJECTION
652 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
653 		f2fs_show_injection_info(FAULT_TRUNCATE);
654 		return -EIO;
655 	}
656 #endif
657 	/* we should check inline_data size */
658 	if (!f2fs_may_inline_data(inode)) {
659 		err = f2fs_convert_inline_inode(inode);
660 		if (err)
661 			return err;
662 	}
663 
664 	err = truncate_blocks(inode, i_size_read(inode), true);
665 	if (err)
666 		return err;
667 
668 	inode->i_mtime = inode->i_ctime = current_time(inode);
669 	f2fs_mark_inode_dirty_sync(inode, false);
670 	return 0;
671 }
672 
673 int f2fs_getattr(const struct path *path, struct kstat *stat,
674 		 u32 request_mask, unsigned int query_flags)
675 {
676 	struct inode *inode = d_inode(path->dentry);
677 	struct f2fs_inode_info *fi = F2FS_I(inode);
678 	struct f2fs_inode *ri;
679 	unsigned int flags;
680 
681 	if (f2fs_has_extra_attr(inode) &&
682 			f2fs_sb_has_inode_crtime(inode->i_sb) &&
683 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
684 		stat->result_mask |= STATX_BTIME;
685 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
686 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
687 	}
688 
689 	flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
690 	if (flags & FS_APPEND_FL)
691 		stat->attributes |= STATX_ATTR_APPEND;
692 	if (flags & FS_COMPR_FL)
693 		stat->attributes |= STATX_ATTR_COMPRESSED;
694 	if (f2fs_encrypted_inode(inode))
695 		stat->attributes |= STATX_ATTR_ENCRYPTED;
696 	if (flags & FS_IMMUTABLE_FL)
697 		stat->attributes |= STATX_ATTR_IMMUTABLE;
698 	if (flags & FS_NODUMP_FL)
699 		stat->attributes |= STATX_ATTR_NODUMP;
700 
701 	stat->attributes_mask |= (STATX_ATTR_APPEND |
702 				  STATX_ATTR_COMPRESSED |
703 				  STATX_ATTR_ENCRYPTED |
704 				  STATX_ATTR_IMMUTABLE |
705 				  STATX_ATTR_NODUMP);
706 
707 	generic_fillattr(inode, stat);
708 
709 	/* we need to show initial sectors used for inline_data/dentries */
710 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
711 					f2fs_has_inline_dentry(inode))
712 		stat->blocks += (stat->size + 511) >> 9;
713 
714 	return 0;
715 }
716 
717 #ifdef CONFIG_F2FS_FS_POSIX_ACL
718 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
719 {
720 	unsigned int ia_valid = attr->ia_valid;
721 
722 	if (ia_valid & ATTR_UID)
723 		inode->i_uid = attr->ia_uid;
724 	if (ia_valid & ATTR_GID)
725 		inode->i_gid = attr->ia_gid;
726 	if (ia_valid & ATTR_ATIME)
727 		inode->i_atime = timespec_trunc(attr->ia_atime,
728 						inode->i_sb->s_time_gran);
729 	if (ia_valid & ATTR_MTIME)
730 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
731 						inode->i_sb->s_time_gran);
732 	if (ia_valid & ATTR_CTIME)
733 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
734 						inode->i_sb->s_time_gran);
735 	if (ia_valid & ATTR_MODE) {
736 		umode_t mode = attr->ia_mode;
737 
738 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
739 			mode &= ~S_ISGID;
740 		set_acl_inode(inode, mode);
741 	}
742 }
743 #else
744 #define __setattr_copy setattr_copy
745 #endif
746 
747 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
748 {
749 	struct inode *inode = d_inode(dentry);
750 	int err;
751 	bool size_changed = false;
752 
753 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
754 		return -EIO;
755 
756 	err = setattr_prepare(dentry, attr);
757 	if (err)
758 		return err;
759 
760 	err = fscrypt_prepare_setattr(dentry, attr);
761 	if (err)
762 		return err;
763 
764 	if (is_quota_modification(inode, attr)) {
765 		err = dquot_initialize(inode);
766 		if (err)
767 			return err;
768 	}
769 	if ((attr->ia_valid & ATTR_UID &&
770 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
771 		(attr->ia_valid & ATTR_GID &&
772 		!gid_eq(attr->ia_gid, inode->i_gid))) {
773 		err = dquot_transfer(inode, attr);
774 		if (err)
775 			return err;
776 	}
777 
778 	if (attr->ia_valid & ATTR_SIZE) {
779 		if (attr->ia_size <= i_size_read(inode)) {
780 			down_write(&F2FS_I(inode)->i_mmap_sem);
781 			truncate_setsize(inode, attr->ia_size);
782 			err = f2fs_truncate(inode);
783 			up_write(&F2FS_I(inode)->i_mmap_sem);
784 			if (err)
785 				return err;
786 		} else {
787 			/*
788 			 * do not trim all blocks after i_size if target size is
789 			 * larger than i_size.
790 			 */
791 			down_write(&F2FS_I(inode)->i_mmap_sem);
792 			truncate_setsize(inode, attr->ia_size);
793 			up_write(&F2FS_I(inode)->i_mmap_sem);
794 
795 			/* should convert inline inode here */
796 			if (!f2fs_may_inline_data(inode)) {
797 				err = f2fs_convert_inline_inode(inode);
798 				if (err)
799 					return err;
800 			}
801 			inode->i_mtime = inode->i_ctime = current_time(inode);
802 		}
803 
804 		down_write(&F2FS_I(inode)->i_sem);
805 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
806 		up_write(&F2FS_I(inode)->i_sem);
807 
808 		size_changed = true;
809 	}
810 
811 	__setattr_copy(inode, attr);
812 
813 	if (attr->ia_valid & ATTR_MODE) {
814 		err = posix_acl_chmod(inode, get_inode_mode(inode));
815 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
816 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
817 			clear_inode_flag(inode, FI_ACL_MODE);
818 		}
819 	}
820 
821 	/* file size may changed here */
822 	f2fs_mark_inode_dirty_sync(inode, size_changed);
823 
824 	/* inode change will produce dirty node pages flushed by checkpoint */
825 	f2fs_balance_fs(F2FS_I_SB(inode), true);
826 
827 	return err;
828 }
829 
830 const struct inode_operations f2fs_file_inode_operations = {
831 	.getattr	= f2fs_getattr,
832 	.setattr	= f2fs_setattr,
833 	.get_acl	= f2fs_get_acl,
834 	.set_acl	= f2fs_set_acl,
835 #ifdef CONFIG_F2FS_FS_XATTR
836 	.listxattr	= f2fs_listxattr,
837 #endif
838 	.fiemap		= f2fs_fiemap,
839 };
840 
841 static int fill_zero(struct inode *inode, pgoff_t index,
842 					loff_t start, loff_t len)
843 {
844 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
845 	struct page *page;
846 
847 	if (!len)
848 		return 0;
849 
850 	f2fs_balance_fs(sbi, true);
851 
852 	f2fs_lock_op(sbi);
853 	page = get_new_data_page(inode, NULL, index, false);
854 	f2fs_unlock_op(sbi);
855 
856 	if (IS_ERR(page))
857 		return PTR_ERR(page);
858 
859 	f2fs_wait_on_page_writeback(page, DATA, true);
860 	zero_user(page, start, len);
861 	set_page_dirty(page);
862 	f2fs_put_page(page, 1);
863 	return 0;
864 }
865 
866 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
867 {
868 	int err;
869 
870 	while (pg_start < pg_end) {
871 		struct dnode_of_data dn;
872 		pgoff_t end_offset, count;
873 
874 		set_new_dnode(&dn, inode, NULL, NULL, 0);
875 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
876 		if (err) {
877 			if (err == -ENOENT) {
878 				pg_start = get_next_page_offset(&dn, pg_start);
879 				continue;
880 			}
881 			return err;
882 		}
883 
884 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
885 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
886 
887 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
888 
889 		truncate_data_blocks_range(&dn, count);
890 		f2fs_put_dnode(&dn);
891 
892 		pg_start += count;
893 	}
894 	return 0;
895 }
896 
897 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
898 {
899 	pgoff_t pg_start, pg_end;
900 	loff_t off_start, off_end;
901 	int ret;
902 
903 	ret = f2fs_convert_inline_inode(inode);
904 	if (ret)
905 		return ret;
906 
907 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
908 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
909 
910 	off_start = offset & (PAGE_SIZE - 1);
911 	off_end = (offset + len) & (PAGE_SIZE - 1);
912 
913 	if (pg_start == pg_end) {
914 		ret = fill_zero(inode, pg_start, off_start,
915 						off_end - off_start);
916 		if (ret)
917 			return ret;
918 	} else {
919 		if (off_start) {
920 			ret = fill_zero(inode, pg_start++, off_start,
921 						PAGE_SIZE - off_start);
922 			if (ret)
923 				return ret;
924 		}
925 		if (off_end) {
926 			ret = fill_zero(inode, pg_end, 0, off_end);
927 			if (ret)
928 				return ret;
929 		}
930 
931 		if (pg_start < pg_end) {
932 			struct address_space *mapping = inode->i_mapping;
933 			loff_t blk_start, blk_end;
934 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
935 
936 			f2fs_balance_fs(sbi, true);
937 
938 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
939 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
940 			down_write(&F2FS_I(inode)->i_mmap_sem);
941 			truncate_inode_pages_range(mapping, blk_start,
942 					blk_end - 1);
943 
944 			f2fs_lock_op(sbi);
945 			ret = truncate_hole(inode, pg_start, pg_end);
946 			f2fs_unlock_op(sbi);
947 			up_write(&F2FS_I(inode)->i_mmap_sem);
948 		}
949 	}
950 
951 	return ret;
952 }
953 
954 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
955 				int *do_replace, pgoff_t off, pgoff_t len)
956 {
957 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
958 	struct dnode_of_data dn;
959 	int ret, done, i;
960 
961 next_dnode:
962 	set_new_dnode(&dn, inode, NULL, NULL, 0);
963 	ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
964 	if (ret && ret != -ENOENT) {
965 		return ret;
966 	} else if (ret == -ENOENT) {
967 		if (dn.max_level == 0)
968 			return -ENOENT;
969 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
970 		blkaddr += done;
971 		do_replace += done;
972 		goto next;
973 	}
974 
975 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
976 							dn.ofs_in_node, len);
977 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
978 		*blkaddr = datablock_addr(dn.inode,
979 					dn.node_page, dn.ofs_in_node);
980 		if (!is_checkpointed_data(sbi, *blkaddr)) {
981 
982 			if (test_opt(sbi, LFS)) {
983 				f2fs_put_dnode(&dn);
984 				return -ENOTSUPP;
985 			}
986 
987 			/* do not invalidate this block address */
988 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
989 			*do_replace = 1;
990 		}
991 	}
992 	f2fs_put_dnode(&dn);
993 next:
994 	len -= done;
995 	off += done;
996 	if (len)
997 		goto next_dnode;
998 	return 0;
999 }
1000 
1001 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1002 				int *do_replace, pgoff_t off, int len)
1003 {
1004 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1005 	struct dnode_of_data dn;
1006 	int ret, i;
1007 
1008 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1009 		if (*do_replace == 0)
1010 			continue;
1011 
1012 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1013 		ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1014 		if (ret) {
1015 			dec_valid_block_count(sbi, inode, 1);
1016 			invalidate_blocks(sbi, *blkaddr);
1017 		} else {
1018 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1019 		}
1020 		f2fs_put_dnode(&dn);
1021 	}
1022 	return 0;
1023 }
1024 
1025 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1026 			block_t *blkaddr, int *do_replace,
1027 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1028 {
1029 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1030 	pgoff_t i = 0;
1031 	int ret;
1032 
1033 	while (i < len) {
1034 		if (blkaddr[i] == NULL_ADDR && !full) {
1035 			i++;
1036 			continue;
1037 		}
1038 
1039 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1040 			struct dnode_of_data dn;
1041 			struct node_info ni;
1042 			size_t new_size;
1043 			pgoff_t ilen;
1044 
1045 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1046 			ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1047 			if (ret)
1048 				return ret;
1049 
1050 			get_node_info(sbi, dn.nid, &ni);
1051 			ilen = min((pgoff_t)
1052 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1053 						dn.ofs_in_node, len - i);
1054 			do {
1055 				dn.data_blkaddr = datablock_addr(dn.inode,
1056 						dn.node_page, dn.ofs_in_node);
1057 				truncate_data_blocks_range(&dn, 1);
1058 
1059 				if (do_replace[i]) {
1060 					f2fs_i_blocks_write(src_inode,
1061 							1, false, false);
1062 					f2fs_i_blocks_write(dst_inode,
1063 							1, true, false);
1064 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1065 					blkaddr[i], ni.version, true, false);
1066 
1067 					do_replace[i] = 0;
1068 				}
1069 				dn.ofs_in_node++;
1070 				i++;
1071 				new_size = (dst + i) << PAGE_SHIFT;
1072 				if (dst_inode->i_size < new_size)
1073 					f2fs_i_size_write(dst_inode, new_size);
1074 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1075 
1076 			f2fs_put_dnode(&dn);
1077 		} else {
1078 			struct page *psrc, *pdst;
1079 
1080 			psrc = get_lock_data_page(src_inode, src + i, true);
1081 			if (IS_ERR(psrc))
1082 				return PTR_ERR(psrc);
1083 			pdst = get_new_data_page(dst_inode, NULL, dst + i,
1084 								true);
1085 			if (IS_ERR(pdst)) {
1086 				f2fs_put_page(psrc, 1);
1087 				return PTR_ERR(pdst);
1088 			}
1089 			f2fs_copy_page(psrc, pdst);
1090 			set_page_dirty(pdst);
1091 			f2fs_put_page(pdst, 1);
1092 			f2fs_put_page(psrc, 1);
1093 
1094 			ret = truncate_hole(src_inode, src + i, src + i + 1);
1095 			if (ret)
1096 				return ret;
1097 			i++;
1098 		}
1099 	}
1100 	return 0;
1101 }
1102 
1103 static int __exchange_data_block(struct inode *src_inode,
1104 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1105 			pgoff_t len, bool full)
1106 {
1107 	block_t *src_blkaddr;
1108 	int *do_replace;
1109 	pgoff_t olen;
1110 	int ret;
1111 
1112 	while (len) {
1113 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1114 
1115 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1116 					sizeof(block_t) * olen, GFP_KERNEL);
1117 		if (!src_blkaddr)
1118 			return -ENOMEM;
1119 
1120 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1121 					sizeof(int) * olen, GFP_KERNEL);
1122 		if (!do_replace) {
1123 			kvfree(src_blkaddr);
1124 			return -ENOMEM;
1125 		}
1126 
1127 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1128 					do_replace, src, olen);
1129 		if (ret)
1130 			goto roll_back;
1131 
1132 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1133 					do_replace, src, dst, olen, full);
1134 		if (ret)
1135 			goto roll_back;
1136 
1137 		src += olen;
1138 		dst += olen;
1139 		len -= olen;
1140 
1141 		kvfree(src_blkaddr);
1142 		kvfree(do_replace);
1143 	}
1144 	return 0;
1145 
1146 roll_back:
1147 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1148 	kvfree(src_blkaddr);
1149 	kvfree(do_replace);
1150 	return ret;
1151 }
1152 
1153 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1154 {
1155 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1156 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1157 	int ret;
1158 
1159 	f2fs_balance_fs(sbi, true);
1160 	f2fs_lock_op(sbi);
1161 
1162 	f2fs_drop_extent_tree(inode);
1163 
1164 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1165 	f2fs_unlock_op(sbi);
1166 	return ret;
1167 }
1168 
1169 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1170 {
1171 	pgoff_t pg_start, pg_end;
1172 	loff_t new_size;
1173 	int ret;
1174 
1175 	if (offset + len >= i_size_read(inode))
1176 		return -EINVAL;
1177 
1178 	/* collapse range should be aligned to block size of f2fs. */
1179 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1180 		return -EINVAL;
1181 
1182 	ret = f2fs_convert_inline_inode(inode);
1183 	if (ret)
1184 		return ret;
1185 
1186 	pg_start = offset >> PAGE_SHIFT;
1187 	pg_end = (offset + len) >> PAGE_SHIFT;
1188 
1189 	/* avoid gc operation during block exchange */
1190 	down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1191 
1192 	down_write(&F2FS_I(inode)->i_mmap_sem);
1193 	/* write out all dirty pages from offset */
1194 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1195 	if (ret)
1196 		goto out_unlock;
1197 
1198 	truncate_pagecache(inode, offset);
1199 
1200 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1201 	if (ret)
1202 		goto out_unlock;
1203 
1204 	/* write out all moved pages, if possible */
1205 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1206 	truncate_pagecache(inode, offset);
1207 
1208 	new_size = i_size_read(inode) - len;
1209 	truncate_pagecache(inode, new_size);
1210 
1211 	ret = truncate_blocks(inode, new_size, true);
1212 	if (!ret)
1213 		f2fs_i_size_write(inode, new_size);
1214 out_unlock:
1215 	up_write(&F2FS_I(inode)->i_mmap_sem);
1216 	up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1217 	return ret;
1218 }
1219 
1220 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1221 								pgoff_t end)
1222 {
1223 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1224 	pgoff_t index = start;
1225 	unsigned int ofs_in_node = dn->ofs_in_node;
1226 	blkcnt_t count = 0;
1227 	int ret;
1228 
1229 	for (; index < end; index++, dn->ofs_in_node++) {
1230 		if (datablock_addr(dn->inode, dn->node_page,
1231 					dn->ofs_in_node) == NULL_ADDR)
1232 			count++;
1233 	}
1234 
1235 	dn->ofs_in_node = ofs_in_node;
1236 	ret = reserve_new_blocks(dn, count);
1237 	if (ret)
1238 		return ret;
1239 
1240 	dn->ofs_in_node = ofs_in_node;
1241 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1242 		dn->data_blkaddr = datablock_addr(dn->inode,
1243 					dn->node_page, dn->ofs_in_node);
1244 		/*
1245 		 * reserve_new_blocks will not guarantee entire block
1246 		 * allocation.
1247 		 */
1248 		if (dn->data_blkaddr == NULL_ADDR) {
1249 			ret = -ENOSPC;
1250 			break;
1251 		}
1252 		if (dn->data_blkaddr != NEW_ADDR) {
1253 			invalidate_blocks(sbi, dn->data_blkaddr);
1254 			dn->data_blkaddr = NEW_ADDR;
1255 			set_data_blkaddr(dn);
1256 		}
1257 	}
1258 
1259 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1260 
1261 	return ret;
1262 }
1263 
1264 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1265 								int mode)
1266 {
1267 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1268 	struct address_space *mapping = inode->i_mapping;
1269 	pgoff_t index, pg_start, pg_end;
1270 	loff_t new_size = i_size_read(inode);
1271 	loff_t off_start, off_end;
1272 	int ret = 0;
1273 
1274 	ret = inode_newsize_ok(inode, (len + offset));
1275 	if (ret)
1276 		return ret;
1277 
1278 	ret = f2fs_convert_inline_inode(inode);
1279 	if (ret)
1280 		return ret;
1281 
1282 	down_write(&F2FS_I(inode)->i_mmap_sem);
1283 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1284 	if (ret)
1285 		goto out_sem;
1286 
1287 	truncate_pagecache_range(inode, offset, offset + len - 1);
1288 
1289 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1290 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1291 
1292 	off_start = offset & (PAGE_SIZE - 1);
1293 	off_end = (offset + len) & (PAGE_SIZE - 1);
1294 
1295 	if (pg_start == pg_end) {
1296 		ret = fill_zero(inode, pg_start, off_start,
1297 						off_end - off_start);
1298 		if (ret)
1299 			goto out_sem;
1300 
1301 		new_size = max_t(loff_t, new_size, offset + len);
1302 	} else {
1303 		if (off_start) {
1304 			ret = fill_zero(inode, pg_start++, off_start,
1305 						PAGE_SIZE - off_start);
1306 			if (ret)
1307 				goto out_sem;
1308 
1309 			new_size = max_t(loff_t, new_size,
1310 					(loff_t)pg_start << PAGE_SHIFT);
1311 		}
1312 
1313 		for (index = pg_start; index < pg_end;) {
1314 			struct dnode_of_data dn;
1315 			unsigned int end_offset;
1316 			pgoff_t end;
1317 
1318 			f2fs_lock_op(sbi);
1319 
1320 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1321 			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1322 			if (ret) {
1323 				f2fs_unlock_op(sbi);
1324 				goto out;
1325 			}
1326 
1327 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1328 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1329 
1330 			ret = f2fs_do_zero_range(&dn, index, end);
1331 			f2fs_put_dnode(&dn);
1332 			f2fs_unlock_op(sbi);
1333 
1334 			f2fs_balance_fs(sbi, dn.node_changed);
1335 
1336 			if (ret)
1337 				goto out;
1338 
1339 			index = end;
1340 			new_size = max_t(loff_t, new_size,
1341 					(loff_t)index << PAGE_SHIFT);
1342 		}
1343 
1344 		if (off_end) {
1345 			ret = fill_zero(inode, pg_end, 0, off_end);
1346 			if (ret)
1347 				goto out;
1348 
1349 			new_size = max_t(loff_t, new_size, offset + len);
1350 		}
1351 	}
1352 
1353 out:
1354 	if (new_size > i_size_read(inode)) {
1355 		if (mode & FALLOC_FL_KEEP_SIZE)
1356 			file_set_keep_isize(inode);
1357 		else
1358 			f2fs_i_size_write(inode, new_size);
1359 	}
1360 out_sem:
1361 	up_write(&F2FS_I(inode)->i_mmap_sem);
1362 
1363 	return ret;
1364 }
1365 
1366 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1367 {
1368 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1369 	pgoff_t nr, pg_start, pg_end, delta, idx;
1370 	loff_t new_size;
1371 	int ret = 0;
1372 
1373 	new_size = i_size_read(inode) + len;
1374 	ret = inode_newsize_ok(inode, new_size);
1375 	if (ret)
1376 		return ret;
1377 
1378 	if (offset >= i_size_read(inode))
1379 		return -EINVAL;
1380 
1381 	/* insert range should be aligned to block size of f2fs. */
1382 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1383 		return -EINVAL;
1384 
1385 	ret = f2fs_convert_inline_inode(inode);
1386 	if (ret)
1387 		return ret;
1388 
1389 	f2fs_balance_fs(sbi, true);
1390 
1391 	/* avoid gc operation during block exchange */
1392 	down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1393 
1394 	down_write(&F2FS_I(inode)->i_mmap_sem);
1395 	ret = truncate_blocks(inode, i_size_read(inode), true);
1396 	if (ret)
1397 		goto out;
1398 
1399 	/* write out all dirty pages from offset */
1400 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1401 	if (ret)
1402 		goto out;
1403 
1404 	truncate_pagecache(inode, offset);
1405 
1406 	pg_start = offset >> PAGE_SHIFT;
1407 	pg_end = (offset + len) >> PAGE_SHIFT;
1408 	delta = pg_end - pg_start;
1409 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1410 
1411 	while (!ret && idx > pg_start) {
1412 		nr = idx - pg_start;
1413 		if (nr > delta)
1414 			nr = delta;
1415 		idx -= nr;
1416 
1417 		f2fs_lock_op(sbi);
1418 		f2fs_drop_extent_tree(inode);
1419 
1420 		ret = __exchange_data_block(inode, inode, idx,
1421 					idx + delta, nr, false);
1422 		f2fs_unlock_op(sbi);
1423 	}
1424 
1425 	/* write out all moved pages, if possible */
1426 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1427 	truncate_pagecache(inode, offset);
1428 
1429 	if (!ret)
1430 		f2fs_i_size_write(inode, new_size);
1431 out:
1432 	up_write(&F2FS_I(inode)->i_mmap_sem);
1433 	up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1434 	return ret;
1435 }
1436 
1437 static int expand_inode_data(struct inode *inode, loff_t offset,
1438 					loff_t len, int mode)
1439 {
1440 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1441 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1442 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
1443 	pgoff_t pg_end;
1444 	loff_t new_size = i_size_read(inode);
1445 	loff_t off_end;
1446 	int err;
1447 
1448 	err = inode_newsize_ok(inode, (len + offset));
1449 	if (err)
1450 		return err;
1451 
1452 	err = f2fs_convert_inline_inode(inode);
1453 	if (err)
1454 		return err;
1455 
1456 	f2fs_balance_fs(sbi, true);
1457 
1458 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1459 	off_end = (offset + len) & (PAGE_SIZE - 1);
1460 
1461 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1462 	map.m_len = pg_end - map.m_lblk;
1463 	if (off_end)
1464 		map.m_len++;
1465 
1466 	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1467 	if (err) {
1468 		pgoff_t last_off;
1469 
1470 		if (!map.m_len)
1471 			return err;
1472 
1473 		last_off = map.m_lblk + map.m_len - 1;
1474 
1475 		/* update new size to the failed position */
1476 		new_size = (last_off == pg_end) ? offset + len:
1477 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1478 	} else {
1479 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1480 	}
1481 
1482 	if (new_size > i_size_read(inode)) {
1483 		if (mode & FALLOC_FL_KEEP_SIZE)
1484 			file_set_keep_isize(inode);
1485 		else
1486 			f2fs_i_size_write(inode, new_size);
1487 	}
1488 
1489 	return err;
1490 }
1491 
1492 static long f2fs_fallocate(struct file *file, int mode,
1493 				loff_t offset, loff_t len)
1494 {
1495 	struct inode *inode = file_inode(file);
1496 	long ret = 0;
1497 
1498 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1499 		return -EIO;
1500 
1501 	/* f2fs only support ->fallocate for regular file */
1502 	if (!S_ISREG(inode->i_mode))
1503 		return -EINVAL;
1504 
1505 	if (f2fs_encrypted_inode(inode) &&
1506 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1507 		return -EOPNOTSUPP;
1508 
1509 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1510 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1511 			FALLOC_FL_INSERT_RANGE))
1512 		return -EOPNOTSUPP;
1513 
1514 	inode_lock(inode);
1515 
1516 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1517 		if (offset >= inode->i_size)
1518 			goto out;
1519 
1520 		ret = punch_hole(inode, offset, len);
1521 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1522 		ret = f2fs_collapse_range(inode, offset, len);
1523 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1524 		ret = f2fs_zero_range(inode, offset, len, mode);
1525 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1526 		ret = f2fs_insert_range(inode, offset, len);
1527 	} else {
1528 		ret = expand_inode_data(inode, offset, len, mode);
1529 	}
1530 
1531 	if (!ret) {
1532 		inode->i_mtime = inode->i_ctime = current_time(inode);
1533 		f2fs_mark_inode_dirty_sync(inode, false);
1534 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1535 	}
1536 
1537 out:
1538 	inode_unlock(inode);
1539 
1540 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1541 	return ret;
1542 }
1543 
1544 static int f2fs_release_file(struct inode *inode, struct file *filp)
1545 {
1546 	/*
1547 	 * f2fs_relase_file is called at every close calls. So we should
1548 	 * not drop any inmemory pages by close called by other process.
1549 	 */
1550 	if (!(filp->f_mode & FMODE_WRITE) ||
1551 			atomic_read(&inode->i_writecount) != 1)
1552 		return 0;
1553 
1554 	/* some remained atomic pages should discarded */
1555 	if (f2fs_is_atomic_file(inode))
1556 		drop_inmem_pages(inode);
1557 	if (f2fs_is_volatile_file(inode)) {
1558 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1559 		stat_dec_volatile_write(inode);
1560 		set_inode_flag(inode, FI_DROP_CACHE);
1561 		filemap_fdatawrite(inode->i_mapping);
1562 		clear_inode_flag(inode, FI_DROP_CACHE);
1563 	}
1564 	return 0;
1565 }
1566 
1567 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1568 {
1569 	struct inode *inode = file_inode(file);
1570 
1571 	/*
1572 	 * If the process doing a transaction is crashed, we should do
1573 	 * roll-back. Otherwise, other reader/write can see corrupted database
1574 	 * until all the writers close its file. Since this should be done
1575 	 * before dropping file lock, it needs to do in ->flush.
1576 	 */
1577 	if (f2fs_is_atomic_file(inode) &&
1578 			F2FS_I(inode)->inmem_task == current)
1579 		drop_inmem_pages(inode);
1580 	return 0;
1581 }
1582 
1583 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1584 {
1585 	struct inode *inode = file_inode(filp);
1586 	struct f2fs_inode_info *fi = F2FS_I(inode);
1587 	unsigned int flags = fi->i_flags &
1588 			(FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
1589 	return put_user(flags, (int __user *)arg);
1590 }
1591 
1592 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1593 {
1594 	struct f2fs_inode_info *fi = F2FS_I(inode);
1595 	unsigned int oldflags;
1596 
1597 	/* Is it quota file? Do not allow user to mess with it */
1598 	if (IS_NOQUOTA(inode))
1599 		return -EPERM;
1600 
1601 	flags = f2fs_mask_flags(inode->i_mode, flags);
1602 
1603 	oldflags = fi->i_flags;
1604 
1605 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
1606 		if (!capable(CAP_LINUX_IMMUTABLE))
1607 			return -EPERM;
1608 
1609 	flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1610 	flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1611 	fi->i_flags = flags;
1612 
1613 	if (fi->i_flags & FS_PROJINHERIT_FL)
1614 		set_inode_flag(inode, FI_PROJ_INHERIT);
1615 	else
1616 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1617 
1618 	inode->i_ctime = current_time(inode);
1619 	f2fs_set_inode_flags(inode);
1620 	f2fs_mark_inode_dirty_sync(inode, false);
1621 	return 0;
1622 }
1623 
1624 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1625 {
1626 	struct inode *inode = file_inode(filp);
1627 	unsigned int flags;
1628 	int ret;
1629 
1630 	if (!inode_owner_or_capable(inode))
1631 		return -EACCES;
1632 
1633 	if (get_user(flags, (int __user *)arg))
1634 		return -EFAULT;
1635 
1636 	ret = mnt_want_write_file(filp);
1637 	if (ret)
1638 		return ret;
1639 
1640 	inode_lock(inode);
1641 
1642 	ret = __f2fs_ioc_setflags(inode, flags);
1643 
1644 	inode_unlock(inode);
1645 	mnt_drop_write_file(filp);
1646 	return ret;
1647 }
1648 
1649 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1650 {
1651 	struct inode *inode = file_inode(filp);
1652 
1653 	return put_user(inode->i_generation, (int __user *)arg);
1654 }
1655 
1656 static int f2fs_ioc_start_atomic_write(struct file *filp)
1657 {
1658 	struct inode *inode = file_inode(filp);
1659 	int ret;
1660 
1661 	if (!inode_owner_or_capable(inode))
1662 		return -EACCES;
1663 
1664 	if (!S_ISREG(inode->i_mode))
1665 		return -EINVAL;
1666 
1667 	ret = mnt_want_write_file(filp);
1668 	if (ret)
1669 		return ret;
1670 
1671 	inode_lock(inode);
1672 
1673 	if (f2fs_is_atomic_file(inode))
1674 		goto out;
1675 
1676 	ret = f2fs_convert_inline_inode(inode);
1677 	if (ret)
1678 		goto out;
1679 
1680 	set_inode_flag(inode, FI_ATOMIC_FILE);
1681 	set_inode_flag(inode, FI_HOT_DATA);
1682 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1683 
1684 	if (!get_dirty_pages(inode))
1685 		goto inc_stat;
1686 
1687 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1688 		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1689 					inode->i_ino, get_dirty_pages(inode));
1690 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1691 	if (ret) {
1692 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1693 		clear_inode_flag(inode, FI_HOT_DATA);
1694 		goto out;
1695 	}
1696 
1697 inc_stat:
1698 	F2FS_I(inode)->inmem_task = current;
1699 	stat_inc_atomic_write(inode);
1700 	stat_update_max_atomic_write(inode);
1701 out:
1702 	inode_unlock(inode);
1703 	mnt_drop_write_file(filp);
1704 	return ret;
1705 }
1706 
1707 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1708 {
1709 	struct inode *inode = file_inode(filp);
1710 	int ret;
1711 
1712 	if (!inode_owner_or_capable(inode))
1713 		return -EACCES;
1714 
1715 	ret = mnt_want_write_file(filp);
1716 	if (ret)
1717 		return ret;
1718 
1719 	inode_lock(inode);
1720 
1721 	down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1722 
1723 	if (f2fs_is_volatile_file(inode))
1724 		goto err_out;
1725 
1726 	if (f2fs_is_atomic_file(inode)) {
1727 		ret = commit_inmem_pages(inode);
1728 		if (ret)
1729 			goto err_out;
1730 
1731 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1732 		if (!ret) {
1733 			clear_inode_flag(inode, FI_ATOMIC_FILE);
1734 			clear_inode_flag(inode, FI_HOT_DATA);
1735 			stat_dec_atomic_write(inode);
1736 		}
1737 	} else {
1738 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1739 	}
1740 err_out:
1741 	up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1742 	inode_unlock(inode);
1743 	mnt_drop_write_file(filp);
1744 	return ret;
1745 }
1746 
1747 static int f2fs_ioc_start_volatile_write(struct file *filp)
1748 {
1749 	struct inode *inode = file_inode(filp);
1750 	int ret;
1751 
1752 	if (!inode_owner_or_capable(inode))
1753 		return -EACCES;
1754 
1755 	if (!S_ISREG(inode->i_mode))
1756 		return -EINVAL;
1757 
1758 	ret = mnt_want_write_file(filp);
1759 	if (ret)
1760 		return ret;
1761 
1762 	inode_lock(inode);
1763 
1764 	if (f2fs_is_volatile_file(inode))
1765 		goto out;
1766 
1767 	ret = f2fs_convert_inline_inode(inode);
1768 	if (ret)
1769 		goto out;
1770 
1771 	stat_inc_volatile_write(inode);
1772 	stat_update_max_volatile_write(inode);
1773 
1774 	set_inode_flag(inode, FI_VOLATILE_FILE);
1775 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1776 out:
1777 	inode_unlock(inode);
1778 	mnt_drop_write_file(filp);
1779 	return ret;
1780 }
1781 
1782 static int f2fs_ioc_release_volatile_write(struct file *filp)
1783 {
1784 	struct inode *inode = file_inode(filp);
1785 	int ret;
1786 
1787 	if (!inode_owner_or_capable(inode))
1788 		return -EACCES;
1789 
1790 	ret = mnt_want_write_file(filp);
1791 	if (ret)
1792 		return ret;
1793 
1794 	inode_lock(inode);
1795 
1796 	if (!f2fs_is_volatile_file(inode))
1797 		goto out;
1798 
1799 	if (!f2fs_is_first_block_written(inode)) {
1800 		ret = truncate_partial_data_page(inode, 0, true);
1801 		goto out;
1802 	}
1803 
1804 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1805 out:
1806 	inode_unlock(inode);
1807 	mnt_drop_write_file(filp);
1808 	return ret;
1809 }
1810 
1811 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1812 {
1813 	struct inode *inode = file_inode(filp);
1814 	int ret;
1815 
1816 	if (!inode_owner_or_capable(inode))
1817 		return -EACCES;
1818 
1819 	ret = mnt_want_write_file(filp);
1820 	if (ret)
1821 		return ret;
1822 
1823 	inode_lock(inode);
1824 
1825 	if (f2fs_is_atomic_file(inode))
1826 		drop_inmem_pages(inode);
1827 	if (f2fs_is_volatile_file(inode)) {
1828 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1829 		stat_dec_volatile_write(inode);
1830 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1831 	}
1832 
1833 	inode_unlock(inode);
1834 
1835 	mnt_drop_write_file(filp);
1836 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1837 	return ret;
1838 }
1839 
1840 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1841 {
1842 	struct inode *inode = file_inode(filp);
1843 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1844 	struct super_block *sb = sbi->sb;
1845 	__u32 in;
1846 	int ret;
1847 
1848 	if (!capable(CAP_SYS_ADMIN))
1849 		return -EPERM;
1850 
1851 	if (get_user(in, (__u32 __user *)arg))
1852 		return -EFAULT;
1853 
1854 	ret = mnt_want_write_file(filp);
1855 	if (ret)
1856 		return ret;
1857 
1858 	switch (in) {
1859 	case F2FS_GOING_DOWN_FULLSYNC:
1860 		sb = freeze_bdev(sb->s_bdev);
1861 		if (IS_ERR(sb)) {
1862 			ret = PTR_ERR(sb);
1863 			goto out;
1864 		}
1865 		if (sb) {
1866 			f2fs_stop_checkpoint(sbi, false);
1867 			thaw_bdev(sb->s_bdev, sb);
1868 		}
1869 		break;
1870 	case F2FS_GOING_DOWN_METASYNC:
1871 		/* do checkpoint only */
1872 		ret = f2fs_sync_fs(sb, 1);
1873 		if (ret)
1874 			goto out;
1875 		f2fs_stop_checkpoint(sbi, false);
1876 		break;
1877 	case F2FS_GOING_DOWN_NOSYNC:
1878 		f2fs_stop_checkpoint(sbi, false);
1879 		break;
1880 	case F2FS_GOING_DOWN_METAFLUSH:
1881 		sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1882 		f2fs_stop_checkpoint(sbi, false);
1883 		break;
1884 	default:
1885 		ret = -EINVAL;
1886 		goto out;
1887 	}
1888 
1889 	stop_gc_thread(sbi);
1890 	stop_discard_thread(sbi);
1891 
1892 	drop_discard_cmd(sbi);
1893 	clear_opt(sbi, DISCARD);
1894 
1895 	f2fs_update_time(sbi, REQ_TIME);
1896 out:
1897 	mnt_drop_write_file(filp);
1898 	return ret;
1899 }
1900 
1901 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1902 {
1903 	struct inode *inode = file_inode(filp);
1904 	struct super_block *sb = inode->i_sb;
1905 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1906 	struct fstrim_range range;
1907 	int ret;
1908 
1909 	if (!capable(CAP_SYS_ADMIN))
1910 		return -EPERM;
1911 
1912 	if (!blk_queue_discard(q))
1913 		return -EOPNOTSUPP;
1914 
1915 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1916 				sizeof(range)))
1917 		return -EFAULT;
1918 
1919 	ret = mnt_want_write_file(filp);
1920 	if (ret)
1921 		return ret;
1922 
1923 	range.minlen = max((unsigned int)range.minlen,
1924 				q->limits.discard_granularity);
1925 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1926 	mnt_drop_write_file(filp);
1927 	if (ret < 0)
1928 		return ret;
1929 
1930 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1931 				sizeof(range)))
1932 		return -EFAULT;
1933 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1934 	return 0;
1935 }
1936 
1937 static bool uuid_is_nonzero(__u8 u[16])
1938 {
1939 	int i;
1940 
1941 	for (i = 0; i < 16; i++)
1942 		if (u[i])
1943 			return true;
1944 	return false;
1945 }
1946 
1947 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1948 {
1949 	struct inode *inode = file_inode(filp);
1950 
1951 	if (!f2fs_sb_has_encrypt(inode->i_sb))
1952 		return -EOPNOTSUPP;
1953 
1954 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1955 
1956 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1957 }
1958 
1959 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1960 {
1961 	if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
1962 		return -EOPNOTSUPP;
1963 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1964 }
1965 
1966 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1967 {
1968 	struct inode *inode = file_inode(filp);
1969 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1970 	int err;
1971 
1972 	if (!f2fs_sb_has_encrypt(inode->i_sb))
1973 		return -EOPNOTSUPP;
1974 
1975 	err = mnt_want_write_file(filp);
1976 	if (err)
1977 		return err;
1978 
1979 	down_write(&sbi->sb_lock);
1980 
1981 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1982 		goto got_it;
1983 
1984 	/* update superblock with uuid */
1985 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1986 
1987 	err = f2fs_commit_super(sbi, false);
1988 	if (err) {
1989 		/* undo new data */
1990 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1991 		goto out_err;
1992 	}
1993 got_it:
1994 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1995 									16))
1996 		err = -EFAULT;
1997 out_err:
1998 	up_write(&sbi->sb_lock);
1999 	mnt_drop_write_file(filp);
2000 	return err;
2001 }
2002 
2003 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2004 {
2005 	struct inode *inode = file_inode(filp);
2006 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2007 	__u32 sync;
2008 	int ret;
2009 
2010 	if (!capable(CAP_SYS_ADMIN))
2011 		return -EPERM;
2012 
2013 	if (get_user(sync, (__u32 __user *)arg))
2014 		return -EFAULT;
2015 
2016 	if (f2fs_readonly(sbi->sb))
2017 		return -EROFS;
2018 
2019 	ret = mnt_want_write_file(filp);
2020 	if (ret)
2021 		return ret;
2022 
2023 	if (!sync) {
2024 		if (!mutex_trylock(&sbi->gc_mutex)) {
2025 			ret = -EBUSY;
2026 			goto out;
2027 		}
2028 	} else {
2029 		mutex_lock(&sbi->gc_mutex);
2030 	}
2031 
2032 	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2033 out:
2034 	mnt_drop_write_file(filp);
2035 	return ret;
2036 }
2037 
2038 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2039 {
2040 	struct inode *inode = file_inode(filp);
2041 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2042 	struct f2fs_gc_range range;
2043 	u64 end;
2044 	int ret;
2045 
2046 	if (!capable(CAP_SYS_ADMIN))
2047 		return -EPERM;
2048 
2049 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2050 							sizeof(range)))
2051 		return -EFAULT;
2052 
2053 	if (f2fs_readonly(sbi->sb))
2054 		return -EROFS;
2055 
2056 	ret = mnt_want_write_file(filp);
2057 	if (ret)
2058 		return ret;
2059 
2060 	end = range.start + range.len;
2061 	if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
2062 		ret = -EINVAL;
2063 		goto out;
2064 	}
2065 do_more:
2066 	if (!range.sync) {
2067 		if (!mutex_trylock(&sbi->gc_mutex)) {
2068 			ret = -EBUSY;
2069 			goto out;
2070 		}
2071 	} else {
2072 		mutex_lock(&sbi->gc_mutex);
2073 	}
2074 
2075 	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2076 	range.start += sbi->blocks_per_seg;
2077 	if (range.start <= end)
2078 		goto do_more;
2079 out:
2080 	mnt_drop_write_file(filp);
2081 	return ret;
2082 }
2083 
2084 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2085 {
2086 	struct inode *inode = file_inode(filp);
2087 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2088 	int ret;
2089 
2090 	if (!capable(CAP_SYS_ADMIN))
2091 		return -EPERM;
2092 
2093 	if (f2fs_readonly(sbi->sb))
2094 		return -EROFS;
2095 
2096 	ret = mnt_want_write_file(filp);
2097 	if (ret)
2098 		return ret;
2099 
2100 	ret = f2fs_sync_fs(sbi->sb, 1);
2101 
2102 	mnt_drop_write_file(filp);
2103 	return ret;
2104 }
2105 
2106 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2107 					struct file *filp,
2108 					struct f2fs_defragment *range)
2109 {
2110 	struct inode *inode = file_inode(filp);
2111 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2112 					.m_seg_type = NO_CHECK_TYPE };
2113 	struct extent_info ei = {0,0,0};
2114 	pgoff_t pg_start, pg_end, next_pgofs;
2115 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2116 	unsigned int total = 0, sec_num;
2117 	block_t blk_end = 0;
2118 	bool fragmented = false;
2119 	int err;
2120 
2121 	/* if in-place-update policy is enabled, don't waste time here */
2122 	if (should_update_inplace(inode, NULL))
2123 		return -EINVAL;
2124 
2125 	pg_start = range->start >> PAGE_SHIFT;
2126 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2127 
2128 	f2fs_balance_fs(sbi, true);
2129 
2130 	inode_lock(inode);
2131 
2132 	/* writeback all dirty pages in the range */
2133 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2134 						range->start + range->len - 1);
2135 	if (err)
2136 		goto out;
2137 
2138 	/*
2139 	 * lookup mapping info in extent cache, skip defragmenting if physical
2140 	 * block addresses are continuous.
2141 	 */
2142 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2143 		if (ei.fofs + ei.len >= pg_end)
2144 			goto out;
2145 	}
2146 
2147 	map.m_lblk = pg_start;
2148 	map.m_next_pgofs = &next_pgofs;
2149 
2150 	/*
2151 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2152 	 * physical block addresses are continuous even if there are hole(s)
2153 	 * in logical blocks.
2154 	 */
2155 	while (map.m_lblk < pg_end) {
2156 		map.m_len = pg_end - map.m_lblk;
2157 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2158 		if (err)
2159 			goto out;
2160 
2161 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2162 			map.m_lblk = next_pgofs;
2163 			continue;
2164 		}
2165 
2166 		if (blk_end && blk_end != map.m_pblk)
2167 			fragmented = true;
2168 
2169 		/* record total count of block that we're going to move */
2170 		total += map.m_len;
2171 
2172 		blk_end = map.m_pblk + map.m_len;
2173 
2174 		map.m_lblk += map.m_len;
2175 	}
2176 
2177 	if (!fragmented)
2178 		goto out;
2179 
2180 	sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2181 
2182 	/*
2183 	 * make sure there are enough free section for LFS allocation, this can
2184 	 * avoid defragment running in SSR mode when free section are allocated
2185 	 * intensively
2186 	 */
2187 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2188 		err = -EAGAIN;
2189 		goto out;
2190 	}
2191 
2192 	map.m_lblk = pg_start;
2193 	map.m_len = pg_end - pg_start;
2194 	total = 0;
2195 
2196 	while (map.m_lblk < pg_end) {
2197 		pgoff_t idx;
2198 		int cnt = 0;
2199 
2200 do_map:
2201 		map.m_len = pg_end - map.m_lblk;
2202 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2203 		if (err)
2204 			goto clear_out;
2205 
2206 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2207 			map.m_lblk = next_pgofs;
2208 			continue;
2209 		}
2210 
2211 		set_inode_flag(inode, FI_DO_DEFRAG);
2212 
2213 		idx = map.m_lblk;
2214 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2215 			struct page *page;
2216 
2217 			page = get_lock_data_page(inode, idx, true);
2218 			if (IS_ERR(page)) {
2219 				err = PTR_ERR(page);
2220 				goto clear_out;
2221 			}
2222 
2223 			set_page_dirty(page);
2224 			f2fs_put_page(page, 1);
2225 
2226 			idx++;
2227 			cnt++;
2228 			total++;
2229 		}
2230 
2231 		map.m_lblk = idx;
2232 
2233 		if (idx < pg_end && cnt < blk_per_seg)
2234 			goto do_map;
2235 
2236 		clear_inode_flag(inode, FI_DO_DEFRAG);
2237 
2238 		err = filemap_fdatawrite(inode->i_mapping);
2239 		if (err)
2240 			goto out;
2241 	}
2242 clear_out:
2243 	clear_inode_flag(inode, FI_DO_DEFRAG);
2244 out:
2245 	inode_unlock(inode);
2246 	if (!err)
2247 		range->len = (u64)total << PAGE_SHIFT;
2248 	return err;
2249 }
2250 
2251 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2252 {
2253 	struct inode *inode = file_inode(filp);
2254 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2255 	struct f2fs_defragment range;
2256 	int err;
2257 
2258 	if (!capable(CAP_SYS_ADMIN))
2259 		return -EPERM;
2260 
2261 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2262 		return -EINVAL;
2263 
2264 	if (f2fs_readonly(sbi->sb))
2265 		return -EROFS;
2266 
2267 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2268 							sizeof(range)))
2269 		return -EFAULT;
2270 
2271 	/* verify alignment of offset & size */
2272 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2273 		return -EINVAL;
2274 
2275 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2276 					sbi->max_file_blocks))
2277 		return -EINVAL;
2278 
2279 	err = mnt_want_write_file(filp);
2280 	if (err)
2281 		return err;
2282 
2283 	err = f2fs_defragment_range(sbi, filp, &range);
2284 	mnt_drop_write_file(filp);
2285 
2286 	f2fs_update_time(sbi, REQ_TIME);
2287 	if (err < 0)
2288 		return err;
2289 
2290 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2291 							sizeof(range)))
2292 		return -EFAULT;
2293 
2294 	return 0;
2295 }
2296 
2297 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2298 			struct file *file_out, loff_t pos_out, size_t len)
2299 {
2300 	struct inode *src = file_inode(file_in);
2301 	struct inode *dst = file_inode(file_out);
2302 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2303 	size_t olen = len, dst_max_i_size = 0;
2304 	size_t dst_osize;
2305 	int ret;
2306 
2307 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2308 				src->i_sb != dst->i_sb)
2309 		return -EXDEV;
2310 
2311 	if (unlikely(f2fs_readonly(src->i_sb)))
2312 		return -EROFS;
2313 
2314 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2315 		return -EINVAL;
2316 
2317 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2318 		return -EOPNOTSUPP;
2319 
2320 	if (src == dst) {
2321 		if (pos_in == pos_out)
2322 			return 0;
2323 		if (pos_out > pos_in && pos_out < pos_in + len)
2324 			return -EINVAL;
2325 	}
2326 
2327 	inode_lock(src);
2328 	down_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2329 	if (src != dst) {
2330 		ret = -EBUSY;
2331 		if (!inode_trylock(dst))
2332 			goto out;
2333 		if (!down_write_trylock(&F2FS_I(dst)->dio_rwsem[WRITE])) {
2334 			inode_unlock(dst);
2335 			goto out;
2336 		}
2337 	}
2338 
2339 	ret = -EINVAL;
2340 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2341 		goto out_unlock;
2342 	if (len == 0)
2343 		olen = len = src->i_size - pos_in;
2344 	if (pos_in + len == src->i_size)
2345 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2346 	if (len == 0) {
2347 		ret = 0;
2348 		goto out_unlock;
2349 	}
2350 
2351 	dst_osize = dst->i_size;
2352 	if (pos_out + olen > dst->i_size)
2353 		dst_max_i_size = pos_out + olen;
2354 
2355 	/* verify the end result is block aligned */
2356 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2357 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2358 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2359 		goto out_unlock;
2360 
2361 	ret = f2fs_convert_inline_inode(src);
2362 	if (ret)
2363 		goto out_unlock;
2364 
2365 	ret = f2fs_convert_inline_inode(dst);
2366 	if (ret)
2367 		goto out_unlock;
2368 
2369 	/* write out all dirty pages from offset */
2370 	ret = filemap_write_and_wait_range(src->i_mapping,
2371 					pos_in, pos_in + len);
2372 	if (ret)
2373 		goto out_unlock;
2374 
2375 	ret = filemap_write_and_wait_range(dst->i_mapping,
2376 					pos_out, pos_out + len);
2377 	if (ret)
2378 		goto out_unlock;
2379 
2380 	f2fs_balance_fs(sbi, true);
2381 	f2fs_lock_op(sbi);
2382 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2383 				pos_out >> F2FS_BLKSIZE_BITS,
2384 				len >> F2FS_BLKSIZE_BITS, false);
2385 
2386 	if (!ret) {
2387 		if (dst_max_i_size)
2388 			f2fs_i_size_write(dst, dst_max_i_size);
2389 		else if (dst_osize != dst->i_size)
2390 			f2fs_i_size_write(dst, dst_osize);
2391 	}
2392 	f2fs_unlock_op(sbi);
2393 out_unlock:
2394 	if (src != dst) {
2395 		up_write(&F2FS_I(dst)->dio_rwsem[WRITE]);
2396 		inode_unlock(dst);
2397 	}
2398 out:
2399 	up_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2400 	inode_unlock(src);
2401 	return ret;
2402 }
2403 
2404 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2405 {
2406 	struct f2fs_move_range range;
2407 	struct fd dst;
2408 	int err;
2409 
2410 	if (!(filp->f_mode & FMODE_READ) ||
2411 			!(filp->f_mode & FMODE_WRITE))
2412 		return -EBADF;
2413 
2414 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2415 							sizeof(range)))
2416 		return -EFAULT;
2417 
2418 	dst = fdget(range.dst_fd);
2419 	if (!dst.file)
2420 		return -EBADF;
2421 
2422 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2423 		err = -EBADF;
2424 		goto err_out;
2425 	}
2426 
2427 	err = mnt_want_write_file(filp);
2428 	if (err)
2429 		goto err_out;
2430 
2431 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2432 					range.pos_out, range.len);
2433 
2434 	mnt_drop_write_file(filp);
2435 	if (err)
2436 		goto err_out;
2437 
2438 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2439 						&range, sizeof(range)))
2440 		err = -EFAULT;
2441 err_out:
2442 	fdput(dst);
2443 	return err;
2444 }
2445 
2446 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2447 {
2448 	struct inode *inode = file_inode(filp);
2449 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2450 	struct sit_info *sm = SIT_I(sbi);
2451 	unsigned int start_segno = 0, end_segno = 0;
2452 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2453 	struct f2fs_flush_device range;
2454 	int ret;
2455 
2456 	if (!capable(CAP_SYS_ADMIN))
2457 		return -EPERM;
2458 
2459 	if (f2fs_readonly(sbi->sb))
2460 		return -EROFS;
2461 
2462 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2463 							sizeof(range)))
2464 		return -EFAULT;
2465 
2466 	if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2467 			sbi->segs_per_sec != 1) {
2468 		f2fs_msg(sbi->sb, KERN_WARNING,
2469 			"Can't flush %u in %d for segs_per_sec %u != 1\n",
2470 				range.dev_num, sbi->s_ndevs,
2471 				sbi->segs_per_sec);
2472 		return -EINVAL;
2473 	}
2474 
2475 	ret = mnt_want_write_file(filp);
2476 	if (ret)
2477 		return ret;
2478 
2479 	if (range.dev_num != 0)
2480 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2481 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2482 
2483 	start_segno = sm->last_victim[FLUSH_DEVICE];
2484 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2485 		start_segno = dev_start_segno;
2486 	end_segno = min(start_segno + range.segments, dev_end_segno);
2487 
2488 	while (start_segno < end_segno) {
2489 		if (!mutex_trylock(&sbi->gc_mutex)) {
2490 			ret = -EBUSY;
2491 			goto out;
2492 		}
2493 		sm->last_victim[GC_CB] = end_segno + 1;
2494 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2495 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2496 		ret = f2fs_gc(sbi, true, true, start_segno);
2497 		if (ret == -EAGAIN)
2498 			ret = 0;
2499 		else if (ret < 0)
2500 			break;
2501 		start_segno++;
2502 	}
2503 out:
2504 	mnt_drop_write_file(filp);
2505 	return ret;
2506 }
2507 
2508 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2509 {
2510 	struct inode *inode = file_inode(filp);
2511 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2512 
2513 	/* Must validate to set it with SQLite behavior in Android. */
2514 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2515 
2516 	return put_user(sb_feature, (u32 __user *)arg);
2517 }
2518 
2519 #ifdef CONFIG_QUOTA
2520 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2521 {
2522 	struct inode *inode = file_inode(filp);
2523 	struct f2fs_inode_info *fi = F2FS_I(inode);
2524 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2525 	struct super_block *sb = sbi->sb;
2526 	struct dquot *transfer_to[MAXQUOTAS] = {};
2527 	struct page *ipage;
2528 	kprojid_t kprojid;
2529 	int err;
2530 
2531 	if (!f2fs_sb_has_project_quota(sb)) {
2532 		if (projid != F2FS_DEF_PROJID)
2533 			return -EOPNOTSUPP;
2534 		else
2535 			return 0;
2536 	}
2537 
2538 	if (!f2fs_has_extra_attr(inode))
2539 		return -EOPNOTSUPP;
2540 
2541 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2542 
2543 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2544 		return 0;
2545 
2546 	err = mnt_want_write_file(filp);
2547 	if (err)
2548 		return err;
2549 
2550 	err = -EPERM;
2551 	inode_lock(inode);
2552 
2553 	/* Is it quota file? Do not allow user to mess with it */
2554 	if (IS_NOQUOTA(inode))
2555 		goto out_unlock;
2556 
2557 	ipage = get_node_page(sbi, inode->i_ino);
2558 	if (IS_ERR(ipage)) {
2559 		err = PTR_ERR(ipage);
2560 		goto out_unlock;
2561 	}
2562 
2563 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2564 								i_projid)) {
2565 		err = -EOVERFLOW;
2566 		f2fs_put_page(ipage, 1);
2567 		goto out_unlock;
2568 	}
2569 	f2fs_put_page(ipage, 1);
2570 
2571 	dquot_initialize(inode);
2572 
2573 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2574 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2575 		err = __dquot_transfer(inode, transfer_to);
2576 		dqput(transfer_to[PRJQUOTA]);
2577 		if (err)
2578 			goto out_dirty;
2579 	}
2580 
2581 	F2FS_I(inode)->i_projid = kprojid;
2582 	inode->i_ctime = current_time(inode);
2583 out_dirty:
2584 	f2fs_mark_inode_dirty_sync(inode, true);
2585 out_unlock:
2586 	inode_unlock(inode);
2587 	mnt_drop_write_file(filp);
2588 	return err;
2589 }
2590 #else
2591 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2592 {
2593 	if (projid != F2FS_DEF_PROJID)
2594 		return -EOPNOTSUPP;
2595 	return 0;
2596 }
2597 #endif
2598 
2599 /* Transfer internal flags to xflags */
2600 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2601 {
2602 	__u32 xflags = 0;
2603 
2604 	if (iflags & FS_SYNC_FL)
2605 		xflags |= FS_XFLAG_SYNC;
2606 	if (iflags & FS_IMMUTABLE_FL)
2607 		xflags |= FS_XFLAG_IMMUTABLE;
2608 	if (iflags & FS_APPEND_FL)
2609 		xflags |= FS_XFLAG_APPEND;
2610 	if (iflags & FS_NODUMP_FL)
2611 		xflags |= FS_XFLAG_NODUMP;
2612 	if (iflags & FS_NOATIME_FL)
2613 		xflags |= FS_XFLAG_NOATIME;
2614 	if (iflags & FS_PROJINHERIT_FL)
2615 		xflags |= FS_XFLAG_PROJINHERIT;
2616 	return xflags;
2617 }
2618 
2619 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2620 				  FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2621 				  FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2622 
2623 /* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
2624 #define F2FS_FL_XFLAG_VISIBLE		(FS_SYNC_FL | \
2625 					 FS_IMMUTABLE_FL | \
2626 					 FS_APPEND_FL | \
2627 					 FS_NODUMP_FL | \
2628 					 FS_NOATIME_FL | \
2629 					 FS_PROJINHERIT_FL)
2630 
2631 /* Transfer xflags flags to internal */
2632 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2633 {
2634 	unsigned long iflags = 0;
2635 
2636 	if (xflags & FS_XFLAG_SYNC)
2637 		iflags |= FS_SYNC_FL;
2638 	if (xflags & FS_XFLAG_IMMUTABLE)
2639 		iflags |= FS_IMMUTABLE_FL;
2640 	if (xflags & FS_XFLAG_APPEND)
2641 		iflags |= FS_APPEND_FL;
2642 	if (xflags & FS_XFLAG_NODUMP)
2643 		iflags |= FS_NODUMP_FL;
2644 	if (xflags & FS_XFLAG_NOATIME)
2645 		iflags |= FS_NOATIME_FL;
2646 	if (xflags & FS_XFLAG_PROJINHERIT)
2647 		iflags |= FS_PROJINHERIT_FL;
2648 
2649 	return iflags;
2650 }
2651 
2652 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2653 {
2654 	struct inode *inode = file_inode(filp);
2655 	struct f2fs_inode_info *fi = F2FS_I(inode);
2656 	struct fsxattr fa;
2657 
2658 	memset(&fa, 0, sizeof(struct fsxattr));
2659 	fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2660 				(FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
2661 
2662 	if (f2fs_sb_has_project_quota(inode->i_sb))
2663 		fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2664 							fi->i_projid);
2665 
2666 	if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2667 		return -EFAULT;
2668 	return 0;
2669 }
2670 
2671 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2672 {
2673 	struct inode *inode = file_inode(filp);
2674 	struct f2fs_inode_info *fi = F2FS_I(inode);
2675 	struct fsxattr fa;
2676 	unsigned int flags;
2677 	int err;
2678 
2679 	if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2680 		return -EFAULT;
2681 
2682 	/* Make sure caller has proper permission */
2683 	if (!inode_owner_or_capable(inode))
2684 		return -EACCES;
2685 
2686 	if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2687 		return -EOPNOTSUPP;
2688 
2689 	flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2690 	if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2691 		return -EOPNOTSUPP;
2692 
2693 	err = mnt_want_write_file(filp);
2694 	if (err)
2695 		return err;
2696 
2697 	inode_lock(inode);
2698 	flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2699 				(flags & F2FS_FL_XFLAG_VISIBLE);
2700 	err = __f2fs_ioc_setflags(inode, flags);
2701 	inode_unlock(inode);
2702 	mnt_drop_write_file(filp);
2703 	if (err)
2704 		return err;
2705 
2706 	err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2707 	if (err)
2708 		return err;
2709 
2710 	return 0;
2711 }
2712 
2713 int f2fs_pin_file_control(struct inode *inode, bool inc)
2714 {
2715 	struct f2fs_inode_info *fi = F2FS_I(inode);
2716 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2717 
2718 	/* Use i_gc_failures for normal file as a risk signal. */
2719 	if (inc)
2720 		f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
2721 
2722 	if (fi->i_gc_failures > sbi->gc_pin_file_threshold) {
2723 		f2fs_msg(sbi->sb, KERN_WARNING,
2724 			"%s: Enable GC = ino %lx after %x GC trials\n",
2725 			__func__, inode->i_ino, fi->i_gc_failures);
2726 		clear_inode_flag(inode, FI_PIN_FILE);
2727 		return -EAGAIN;
2728 	}
2729 	return 0;
2730 }
2731 
2732 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
2733 {
2734 	struct inode *inode = file_inode(filp);
2735 	__u32 pin;
2736 	int ret = 0;
2737 
2738 	if (!inode_owner_or_capable(inode))
2739 		return -EACCES;
2740 
2741 	if (get_user(pin, (__u32 __user *)arg))
2742 		return -EFAULT;
2743 
2744 	if (!S_ISREG(inode->i_mode))
2745 		return -EINVAL;
2746 
2747 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2748 		return -EROFS;
2749 
2750 	ret = mnt_want_write_file(filp);
2751 	if (ret)
2752 		return ret;
2753 
2754 	inode_lock(inode);
2755 
2756 	if (should_update_outplace(inode, NULL)) {
2757 		ret = -EINVAL;
2758 		goto out;
2759 	}
2760 
2761 	if (!pin) {
2762 		clear_inode_flag(inode, FI_PIN_FILE);
2763 		F2FS_I(inode)->i_gc_failures = 1;
2764 		goto done;
2765 	}
2766 
2767 	if (f2fs_pin_file_control(inode, false)) {
2768 		ret = -EAGAIN;
2769 		goto out;
2770 	}
2771 	ret = f2fs_convert_inline_inode(inode);
2772 	if (ret)
2773 		goto out;
2774 
2775 	set_inode_flag(inode, FI_PIN_FILE);
2776 	ret = F2FS_I(inode)->i_gc_failures;
2777 done:
2778 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2779 out:
2780 	inode_unlock(inode);
2781 	mnt_drop_write_file(filp);
2782 	return ret;
2783 }
2784 
2785 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
2786 {
2787 	struct inode *inode = file_inode(filp);
2788 	__u32 pin = 0;
2789 
2790 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2791 		pin = F2FS_I(inode)->i_gc_failures;
2792 	return put_user(pin, (u32 __user *)arg);
2793 }
2794 
2795 int f2fs_precache_extents(struct inode *inode)
2796 {
2797 	struct f2fs_inode_info *fi = F2FS_I(inode);
2798 	struct f2fs_map_blocks map;
2799 	pgoff_t m_next_extent;
2800 	loff_t end;
2801 	int err;
2802 
2803 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
2804 		return -EOPNOTSUPP;
2805 
2806 	map.m_lblk = 0;
2807 	map.m_next_pgofs = NULL;
2808 	map.m_next_extent = &m_next_extent;
2809 	map.m_seg_type = NO_CHECK_TYPE;
2810 	end = F2FS_I_SB(inode)->max_file_blocks;
2811 
2812 	while (map.m_lblk < end) {
2813 		map.m_len = end - map.m_lblk;
2814 
2815 		down_write(&fi->dio_rwsem[WRITE]);
2816 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
2817 		up_write(&fi->dio_rwsem[WRITE]);
2818 		if (err)
2819 			return err;
2820 
2821 		map.m_lblk = m_next_extent;
2822 	}
2823 
2824 	return err;
2825 }
2826 
2827 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
2828 {
2829 	return f2fs_precache_extents(file_inode(filp));
2830 }
2831 
2832 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2833 {
2834 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2835 		return -EIO;
2836 
2837 	switch (cmd) {
2838 	case F2FS_IOC_GETFLAGS:
2839 		return f2fs_ioc_getflags(filp, arg);
2840 	case F2FS_IOC_SETFLAGS:
2841 		return f2fs_ioc_setflags(filp, arg);
2842 	case F2FS_IOC_GETVERSION:
2843 		return f2fs_ioc_getversion(filp, arg);
2844 	case F2FS_IOC_START_ATOMIC_WRITE:
2845 		return f2fs_ioc_start_atomic_write(filp);
2846 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2847 		return f2fs_ioc_commit_atomic_write(filp);
2848 	case F2FS_IOC_START_VOLATILE_WRITE:
2849 		return f2fs_ioc_start_volatile_write(filp);
2850 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2851 		return f2fs_ioc_release_volatile_write(filp);
2852 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2853 		return f2fs_ioc_abort_volatile_write(filp);
2854 	case F2FS_IOC_SHUTDOWN:
2855 		return f2fs_ioc_shutdown(filp, arg);
2856 	case FITRIM:
2857 		return f2fs_ioc_fitrim(filp, arg);
2858 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2859 		return f2fs_ioc_set_encryption_policy(filp, arg);
2860 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2861 		return f2fs_ioc_get_encryption_policy(filp, arg);
2862 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2863 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2864 	case F2FS_IOC_GARBAGE_COLLECT:
2865 		return f2fs_ioc_gc(filp, arg);
2866 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2867 		return f2fs_ioc_gc_range(filp, arg);
2868 	case F2FS_IOC_WRITE_CHECKPOINT:
2869 		return f2fs_ioc_write_checkpoint(filp, arg);
2870 	case F2FS_IOC_DEFRAGMENT:
2871 		return f2fs_ioc_defragment(filp, arg);
2872 	case F2FS_IOC_MOVE_RANGE:
2873 		return f2fs_ioc_move_range(filp, arg);
2874 	case F2FS_IOC_FLUSH_DEVICE:
2875 		return f2fs_ioc_flush_device(filp, arg);
2876 	case F2FS_IOC_GET_FEATURES:
2877 		return f2fs_ioc_get_features(filp, arg);
2878 	case F2FS_IOC_FSGETXATTR:
2879 		return f2fs_ioc_fsgetxattr(filp, arg);
2880 	case F2FS_IOC_FSSETXATTR:
2881 		return f2fs_ioc_fssetxattr(filp, arg);
2882 	case F2FS_IOC_GET_PIN_FILE:
2883 		return f2fs_ioc_get_pin_file(filp, arg);
2884 	case F2FS_IOC_SET_PIN_FILE:
2885 		return f2fs_ioc_set_pin_file(filp, arg);
2886 	case F2FS_IOC_PRECACHE_EXTENTS:
2887 		return f2fs_ioc_precache_extents(filp, arg);
2888 	default:
2889 		return -ENOTTY;
2890 	}
2891 }
2892 
2893 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2894 {
2895 	struct file *file = iocb->ki_filp;
2896 	struct inode *inode = file_inode(file);
2897 	struct blk_plug plug;
2898 	ssize_t ret;
2899 
2900 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2901 		return -EIO;
2902 
2903 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2904 		return -EINVAL;
2905 
2906 	if (!inode_trylock(inode)) {
2907 		if (iocb->ki_flags & IOCB_NOWAIT)
2908 			return -EAGAIN;
2909 		inode_lock(inode);
2910 	}
2911 
2912 	ret = generic_write_checks(iocb, from);
2913 	if (ret > 0) {
2914 		bool preallocated = false;
2915 		size_t target_size = 0;
2916 		int err;
2917 
2918 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2919 			set_inode_flag(inode, FI_NO_PREALLOC);
2920 
2921 		if ((iocb->ki_flags & IOCB_NOWAIT) &&
2922 			(iocb->ki_flags & IOCB_DIRECT)) {
2923 				if (!f2fs_overwrite_io(inode, iocb->ki_pos,
2924 						iov_iter_count(from)) ||
2925 					f2fs_has_inline_data(inode) ||
2926 					f2fs_force_buffered_io(inode, WRITE)) {
2927 						inode_unlock(inode);
2928 						return -EAGAIN;
2929 				}
2930 
2931 		} else {
2932 			preallocated = true;
2933 			target_size = iocb->ki_pos + iov_iter_count(from);
2934 
2935 			err = f2fs_preallocate_blocks(iocb, from);
2936 			if (err) {
2937 				clear_inode_flag(inode, FI_NO_PREALLOC);
2938 				inode_unlock(inode);
2939 				return err;
2940 			}
2941 		}
2942 		blk_start_plug(&plug);
2943 		ret = __generic_file_write_iter(iocb, from);
2944 		blk_finish_plug(&plug);
2945 		clear_inode_flag(inode, FI_NO_PREALLOC);
2946 
2947 		/* if we couldn't write data, we should deallocate blocks. */
2948 		if (preallocated && i_size_read(inode) < target_size)
2949 			f2fs_truncate(inode);
2950 
2951 		if (ret > 0)
2952 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2953 	}
2954 	inode_unlock(inode);
2955 
2956 	if (ret > 0)
2957 		ret = generic_write_sync(iocb, ret);
2958 	return ret;
2959 }
2960 
2961 #ifdef CONFIG_COMPAT
2962 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2963 {
2964 	switch (cmd) {
2965 	case F2FS_IOC32_GETFLAGS:
2966 		cmd = F2FS_IOC_GETFLAGS;
2967 		break;
2968 	case F2FS_IOC32_SETFLAGS:
2969 		cmd = F2FS_IOC_SETFLAGS;
2970 		break;
2971 	case F2FS_IOC32_GETVERSION:
2972 		cmd = F2FS_IOC_GETVERSION;
2973 		break;
2974 	case F2FS_IOC_START_ATOMIC_WRITE:
2975 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2976 	case F2FS_IOC_START_VOLATILE_WRITE:
2977 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2978 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2979 	case F2FS_IOC_SHUTDOWN:
2980 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2981 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2982 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2983 	case F2FS_IOC_GARBAGE_COLLECT:
2984 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2985 	case F2FS_IOC_WRITE_CHECKPOINT:
2986 	case F2FS_IOC_DEFRAGMENT:
2987 	case F2FS_IOC_MOVE_RANGE:
2988 	case F2FS_IOC_FLUSH_DEVICE:
2989 	case F2FS_IOC_GET_FEATURES:
2990 	case F2FS_IOC_FSGETXATTR:
2991 	case F2FS_IOC_FSSETXATTR:
2992 	case F2FS_IOC_GET_PIN_FILE:
2993 	case F2FS_IOC_SET_PIN_FILE:
2994 	case F2FS_IOC_PRECACHE_EXTENTS:
2995 		break;
2996 	default:
2997 		return -ENOIOCTLCMD;
2998 	}
2999 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3000 }
3001 #endif
3002 
3003 const struct file_operations f2fs_file_operations = {
3004 	.llseek		= f2fs_llseek,
3005 	.read_iter	= generic_file_read_iter,
3006 	.write_iter	= f2fs_file_write_iter,
3007 	.open		= f2fs_file_open,
3008 	.release	= f2fs_release_file,
3009 	.mmap		= f2fs_file_mmap,
3010 	.flush		= f2fs_file_flush,
3011 	.fsync		= f2fs_sync_file,
3012 	.fallocate	= f2fs_fallocate,
3013 	.unlocked_ioctl	= f2fs_ioctl,
3014 #ifdef CONFIG_COMPAT
3015 	.compat_ioctl	= f2fs_compat_ioctl,
3016 #endif
3017 	.splice_read	= generic_file_splice_read,
3018 	.splice_write	= iter_file_splice_write,
3019 };
3020