xref: /openbmc/linux/fs/f2fs/file.c (revision 2a9eb57e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (!ret)
46 		f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
47 							F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
117 		set_new_dnode(&dn, inode, NULL, NULL, 0);
118 		err = f2fs_get_block(&dn, page->index);
119 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
120 	}
121 
122 #ifdef CONFIG_F2FS_FS_COMPRESSION
123 	if (!need_alloc) {
124 		set_new_dnode(&dn, inode, NULL, NULL, 0);
125 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
126 		f2fs_put_dnode(&dn);
127 	}
128 #endif
129 	if (err) {
130 		unlock_page(page);
131 		goto out_sem;
132 	}
133 
134 	f2fs_wait_on_page_writeback(page, DATA, false, true);
135 
136 	/* wait for GCed page writeback via META_MAPPING */
137 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
138 
139 	/*
140 	 * check to see if the page is mapped already (no holes)
141 	 */
142 	if (PageMappedToDisk(page))
143 		goto out_sem;
144 
145 	/* page is wholly or partially inside EOF */
146 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
147 						i_size_read(inode)) {
148 		loff_t offset;
149 
150 		offset = i_size_read(inode) & ~PAGE_MASK;
151 		zero_user_segment(page, offset, PAGE_SIZE);
152 	}
153 	set_page_dirty(page);
154 	if (!PageUptodate(page))
155 		SetPageUptodate(page);
156 
157 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
158 	f2fs_update_time(sbi, REQ_TIME);
159 
160 	trace_f2fs_vm_page_mkwrite(page, DATA);
161 out_sem:
162 	filemap_invalidate_unlock_shared(inode->i_mapping);
163 
164 	sb_end_pagefault(inode->i_sb);
165 err:
166 	return block_page_mkwrite_return(err);
167 }
168 
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170 	.fault		= f2fs_filemap_fault,
171 	.map_pages	= filemap_map_pages,
172 	.page_mkwrite	= f2fs_vm_page_mkwrite,
173 };
174 
175 static int get_parent_ino(struct inode *inode, nid_t *pino)
176 {
177 	struct dentry *dentry;
178 
179 	/*
180 	 * Make sure to get the non-deleted alias.  The alias associated with
181 	 * the open file descriptor being fsync()'ed may be deleted already.
182 	 */
183 	dentry = d_find_alias(inode);
184 	if (!dentry)
185 		return 0;
186 
187 	*pino = parent_ino(dentry);
188 	dput(dentry);
189 	return 1;
190 }
191 
192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
193 {
194 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
196 
197 	if (!S_ISREG(inode->i_mode))
198 		cp_reason = CP_NON_REGULAR;
199 	else if (f2fs_compressed_file(inode))
200 		cp_reason = CP_COMPRESSED;
201 	else if (inode->i_nlink != 1)
202 		cp_reason = CP_HARDLINK;
203 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204 		cp_reason = CP_SB_NEED_CP;
205 	else if (file_wrong_pino(inode))
206 		cp_reason = CP_WRONG_PINO;
207 	else if (!f2fs_space_for_roll_forward(sbi))
208 		cp_reason = CP_NO_SPC_ROLL;
209 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210 		cp_reason = CP_NODE_NEED_CP;
211 	else if (test_opt(sbi, FASTBOOT))
212 		cp_reason = CP_FASTBOOT_MODE;
213 	else if (F2FS_OPTION(sbi).active_logs == 2)
214 		cp_reason = CP_SPEC_LOG_NUM;
215 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
218 							TRANS_DIR_INO))
219 		cp_reason = CP_RECOVER_DIR;
220 
221 	return cp_reason;
222 }
223 
224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
225 {
226 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
227 	bool ret = false;
228 	/* But we need to avoid that there are some inode updates */
229 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
230 		ret = true;
231 	f2fs_put_page(i, 0);
232 	return ret;
233 }
234 
235 static void try_to_fix_pino(struct inode *inode)
236 {
237 	struct f2fs_inode_info *fi = F2FS_I(inode);
238 	nid_t pino;
239 
240 	f2fs_down_write(&fi->i_sem);
241 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
242 			get_parent_ino(inode, &pino)) {
243 		f2fs_i_pino_write(inode, pino);
244 		file_got_pino(inode);
245 	}
246 	f2fs_up_write(&fi->i_sem);
247 }
248 
249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
250 						int datasync, bool atomic)
251 {
252 	struct inode *inode = file->f_mapping->host;
253 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
254 	nid_t ino = inode->i_ino;
255 	int ret = 0;
256 	enum cp_reason_type cp_reason = 0;
257 	struct writeback_control wbc = {
258 		.sync_mode = WB_SYNC_ALL,
259 		.nr_to_write = LONG_MAX,
260 		.for_reclaim = 0,
261 	};
262 	unsigned int seq_id = 0;
263 
264 	if (unlikely(f2fs_readonly(inode->i_sb)))
265 		return 0;
266 
267 	trace_f2fs_sync_file_enter(inode);
268 
269 	if (S_ISDIR(inode->i_mode))
270 		goto go_write;
271 
272 	/* if fdatasync is triggered, let's do in-place-update */
273 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
274 		set_inode_flag(inode, FI_NEED_IPU);
275 	ret = file_write_and_wait_range(file, start, end);
276 	clear_inode_flag(inode, FI_NEED_IPU);
277 
278 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
279 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
280 		return ret;
281 	}
282 
283 	/* if the inode is dirty, let's recover all the time */
284 	if (!f2fs_skip_inode_update(inode, datasync)) {
285 		f2fs_write_inode(inode, NULL);
286 		goto go_write;
287 	}
288 
289 	/*
290 	 * if there is no written data, don't waste time to write recovery info.
291 	 */
292 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
293 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
294 
295 		/* it may call write_inode just prior to fsync */
296 		if (need_inode_page_update(sbi, ino))
297 			goto go_write;
298 
299 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
300 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
301 			goto flush_out;
302 		goto out;
303 	} else {
304 		/*
305 		 * for OPU case, during fsync(), node can be persisted before
306 		 * data when lower device doesn't support write barrier, result
307 		 * in data corruption after SPO.
308 		 * So for strict fsync mode, force to use atomic write sematics
309 		 * to keep write order in between data/node and last node to
310 		 * avoid potential data corruption.
311 		 */
312 		if (F2FS_OPTION(sbi).fsync_mode ==
313 				FSYNC_MODE_STRICT && !atomic)
314 			atomic = true;
315 	}
316 go_write:
317 	/*
318 	 * Both of fdatasync() and fsync() are able to be recovered from
319 	 * sudden-power-off.
320 	 */
321 	f2fs_down_read(&F2FS_I(inode)->i_sem);
322 	cp_reason = need_do_checkpoint(inode);
323 	f2fs_up_read(&F2FS_I(inode)->i_sem);
324 
325 	if (cp_reason) {
326 		/* all the dirty node pages should be flushed for POR */
327 		ret = f2fs_sync_fs(inode->i_sb, 1);
328 
329 		/*
330 		 * We've secured consistency through sync_fs. Following pino
331 		 * will be used only for fsynced inodes after checkpoint.
332 		 */
333 		try_to_fix_pino(inode);
334 		clear_inode_flag(inode, FI_APPEND_WRITE);
335 		clear_inode_flag(inode, FI_UPDATE_WRITE);
336 		goto out;
337 	}
338 sync_nodes:
339 	atomic_inc(&sbi->wb_sync_req[NODE]);
340 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
341 	atomic_dec(&sbi->wb_sync_req[NODE]);
342 	if (ret)
343 		goto out;
344 
345 	/* if cp_error was enabled, we should avoid infinite loop */
346 	if (unlikely(f2fs_cp_error(sbi))) {
347 		ret = -EIO;
348 		goto out;
349 	}
350 
351 	if (f2fs_need_inode_block_update(sbi, ino)) {
352 		f2fs_mark_inode_dirty_sync(inode, true);
353 		f2fs_write_inode(inode, NULL);
354 		goto sync_nodes;
355 	}
356 
357 	/*
358 	 * If it's atomic_write, it's just fine to keep write ordering. So
359 	 * here we don't need to wait for node write completion, since we use
360 	 * node chain which serializes node blocks. If one of node writes are
361 	 * reordered, we can see simply broken chain, resulting in stopping
362 	 * roll-forward recovery. It means we'll recover all or none node blocks
363 	 * given fsync mark.
364 	 */
365 	if (!atomic) {
366 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
367 		if (ret)
368 			goto out;
369 	}
370 
371 	/* once recovery info is written, don't need to tack this */
372 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
373 	clear_inode_flag(inode, FI_APPEND_WRITE);
374 flush_out:
375 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
376 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
377 		ret = f2fs_issue_flush(sbi, inode->i_ino);
378 	if (!ret) {
379 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
380 		clear_inode_flag(inode, FI_UPDATE_WRITE);
381 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
382 	}
383 	f2fs_update_time(sbi, REQ_TIME);
384 out:
385 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
386 	return ret;
387 }
388 
389 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
390 {
391 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
392 		return -EIO;
393 	return f2fs_do_sync_file(file, start, end, datasync, false);
394 }
395 
396 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
397 				pgoff_t index, int whence)
398 {
399 	switch (whence) {
400 	case SEEK_DATA:
401 		if (__is_valid_data_blkaddr(blkaddr))
402 			return true;
403 		if (blkaddr == NEW_ADDR &&
404 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
405 			return true;
406 		break;
407 	case SEEK_HOLE:
408 		if (blkaddr == NULL_ADDR)
409 			return true;
410 		break;
411 	}
412 	return false;
413 }
414 
415 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
416 {
417 	struct inode *inode = file->f_mapping->host;
418 	loff_t maxbytes = inode->i_sb->s_maxbytes;
419 	struct dnode_of_data dn;
420 	pgoff_t pgofs, end_offset;
421 	loff_t data_ofs = offset;
422 	loff_t isize;
423 	int err = 0;
424 
425 	inode_lock(inode);
426 
427 	isize = i_size_read(inode);
428 	if (offset >= isize)
429 		goto fail;
430 
431 	/* handle inline data case */
432 	if (f2fs_has_inline_data(inode)) {
433 		if (whence == SEEK_HOLE) {
434 			data_ofs = isize;
435 			goto found;
436 		} else if (whence == SEEK_DATA) {
437 			data_ofs = offset;
438 			goto found;
439 		}
440 	}
441 
442 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
443 
444 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
445 		set_new_dnode(&dn, inode, NULL, NULL, 0);
446 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
447 		if (err && err != -ENOENT) {
448 			goto fail;
449 		} else if (err == -ENOENT) {
450 			/* direct node does not exists */
451 			if (whence == SEEK_DATA) {
452 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
453 				continue;
454 			} else {
455 				goto found;
456 			}
457 		}
458 
459 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
460 
461 		/* find data/hole in dnode block */
462 		for (; dn.ofs_in_node < end_offset;
463 				dn.ofs_in_node++, pgofs++,
464 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
465 			block_t blkaddr;
466 
467 			blkaddr = f2fs_data_blkaddr(&dn);
468 
469 			if (__is_valid_data_blkaddr(blkaddr) &&
470 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
471 					blkaddr, DATA_GENERIC_ENHANCE)) {
472 				f2fs_put_dnode(&dn);
473 				goto fail;
474 			}
475 
476 			if (__found_offset(file->f_mapping, blkaddr,
477 							pgofs, whence)) {
478 				f2fs_put_dnode(&dn);
479 				goto found;
480 			}
481 		}
482 		f2fs_put_dnode(&dn);
483 	}
484 
485 	if (whence == SEEK_DATA)
486 		goto fail;
487 found:
488 	if (whence == SEEK_HOLE && data_ofs > isize)
489 		data_ofs = isize;
490 	inode_unlock(inode);
491 	return vfs_setpos(file, data_ofs, maxbytes);
492 fail:
493 	inode_unlock(inode);
494 	return -ENXIO;
495 }
496 
497 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
498 {
499 	struct inode *inode = file->f_mapping->host;
500 	loff_t maxbytes = inode->i_sb->s_maxbytes;
501 
502 	if (f2fs_compressed_file(inode))
503 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
504 
505 	switch (whence) {
506 	case SEEK_SET:
507 	case SEEK_CUR:
508 	case SEEK_END:
509 		return generic_file_llseek_size(file, offset, whence,
510 						maxbytes, i_size_read(inode));
511 	case SEEK_DATA:
512 	case SEEK_HOLE:
513 		if (offset < 0)
514 			return -ENXIO;
515 		return f2fs_seek_block(file, offset, whence);
516 	}
517 
518 	return -EINVAL;
519 }
520 
521 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
522 {
523 	struct inode *inode = file_inode(file);
524 
525 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
526 		return -EIO;
527 
528 	if (!f2fs_is_compress_backend_ready(inode))
529 		return -EOPNOTSUPP;
530 
531 	file_accessed(file);
532 	vma->vm_ops = &f2fs_file_vm_ops;
533 	set_inode_flag(inode, FI_MMAP_FILE);
534 	return 0;
535 }
536 
537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539 	int err = fscrypt_file_open(inode, filp);
540 
541 	if (err)
542 		return err;
543 
544 	if (!f2fs_is_compress_backend_ready(inode))
545 		return -EOPNOTSUPP;
546 
547 	err = fsverity_file_open(inode, filp);
548 	if (err)
549 		return err;
550 
551 	filp->f_mode |= FMODE_NOWAIT;
552 
553 	return dquot_file_open(inode, filp);
554 }
555 
556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
557 {
558 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
559 	struct f2fs_node *raw_node;
560 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
561 	__le32 *addr;
562 	int base = 0;
563 	bool compressed_cluster = false;
564 	int cluster_index = 0, valid_blocks = 0;
565 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
566 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
567 
568 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
569 		base = get_extra_isize(dn->inode);
570 
571 	raw_node = F2FS_NODE(dn->node_page);
572 	addr = blkaddr_in_node(raw_node) + base + ofs;
573 
574 	/* Assumption: truncateion starts with cluster */
575 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
576 		block_t blkaddr = le32_to_cpu(*addr);
577 
578 		if (f2fs_compressed_file(dn->inode) &&
579 					!(cluster_index & (cluster_size - 1))) {
580 			if (compressed_cluster)
581 				f2fs_i_compr_blocks_update(dn->inode,
582 							valid_blocks, false);
583 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
584 			valid_blocks = 0;
585 		}
586 
587 		if (blkaddr == NULL_ADDR)
588 			continue;
589 
590 		dn->data_blkaddr = NULL_ADDR;
591 		f2fs_set_data_blkaddr(dn);
592 
593 		if (__is_valid_data_blkaddr(blkaddr)) {
594 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
595 					DATA_GENERIC_ENHANCE))
596 				continue;
597 			if (compressed_cluster)
598 				valid_blocks++;
599 		}
600 
601 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
602 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
603 
604 		f2fs_invalidate_blocks(sbi, blkaddr);
605 
606 		if (!released || blkaddr != COMPRESS_ADDR)
607 			nr_free++;
608 	}
609 
610 	if (compressed_cluster)
611 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
612 
613 	if (nr_free) {
614 		pgoff_t fofs;
615 		/*
616 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
617 		 * we will invalidate all blkaddr in the whole range.
618 		 */
619 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
620 							dn->inode) + ofs;
621 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
622 		dec_valid_block_count(sbi, dn->inode, nr_free);
623 	}
624 	dn->ofs_in_node = ofs;
625 
626 	f2fs_update_time(sbi, REQ_TIME);
627 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
628 					 dn->ofs_in_node, nr_free);
629 }
630 
631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
632 {
633 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
634 }
635 
636 static int truncate_partial_data_page(struct inode *inode, u64 from,
637 								bool cache_only)
638 {
639 	loff_t offset = from & (PAGE_SIZE - 1);
640 	pgoff_t index = from >> PAGE_SHIFT;
641 	struct address_space *mapping = inode->i_mapping;
642 	struct page *page;
643 
644 	if (!offset && !cache_only)
645 		return 0;
646 
647 	if (cache_only) {
648 		page = find_lock_page(mapping, index);
649 		if (page && PageUptodate(page))
650 			goto truncate_out;
651 		f2fs_put_page(page, 1);
652 		return 0;
653 	}
654 
655 	page = f2fs_get_lock_data_page(inode, index, true);
656 	if (IS_ERR(page))
657 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
658 truncate_out:
659 	f2fs_wait_on_page_writeback(page, DATA, true, true);
660 	zero_user(page, offset, PAGE_SIZE - offset);
661 
662 	/* An encrypted inode should have a key and truncate the last page. */
663 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
664 	if (!cache_only)
665 		set_page_dirty(page);
666 	f2fs_put_page(page, 1);
667 	return 0;
668 }
669 
670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
671 {
672 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
673 	struct dnode_of_data dn;
674 	pgoff_t free_from;
675 	int count = 0, err = 0;
676 	struct page *ipage;
677 	bool truncate_page = false;
678 
679 	trace_f2fs_truncate_blocks_enter(inode, from);
680 
681 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
682 
683 	if (free_from >= max_file_blocks(inode))
684 		goto free_partial;
685 
686 	if (lock)
687 		f2fs_lock_op(sbi);
688 
689 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
690 	if (IS_ERR(ipage)) {
691 		err = PTR_ERR(ipage);
692 		goto out;
693 	}
694 
695 	if (f2fs_has_inline_data(inode)) {
696 		f2fs_truncate_inline_inode(inode, ipage, from);
697 		f2fs_put_page(ipage, 1);
698 		truncate_page = true;
699 		goto out;
700 	}
701 
702 	set_new_dnode(&dn, inode, ipage, NULL, 0);
703 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
704 	if (err) {
705 		if (err == -ENOENT)
706 			goto free_next;
707 		goto out;
708 	}
709 
710 	count = ADDRS_PER_PAGE(dn.node_page, inode);
711 
712 	count -= dn.ofs_in_node;
713 	f2fs_bug_on(sbi, count < 0);
714 
715 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
716 		f2fs_truncate_data_blocks_range(&dn, count);
717 		free_from += count;
718 	}
719 
720 	f2fs_put_dnode(&dn);
721 free_next:
722 	err = f2fs_truncate_inode_blocks(inode, free_from);
723 out:
724 	if (lock)
725 		f2fs_unlock_op(sbi);
726 free_partial:
727 	/* lastly zero out the first data page */
728 	if (!err)
729 		err = truncate_partial_data_page(inode, from, truncate_page);
730 
731 	trace_f2fs_truncate_blocks_exit(inode, err);
732 	return err;
733 }
734 
735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
736 {
737 	u64 free_from = from;
738 	int err;
739 
740 #ifdef CONFIG_F2FS_FS_COMPRESSION
741 	/*
742 	 * for compressed file, only support cluster size
743 	 * aligned truncation.
744 	 */
745 	if (f2fs_compressed_file(inode))
746 		free_from = round_up(from,
747 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
748 #endif
749 
750 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
751 	if (err)
752 		return err;
753 
754 #ifdef CONFIG_F2FS_FS_COMPRESSION
755 	/*
756 	 * For compressed file, after release compress blocks, don't allow write
757 	 * direct, but we should allow write direct after truncate to zero.
758 	 */
759 	if (f2fs_compressed_file(inode) && !free_from
760 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
761 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
762 
763 	if (from != free_from) {
764 		err = f2fs_truncate_partial_cluster(inode, from, lock);
765 		if (err)
766 			return err;
767 	}
768 #endif
769 
770 	return 0;
771 }
772 
773 int f2fs_truncate(struct inode *inode)
774 {
775 	int err;
776 
777 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
778 		return -EIO;
779 
780 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
781 				S_ISLNK(inode->i_mode)))
782 		return 0;
783 
784 	trace_f2fs_truncate(inode);
785 
786 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
787 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
788 		return -EIO;
789 	}
790 
791 	err = f2fs_dquot_initialize(inode);
792 	if (err)
793 		return err;
794 
795 	/* we should check inline_data size */
796 	if (!f2fs_may_inline_data(inode)) {
797 		err = f2fs_convert_inline_inode(inode);
798 		if (err)
799 			return err;
800 	}
801 
802 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
803 	if (err)
804 		return err;
805 
806 	inode->i_mtime = inode->i_ctime = current_time(inode);
807 	f2fs_mark_inode_dirty_sync(inode, false);
808 	return 0;
809 }
810 
811 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
812 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
813 {
814 	struct inode *inode = d_inode(path->dentry);
815 	struct f2fs_inode_info *fi = F2FS_I(inode);
816 	struct f2fs_inode *ri = NULL;
817 	unsigned int flags;
818 
819 	if (f2fs_has_extra_attr(inode) &&
820 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
821 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
822 		stat->result_mask |= STATX_BTIME;
823 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
824 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
825 	}
826 
827 	flags = fi->i_flags;
828 	if (flags & F2FS_COMPR_FL)
829 		stat->attributes |= STATX_ATTR_COMPRESSED;
830 	if (flags & F2FS_APPEND_FL)
831 		stat->attributes |= STATX_ATTR_APPEND;
832 	if (IS_ENCRYPTED(inode))
833 		stat->attributes |= STATX_ATTR_ENCRYPTED;
834 	if (flags & F2FS_IMMUTABLE_FL)
835 		stat->attributes |= STATX_ATTR_IMMUTABLE;
836 	if (flags & F2FS_NODUMP_FL)
837 		stat->attributes |= STATX_ATTR_NODUMP;
838 	if (IS_VERITY(inode))
839 		stat->attributes |= STATX_ATTR_VERITY;
840 
841 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
842 				  STATX_ATTR_APPEND |
843 				  STATX_ATTR_ENCRYPTED |
844 				  STATX_ATTR_IMMUTABLE |
845 				  STATX_ATTR_NODUMP |
846 				  STATX_ATTR_VERITY);
847 
848 	generic_fillattr(mnt_userns, inode, stat);
849 
850 	/* we need to show initial sectors used for inline_data/dentries */
851 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
852 					f2fs_has_inline_dentry(inode))
853 		stat->blocks += (stat->size + 511) >> 9;
854 
855 	return 0;
856 }
857 
858 #ifdef CONFIG_F2FS_FS_POSIX_ACL
859 static void __setattr_copy(struct user_namespace *mnt_userns,
860 			   struct inode *inode, const struct iattr *attr)
861 {
862 	unsigned int ia_valid = attr->ia_valid;
863 
864 	i_uid_update(mnt_userns, attr, inode);
865 	i_gid_update(mnt_userns, attr, inode);
866 	if (ia_valid & ATTR_ATIME)
867 		inode->i_atime = attr->ia_atime;
868 	if (ia_valid & ATTR_MTIME)
869 		inode->i_mtime = attr->ia_mtime;
870 	if (ia_valid & ATTR_CTIME)
871 		inode->i_ctime = attr->ia_ctime;
872 	if (ia_valid & ATTR_MODE) {
873 		umode_t mode = attr->ia_mode;
874 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
875 
876 		if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
877 			mode &= ~S_ISGID;
878 		set_acl_inode(inode, mode);
879 	}
880 }
881 #else
882 #define __setattr_copy setattr_copy
883 #endif
884 
885 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
886 		 struct iattr *attr)
887 {
888 	struct inode *inode = d_inode(dentry);
889 	int err;
890 
891 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
892 		return -EIO;
893 
894 	if (unlikely(IS_IMMUTABLE(inode)))
895 		return -EPERM;
896 
897 	if (unlikely(IS_APPEND(inode) &&
898 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
899 				  ATTR_GID | ATTR_TIMES_SET))))
900 		return -EPERM;
901 
902 	if ((attr->ia_valid & ATTR_SIZE) &&
903 		!f2fs_is_compress_backend_ready(inode))
904 		return -EOPNOTSUPP;
905 
906 	err = setattr_prepare(mnt_userns, dentry, attr);
907 	if (err)
908 		return err;
909 
910 	err = fscrypt_prepare_setattr(dentry, attr);
911 	if (err)
912 		return err;
913 
914 	err = fsverity_prepare_setattr(dentry, attr);
915 	if (err)
916 		return err;
917 
918 	if (is_quota_modification(mnt_userns, inode, attr)) {
919 		err = f2fs_dquot_initialize(inode);
920 		if (err)
921 			return err;
922 	}
923 	if (i_uid_needs_update(mnt_userns, attr, inode) ||
924 	    i_gid_needs_update(mnt_userns, attr, inode)) {
925 		f2fs_lock_op(F2FS_I_SB(inode));
926 		err = dquot_transfer(mnt_userns, inode, attr);
927 		if (err) {
928 			set_sbi_flag(F2FS_I_SB(inode),
929 					SBI_QUOTA_NEED_REPAIR);
930 			f2fs_unlock_op(F2FS_I_SB(inode));
931 			return err;
932 		}
933 		/*
934 		 * update uid/gid under lock_op(), so that dquot and inode can
935 		 * be updated atomically.
936 		 */
937 		i_uid_update(mnt_userns, attr, inode);
938 		i_gid_update(mnt_userns, attr, inode);
939 		f2fs_mark_inode_dirty_sync(inode, true);
940 		f2fs_unlock_op(F2FS_I_SB(inode));
941 	}
942 
943 	if (attr->ia_valid & ATTR_SIZE) {
944 		loff_t old_size = i_size_read(inode);
945 
946 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
947 			/*
948 			 * should convert inline inode before i_size_write to
949 			 * keep smaller than inline_data size with inline flag.
950 			 */
951 			err = f2fs_convert_inline_inode(inode);
952 			if (err)
953 				return err;
954 		}
955 
956 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
957 		filemap_invalidate_lock(inode->i_mapping);
958 
959 		truncate_setsize(inode, attr->ia_size);
960 
961 		if (attr->ia_size <= old_size)
962 			err = f2fs_truncate(inode);
963 		/*
964 		 * do not trim all blocks after i_size if target size is
965 		 * larger than i_size.
966 		 */
967 		filemap_invalidate_unlock(inode->i_mapping);
968 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
969 		if (err)
970 			return err;
971 
972 		spin_lock(&F2FS_I(inode)->i_size_lock);
973 		inode->i_mtime = inode->i_ctime = current_time(inode);
974 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
975 		spin_unlock(&F2FS_I(inode)->i_size_lock);
976 	}
977 
978 	__setattr_copy(mnt_userns, inode, attr);
979 
980 	if (attr->ia_valid & ATTR_MODE) {
981 		err = posix_acl_chmod(mnt_userns, inode, f2fs_get_inode_mode(inode));
982 
983 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
984 			if (!err)
985 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
986 			clear_inode_flag(inode, FI_ACL_MODE);
987 		}
988 	}
989 
990 	/* file size may changed here */
991 	f2fs_mark_inode_dirty_sync(inode, true);
992 
993 	/* inode change will produce dirty node pages flushed by checkpoint */
994 	f2fs_balance_fs(F2FS_I_SB(inode), true);
995 
996 	return err;
997 }
998 
999 const struct inode_operations f2fs_file_inode_operations = {
1000 	.getattr	= f2fs_getattr,
1001 	.setattr	= f2fs_setattr,
1002 	.get_acl	= f2fs_get_acl,
1003 	.set_acl	= f2fs_set_acl,
1004 	.listxattr	= f2fs_listxattr,
1005 	.fiemap		= f2fs_fiemap,
1006 	.fileattr_get	= f2fs_fileattr_get,
1007 	.fileattr_set	= f2fs_fileattr_set,
1008 };
1009 
1010 static int fill_zero(struct inode *inode, pgoff_t index,
1011 					loff_t start, loff_t len)
1012 {
1013 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1014 	struct page *page;
1015 
1016 	if (!len)
1017 		return 0;
1018 
1019 	f2fs_balance_fs(sbi, true);
1020 
1021 	f2fs_lock_op(sbi);
1022 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1023 	f2fs_unlock_op(sbi);
1024 
1025 	if (IS_ERR(page))
1026 		return PTR_ERR(page);
1027 
1028 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1029 	zero_user(page, start, len);
1030 	set_page_dirty(page);
1031 	f2fs_put_page(page, 1);
1032 	return 0;
1033 }
1034 
1035 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1036 {
1037 	int err;
1038 
1039 	while (pg_start < pg_end) {
1040 		struct dnode_of_data dn;
1041 		pgoff_t end_offset, count;
1042 
1043 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1044 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1045 		if (err) {
1046 			if (err == -ENOENT) {
1047 				pg_start = f2fs_get_next_page_offset(&dn,
1048 								pg_start);
1049 				continue;
1050 			}
1051 			return err;
1052 		}
1053 
1054 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1055 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1056 
1057 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1058 
1059 		f2fs_truncate_data_blocks_range(&dn, count);
1060 		f2fs_put_dnode(&dn);
1061 
1062 		pg_start += count;
1063 	}
1064 	return 0;
1065 }
1066 
1067 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1068 {
1069 	pgoff_t pg_start, pg_end;
1070 	loff_t off_start, off_end;
1071 	int ret;
1072 
1073 	ret = f2fs_convert_inline_inode(inode);
1074 	if (ret)
1075 		return ret;
1076 
1077 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1078 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1079 
1080 	off_start = offset & (PAGE_SIZE - 1);
1081 	off_end = (offset + len) & (PAGE_SIZE - 1);
1082 
1083 	if (pg_start == pg_end) {
1084 		ret = fill_zero(inode, pg_start, off_start,
1085 						off_end - off_start);
1086 		if (ret)
1087 			return ret;
1088 	} else {
1089 		if (off_start) {
1090 			ret = fill_zero(inode, pg_start++, off_start,
1091 						PAGE_SIZE - off_start);
1092 			if (ret)
1093 				return ret;
1094 		}
1095 		if (off_end) {
1096 			ret = fill_zero(inode, pg_end, 0, off_end);
1097 			if (ret)
1098 				return ret;
1099 		}
1100 
1101 		if (pg_start < pg_end) {
1102 			loff_t blk_start, blk_end;
1103 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1104 
1105 			f2fs_balance_fs(sbi, true);
1106 
1107 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1108 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1109 
1110 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1111 			filemap_invalidate_lock(inode->i_mapping);
1112 
1113 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1114 
1115 			f2fs_lock_op(sbi);
1116 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1117 			f2fs_unlock_op(sbi);
1118 
1119 			filemap_invalidate_unlock(inode->i_mapping);
1120 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1121 		}
1122 	}
1123 
1124 	return ret;
1125 }
1126 
1127 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1128 				int *do_replace, pgoff_t off, pgoff_t len)
1129 {
1130 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1131 	struct dnode_of_data dn;
1132 	int ret, done, i;
1133 
1134 next_dnode:
1135 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1136 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1137 	if (ret && ret != -ENOENT) {
1138 		return ret;
1139 	} else if (ret == -ENOENT) {
1140 		if (dn.max_level == 0)
1141 			return -ENOENT;
1142 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1143 						dn.ofs_in_node, len);
1144 		blkaddr += done;
1145 		do_replace += done;
1146 		goto next;
1147 	}
1148 
1149 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1150 							dn.ofs_in_node, len);
1151 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1152 		*blkaddr = f2fs_data_blkaddr(&dn);
1153 
1154 		if (__is_valid_data_blkaddr(*blkaddr) &&
1155 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1156 					DATA_GENERIC_ENHANCE)) {
1157 			f2fs_put_dnode(&dn);
1158 			return -EFSCORRUPTED;
1159 		}
1160 
1161 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1162 
1163 			if (f2fs_lfs_mode(sbi)) {
1164 				f2fs_put_dnode(&dn);
1165 				return -EOPNOTSUPP;
1166 			}
1167 
1168 			/* do not invalidate this block address */
1169 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1170 			*do_replace = 1;
1171 		}
1172 	}
1173 	f2fs_put_dnode(&dn);
1174 next:
1175 	len -= done;
1176 	off += done;
1177 	if (len)
1178 		goto next_dnode;
1179 	return 0;
1180 }
1181 
1182 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1183 				int *do_replace, pgoff_t off, int len)
1184 {
1185 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1186 	struct dnode_of_data dn;
1187 	int ret, i;
1188 
1189 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1190 		if (*do_replace == 0)
1191 			continue;
1192 
1193 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1194 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1195 		if (ret) {
1196 			dec_valid_block_count(sbi, inode, 1);
1197 			f2fs_invalidate_blocks(sbi, *blkaddr);
1198 		} else {
1199 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1200 		}
1201 		f2fs_put_dnode(&dn);
1202 	}
1203 	return 0;
1204 }
1205 
1206 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1207 			block_t *blkaddr, int *do_replace,
1208 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1209 {
1210 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1211 	pgoff_t i = 0;
1212 	int ret;
1213 
1214 	while (i < len) {
1215 		if (blkaddr[i] == NULL_ADDR && !full) {
1216 			i++;
1217 			continue;
1218 		}
1219 
1220 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1221 			struct dnode_of_data dn;
1222 			struct node_info ni;
1223 			size_t new_size;
1224 			pgoff_t ilen;
1225 
1226 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1227 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1228 			if (ret)
1229 				return ret;
1230 
1231 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1232 			if (ret) {
1233 				f2fs_put_dnode(&dn);
1234 				return ret;
1235 			}
1236 
1237 			ilen = min((pgoff_t)
1238 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1239 						dn.ofs_in_node, len - i);
1240 			do {
1241 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1242 				f2fs_truncate_data_blocks_range(&dn, 1);
1243 
1244 				if (do_replace[i]) {
1245 					f2fs_i_blocks_write(src_inode,
1246 							1, false, false);
1247 					f2fs_i_blocks_write(dst_inode,
1248 							1, true, false);
1249 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1250 					blkaddr[i], ni.version, true, false);
1251 
1252 					do_replace[i] = 0;
1253 				}
1254 				dn.ofs_in_node++;
1255 				i++;
1256 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1257 				if (dst_inode->i_size < new_size)
1258 					f2fs_i_size_write(dst_inode, new_size);
1259 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1260 
1261 			f2fs_put_dnode(&dn);
1262 		} else {
1263 			struct page *psrc, *pdst;
1264 
1265 			psrc = f2fs_get_lock_data_page(src_inode,
1266 							src + i, true);
1267 			if (IS_ERR(psrc))
1268 				return PTR_ERR(psrc);
1269 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1270 								true);
1271 			if (IS_ERR(pdst)) {
1272 				f2fs_put_page(psrc, 1);
1273 				return PTR_ERR(pdst);
1274 			}
1275 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1276 			set_page_dirty(pdst);
1277 			f2fs_put_page(pdst, 1);
1278 			f2fs_put_page(psrc, 1);
1279 
1280 			ret = f2fs_truncate_hole(src_inode,
1281 						src + i, src + i + 1);
1282 			if (ret)
1283 				return ret;
1284 			i++;
1285 		}
1286 	}
1287 	return 0;
1288 }
1289 
1290 static int __exchange_data_block(struct inode *src_inode,
1291 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1292 			pgoff_t len, bool full)
1293 {
1294 	block_t *src_blkaddr;
1295 	int *do_replace;
1296 	pgoff_t olen;
1297 	int ret;
1298 
1299 	while (len) {
1300 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1301 
1302 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1303 					array_size(olen, sizeof(block_t)),
1304 					GFP_NOFS);
1305 		if (!src_blkaddr)
1306 			return -ENOMEM;
1307 
1308 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1309 					array_size(olen, sizeof(int)),
1310 					GFP_NOFS);
1311 		if (!do_replace) {
1312 			kvfree(src_blkaddr);
1313 			return -ENOMEM;
1314 		}
1315 
1316 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1317 					do_replace, src, olen);
1318 		if (ret)
1319 			goto roll_back;
1320 
1321 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1322 					do_replace, src, dst, olen, full);
1323 		if (ret)
1324 			goto roll_back;
1325 
1326 		src += olen;
1327 		dst += olen;
1328 		len -= olen;
1329 
1330 		kvfree(src_blkaddr);
1331 		kvfree(do_replace);
1332 	}
1333 	return 0;
1334 
1335 roll_back:
1336 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1337 	kvfree(src_blkaddr);
1338 	kvfree(do_replace);
1339 	return ret;
1340 }
1341 
1342 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1343 {
1344 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1345 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1346 	pgoff_t start = offset >> PAGE_SHIFT;
1347 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1348 	int ret;
1349 
1350 	f2fs_balance_fs(sbi, true);
1351 
1352 	/* avoid gc operation during block exchange */
1353 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1354 	filemap_invalidate_lock(inode->i_mapping);
1355 
1356 	f2fs_lock_op(sbi);
1357 	f2fs_drop_extent_tree(inode);
1358 	truncate_pagecache(inode, offset);
1359 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1360 	f2fs_unlock_op(sbi);
1361 
1362 	filemap_invalidate_unlock(inode->i_mapping);
1363 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1364 	return ret;
1365 }
1366 
1367 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1368 {
1369 	loff_t new_size;
1370 	int ret;
1371 
1372 	if (offset + len >= i_size_read(inode))
1373 		return -EINVAL;
1374 
1375 	/* collapse range should be aligned to block size of f2fs. */
1376 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1377 		return -EINVAL;
1378 
1379 	ret = f2fs_convert_inline_inode(inode);
1380 	if (ret)
1381 		return ret;
1382 
1383 	/* write out all dirty pages from offset */
1384 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1385 	if (ret)
1386 		return ret;
1387 
1388 	ret = f2fs_do_collapse(inode, offset, len);
1389 	if (ret)
1390 		return ret;
1391 
1392 	/* write out all moved pages, if possible */
1393 	filemap_invalidate_lock(inode->i_mapping);
1394 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1395 	truncate_pagecache(inode, offset);
1396 
1397 	new_size = i_size_read(inode) - len;
1398 	ret = f2fs_truncate_blocks(inode, new_size, true);
1399 	filemap_invalidate_unlock(inode->i_mapping);
1400 	if (!ret)
1401 		f2fs_i_size_write(inode, new_size);
1402 	return ret;
1403 }
1404 
1405 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1406 								pgoff_t end)
1407 {
1408 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1409 	pgoff_t index = start;
1410 	unsigned int ofs_in_node = dn->ofs_in_node;
1411 	blkcnt_t count = 0;
1412 	int ret;
1413 
1414 	for (; index < end; index++, dn->ofs_in_node++) {
1415 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1416 			count++;
1417 	}
1418 
1419 	dn->ofs_in_node = ofs_in_node;
1420 	ret = f2fs_reserve_new_blocks(dn, count);
1421 	if (ret)
1422 		return ret;
1423 
1424 	dn->ofs_in_node = ofs_in_node;
1425 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1426 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1427 		/*
1428 		 * f2fs_reserve_new_blocks will not guarantee entire block
1429 		 * allocation.
1430 		 */
1431 		if (dn->data_blkaddr == NULL_ADDR) {
1432 			ret = -ENOSPC;
1433 			break;
1434 		}
1435 
1436 		if (dn->data_blkaddr == NEW_ADDR)
1437 			continue;
1438 
1439 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1440 					DATA_GENERIC_ENHANCE)) {
1441 			ret = -EFSCORRUPTED;
1442 			break;
1443 		}
1444 
1445 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1446 		dn->data_blkaddr = NEW_ADDR;
1447 		f2fs_set_data_blkaddr(dn);
1448 	}
1449 
1450 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1451 
1452 	return ret;
1453 }
1454 
1455 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1456 								int mode)
1457 {
1458 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1459 	struct address_space *mapping = inode->i_mapping;
1460 	pgoff_t index, pg_start, pg_end;
1461 	loff_t new_size = i_size_read(inode);
1462 	loff_t off_start, off_end;
1463 	int ret = 0;
1464 
1465 	ret = inode_newsize_ok(inode, (len + offset));
1466 	if (ret)
1467 		return ret;
1468 
1469 	ret = f2fs_convert_inline_inode(inode);
1470 	if (ret)
1471 		return ret;
1472 
1473 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1474 	if (ret)
1475 		return ret;
1476 
1477 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1478 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1479 
1480 	off_start = offset & (PAGE_SIZE - 1);
1481 	off_end = (offset + len) & (PAGE_SIZE - 1);
1482 
1483 	if (pg_start == pg_end) {
1484 		ret = fill_zero(inode, pg_start, off_start,
1485 						off_end - off_start);
1486 		if (ret)
1487 			return ret;
1488 
1489 		new_size = max_t(loff_t, new_size, offset + len);
1490 	} else {
1491 		if (off_start) {
1492 			ret = fill_zero(inode, pg_start++, off_start,
1493 						PAGE_SIZE - off_start);
1494 			if (ret)
1495 				return ret;
1496 
1497 			new_size = max_t(loff_t, new_size,
1498 					(loff_t)pg_start << PAGE_SHIFT);
1499 		}
1500 
1501 		for (index = pg_start; index < pg_end;) {
1502 			struct dnode_of_data dn;
1503 			unsigned int end_offset;
1504 			pgoff_t end;
1505 
1506 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1507 			filemap_invalidate_lock(mapping);
1508 
1509 			truncate_pagecache_range(inode,
1510 				(loff_t)index << PAGE_SHIFT,
1511 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1512 
1513 			f2fs_lock_op(sbi);
1514 
1515 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1516 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1517 			if (ret) {
1518 				f2fs_unlock_op(sbi);
1519 				filemap_invalidate_unlock(mapping);
1520 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1521 				goto out;
1522 			}
1523 
1524 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1525 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1526 
1527 			ret = f2fs_do_zero_range(&dn, index, end);
1528 			f2fs_put_dnode(&dn);
1529 
1530 			f2fs_unlock_op(sbi);
1531 			filemap_invalidate_unlock(mapping);
1532 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1533 
1534 			f2fs_balance_fs(sbi, dn.node_changed);
1535 
1536 			if (ret)
1537 				goto out;
1538 
1539 			index = end;
1540 			new_size = max_t(loff_t, new_size,
1541 					(loff_t)index << PAGE_SHIFT);
1542 		}
1543 
1544 		if (off_end) {
1545 			ret = fill_zero(inode, pg_end, 0, off_end);
1546 			if (ret)
1547 				goto out;
1548 
1549 			new_size = max_t(loff_t, new_size, offset + len);
1550 		}
1551 	}
1552 
1553 out:
1554 	if (new_size > i_size_read(inode)) {
1555 		if (mode & FALLOC_FL_KEEP_SIZE)
1556 			file_set_keep_isize(inode);
1557 		else
1558 			f2fs_i_size_write(inode, new_size);
1559 	}
1560 	return ret;
1561 }
1562 
1563 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1564 {
1565 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1566 	struct address_space *mapping = inode->i_mapping;
1567 	pgoff_t nr, pg_start, pg_end, delta, idx;
1568 	loff_t new_size;
1569 	int ret = 0;
1570 
1571 	new_size = i_size_read(inode) + len;
1572 	ret = inode_newsize_ok(inode, new_size);
1573 	if (ret)
1574 		return ret;
1575 
1576 	if (offset >= i_size_read(inode))
1577 		return -EINVAL;
1578 
1579 	/* insert range should be aligned to block size of f2fs. */
1580 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1581 		return -EINVAL;
1582 
1583 	ret = f2fs_convert_inline_inode(inode);
1584 	if (ret)
1585 		return ret;
1586 
1587 	f2fs_balance_fs(sbi, true);
1588 
1589 	filemap_invalidate_lock(mapping);
1590 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1591 	filemap_invalidate_unlock(mapping);
1592 	if (ret)
1593 		return ret;
1594 
1595 	/* write out all dirty pages from offset */
1596 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1597 	if (ret)
1598 		return ret;
1599 
1600 	pg_start = offset >> PAGE_SHIFT;
1601 	pg_end = (offset + len) >> PAGE_SHIFT;
1602 	delta = pg_end - pg_start;
1603 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1604 
1605 	/* avoid gc operation during block exchange */
1606 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1607 	filemap_invalidate_lock(mapping);
1608 	truncate_pagecache(inode, offset);
1609 
1610 	while (!ret && idx > pg_start) {
1611 		nr = idx - pg_start;
1612 		if (nr > delta)
1613 			nr = delta;
1614 		idx -= nr;
1615 
1616 		f2fs_lock_op(sbi);
1617 		f2fs_drop_extent_tree(inode);
1618 
1619 		ret = __exchange_data_block(inode, inode, idx,
1620 					idx + delta, nr, false);
1621 		f2fs_unlock_op(sbi);
1622 	}
1623 	filemap_invalidate_unlock(mapping);
1624 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1625 
1626 	/* write out all moved pages, if possible */
1627 	filemap_invalidate_lock(mapping);
1628 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1629 	truncate_pagecache(inode, offset);
1630 	filemap_invalidate_unlock(mapping);
1631 
1632 	if (!ret)
1633 		f2fs_i_size_write(inode, new_size);
1634 	return ret;
1635 }
1636 
1637 static int expand_inode_data(struct inode *inode, loff_t offset,
1638 					loff_t len, int mode)
1639 {
1640 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1641 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1642 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1643 			.m_may_create = true };
1644 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1645 			.init_gc_type = FG_GC,
1646 			.should_migrate_blocks = false,
1647 			.err_gc_skipped = true,
1648 			.nr_free_secs = 0 };
1649 	pgoff_t pg_start, pg_end;
1650 	loff_t new_size = i_size_read(inode);
1651 	loff_t off_end;
1652 	block_t expanded = 0;
1653 	int err;
1654 
1655 	err = inode_newsize_ok(inode, (len + offset));
1656 	if (err)
1657 		return err;
1658 
1659 	err = f2fs_convert_inline_inode(inode);
1660 	if (err)
1661 		return err;
1662 
1663 	f2fs_balance_fs(sbi, true);
1664 
1665 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1666 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1667 	off_end = (offset + len) & (PAGE_SIZE - 1);
1668 
1669 	map.m_lblk = pg_start;
1670 	map.m_len = pg_end - pg_start;
1671 	if (off_end)
1672 		map.m_len++;
1673 
1674 	if (!map.m_len)
1675 		return 0;
1676 
1677 	if (f2fs_is_pinned_file(inode)) {
1678 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1679 		block_t sec_len = roundup(map.m_len, sec_blks);
1680 
1681 		map.m_len = sec_blks;
1682 next_alloc:
1683 		if (has_not_enough_free_secs(sbi, 0,
1684 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1685 			f2fs_down_write(&sbi->gc_lock);
1686 			err = f2fs_gc(sbi, &gc_control);
1687 			if (err && err != -ENODATA)
1688 				goto out_err;
1689 		}
1690 
1691 		f2fs_down_write(&sbi->pin_sem);
1692 
1693 		f2fs_lock_op(sbi);
1694 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1695 		f2fs_unlock_op(sbi);
1696 
1697 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1698 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1699 		file_dont_truncate(inode);
1700 
1701 		f2fs_up_write(&sbi->pin_sem);
1702 
1703 		expanded += map.m_len;
1704 		sec_len -= map.m_len;
1705 		map.m_lblk += map.m_len;
1706 		if (!err && sec_len)
1707 			goto next_alloc;
1708 
1709 		map.m_len = expanded;
1710 	} else {
1711 		err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1712 		expanded = map.m_len;
1713 	}
1714 out_err:
1715 	if (err) {
1716 		pgoff_t last_off;
1717 
1718 		if (!expanded)
1719 			return err;
1720 
1721 		last_off = pg_start + expanded - 1;
1722 
1723 		/* update new size to the failed position */
1724 		new_size = (last_off == pg_end) ? offset + len :
1725 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1726 	} else {
1727 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1728 	}
1729 
1730 	if (new_size > i_size_read(inode)) {
1731 		if (mode & FALLOC_FL_KEEP_SIZE)
1732 			file_set_keep_isize(inode);
1733 		else
1734 			f2fs_i_size_write(inode, new_size);
1735 	}
1736 
1737 	return err;
1738 }
1739 
1740 static long f2fs_fallocate(struct file *file, int mode,
1741 				loff_t offset, loff_t len)
1742 {
1743 	struct inode *inode = file_inode(file);
1744 	long ret = 0;
1745 
1746 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1747 		return -EIO;
1748 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1749 		return -ENOSPC;
1750 	if (!f2fs_is_compress_backend_ready(inode))
1751 		return -EOPNOTSUPP;
1752 
1753 	/* f2fs only support ->fallocate for regular file */
1754 	if (!S_ISREG(inode->i_mode))
1755 		return -EINVAL;
1756 
1757 	if (IS_ENCRYPTED(inode) &&
1758 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1759 		return -EOPNOTSUPP;
1760 
1761 	/*
1762 	 * Pinned file should not support partial trucation since the block
1763 	 * can be used by applications.
1764 	 */
1765 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1766 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1767 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1768 		return -EOPNOTSUPP;
1769 
1770 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1771 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1772 			FALLOC_FL_INSERT_RANGE))
1773 		return -EOPNOTSUPP;
1774 
1775 	inode_lock(inode);
1776 
1777 	ret = file_modified(file);
1778 	if (ret)
1779 		goto out;
1780 
1781 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1782 		if (offset >= inode->i_size)
1783 			goto out;
1784 
1785 		ret = punch_hole(inode, offset, len);
1786 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1787 		ret = f2fs_collapse_range(inode, offset, len);
1788 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1789 		ret = f2fs_zero_range(inode, offset, len, mode);
1790 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1791 		ret = f2fs_insert_range(inode, offset, len);
1792 	} else {
1793 		ret = expand_inode_data(inode, offset, len, mode);
1794 	}
1795 
1796 	if (!ret) {
1797 		inode->i_mtime = inode->i_ctime = current_time(inode);
1798 		f2fs_mark_inode_dirty_sync(inode, false);
1799 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1800 	}
1801 
1802 out:
1803 	inode_unlock(inode);
1804 
1805 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1806 	return ret;
1807 }
1808 
1809 static int f2fs_release_file(struct inode *inode, struct file *filp)
1810 {
1811 	/*
1812 	 * f2fs_relase_file is called at every close calls. So we should
1813 	 * not drop any inmemory pages by close called by other process.
1814 	 */
1815 	if (!(filp->f_mode & FMODE_WRITE) ||
1816 			atomic_read(&inode->i_writecount) != 1)
1817 		return 0;
1818 
1819 	f2fs_abort_atomic_write(inode, true);
1820 	return 0;
1821 }
1822 
1823 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1824 {
1825 	struct inode *inode = file_inode(file);
1826 
1827 	/*
1828 	 * If the process doing a transaction is crashed, we should do
1829 	 * roll-back. Otherwise, other reader/write can see corrupted database
1830 	 * until all the writers close its file. Since this should be done
1831 	 * before dropping file lock, it needs to do in ->flush.
1832 	 */
1833 	if (F2FS_I(inode)->atomic_write_task == current)
1834 		f2fs_abort_atomic_write(inode, true);
1835 	return 0;
1836 }
1837 
1838 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1839 {
1840 	struct f2fs_inode_info *fi = F2FS_I(inode);
1841 	u32 masked_flags = fi->i_flags & mask;
1842 
1843 	/* mask can be shrunk by flags_valid selector */
1844 	iflags &= mask;
1845 
1846 	/* Is it quota file? Do not allow user to mess with it */
1847 	if (IS_NOQUOTA(inode))
1848 		return -EPERM;
1849 
1850 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1851 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1852 			return -EOPNOTSUPP;
1853 		if (!f2fs_empty_dir(inode))
1854 			return -ENOTEMPTY;
1855 	}
1856 
1857 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1858 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1859 			return -EOPNOTSUPP;
1860 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1861 			return -EINVAL;
1862 	}
1863 
1864 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1865 		if (masked_flags & F2FS_COMPR_FL) {
1866 			if (!f2fs_disable_compressed_file(inode))
1867 				return -EINVAL;
1868 		} else {
1869 			if (!f2fs_may_compress(inode))
1870 				return -EINVAL;
1871 			if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
1872 				return -EINVAL;
1873 			if (set_compress_context(inode))
1874 				return -EOPNOTSUPP;
1875 		}
1876 	}
1877 
1878 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1879 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1880 					(fi->i_flags & F2FS_NOCOMP_FL));
1881 
1882 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1883 		set_inode_flag(inode, FI_PROJ_INHERIT);
1884 	else
1885 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1886 
1887 	inode->i_ctime = current_time(inode);
1888 	f2fs_set_inode_flags(inode);
1889 	f2fs_mark_inode_dirty_sync(inode, true);
1890 	return 0;
1891 }
1892 
1893 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1894 
1895 /*
1896  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1897  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1898  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1899  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1900  *
1901  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1902  * FS_IOC_FSSETXATTR is done by the VFS.
1903  */
1904 
1905 static const struct {
1906 	u32 iflag;
1907 	u32 fsflag;
1908 } f2fs_fsflags_map[] = {
1909 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1910 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1911 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1912 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1913 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1914 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1915 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1916 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1917 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1918 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1919 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1920 };
1921 
1922 #define F2FS_GETTABLE_FS_FL (		\
1923 		FS_COMPR_FL |		\
1924 		FS_SYNC_FL |		\
1925 		FS_IMMUTABLE_FL |	\
1926 		FS_APPEND_FL |		\
1927 		FS_NODUMP_FL |		\
1928 		FS_NOATIME_FL |		\
1929 		FS_NOCOMP_FL |		\
1930 		FS_INDEX_FL |		\
1931 		FS_DIRSYNC_FL |		\
1932 		FS_PROJINHERIT_FL |	\
1933 		FS_ENCRYPT_FL |		\
1934 		FS_INLINE_DATA_FL |	\
1935 		FS_NOCOW_FL |		\
1936 		FS_VERITY_FL |		\
1937 		FS_CASEFOLD_FL)
1938 
1939 #define F2FS_SETTABLE_FS_FL (		\
1940 		FS_COMPR_FL |		\
1941 		FS_SYNC_FL |		\
1942 		FS_IMMUTABLE_FL |	\
1943 		FS_APPEND_FL |		\
1944 		FS_NODUMP_FL |		\
1945 		FS_NOATIME_FL |		\
1946 		FS_NOCOMP_FL |		\
1947 		FS_DIRSYNC_FL |		\
1948 		FS_PROJINHERIT_FL |	\
1949 		FS_CASEFOLD_FL)
1950 
1951 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1952 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1953 {
1954 	u32 fsflags = 0;
1955 	int i;
1956 
1957 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1958 		if (iflags & f2fs_fsflags_map[i].iflag)
1959 			fsflags |= f2fs_fsflags_map[i].fsflag;
1960 
1961 	return fsflags;
1962 }
1963 
1964 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1965 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1966 {
1967 	u32 iflags = 0;
1968 	int i;
1969 
1970 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1971 		if (fsflags & f2fs_fsflags_map[i].fsflag)
1972 			iflags |= f2fs_fsflags_map[i].iflag;
1973 
1974 	return iflags;
1975 }
1976 
1977 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1978 {
1979 	struct inode *inode = file_inode(filp);
1980 
1981 	return put_user(inode->i_generation, (int __user *)arg);
1982 }
1983 
1984 static int f2fs_ioc_start_atomic_write(struct file *filp)
1985 {
1986 	struct inode *inode = file_inode(filp);
1987 	struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
1988 	struct f2fs_inode_info *fi = F2FS_I(inode);
1989 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1990 	struct inode *pinode;
1991 	int ret;
1992 
1993 	if (!inode_owner_or_capable(mnt_userns, inode))
1994 		return -EACCES;
1995 
1996 	if (!S_ISREG(inode->i_mode))
1997 		return -EINVAL;
1998 
1999 	if (filp->f_flags & O_DIRECT)
2000 		return -EINVAL;
2001 
2002 	ret = mnt_want_write_file(filp);
2003 	if (ret)
2004 		return ret;
2005 
2006 	inode_lock(inode);
2007 
2008 	if (!f2fs_disable_compressed_file(inode)) {
2009 		ret = -EINVAL;
2010 		goto out;
2011 	}
2012 
2013 	if (f2fs_is_atomic_file(inode))
2014 		goto out;
2015 
2016 	ret = f2fs_convert_inline_inode(inode);
2017 	if (ret)
2018 		goto out;
2019 
2020 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2021 
2022 	/*
2023 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2024 	 * f2fs_is_atomic_file.
2025 	 */
2026 	if (get_dirty_pages(inode))
2027 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2028 			  inode->i_ino, get_dirty_pages(inode));
2029 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2030 	if (ret) {
2031 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2032 		goto out;
2033 	}
2034 
2035 	/* Create a COW inode for atomic write */
2036 	pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2037 	if (IS_ERR(pinode)) {
2038 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2039 		ret = PTR_ERR(pinode);
2040 		goto out;
2041 	}
2042 
2043 	ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode);
2044 	iput(pinode);
2045 	if (ret) {
2046 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2047 		goto out;
2048 	}
2049 	f2fs_i_size_write(fi->cow_inode, i_size_read(inode));
2050 
2051 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2052 	sbi->atomic_files++;
2053 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2054 
2055 	set_inode_flag(inode, FI_ATOMIC_FILE);
2056 	set_inode_flag(fi->cow_inode, FI_COW_FILE);
2057 	clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2058 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2059 
2060 	f2fs_update_time(sbi, REQ_TIME);
2061 	fi->atomic_write_task = current;
2062 	stat_update_max_atomic_write(inode);
2063 	fi->atomic_write_cnt = 0;
2064 out:
2065 	inode_unlock(inode);
2066 	mnt_drop_write_file(filp);
2067 	return ret;
2068 }
2069 
2070 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2071 {
2072 	struct inode *inode = file_inode(filp);
2073 	struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2074 	int ret;
2075 
2076 	if (!inode_owner_or_capable(mnt_userns, inode))
2077 		return -EACCES;
2078 
2079 	ret = mnt_want_write_file(filp);
2080 	if (ret)
2081 		return ret;
2082 
2083 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2084 
2085 	inode_lock(inode);
2086 
2087 	if (f2fs_is_atomic_file(inode)) {
2088 		ret = f2fs_commit_atomic_write(inode);
2089 		if (ret)
2090 			goto unlock_out;
2091 
2092 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2093 		if (!ret)
2094 			f2fs_abort_atomic_write(inode, false);
2095 	} else {
2096 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2097 	}
2098 unlock_out:
2099 	inode_unlock(inode);
2100 	mnt_drop_write_file(filp);
2101 	return ret;
2102 }
2103 
2104 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2105 {
2106 	struct inode *inode = file_inode(filp);
2107 	struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2108 	int ret;
2109 
2110 	if (!inode_owner_or_capable(mnt_userns, inode))
2111 		return -EACCES;
2112 
2113 	ret = mnt_want_write_file(filp);
2114 	if (ret)
2115 		return ret;
2116 
2117 	inode_lock(inode);
2118 
2119 	f2fs_abort_atomic_write(inode, true);
2120 
2121 	inode_unlock(inode);
2122 
2123 	mnt_drop_write_file(filp);
2124 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2125 	return ret;
2126 }
2127 
2128 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2129 {
2130 	struct inode *inode = file_inode(filp);
2131 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2132 	struct super_block *sb = sbi->sb;
2133 	__u32 in;
2134 	int ret = 0;
2135 
2136 	if (!capable(CAP_SYS_ADMIN))
2137 		return -EPERM;
2138 
2139 	if (get_user(in, (__u32 __user *)arg))
2140 		return -EFAULT;
2141 
2142 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2143 		ret = mnt_want_write_file(filp);
2144 		if (ret) {
2145 			if (ret == -EROFS) {
2146 				ret = 0;
2147 				f2fs_stop_checkpoint(sbi, false);
2148 				set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2149 				trace_f2fs_shutdown(sbi, in, ret);
2150 			}
2151 			return ret;
2152 		}
2153 	}
2154 
2155 	switch (in) {
2156 	case F2FS_GOING_DOWN_FULLSYNC:
2157 		ret = freeze_bdev(sb->s_bdev);
2158 		if (ret)
2159 			goto out;
2160 		f2fs_stop_checkpoint(sbi, false);
2161 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2162 		thaw_bdev(sb->s_bdev);
2163 		break;
2164 	case F2FS_GOING_DOWN_METASYNC:
2165 		/* do checkpoint only */
2166 		ret = f2fs_sync_fs(sb, 1);
2167 		if (ret)
2168 			goto out;
2169 		f2fs_stop_checkpoint(sbi, false);
2170 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2171 		break;
2172 	case F2FS_GOING_DOWN_NOSYNC:
2173 		f2fs_stop_checkpoint(sbi, false);
2174 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2175 		break;
2176 	case F2FS_GOING_DOWN_METAFLUSH:
2177 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2178 		f2fs_stop_checkpoint(sbi, false);
2179 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2180 		break;
2181 	case F2FS_GOING_DOWN_NEED_FSCK:
2182 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2183 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2184 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2185 		/* do checkpoint only */
2186 		ret = f2fs_sync_fs(sb, 1);
2187 		goto out;
2188 	default:
2189 		ret = -EINVAL;
2190 		goto out;
2191 	}
2192 
2193 	f2fs_stop_gc_thread(sbi);
2194 	f2fs_stop_discard_thread(sbi);
2195 
2196 	f2fs_drop_discard_cmd(sbi);
2197 	clear_opt(sbi, DISCARD);
2198 
2199 	f2fs_update_time(sbi, REQ_TIME);
2200 out:
2201 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2202 		mnt_drop_write_file(filp);
2203 
2204 	trace_f2fs_shutdown(sbi, in, ret);
2205 
2206 	return ret;
2207 }
2208 
2209 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2210 {
2211 	struct inode *inode = file_inode(filp);
2212 	struct super_block *sb = inode->i_sb;
2213 	struct fstrim_range range;
2214 	int ret;
2215 
2216 	if (!capable(CAP_SYS_ADMIN))
2217 		return -EPERM;
2218 
2219 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2220 		return -EOPNOTSUPP;
2221 
2222 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2223 				sizeof(range)))
2224 		return -EFAULT;
2225 
2226 	ret = mnt_want_write_file(filp);
2227 	if (ret)
2228 		return ret;
2229 
2230 	range.minlen = max((unsigned int)range.minlen,
2231 			   bdev_discard_granularity(sb->s_bdev));
2232 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2233 	mnt_drop_write_file(filp);
2234 	if (ret < 0)
2235 		return ret;
2236 
2237 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2238 				sizeof(range)))
2239 		return -EFAULT;
2240 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2241 	return 0;
2242 }
2243 
2244 static bool uuid_is_nonzero(__u8 u[16])
2245 {
2246 	int i;
2247 
2248 	for (i = 0; i < 16; i++)
2249 		if (u[i])
2250 			return true;
2251 	return false;
2252 }
2253 
2254 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2255 {
2256 	struct inode *inode = file_inode(filp);
2257 
2258 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2259 		return -EOPNOTSUPP;
2260 
2261 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2262 
2263 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2264 }
2265 
2266 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2267 {
2268 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2269 		return -EOPNOTSUPP;
2270 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2271 }
2272 
2273 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2274 {
2275 	struct inode *inode = file_inode(filp);
2276 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2277 	int err;
2278 
2279 	if (!f2fs_sb_has_encrypt(sbi))
2280 		return -EOPNOTSUPP;
2281 
2282 	err = mnt_want_write_file(filp);
2283 	if (err)
2284 		return err;
2285 
2286 	f2fs_down_write(&sbi->sb_lock);
2287 
2288 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2289 		goto got_it;
2290 
2291 	/* update superblock with uuid */
2292 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2293 
2294 	err = f2fs_commit_super(sbi, false);
2295 	if (err) {
2296 		/* undo new data */
2297 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2298 		goto out_err;
2299 	}
2300 got_it:
2301 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2302 									16))
2303 		err = -EFAULT;
2304 out_err:
2305 	f2fs_up_write(&sbi->sb_lock);
2306 	mnt_drop_write_file(filp);
2307 	return err;
2308 }
2309 
2310 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2311 					     unsigned long arg)
2312 {
2313 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2314 		return -EOPNOTSUPP;
2315 
2316 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2317 }
2318 
2319 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2320 {
2321 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2322 		return -EOPNOTSUPP;
2323 
2324 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2325 }
2326 
2327 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2328 {
2329 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2330 		return -EOPNOTSUPP;
2331 
2332 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2333 }
2334 
2335 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2336 						    unsigned long arg)
2337 {
2338 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2339 		return -EOPNOTSUPP;
2340 
2341 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2342 }
2343 
2344 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2345 					      unsigned long arg)
2346 {
2347 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2348 		return -EOPNOTSUPP;
2349 
2350 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2351 }
2352 
2353 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2354 {
2355 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2356 		return -EOPNOTSUPP;
2357 
2358 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2359 }
2360 
2361 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2362 {
2363 	struct inode *inode = file_inode(filp);
2364 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2365 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2366 			.no_bg_gc = false,
2367 			.should_migrate_blocks = false,
2368 			.nr_free_secs = 0 };
2369 	__u32 sync;
2370 	int ret;
2371 
2372 	if (!capable(CAP_SYS_ADMIN))
2373 		return -EPERM;
2374 
2375 	if (get_user(sync, (__u32 __user *)arg))
2376 		return -EFAULT;
2377 
2378 	if (f2fs_readonly(sbi->sb))
2379 		return -EROFS;
2380 
2381 	ret = mnt_want_write_file(filp);
2382 	if (ret)
2383 		return ret;
2384 
2385 	if (!sync) {
2386 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2387 			ret = -EBUSY;
2388 			goto out;
2389 		}
2390 	} else {
2391 		f2fs_down_write(&sbi->gc_lock);
2392 	}
2393 
2394 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2395 	gc_control.err_gc_skipped = sync;
2396 	ret = f2fs_gc(sbi, &gc_control);
2397 out:
2398 	mnt_drop_write_file(filp);
2399 	return ret;
2400 }
2401 
2402 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2403 {
2404 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2405 	struct f2fs_gc_control gc_control = {
2406 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2407 			.no_bg_gc = false,
2408 			.should_migrate_blocks = false,
2409 			.err_gc_skipped = range->sync,
2410 			.nr_free_secs = 0 };
2411 	u64 end;
2412 	int ret;
2413 
2414 	if (!capable(CAP_SYS_ADMIN))
2415 		return -EPERM;
2416 	if (f2fs_readonly(sbi->sb))
2417 		return -EROFS;
2418 
2419 	end = range->start + range->len;
2420 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2421 					end >= MAX_BLKADDR(sbi))
2422 		return -EINVAL;
2423 
2424 	ret = mnt_want_write_file(filp);
2425 	if (ret)
2426 		return ret;
2427 
2428 do_more:
2429 	if (!range->sync) {
2430 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2431 			ret = -EBUSY;
2432 			goto out;
2433 		}
2434 	} else {
2435 		f2fs_down_write(&sbi->gc_lock);
2436 	}
2437 
2438 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2439 	ret = f2fs_gc(sbi, &gc_control);
2440 	if (ret) {
2441 		if (ret == -EBUSY)
2442 			ret = -EAGAIN;
2443 		goto out;
2444 	}
2445 	range->start += CAP_BLKS_PER_SEC(sbi);
2446 	if (range->start <= end)
2447 		goto do_more;
2448 out:
2449 	mnt_drop_write_file(filp);
2450 	return ret;
2451 }
2452 
2453 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2454 {
2455 	struct f2fs_gc_range range;
2456 
2457 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2458 							sizeof(range)))
2459 		return -EFAULT;
2460 	return __f2fs_ioc_gc_range(filp, &range);
2461 }
2462 
2463 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2464 {
2465 	struct inode *inode = file_inode(filp);
2466 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2467 	int ret;
2468 
2469 	if (!capable(CAP_SYS_ADMIN))
2470 		return -EPERM;
2471 
2472 	if (f2fs_readonly(sbi->sb))
2473 		return -EROFS;
2474 
2475 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2476 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2477 		return -EINVAL;
2478 	}
2479 
2480 	ret = mnt_want_write_file(filp);
2481 	if (ret)
2482 		return ret;
2483 
2484 	ret = f2fs_sync_fs(sbi->sb, 1);
2485 
2486 	mnt_drop_write_file(filp);
2487 	return ret;
2488 }
2489 
2490 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2491 					struct file *filp,
2492 					struct f2fs_defragment *range)
2493 {
2494 	struct inode *inode = file_inode(filp);
2495 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2496 					.m_seg_type = NO_CHECK_TYPE,
2497 					.m_may_create = false };
2498 	struct extent_info ei = {0, 0, 0};
2499 	pgoff_t pg_start, pg_end, next_pgofs;
2500 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2501 	unsigned int total = 0, sec_num;
2502 	block_t blk_end = 0;
2503 	bool fragmented = false;
2504 	int err;
2505 
2506 	pg_start = range->start >> PAGE_SHIFT;
2507 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2508 
2509 	f2fs_balance_fs(sbi, true);
2510 
2511 	inode_lock(inode);
2512 
2513 	/* if in-place-update policy is enabled, don't waste time here */
2514 	set_inode_flag(inode, FI_OPU_WRITE);
2515 	if (f2fs_should_update_inplace(inode, NULL)) {
2516 		err = -EINVAL;
2517 		goto out;
2518 	}
2519 
2520 	/* writeback all dirty pages in the range */
2521 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2522 						range->start + range->len - 1);
2523 	if (err)
2524 		goto out;
2525 
2526 	/*
2527 	 * lookup mapping info in extent cache, skip defragmenting if physical
2528 	 * block addresses are continuous.
2529 	 */
2530 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2531 		if (ei.fofs + ei.len >= pg_end)
2532 			goto out;
2533 	}
2534 
2535 	map.m_lblk = pg_start;
2536 	map.m_next_pgofs = &next_pgofs;
2537 
2538 	/*
2539 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2540 	 * physical block addresses are continuous even if there are hole(s)
2541 	 * in logical blocks.
2542 	 */
2543 	while (map.m_lblk < pg_end) {
2544 		map.m_len = pg_end - map.m_lblk;
2545 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2546 		if (err)
2547 			goto out;
2548 
2549 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2550 			map.m_lblk = next_pgofs;
2551 			continue;
2552 		}
2553 
2554 		if (blk_end && blk_end != map.m_pblk)
2555 			fragmented = true;
2556 
2557 		/* record total count of block that we're going to move */
2558 		total += map.m_len;
2559 
2560 		blk_end = map.m_pblk + map.m_len;
2561 
2562 		map.m_lblk += map.m_len;
2563 	}
2564 
2565 	if (!fragmented) {
2566 		total = 0;
2567 		goto out;
2568 	}
2569 
2570 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2571 
2572 	/*
2573 	 * make sure there are enough free section for LFS allocation, this can
2574 	 * avoid defragment running in SSR mode when free section are allocated
2575 	 * intensively
2576 	 */
2577 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2578 		err = -EAGAIN;
2579 		goto out;
2580 	}
2581 
2582 	map.m_lblk = pg_start;
2583 	map.m_len = pg_end - pg_start;
2584 	total = 0;
2585 
2586 	while (map.m_lblk < pg_end) {
2587 		pgoff_t idx;
2588 		int cnt = 0;
2589 
2590 do_map:
2591 		map.m_len = pg_end - map.m_lblk;
2592 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2593 		if (err)
2594 			goto clear_out;
2595 
2596 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2597 			map.m_lblk = next_pgofs;
2598 			goto check;
2599 		}
2600 
2601 		set_inode_flag(inode, FI_SKIP_WRITES);
2602 
2603 		idx = map.m_lblk;
2604 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2605 			struct page *page;
2606 
2607 			page = f2fs_get_lock_data_page(inode, idx, true);
2608 			if (IS_ERR(page)) {
2609 				err = PTR_ERR(page);
2610 				goto clear_out;
2611 			}
2612 
2613 			set_page_dirty(page);
2614 			set_page_private_gcing(page);
2615 			f2fs_put_page(page, 1);
2616 
2617 			idx++;
2618 			cnt++;
2619 			total++;
2620 		}
2621 
2622 		map.m_lblk = idx;
2623 check:
2624 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2625 			goto do_map;
2626 
2627 		clear_inode_flag(inode, FI_SKIP_WRITES);
2628 
2629 		err = filemap_fdatawrite(inode->i_mapping);
2630 		if (err)
2631 			goto out;
2632 	}
2633 clear_out:
2634 	clear_inode_flag(inode, FI_SKIP_WRITES);
2635 out:
2636 	clear_inode_flag(inode, FI_OPU_WRITE);
2637 	inode_unlock(inode);
2638 	if (!err)
2639 		range->len = (u64)total << PAGE_SHIFT;
2640 	return err;
2641 }
2642 
2643 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2644 {
2645 	struct inode *inode = file_inode(filp);
2646 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2647 	struct f2fs_defragment range;
2648 	int err;
2649 
2650 	if (!capable(CAP_SYS_ADMIN))
2651 		return -EPERM;
2652 
2653 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2654 		return -EINVAL;
2655 
2656 	if (f2fs_readonly(sbi->sb))
2657 		return -EROFS;
2658 
2659 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2660 							sizeof(range)))
2661 		return -EFAULT;
2662 
2663 	/* verify alignment of offset & size */
2664 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2665 		return -EINVAL;
2666 
2667 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2668 					max_file_blocks(inode)))
2669 		return -EINVAL;
2670 
2671 	err = mnt_want_write_file(filp);
2672 	if (err)
2673 		return err;
2674 
2675 	err = f2fs_defragment_range(sbi, filp, &range);
2676 	mnt_drop_write_file(filp);
2677 
2678 	f2fs_update_time(sbi, REQ_TIME);
2679 	if (err < 0)
2680 		return err;
2681 
2682 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2683 							sizeof(range)))
2684 		return -EFAULT;
2685 
2686 	return 0;
2687 }
2688 
2689 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2690 			struct file *file_out, loff_t pos_out, size_t len)
2691 {
2692 	struct inode *src = file_inode(file_in);
2693 	struct inode *dst = file_inode(file_out);
2694 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2695 	size_t olen = len, dst_max_i_size = 0;
2696 	size_t dst_osize;
2697 	int ret;
2698 
2699 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2700 				src->i_sb != dst->i_sb)
2701 		return -EXDEV;
2702 
2703 	if (unlikely(f2fs_readonly(src->i_sb)))
2704 		return -EROFS;
2705 
2706 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2707 		return -EINVAL;
2708 
2709 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2710 		return -EOPNOTSUPP;
2711 
2712 	if (pos_out < 0 || pos_in < 0)
2713 		return -EINVAL;
2714 
2715 	if (src == dst) {
2716 		if (pos_in == pos_out)
2717 			return 0;
2718 		if (pos_out > pos_in && pos_out < pos_in + len)
2719 			return -EINVAL;
2720 	}
2721 
2722 	inode_lock(src);
2723 	if (src != dst) {
2724 		ret = -EBUSY;
2725 		if (!inode_trylock(dst))
2726 			goto out;
2727 	}
2728 
2729 	ret = -EINVAL;
2730 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2731 		goto out_unlock;
2732 	if (len == 0)
2733 		olen = len = src->i_size - pos_in;
2734 	if (pos_in + len == src->i_size)
2735 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2736 	if (len == 0) {
2737 		ret = 0;
2738 		goto out_unlock;
2739 	}
2740 
2741 	dst_osize = dst->i_size;
2742 	if (pos_out + olen > dst->i_size)
2743 		dst_max_i_size = pos_out + olen;
2744 
2745 	/* verify the end result is block aligned */
2746 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2747 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2748 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2749 		goto out_unlock;
2750 
2751 	ret = f2fs_convert_inline_inode(src);
2752 	if (ret)
2753 		goto out_unlock;
2754 
2755 	ret = f2fs_convert_inline_inode(dst);
2756 	if (ret)
2757 		goto out_unlock;
2758 
2759 	/* write out all dirty pages from offset */
2760 	ret = filemap_write_and_wait_range(src->i_mapping,
2761 					pos_in, pos_in + len);
2762 	if (ret)
2763 		goto out_unlock;
2764 
2765 	ret = filemap_write_and_wait_range(dst->i_mapping,
2766 					pos_out, pos_out + len);
2767 	if (ret)
2768 		goto out_unlock;
2769 
2770 	f2fs_balance_fs(sbi, true);
2771 
2772 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2773 	if (src != dst) {
2774 		ret = -EBUSY;
2775 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2776 			goto out_src;
2777 	}
2778 
2779 	f2fs_lock_op(sbi);
2780 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2781 				pos_out >> F2FS_BLKSIZE_BITS,
2782 				len >> F2FS_BLKSIZE_BITS, false);
2783 
2784 	if (!ret) {
2785 		if (dst_max_i_size)
2786 			f2fs_i_size_write(dst, dst_max_i_size);
2787 		else if (dst_osize != dst->i_size)
2788 			f2fs_i_size_write(dst, dst_osize);
2789 	}
2790 	f2fs_unlock_op(sbi);
2791 
2792 	if (src != dst)
2793 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2794 out_src:
2795 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2796 out_unlock:
2797 	if (src != dst)
2798 		inode_unlock(dst);
2799 out:
2800 	inode_unlock(src);
2801 	return ret;
2802 }
2803 
2804 static int __f2fs_ioc_move_range(struct file *filp,
2805 				struct f2fs_move_range *range)
2806 {
2807 	struct fd dst;
2808 	int err;
2809 
2810 	if (!(filp->f_mode & FMODE_READ) ||
2811 			!(filp->f_mode & FMODE_WRITE))
2812 		return -EBADF;
2813 
2814 	dst = fdget(range->dst_fd);
2815 	if (!dst.file)
2816 		return -EBADF;
2817 
2818 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2819 		err = -EBADF;
2820 		goto err_out;
2821 	}
2822 
2823 	err = mnt_want_write_file(filp);
2824 	if (err)
2825 		goto err_out;
2826 
2827 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2828 					range->pos_out, range->len);
2829 
2830 	mnt_drop_write_file(filp);
2831 err_out:
2832 	fdput(dst);
2833 	return err;
2834 }
2835 
2836 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2837 {
2838 	struct f2fs_move_range range;
2839 
2840 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2841 							sizeof(range)))
2842 		return -EFAULT;
2843 	return __f2fs_ioc_move_range(filp, &range);
2844 }
2845 
2846 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2847 {
2848 	struct inode *inode = file_inode(filp);
2849 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2850 	struct sit_info *sm = SIT_I(sbi);
2851 	unsigned int start_segno = 0, end_segno = 0;
2852 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2853 	struct f2fs_flush_device range;
2854 	struct f2fs_gc_control gc_control = {
2855 			.init_gc_type = FG_GC,
2856 			.should_migrate_blocks = true,
2857 			.err_gc_skipped = true,
2858 			.nr_free_secs = 0 };
2859 	int ret;
2860 
2861 	if (!capable(CAP_SYS_ADMIN))
2862 		return -EPERM;
2863 
2864 	if (f2fs_readonly(sbi->sb))
2865 		return -EROFS;
2866 
2867 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2868 		return -EINVAL;
2869 
2870 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2871 							sizeof(range)))
2872 		return -EFAULT;
2873 
2874 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2875 			__is_large_section(sbi)) {
2876 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2877 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2878 		return -EINVAL;
2879 	}
2880 
2881 	ret = mnt_want_write_file(filp);
2882 	if (ret)
2883 		return ret;
2884 
2885 	if (range.dev_num != 0)
2886 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2887 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2888 
2889 	start_segno = sm->last_victim[FLUSH_DEVICE];
2890 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2891 		start_segno = dev_start_segno;
2892 	end_segno = min(start_segno + range.segments, dev_end_segno);
2893 
2894 	while (start_segno < end_segno) {
2895 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2896 			ret = -EBUSY;
2897 			goto out;
2898 		}
2899 		sm->last_victim[GC_CB] = end_segno + 1;
2900 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2901 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2902 
2903 		gc_control.victim_segno = start_segno;
2904 		ret = f2fs_gc(sbi, &gc_control);
2905 		if (ret == -EAGAIN)
2906 			ret = 0;
2907 		else if (ret < 0)
2908 			break;
2909 		start_segno++;
2910 	}
2911 out:
2912 	mnt_drop_write_file(filp);
2913 	return ret;
2914 }
2915 
2916 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2917 {
2918 	struct inode *inode = file_inode(filp);
2919 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2920 
2921 	/* Must validate to set it with SQLite behavior in Android. */
2922 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2923 
2924 	return put_user(sb_feature, (u32 __user *)arg);
2925 }
2926 
2927 #ifdef CONFIG_QUOTA
2928 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2929 {
2930 	struct dquot *transfer_to[MAXQUOTAS] = {};
2931 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2932 	struct super_block *sb = sbi->sb;
2933 	int err = 0;
2934 
2935 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2936 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2937 		err = __dquot_transfer(inode, transfer_to);
2938 		if (err)
2939 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2940 		dqput(transfer_to[PRJQUOTA]);
2941 	}
2942 	return err;
2943 }
2944 
2945 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2946 {
2947 	struct f2fs_inode_info *fi = F2FS_I(inode);
2948 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2949 	struct f2fs_inode *ri = NULL;
2950 	kprojid_t kprojid;
2951 	int err;
2952 
2953 	if (!f2fs_sb_has_project_quota(sbi)) {
2954 		if (projid != F2FS_DEF_PROJID)
2955 			return -EOPNOTSUPP;
2956 		else
2957 			return 0;
2958 	}
2959 
2960 	if (!f2fs_has_extra_attr(inode))
2961 		return -EOPNOTSUPP;
2962 
2963 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2964 
2965 	if (projid_eq(kprojid, fi->i_projid))
2966 		return 0;
2967 
2968 	err = -EPERM;
2969 	/* Is it quota file? Do not allow user to mess with it */
2970 	if (IS_NOQUOTA(inode))
2971 		return err;
2972 
2973 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
2974 		return -EOVERFLOW;
2975 
2976 	err = f2fs_dquot_initialize(inode);
2977 	if (err)
2978 		return err;
2979 
2980 	f2fs_lock_op(sbi);
2981 	err = f2fs_transfer_project_quota(inode, kprojid);
2982 	if (err)
2983 		goto out_unlock;
2984 
2985 	fi->i_projid = kprojid;
2986 	inode->i_ctime = current_time(inode);
2987 	f2fs_mark_inode_dirty_sync(inode, true);
2988 out_unlock:
2989 	f2fs_unlock_op(sbi);
2990 	return err;
2991 }
2992 #else
2993 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2994 {
2995 	return 0;
2996 }
2997 
2998 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2999 {
3000 	if (projid != F2FS_DEF_PROJID)
3001 		return -EOPNOTSUPP;
3002 	return 0;
3003 }
3004 #endif
3005 
3006 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3007 {
3008 	struct inode *inode = d_inode(dentry);
3009 	struct f2fs_inode_info *fi = F2FS_I(inode);
3010 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3011 
3012 	if (IS_ENCRYPTED(inode))
3013 		fsflags |= FS_ENCRYPT_FL;
3014 	if (IS_VERITY(inode))
3015 		fsflags |= FS_VERITY_FL;
3016 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3017 		fsflags |= FS_INLINE_DATA_FL;
3018 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3019 		fsflags |= FS_NOCOW_FL;
3020 
3021 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3022 
3023 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3024 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3025 
3026 	return 0;
3027 }
3028 
3029 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3030 		      struct dentry *dentry, struct fileattr *fa)
3031 {
3032 	struct inode *inode = d_inode(dentry);
3033 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3034 	u32 iflags;
3035 	int err;
3036 
3037 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3038 		return -EIO;
3039 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3040 		return -ENOSPC;
3041 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3042 		return -EOPNOTSUPP;
3043 	fsflags &= F2FS_SETTABLE_FS_FL;
3044 	if (!fa->flags_valid)
3045 		mask &= FS_COMMON_FL;
3046 
3047 	iflags = f2fs_fsflags_to_iflags(fsflags);
3048 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3049 		return -EOPNOTSUPP;
3050 
3051 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3052 	if (!err)
3053 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3054 
3055 	return err;
3056 }
3057 
3058 int f2fs_pin_file_control(struct inode *inode, bool inc)
3059 {
3060 	struct f2fs_inode_info *fi = F2FS_I(inode);
3061 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3062 
3063 	/* Use i_gc_failures for normal file as a risk signal. */
3064 	if (inc)
3065 		f2fs_i_gc_failures_write(inode,
3066 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3067 
3068 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3069 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3070 			  __func__, inode->i_ino,
3071 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3072 		clear_inode_flag(inode, FI_PIN_FILE);
3073 		return -EAGAIN;
3074 	}
3075 	return 0;
3076 }
3077 
3078 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3079 {
3080 	struct inode *inode = file_inode(filp);
3081 	__u32 pin;
3082 	int ret = 0;
3083 
3084 	if (get_user(pin, (__u32 __user *)arg))
3085 		return -EFAULT;
3086 
3087 	if (!S_ISREG(inode->i_mode))
3088 		return -EINVAL;
3089 
3090 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3091 		return -EROFS;
3092 
3093 	ret = mnt_want_write_file(filp);
3094 	if (ret)
3095 		return ret;
3096 
3097 	inode_lock(inode);
3098 
3099 	if (!pin) {
3100 		clear_inode_flag(inode, FI_PIN_FILE);
3101 		f2fs_i_gc_failures_write(inode, 0);
3102 		goto done;
3103 	}
3104 
3105 	if (f2fs_should_update_outplace(inode, NULL)) {
3106 		ret = -EINVAL;
3107 		goto out;
3108 	}
3109 
3110 	if (f2fs_pin_file_control(inode, false)) {
3111 		ret = -EAGAIN;
3112 		goto out;
3113 	}
3114 
3115 	ret = f2fs_convert_inline_inode(inode);
3116 	if (ret)
3117 		goto out;
3118 
3119 	if (!f2fs_disable_compressed_file(inode)) {
3120 		ret = -EOPNOTSUPP;
3121 		goto out;
3122 	}
3123 
3124 	set_inode_flag(inode, FI_PIN_FILE);
3125 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3126 done:
3127 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3128 out:
3129 	inode_unlock(inode);
3130 	mnt_drop_write_file(filp);
3131 	return ret;
3132 }
3133 
3134 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3135 {
3136 	struct inode *inode = file_inode(filp);
3137 	__u32 pin = 0;
3138 
3139 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3140 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3141 	return put_user(pin, (u32 __user *)arg);
3142 }
3143 
3144 int f2fs_precache_extents(struct inode *inode)
3145 {
3146 	struct f2fs_inode_info *fi = F2FS_I(inode);
3147 	struct f2fs_map_blocks map;
3148 	pgoff_t m_next_extent;
3149 	loff_t end;
3150 	int err;
3151 
3152 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3153 		return -EOPNOTSUPP;
3154 
3155 	map.m_lblk = 0;
3156 	map.m_next_pgofs = NULL;
3157 	map.m_next_extent = &m_next_extent;
3158 	map.m_seg_type = NO_CHECK_TYPE;
3159 	map.m_may_create = false;
3160 	end = max_file_blocks(inode);
3161 
3162 	while (map.m_lblk < end) {
3163 		map.m_len = end - map.m_lblk;
3164 
3165 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3166 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3167 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3168 		if (err)
3169 			return err;
3170 
3171 		map.m_lblk = m_next_extent;
3172 	}
3173 
3174 	return 0;
3175 }
3176 
3177 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3178 {
3179 	return f2fs_precache_extents(file_inode(filp));
3180 }
3181 
3182 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3183 {
3184 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3185 	__u64 block_count;
3186 
3187 	if (!capable(CAP_SYS_ADMIN))
3188 		return -EPERM;
3189 
3190 	if (f2fs_readonly(sbi->sb))
3191 		return -EROFS;
3192 
3193 	if (copy_from_user(&block_count, (void __user *)arg,
3194 			   sizeof(block_count)))
3195 		return -EFAULT;
3196 
3197 	return f2fs_resize_fs(sbi, block_count);
3198 }
3199 
3200 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3201 {
3202 	struct inode *inode = file_inode(filp);
3203 
3204 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3205 
3206 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3207 		f2fs_warn(F2FS_I_SB(inode),
3208 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3209 			  inode->i_ino);
3210 		return -EOPNOTSUPP;
3211 	}
3212 
3213 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3214 }
3215 
3216 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3217 {
3218 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3219 		return -EOPNOTSUPP;
3220 
3221 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3222 }
3223 
3224 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3225 {
3226 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3227 		return -EOPNOTSUPP;
3228 
3229 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3230 }
3231 
3232 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3233 {
3234 	struct inode *inode = file_inode(filp);
3235 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3236 	char *vbuf;
3237 	int count;
3238 	int err = 0;
3239 
3240 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3241 	if (!vbuf)
3242 		return -ENOMEM;
3243 
3244 	f2fs_down_read(&sbi->sb_lock);
3245 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3246 			ARRAY_SIZE(sbi->raw_super->volume_name),
3247 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3248 	f2fs_up_read(&sbi->sb_lock);
3249 
3250 	if (copy_to_user((char __user *)arg, vbuf,
3251 				min(FSLABEL_MAX, count)))
3252 		err = -EFAULT;
3253 
3254 	kfree(vbuf);
3255 	return err;
3256 }
3257 
3258 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3259 {
3260 	struct inode *inode = file_inode(filp);
3261 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3262 	char *vbuf;
3263 	int err = 0;
3264 
3265 	if (!capable(CAP_SYS_ADMIN))
3266 		return -EPERM;
3267 
3268 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3269 	if (IS_ERR(vbuf))
3270 		return PTR_ERR(vbuf);
3271 
3272 	err = mnt_want_write_file(filp);
3273 	if (err)
3274 		goto out;
3275 
3276 	f2fs_down_write(&sbi->sb_lock);
3277 
3278 	memset(sbi->raw_super->volume_name, 0,
3279 			sizeof(sbi->raw_super->volume_name));
3280 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3281 			sbi->raw_super->volume_name,
3282 			ARRAY_SIZE(sbi->raw_super->volume_name));
3283 
3284 	err = f2fs_commit_super(sbi, false);
3285 
3286 	f2fs_up_write(&sbi->sb_lock);
3287 
3288 	mnt_drop_write_file(filp);
3289 out:
3290 	kfree(vbuf);
3291 	return err;
3292 }
3293 
3294 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3295 {
3296 	struct inode *inode = file_inode(filp);
3297 	__u64 blocks;
3298 
3299 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3300 		return -EOPNOTSUPP;
3301 
3302 	if (!f2fs_compressed_file(inode))
3303 		return -EINVAL;
3304 
3305 	blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3306 	return put_user(blocks, (u64 __user *)arg);
3307 }
3308 
3309 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3310 {
3311 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3312 	unsigned int released_blocks = 0;
3313 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3314 	block_t blkaddr;
3315 	int i;
3316 
3317 	for (i = 0; i < count; i++) {
3318 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3319 						dn->ofs_in_node + i);
3320 
3321 		if (!__is_valid_data_blkaddr(blkaddr))
3322 			continue;
3323 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3324 					DATA_GENERIC_ENHANCE)))
3325 			return -EFSCORRUPTED;
3326 	}
3327 
3328 	while (count) {
3329 		int compr_blocks = 0;
3330 
3331 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3332 			blkaddr = f2fs_data_blkaddr(dn);
3333 
3334 			if (i == 0) {
3335 				if (blkaddr == COMPRESS_ADDR)
3336 					continue;
3337 				dn->ofs_in_node += cluster_size;
3338 				goto next;
3339 			}
3340 
3341 			if (__is_valid_data_blkaddr(blkaddr))
3342 				compr_blocks++;
3343 
3344 			if (blkaddr != NEW_ADDR)
3345 				continue;
3346 
3347 			dn->data_blkaddr = NULL_ADDR;
3348 			f2fs_set_data_blkaddr(dn);
3349 		}
3350 
3351 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3352 		dec_valid_block_count(sbi, dn->inode,
3353 					cluster_size - compr_blocks);
3354 
3355 		released_blocks += cluster_size - compr_blocks;
3356 next:
3357 		count -= cluster_size;
3358 	}
3359 
3360 	return released_blocks;
3361 }
3362 
3363 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3364 {
3365 	struct inode *inode = file_inode(filp);
3366 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3367 	pgoff_t page_idx = 0, last_idx;
3368 	unsigned int released_blocks = 0;
3369 	int ret;
3370 	int writecount;
3371 
3372 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3373 		return -EOPNOTSUPP;
3374 
3375 	if (!f2fs_compressed_file(inode))
3376 		return -EINVAL;
3377 
3378 	if (f2fs_readonly(sbi->sb))
3379 		return -EROFS;
3380 
3381 	ret = mnt_want_write_file(filp);
3382 	if (ret)
3383 		return ret;
3384 
3385 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3386 
3387 	inode_lock(inode);
3388 
3389 	writecount = atomic_read(&inode->i_writecount);
3390 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3391 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3392 		ret = -EBUSY;
3393 		goto out;
3394 	}
3395 
3396 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3397 		ret = -EINVAL;
3398 		goto out;
3399 	}
3400 
3401 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3402 	if (ret)
3403 		goto out;
3404 
3405 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3406 	inode->i_ctime = current_time(inode);
3407 	f2fs_mark_inode_dirty_sync(inode, true);
3408 
3409 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3410 		goto out;
3411 
3412 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3413 	filemap_invalidate_lock(inode->i_mapping);
3414 
3415 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3416 
3417 	while (page_idx < last_idx) {
3418 		struct dnode_of_data dn;
3419 		pgoff_t end_offset, count;
3420 
3421 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3422 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3423 		if (ret) {
3424 			if (ret == -ENOENT) {
3425 				page_idx = f2fs_get_next_page_offset(&dn,
3426 								page_idx);
3427 				ret = 0;
3428 				continue;
3429 			}
3430 			break;
3431 		}
3432 
3433 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3434 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3435 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3436 
3437 		ret = release_compress_blocks(&dn, count);
3438 
3439 		f2fs_put_dnode(&dn);
3440 
3441 		if (ret < 0)
3442 			break;
3443 
3444 		page_idx += count;
3445 		released_blocks += ret;
3446 	}
3447 
3448 	filemap_invalidate_unlock(inode->i_mapping);
3449 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3450 out:
3451 	inode_unlock(inode);
3452 
3453 	mnt_drop_write_file(filp);
3454 
3455 	if (ret >= 0) {
3456 		ret = put_user(released_blocks, (u64 __user *)arg);
3457 	} else if (released_blocks &&
3458 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3459 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3460 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3461 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3462 			"run fsck to fix.",
3463 			__func__, inode->i_ino, inode->i_blocks,
3464 			released_blocks,
3465 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3466 	}
3467 
3468 	return ret;
3469 }
3470 
3471 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3472 {
3473 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3474 	unsigned int reserved_blocks = 0;
3475 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3476 	block_t blkaddr;
3477 	int i;
3478 
3479 	for (i = 0; i < count; i++) {
3480 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3481 						dn->ofs_in_node + i);
3482 
3483 		if (!__is_valid_data_blkaddr(blkaddr))
3484 			continue;
3485 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3486 					DATA_GENERIC_ENHANCE)))
3487 			return -EFSCORRUPTED;
3488 	}
3489 
3490 	while (count) {
3491 		int compr_blocks = 0;
3492 		blkcnt_t reserved;
3493 		int ret;
3494 
3495 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3496 			blkaddr = f2fs_data_blkaddr(dn);
3497 
3498 			if (i == 0) {
3499 				if (blkaddr == COMPRESS_ADDR)
3500 					continue;
3501 				dn->ofs_in_node += cluster_size;
3502 				goto next;
3503 			}
3504 
3505 			if (__is_valid_data_blkaddr(blkaddr)) {
3506 				compr_blocks++;
3507 				continue;
3508 			}
3509 
3510 			dn->data_blkaddr = NEW_ADDR;
3511 			f2fs_set_data_blkaddr(dn);
3512 		}
3513 
3514 		reserved = cluster_size - compr_blocks;
3515 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3516 		if (ret)
3517 			return ret;
3518 
3519 		if (reserved != cluster_size - compr_blocks)
3520 			return -ENOSPC;
3521 
3522 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3523 
3524 		reserved_blocks += reserved;
3525 next:
3526 		count -= cluster_size;
3527 	}
3528 
3529 	return reserved_blocks;
3530 }
3531 
3532 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3533 {
3534 	struct inode *inode = file_inode(filp);
3535 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3536 	pgoff_t page_idx = 0, last_idx;
3537 	unsigned int reserved_blocks = 0;
3538 	int ret;
3539 
3540 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3541 		return -EOPNOTSUPP;
3542 
3543 	if (!f2fs_compressed_file(inode))
3544 		return -EINVAL;
3545 
3546 	if (f2fs_readonly(sbi->sb))
3547 		return -EROFS;
3548 
3549 	ret = mnt_want_write_file(filp);
3550 	if (ret)
3551 		return ret;
3552 
3553 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3554 		goto out;
3555 
3556 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3557 
3558 	inode_lock(inode);
3559 
3560 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3561 		ret = -EINVAL;
3562 		goto unlock_inode;
3563 	}
3564 
3565 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3566 	filemap_invalidate_lock(inode->i_mapping);
3567 
3568 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3569 
3570 	while (page_idx < last_idx) {
3571 		struct dnode_of_data dn;
3572 		pgoff_t end_offset, count;
3573 
3574 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3575 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3576 		if (ret) {
3577 			if (ret == -ENOENT) {
3578 				page_idx = f2fs_get_next_page_offset(&dn,
3579 								page_idx);
3580 				ret = 0;
3581 				continue;
3582 			}
3583 			break;
3584 		}
3585 
3586 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3587 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3588 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3589 
3590 		ret = reserve_compress_blocks(&dn, count);
3591 
3592 		f2fs_put_dnode(&dn);
3593 
3594 		if (ret < 0)
3595 			break;
3596 
3597 		page_idx += count;
3598 		reserved_blocks += ret;
3599 	}
3600 
3601 	filemap_invalidate_unlock(inode->i_mapping);
3602 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3603 
3604 	if (ret >= 0) {
3605 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3606 		inode->i_ctime = current_time(inode);
3607 		f2fs_mark_inode_dirty_sync(inode, true);
3608 	}
3609 unlock_inode:
3610 	inode_unlock(inode);
3611 out:
3612 	mnt_drop_write_file(filp);
3613 
3614 	if (ret >= 0) {
3615 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3616 	} else if (reserved_blocks &&
3617 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3618 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3619 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3620 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3621 			"run fsck to fix.",
3622 			__func__, inode->i_ino, inode->i_blocks,
3623 			reserved_blocks,
3624 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3625 	}
3626 
3627 	return ret;
3628 }
3629 
3630 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3631 		pgoff_t off, block_t block, block_t len, u32 flags)
3632 {
3633 	sector_t sector = SECTOR_FROM_BLOCK(block);
3634 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3635 	int ret = 0;
3636 
3637 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3638 		if (bdev_max_secure_erase_sectors(bdev))
3639 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3640 					GFP_NOFS);
3641 		else
3642 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3643 					GFP_NOFS);
3644 	}
3645 
3646 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3647 		if (IS_ENCRYPTED(inode))
3648 			ret = fscrypt_zeroout_range(inode, off, block, len);
3649 		else
3650 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3651 					GFP_NOFS, 0);
3652 	}
3653 
3654 	return ret;
3655 }
3656 
3657 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3658 {
3659 	struct inode *inode = file_inode(filp);
3660 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3661 	struct address_space *mapping = inode->i_mapping;
3662 	struct block_device *prev_bdev = NULL;
3663 	struct f2fs_sectrim_range range;
3664 	pgoff_t index, pg_end, prev_index = 0;
3665 	block_t prev_block = 0, len = 0;
3666 	loff_t end_addr;
3667 	bool to_end = false;
3668 	int ret = 0;
3669 
3670 	if (!(filp->f_mode & FMODE_WRITE))
3671 		return -EBADF;
3672 
3673 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3674 				sizeof(range)))
3675 		return -EFAULT;
3676 
3677 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3678 			!S_ISREG(inode->i_mode))
3679 		return -EINVAL;
3680 
3681 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3682 			!f2fs_hw_support_discard(sbi)) ||
3683 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3684 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3685 		return -EOPNOTSUPP;
3686 
3687 	file_start_write(filp);
3688 	inode_lock(inode);
3689 
3690 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3691 			range.start >= inode->i_size) {
3692 		ret = -EINVAL;
3693 		goto err;
3694 	}
3695 
3696 	if (range.len == 0)
3697 		goto err;
3698 
3699 	if (inode->i_size - range.start > range.len) {
3700 		end_addr = range.start + range.len;
3701 	} else {
3702 		end_addr = range.len == (u64)-1 ?
3703 			sbi->sb->s_maxbytes : inode->i_size;
3704 		to_end = true;
3705 	}
3706 
3707 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3708 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3709 		ret = -EINVAL;
3710 		goto err;
3711 	}
3712 
3713 	index = F2FS_BYTES_TO_BLK(range.start);
3714 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3715 
3716 	ret = f2fs_convert_inline_inode(inode);
3717 	if (ret)
3718 		goto err;
3719 
3720 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3721 	filemap_invalidate_lock(mapping);
3722 
3723 	ret = filemap_write_and_wait_range(mapping, range.start,
3724 			to_end ? LLONG_MAX : end_addr - 1);
3725 	if (ret)
3726 		goto out;
3727 
3728 	truncate_inode_pages_range(mapping, range.start,
3729 			to_end ? -1 : end_addr - 1);
3730 
3731 	while (index < pg_end) {
3732 		struct dnode_of_data dn;
3733 		pgoff_t end_offset, count;
3734 		int i;
3735 
3736 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3737 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3738 		if (ret) {
3739 			if (ret == -ENOENT) {
3740 				index = f2fs_get_next_page_offset(&dn, index);
3741 				continue;
3742 			}
3743 			goto out;
3744 		}
3745 
3746 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3747 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3748 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3749 			struct block_device *cur_bdev;
3750 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3751 
3752 			if (!__is_valid_data_blkaddr(blkaddr))
3753 				continue;
3754 
3755 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3756 						DATA_GENERIC_ENHANCE)) {
3757 				ret = -EFSCORRUPTED;
3758 				f2fs_put_dnode(&dn);
3759 				goto out;
3760 			}
3761 
3762 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3763 			if (f2fs_is_multi_device(sbi)) {
3764 				int di = f2fs_target_device_index(sbi, blkaddr);
3765 
3766 				blkaddr -= FDEV(di).start_blk;
3767 			}
3768 
3769 			if (len) {
3770 				if (prev_bdev == cur_bdev &&
3771 						index == prev_index + len &&
3772 						blkaddr == prev_block + len) {
3773 					len++;
3774 				} else {
3775 					ret = f2fs_secure_erase(prev_bdev,
3776 						inode, prev_index, prev_block,
3777 						len, range.flags);
3778 					if (ret) {
3779 						f2fs_put_dnode(&dn);
3780 						goto out;
3781 					}
3782 
3783 					len = 0;
3784 				}
3785 			}
3786 
3787 			if (!len) {
3788 				prev_bdev = cur_bdev;
3789 				prev_index = index;
3790 				prev_block = blkaddr;
3791 				len = 1;
3792 			}
3793 		}
3794 
3795 		f2fs_put_dnode(&dn);
3796 
3797 		if (fatal_signal_pending(current)) {
3798 			ret = -EINTR;
3799 			goto out;
3800 		}
3801 		cond_resched();
3802 	}
3803 
3804 	if (len)
3805 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3806 				prev_block, len, range.flags);
3807 out:
3808 	filemap_invalidate_unlock(mapping);
3809 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3810 err:
3811 	inode_unlock(inode);
3812 	file_end_write(filp);
3813 
3814 	return ret;
3815 }
3816 
3817 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3818 {
3819 	struct inode *inode = file_inode(filp);
3820 	struct f2fs_comp_option option;
3821 
3822 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3823 		return -EOPNOTSUPP;
3824 
3825 	inode_lock_shared(inode);
3826 
3827 	if (!f2fs_compressed_file(inode)) {
3828 		inode_unlock_shared(inode);
3829 		return -ENODATA;
3830 	}
3831 
3832 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3833 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3834 
3835 	inode_unlock_shared(inode);
3836 
3837 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3838 				sizeof(option)))
3839 		return -EFAULT;
3840 
3841 	return 0;
3842 }
3843 
3844 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3845 {
3846 	struct inode *inode = file_inode(filp);
3847 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3848 	struct f2fs_comp_option option;
3849 	int ret = 0;
3850 
3851 	if (!f2fs_sb_has_compression(sbi))
3852 		return -EOPNOTSUPP;
3853 
3854 	if (!(filp->f_mode & FMODE_WRITE))
3855 		return -EBADF;
3856 
3857 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3858 				sizeof(option)))
3859 		return -EFAULT;
3860 
3861 	if (!f2fs_compressed_file(inode) ||
3862 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3863 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3864 			option.algorithm >= COMPRESS_MAX)
3865 		return -EINVAL;
3866 
3867 	file_start_write(filp);
3868 	inode_lock(inode);
3869 
3870 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3871 		ret = -EBUSY;
3872 		goto out;
3873 	}
3874 
3875 	if (inode->i_size != 0) {
3876 		ret = -EFBIG;
3877 		goto out;
3878 	}
3879 
3880 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3881 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3882 	F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3883 	f2fs_mark_inode_dirty_sync(inode, true);
3884 
3885 	if (!f2fs_is_compress_backend_ready(inode))
3886 		f2fs_warn(sbi, "compression algorithm is successfully set, "
3887 			"but current kernel doesn't support this algorithm.");
3888 out:
3889 	inode_unlock(inode);
3890 	file_end_write(filp);
3891 
3892 	return ret;
3893 }
3894 
3895 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3896 {
3897 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3898 	struct address_space *mapping = inode->i_mapping;
3899 	struct page *page;
3900 	pgoff_t redirty_idx = page_idx;
3901 	int i, page_len = 0, ret = 0;
3902 
3903 	page_cache_ra_unbounded(&ractl, len, 0);
3904 
3905 	for (i = 0; i < len; i++, page_idx++) {
3906 		page = read_cache_page(mapping, page_idx, NULL, NULL);
3907 		if (IS_ERR(page)) {
3908 			ret = PTR_ERR(page);
3909 			break;
3910 		}
3911 		page_len++;
3912 	}
3913 
3914 	for (i = 0; i < page_len; i++, redirty_idx++) {
3915 		page = find_lock_page(mapping, redirty_idx);
3916 
3917 		/* It will never fail, when page has pinned above */
3918 		f2fs_bug_on(F2FS_I_SB(inode), !page);
3919 
3920 		set_page_dirty(page);
3921 		f2fs_put_page(page, 1);
3922 		f2fs_put_page(page, 0);
3923 	}
3924 
3925 	return ret;
3926 }
3927 
3928 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3929 {
3930 	struct inode *inode = file_inode(filp);
3931 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3932 	struct f2fs_inode_info *fi = F2FS_I(inode);
3933 	pgoff_t page_idx = 0, last_idx;
3934 	unsigned int blk_per_seg = sbi->blocks_per_seg;
3935 	int cluster_size = fi->i_cluster_size;
3936 	int count, ret;
3937 
3938 	if (!f2fs_sb_has_compression(sbi) ||
3939 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3940 		return -EOPNOTSUPP;
3941 
3942 	if (!(filp->f_mode & FMODE_WRITE))
3943 		return -EBADF;
3944 
3945 	if (!f2fs_compressed_file(inode))
3946 		return -EINVAL;
3947 
3948 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3949 
3950 	file_start_write(filp);
3951 	inode_lock(inode);
3952 
3953 	if (!f2fs_is_compress_backend_ready(inode)) {
3954 		ret = -EOPNOTSUPP;
3955 		goto out;
3956 	}
3957 
3958 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3959 		ret = -EINVAL;
3960 		goto out;
3961 	}
3962 
3963 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3964 	if (ret)
3965 		goto out;
3966 
3967 	if (!atomic_read(&fi->i_compr_blocks))
3968 		goto out;
3969 
3970 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3971 
3972 	count = last_idx - page_idx;
3973 	while (count) {
3974 		int len = min(cluster_size, count);
3975 
3976 		ret = redirty_blocks(inode, page_idx, len);
3977 		if (ret < 0)
3978 			break;
3979 
3980 		if (get_dirty_pages(inode) >= blk_per_seg)
3981 			filemap_fdatawrite(inode->i_mapping);
3982 
3983 		count -= len;
3984 		page_idx += len;
3985 	}
3986 
3987 	if (!ret)
3988 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
3989 							LLONG_MAX);
3990 
3991 	if (ret)
3992 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
3993 			  __func__, ret);
3994 out:
3995 	inode_unlock(inode);
3996 	file_end_write(filp);
3997 
3998 	return ret;
3999 }
4000 
4001 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4002 {
4003 	struct inode *inode = file_inode(filp);
4004 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4005 	pgoff_t page_idx = 0, last_idx;
4006 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4007 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4008 	int count, ret;
4009 
4010 	if (!f2fs_sb_has_compression(sbi) ||
4011 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4012 		return -EOPNOTSUPP;
4013 
4014 	if (!(filp->f_mode & FMODE_WRITE))
4015 		return -EBADF;
4016 
4017 	if (!f2fs_compressed_file(inode))
4018 		return -EINVAL;
4019 
4020 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4021 
4022 	file_start_write(filp);
4023 	inode_lock(inode);
4024 
4025 	if (!f2fs_is_compress_backend_ready(inode)) {
4026 		ret = -EOPNOTSUPP;
4027 		goto out;
4028 	}
4029 
4030 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4031 		ret = -EINVAL;
4032 		goto out;
4033 	}
4034 
4035 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4036 	if (ret)
4037 		goto out;
4038 
4039 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4040 
4041 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4042 
4043 	count = last_idx - page_idx;
4044 	while (count) {
4045 		int len = min(cluster_size, count);
4046 
4047 		ret = redirty_blocks(inode, page_idx, len);
4048 		if (ret < 0)
4049 			break;
4050 
4051 		if (get_dirty_pages(inode) >= blk_per_seg)
4052 			filemap_fdatawrite(inode->i_mapping);
4053 
4054 		count -= len;
4055 		page_idx += len;
4056 	}
4057 
4058 	if (!ret)
4059 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4060 							LLONG_MAX);
4061 
4062 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4063 
4064 	if (ret)
4065 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4066 			  __func__, ret);
4067 out:
4068 	inode_unlock(inode);
4069 	file_end_write(filp);
4070 
4071 	return ret;
4072 }
4073 
4074 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4075 {
4076 	switch (cmd) {
4077 	case FS_IOC_GETVERSION:
4078 		return f2fs_ioc_getversion(filp, arg);
4079 	case F2FS_IOC_START_ATOMIC_WRITE:
4080 		return f2fs_ioc_start_atomic_write(filp);
4081 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4082 		return f2fs_ioc_commit_atomic_write(filp);
4083 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4084 		return f2fs_ioc_abort_atomic_write(filp);
4085 	case F2FS_IOC_START_VOLATILE_WRITE:
4086 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4087 		return -EOPNOTSUPP;
4088 	case F2FS_IOC_SHUTDOWN:
4089 		return f2fs_ioc_shutdown(filp, arg);
4090 	case FITRIM:
4091 		return f2fs_ioc_fitrim(filp, arg);
4092 	case FS_IOC_SET_ENCRYPTION_POLICY:
4093 		return f2fs_ioc_set_encryption_policy(filp, arg);
4094 	case FS_IOC_GET_ENCRYPTION_POLICY:
4095 		return f2fs_ioc_get_encryption_policy(filp, arg);
4096 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4097 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4098 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4099 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4100 	case FS_IOC_ADD_ENCRYPTION_KEY:
4101 		return f2fs_ioc_add_encryption_key(filp, arg);
4102 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4103 		return f2fs_ioc_remove_encryption_key(filp, arg);
4104 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4105 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4106 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4107 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4108 	case FS_IOC_GET_ENCRYPTION_NONCE:
4109 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4110 	case F2FS_IOC_GARBAGE_COLLECT:
4111 		return f2fs_ioc_gc(filp, arg);
4112 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4113 		return f2fs_ioc_gc_range(filp, arg);
4114 	case F2FS_IOC_WRITE_CHECKPOINT:
4115 		return f2fs_ioc_write_checkpoint(filp, arg);
4116 	case F2FS_IOC_DEFRAGMENT:
4117 		return f2fs_ioc_defragment(filp, arg);
4118 	case F2FS_IOC_MOVE_RANGE:
4119 		return f2fs_ioc_move_range(filp, arg);
4120 	case F2FS_IOC_FLUSH_DEVICE:
4121 		return f2fs_ioc_flush_device(filp, arg);
4122 	case F2FS_IOC_GET_FEATURES:
4123 		return f2fs_ioc_get_features(filp, arg);
4124 	case F2FS_IOC_GET_PIN_FILE:
4125 		return f2fs_ioc_get_pin_file(filp, arg);
4126 	case F2FS_IOC_SET_PIN_FILE:
4127 		return f2fs_ioc_set_pin_file(filp, arg);
4128 	case F2FS_IOC_PRECACHE_EXTENTS:
4129 		return f2fs_ioc_precache_extents(filp, arg);
4130 	case F2FS_IOC_RESIZE_FS:
4131 		return f2fs_ioc_resize_fs(filp, arg);
4132 	case FS_IOC_ENABLE_VERITY:
4133 		return f2fs_ioc_enable_verity(filp, arg);
4134 	case FS_IOC_MEASURE_VERITY:
4135 		return f2fs_ioc_measure_verity(filp, arg);
4136 	case FS_IOC_READ_VERITY_METADATA:
4137 		return f2fs_ioc_read_verity_metadata(filp, arg);
4138 	case FS_IOC_GETFSLABEL:
4139 		return f2fs_ioc_getfslabel(filp, arg);
4140 	case FS_IOC_SETFSLABEL:
4141 		return f2fs_ioc_setfslabel(filp, arg);
4142 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4143 		return f2fs_get_compress_blocks(filp, arg);
4144 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4145 		return f2fs_release_compress_blocks(filp, arg);
4146 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4147 		return f2fs_reserve_compress_blocks(filp, arg);
4148 	case F2FS_IOC_SEC_TRIM_FILE:
4149 		return f2fs_sec_trim_file(filp, arg);
4150 	case F2FS_IOC_GET_COMPRESS_OPTION:
4151 		return f2fs_ioc_get_compress_option(filp, arg);
4152 	case F2FS_IOC_SET_COMPRESS_OPTION:
4153 		return f2fs_ioc_set_compress_option(filp, arg);
4154 	case F2FS_IOC_DECOMPRESS_FILE:
4155 		return f2fs_ioc_decompress_file(filp, arg);
4156 	case F2FS_IOC_COMPRESS_FILE:
4157 		return f2fs_ioc_compress_file(filp, arg);
4158 	default:
4159 		return -ENOTTY;
4160 	}
4161 }
4162 
4163 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4164 {
4165 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4166 		return -EIO;
4167 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4168 		return -ENOSPC;
4169 
4170 	return __f2fs_ioctl(filp, cmd, arg);
4171 }
4172 
4173 /*
4174  * Return %true if the given read or write request should use direct I/O, or
4175  * %false if it should use buffered I/O.
4176  */
4177 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4178 				struct iov_iter *iter)
4179 {
4180 	unsigned int align;
4181 
4182 	if (!(iocb->ki_flags & IOCB_DIRECT))
4183 		return false;
4184 
4185 	if (f2fs_force_buffered_io(inode, iocb, iter))
4186 		return false;
4187 
4188 	/*
4189 	 * Direct I/O not aligned to the disk's logical_block_size will be
4190 	 * attempted, but will fail with -EINVAL.
4191 	 *
4192 	 * f2fs additionally requires that direct I/O be aligned to the
4193 	 * filesystem block size, which is often a stricter requirement.
4194 	 * However, f2fs traditionally falls back to buffered I/O on requests
4195 	 * that are logical_block_size-aligned but not fs-block aligned.
4196 	 *
4197 	 * The below logic implements this behavior.
4198 	 */
4199 	align = iocb->ki_pos | iov_iter_alignment(iter);
4200 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4201 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4202 		return false;
4203 
4204 	return true;
4205 }
4206 
4207 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4208 				unsigned int flags)
4209 {
4210 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4211 
4212 	dec_page_count(sbi, F2FS_DIO_READ);
4213 	if (error)
4214 		return error;
4215 	f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, size);
4216 	return 0;
4217 }
4218 
4219 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4220 	.end_io = f2fs_dio_read_end_io,
4221 };
4222 
4223 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4224 {
4225 	struct file *file = iocb->ki_filp;
4226 	struct inode *inode = file_inode(file);
4227 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4228 	struct f2fs_inode_info *fi = F2FS_I(inode);
4229 	const loff_t pos = iocb->ki_pos;
4230 	const size_t count = iov_iter_count(to);
4231 	struct iomap_dio *dio;
4232 	ssize_t ret;
4233 
4234 	if (count == 0)
4235 		return 0; /* skip atime update */
4236 
4237 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4238 
4239 	if (iocb->ki_flags & IOCB_NOWAIT) {
4240 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4241 			ret = -EAGAIN;
4242 			goto out;
4243 		}
4244 	} else {
4245 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4246 	}
4247 
4248 	/*
4249 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4250 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4251 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4252 	 */
4253 	inc_page_count(sbi, F2FS_DIO_READ);
4254 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4255 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4256 	if (IS_ERR_OR_NULL(dio)) {
4257 		ret = PTR_ERR_OR_ZERO(dio);
4258 		if (ret != -EIOCBQUEUED)
4259 			dec_page_count(sbi, F2FS_DIO_READ);
4260 	} else {
4261 		ret = iomap_dio_complete(dio);
4262 	}
4263 
4264 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4265 
4266 	file_accessed(file);
4267 out:
4268 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4269 	return ret;
4270 }
4271 
4272 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4273 {
4274 	struct inode *inode = file_inode(iocb->ki_filp);
4275 	const loff_t pos = iocb->ki_pos;
4276 	ssize_t ret;
4277 
4278 	if (!f2fs_is_compress_backend_ready(inode))
4279 		return -EOPNOTSUPP;
4280 
4281 	if (trace_f2fs_dataread_start_enabled()) {
4282 		char *p = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL);
4283 		char *path;
4284 
4285 		if (!p)
4286 			goto skip_read_trace;
4287 
4288 		path = dentry_path_raw(file_dentry(iocb->ki_filp), p, PATH_MAX);
4289 		if (IS_ERR(path)) {
4290 			kfree(p);
4291 			goto skip_read_trace;
4292 		}
4293 
4294 		trace_f2fs_dataread_start(inode, pos, iov_iter_count(to),
4295 					current->pid, path, current->comm);
4296 		kfree(p);
4297 	}
4298 skip_read_trace:
4299 	if (f2fs_should_use_dio(inode, iocb, to)) {
4300 		ret = f2fs_dio_read_iter(iocb, to);
4301 	} else {
4302 		ret = filemap_read(iocb, to, 0);
4303 		if (ret > 0)
4304 			f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_READ_IO, ret);
4305 	}
4306 	if (trace_f2fs_dataread_end_enabled())
4307 		trace_f2fs_dataread_end(inode, pos, ret);
4308 	return ret;
4309 }
4310 
4311 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4312 {
4313 	struct file *file = iocb->ki_filp;
4314 	struct inode *inode = file_inode(file);
4315 	ssize_t count;
4316 	int err;
4317 
4318 	if (IS_IMMUTABLE(inode))
4319 		return -EPERM;
4320 
4321 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4322 		return -EPERM;
4323 
4324 	count = generic_write_checks(iocb, from);
4325 	if (count <= 0)
4326 		return count;
4327 
4328 	err = file_modified(file);
4329 	if (err)
4330 		return err;
4331 	return count;
4332 }
4333 
4334 /*
4335  * Preallocate blocks for a write request, if it is possible and helpful to do
4336  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4337  * blocks were preallocated, or a negative errno value if something went
4338  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4339  * requested blocks (not just some of them) have been allocated.
4340  */
4341 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4342 				   bool dio)
4343 {
4344 	struct inode *inode = file_inode(iocb->ki_filp);
4345 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4346 	const loff_t pos = iocb->ki_pos;
4347 	const size_t count = iov_iter_count(iter);
4348 	struct f2fs_map_blocks map = {};
4349 	int flag;
4350 	int ret;
4351 
4352 	/* If it will be an out-of-place direct write, don't bother. */
4353 	if (dio && f2fs_lfs_mode(sbi))
4354 		return 0;
4355 	/*
4356 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4357 	 * buffered IO, if DIO meets any holes.
4358 	 */
4359 	if (dio && i_size_read(inode) &&
4360 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4361 		return 0;
4362 
4363 	/* No-wait I/O can't allocate blocks. */
4364 	if (iocb->ki_flags & IOCB_NOWAIT)
4365 		return 0;
4366 
4367 	/* If it will be a short write, don't bother. */
4368 	if (fault_in_iov_iter_readable(iter, count))
4369 		return 0;
4370 
4371 	if (f2fs_has_inline_data(inode)) {
4372 		/* If the data will fit inline, don't bother. */
4373 		if (pos + count <= MAX_INLINE_DATA(inode))
4374 			return 0;
4375 		ret = f2fs_convert_inline_inode(inode);
4376 		if (ret)
4377 			return ret;
4378 	}
4379 
4380 	/* Do not preallocate blocks that will be written partially in 4KB. */
4381 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4382 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4383 	if (map.m_len > map.m_lblk)
4384 		map.m_len -= map.m_lblk;
4385 	else
4386 		map.m_len = 0;
4387 	map.m_may_create = true;
4388 	if (dio) {
4389 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4390 		flag = F2FS_GET_BLOCK_PRE_DIO;
4391 	} else {
4392 		map.m_seg_type = NO_CHECK_TYPE;
4393 		flag = F2FS_GET_BLOCK_PRE_AIO;
4394 	}
4395 
4396 	ret = f2fs_map_blocks(inode, &map, 1, flag);
4397 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4398 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4399 		return ret;
4400 	if (ret == 0)
4401 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4402 	return map.m_len;
4403 }
4404 
4405 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4406 					struct iov_iter *from)
4407 {
4408 	struct file *file = iocb->ki_filp;
4409 	struct inode *inode = file_inode(file);
4410 	ssize_t ret;
4411 
4412 	if (iocb->ki_flags & IOCB_NOWAIT)
4413 		return -EOPNOTSUPP;
4414 
4415 	current->backing_dev_info = inode_to_bdi(inode);
4416 	ret = generic_perform_write(iocb, from);
4417 	current->backing_dev_info = NULL;
4418 
4419 	if (ret > 0) {
4420 		iocb->ki_pos += ret;
4421 		f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_IO, ret);
4422 	}
4423 	return ret;
4424 }
4425 
4426 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4427 				 unsigned int flags)
4428 {
4429 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4430 
4431 	dec_page_count(sbi, F2FS_DIO_WRITE);
4432 	if (error)
4433 		return error;
4434 	f2fs_update_iostat(sbi, APP_DIRECT_IO, size);
4435 	return 0;
4436 }
4437 
4438 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4439 	.end_io = f2fs_dio_write_end_io,
4440 };
4441 
4442 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4443 				   bool *may_need_sync)
4444 {
4445 	struct file *file = iocb->ki_filp;
4446 	struct inode *inode = file_inode(file);
4447 	struct f2fs_inode_info *fi = F2FS_I(inode);
4448 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4449 	const bool do_opu = f2fs_lfs_mode(sbi);
4450 	const loff_t pos = iocb->ki_pos;
4451 	const ssize_t count = iov_iter_count(from);
4452 	unsigned int dio_flags;
4453 	struct iomap_dio *dio;
4454 	ssize_t ret;
4455 
4456 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4457 
4458 	if (iocb->ki_flags & IOCB_NOWAIT) {
4459 		/* f2fs_convert_inline_inode() and block allocation can block */
4460 		if (f2fs_has_inline_data(inode) ||
4461 		    !f2fs_overwrite_io(inode, pos, count)) {
4462 			ret = -EAGAIN;
4463 			goto out;
4464 		}
4465 
4466 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4467 			ret = -EAGAIN;
4468 			goto out;
4469 		}
4470 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4471 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4472 			ret = -EAGAIN;
4473 			goto out;
4474 		}
4475 	} else {
4476 		ret = f2fs_convert_inline_inode(inode);
4477 		if (ret)
4478 			goto out;
4479 
4480 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4481 		if (do_opu)
4482 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4483 	}
4484 
4485 	/*
4486 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4487 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4488 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4489 	 */
4490 	inc_page_count(sbi, F2FS_DIO_WRITE);
4491 	dio_flags = 0;
4492 	if (pos + count > inode->i_size)
4493 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4494 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4495 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4496 	if (IS_ERR_OR_NULL(dio)) {
4497 		ret = PTR_ERR_OR_ZERO(dio);
4498 		if (ret == -ENOTBLK)
4499 			ret = 0;
4500 		if (ret != -EIOCBQUEUED)
4501 			dec_page_count(sbi, F2FS_DIO_WRITE);
4502 	} else {
4503 		ret = iomap_dio_complete(dio);
4504 	}
4505 
4506 	if (do_opu)
4507 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4508 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4509 
4510 	if (ret < 0)
4511 		goto out;
4512 	if (pos + ret > inode->i_size)
4513 		f2fs_i_size_write(inode, pos + ret);
4514 	if (!do_opu)
4515 		set_inode_flag(inode, FI_UPDATE_WRITE);
4516 
4517 	if (iov_iter_count(from)) {
4518 		ssize_t ret2;
4519 		loff_t bufio_start_pos = iocb->ki_pos;
4520 
4521 		/*
4522 		 * The direct write was partial, so we need to fall back to a
4523 		 * buffered write for the remainder.
4524 		 */
4525 
4526 		ret2 = f2fs_buffered_write_iter(iocb, from);
4527 		if (iov_iter_count(from))
4528 			f2fs_write_failed(inode, iocb->ki_pos);
4529 		if (ret2 < 0)
4530 			goto out;
4531 
4532 		/*
4533 		 * Ensure that the pagecache pages are written to disk and
4534 		 * invalidated to preserve the expected O_DIRECT semantics.
4535 		 */
4536 		if (ret2 > 0) {
4537 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4538 
4539 			ret += ret2;
4540 
4541 			ret2 = filemap_write_and_wait_range(file->f_mapping,
4542 							    bufio_start_pos,
4543 							    bufio_end_pos);
4544 			if (ret2 < 0)
4545 				goto out;
4546 			invalidate_mapping_pages(file->f_mapping,
4547 						 bufio_start_pos >> PAGE_SHIFT,
4548 						 bufio_end_pos >> PAGE_SHIFT);
4549 		}
4550 	} else {
4551 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4552 		*may_need_sync = false;
4553 	}
4554 out:
4555 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4556 	return ret;
4557 }
4558 
4559 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4560 {
4561 	struct inode *inode = file_inode(iocb->ki_filp);
4562 	const loff_t orig_pos = iocb->ki_pos;
4563 	const size_t orig_count = iov_iter_count(from);
4564 	loff_t target_size;
4565 	bool dio;
4566 	bool may_need_sync = true;
4567 	int preallocated;
4568 	ssize_t ret;
4569 
4570 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4571 		ret = -EIO;
4572 		goto out;
4573 	}
4574 
4575 	if (!f2fs_is_compress_backend_ready(inode)) {
4576 		ret = -EOPNOTSUPP;
4577 		goto out;
4578 	}
4579 
4580 	if (iocb->ki_flags & IOCB_NOWAIT) {
4581 		if (!inode_trylock(inode)) {
4582 			ret = -EAGAIN;
4583 			goto out;
4584 		}
4585 	} else {
4586 		inode_lock(inode);
4587 	}
4588 
4589 	ret = f2fs_write_checks(iocb, from);
4590 	if (ret <= 0)
4591 		goto out_unlock;
4592 
4593 	/* Determine whether we will do a direct write or a buffered write. */
4594 	dio = f2fs_should_use_dio(inode, iocb, from);
4595 
4596 	/* Possibly preallocate the blocks for the write. */
4597 	target_size = iocb->ki_pos + iov_iter_count(from);
4598 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4599 	if (preallocated < 0) {
4600 		ret = preallocated;
4601 	} else {
4602 		if (trace_f2fs_datawrite_start_enabled()) {
4603 			char *p = f2fs_kmalloc(F2FS_I_SB(inode),
4604 						PATH_MAX, GFP_KERNEL);
4605 			char *path;
4606 
4607 			if (!p)
4608 				goto skip_write_trace;
4609 			path = dentry_path_raw(file_dentry(iocb->ki_filp),
4610 								p, PATH_MAX);
4611 			if (IS_ERR(path)) {
4612 				kfree(p);
4613 				goto skip_write_trace;
4614 			}
4615 			trace_f2fs_datawrite_start(inode, orig_pos, orig_count,
4616 					current->pid, path, current->comm);
4617 			kfree(p);
4618 		}
4619 skip_write_trace:
4620 		/* Do the actual write. */
4621 		ret = dio ?
4622 			f2fs_dio_write_iter(iocb, from, &may_need_sync):
4623 			f2fs_buffered_write_iter(iocb, from);
4624 
4625 		if (trace_f2fs_datawrite_end_enabled())
4626 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4627 	}
4628 
4629 	/* Don't leave any preallocated blocks around past i_size. */
4630 	if (preallocated && i_size_read(inode) < target_size) {
4631 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4632 		filemap_invalidate_lock(inode->i_mapping);
4633 		if (!f2fs_truncate(inode))
4634 			file_dont_truncate(inode);
4635 		filemap_invalidate_unlock(inode->i_mapping);
4636 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4637 	} else {
4638 		file_dont_truncate(inode);
4639 	}
4640 
4641 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4642 out_unlock:
4643 	inode_unlock(inode);
4644 out:
4645 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4646 	if (ret > 0 && may_need_sync)
4647 		ret = generic_write_sync(iocb, ret);
4648 	return ret;
4649 }
4650 
4651 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4652 		int advice)
4653 {
4654 	struct address_space *mapping;
4655 	struct backing_dev_info *bdi;
4656 	struct inode *inode = file_inode(filp);
4657 	int err;
4658 
4659 	if (advice == POSIX_FADV_SEQUENTIAL) {
4660 		if (S_ISFIFO(inode->i_mode))
4661 			return -ESPIPE;
4662 
4663 		mapping = filp->f_mapping;
4664 		if (!mapping || len < 0)
4665 			return -EINVAL;
4666 
4667 		bdi = inode_to_bdi(mapping->host);
4668 		filp->f_ra.ra_pages = bdi->ra_pages *
4669 			F2FS_I_SB(inode)->seq_file_ra_mul;
4670 		spin_lock(&filp->f_lock);
4671 		filp->f_mode &= ~FMODE_RANDOM;
4672 		spin_unlock(&filp->f_lock);
4673 		return 0;
4674 	}
4675 
4676 	err = generic_fadvise(filp, offset, len, advice);
4677 	if (!err && advice == POSIX_FADV_DONTNEED &&
4678 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4679 		f2fs_compressed_file(inode))
4680 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4681 
4682 	return err;
4683 }
4684 
4685 #ifdef CONFIG_COMPAT
4686 struct compat_f2fs_gc_range {
4687 	u32 sync;
4688 	compat_u64 start;
4689 	compat_u64 len;
4690 };
4691 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4692 						struct compat_f2fs_gc_range)
4693 
4694 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4695 {
4696 	struct compat_f2fs_gc_range __user *urange;
4697 	struct f2fs_gc_range range;
4698 	int err;
4699 
4700 	urange = compat_ptr(arg);
4701 	err = get_user(range.sync, &urange->sync);
4702 	err |= get_user(range.start, &urange->start);
4703 	err |= get_user(range.len, &urange->len);
4704 	if (err)
4705 		return -EFAULT;
4706 
4707 	return __f2fs_ioc_gc_range(file, &range);
4708 }
4709 
4710 struct compat_f2fs_move_range {
4711 	u32 dst_fd;
4712 	compat_u64 pos_in;
4713 	compat_u64 pos_out;
4714 	compat_u64 len;
4715 };
4716 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4717 					struct compat_f2fs_move_range)
4718 
4719 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4720 {
4721 	struct compat_f2fs_move_range __user *urange;
4722 	struct f2fs_move_range range;
4723 	int err;
4724 
4725 	urange = compat_ptr(arg);
4726 	err = get_user(range.dst_fd, &urange->dst_fd);
4727 	err |= get_user(range.pos_in, &urange->pos_in);
4728 	err |= get_user(range.pos_out, &urange->pos_out);
4729 	err |= get_user(range.len, &urange->len);
4730 	if (err)
4731 		return -EFAULT;
4732 
4733 	return __f2fs_ioc_move_range(file, &range);
4734 }
4735 
4736 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4737 {
4738 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4739 		return -EIO;
4740 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4741 		return -ENOSPC;
4742 
4743 	switch (cmd) {
4744 	case FS_IOC32_GETVERSION:
4745 		cmd = FS_IOC_GETVERSION;
4746 		break;
4747 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4748 		return f2fs_compat_ioc_gc_range(file, arg);
4749 	case F2FS_IOC32_MOVE_RANGE:
4750 		return f2fs_compat_ioc_move_range(file, arg);
4751 	case F2FS_IOC_START_ATOMIC_WRITE:
4752 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4753 	case F2FS_IOC_START_VOLATILE_WRITE:
4754 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4755 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4756 	case F2FS_IOC_SHUTDOWN:
4757 	case FITRIM:
4758 	case FS_IOC_SET_ENCRYPTION_POLICY:
4759 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4760 	case FS_IOC_GET_ENCRYPTION_POLICY:
4761 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4762 	case FS_IOC_ADD_ENCRYPTION_KEY:
4763 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4764 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4765 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4766 	case FS_IOC_GET_ENCRYPTION_NONCE:
4767 	case F2FS_IOC_GARBAGE_COLLECT:
4768 	case F2FS_IOC_WRITE_CHECKPOINT:
4769 	case F2FS_IOC_DEFRAGMENT:
4770 	case F2FS_IOC_FLUSH_DEVICE:
4771 	case F2FS_IOC_GET_FEATURES:
4772 	case F2FS_IOC_GET_PIN_FILE:
4773 	case F2FS_IOC_SET_PIN_FILE:
4774 	case F2FS_IOC_PRECACHE_EXTENTS:
4775 	case F2FS_IOC_RESIZE_FS:
4776 	case FS_IOC_ENABLE_VERITY:
4777 	case FS_IOC_MEASURE_VERITY:
4778 	case FS_IOC_READ_VERITY_METADATA:
4779 	case FS_IOC_GETFSLABEL:
4780 	case FS_IOC_SETFSLABEL:
4781 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4782 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4783 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4784 	case F2FS_IOC_SEC_TRIM_FILE:
4785 	case F2FS_IOC_GET_COMPRESS_OPTION:
4786 	case F2FS_IOC_SET_COMPRESS_OPTION:
4787 	case F2FS_IOC_DECOMPRESS_FILE:
4788 	case F2FS_IOC_COMPRESS_FILE:
4789 		break;
4790 	default:
4791 		return -ENOIOCTLCMD;
4792 	}
4793 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4794 }
4795 #endif
4796 
4797 const struct file_operations f2fs_file_operations = {
4798 	.llseek		= f2fs_llseek,
4799 	.read_iter	= f2fs_file_read_iter,
4800 	.write_iter	= f2fs_file_write_iter,
4801 	.open		= f2fs_file_open,
4802 	.release	= f2fs_release_file,
4803 	.mmap		= f2fs_file_mmap,
4804 	.flush		= f2fs_file_flush,
4805 	.fsync		= f2fs_sync_file,
4806 	.fallocate	= f2fs_fallocate,
4807 	.unlocked_ioctl	= f2fs_ioctl,
4808 #ifdef CONFIG_COMPAT
4809 	.compat_ioctl	= f2fs_compat_ioctl,
4810 #endif
4811 	.splice_read	= generic_file_splice_read,
4812 	.splice_write	= iter_file_splice_write,
4813 	.fadvise	= f2fs_file_fadvise,
4814 };
4815