1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 #include <linux/fadvise.h> 27 #include <linux/iomap.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "acl.h" 34 #include "gc.h" 35 #include "iostat.h" 36 #include <trace/events/f2fs.h> 37 #include <uapi/linux/f2fs.h> 38 39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 40 { 41 struct inode *inode = file_inode(vmf->vma->vm_file); 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (!ret) 46 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO, 47 F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(IS_IMMUTABLE(inode))) 64 return VM_FAULT_SIGBUS; 65 66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 67 return VM_FAULT_SIGBUS; 68 69 if (unlikely(f2fs_cp_error(sbi))) { 70 err = -EIO; 71 goto err; 72 } 73 74 if (!f2fs_is_checkpoint_ready(sbi)) { 75 err = -ENOSPC; 76 goto err; 77 } 78 79 err = f2fs_convert_inline_inode(inode); 80 if (err) 81 goto err; 82 83 #ifdef CONFIG_F2FS_FS_COMPRESSION 84 if (f2fs_compressed_file(inode)) { 85 int ret = f2fs_is_compressed_cluster(inode, page->index); 86 87 if (ret < 0) { 88 err = ret; 89 goto err; 90 } else if (ret) { 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 filemap_invalidate_lock_shared(inode->i_mapping); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 117 set_new_dnode(&dn, inode, NULL, NULL, 0); 118 err = f2fs_get_block(&dn, page->index); 119 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 120 } 121 122 #ifdef CONFIG_F2FS_FS_COMPRESSION 123 if (!need_alloc) { 124 set_new_dnode(&dn, inode, NULL, NULL, 0); 125 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 126 f2fs_put_dnode(&dn); 127 } 128 #endif 129 if (err) { 130 unlock_page(page); 131 goto out_sem; 132 } 133 134 f2fs_wait_on_page_writeback(page, DATA, false, true); 135 136 /* wait for GCed page writeback via META_MAPPING */ 137 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 138 139 /* 140 * check to see if the page is mapped already (no holes) 141 */ 142 if (PageMappedToDisk(page)) 143 goto out_sem; 144 145 /* page is wholly or partially inside EOF */ 146 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 147 i_size_read(inode)) { 148 loff_t offset; 149 150 offset = i_size_read(inode) & ~PAGE_MASK; 151 zero_user_segment(page, offset, PAGE_SIZE); 152 } 153 set_page_dirty(page); 154 if (!PageUptodate(page)) 155 SetPageUptodate(page); 156 157 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 158 f2fs_update_time(sbi, REQ_TIME); 159 160 trace_f2fs_vm_page_mkwrite(page, DATA); 161 out_sem: 162 filemap_invalidate_unlock_shared(inode->i_mapping); 163 164 sb_end_pagefault(inode->i_sb); 165 err: 166 return block_page_mkwrite_return(err); 167 } 168 169 static const struct vm_operations_struct f2fs_file_vm_ops = { 170 .fault = f2fs_filemap_fault, 171 .map_pages = filemap_map_pages, 172 .page_mkwrite = f2fs_vm_page_mkwrite, 173 }; 174 175 static int get_parent_ino(struct inode *inode, nid_t *pino) 176 { 177 struct dentry *dentry; 178 179 /* 180 * Make sure to get the non-deleted alias. The alias associated with 181 * the open file descriptor being fsync()'ed may be deleted already. 182 */ 183 dentry = d_find_alias(inode); 184 if (!dentry) 185 return 0; 186 187 *pino = parent_ino(dentry); 188 dput(dentry); 189 return 1; 190 } 191 192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 193 { 194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 195 enum cp_reason_type cp_reason = CP_NO_NEEDED; 196 197 if (!S_ISREG(inode->i_mode)) 198 cp_reason = CP_NON_REGULAR; 199 else if (f2fs_compressed_file(inode)) 200 cp_reason = CP_COMPRESSED; 201 else if (inode->i_nlink != 1) 202 cp_reason = CP_HARDLINK; 203 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 204 cp_reason = CP_SB_NEED_CP; 205 else if (file_wrong_pino(inode)) 206 cp_reason = CP_WRONG_PINO; 207 else if (!f2fs_space_for_roll_forward(sbi)) 208 cp_reason = CP_NO_SPC_ROLL; 209 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 210 cp_reason = CP_NODE_NEED_CP; 211 else if (test_opt(sbi, FASTBOOT)) 212 cp_reason = CP_FASTBOOT_MODE; 213 else if (F2FS_OPTION(sbi).active_logs == 2) 214 cp_reason = CP_SPEC_LOG_NUM; 215 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 216 f2fs_need_dentry_mark(sbi, inode->i_ino) && 217 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 218 TRANS_DIR_INO)) 219 cp_reason = CP_RECOVER_DIR; 220 221 return cp_reason; 222 } 223 224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 225 { 226 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 227 bool ret = false; 228 /* But we need to avoid that there are some inode updates */ 229 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 230 ret = true; 231 f2fs_put_page(i, 0); 232 return ret; 233 } 234 235 static void try_to_fix_pino(struct inode *inode) 236 { 237 struct f2fs_inode_info *fi = F2FS_I(inode); 238 nid_t pino; 239 240 down_write(&fi->i_sem); 241 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 242 get_parent_ino(inode, &pino)) { 243 f2fs_i_pino_write(inode, pino); 244 file_got_pino(inode); 245 } 246 up_write(&fi->i_sem); 247 } 248 249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 250 int datasync, bool atomic) 251 { 252 struct inode *inode = file->f_mapping->host; 253 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 254 nid_t ino = inode->i_ino; 255 int ret = 0; 256 enum cp_reason_type cp_reason = 0; 257 struct writeback_control wbc = { 258 .sync_mode = WB_SYNC_ALL, 259 .nr_to_write = LONG_MAX, 260 .for_reclaim = 0, 261 }; 262 unsigned int seq_id = 0; 263 264 if (unlikely(f2fs_readonly(inode->i_sb))) 265 return 0; 266 267 trace_f2fs_sync_file_enter(inode); 268 269 if (S_ISDIR(inode->i_mode)) 270 goto go_write; 271 272 /* if fdatasync is triggered, let's do in-place-update */ 273 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 274 set_inode_flag(inode, FI_NEED_IPU); 275 ret = file_write_and_wait_range(file, start, end); 276 clear_inode_flag(inode, FI_NEED_IPU); 277 278 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 279 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 280 return ret; 281 } 282 283 /* if the inode is dirty, let's recover all the time */ 284 if (!f2fs_skip_inode_update(inode, datasync)) { 285 f2fs_write_inode(inode, NULL); 286 goto go_write; 287 } 288 289 /* 290 * if there is no written data, don't waste time to write recovery info. 291 */ 292 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 293 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 294 295 /* it may call write_inode just prior to fsync */ 296 if (need_inode_page_update(sbi, ino)) 297 goto go_write; 298 299 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 300 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 301 goto flush_out; 302 goto out; 303 } else { 304 /* 305 * for OPU case, during fsync(), node can be persisted before 306 * data when lower device doesn't support write barrier, result 307 * in data corruption after SPO. 308 * So for strict fsync mode, force to use atomic write sematics 309 * to keep write order in between data/node and last node to 310 * avoid potential data corruption. 311 */ 312 if (F2FS_OPTION(sbi).fsync_mode == 313 FSYNC_MODE_STRICT && !atomic) 314 atomic = true; 315 } 316 go_write: 317 /* 318 * Both of fdatasync() and fsync() are able to be recovered from 319 * sudden-power-off. 320 */ 321 down_read(&F2FS_I(inode)->i_sem); 322 cp_reason = need_do_checkpoint(inode); 323 up_read(&F2FS_I(inode)->i_sem); 324 325 if (cp_reason) { 326 /* all the dirty node pages should be flushed for POR */ 327 ret = f2fs_sync_fs(inode->i_sb, 1); 328 329 /* 330 * We've secured consistency through sync_fs. Following pino 331 * will be used only for fsynced inodes after checkpoint. 332 */ 333 try_to_fix_pino(inode); 334 clear_inode_flag(inode, FI_APPEND_WRITE); 335 clear_inode_flag(inode, FI_UPDATE_WRITE); 336 goto out; 337 } 338 sync_nodes: 339 atomic_inc(&sbi->wb_sync_req[NODE]); 340 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 341 atomic_dec(&sbi->wb_sync_req[NODE]); 342 if (ret) 343 goto out; 344 345 /* if cp_error was enabled, we should avoid infinite loop */ 346 if (unlikely(f2fs_cp_error(sbi))) { 347 ret = -EIO; 348 goto out; 349 } 350 351 if (f2fs_need_inode_block_update(sbi, ino)) { 352 f2fs_mark_inode_dirty_sync(inode, true); 353 f2fs_write_inode(inode, NULL); 354 goto sync_nodes; 355 } 356 357 /* 358 * If it's atomic_write, it's just fine to keep write ordering. So 359 * here we don't need to wait for node write completion, since we use 360 * node chain which serializes node blocks. If one of node writes are 361 * reordered, we can see simply broken chain, resulting in stopping 362 * roll-forward recovery. It means we'll recover all or none node blocks 363 * given fsync mark. 364 */ 365 if (!atomic) { 366 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 367 if (ret) 368 goto out; 369 } 370 371 /* once recovery info is written, don't need to tack this */ 372 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 373 clear_inode_flag(inode, FI_APPEND_WRITE); 374 flush_out: 375 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 376 ret = f2fs_issue_flush(sbi, inode->i_ino); 377 if (!ret) { 378 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 379 clear_inode_flag(inode, FI_UPDATE_WRITE); 380 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 381 } 382 f2fs_update_time(sbi, REQ_TIME); 383 out: 384 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 385 return ret; 386 } 387 388 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 389 { 390 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 391 return -EIO; 392 return f2fs_do_sync_file(file, start, end, datasync, false); 393 } 394 395 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 396 pgoff_t index, int whence) 397 { 398 switch (whence) { 399 case SEEK_DATA: 400 if (__is_valid_data_blkaddr(blkaddr)) 401 return true; 402 if (blkaddr == NEW_ADDR && 403 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 404 return true; 405 break; 406 case SEEK_HOLE: 407 if (blkaddr == NULL_ADDR) 408 return true; 409 break; 410 } 411 return false; 412 } 413 414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 415 { 416 struct inode *inode = file->f_mapping->host; 417 loff_t maxbytes = inode->i_sb->s_maxbytes; 418 struct dnode_of_data dn; 419 pgoff_t pgofs, end_offset; 420 loff_t data_ofs = offset; 421 loff_t isize; 422 int err = 0; 423 424 inode_lock(inode); 425 426 isize = i_size_read(inode); 427 if (offset >= isize) 428 goto fail; 429 430 /* handle inline data case */ 431 if (f2fs_has_inline_data(inode)) { 432 if (whence == SEEK_HOLE) { 433 data_ofs = isize; 434 goto found; 435 } else if (whence == SEEK_DATA) { 436 data_ofs = offset; 437 goto found; 438 } 439 } 440 441 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 442 443 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 444 set_new_dnode(&dn, inode, NULL, NULL, 0); 445 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 446 if (err && err != -ENOENT) { 447 goto fail; 448 } else if (err == -ENOENT) { 449 /* direct node does not exists */ 450 if (whence == SEEK_DATA) { 451 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 452 continue; 453 } else { 454 goto found; 455 } 456 } 457 458 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 459 460 /* find data/hole in dnode block */ 461 for (; dn.ofs_in_node < end_offset; 462 dn.ofs_in_node++, pgofs++, 463 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 464 block_t blkaddr; 465 466 blkaddr = f2fs_data_blkaddr(&dn); 467 468 if (__is_valid_data_blkaddr(blkaddr) && 469 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 470 blkaddr, DATA_GENERIC_ENHANCE)) { 471 f2fs_put_dnode(&dn); 472 goto fail; 473 } 474 475 if (__found_offset(file->f_mapping, blkaddr, 476 pgofs, whence)) { 477 f2fs_put_dnode(&dn); 478 goto found; 479 } 480 } 481 f2fs_put_dnode(&dn); 482 } 483 484 if (whence == SEEK_DATA) 485 goto fail; 486 found: 487 if (whence == SEEK_HOLE && data_ofs > isize) 488 data_ofs = isize; 489 inode_unlock(inode); 490 return vfs_setpos(file, data_ofs, maxbytes); 491 fail: 492 inode_unlock(inode); 493 return -ENXIO; 494 } 495 496 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 497 { 498 struct inode *inode = file->f_mapping->host; 499 loff_t maxbytes = inode->i_sb->s_maxbytes; 500 501 if (f2fs_compressed_file(inode)) 502 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 503 504 switch (whence) { 505 case SEEK_SET: 506 case SEEK_CUR: 507 case SEEK_END: 508 return generic_file_llseek_size(file, offset, whence, 509 maxbytes, i_size_read(inode)); 510 case SEEK_DATA: 511 case SEEK_HOLE: 512 if (offset < 0) 513 return -ENXIO; 514 return f2fs_seek_block(file, offset, whence); 515 } 516 517 return -EINVAL; 518 } 519 520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 521 { 522 struct inode *inode = file_inode(file); 523 524 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 525 return -EIO; 526 527 if (!f2fs_is_compress_backend_ready(inode)) 528 return -EOPNOTSUPP; 529 530 file_accessed(file); 531 vma->vm_ops = &f2fs_file_vm_ops; 532 set_inode_flag(inode, FI_MMAP_FILE); 533 return 0; 534 } 535 536 static int f2fs_file_open(struct inode *inode, struct file *filp) 537 { 538 int err = fscrypt_file_open(inode, filp); 539 540 if (err) 541 return err; 542 543 if (!f2fs_is_compress_backend_ready(inode)) 544 return -EOPNOTSUPP; 545 546 err = fsverity_file_open(inode, filp); 547 if (err) 548 return err; 549 550 filp->f_mode |= FMODE_NOWAIT; 551 552 return dquot_file_open(inode, filp); 553 } 554 555 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 556 { 557 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 558 struct f2fs_node *raw_node; 559 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 560 __le32 *addr; 561 int base = 0; 562 bool compressed_cluster = false; 563 int cluster_index = 0, valid_blocks = 0; 564 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 565 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 566 567 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 568 base = get_extra_isize(dn->inode); 569 570 raw_node = F2FS_NODE(dn->node_page); 571 addr = blkaddr_in_node(raw_node) + base + ofs; 572 573 /* Assumption: truncateion starts with cluster */ 574 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 575 block_t blkaddr = le32_to_cpu(*addr); 576 577 if (f2fs_compressed_file(dn->inode) && 578 !(cluster_index & (cluster_size - 1))) { 579 if (compressed_cluster) 580 f2fs_i_compr_blocks_update(dn->inode, 581 valid_blocks, false); 582 compressed_cluster = (blkaddr == COMPRESS_ADDR); 583 valid_blocks = 0; 584 } 585 586 if (blkaddr == NULL_ADDR) 587 continue; 588 589 dn->data_blkaddr = NULL_ADDR; 590 f2fs_set_data_blkaddr(dn); 591 592 if (__is_valid_data_blkaddr(blkaddr)) { 593 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 594 DATA_GENERIC_ENHANCE)) 595 continue; 596 if (compressed_cluster) 597 valid_blocks++; 598 } 599 600 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 601 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 602 603 f2fs_invalidate_blocks(sbi, blkaddr); 604 605 if (!released || blkaddr != COMPRESS_ADDR) 606 nr_free++; 607 } 608 609 if (compressed_cluster) 610 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 611 612 if (nr_free) { 613 pgoff_t fofs; 614 /* 615 * once we invalidate valid blkaddr in range [ofs, ofs + count], 616 * we will invalidate all blkaddr in the whole range. 617 */ 618 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 619 dn->inode) + ofs; 620 f2fs_update_extent_cache_range(dn, fofs, 0, len); 621 dec_valid_block_count(sbi, dn->inode, nr_free); 622 } 623 dn->ofs_in_node = ofs; 624 625 f2fs_update_time(sbi, REQ_TIME); 626 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 627 dn->ofs_in_node, nr_free); 628 } 629 630 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 631 { 632 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 633 } 634 635 static int truncate_partial_data_page(struct inode *inode, u64 from, 636 bool cache_only) 637 { 638 loff_t offset = from & (PAGE_SIZE - 1); 639 pgoff_t index = from >> PAGE_SHIFT; 640 struct address_space *mapping = inode->i_mapping; 641 struct page *page; 642 643 if (!offset && !cache_only) 644 return 0; 645 646 if (cache_only) { 647 page = find_lock_page(mapping, index); 648 if (page && PageUptodate(page)) 649 goto truncate_out; 650 f2fs_put_page(page, 1); 651 return 0; 652 } 653 654 page = f2fs_get_lock_data_page(inode, index, true); 655 if (IS_ERR(page)) 656 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 657 truncate_out: 658 f2fs_wait_on_page_writeback(page, DATA, true, true); 659 zero_user(page, offset, PAGE_SIZE - offset); 660 661 /* An encrypted inode should have a key and truncate the last page. */ 662 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 663 if (!cache_only) 664 set_page_dirty(page); 665 f2fs_put_page(page, 1); 666 return 0; 667 } 668 669 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 670 { 671 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 672 struct dnode_of_data dn; 673 pgoff_t free_from; 674 int count = 0, err = 0; 675 struct page *ipage; 676 bool truncate_page = false; 677 678 trace_f2fs_truncate_blocks_enter(inode, from); 679 680 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 681 682 if (free_from >= max_file_blocks(inode)) 683 goto free_partial; 684 685 if (lock) 686 f2fs_lock_op(sbi); 687 688 ipage = f2fs_get_node_page(sbi, inode->i_ino); 689 if (IS_ERR(ipage)) { 690 err = PTR_ERR(ipage); 691 goto out; 692 } 693 694 if (f2fs_has_inline_data(inode)) { 695 f2fs_truncate_inline_inode(inode, ipage, from); 696 f2fs_put_page(ipage, 1); 697 truncate_page = true; 698 goto out; 699 } 700 701 set_new_dnode(&dn, inode, ipage, NULL, 0); 702 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 703 if (err) { 704 if (err == -ENOENT) 705 goto free_next; 706 goto out; 707 } 708 709 count = ADDRS_PER_PAGE(dn.node_page, inode); 710 711 count -= dn.ofs_in_node; 712 f2fs_bug_on(sbi, count < 0); 713 714 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 715 f2fs_truncate_data_blocks_range(&dn, count); 716 free_from += count; 717 } 718 719 f2fs_put_dnode(&dn); 720 free_next: 721 err = f2fs_truncate_inode_blocks(inode, free_from); 722 out: 723 if (lock) 724 f2fs_unlock_op(sbi); 725 free_partial: 726 /* lastly zero out the first data page */ 727 if (!err) 728 err = truncate_partial_data_page(inode, from, truncate_page); 729 730 trace_f2fs_truncate_blocks_exit(inode, err); 731 return err; 732 } 733 734 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 735 { 736 u64 free_from = from; 737 int err; 738 739 #ifdef CONFIG_F2FS_FS_COMPRESSION 740 /* 741 * for compressed file, only support cluster size 742 * aligned truncation. 743 */ 744 if (f2fs_compressed_file(inode)) 745 free_from = round_up(from, 746 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 747 #endif 748 749 err = f2fs_do_truncate_blocks(inode, free_from, lock); 750 if (err) 751 return err; 752 753 #ifdef CONFIG_F2FS_FS_COMPRESSION 754 /* 755 * For compressed file, after release compress blocks, don't allow write 756 * direct, but we should allow write direct after truncate to zero. 757 */ 758 if (f2fs_compressed_file(inode) && !free_from 759 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 760 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 761 762 if (from != free_from) { 763 err = f2fs_truncate_partial_cluster(inode, from, lock); 764 if (err) 765 return err; 766 } 767 #endif 768 769 return 0; 770 } 771 772 int f2fs_truncate(struct inode *inode) 773 { 774 int err; 775 776 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 777 return -EIO; 778 779 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 780 S_ISLNK(inode->i_mode))) 781 return 0; 782 783 trace_f2fs_truncate(inode); 784 785 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 786 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 787 return -EIO; 788 } 789 790 err = f2fs_dquot_initialize(inode); 791 if (err) 792 return err; 793 794 /* we should check inline_data size */ 795 if (!f2fs_may_inline_data(inode)) { 796 err = f2fs_convert_inline_inode(inode); 797 if (err) 798 return err; 799 } 800 801 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 802 if (err) 803 return err; 804 805 inode->i_mtime = inode->i_ctime = current_time(inode); 806 f2fs_mark_inode_dirty_sync(inode, false); 807 return 0; 808 } 809 810 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 811 struct kstat *stat, u32 request_mask, unsigned int query_flags) 812 { 813 struct inode *inode = d_inode(path->dentry); 814 struct f2fs_inode_info *fi = F2FS_I(inode); 815 struct f2fs_inode *ri; 816 unsigned int flags; 817 818 if (f2fs_has_extra_attr(inode) && 819 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 820 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 821 stat->result_mask |= STATX_BTIME; 822 stat->btime.tv_sec = fi->i_crtime.tv_sec; 823 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 824 } 825 826 flags = fi->i_flags; 827 if (flags & F2FS_COMPR_FL) 828 stat->attributes |= STATX_ATTR_COMPRESSED; 829 if (flags & F2FS_APPEND_FL) 830 stat->attributes |= STATX_ATTR_APPEND; 831 if (IS_ENCRYPTED(inode)) 832 stat->attributes |= STATX_ATTR_ENCRYPTED; 833 if (flags & F2FS_IMMUTABLE_FL) 834 stat->attributes |= STATX_ATTR_IMMUTABLE; 835 if (flags & F2FS_NODUMP_FL) 836 stat->attributes |= STATX_ATTR_NODUMP; 837 if (IS_VERITY(inode)) 838 stat->attributes |= STATX_ATTR_VERITY; 839 840 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 841 STATX_ATTR_APPEND | 842 STATX_ATTR_ENCRYPTED | 843 STATX_ATTR_IMMUTABLE | 844 STATX_ATTR_NODUMP | 845 STATX_ATTR_VERITY); 846 847 generic_fillattr(&init_user_ns, inode, stat); 848 849 /* we need to show initial sectors used for inline_data/dentries */ 850 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 851 f2fs_has_inline_dentry(inode)) 852 stat->blocks += (stat->size + 511) >> 9; 853 854 return 0; 855 } 856 857 #ifdef CONFIG_F2FS_FS_POSIX_ACL 858 static void __setattr_copy(struct user_namespace *mnt_userns, 859 struct inode *inode, const struct iattr *attr) 860 { 861 unsigned int ia_valid = attr->ia_valid; 862 863 if (ia_valid & ATTR_UID) 864 inode->i_uid = attr->ia_uid; 865 if (ia_valid & ATTR_GID) 866 inode->i_gid = attr->ia_gid; 867 if (ia_valid & ATTR_ATIME) 868 inode->i_atime = attr->ia_atime; 869 if (ia_valid & ATTR_MTIME) 870 inode->i_mtime = attr->ia_mtime; 871 if (ia_valid & ATTR_CTIME) 872 inode->i_ctime = attr->ia_ctime; 873 if (ia_valid & ATTR_MODE) { 874 umode_t mode = attr->ia_mode; 875 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 876 877 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID)) 878 mode &= ~S_ISGID; 879 set_acl_inode(inode, mode); 880 } 881 } 882 #else 883 #define __setattr_copy setattr_copy 884 #endif 885 886 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 887 struct iattr *attr) 888 { 889 struct inode *inode = d_inode(dentry); 890 int err; 891 892 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 893 return -EIO; 894 895 if (unlikely(IS_IMMUTABLE(inode))) 896 return -EPERM; 897 898 if (unlikely(IS_APPEND(inode) && 899 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 900 ATTR_GID | ATTR_TIMES_SET)))) 901 return -EPERM; 902 903 if ((attr->ia_valid & ATTR_SIZE) && 904 !f2fs_is_compress_backend_ready(inode)) 905 return -EOPNOTSUPP; 906 907 err = setattr_prepare(&init_user_ns, dentry, attr); 908 if (err) 909 return err; 910 911 err = fscrypt_prepare_setattr(dentry, attr); 912 if (err) 913 return err; 914 915 err = fsverity_prepare_setattr(dentry, attr); 916 if (err) 917 return err; 918 919 if (is_quota_modification(inode, attr)) { 920 err = f2fs_dquot_initialize(inode); 921 if (err) 922 return err; 923 } 924 if ((attr->ia_valid & ATTR_UID && 925 !uid_eq(attr->ia_uid, inode->i_uid)) || 926 (attr->ia_valid & ATTR_GID && 927 !gid_eq(attr->ia_gid, inode->i_gid))) { 928 f2fs_lock_op(F2FS_I_SB(inode)); 929 err = dquot_transfer(inode, attr); 930 if (err) { 931 set_sbi_flag(F2FS_I_SB(inode), 932 SBI_QUOTA_NEED_REPAIR); 933 f2fs_unlock_op(F2FS_I_SB(inode)); 934 return err; 935 } 936 /* 937 * update uid/gid under lock_op(), so that dquot and inode can 938 * be updated atomically. 939 */ 940 if (attr->ia_valid & ATTR_UID) 941 inode->i_uid = attr->ia_uid; 942 if (attr->ia_valid & ATTR_GID) 943 inode->i_gid = attr->ia_gid; 944 f2fs_mark_inode_dirty_sync(inode, true); 945 f2fs_unlock_op(F2FS_I_SB(inode)); 946 } 947 948 if (attr->ia_valid & ATTR_SIZE) { 949 loff_t old_size = i_size_read(inode); 950 951 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 952 /* 953 * should convert inline inode before i_size_write to 954 * keep smaller than inline_data size with inline flag. 955 */ 956 err = f2fs_convert_inline_inode(inode); 957 if (err) 958 return err; 959 } 960 961 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 962 filemap_invalidate_lock(inode->i_mapping); 963 964 truncate_setsize(inode, attr->ia_size); 965 966 if (attr->ia_size <= old_size) 967 err = f2fs_truncate(inode); 968 /* 969 * do not trim all blocks after i_size if target size is 970 * larger than i_size. 971 */ 972 filemap_invalidate_unlock(inode->i_mapping); 973 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 974 if (err) 975 return err; 976 977 spin_lock(&F2FS_I(inode)->i_size_lock); 978 inode->i_mtime = inode->i_ctime = current_time(inode); 979 F2FS_I(inode)->last_disk_size = i_size_read(inode); 980 spin_unlock(&F2FS_I(inode)->i_size_lock); 981 } 982 983 __setattr_copy(&init_user_ns, inode, attr); 984 985 if (attr->ia_valid & ATTR_MODE) { 986 err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode)); 987 988 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 989 if (!err) 990 inode->i_mode = F2FS_I(inode)->i_acl_mode; 991 clear_inode_flag(inode, FI_ACL_MODE); 992 } 993 } 994 995 /* file size may changed here */ 996 f2fs_mark_inode_dirty_sync(inode, true); 997 998 /* inode change will produce dirty node pages flushed by checkpoint */ 999 f2fs_balance_fs(F2FS_I_SB(inode), true); 1000 1001 return err; 1002 } 1003 1004 const struct inode_operations f2fs_file_inode_operations = { 1005 .getattr = f2fs_getattr, 1006 .setattr = f2fs_setattr, 1007 .get_acl = f2fs_get_acl, 1008 .set_acl = f2fs_set_acl, 1009 .listxattr = f2fs_listxattr, 1010 .fiemap = f2fs_fiemap, 1011 .fileattr_get = f2fs_fileattr_get, 1012 .fileattr_set = f2fs_fileattr_set, 1013 }; 1014 1015 static int fill_zero(struct inode *inode, pgoff_t index, 1016 loff_t start, loff_t len) 1017 { 1018 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1019 struct page *page; 1020 1021 if (!len) 1022 return 0; 1023 1024 f2fs_balance_fs(sbi, true); 1025 1026 f2fs_lock_op(sbi); 1027 page = f2fs_get_new_data_page(inode, NULL, index, false); 1028 f2fs_unlock_op(sbi); 1029 1030 if (IS_ERR(page)) 1031 return PTR_ERR(page); 1032 1033 f2fs_wait_on_page_writeback(page, DATA, true, true); 1034 zero_user(page, start, len); 1035 set_page_dirty(page); 1036 f2fs_put_page(page, 1); 1037 return 0; 1038 } 1039 1040 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1041 { 1042 int err; 1043 1044 while (pg_start < pg_end) { 1045 struct dnode_of_data dn; 1046 pgoff_t end_offset, count; 1047 1048 set_new_dnode(&dn, inode, NULL, NULL, 0); 1049 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1050 if (err) { 1051 if (err == -ENOENT) { 1052 pg_start = f2fs_get_next_page_offset(&dn, 1053 pg_start); 1054 continue; 1055 } 1056 return err; 1057 } 1058 1059 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1060 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1061 1062 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1063 1064 f2fs_truncate_data_blocks_range(&dn, count); 1065 f2fs_put_dnode(&dn); 1066 1067 pg_start += count; 1068 } 1069 return 0; 1070 } 1071 1072 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1073 { 1074 pgoff_t pg_start, pg_end; 1075 loff_t off_start, off_end; 1076 int ret; 1077 1078 ret = f2fs_convert_inline_inode(inode); 1079 if (ret) 1080 return ret; 1081 1082 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1083 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1084 1085 off_start = offset & (PAGE_SIZE - 1); 1086 off_end = (offset + len) & (PAGE_SIZE - 1); 1087 1088 if (pg_start == pg_end) { 1089 ret = fill_zero(inode, pg_start, off_start, 1090 off_end - off_start); 1091 if (ret) 1092 return ret; 1093 } else { 1094 if (off_start) { 1095 ret = fill_zero(inode, pg_start++, off_start, 1096 PAGE_SIZE - off_start); 1097 if (ret) 1098 return ret; 1099 } 1100 if (off_end) { 1101 ret = fill_zero(inode, pg_end, 0, off_end); 1102 if (ret) 1103 return ret; 1104 } 1105 1106 if (pg_start < pg_end) { 1107 loff_t blk_start, blk_end; 1108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1109 1110 f2fs_balance_fs(sbi, true); 1111 1112 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1113 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1114 1115 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1116 filemap_invalidate_lock(inode->i_mapping); 1117 1118 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1119 1120 f2fs_lock_op(sbi); 1121 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1122 f2fs_unlock_op(sbi); 1123 1124 filemap_invalidate_unlock(inode->i_mapping); 1125 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1126 } 1127 } 1128 1129 return ret; 1130 } 1131 1132 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1133 int *do_replace, pgoff_t off, pgoff_t len) 1134 { 1135 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1136 struct dnode_of_data dn; 1137 int ret, done, i; 1138 1139 next_dnode: 1140 set_new_dnode(&dn, inode, NULL, NULL, 0); 1141 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1142 if (ret && ret != -ENOENT) { 1143 return ret; 1144 } else if (ret == -ENOENT) { 1145 if (dn.max_level == 0) 1146 return -ENOENT; 1147 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1148 dn.ofs_in_node, len); 1149 blkaddr += done; 1150 do_replace += done; 1151 goto next; 1152 } 1153 1154 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1155 dn.ofs_in_node, len); 1156 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1157 *blkaddr = f2fs_data_blkaddr(&dn); 1158 1159 if (__is_valid_data_blkaddr(*blkaddr) && 1160 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1161 DATA_GENERIC_ENHANCE)) { 1162 f2fs_put_dnode(&dn); 1163 return -EFSCORRUPTED; 1164 } 1165 1166 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1167 1168 if (f2fs_lfs_mode(sbi)) { 1169 f2fs_put_dnode(&dn); 1170 return -EOPNOTSUPP; 1171 } 1172 1173 /* do not invalidate this block address */ 1174 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1175 *do_replace = 1; 1176 } 1177 } 1178 f2fs_put_dnode(&dn); 1179 next: 1180 len -= done; 1181 off += done; 1182 if (len) 1183 goto next_dnode; 1184 return 0; 1185 } 1186 1187 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1188 int *do_replace, pgoff_t off, int len) 1189 { 1190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1191 struct dnode_of_data dn; 1192 int ret, i; 1193 1194 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1195 if (*do_replace == 0) 1196 continue; 1197 1198 set_new_dnode(&dn, inode, NULL, NULL, 0); 1199 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1200 if (ret) { 1201 dec_valid_block_count(sbi, inode, 1); 1202 f2fs_invalidate_blocks(sbi, *blkaddr); 1203 } else { 1204 f2fs_update_data_blkaddr(&dn, *blkaddr); 1205 } 1206 f2fs_put_dnode(&dn); 1207 } 1208 return 0; 1209 } 1210 1211 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1212 block_t *blkaddr, int *do_replace, 1213 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1214 { 1215 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1216 pgoff_t i = 0; 1217 int ret; 1218 1219 while (i < len) { 1220 if (blkaddr[i] == NULL_ADDR && !full) { 1221 i++; 1222 continue; 1223 } 1224 1225 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1226 struct dnode_of_data dn; 1227 struct node_info ni; 1228 size_t new_size; 1229 pgoff_t ilen; 1230 1231 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1232 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1233 if (ret) 1234 return ret; 1235 1236 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1237 if (ret) { 1238 f2fs_put_dnode(&dn); 1239 return ret; 1240 } 1241 1242 ilen = min((pgoff_t) 1243 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1244 dn.ofs_in_node, len - i); 1245 do { 1246 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1247 f2fs_truncate_data_blocks_range(&dn, 1); 1248 1249 if (do_replace[i]) { 1250 f2fs_i_blocks_write(src_inode, 1251 1, false, false); 1252 f2fs_i_blocks_write(dst_inode, 1253 1, true, false); 1254 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1255 blkaddr[i], ni.version, true, false); 1256 1257 do_replace[i] = 0; 1258 } 1259 dn.ofs_in_node++; 1260 i++; 1261 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1262 if (dst_inode->i_size < new_size) 1263 f2fs_i_size_write(dst_inode, new_size); 1264 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1265 1266 f2fs_put_dnode(&dn); 1267 } else { 1268 struct page *psrc, *pdst; 1269 1270 psrc = f2fs_get_lock_data_page(src_inode, 1271 src + i, true); 1272 if (IS_ERR(psrc)) 1273 return PTR_ERR(psrc); 1274 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1275 true); 1276 if (IS_ERR(pdst)) { 1277 f2fs_put_page(psrc, 1); 1278 return PTR_ERR(pdst); 1279 } 1280 f2fs_copy_page(psrc, pdst); 1281 set_page_dirty(pdst); 1282 f2fs_put_page(pdst, 1); 1283 f2fs_put_page(psrc, 1); 1284 1285 ret = f2fs_truncate_hole(src_inode, 1286 src + i, src + i + 1); 1287 if (ret) 1288 return ret; 1289 i++; 1290 } 1291 } 1292 return 0; 1293 } 1294 1295 static int __exchange_data_block(struct inode *src_inode, 1296 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1297 pgoff_t len, bool full) 1298 { 1299 block_t *src_blkaddr; 1300 int *do_replace; 1301 pgoff_t olen; 1302 int ret; 1303 1304 while (len) { 1305 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1306 1307 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1308 array_size(olen, sizeof(block_t)), 1309 GFP_NOFS); 1310 if (!src_blkaddr) 1311 return -ENOMEM; 1312 1313 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1314 array_size(olen, sizeof(int)), 1315 GFP_NOFS); 1316 if (!do_replace) { 1317 kvfree(src_blkaddr); 1318 return -ENOMEM; 1319 } 1320 1321 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1322 do_replace, src, olen); 1323 if (ret) 1324 goto roll_back; 1325 1326 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1327 do_replace, src, dst, olen, full); 1328 if (ret) 1329 goto roll_back; 1330 1331 src += olen; 1332 dst += olen; 1333 len -= olen; 1334 1335 kvfree(src_blkaddr); 1336 kvfree(do_replace); 1337 } 1338 return 0; 1339 1340 roll_back: 1341 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1342 kvfree(src_blkaddr); 1343 kvfree(do_replace); 1344 return ret; 1345 } 1346 1347 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1348 { 1349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1350 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1351 pgoff_t start = offset >> PAGE_SHIFT; 1352 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1353 int ret; 1354 1355 f2fs_balance_fs(sbi, true); 1356 1357 /* avoid gc operation during block exchange */ 1358 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1359 filemap_invalidate_lock(inode->i_mapping); 1360 1361 f2fs_lock_op(sbi); 1362 f2fs_drop_extent_tree(inode); 1363 truncate_pagecache(inode, offset); 1364 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1365 f2fs_unlock_op(sbi); 1366 1367 filemap_invalidate_unlock(inode->i_mapping); 1368 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1369 return ret; 1370 } 1371 1372 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1373 { 1374 loff_t new_size; 1375 int ret; 1376 1377 if (offset + len >= i_size_read(inode)) 1378 return -EINVAL; 1379 1380 /* collapse range should be aligned to block size of f2fs. */ 1381 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1382 return -EINVAL; 1383 1384 ret = f2fs_convert_inline_inode(inode); 1385 if (ret) 1386 return ret; 1387 1388 /* write out all dirty pages from offset */ 1389 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1390 if (ret) 1391 return ret; 1392 1393 ret = f2fs_do_collapse(inode, offset, len); 1394 if (ret) 1395 return ret; 1396 1397 /* write out all moved pages, if possible */ 1398 filemap_invalidate_lock(inode->i_mapping); 1399 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1400 truncate_pagecache(inode, offset); 1401 1402 new_size = i_size_read(inode) - len; 1403 ret = f2fs_truncate_blocks(inode, new_size, true); 1404 filemap_invalidate_unlock(inode->i_mapping); 1405 if (!ret) 1406 f2fs_i_size_write(inode, new_size); 1407 return ret; 1408 } 1409 1410 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1411 pgoff_t end) 1412 { 1413 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1414 pgoff_t index = start; 1415 unsigned int ofs_in_node = dn->ofs_in_node; 1416 blkcnt_t count = 0; 1417 int ret; 1418 1419 for (; index < end; index++, dn->ofs_in_node++) { 1420 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1421 count++; 1422 } 1423 1424 dn->ofs_in_node = ofs_in_node; 1425 ret = f2fs_reserve_new_blocks(dn, count); 1426 if (ret) 1427 return ret; 1428 1429 dn->ofs_in_node = ofs_in_node; 1430 for (index = start; index < end; index++, dn->ofs_in_node++) { 1431 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1432 /* 1433 * f2fs_reserve_new_blocks will not guarantee entire block 1434 * allocation. 1435 */ 1436 if (dn->data_blkaddr == NULL_ADDR) { 1437 ret = -ENOSPC; 1438 break; 1439 } 1440 if (dn->data_blkaddr != NEW_ADDR) { 1441 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1442 dn->data_blkaddr = NEW_ADDR; 1443 f2fs_set_data_blkaddr(dn); 1444 } 1445 } 1446 1447 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1448 1449 return ret; 1450 } 1451 1452 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1453 int mode) 1454 { 1455 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1456 struct address_space *mapping = inode->i_mapping; 1457 pgoff_t index, pg_start, pg_end; 1458 loff_t new_size = i_size_read(inode); 1459 loff_t off_start, off_end; 1460 int ret = 0; 1461 1462 ret = inode_newsize_ok(inode, (len + offset)); 1463 if (ret) 1464 return ret; 1465 1466 ret = f2fs_convert_inline_inode(inode); 1467 if (ret) 1468 return ret; 1469 1470 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1471 if (ret) 1472 return ret; 1473 1474 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1475 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1476 1477 off_start = offset & (PAGE_SIZE - 1); 1478 off_end = (offset + len) & (PAGE_SIZE - 1); 1479 1480 if (pg_start == pg_end) { 1481 ret = fill_zero(inode, pg_start, off_start, 1482 off_end - off_start); 1483 if (ret) 1484 return ret; 1485 1486 new_size = max_t(loff_t, new_size, offset + len); 1487 } else { 1488 if (off_start) { 1489 ret = fill_zero(inode, pg_start++, off_start, 1490 PAGE_SIZE - off_start); 1491 if (ret) 1492 return ret; 1493 1494 new_size = max_t(loff_t, new_size, 1495 (loff_t)pg_start << PAGE_SHIFT); 1496 } 1497 1498 for (index = pg_start; index < pg_end;) { 1499 struct dnode_of_data dn; 1500 unsigned int end_offset; 1501 pgoff_t end; 1502 1503 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1504 filemap_invalidate_lock(mapping); 1505 1506 truncate_pagecache_range(inode, 1507 (loff_t)index << PAGE_SHIFT, 1508 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1509 1510 f2fs_lock_op(sbi); 1511 1512 set_new_dnode(&dn, inode, NULL, NULL, 0); 1513 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1514 if (ret) { 1515 f2fs_unlock_op(sbi); 1516 filemap_invalidate_unlock(mapping); 1517 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1518 goto out; 1519 } 1520 1521 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1522 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1523 1524 ret = f2fs_do_zero_range(&dn, index, end); 1525 f2fs_put_dnode(&dn); 1526 1527 f2fs_unlock_op(sbi); 1528 filemap_invalidate_unlock(mapping); 1529 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1530 1531 f2fs_balance_fs(sbi, dn.node_changed); 1532 1533 if (ret) 1534 goto out; 1535 1536 index = end; 1537 new_size = max_t(loff_t, new_size, 1538 (loff_t)index << PAGE_SHIFT); 1539 } 1540 1541 if (off_end) { 1542 ret = fill_zero(inode, pg_end, 0, off_end); 1543 if (ret) 1544 goto out; 1545 1546 new_size = max_t(loff_t, new_size, offset + len); 1547 } 1548 } 1549 1550 out: 1551 if (new_size > i_size_read(inode)) { 1552 if (mode & FALLOC_FL_KEEP_SIZE) 1553 file_set_keep_isize(inode); 1554 else 1555 f2fs_i_size_write(inode, new_size); 1556 } 1557 return ret; 1558 } 1559 1560 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1561 { 1562 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1563 struct address_space *mapping = inode->i_mapping; 1564 pgoff_t nr, pg_start, pg_end, delta, idx; 1565 loff_t new_size; 1566 int ret = 0; 1567 1568 new_size = i_size_read(inode) + len; 1569 ret = inode_newsize_ok(inode, new_size); 1570 if (ret) 1571 return ret; 1572 1573 if (offset >= i_size_read(inode)) 1574 return -EINVAL; 1575 1576 /* insert range should be aligned to block size of f2fs. */ 1577 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1578 return -EINVAL; 1579 1580 ret = f2fs_convert_inline_inode(inode); 1581 if (ret) 1582 return ret; 1583 1584 f2fs_balance_fs(sbi, true); 1585 1586 filemap_invalidate_lock(mapping); 1587 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1588 filemap_invalidate_unlock(mapping); 1589 if (ret) 1590 return ret; 1591 1592 /* write out all dirty pages from offset */ 1593 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1594 if (ret) 1595 return ret; 1596 1597 pg_start = offset >> PAGE_SHIFT; 1598 pg_end = (offset + len) >> PAGE_SHIFT; 1599 delta = pg_end - pg_start; 1600 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1601 1602 /* avoid gc operation during block exchange */ 1603 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1604 filemap_invalidate_lock(mapping); 1605 truncate_pagecache(inode, offset); 1606 1607 while (!ret && idx > pg_start) { 1608 nr = idx - pg_start; 1609 if (nr > delta) 1610 nr = delta; 1611 idx -= nr; 1612 1613 f2fs_lock_op(sbi); 1614 f2fs_drop_extent_tree(inode); 1615 1616 ret = __exchange_data_block(inode, inode, idx, 1617 idx + delta, nr, false); 1618 f2fs_unlock_op(sbi); 1619 } 1620 filemap_invalidate_unlock(mapping); 1621 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1622 1623 /* write out all moved pages, if possible */ 1624 filemap_invalidate_lock(mapping); 1625 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1626 truncate_pagecache(inode, offset); 1627 filemap_invalidate_unlock(mapping); 1628 1629 if (!ret) 1630 f2fs_i_size_write(inode, new_size); 1631 return ret; 1632 } 1633 1634 static int expand_inode_data(struct inode *inode, loff_t offset, 1635 loff_t len, int mode) 1636 { 1637 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1638 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1639 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1640 .m_may_create = true }; 1641 pgoff_t pg_start, pg_end; 1642 loff_t new_size = i_size_read(inode); 1643 loff_t off_end; 1644 block_t expanded = 0; 1645 int err; 1646 1647 err = inode_newsize_ok(inode, (len + offset)); 1648 if (err) 1649 return err; 1650 1651 err = f2fs_convert_inline_inode(inode); 1652 if (err) 1653 return err; 1654 1655 f2fs_balance_fs(sbi, true); 1656 1657 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1658 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1659 off_end = (offset + len) & (PAGE_SIZE - 1); 1660 1661 map.m_lblk = pg_start; 1662 map.m_len = pg_end - pg_start; 1663 if (off_end) 1664 map.m_len++; 1665 1666 if (!map.m_len) 1667 return 0; 1668 1669 if (f2fs_is_pinned_file(inode)) { 1670 block_t sec_blks = BLKS_PER_SEC(sbi); 1671 block_t sec_len = roundup(map.m_len, sec_blks); 1672 1673 map.m_len = sec_blks; 1674 next_alloc: 1675 if (has_not_enough_free_secs(sbi, 0, 1676 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1677 down_write(&sbi->gc_lock); 1678 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO); 1679 if (err && err != -ENODATA && err != -EAGAIN) 1680 goto out_err; 1681 } 1682 1683 down_write(&sbi->pin_sem); 1684 1685 f2fs_lock_op(sbi); 1686 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 1687 f2fs_unlock_op(sbi); 1688 1689 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1690 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1691 file_dont_truncate(inode); 1692 1693 up_write(&sbi->pin_sem); 1694 1695 expanded += map.m_len; 1696 sec_len -= map.m_len; 1697 map.m_lblk += map.m_len; 1698 if (!err && sec_len) 1699 goto next_alloc; 1700 1701 map.m_len = expanded; 1702 } else { 1703 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1704 expanded = map.m_len; 1705 } 1706 out_err: 1707 if (err) { 1708 pgoff_t last_off; 1709 1710 if (!expanded) 1711 return err; 1712 1713 last_off = pg_start + expanded - 1; 1714 1715 /* update new size to the failed position */ 1716 new_size = (last_off == pg_end) ? offset + len : 1717 (loff_t)(last_off + 1) << PAGE_SHIFT; 1718 } else { 1719 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1720 } 1721 1722 if (new_size > i_size_read(inode)) { 1723 if (mode & FALLOC_FL_KEEP_SIZE) 1724 file_set_keep_isize(inode); 1725 else 1726 f2fs_i_size_write(inode, new_size); 1727 } 1728 1729 return err; 1730 } 1731 1732 static long f2fs_fallocate(struct file *file, int mode, 1733 loff_t offset, loff_t len) 1734 { 1735 struct inode *inode = file_inode(file); 1736 long ret = 0; 1737 1738 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1739 return -EIO; 1740 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1741 return -ENOSPC; 1742 if (!f2fs_is_compress_backend_ready(inode)) 1743 return -EOPNOTSUPP; 1744 1745 /* f2fs only support ->fallocate for regular file */ 1746 if (!S_ISREG(inode->i_mode)) 1747 return -EINVAL; 1748 1749 if (IS_ENCRYPTED(inode) && 1750 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1751 return -EOPNOTSUPP; 1752 1753 /* 1754 * Pinned file should not support partial trucation since the block 1755 * can be used by applications. 1756 */ 1757 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1758 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1759 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1760 return -EOPNOTSUPP; 1761 1762 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1763 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1764 FALLOC_FL_INSERT_RANGE)) 1765 return -EOPNOTSUPP; 1766 1767 inode_lock(inode); 1768 1769 if (mode & FALLOC_FL_PUNCH_HOLE) { 1770 if (offset >= inode->i_size) 1771 goto out; 1772 1773 ret = punch_hole(inode, offset, len); 1774 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1775 ret = f2fs_collapse_range(inode, offset, len); 1776 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1777 ret = f2fs_zero_range(inode, offset, len, mode); 1778 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1779 ret = f2fs_insert_range(inode, offset, len); 1780 } else { 1781 ret = expand_inode_data(inode, offset, len, mode); 1782 } 1783 1784 if (!ret) { 1785 inode->i_mtime = inode->i_ctime = current_time(inode); 1786 f2fs_mark_inode_dirty_sync(inode, false); 1787 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1788 } 1789 1790 out: 1791 inode_unlock(inode); 1792 1793 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1794 return ret; 1795 } 1796 1797 static int f2fs_release_file(struct inode *inode, struct file *filp) 1798 { 1799 /* 1800 * f2fs_relase_file is called at every close calls. So we should 1801 * not drop any inmemory pages by close called by other process. 1802 */ 1803 if (!(filp->f_mode & FMODE_WRITE) || 1804 atomic_read(&inode->i_writecount) != 1) 1805 return 0; 1806 1807 /* some remained atomic pages should discarded */ 1808 if (f2fs_is_atomic_file(inode)) 1809 f2fs_drop_inmem_pages(inode); 1810 if (f2fs_is_volatile_file(inode)) { 1811 set_inode_flag(inode, FI_DROP_CACHE); 1812 filemap_fdatawrite(inode->i_mapping); 1813 clear_inode_flag(inode, FI_DROP_CACHE); 1814 clear_inode_flag(inode, FI_VOLATILE_FILE); 1815 stat_dec_volatile_write(inode); 1816 } 1817 return 0; 1818 } 1819 1820 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1821 { 1822 struct inode *inode = file_inode(file); 1823 1824 /* 1825 * If the process doing a transaction is crashed, we should do 1826 * roll-back. Otherwise, other reader/write can see corrupted database 1827 * until all the writers close its file. Since this should be done 1828 * before dropping file lock, it needs to do in ->flush. 1829 */ 1830 if (f2fs_is_atomic_file(inode) && 1831 F2FS_I(inode)->inmem_task == current) 1832 f2fs_drop_inmem_pages(inode); 1833 return 0; 1834 } 1835 1836 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1837 { 1838 struct f2fs_inode_info *fi = F2FS_I(inode); 1839 u32 masked_flags = fi->i_flags & mask; 1840 1841 /* mask can be shrunk by flags_valid selector */ 1842 iflags &= mask; 1843 1844 /* Is it quota file? Do not allow user to mess with it */ 1845 if (IS_NOQUOTA(inode)) 1846 return -EPERM; 1847 1848 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1849 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1850 return -EOPNOTSUPP; 1851 if (!f2fs_empty_dir(inode)) 1852 return -ENOTEMPTY; 1853 } 1854 1855 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1856 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1857 return -EOPNOTSUPP; 1858 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1859 return -EINVAL; 1860 } 1861 1862 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1863 if (masked_flags & F2FS_COMPR_FL) { 1864 if (!f2fs_disable_compressed_file(inode)) 1865 return -EINVAL; 1866 } 1867 if (iflags & F2FS_NOCOMP_FL) 1868 return -EINVAL; 1869 if (iflags & F2FS_COMPR_FL) { 1870 if (!f2fs_may_compress(inode)) 1871 return -EINVAL; 1872 if (S_ISREG(inode->i_mode) && inode->i_size) 1873 return -EINVAL; 1874 1875 set_compress_context(inode); 1876 } 1877 } 1878 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) { 1879 if (masked_flags & F2FS_COMPR_FL) 1880 return -EINVAL; 1881 } 1882 1883 fi->i_flags = iflags | (fi->i_flags & ~mask); 1884 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1885 (fi->i_flags & F2FS_NOCOMP_FL)); 1886 1887 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1888 set_inode_flag(inode, FI_PROJ_INHERIT); 1889 else 1890 clear_inode_flag(inode, FI_PROJ_INHERIT); 1891 1892 inode->i_ctime = current_time(inode); 1893 f2fs_set_inode_flags(inode); 1894 f2fs_mark_inode_dirty_sync(inode, true); 1895 return 0; 1896 } 1897 1898 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 1899 1900 /* 1901 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1902 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1903 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1904 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1905 * 1906 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 1907 * FS_IOC_FSSETXATTR is done by the VFS. 1908 */ 1909 1910 static const struct { 1911 u32 iflag; 1912 u32 fsflag; 1913 } f2fs_fsflags_map[] = { 1914 { F2FS_COMPR_FL, FS_COMPR_FL }, 1915 { F2FS_SYNC_FL, FS_SYNC_FL }, 1916 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1917 { F2FS_APPEND_FL, FS_APPEND_FL }, 1918 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1919 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1920 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1921 { F2FS_INDEX_FL, FS_INDEX_FL }, 1922 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1923 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1924 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1925 }; 1926 1927 #define F2FS_GETTABLE_FS_FL ( \ 1928 FS_COMPR_FL | \ 1929 FS_SYNC_FL | \ 1930 FS_IMMUTABLE_FL | \ 1931 FS_APPEND_FL | \ 1932 FS_NODUMP_FL | \ 1933 FS_NOATIME_FL | \ 1934 FS_NOCOMP_FL | \ 1935 FS_INDEX_FL | \ 1936 FS_DIRSYNC_FL | \ 1937 FS_PROJINHERIT_FL | \ 1938 FS_ENCRYPT_FL | \ 1939 FS_INLINE_DATA_FL | \ 1940 FS_NOCOW_FL | \ 1941 FS_VERITY_FL | \ 1942 FS_CASEFOLD_FL) 1943 1944 #define F2FS_SETTABLE_FS_FL ( \ 1945 FS_COMPR_FL | \ 1946 FS_SYNC_FL | \ 1947 FS_IMMUTABLE_FL | \ 1948 FS_APPEND_FL | \ 1949 FS_NODUMP_FL | \ 1950 FS_NOATIME_FL | \ 1951 FS_NOCOMP_FL | \ 1952 FS_DIRSYNC_FL | \ 1953 FS_PROJINHERIT_FL | \ 1954 FS_CASEFOLD_FL) 1955 1956 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1957 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1958 { 1959 u32 fsflags = 0; 1960 int i; 1961 1962 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1963 if (iflags & f2fs_fsflags_map[i].iflag) 1964 fsflags |= f2fs_fsflags_map[i].fsflag; 1965 1966 return fsflags; 1967 } 1968 1969 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1970 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1971 { 1972 u32 iflags = 0; 1973 int i; 1974 1975 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1976 if (fsflags & f2fs_fsflags_map[i].fsflag) 1977 iflags |= f2fs_fsflags_map[i].iflag; 1978 1979 return iflags; 1980 } 1981 1982 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1983 { 1984 struct inode *inode = file_inode(filp); 1985 1986 return put_user(inode->i_generation, (int __user *)arg); 1987 } 1988 1989 static int f2fs_ioc_start_atomic_write(struct file *filp) 1990 { 1991 struct inode *inode = file_inode(filp); 1992 struct f2fs_inode_info *fi = F2FS_I(inode); 1993 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1994 int ret; 1995 1996 if (!inode_owner_or_capable(&init_user_ns, inode)) 1997 return -EACCES; 1998 1999 if (!S_ISREG(inode->i_mode)) 2000 return -EINVAL; 2001 2002 if (filp->f_flags & O_DIRECT) 2003 return -EINVAL; 2004 2005 ret = mnt_want_write_file(filp); 2006 if (ret) 2007 return ret; 2008 2009 inode_lock(inode); 2010 2011 f2fs_disable_compressed_file(inode); 2012 2013 if (f2fs_is_atomic_file(inode)) { 2014 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) 2015 ret = -EINVAL; 2016 goto out; 2017 } 2018 2019 ret = f2fs_convert_inline_inode(inode); 2020 if (ret) 2021 goto out; 2022 2023 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2024 2025 /* 2026 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2027 * f2fs_is_atomic_file. 2028 */ 2029 if (get_dirty_pages(inode)) 2030 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2031 inode->i_ino, get_dirty_pages(inode)); 2032 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2033 if (ret) { 2034 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2035 goto out; 2036 } 2037 2038 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 2039 if (list_empty(&fi->inmem_ilist)) 2040 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 2041 sbi->atomic_files++; 2042 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 2043 2044 /* add inode in inmem_list first and set atomic_file */ 2045 set_inode_flag(inode, FI_ATOMIC_FILE); 2046 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2047 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2048 2049 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2050 F2FS_I(inode)->inmem_task = current; 2051 stat_update_max_atomic_write(inode); 2052 out: 2053 inode_unlock(inode); 2054 mnt_drop_write_file(filp); 2055 return ret; 2056 } 2057 2058 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2059 { 2060 struct inode *inode = file_inode(filp); 2061 int ret; 2062 2063 if (!inode_owner_or_capable(&init_user_ns, inode)) 2064 return -EACCES; 2065 2066 ret = mnt_want_write_file(filp); 2067 if (ret) 2068 return ret; 2069 2070 f2fs_balance_fs(F2FS_I_SB(inode), true); 2071 2072 inode_lock(inode); 2073 2074 if (f2fs_is_volatile_file(inode)) { 2075 ret = -EINVAL; 2076 goto err_out; 2077 } 2078 2079 if (f2fs_is_atomic_file(inode)) { 2080 ret = f2fs_commit_inmem_pages(inode); 2081 if (ret) 2082 goto err_out; 2083 2084 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2085 if (!ret) 2086 f2fs_drop_inmem_pages(inode); 2087 } else { 2088 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2089 } 2090 err_out: 2091 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2092 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2093 ret = -EINVAL; 2094 } 2095 inode_unlock(inode); 2096 mnt_drop_write_file(filp); 2097 return ret; 2098 } 2099 2100 static int f2fs_ioc_start_volatile_write(struct file *filp) 2101 { 2102 struct inode *inode = file_inode(filp); 2103 int ret; 2104 2105 if (!inode_owner_or_capable(&init_user_ns, inode)) 2106 return -EACCES; 2107 2108 if (!S_ISREG(inode->i_mode)) 2109 return -EINVAL; 2110 2111 ret = mnt_want_write_file(filp); 2112 if (ret) 2113 return ret; 2114 2115 inode_lock(inode); 2116 2117 if (f2fs_is_volatile_file(inode)) 2118 goto out; 2119 2120 ret = f2fs_convert_inline_inode(inode); 2121 if (ret) 2122 goto out; 2123 2124 stat_inc_volatile_write(inode); 2125 stat_update_max_volatile_write(inode); 2126 2127 set_inode_flag(inode, FI_VOLATILE_FILE); 2128 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2129 out: 2130 inode_unlock(inode); 2131 mnt_drop_write_file(filp); 2132 return ret; 2133 } 2134 2135 static int f2fs_ioc_release_volatile_write(struct file *filp) 2136 { 2137 struct inode *inode = file_inode(filp); 2138 int ret; 2139 2140 if (!inode_owner_or_capable(&init_user_ns, inode)) 2141 return -EACCES; 2142 2143 ret = mnt_want_write_file(filp); 2144 if (ret) 2145 return ret; 2146 2147 inode_lock(inode); 2148 2149 if (!f2fs_is_volatile_file(inode)) 2150 goto out; 2151 2152 if (!f2fs_is_first_block_written(inode)) { 2153 ret = truncate_partial_data_page(inode, 0, true); 2154 goto out; 2155 } 2156 2157 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 2158 out: 2159 inode_unlock(inode); 2160 mnt_drop_write_file(filp); 2161 return ret; 2162 } 2163 2164 static int f2fs_ioc_abort_volatile_write(struct file *filp) 2165 { 2166 struct inode *inode = file_inode(filp); 2167 int ret; 2168 2169 if (!inode_owner_or_capable(&init_user_ns, inode)) 2170 return -EACCES; 2171 2172 ret = mnt_want_write_file(filp); 2173 if (ret) 2174 return ret; 2175 2176 inode_lock(inode); 2177 2178 if (f2fs_is_atomic_file(inode)) 2179 f2fs_drop_inmem_pages(inode); 2180 if (f2fs_is_volatile_file(inode)) { 2181 clear_inode_flag(inode, FI_VOLATILE_FILE); 2182 stat_dec_volatile_write(inode); 2183 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2184 } 2185 2186 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2187 2188 inode_unlock(inode); 2189 2190 mnt_drop_write_file(filp); 2191 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2192 return ret; 2193 } 2194 2195 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2196 { 2197 struct inode *inode = file_inode(filp); 2198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2199 struct super_block *sb = sbi->sb; 2200 __u32 in; 2201 int ret = 0; 2202 2203 if (!capable(CAP_SYS_ADMIN)) 2204 return -EPERM; 2205 2206 if (get_user(in, (__u32 __user *)arg)) 2207 return -EFAULT; 2208 2209 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2210 ret = mnt_want_write_file(filp); 2211 if (ret) { 2212 if (ret == -EROFS) { 2213 ret = 0; 2214 f2fs_stop_checkpoint(sbi, false); 2215 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2216 trace_f2fs_shutdown(sbi, in, ret); 2217 } 2218 return ret; 2219 } 2220 } 2221 2222 switch (in) { 2223 case F2FS_GOING_DOWN_FULLSYNC: 2224 ret = freeze_bdev(sb->s_bdev); 2225 if (ret) 2226 goto out; 2227 f2fs_stop_checkpoint(sbi, false); 2228 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2229 thaw_bdev(sb->s_bdev); 2230 break; 2231 case F2FS_GOING_DOWN_METASYNC: 2232 /* do checkpoint only */ 2233 ret = f2fs_sync_fs(sb, 1); 2234 if (ret) 2235 goto out; 2236 f2fs_stop_checkpoint(sbi, false); 2237 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2238 break; 2239 case F2FS_GOING_DOWN_NOSYNC: 2240 f2fs_stop_checkpoint(sbi, false); 2241 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2242 break; 2243 case F2FS_GOING_DOWN_METAFLUSH: 2244 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2245 f2fs_stop_checkpoint(sbi, false); 2246 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2247 break; 2248 case F2FS_GOING_DOWN_NEED_FSCK: 2249 set_sbi_flag(sbi, SBI_NEED_FSCK); 2250 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2251 set_sbi_flag(sbi, SBI_IS_DIRTY); 2252 /* do checkpoint only */ 2253 ret = f2fs_sync_fs(sb, 1); 2254 goto out; 2255 default: 2256 ret = -EINVAL; 2257 goto out; 2258 } 2259 2260 f2fs_stop_gc_thread(sbi); 2261 f2fs_stop_discard_thread(sbi); 2262 2263 f2fs_drop_discard_cmd(sbi); 2264 clear_opt(sbi, DISCARD); 2265 2266 f2fs_update_time(sbi, REQ_TIME); 2267 out: 2268 if (in != F2FS_GOING_DOWN_FULLSYNC) 2269 mnt_drop_write_file(filp); 2270 2271 trace_f2fs_shutdown(sbi, in, ret); 2272 2273 return ret; 2274 } 2275 2276 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2277 { 2278 struct inode *inode = file_inode(filp); 2279 struct super_block *sb = inode->i_sb; 2280 struct request_queue *q = bdev_get_queue(sb->s_bdev); 2281 struct fstrim_range range; 2282 int ret; 2283 2284 if (!capable(CAP_SYS_ADMIN)) 2285 return -EPERM; 2286 2287 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2288 return -EOPNOTSUPP; 2289 2290 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2291 sizeof(range))) 2292 return -EFAULT; 2293 2294 ret = mnt_want_write_file(filp); 2295 if (ret) 2296 return ret; 2297 2298 range.minlen = max((unsigned int)range.minlen, 2299 q->limits.discard_granularity); 2300 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2301 mnt_drop_write_file(filp); 2302 if (ret < 0) 2303 return ret; 2304 2305 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2306 sizeof(range))) 2307 return -EFAULT; 2308 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2309 return 0; 2310 } 2311 2312 static bool uuid_is_nonzero(__u8 u[16]) 2313 { 2314 int i; 2315 2316 for (i = 0; i < 16; i++) 2317 if (u[i]) 2318 return true; 2319 return false; 2320 } 2321 2322 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2323 { 2324 struct inode *inode = file_inode(filp); 2325 2326 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2327 return -EOPNOTSUPP; 2328 2329 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2330 2331 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2332 } 2333 2334 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2335 { 2336 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2337 return -EOPNOTSUPP; 2338 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2339 } 2340 2341 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2342 { 2343 struct inode *inode = file_inode(filp); 2344 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2345 int err; 2346 2347 if (!f2fs_sb_has_encrypt(sbi)) 2348 return -EOPNOTSUPP; 2349 2350 err = mnt_want_write_file(filp); 2351 if (err) 2352 return err; 2353 2354 down_write(&sbi->sb_lock); 2355 2356 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2357 goto got_it; 2358 2359 /* update superblock with uuid */ 2360 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2361 2362 err = f2fs_commit_super(sbi, false); 2363 if (err) { 2364 /* undo new data */ 2365 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2366 goto out_err; 2367 } 2368 got_it: 2369 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2370 16)) 2371 err = -EFAULT; 2372 out_err: 2373 up_write(&sbi->sb_lock); 2374 mnt_drop_write_file(filp); 2375 return err; 2376 } 2377 2378 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2379 unsigned long arg) 2380 { 2381 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2382 return -EOPNOTSUPP; 2383 2384 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2385 } 2386 2387 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2388 { 2389 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2390 return -EOPNOTSUPP; 2391 2392 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2393 } 2394 2395 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2396 { 2397 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2398 return -EOPNOTSUPP; 2399 2400 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2401 } 2402 2403 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2404 unsigned long arg) 2405 { 2406 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2407 return -EOPNOTSUPP; 2408 2409 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2410 } 2411 2412 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2413 unsigned long arg) 2414 { 2415 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2416 return -EOPNOTSUPP; 2417 2418 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2419 } 2420 2421 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2422 { 2423 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2424 return -EOPNOTSUPP; 2425 2426 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2427 } 2428 2429 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2430 { 2431 struct inode *inode = file_inode(filp); 2432 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2433 __u32 sync; 2434 int ret; 2435 2436 if (!capable(CAP_SYS_ADMIN)) 2437 return -EPERM; 2438 2439 if (get_user(sync, (__u32 __user *)arg)) 2440 return -EFAULT; 2441 2442 if (f2fs_readonly(sbi->sb)) 2443 return -EROFS; 2444 2445 ret = mnt_want_write_file(filp); 2446 if (ret) 2447 return ret; 2448 2449 if (!sync) { 2450 if (!down_write_trylock(&sbi->gc_lock)) { 2451 ret = -EBUSY; 2452 goto out; 2453 } 2454 } else { 2455 down_write(&sbi->gc_lock); 2456 } 2457 2458 ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO); 2459 out: 2460 mnt_drop_write_file(filp); 2461 return ret; 2462 } 2463 2464 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2465 { 2466 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2467 u64 end; 2468 int ret; 2469 2470 if (!capable(CAP_SYS_ADMIN)) 2471 return -EPERM; 2472 if (f2fs_readonly(sbi->sb)) 2473 return -EROFS; 2474 2475 end = range->start + range->len; 2476 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2477 end >= MAX_BLKADDR(sbi)) 2478 return -EINVAL; 2479 2480 ret = mnt_want_write_file(filp); 2481 if (ret) 2482 return ret; 2483 2484 do_more: 2485 if (!range->sync) { 2486 if (!down_write_trylock(&sbi->gc_lock)) { 2487 ret = -EBUSY; 2488 goto out; 2489 } 2490 } else { 2491 down_write(&sbi->gc_lock); 2492 } 2493 2494 ret = f2fs_gc(sbi, range->sync, true, false, 2495 GET_SEGNO(sbi, range->start)); 2496 if (ret) { 2497 if (ret == -EBUSY) 2498 ret = -EAGAIN; 2499 goto out; 2500 } 2501 range->start += BLKS_PER_SEC(sbi); 2502 if (range->start <= end) 2503 goto do_more; 2504 out: 2505 mnt_drop_write_file(filp); 2506 return ret; 2507 } 2508 2509 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2510 { 2511 struct f2fs_gc_range range; 2512 2513 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2514 sizeof(range))) 2515 return -EFAULT; 2516 return __f2fs_ioc_gc_range(filp, &range); 2517 } 2518 2519 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2520 { 2521 struct inode *inode = file_inode(filp); 2522 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2523 int ret; 2524 2525 if (!capable(CAP_SYS_ADMIN)) 2526 return -EPERM; 2527 2528 if (f2fs_readonly(sbi->sb)) 2529 return -EROFS; 2530 2531 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2532 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2533 return -EINVAL; 2534 } 2535 2536 ret = mnt_want_write_file(filp); 2537 if (ret) 2538 return ret; 2539 2540 ret = f2fs_sync_fs(sbi->sb, 1); 2541 2542 mnt_drop_write_file(filp); 2543 return ret; 2544 } 2545 2546 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2547 struct file *filp, 2548 struct f2fs_defragment *range) 2549 { 2550 struct inode *inode = file_inode(filp); 2551 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2552 .m_seg_type = NO_CHECK_TYPE, 2553 .m_may_create = false }; 2554 struct extent_info ei = {0, 0, 0}; 2555 pgoff_t pg_start, pg_end, next_pgofs; 2556 unsigned int blk_per_seg = sbi->blocks_per_seg; 2557 unsigned int total = 0, sec_num; 2558 block_t blk_end = 0; 2559 bool fragmented = false; 2560 int err; 2561 2562 /* if in-place-update policy is enabled, don't waste time here */ 2563 if (f2fs_should_update_inplace(inode, NULL)) 2564 return -EINVAL; 2565 2566 pg_start = range->start >> PAGE_SHIFT; 2567 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2568 2569 f2fs_balance_fs(sbi, true); 2570 2571 inode_lock(inode); 2572 2573 /* writeback all dirty pages in the range */ 2574 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2575 range->start + range->len - 1); 2576 if (err) 2577 goto out; 2578 2579 /* 2580 * lookup mapping info in extent cache, skip defragmenting if physical 2581 * block addresses are continuous. 2582 */ 2583 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2584 if (ei.fofs + ei.len >= pg_end) 2585 goto out; 2586 } 2587 2588 map.m_lblk = pg_start; 2589 map.m_next_pgofs = &next_pgofs; 2590 2591 /* 2592 * lookup mapping info in dnode page cache, skip defragmenting if all 2593 * physical block addresses are continuous even if there are hole(s) 2594 * in logical blocks. 2595 */ 2596 while (map.m_lblk < pg_end) { 2597 map.m_len = pg_end - map.m_lblk; 2598 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2599 if (err) 2600 goto out; 2601 2602 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2603 map.m_lblk = next_pgofs; 2604 continue; 2605 } 2606 2607 if (blk_end && blk_end != map.m_pblk) 2608 fragmented = true; 2609 2610 /* record total count of block that we're going to move */ 2611 total += map.m_len; 2612 2613 blk_end = map.m_pblk + map.m_len; 2614 2615 map.m_lblk += map.m_len; 2616 } 2617 2618 if (!fragmented) { 2619 total = 0; 2620 goto out; 2621 } 2622 2623 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi)); 2624 2625 /* 2626 * make sure there are enough free section for LFS allocation, this can 2627 * avoid defragment running in SSR mode when free section are allocated 2628 * intensively 2629 */ 2630 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2631 err = -EAGAIN; 2632 goto out; 2633 } 2634 2635 map.m_lblk = pg_start; 2636 map.m_len = pg_end - pg_start; 2637 total = 0; 2638 2639 while (map.m_lblk < pg_end) { 2640 pgoff_t idx; 2641 int cnt = 0; 2642 2643 do_map: 2644 map.m_len = pg_end - map.m_lblk; 2645 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2646 if (err) 2647 goto clear_out; 2648 2649 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2650 map.m_lblk = next_pgofs; 2651 goto check; 2652 } 2653 2654 set_inode_flag(inode, FI_DO_DEFRAG); 2655 2656 idx = map.m_lblk; 2657 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2658 struct page *page; 2659 2660 page = f2fs_get_lock_data_page(inode, idx, true); 2661 if (IS_ERR(page)) { 2662 err = PTR_ERR(page); 2663 goto clear_out; 2664 } 2665 2666 set_page_dirty(page); 2667 f2fs_put_page(page, 1); 2668 2669 idx++; 2670 cnt++; 2671 total++; 2672 } 2673 2674 map.m_lblk = idx; 2675 check: 2676 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2677 goto do_map; 2678 2679 clear_inode_flag(inode, FI_DO_DEFRAG); 2680 2681 err = filemap_fdatawrite(inode->i_mapping); 2682 if (err) 2683 goto out; 2684 } 2685 clear_out: 2686 clear_inode_flag(inode, FI_DO_DEFRAG); 2687 out: 2688 inode_unlock(inode); 2689 if (!err) 2690 range->len = (u64)total << PAGE_SHIFT; 2691 return err; 2692 } 2693 2694 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2695 { 2696 struct inode *inode = file_inode(filp); 2697 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2698 struct f2fs_defragment range; 2699 int err; 2700 2701 if (!capable(CAP_SYS_ADMIN)) 2702 return -EPERM; 2703 2704 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2705 return -EINVAL; 2706 2707 if (f2fs_readonly(sbi->sb)) 2708 return -EROFS; 2709 2710 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2711 sizeof(range))) 2712 return -EFAULT; 2713 2714 /* verify alignment of offset & size */ 2715 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2716 return -EINVAL; 2717 2718 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2719 max_file_blocks(inode))) 2720 return -EINVAL; 2721 2722 err = mnt_want_write_file(filp); 2723 if (err) 2724 return err; 2725 2726 err = f2fs_defragment_range(sbi, filp, &range); 2727 mnt_drop_write_file(filp); 2728 2729 f2fs_update_time(sbi, REQ_TIME); 2730 if (err < 0) 2731 return err; 2732 2733 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2734 sizeof(range))) 2735 return -EFAULT; 2736 2737 return 0; 2738 } 2739 2740 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2741 struct file *file_out, loff_t pos_out, size_t len) 2742 { 2743 struct inode *src = file_inode(file_in); 2744 struct inode *dst = file_inode(file_out); 2745 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2746 size_t olen = len, dst_max_i_size = 0; 2747 size_t dst_osize; 2748 int ret; 2749 2750 if (file_in->f_path.mnt != file_out->f_path.mnt || 2751 src->i_sb != dst->i_sb) 2752 return -EXDEV; 2753 2754 if (unlikely(f2fs_readonly(src->i_sb))) 2755 return -EROFS; 2756 2757 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2758 return -EINVAL; 2759 2760 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2761 return -EOPNOTSUPP; 2762 2763 if (pos_out < 0 || pos_in < 0) 2764 return -EINVAL; 2765 2766 if (src == dst) { 2767 if (pos_in == pos_out) 2768 return 0; 2769 if (pos_out > pos_in && pos_out < pos_in + len) 2770 return -EINVAL; 2771 } 2772 2773 inode_lock(src); 2774 if (src != dst) { 2775 ret = -EBUSY; 2776 if (!inode_trylock(dst)) 2777 goto out; 2778 } 2779 2780 ret = -EINVAL; 2781 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2782 goto out_unlock; 2783 if (len == 0) 2784 olen = len = src->i_size - pos_in; 2785 if (pos_in + len == src->i_size) 2786 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2787 if (len == 0) { 2788 ret = 0; 2789 goto out_unlock; 2790 } 2791 2792 dst_osize = dst->i_size; 2793 if (pos_out + olen > dst->i_size) 2794 dst_max_i_size = pos_out + olen; 2795 2796 /* verify the end result is block aligned */ 2797 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2798 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2799 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2800 goto out_unlock; 2801 2802 ret = f2fs_convert_inline_inode(src); 2803 if (ret) 2804 goto out_unlock; 2805 2806 ret = f2fs_convert_inline_inode(dst); 2807 if (ret) 2808 goto out_unlock; 2809 2810 /* write out all dirty pages from offset */ 2811 ret = filemap_write_and_wait_range(src->i_mapping, 2812 pos_in, pos_in + len); 2813 if (ret) 2814 goto out_unlock; 2815 2816 ret = filemap_write_and_wait_range(dst->i_mapping, 2817 pos_out, pos_out + len); 2818 if (ret) 2819 goto out_unlock; 2820 2821 f2fs_balance_fs(sbi, true); 2822 2823 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2824 if (src != dst) { 2825 ret = -EBUSY; 2826 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2827 goto out_src; 2828 } 2829 2830 f2fs_lock_op(sbi); 2831 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2832 pos_out >> F2FS_BLKSIZE_BITS, 2833 len >> F2FS_BLKSIZE_BITS, false); 2834 2835 if (!ret) { 2836 if (dst_max_i_size) 2837 f2fs_i_size_write(dst, dst_max_i_size); 2838 else if (dst_osize != dst->i_size) 2839 f2fs_i_size_write(dst, dst_osize); 2840 } 2841 f2fs_unlock_op(sbi); 2842 2843 if (src != dst) 2844 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2845 out_src: 2846 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2847 out_unlock: 2848 if (src != dst) 2849 inode_unlock(dst); 2850 out: 2851 inode_unlock(src); 2852 return ret; 2853 } 2854 2855 static int __f2fs_ioc_move_range(struct file *filp, 2856 struct f2fs_move_range *range) 2857 { 2858 struct fd dst; 2859 int err; 2860 2861 if (!(filp->f_mode & FMODE_READ) || 2862 !(filp->f_mode & FMODE_WRITE)) 2863 return -EBADF; 2864 2865 dst = fdget(range->dst_fd); 2866 if (!dst.file) 2867 return -EBADF; 2868 2869 if (!(dst.file->f_mode & FMODE_WRITE)) { 2870 err = -EBADF; 2871 goto err_out; 2872 } 2873 2874 err = mnt_want_write_file(filp); 2875 if (err) 2876 goto err_out; 2877 2878 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2879 range->pos_out, range->len); 2880 2881 mnt_drop_write_file(filp); 2882 err_out: 2883 fdput(dst); 2884 return err; 2885 } 2886 2887 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2888 { 2889 struct f2fs_move_range range; 2890 2891 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2892 sizeof(range))) 2893 return -EFAULT; 2894 return __f2fs_ioc_move_range(filp, &range); 2895 } 2896 2897 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2898 { 2899 struct inode *inode = file_inode(filp); 2900 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2901 struct sit_info *sm = SIT_I(sbi); 2902 unsigned int start_segno = 0, end_segno = 0; 2903 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2904 struct f2fs_flush_device range; 2905 int ret; 2906 2907 if (!capable(CAP_SYS_ADMIN)) 2908 return -EPERM; 2909 2910 if (f2fs_readonly(sbi->sb)) 2911 return -EROFS; 2912 2913 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2914 return -EINVAL; 2915 2916 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2917 sizeof(range))) 2918 return -EFAULT; 2919 2920 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2921 __is_large_section(sbi)) { 2922 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2923 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2924 return -EINVAL; 2925 } 2926 2927 ret = mnt_want_write_file(filp); 2928 if (ret) 2929 return ret; 2930 2931 if (range.dev_num != 0) 2932 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2933 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2934 2935 start_segno = sm->last_victim[FLUSH_DEVICE]; 2936 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2937 start_segno = dev_start_segno; 2938 end_segno = min(start_segno + range.segments, dev_end_segno); 2939 2940 while (start_segno < end_segno) { 2941 if (!down_write_trylock(&sbi->gc_lock)) { 2942 ret = -EBUSY; 2943 goto out; 2944 } 2945 sm->last_victim[GC_CB] = end_segno + 1; 2946 sm->last_victim[GC_GREEDY] = end_segno + 1; 2947 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2948 ret = f2fs_gc(sbi, true, true, true, start_segno); 2949 if (ret == -EAGAIN) 2950 ret = 0; 2951 else if (ret < 0) 2952 break; 2953 start_segno++; 2954 } 2955 out: 2956 mnt_drop_write_file(filp); 2957 return ret; 2958 } 2959 2960 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2961 { 2962 struct inode *inode = file_inode(filp); 2963 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2964 2965 /* Must validate to set it with SQLite behavior in Android. */ 2966 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2967 2968 return put_user(sb_feature, (u32 __user *)arg); 2969 } 2970 2971 #ifdef CONFIG_QUOTA 2972 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2973 { 2974 struct dquot *transfer_to[MAXQUOTAS] = {}; 2975 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2976 struct super_block *sb = sbi->sb; 2977 int err = 0; 2978 2979 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2980 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2981 err = __dquot_transfer(inode, transfer_to); 2982 if (err) 2983 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2984 dqput(transfer_to[PRJQUOTA]); 2985 } 2986 return err; 2987 } 2988 2989 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 2990 { 2991 struct f2fs_inode_info *fi = F2FS_I(inode); 2992 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2993 struct page *ipage; 2994 kprojid_t kprojid; 2995 int err; 2996 2997 if (!f2fs_sb_has_project_quota(sbi)) { 2998 if (projid != F2FS_DEF_PROJID) 2999 return -EOPNOTSUPP; 3000 else 3001 return 0; 3002 } 3003 3004 if (!f2fs_has_extra_attr(inode)) 3005 return -EOPNOTSUPP; 3006 3007 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3008 3009 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 3010 return 0; 3011 3012 err = -EPERM; 3013 /* Is it quota file? Do not allow user to mess with it */ 3014 if (IS_NOQUOTA(inode)) 3015 return err; 3016 3017 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3018 if (IS_ERR(ipage)) 3019 return PTR_ERR(ipage); 3020 3021 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 3022 i_projid)) { 3023 err = -EOVERFLOW; 3024 f2fs_put_page(ipage, 1); 3025 return err; 3026 } 3027 f2fs_put_page(ipage, 1); 3028 3029 err = f2fs_dquot_initialize(inode); 3030 if (err) 3031 return err; 3032 3033 f2fs_lock_op(sbi); 3034 err = f2fs_transfer_project_quota(inode, kprojid); 3035 if (err) 3036 goto out_unlock; 3037 3038 F2FS_I(inode)->i_projid = kprojid; 3039 inode->i_ctime = current_time(inode); 3040 f2fs_mark_inode_dirty_sync(inode, true); 3041 out_unlock: 3042 f2fs_unlock_op(sbi); 3043 return err; 3044 } 3045 #else 3046 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3047 { 3048 return 0; 3049 } 3050 3051 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3052 { 3053 if (projid != F2FS_DEF_PROJID) 3054 return -EOPNOTSUPP; 3055 return 0; 3056 } 3057 #endif 3058 3059 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3060 { 3061 struct inode *inode = d_inode(dentry); 3062 struct f2fs_inode_info *fi = F2FS_I(inode); 3063 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3064 3065 if (IS_ENCRYPTED(inode)) 3066 fsflags |= FS_ENCRYPT_FL; 3067 if (IS_VERITY(inode)) 3068 fsflags |= FS_VERITY_FL; 3069 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3070 fsflags |= FS_INLINE_DATA_FL; 3071 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3072 fsflags |= FS_NOCOW_FL; 3073 3074 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3075 3076 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3077 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3078 3079 return 0; 3080 } 3081 3082 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3083 struct dentry *dentry, struct fileattr *fa) 3084 { 3085 struct inode *inode = d_inode(dentry); 3086 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3087 u32 iflags; 3088 int err; 3089 3090 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3091 return -EIO; 3092 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3093 return -ENOSPC; 3094 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3095 return -EOPNOTSUPP; 3096 fsflags &= F2FS_SETTABLE_FS_FL; 3097 if (!fa->flags_valid) 3098 mask &= FS_COMMON_FL; 3099 3100 iflags = f2fs_fsflags_to_iflags(fsflags); 3101 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3102 return -EOPNOTSUPP; 3103 3104 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3105 if (!err) 3106 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3107 3108 return err; 3109 } 3110 3111 int f2fs_pin_file_control(struct inode *inode, bool inc) 3112 { 3113 struct f2fs_inode_info *fi = F2FS_I(inode); 3114 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3115 3116 /* Use i_gc_failures for normal file as a risk signal. */ 3117 if (inc) 3118 f2fs_i_gc_failures_write(inode, 3119 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3120 3121 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3122 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3123 __func__, inode->i_ino, 3124 fi->i_gc_failures[GC_FAILURE_PIN]); 3125 clear_inode_flag(inode, FI_PIN_FILE); 3126 return -EAGAIN; 3127 } 3128 return 0; 3129 } 3130 3131 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3132 { 3133 struct inode *inode = file_inode(filp); 3134 __u32 pin; 3135 int ret = 0; 3136 3137 if (get_user(pin, (__u32 __user *)arg)) 3138 return -EFAULT; 3139 3140 if (!S_ISREG(inode->i_mode)) 3141 return -EINVAL; 3142 3143 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3144 return -EROFS; 3145 3146 ret = mnt_want_write_file(filp); 3147 if (ret) 3148 return ret; 3149 3150 inode_lock(inode); 3151 3152 if (!pin) { 3153 clear_inode_flag(inode, FI_PIN_FILE); 3154 f2fs_i_gc_failures_write(inode, 0); 3155 goto done; 3156 } 3157 3158 if (f2fs_should_update_outplace(inode, NULL)) { 3159 ret = -EINVAL; 3160 goto out; 3161 } 3162 3163 if (f2fs_pin_file_control(inode, false)) { 3164 ret = -EAGAIN; 3165 goto out; 3166 } 3167 3168 ret = f2fs_convert_inline_inode(inode); 3169 if (ret) 3170 goto out; 3171 3172 if (!f2fs_disable_compressed_file(inode)) { 3173 ret = -EOPNOTSUPP; 3174 goto out; 3175 } 3176 3177 set_inode_flag(inode, FI_PIN_FILE); 3178 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3179 done: 3180 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3181 out: 3182 inode_unlock(inode); 3183 mnt_drop_write_file(filp); 3184 return ret; 3185 } 3186 3187 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3188 { 3189 struct inode *inode = file_inode(filp); 3190 __u32 pin = 0; 3191 3192 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3193 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3194 return put_user(pin, (u32 __user *)arg); 3195 } 3196 3197 int f2fs_precache_extents(struct inode *inode) 3198 { 3199 struct f2fs_inode_info *fi = F2FS_I(inode); 3200 struct f2fs_map_blocks map; 3201 pgoff_t m_next_extent; 3202 loff_t end; 3203 int err; 3204 3205 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3206 return -EOPNOTSUPP; 3207 3208 map.m_lblk = 0; 3209 map.m_next_pgofs = NULL; 3210 map.m_next_extent = &m_next_extent; 3211 map.m_seg_type = NO_CHECK_TYPE; 3212 map.m_may_create = false; 3213 end = max_file_blocks(inode); 3214 3215 while (map.m_lblk < end) { 3216 map.m_len = end - map.m_lblk; 3217 3218 down_write(&fi->i_gc_rwsem[WRITE]); 3219 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3220 up_write(&fi->i_gc_rwsem[WRITE]); 3221 if (err) 3222 return err; 3223 3224 map.m_lblk = m_next_extent; 3225 } 3226 3227 return 0; 3228 } 3229 3230 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3231 { 3232 return f2fs_precache_extents(file_inode(filp)); 3233 } 3234 3235 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3236 { 3237 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3238 __u64 block_count; 3239 3240 if (!capable(CAP_SYS_ADMIN)) 3241 return -EPERM; 3242 3243 if (f2fs_readonly(sbi->sb)) 3244 return -EROFS; 3245 3246 if (copy_from_user(&block_count, (void __user *)arg, 3247 sizeof(block_count))) 3248 return -EFAULT; 3249 3250 return f2fs_resize_fs(sbi, block_count); 3251 } 3252 3253 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3254 { 3255 struct inode *inode = file_inode(filp); 3256 3257 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3258 3259 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3260 f2fs_warn(F2FS_I_SB(inode), 3261 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3262 inode->i_ino); 3263 return -EOPNOTSUPP; 3264 } 3265 3266 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3267 } 3268 3269 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3270 { 3271 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3272 return -EOPNOTSUPP; 3273 3274 return fsverity_ioctl_measure(filp, (void __user *)arg); 3275 } 3276 3277 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3278 { 3279 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3280 return -EOPNOTSUPP; 3281 3282 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3283 } 3284 3285 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3286 { 3287 struct inode *inode = file_inode(filp); 3288 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3289 char *vbuf; 3290 int count; 3291 int err = 0; 3292 3293 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3294 if (!vbuf) 3295 return -ENOMEM; 3296 3297 down_read(&sbi->sb_lock); 3298 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3299 ARRAY_SIZE(sbi->raw_super->volume_name), 3300 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3301 up_read(&sbi->sb_lock); 3302 3303 if (copy_to_user((char __user *)arg, vbuf, 3304 min(FSLABEL_MAX, count))) 3305 err = -EFAULT; 3306 3307 kfree(vbuf); 3308 return err; 3309 } 3310 3311 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3312 { 3313 struct inode *inode = file_inode(filp); 3314 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3315 char *vbuf; 3316 int err = 0; 3317 3318 if (!capable(CAP_SYS_ADMIN)) 3319 return -EPERM; 3320 3321 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3322 if (IS_ERR(vbuf)) 3323 return PTR_ERR(vbuf); 3324 3325 err = mnt_want_write_file(filp); 3326 if (err) 3327 goto out; 3328 3329 down_write(&sbi->sb_lock); 3330 3331 memset(sbi->raw_super->volume_name, 0, 3332 sizeof(sbi->raw_super->volume_name)); 3333 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3334 sbi->raw_super->volume_name, 3335 ARRAY_SIZE(sbi->raw_super->volume_name)); 3336 3337 err = f2fs_commit_super(sbi, false); 3338 3339 up_write(&sbi->sb_lock); 3340 3341 mnt_drop_write_file(filp); 3342 out: 3343 kfree(vbuf); 3344 return err; 3345 } 3346 3347 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3348 { 3349 struct inode *inode = file_inode(filp); 3350 __u64 blocks; 3351 3352 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3353 return -EOPNOTSUPP; 3354 3355 if (!f2fs_compressed_file(inode)) 3356 return -EINVAL; 3357 3358 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3359 return put_user(blocks, (u64 __user *)arg); 3360 } 3361 3362 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3363 { 3364 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3365 unsigned int released_blocks = 0; 3366 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3367 block_t blkaddr; 3368 int i; 3369 3370 for (i = 0; i < count; i++) { 3371 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3372 dn->ofs_in_node + i); 3373 3374 if (!__is_valid_data_blkaddr(blkaddr)) 3375 continue; 3376 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3377 DATA_GENERIC_ENHANCE))) 3378 return -EFSCORRUPTED; 3379 } 3380 3381 while (count) { 3382 int compr_blocks = 0; 3383 3384 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3385 blkaddr = f2fs_data_blkaddr(dn); 3386 3387 if (i == 0) { 3388 if (blkaddr == COMPRESS_ADDR) 3389 continue; 3390 dn->ofs_in_node += cluster_size; 3391 goto next; 3392 } 3393 3394 if (__is_valid_data_blkaddr(blkaddr)) 3395 compr_blocks++; 3396 3397 if (blkaddr != NEW_ADDR) 3398 continue; 3399 3400 dn->data_blkaddr = NULL_ADDR; 3401 f2fs_set_data_blkaddr(dn); 3402 } 3403 3404 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3405 dec_valid_block_count(sbi, dn->inode, 3406 cluster_size - compr_blocks); 3407 3408 released_blocks += cluster_size - compr_blocks; 3409 next: 3410 count -= cluster_size; 3411 } 3412 3413 return released_blocks; 3414 } 3415 3416 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3417 { 3418 struct inode *inode = file_inode(filp); 3419 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3420 pgoff_t page_idx = 0, last_idx; 3421 unsigned int released_blocks = 0; 3422 int ret; 3423 int writecount; 3424 3425 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3426 return -EOPNOTSUPP; 3427 3428 if (!f2fs_compressed_file(inode)) 3429 return -EINVAL; 3430 3431 if (f2fs_readonly(sbi->sb)) 3432 return -EROFS; 3433 3434 ret = mnt_want_write_file(filp); 3435 if (ret) 3436 return ret; 3437 3438 f2fs_balance_fs(F2FS_I_SB(inode), true); 3439 3440 inode_lock(inode); 3441 3442 writecount = atomic_read(&inode->i_writecount); 3443 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3444 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3445 ret = -EBUSY; 3446 goto out; 3447 } 3448 3449 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3450 ret = -EINVAL; 3451 goto out; 3452 } 3453 3454 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3455 if (ret) 3456 goto out; 3457 3458 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3459 inode->i_ctime = current_time(inode); 3460 f2fs_mark_inode_dirty_sync(inode, true); 3461 3462 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3463 goto out; 3464 3465 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3466 filemap_invalidate_lock(inode->i_mapping); 3467 3468 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3469 3470 while (page_idx < last_idx) { 3471 struct dnode_of_data dn; 3472 pgoff_t end_offset, count; 3473 3474 set_new_dnode(&dn, inode, NULL, NULL, 0); 3475 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3476 if (ret) { 3477 if (ret == -ENOENT) { 3478 page_idx = f2fs_get_next_page_offset(&dn, 3479 page_idx); 3480 ret = 0; 3481 continue; 3482 } 3483 break; 3484 } 3485 3486 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3487 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3488 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3489 3490 ret = release_compress_blocks(&dn, count); 3491 3492 f2fs_put_dnode(&dn); 3493 3494 if (ret < 0) 3495 break; 3496 3497 page_idx += count; 3498 released_blocks += ret; 3499 } 3500 3501 filemap_invalidate_unlock(inode->i_mapping); 3502 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3503 out: 3504 inode_unlock(inode); 3505 3506 mnt_drop_write_file(filp); 3507 3508 if (ret >= 0) { 3509 ret = put_user(released_blocks, (u64 __user *)arg); 3510 } else if (released_blocks && 3511 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3512 set_sbi_flag(sbi, SBI_NEED_FSCK); 3513 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3514 "iblocks=%llu, released=%u, compr_blocks=%u, " 3515 "run fsck to fix.", 3516 __func__, inode->i_ino, inode->i_blocks, 3517 released_blocks, 3518 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3519 } 3520 3521 return ret; 3522 } 3523 3524 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3525 { 3526 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3527 unsigned int reserved_blocks = 0; 3528 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3529 block_t blkaddr; 3530 int i; 3531 3532 for (i = 0; i < count; i++) { 3533 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3534 dn->ofs_in_node + i); 3535 3536 if (!__is_valid_data_blkaddr(blkaddr)) 3537 continue; 3538 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3539 DATA_GENERIC_ENHANCE))) 3540 return -EFSCORRUPTED; 3541 } 3542 3543 while (count) { 3544 int compr_blocks = 0; 3545 blkcnt_t reserved; 3546 int ret; 3547 3548 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3549 blkaddr = f2fs_data_blkaddr(dn); 3550 3551 if (i == 0) { 3552 if (blkaddr == COMPRESS_ADDR) 3553 continue; 3554 dn->ofs_in_node += cluster_size; 3555 goto next; 3556 } 3557 3558 if (__is_valid_data_blkaddr(blkaddr)) { 3559 compr_blocks++; 3560 continue; 3561 } 3562 3563 dn->data_blkaddr = NEW_ADDR; 3564 f2fs_set_data_blkaddr(dn); 3565 } 3566 3567 reserved = cluster_size - compr_blocks; 3568 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3569 if (ret) 3570 return ret; 3571 3572 if (reserved != cluster_size - compr_blocks) 3573 return -ENOSPC; 3574 3575 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3576 3577 reserved_blocks += reserved; 3578 next: 3579 count -= cluster_size; 3580 } 3581 3582 return reserved_blocks; 3583 } 3584 3585 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3586 { 3587 struct inode *inode = file_inode(filp); 3588 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3589 pgoff_t page_idx = 0, last_idx; 3590 unsigned int reserved_blocks = 0; 3591 int ret; 3592 3593 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3594 return -EOPNOTSUPP; 3595 3596 if (!f2fs_compressed_file(inode)) 3597 return -EINVAL; 3598 3599 if (f2fs_readonly(sbi->sb)) 3600 return -EROFS; 3601 3602 ret = mnt_want_write_file(filp); 3603 if (ret) 3604 return ret; 3605 3606 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3607 goto out; 3608 3609 f2fs_balance_fs(F2FS_I_SB(inode), true); 3610 3611 inode_lock(inode); 3612 3613 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3614 ret = -EINVAL; 3615 goto unlock_inode; 3616 } 3617 3618 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3619 filemap_invalidate_lock(inode->i_mapping); 3620 3621 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3622 3623 while (page_idx < last_idx) { 3624 struct dnode_of_data dn; 3625 pgoff_t end_offset, count; 3626 3627 set_new_dnode(&dn, inode, NULL, NULL, 0); 3628 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3629 if (ret) { 3630 if (ret == -ENOENT) { 3631 page_idx = f2fs_get_next_page_offset(&dn, 3632 page_idx); 3633 ret = 0; 3634 continue; 3635 } 3636 break; 3637 } 3638 3639 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3640 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3641 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3642 3643 ret = reserve_compress_blocks(&dn, count); 3644 3645 f2fs_put_dnode(&dn); 3646 3647 if (ret < 0) 3648 break; 3649 3650 page_idx += count; 3651 reserved_blocks += ret; 3652 } 3653 3654 filemap_invalidate_unlock(inode->i_mapping); 3655 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3656 3657 if (ret >= 0) { 3658 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3659 inode->i_ctime = current_time(inode); 3660 f2fs_mark_inode_dirty_sync(inode, true); 3661 } 3662 unlock_inode: 3663 inode_unlock(inode); 3664 out: 3665 mnt_drop_write_file(filp); 3666 3667 if (ret >= 0) { 3668 ret = put_user(reserved_blocks, (u64 __user *)arg); 3669 } else if (reserved_blocks && 3670 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3671 set_sbi_flag(sbi, SBI_NEED_FSCK); 3672 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3673 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3674 "run fsck to fix.", 3675 __func__, inode->i_ino, inode->i_blocks, 3676 reserved_blocks, 3677 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3678 } 3679 3680 return ret; 3681 } 3682 3683 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3684 pgoff_t off, block_t block, block_t len, u32 flags) 3685 { 3686 struct request_queue *q = bdev_get_queue(bdev); 3687 sector_t sector = SECTOR_FROM_BLOCK(block); 3688 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3689 int ret = 0; 3690 3691 if (!q) 3692 return -ENXIO; 3693 3694 if (flags & F2FS_TRIM_FILE_DISCARD) 3695 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS, 3696 blk_queue_secure_erase(q) ? 3697 BLKDEV_DISCARD_SECURE : 0); 3698 3699 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3700 if (IS_ENCRYPTED(inode)) 3701 ret = fscrypt_zeroout_range(inode, off, block, len); 3702 else 3703 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3704 GFP_NOFS, 0); 3705 } 3706 3707 return ret; 3708 } 3709 3710 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3711 { 3712 struct inode *inode = file_inode(filp); 3713 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3714 struct address_space *mapping = inode->i_mapping; 3715 struct block_device *prev_bdev = NULL; 3716 struct f2fs_sectrim_range range; 3717 pgoff_t index, pg_end, prev_index = 0; 3718 block_t prev_block = 0, len = 0; 3719 loff_t end_addr; 3720 bool to_end = false; 3721 int ret = 0; 3722 3723 if (!(filp->f_mode & FMODE_WRITE)) 3724 return -EBADF; 3725 3726 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3727 sizeof(range))) 3728 return -EFAULT; 3729 3730 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3731 !S_ISREG(inode->i_mode)) 3732 return -EINVAL; 3733 3734 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3735 !f2fs_hw_support_discard(sbi)) || 3736 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3737 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3738 return -EOPNOTSUPP; 3739 3740 file_start_write(filp); 3741 inode_lock(inode); 3742 3743 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3744 range.start >= inode->i_size) { 3745 ret = -EINVAL; 3746 goto err; 3747 } 3748 3749 if (range.len == 0) 3750 goto err; 3751 3752 if (inode->i_size - range.start > range.len) { 3753 end_addr = range.start + range.len; 3754 } else { 3755 end_addr = range.len == (u64)-1 ? 3756 sbi->sb->s_maxbytes : inode->i_size; 3757 to_end = true; 3758 } 3759 3760 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3761 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3762 ret = -EINVAL; 3763 goto err; 3764 } 3765 3766 index = F2FS_BYTES_TO_BLK(range.start); 3767 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3768 3769 ret = f2fs_convert_inline_inode(inode); 3770 if (ret) 3771 goto err; 3772 3773 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3774 filemap_invalidate_lock(mapping); 3775 3776 ret = filemap_write_and_wait_range(mapping, range.start, 3777 to_end ? LLONG_MAX : end_addr - 1); 3778 if (ret) 3779 goto out; 3780 3781 truncate_inode_pages_range(mapping, range.start, 3782 to_end ? -1 : end_addr - 1); 3783 3784 while (index < pg_end) { 3785 struct dnode_of_data dn; 3786 pgoff_t end_offset, count; 3787 int i; 3788 3789 set_new_dnode(&dn, inode, NULL, NULL, 0); 3790 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3791 if (ret) { 3792 if (ret == -ENOENT) { 3793 index = f2fs_get_next_page_offset(&dn, index); 3794 continue; 3795 } 3796 goto out; 3797 } 3798 3799 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3800 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3801 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3802 struct block_device *cur_bdev; 3803 block_t blkaddr = f2fs_data_blkaddr(&dn); 3804 3805 if (!__is_valid_data_blkaddr(blkaddr)) 3806 continue; 3807 3808 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3809 DATA_GENERIC_ENHANCE)) { 3810 ret = -EFSCORRUPTED; 3811 f2fs_put_dnode(&dn); 3812 goto out; 3813 } 3814 3815 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3816 if (f2fs_is_multi_device(sbi)) { 3817 int di = f2fs_target_device_index(sbi, blkaddr); 3818 3819 blkaddr -= FDEV(di).start_blk; 3820 } 3821 3822 if (len) { 3823 if (prev_bdev == cur_bdev && 3824 index == prev_index + len && 3825 blkaddr == prev_block + len) { 3826 len++; 3827 } else { 3828 ret = f2fs_secure_erase(prev_bdev, 3829 inode, prev_index, prev_block, 3830 len, range.flags); 3831 if (ret) { 3832 f2fs_put_dnode(&dn); 3833 goto out; 3834 } 3835 3836 len = 0; 3837 } 3838 } 3839 3840 if (!len) { 3841 prev_bdev = cur_bdev; 3842 prev_index = index; 3843 prev_block = blkaddr; 3844 len = 1; 3845 } 3846 } 3847 3848 f2fs_put_dnode(&dn); 3849 3850 if (fatal_signal_pending(current)) { 3851 ret = -EINTR; 3852 goto out; 3853 } 3854 cond_resched(); 3855 } 3856 3857 if (len) 3858 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3859 prev_block, len, range.flags); 3860 out: 3861 filemap_invalidate_unlock(mapping); 3862 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3863 err: 3864 inode_unlock(inode); 3865 file_end_write(filp); 3866 3867 return ret; 3868 } 3869 3870 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3871 { 3872 struct inode *inode = file_inode(filp); 3873 struct f2fs_comp_option option; 3874 3875 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3876 return -EOPNOTSUPP; 3877 3878 inode_lock_shared(inode); 3879 3880 if (!f2fs_compressed_file(inode)) { 3881 inode_unlock_shared(inode); 3882 return -ENODATA; 3883 } 3884 3885 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3886 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3887 3888 inode_unlock_shared(inode); 3889 3890 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3891 sizeof(option))) 3892 return -EFAULT; 3893 3894 return 0; 3895 } 3896 3897 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 3898 { 3899 struct inode *inode = file_inode(filp); 3900 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3901 struct f2fs_comp_option option; 3902 int ret = 0; 3903 3904 if (!f2fs_sb_has_compression(sbi)) 3905 return -EOPNOTSUPP; 3906 3907 if (!(filp->f_mode & FMODE_WRITE)) 3908 return -EBADF; 3909 3910 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 3911 sizeof(option))) 3912 return -EFAULT; 3913 3914 if (!f2fs_compressed_file(inode) || 3915 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 3916 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 3917 option.algorithm >= COMPRESS_MAX) 3918 return -EINVAL; 3919 3920 file_start_write(filp); 3921 inode_lock(inode); 3922 3923 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 3924 ret = -EBUSY; 3925 goto out; 3926 } 3927 3928 if (inode->i_size != 0) { 3929 ret = -EFBIG; 3930 goto out; 3931 } 3932 3933 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 3934 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 3935 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size; 3936 f2fs_mark_inode_dirty_sync(inode, true); 3937 3938 if (!f2fs_is_compress_backend_ready(inode)) 3939 f2fs_warn(sbi, "compression algorithm is successfully set, " 3940 "but current kernel doesn't support this algorithm."); 3941 out: 3942 inode_unlock(inode); 3943 file_end_write(filp); 3944 3945 return ret; 3946 } 3947 3948 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 3949 { 3950 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 3951 struct address_space *mapping = inode->i_mapping; 3952 struct page *page; 3953 pgoff_t redirty_idx = page_idx; 3954 int i, page_len = 0, ret = 0; 3955 3956 page_cache_ra_unbounded(&ractl, len, 0); 3957 3958 for (i = 0; i < len; i++, page_idx++) { 3959 page = read_cache_page(mapping, page_idx, NULL, NULL); 3960 if (IS_ERR(page)) { 3961 ret = PTR_ERR(page); 3962 break; 3963 } 3964 page_len++; 3965 } 3966 3967 for (i = 0; i < page_len; i++, redirty_idx++) { 3968 page = find_lock_page(mapping, redirty_idx); 3969 if (!page) { 3970 ret = -ENOMEM; 3971 break; 3972 } 3973 set_page_dirty(page); 3974 f2fs_put_page(page, 1); 3975 f2fs_put_page(page, 0); 3976 } 3977 3978 return ret; 3979 } 3980 3981 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg) 3982 { 3983 struct inode *inode = file_inode(filp); 3984 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3985 struct f2fs_inode_info *fi = F2FS_I(inode); 3986 pgoff_t page_idx = 0, last_idx; 3987 unsigned int blk_per_seg = sbi->blocks_per_seg; 3988 int cluster_size = F2FS_I(inode)->i_cluster_size; 3989 int count, ret; 3990 3991 if (!f2fs_sb_has_compression(sbi) || 3992 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 3993 return -EOPNOTSUPP; 3994 3995 if (!(filp->f_mode & FMODE_WRITE)) 3996 return -EBADF; 3997 3998 if (!f2fs_compressed_file(inode)) 3999 return -EINVAL; 4000 4001 f2fs_balance_fs(F2FS_I_SB(inode), true); 4002 4003 file_start_write(filp); 4004 inode_lock(inode); 4005 4006 if (!f2fs_is_compress_backend_ready(inode)) { 4007 ret = -EOPNOTSUPP; 4008 goto out; 4009 } 4010 4011 if (f2fs_is_mmap_file(inode)) { 4012 ret = -EBUSY; 4013 goto out; 4014 } 4015 4016 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4017 if (ret) 4018 goto out; 4019 4020 if (!atomic_read(&fi->i_compr_blocks)) 4021 goto out; 4022 4023 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4024 4025 count = last_idx - page_idx; 4026 while (count) { 4027 int len = min(cluster_size, count); 4028 4029 ret = redirty_blocks(inode, page_idx, len); 4030 if (ret < 0) 4031 break; 4032 4033 if (get_dirty_pages(inode) >= blk_per_seg) 4034 filemap_fdatawrite(inode->i_mapping); 4035 4036 count -= len; 4037 page_idx += len; 4038 } 4039 4040 if (!ret) 4041 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4042 LLONG_MAX); 4043 4044 if (ret) 4045 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4046 __func__, ret); 4047 out: 4048 inode_unlock(inode); 4049 file_end_write(filp); 4050 4051 return ret; 4052 } 4053 4054 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg) 4055 { 4056 struct inode *inode = file_inode(filp); 4057 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4058 pgoff_t page_idx = 0, last_idx; 4059 unsigned int blk_per_seg = sbi->blocks_per_seg; 4060 int cluster_size = F2FS_I(inode)->i_cluster_size; 4061 int count, ret; 4062 4063 if (!f2fs_sb_has_compression(sbi) || 4064 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4065 return -EOPNOTSUPP; 4066 4067 if (!(filp->f_mode & FMODE_WRITE)) 4068 return -EBADF; 4069 4070 if (!f2fs_compressed_file(inode)) 4071 return -EINVAL; 4072 4073 f2fs_balance_fs(F2FS_I_SB(inode), true); 4074 4075 file_start_write(filp); 4076 inode_lock(inode); 4077 4078 if (!f2fs_is_compress_backend_ready(inode)) { 4079 ret = -EOPNOTSUPP; 4080 goto out; 4081 } 4082 4083 if (f2fs_is_mmap_file(inode)) { 4084 ret = -EBUSY; 4085 goto out; 4086 } 4087 4088 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4089 if (ret) 4090 goto out; 4091 4092 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4093 4094 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4095 4096 count = last_idx - page_idx; 4097 while (count) { 4098 int len = min(cluster_size, count); 4099 4100 ret = redirty_blocks(inode, page_idx, len); 4101 if (ret < 0) 4102 break; 4103 4104 if (get_dirty_pages(inode) >= blk_per_seg) 4105 filemap_fdatawrite(inode->i_mapping); 4106 4107 count -= len; 4108 page_idx += len; 4109 } 4110 4111 if (!ret) 4112 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4113 LLONG_MAX); 4114 4115 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4116 4117 if (ret) 4118 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4119 __func__, ret); 4120 out: 4121 inode_unlock(inode); 4122 file_end_write(filp); 4123 4124 return ret; 4125 } 4126 4127 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4128 { 4129 switch (cmd) { 4130 case FS_IOC_GETVERSION: 4131 return f2fs_ioc_getversion(filp, arg); 4132 case F2FS_IOC_START_ATOMIC_WRITE: 4133 return f2fs_ioc_start_atomic_write(filp); 4134 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4135 return f2fs_ioc_commit_atomic_write(filp); 4136 case F2FS_IOC_START_VOLATILE_WRITE: 4137 return f2fs_ioc_start_volatile_write(filp); 4138 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4139 return f2fs_ioc_release_volatile_write(filp); 4140 case F2FS_IOC_ABORT_VOLATILE_WRITE: 4141 return f2fs_ioc_abort_volatile_write(filp); 4142 case F2FS_IOC_SHUTDOWN: 4143 return f2fs_ioc_shutdown(filp, arg); 4144 case FITRIM: 4145 return f2fs_ioc_fitrim(filp, arg); 4146 case FS_IOC_SET_ENCRYPTION_POLICY: 4147 return f2fs_ioc_set_encryption_policy(filp, arg); 4148 case FS_IOC_GET_ENCRYPTION_POLICY: 4149 return f2fs_ioc_get_encryption_policy(filp, arg); 4150 case FS_IOC_GET_ENCRYPTION_PWSALT: 4151 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4152 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4153 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4154 case FS_IOC_ADD_ENCRYPTION_KEY: 4155 return f2fs_ioc_add_encryption_key(filp, arg); 4156 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4157 return f2fs_ioc_remove_encryption_key(filp, arg); 4158 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4159 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4160 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4161 return f2fs_ioc_get_encryption_key_status(filp, arg); 4162 case FS_IOC_GET_ENCRYPTION_NONCE: 4163 return f2fs_ioc_get_encryption_nonce(filp, arg); 4164 case F2FS_IOC_GARBAGE_COLLECT: 4165 return f2fs_ioc_gc(filp, arg); 4166 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4167 return f2fs_ioc_gc_range(filp, arg); 4168 case F2FS_IOC_WRITE_CHECKPOINT: 4169 return f2fs_ioc_write_checkpoint(filp, arg); 4170 case F2FS_IOC_DEFRAGMENT: 4171 return f2fs_ioc_defragment(filp, arg); 4172 case F2FS_IOC_MOVE_RANGE: 4173 return f2fs_ioc_move_range(filp, arg); 4174 case F2FS_IOC_FLUSH_DEVICE: 4175 return f2fs_ioc_flush_device(filp, arg); 4176 case F2FS_IOC_GET_FEATURES: 4177 return f2fs_ioc_get_features(filp, arg); 4178 case F2FS_IOC_GET_PIN_FILE: 4179 return f2fs_ioc_get_pin_file(filp, arg); 4180 case F2FS_IOC_SET_PIN_FILE: 4181 return f2fs_ioc_set_pin_file(filp, arg); 4182 case F2FS_IOC_PRECACHE_EXTENTS: 4183 return f2fs_ioc_precache_extents(filp, arg); 4184 case F2FS_IOC_RESIZE_FS: 4185 return f2fs_ioc_resize_fs(filp, arg); 4186 case FS_IOC_ENABLE_VERITY: 4187 return f2fs_ioc_enable_verity(filp, arg); 4188 case FS_IOC_MEASURE_VERITY: 4189 return f2fs_ioc_measure_verity(filp, arg); 4190 case FS_IOC_READ_VERITY_METADATA: 4191 return f2fs_ioc_read_verity_metadata(filp, arg); 4192 case FS_IOC_GETFSLABEL: 4193 return f2fs_ioc_getfslabel(filp, arg); 4194 case FS_IOC_SETFSLABEL: 4195 return f2fs_ioc_setfslabel(filp, arg); 4196 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4197 return f2fs_get_compress_blocks(filp, arg); 4198 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4199 return f2fs_release_compress_blocks(filp, arg); 4200 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4201 return f2fs_reserve_compress_blocks(filp, arg); 4202 case F2FS_IOC_SEC_TRIM_FILE: 4203 return f2fs_sec_trim_file(filp, arg); 4204 case F2FS_IOC_GET_COMPRESS_OPTION: 4205 return f2fs_ioc_get_compress_option(filp, arg); 4206 case F2FS_IOC_SET_COMPRESS_OPTION: 4207 return f2fs_ioc_set_compress_option(filp, arg); 4208 case F2FS_IOC_DECOMPRESS_FILE: 4209 return f2fs_ioc_decompress_file(filp, arg); 4210 case F2FS_IOC_COMPRESS_FILE: 4211 return f2fs_ioc_compress_file(filp, arg); 4212 default: 4213 return -ENOTTY; 4214 } 4215 } 4216 4217 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4218 { 4219 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4220 return -EIO; 4221 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4222 return -ENOSPC; 4223 4224 return __f2fs_ioctl(filp, cmd, arg); 4225 } 4226 4227 /* 4228 * Return %true if the given read or write request should use direct I/O, or 4229 * %false if it should use buffered I/O. 4230 */ 4231 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4232 struct iov_iter *iter) 4233 { 4234 unsigned int align; 4235 4236 if (!(iocb->ki_flags & IOCB_DIRECT)) 4237 return false; 4238 4239 if (f2fs_force_buffered_io(inode, iocb, iter)) 4240 return false; 4241 4242 /* 4243 * Direct I/O not aligned to the disk's logical_block_size will be 4244 * attempted, but will fail with -EINVAL. 4245 * 4246 * f2fs additionally requires that direct I/O be aligned to the 4247 * filesystem block size, which is often a stricter requirement. 4248 * However, f2fs traditionally falls back to buffered I/O on requests 4249 * that are logical_block_size-aligned but not fs-block aligned. 4250 * 4251 * The below logic implements this behavior. 4252 */ 4253 align = iocb->ki_pos | iov_iter_alignment(iter); 4254 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4255 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4256 return false; 4257 4258 return true; 4259 } 4260 4261 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4262 unsigned int flags) 4263 { 4264 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4265 4266 dec_page_count(sbi, F2FS_DIO_READ); 4267 if (error) 4268 return error; 4269 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, size); 4270 return 0; 4271 } 4272 4273 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4274 .end_io = f2fs_dio_read_end_io, 4275 }; 4276 4277 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4278 { 4279 struct file *file = iocb->ki_filp; 4280 struct inode *inode = file_inode(file); 4281 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4282 struct f2fs_inode_info *fi = F2FS_I(inode); 4283 const loff_t pos = iocb->ki_pos; 4284 const size_t count = iov_iter_count(to); 4285 struct iomap_dio *dio; 4286 ssize_t ret; 4287 4288 if (count == 0) 4289 return 0; /* skip atime update */ 4290 4291 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4292 4293 if (iocb->ki_flags & IOCB_NOWAIT) { 4294 if (!down_read_trylock(&fi->i_gc_rwsem[READ])) { 4295 ret = -EAGAIN; 4296 goto out; 4297 } 4298 } else { 4299 down_read(&fi->i_gc_rwsem[READ]); 4300 } 4301 4302 /* 4303 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4304 * the higher-level function iomap_dio_rw() in order to ensure that the 4305 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4306 */ 4307 inc_page_count(sbi, F2FS_DIO_READ); 4308 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4309 &f2fs_iomap_dio_read_ops, 0, 0); 4310 if (IS_ERR_OR_NULL(dio)) { 4311 ret = PTR_ERR_OR_ZERO(dio); 4312 if (ret != -EIOCBQUEUED) 4313 dec_page_count(sbi, F2FS_DIO_READ); 4314 } else { 4315 ret = iomap_dio_complete(dio); 4316 } 4317 4318 up_read(&fi->i_gc_rwsem[READ]); 4319 4320 file_accessed(file); 4321 out: 4322 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4323 return ret; 4324 } 4325 4326 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4327 { 4328 struct inode *inode = file_inode(iocb->ki_filp); 4329 ssize_t ret; 4330 4331 if (!f2fs_is_compress_backend_ready(inode)) 4332 return -EOPNOTSUPP; 4333 4334 if (f2fs_should_use_dio(inode, iocb, to)) 4335 return f2fs_dio_read_iter(iocb, to); 4336 4337 ret = filemap_read(iocb, to, 0); 4338 if (ret > 0) 4339 f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_READ_IO, ret); 4340 return ret; 4341 } 4342 4343 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4344 { 4345 struct file *file = iocb->ki_filp; 4346 struct inode *inode = file_inode(file); 4347 ssize_t count; 4348 int err; 4349 4350 if (IS_IMMUTABLE(inode)) 4351 return -EPERM; 4352 4353 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4354 return -EPERM; 4355 4356 count = generic_write_checks(iocb, from); 4357 if (count <= 0) 4358 return count; 4359 4360 err = file_modified(file); 4361 if (err) 4362 return err; 4363 return count; 4364 } 4365 4366 /* 4367 * Preallocate blocks for a write request, if it is possible and helpful to do 4368 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4369 * blocks were preallocated, or a negative errno value if something went 4370 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4371 * requested blocks (not just some of them) have been allocated. 4372 */ 4373 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4374 bool dio) 4375 { 4376 struct inode *inode = file_inode(iocb->ki_filp); 4377 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4378 const loff_t pos = iocb->ki_pos; 4379 const size_t count = iov_iter_count(iter); 4380 struct f2fs_map_blocks map = {}; 4381 int flag; 4382 int ret; 4383 4384 /* If it will be an out-of-place direct write, don't bother. */ 4385 if (dio && f2fs_lfs_mode(sbi)) 4386 return 0; 4387 /* 4388 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4389 * buffered IO, if DIO meets any holes. 4390 */ 4391 if (dio && i_size_read(inode) && 4392 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4393 return 0; 4394 4395 /* No-wait I/O can't allocate blocks. */ 4396 if (iocb->ki_flags & IOCB_NOWAIT) 4397 return 0; 4398 4399 /* If it will be a short write, don't bother. */ 4400 if (fault_in_iov_iter_readable(iter, count)) 4401 return 0; 4402 4403 if (f2fs_has_inline_data(inode)) { 4404 /* If the data will fit inline, don't bother. */ 4405 if (pos + count <= MAX_INLINE_DATA(inode)) 4406 return 0; 4407 ret = f2fs_convert_inline_inode(inode); 4408 if (ret) 4409 return ret; 4410 } 4411 4412 /* Do not preallocate blocks that will be written partially in 4KB. */ 4413 map.m_lblk = F2FS_BLK_ALIGN(pos); 4414 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4415 if (map.m_len > map.m_lblk) 4416 map.m_len -= map.m_lblk; 4417 else 4418 map.m_len = 0; 4419 map.m_may_create = true; 4420 if (dio) { 4421 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4422 flag = F2FS_GET_BLOCK_PRE_DIO; 4423 } else { 4424 map.m_seg_type = NO_CHECK_TYPE; 4425 flag = F2FS_GET_BLOCK_PRE_AIO; 4426 } 4427 4428 ret = f2fs_map_blocks(inode, &map, 1, flag); 4429 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4430 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4431 return ret; 4432 if (ret == 0) 4433 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4434 return map.m_len; 4435 } 4436 4437 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4438 struct iov_iter *from) 4439 { 4440 struct file *file = iocb->ki_filp; 4441 struct inode *inode = file_inode(file); 4442 ssize_t ret; 4443 4444 if (iocb->ki_flags & IOCB_NOWAIT) 4445 return -EOPNOTSUPP; 4446 4447 current->backing_dev_info = inode_to_bdi(inode); 4448 ret = generic_perform_write(file, from, iocb->ki_pos); 4449 current->backing_dev_info = NULL; 4450 4451 if (ret > 0) { 4452 iocb->ki_pos += ret; 4453 f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_IO, ret); 4454 } 4455 return ret; 4456 } 4457 4458 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4459 unsigned int flags) 4460 { 4461 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4462 4463 dec_page_count(sbi, F2FS_DIO_WRITE); 4464 if (error) 4465 return error; 4466 f2fs_update_iostat(sbi, APP_DIRECT_IO, size); 4467 return 0; 4468 } 4469 4470 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4471 .end_io = f2fs_dio_write_end_io, 4472 }; 4473 4474 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4475 bool *may_need_sync) 4476 { 4477 struct file *file = iocb->ki_filp; 4478 struct inode *inode = file_inode(file); 4479 struct f2fs_inode_info *fi = F2FS_I(inode); 4480 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4481 const bool do_opu = f2fs_lfs_mode(sbi); 4482 const int whint_mode = F2FS_OPTION(sbi).whint_mode; 4483 const loff_t pos = iocb->ki_pos; 4484 const ssize_t count = iov_iter_count(from); 4485 const enum rw_hint hint = iocb->ki_hint; 4486 unsigned int dio_flags; 4487 struct iomap_dio *dio; 4488 ssize_t ret; 4489 4490 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4491 4492 if (iocb->ki_flags & IOCB_NOWAIT) { 4493 /* f2fs_convert_inline_inode() and block allocation can block */ 4494 if (f2fs_has_inline_data(inode) || 4495 !f2fs_overwrite_io(inode, pos, count)) { 4496 ret = -EAGAIN; 4497 goto out; 4498 } 4499 4500 if (!down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4501 ret = -EAGAIN; 4502 goto out; 4503 } 4504 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 4505 up_read(&fi->i_gc_rwsem[WRITE]); 4506 ret = -EAGAIN; 4507 goto out; 4508 } 4509 } else { 4510 ret = f2fs_convert_inline_inode(inode); 4511 if (ret) 4512 goto out; 4513 4514 down_read(&fi->i_gc_rwsem[WRITE]); 4515 if (do_opu) 4516 down_read(&fi->i_gc_rwsem[READ]); 4517 } 4518 if (whint_mode == WHINT_MODE_OFF) 4519 iocb->ki_hint = WRITE_LIFE_NOT_SET; 4520 4521 /* 4522 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4523 * the higher-level function iomap_dio_rw() in order to ensure that the 4524 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4525 */ 4526 inc_page_count(sbi, F2FS_DIO_WRITE); 4527 dio_flags = 0; 4528 if (pos + count > inode->i_size) 4529 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4530 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4531 &f2fs_iomap_dio_write_ops, dio_flags, 0); 4532 if (IS_ERR_OR_NULL(dio)) { 4533 ret = PTR_ERR_OR_ZERO(dio); 4534 if (ret == -ENOTBLK) 4535 ret = 0; 4536 if (ret != -EIOCBQUEUED) 4537 dec_page_count(sbi, F2FS_DIO_WRITE); 4538 } else { 4539 ret = iomap_dio_complete(dio); 4540 } 4541 4542 if (whint_mode == WHINT_MODE_OFF) 4543 iocb->ki_hint = hint; 4544 if (do_opu) 4545 up_read(&fi->i_gc_rwsem[READ]); 4546 up_read(&fi->i_gc_rwsem[WRITE]); 4547 4548 if (ret < 0) 4549 goto out; 4550 if (pos + ret > inode->i_size) 4551 f2fs_i_size_write(inode, pos + ret); 4552 if (!do_opu) 4553 set_inode_flag(inode, FI_UPDATE_WRITE); 4554 4555 if (iov_iter_count(from)) { 4556 ssize_t ret2; 4557 loff_t bufio_start_pos = iocb->ki_pos; 4558 4559 /* 4560 * The direct write was partial, so we need to fall back to a 4561 * buffered write for the remainder. 4562 */ 4563 4564 ret2 = f2fs_buffered_write_iter(iocb, from); 4565 if (iov_iter_count(from)) 4566 f2fs_write_failed(inode, iocb->ki_pos); 4567 if (ret2 < 0) 4568 goto out; 4569 4570 /* 4571 * Ensure that the pagecache pages are written to disk and 4572 * invalidated to preserve the expected O_DIRECT semantics. 4573 */ 4574 if (ret2 > 0) { 4575 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4576 4577 ret += ret2; 4578 4579 ret2 = filemap_write_and_wait_range(file->f_mapping, 4580 bufio_start_pos, 4581 bufio_end_pos); 4582 if (ret2 < 0) 4583 goto out; 4584 invalidate_mapping_pages(file->f_mapping, 4585 bufio_start_pos >> PAGE_SHIFT, 4586 bufio_end_pos >> PAGE_SHIFT); 4587 } 4588 } else { 4589 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4590 *may_need_sync = false; 4591 } 4592 out: 4593 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4594 return ret; 4595 } 4596 4597 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4598 { 4599 struct inode *inode = file_inode(iocb->ki_filp); 4600 const loff_t orig_pos = iocb->ki_pos; 4601 const size_t orig_count = iov_iter_count(from); 4602 loff_t target_size; 4603 bool dio; 4604 bool may_need_sync = true; 4605 int preallocated; 4606 ssize_t ret; 4607 4608 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4609 ret = -EIO; 4610 goto out; 4611 } 4612 4613 if (!f2fs_is_compress_backend_ready(inode)) { 4614 ret = -EOPNOTSUPP; 4615 goto out; 4616 } 4617 4618 if (iocb->ki_flags & IOCB_NOWAIT) { 4619 if (!inode_trylock(inode)) { 4620 ret = -EAGAIN; 4621 goto out; 4622 } 4623 } else { 4624 inode_lock(inode); 4625 } 4626 4627 ret = f2fs_write_checks(iocb, from); 4628 if (ret <= 0) 4629 goto out_unlock; 4630 4631 /* Determine whether we will do a direct write or a buffered write. */ 4632 dio = f2fs_should_use_dio(inode, iocb, from); 4633 4634 /* Possibly preallocate the blocks for the write. */ 4635 target_size = iocb->ki_pos + iov_iter_count(from); 4636 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 4637 if (preallocated < 0) 4638 ret = preallocated; 4639 else 4640 /* Do the actual write. */ 4641 ret = dio ? 4642 f2fs_dio_write_iter(iocb, from, &may_need_sync): 4643 f2fs_buffered_write_iter(iocb, from); 4644 4645 /* Don't leave any preallocated blocks around past i_size. */ 4646 if (preallocated && i_size_read(inode) < target_size) { 4647 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4648 filemap_invalidate_lock(inode->i_mapping); 4649 if (!f2fs_truncate(inode)) 4650 file_dont_truncate(inode); 4651 filemap_invalidate_unlock(inode->i_mapping); 4652 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4653 } else { 4654 file_dont_truncate(inode); 4655 } 4656 4657 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 4658 out_unlock: 4659 inode_unlock(inode); 4660 out: 4661 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 4662 if (ret > 0 && may_need_sync) 4663 ret = generic_write_sync(iocb, ret); 4664 return ret; 4665 } 4666 4667 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 4668 int advice) 4669 { 4670 struct address_space *mapping; 4671 struct backing_dev_info *bdi; 4672 struct inode *inode = file_inode(filp); 4673 int err; 4674 4675 if (advice == POSIX_FADV_SEQUENTIAL) { 4676 if (S_ISFIFO(inode->i_mode)) 4677 return -ESPIPE; 4678 4679 mapping = filp->f_mapping; 4680 if (!mapping || len < 0) 4681 return -EINVAL; 4682 4683 bdi = inode_to_bdi(mapping->host); 4684 filp->f_ra.ra_pages = bdi->ra_pages * 4685 F2FS_I_SB(inode)->seq_file_ra_mul; 4686 spin_lock(&filp->f_lock); 4687 filp->f_mode &= ~FMODE_RANDOM; 4688 spin_unlock(&filp->f_lock); 4689 return 0; 4690 } 4691 4692 err = generic_fadvise(filp, offset, len, advice); 4693 if (!err && advice == POSIX_FADV_DONTNEED && 4694 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 4695 f2fs_compressed_file(inode)) 4696 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 4697 4698 return err; 4699 } 4700 4701 #ifdef CONFIG_COMPAT 4702 struct compat_f2fs_gc_range { 4703 u32 sync; 4704 compat_u64 start; 4705 compat_u64 len; 4706 }; 4707 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4708 struct compat_f2fs_gc_range) 4709 4710 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4711 { 4712 struct compat_f2fs_gc_range __user *urange; 4713 struct f2fs_gc_range range; 4714 int err; 4715 4716 urange = compat_ptr(arg); 4717 err = get_user(range.sync, &urange->sync); 4718 err |= get_user(range.start, &urange->start); 4719 err |= get_user(range.len, &urange->len); 4720 if (err) 4721 return -EFAULT; 4722 4723 return __f2fs_ioc_gc_range(file, &range); 4724 } 4725 4726 struct compat_f2fs_move_range { 4727 u32 dst_fd; 4728 compat_u64 pos_in; 4729 compat_u64 pos_out; 4730 compat_u64 len; 4731 }; 4732 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4733 struct compat_f2fs_move_range) 4734 4735 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4736 { 4737 struct compat_f2fs_move_range __user *urange; 4738 struct f2fs_move_range range; 4739 int err; 4740 4741 urange = compat_ptr(arg); 4742 err = get_user(range.dst_fd, &urange->dst_fd); 4743 err |= get_user(range.pos_in, &urange->pos_in); 4744 err |= get_user(range.pos_out, &urange->pos_out); 4745 err |= get_user(range.len, &urange->len); 4746 if (err) 4747 return -EFAULT; 4748 4749 return __f2fs_ioc_move_range(file, &range); 4750 } 4751 4752 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4753 { 4754 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4755 return -EIO; 4756 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4757 return -ENOSPC; 4758 4759 switch (cmd) { 4760 case FS_IOC32_GETVERSION: 4761 cmd = FS_IOC_GETVERSION; 4762 break; 4763 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4764 return f2fs_compat_ioc_gc_range(file, arg); 4765 case F2FS_IOC32_MOVE_RANGE: 4766 return f2fs_compat_ioc_move_range(file, arg); 4767 case F2FS_IOC_START_ATOMIC_WRITE: 4768 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4769 case F2FS_IOC_START_VOLATILE_WRITE: 4770 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4771 case F2FS_IOC_ABORT_VOLATILE_WRITE: 4772 case F2FS_IOC_SHUTDOWN: 4773 case FITRIM: 4774 case FS_IOC_SET_ENCRYPTION_POLICY: 4775 case FS_IOC_GET_ENCRYPTION_PWSALT: 4776 case FS_IOC_GET_ENCRYPTION_POLICY: 4777 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4778 case FS_IOC_ADD_ENCRYPTION_KEY: 4779 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4780 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4781 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4782 case FS_IOC_GET_ENCRYPTION_NONCE: 4783 case F2FS_IOC_GARBAGE_COLLECT: 4784 case F2FS_IOC_WRITE_CHECKPOINT: 4785 case F2FS_IOC_DEFRAGMENT: 4786 case F2FS_IOC_FLUSH_DEVICE: 4787 case F2FS_IOC_GET_FEATURES: 4788 case F2FS_IOC_GET_PIN_FILE: 4789 case F2FS_IOC_SET_PIN_FILE: 4790 case F2FS_IOC_PRECACHE_EXTENTS: 4791 case F2FS_IOC_RESIZE_FS: 4792 case FS_IOC_ENABLE_VERITY: 4793 case FS_IOC_MEASURE_VERITY: 4794 case FS_IOC_READ_VERITY_METADATA: 4795 case FS_IOC_GETFSLABEL: 4796 case FS_IOC_SETFSLABEL: 4797 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4798 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4799 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4800 case F2FS_IOC_SEC_TRIM_FILE: 4801 case F2FS_IOC_GET_COMPRESS_OPTION: 4802 case F2FS_IOC_SET_COMPRESS_OPTION: 4803 case F2FS_IOC_DECOMPRESS_FILE: 4804 case F2FS_IOC_COMPRESS_FILE: 4805 break; 4806 default: 4807 return -ENOIOCTLCMD; 4808 } 4809 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4810 } 4811 #endif 4812 4813 const struct file_operations f2fs_file_operations = { 4814 .llseek = f2fs_llseek, 4815 .read_iter = f2fs_file_read_iter, 4816 .write_iter = f2fs_file_write_iter, 4817 .open = f2fs_file_open, 4818 .release = f2fs_release_file, 4819 .mmap = f2fs_file_mmap, 4820 .flush = f2fs_file_flush, 4821 .fsync = f2fs_sync_file, 4822 .fallocate = f2fs_fallocate, 4823 .unlocked_ioctl = f2fs_ioctl, 4824 #ifdef CONFIG_COMPAT 4825 .compat_ioctl = f2fs_compat_ioctl, 4826 #endif 4827 .splice_read = generic_file_splice_read, 4828 .splice_write = iter_file_splice_write, 4829 .fadvise = f2fs_file_fadvise, 4830 }; 4831