1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 #include <linux/fadvise.h> 27 #include <linux/iomap.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "acl.h" 34 #include "gc.h" 35 #include "iostat.h" 36 #include <trace/events/f2fs.h> 37 #include <uapi/linux/f2fs.h> 38 39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 40 { 41 struct inode *inode = file_inode(vmf->vma->vm_file); 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (!ret) 46 f2fs_update_iostat(F2FS_I_SB(inode), inode, 47 APP_MAPPED_READ_IO, F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(IS_IMMUTABLE(inode))) 64 return VM_FAULT_SIGBUS; 65 66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 67 return VM_FAULT_SIGBUS; 68 69 if (unlikely(f2fs_cp_error(sbi))) { 70 err = -EIO; 71 goto err; 72 } 73 74 if (!f2fs_is_checkpoint_ready(sbi)) { 75 err = -ENOSPC; 76 goto err; 77 } 78 79 err = f2fs_convert_inline_inode(inode); 80 if (err) 81 goto err; 82 83 #ifdef CONFIG_F2FS_FS_COMPRESSION 84 if (f2fs_compressed_file(inode)) { 85 int ret = f2fs_is_compressed_cluster(inode, page->index); 86 87 if (ret < 0) { 88 err = ret; 89 goto err; 90 } else if (ret) { 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 filemap_invalidate_lock_shared(inode->i_mapping); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 set_new_dnode(&dn, inode, NULL, NULL, 0); 117 err = f2fs_get_block_locked(&dn, page->index); 118 } 119 120 #ifdef CONFIG_F2FS_FS_COMPRESSION 121 if (!need_alloc) { 122 set_new_dnode(&dn, inode, NULL, NULL, 0); 123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 124 f2fs_put_dnode(&dn); 125 } 126 #endif 127 if (err) { 128 unlock_page(page); 129 goto out_sem; 130 } 131 132 f2fs_wait_on_page_writeback(page, DATA, false, true); 133 134 /* wait for GCed page writeback via META_MAPPING */ 135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 136 137 /* 138 * check to see if the page is mapped already (no holes) 139 */ 140 if (PageMappedToDisk(page)) 141 goto out_sem; 142 143 /* page is wholly or partially inside EOF */ 144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 145 i_size_read(inode)) { 146 loff_t offset; 147 148 offset = i_size_read(inode) & ~PAGE_MASK; 149 zero_user_segment(page, offset, PAGE_SIZE); 150 } 151 set_page_dirty(page); 152 if (!PageUptodate(page)) 153 SetPageUptodate(page); 154 155 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE); 156 f2fs_update_time(sbi, REQ_TIME); 157 158 trace_f2fs_vm_page_mkwrite(page, DATA); 159 out_sem: 160 filemap_invalidate_unlock_shared(inode->i_mapping); 161 162 sb_end_pagefault(inode->i_sb); 163 err: 164 return block_page_mkwrite_return(err); 165 } 166 167 static const struct vm_operations_struct f2fs_file_vm_ops = { 168 .fault = f2fs_filemap_fault, 169 .map_pages = filemap_map_pages, 170 .page_mkwrite = f2fs_vm_page_mkwrite, 171 }; 172 173 static int get_parent_ino(struct inode *inode, nid_t *pino) 174 { 175 struct dentry *dentry; 176 177 /* 178 * Make sure to get the non-deleted alias. The alias associated with 179 * the open file descriptor being fsync()'ed may be deleted already. 180 */ 181 dentry = d_find_alias(inode); 182 if (!dentry) 183 return 0; 184 185 *pino = parent_ino(dentry); 186 dput(dentry); 187 return 1; 188 } 189 190 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 191 { 192 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 193 enum cp_reason_type cp_reason = CP_NO_NEEDED; 194 195 if (!S_ISREG(inode->i_mode)) 196 cp_reason = CP_NON_REGULAR; 197 else if (f2fs_compressed_file(inode)) 198 cp_reason = CP_COMPRESSED; 199 else if (inode->i_nlink != 1) 200 cp_reason = CP_HARDLINK; 201 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 202 cp_reason = CP_SB_NEED_CP; 203 else if (file_wrong_pino(inode)) 204 cp_reason = CP_WRONG_PINO; 205 else if (!f2fs_space_for_roll_forward(sbi)) 206 cp_reason = CP_NO_SPC_ROLL; 207 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 208 cp_reason = CP_NODE_NEED_CP; 209 else if (test_opt(sbi, FASTBOOT)) 210 cp_reason = CP_FASTBOOT_MODE; 211 else if (F2FS_OPTION(sbi).active_logs == 2) 212 cp_reason = CP_SPEC_LOG_NUM; 213 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 214 f2fs_need_dentry_mark(sbi, inode->i_ino) && 215 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 216 TRANS_DIR_INO)) 217 cp_reason = CP_RECOVER_DIR; 218 219 return cp_reason; 220 } 221 222 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 223 { 224 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 225 bool ret = false; 226 /* But we need to avoid that there are some inode updates */ 227 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 228 ret = true; 229 f2fs_put_page(i, 0); 230 return ret; 231 } 232 233 static void try_to_fix_pino(struct inode *inode) 234 { 235 struct f2fs_inode_info *fi = F2FS_I(inode); 236 nid_t pino; 237 238 f2fs_down_write(&fi->i_sem); 239 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 240 get_parent_ino(inode, &pino)) { 241 f2fs_i_pino_write(inode, pino); 242 file_got_pino(inode); 243 } 244 f2fs_up_write(&fi->i_sem); 245 } 246 247 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 248 int datasync, bool atomic) 249 { 250 struct inode *inode = file->f_mapping->host; 251 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 252 nid_t ino = inode->i_ino; 253 int ret = 0; 254 enum cp_reason_type cp_reason = 0; 255 struct writeback_control wbc = { 256 .sync_mode = WB_SYNC_ALL, 257 .nr_to_write = LONG_MAX, 258 .for_reclaim = 0, 259 }; 260 unsigned int seq_id = 0; 261 262 if (unlikely(f2fs_readonly(inode->i_sb))) 263 return 0; 264 265 trace_f2fs_sync_file_enter(inode); 266 267 if (S_ISDIR(inode->i_mode)) 268 goto go_write; 269 270 /* if fdatasync is triggered, let's do in-place-update */ 271 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 272 set_inode_flag(inode, FI_NEED_IPU); 273 ret = file_write_and_wait_range(file, start, end); 274 clear_inode_flag(inode, FI_NEED_IPU); 275 276 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 277 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 278 return ret; 279 } 280 281 /* if the inode is dirty, let's recover all the time */ 282 if (!f2fs_skip_inode_update(inode, datasync)) { 283 f2fs_write_inode(inode, NULL); 284 goto go_write; 285 } 286 287 /* 288 * if there is no written data, don't waste time to write recovery info. 289 */ 290 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 291 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 292 293 /* it may call write_inode just prior to fsync */ 294 if (need_inode_page_update(sbi, ino)) 295 goto go_write; 296 297 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 298 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 299 goto flush_out; 300 goto out; 301 } else { 302 /* 303 * for OPU case, during fsync(), node can be persisted before 304 * data when lower device doesn't support write barrier, result 305 * in data corruption after SPO. 306 * So for strict fsync mode, force to use atomic write semantics 307 * to keep write order in between data/node and last node to 308 * avoid potential data corruption. 309 */ 310 if (F2FS_OPTION(sbi).fsync_mode == 311 FSYNC_MODE_STRICT && !atomic) 312 atomic = true; 313 } 314 go_write: 315 /* 316 * Both of fdatasync() and fsync() are able to be recovered from 317 * sudden-power-off. 318 */ 319 f2fs_down_read(&F2FS_I(inode)->i_sem); 320 cp_reason = need_do_checkpoint(inode); 321 f2fs_up_read(&F2FS_I(inode)->i_sem); 322 323 if (cp_reason) { 324 /* all the dirty node pages should be flushed for POR */ 325 ret = f2fs_sync_fs(inode->i_sb, 1); 326 327 /* 328 * We've secured consistency through sync_fs. Following pino 329 * will be used only for fsynced inodes after checkpoint. 330 */ 331 try_to_fix_pino(inode); 332 clear_inode_flag(inode, FI_APPEND_WRITE); 333 clear_inode_flag(inode, FI_UPDATE_WRITE); 334 goto out; 335 } 336 sync_nodes: 337 atomic_inc(&sbi->wb_sync_req[NODE]); 338 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 339 atomic_dec(&sbi->wb_sync_req[NODE]); 340 if (ret) 341 goto out; 342 343 /* if cp_error was enabled, we should avoid infinite loop */ 344 if (unlikely(f2fs_cp_error(sbi))) { 345 ret = -EIO; 346 goto out; 347 } 348 349 if (f2fs_need_inode_block_update(sbi, ino)) { 350 f2fs_mark_inode_dirty_sync(inode, true); 351 f2fs_write_inode(inode, NULL); 352 goto sync_nodes; 353 } 354 355 /* 356 * If it's atomic_write, it's just fine to keep write ordering. So 357 * here we don't need to wait for node write completion, since we use 358 * node chain which serializes node blocks. If one of node writes are 359 * reordered, we can see simply broken chain, resulting in stopping 360 * roll-forward recovery. It means we'll recover all or none node blocks 361 * given fsync mark. 362 */ 363 if (!atomic) { 364 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 365 if (ret) 366 goto out; 367 } 368 369 /* once recovery info is written, don't need to tack this */ 370 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 371 clear_inode_flag(inode, FI_APPEND_WRITE); 372 flush_out: 373 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) || 374 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi))) 375 ret = f2fs_issue_flush(sbi, inode->i_ino); 376 if (!ret) { 377 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 378 clear_inode_flag(inode, FI_UPDATE_WRITE); 379 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 380 } 381 f2fs_update_time(sbi, REQ_TIME); 382 out: 383 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 384 return ret; 385 } 386 387 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 388 { 389 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 390 return -EIO; 391 return f2fs_do_sync_file(file, start, end, datasync, false); 392 } 393 394 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 395 pgoff_t index, int whence) 396 { 397 switch (whence) { 398 case SEEK_DATA: 399 if (__is_valid_data_blkaddr(blkaddr)) 400 return true; 401 if (blkaddr == NEW_ADDR && 402 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 403 return true; 404 break; 405 case SEEK_HOLE: 406 if (blkaddr == NULL_ADDR) 407 return true; 408 break; 409 } 410 return false; 411 } 412 413 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 414 { 415 struct inode *inode = file->f_mapping->host; 416 loff_t maxbytes = inode->i_sb->s_maxbytes; 417 struct dnode_of_data dn; 418 pgoff_t pgofs, end_offset; 419 loff_t data_ofs = offset; 420 loff_t isize; 421 int err = 0; 422 423 inode_lock(inode); 424 425 isize = i_size_read(inode); 426 if (offset >= isize) 427 goto fail; 428 429 /* handle inline data case */ 430 if (f2fs_has_inline_data(inode)) { 431 if (whence == SEEK_HOLE) { 432 data_ofs = isize; 433 goto found; 434 } else if (whence == SEEK_DATA) { 435 data_ofs = offset; 436 goto found; 437 } 438 } 439 440 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 441 442 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 443 set_new_dnode(&dn, inode, NULL, NULL, 0); 444 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 445 if (err && err != -ENOENT) { 446 goto fail; 447 } else if (err == -ENOENT) { 448 /* direct node does not exists */ 449 if (whence == SEEK_DATA) { 450 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 451 continue; 452 } else { 453 goto found; 454 } 455 } 456 457 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 458 459 /* find data/hole in dnode block */ 460 for (; dn.ofs_in_node < end_offset; 461 dn.ofs_in_node++, pgofs++, 462 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 463 block_t blkaddr; 464 465 blkaddr = f2fs_data_blkaddr(&dn); 466 467 if (__is_valid_data_blkaddr(blkaddr) && 468 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 469 blkaddr, DATA_GENERIC_ENHANCE)) { 470 f2fs_put_dnode(&dn); 471 goto fail; 472 } 473 474 if (__found_offset(file->f_mapping, blkaddr, 475 pgofs, whence)) { 476 f2fs_put_dnode(&dn); 477 goto found; 478 } 479 } 480 f2fs_put_dnode(&dn); 481 } 482 483 if (whence == SEEK_DATA) 484 goto fail; 485 found: 486 if (whence == SEEK_HOLE && data_ofs > isize) 487 data_ofs = isize; 488 inode_unlock(inode); 489 return vfs_setpos(file, data_ofs, maxbytes); 490 fail: 491 inode_unlock(inode); 492 return -ENXIO; 493 } 494 495 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 496 { 497 struct inode *inode = file->f_mapping->host; 498 loff_t maxbytes = inode->i_sb->s_maxbytes; 499 500 if (f2fs_compressed_file(inode)) 501 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 502 503 switch (whence) { 504 case SEEK_SET: 505 case SEEK_CUR: 506 case SEEK_END: 507 return generic_file_llseek_size(file, offset, whence, 508 maxbytes, i_size_read(inode)); 509 case SEEK_DATA: 510 case SEEK_HOLE: 511 if (offset < 0) 512 return -ENXIO; 513 return f2fs_seek_block(file, offset, whence); 514 } 515 516 return -EINVAL; 517 } 518 519 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 520 { 521 struct inode *inode = file_inode(file); 522 523 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 524 return -EIO; 525 526 if (!f2fs_is_compress_backend_ready(inode)) 527 return -EOPNOTSUPP; 528 529 file_accessed(file); 530 vma->vm_ops = &f2fs_file_vm_ops; 531 set_inode_flag(inode, FI_MMAP_FILE); 532 return 0; 533 } 534 535 static int f2fs_file_open(struct inode *inode, struct file *filp) 536 { 537 int err = fscrypt_file_open(inode, filp); 538 539 if (err) 540 return err; 541 542 if (!f2fs_is_compress_backend_ready(inode)) 543 return -EOPNOTSUPP; 544 545 err = fsverity_file_open(inode, filp); 546 if (err) 547 return err; 548 549 filp->f_mode |= FMODE_NOWAIT; 550 551 return dquot_file_open(inode, filp); 552 } 553 554 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 555 { 556 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 557 struct f2fs_node *raw_node; 558 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 559 __le32 *addr; 560 int base = 0; 561 bool compressed_cluster = false; 562 int cluster_index = 0, valid_blocks = 0; 563 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 564 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 565 566 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 567 base = get_extra_isize(dn->inode); 568 569 raw_node = F2FS_NODE(dn->node_page); 570 addr = blkaddr_in_node(raw_node) + base + ofs; 571 572 /* Assumption: truncation starts with cluster */ 573 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 574 block_t blkaddr = le32_to_cpu(*addr); 575 576 if (f2fs_compressed_file(dn->inode) && 577 !(cluster_index & (cluster_size - 1))) { 578 if (compressed_cluster) 579 f2fs_i_compr_blocks_update(dn->inode, 580 valid_blocks, false); 581 compressed_cluster = (blkaddr == COMPRESS_ADDR); 582 valid_blocks = 0; 583 } 584 585 if (blkaddr == NULL_ADDR) 586 continue; 587 588 dn->data_blkaddr = NULL_ADDR; 589 f2fs_set_data_blkaddr(dn); 590 591 if (__is_valid_data_blkaddr(blkaddr)) { 592 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 593 DATA_GENERIC_ENHANCE)) 594 continue; 595 if (compressed_cluster) 596 valid_blocks++; 597 } 598 599 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 600 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 601 602 f2fs_invalidate_blocks(sbi, blkaddr); 603 604 if (!released || blkaddr != COMPRESS_ADDR) 605 nr_free++; 606 } 607 608 if (compressed_cluster) 609 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 610 611 if (nr_free) { 612 pgoff_t fofs; 613 /* 614 * once we invalidate valid blkaddr in range [ofs, ofs + count], 615 * we will invalidate all blkaddr in the whole range. 616 */ 617 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 618 dn->inode) + ofs; 619 f2fs_update_read_extent_cache_range(dn, fofs, 0, len); 620 f2fs_update_age_extent_cache_range(dn, fofs, len); 621 dec_valid_block_count(sbi, dn->inode, nr_free); 622 } 623 dn->ofs_in_node = ofs; 624 625 f2fs_update_time(sbi, REQ_TIME); 626 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 627 dn->ofs_in_node, nr_free); 628 } 629 630 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 631 { 632 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 633 } 634 635 static int truncate_partial_data_page(struct inode *inode, u64 from, 636 bool cache_only) 637 { 638 loff_t offset = from & (PAGE_SIZE - 1); 639 pgoff_t index = from >> PAGE_SHIFT; 640 struct address_space *mapping = inode->i_mapping; 641 struct page *page; 642 643 if (!offset && !cache_only) 644 return 0; 645 646 if (cache_only) { 647 page = find_lock_page(mapping, index); 648 if (page && PageUptodate(page)) 649 goto truncate_out; 650 f2fs_put_page(page, 1); 651 return 0; 652 } 653 654 page = f2fs_get_lock_data_page(inode, index, true); 655 if (IS_ERR(page)) 656 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 657 truncate_out: 658 f2fs_wait_on_page_writeback(page, DATA, true, true); 659 zero_user(page, offset, PAGE_SIZE - offset); 660 661 /* An encrypted inode should have a key and truncate the last page. */ 662 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 663 if (!cache_only) 664 set_page_dirty(page); 665 f2fs_put_page(page, 1); 666 return 0; 667 } 668 669 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 670 { 671 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 672 struct dnode_of_data dn; 673 pgoff_t free_from; 674 int count = 0, err = 0; 675 struct page *ipage; 676 bool truncate_page = false; 677 678 trace_f2fs_truncate_blocks_enter(inode, from); 679 680 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 681 682 if (free_from >= max_file_blocks(inode)) 683 goto free_partial; 684 685 if (lock) 686 f2fs_lock_op(sbi); 687 688 ipage = f2fs_get_node_page(sbi, inode->i_ino); 689 if (IS_ERR(ipage)) { 690 err = PTR_ERR(ipage); 691 goto out; 692 } 693 694 if (f2fs_has_inline_data(inode)) { 695 f2fs_truncate_inline_inode(inode, ipage, from); 696 f2fs_put_page(ipage, 1); 697 truncate_page = true; 698 goto out; 699 } 700 701 set_new_dnode(&dn, inode, ipage, NULL, 0); 702 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 703 if (err) { 704 if (err == -ENOENT) 705 goto free_next; 706 goto out; 707 } 708 709 count = ADDRS_PER_PAGE(dn.node_page, inode); 710 711 count -= dn.ofs_in_node; 712 f2fs_bug_on(sbi, count < 0); 713 714 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 715 f2fs_truncate_data_blocks_range(&dn, count); 716 free_from += count; 717 } 718 719 f2fs_put_dnode(&dn); 720 free_next: 721 err = f2fs_truncate_inode_blocks(inode, free_from); 722 out: 723 if (lock) 724 f2fs_unlock_op(sbi); 725 free_partial: 726 /* lastly zero out the first data page */ 727 if (!err) 728 err = truncate_partial_data_page(inode, from, truncate_page); 729 730 trace_f2fs_truncate_blocks_exit(inode, err); 731 return err; 732 } 733 734 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 735 { 736 u64 free_from = from; 737 int err; 738 739 #ifdef CONFIG_F2FS_FS_COMPRESSION 740 /* 741 * for compressed file, only support cluster size 742 * aligned truncation. 743 */ 744 if (f2fs_compressed_file(inode)) 745 free_from = round_up(from, 746 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 747 #endif 748 749 err = f2fs_do_truncate_blocks(inode, free_from, lock); 750 if (err) 751 return err; 752 753 #ifdef CONFIG_F2FS_FS_COMPRESSION 754 /* 755 * For compressed file, after release compress blocks, don't allow write 756 * direct, but we should allow write direct after truncate to zero. 757 */ 758 if (f2fs_compressed_file(inode) && !free_from 759 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 760 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 761 762 if (from != free_from) { 763 err = f2fs_truncate_partial_cluster(inode, from, lock); 764 if (err) 765 return err; 766 } 767 #endif 768 769 return 0; 770 } 771 772 int f2fs_truncate(struct inode *inode) 773 { 774 int err; 775 776 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 777 return -EIO; 778 779 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 780 S_ISLNK(inode->i_mode))) 781 return 0; 782 783 trace_f2fs_truncate(inode); 784 785 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) 786 return -EIO; 787 788 err = f2fs_dquot_initialize(inode); 789 if (err) 790 return err; 791 792 /* we should check inline_data size */ 793 if (!f2fs_may_inline_data(inode)) { 794 err = f2fs_convert_inline_inode(inode); 795 if (err) 796 return err; 797 } 798 799 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 800 if (err) 801 return err; 802 803 inode->i_mtime = inode->i_ctime = current_time(inode); 804 f2fs_mark_inode_dirty_sync(inode, false); 805 return 0; 806 } 807 808 static bool f2fs_force_buffered_io(struct inode *inode, int rw) 809 { 810 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 811 812 if (!fscrypt_dio_supported(inode)) 813 return true; 814 if (fsverity_active(inode)) 815 return true; 816 if (f2fs_compressed_file(inode)) 817 return true; 818 819 /* disallow direct IO if any of devices has unaligned blksize */ 820 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 821 return true; 822 /* 823 * for blkzoned device, fallback direct IO to buffered IO, so 824 * all IOs can be serialized by log-structured write. 825 */ 826 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE)) 827 return true; 828 if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi)) 829 return true; 830 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 831 return true; 832 833 return false; 834 } 835 836 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 837 struct kstat *stat, u32 request_mask, unsigned int query_flags) 838 { 839 struct inode *inode = d_inode(path->dentry); 840 struct f2fs_inode_info *fi = F2FS_I(inode); 841 struct f2fs_inode *ri = NULL; 842 unsigned int flags; 843 844 if (f2fs_has_extra_attr(inode) && 845 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 846 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 847 stat->result_mask |= STATX_BTIME; 848 stat->btime.tv_sec = fi->i_crtime.tv_sec; 849 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 850 } 851 852 /* 853 * Return the DIO alignment restrictions if requested. We only return 854 * this information when requested, since on encrypted files it might 855 * take a fair bit of work to get if the file wasn't opened recently. 856 * 857 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN 858 * cannot represent that, so in that case we report no DIO support. 859 */ 860 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 861 unsigned int bsize = i_blocksize(inode); 862 863 stat->result_mask |= STATX_DIOALIGN; 864 if (!f2fs_force_buffered_io(inode, WRITE)) { 865 stat->dio_mem_align = bsize; 866 stat->dio_offset_align = bsize; 867 } 868 } 869 870 flags = fi->i_flags; 871 if (flags & F2FS_COMPR_FL) 872 stat->attributes |= STATX_ATTR_COMPRESSED; 873 if (flags & F2FS_APPEND_FL) 874 stat->attributes |= STATX_ATTR_APPEND; 875 if (IS_ENCRYPTED(inode)) 876 stat->attributes |= STATX_ATTR_ENCRYPTED; 877 if (flags & F2FS_IMMUTABLE_FL) 878 stat->attributes |= STATX_ATTR_IMMUTABLE; 879 if (flags & F2FS_NODUMP_FL) 880 stat->attributes |= STATX_ATTR_NODUMP; 881 if (IS_VERITY(inode)) 882 stat->attributes |= STATX_ATTR_VERITY; 883 884 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 885 STATX_ATTR_APPEND | 886 STATX_ATTR_ENCRYPTED | 887 STATX_ATTR_IMMUTABLE | 888 STATX_ATTR_NODUMP | 889 STATX_ATTR_VERITY); 890 891 generic_fillattr(idmap, inode, stat); 892 893 /* we need to show initial sectors used for inline_data/dentries */ 894 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 895 f2fs_has_inline_dentry(inode)) 896 stat->blocks += (stat->size + 511) >> 9; 897 898 return 0; 899 } 900 901 #ifdef CONFIG_F2FS_FS_POSIX_ACL 902 static void __setattr_copy(struct mnt_idmap *idmap, 903 struct inode *inode, const struct iattr *attr) 904 { 905 unsigned int ia_valid = attr->ia_valid; 906 907 i_uid_update(idmap, attr, inode); 908 i_gid_update(idmap, attr, inode); 909 if (ia_valid & ATTR_ATIME) 910 inode->i_atime = attr->ia_atime; 911 if (ia_valid & ATTR_MTIME) 912 inode->i_mtime = attr->ia_mtime; 913 if (ia_valid & ATTR_CTIME) 914 inode->i_ctime = attr->ia_ctime; 915 if (ia_valid & ATTR_MODE) { 916 umode_t mode = attr->ia_mode; 917 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 918 919 if (!vfsgid_in_group_p(vfsgid) && 920 !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 921 mode &= ~S_ISGID; 922 set_acl_inode(inode, mode); 923 } 924 } 925 #else 926 #define __setattr_copy setattr_copy 927 #endif 928 929 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 930 struct iattr *attr) 931 { 932 struct inode *inode = d_inode(dentry); 933 int err; 934 935 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 936 return -EIO; 937 938 if (unlikely(IS_IMMUTABLE(inode))) 939 return -EPERM; 940 941 if (unlikely(IS_APPEND(inode) && 942 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 943 ATTR_GID | ATTR_TIMES_SET)))) 944 return -EPERM; 945 946 if ((attr->ia_valid & ATTR_SIZE) && 947 !f2fs_is_compress_backend_ready(inode)) 948 return -EOPNOTSUPP; 949 950 err = setattr_prepare(idmap, dentry, attr); 951 if (err) 952 return err; 953 954 err = fscrypt_prepare_setattr(dentry, attr); 955 if (err) 956 return err; 957 958 err = fsverity_prepare_setattr(dentry, attr); 959 if (err) 960 return err; 961 962 if (is_quota_modification(idmap, inode, attr)) { 963 err = f2fs_dquot_initialize(inode); 964 if (err) 965 return err; 966 } 967 if (i_uid_needs_update(idmap, attr, inode) || 968 i_gid_needs_update(idmap, attr, inode)) { 969 f2fs_lock_op(F2FS_I_SB(inode)); 970 err = dquot_transfer(idmap, inode, attr); 971 if (err) { 972 set_sbi_flag(F2FS_I_SB(inode), 973 SBI_QUOTA_NEED_REPAIR); 974 f2fs_unlock_op(F2FS_I_SB(inode)); 975 return err; 976 } 977 /* 978 * update uid/gid under lock_op(), so that dquot and inode can 979 * be updated atomically. 980 */ 981 i_uid_update(idmap, attr, inode); 982 i_gid_update(idmap, attr, inode); 983 f2fs_mark_inode_dirty_sync(inode, true); 984 f2fs_unlock_op(F2FS_I_SB(inode)); 985 } 986 987 if (attr->ia_valid & ATTR_SIZE) { 988 loff_t old_size = i_size_read(inode); 989 990 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 991 /* 992 * should convert inline inode before i_size_write to 993 * keep smaller than inline_data size with inline flag. 994 */ 995 err = f2fs_convert_inline_inode(inode); 996 if (err) 997 return err; 998 } 999 1000 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1001 filemap_invalidate_lock(inode->i_mapping); 1002 1003 truncate_setsize(inode, attr->ia_size); 1004 1005 if (attr->ia_size <= old_size) 1006 err = f2fs_truncate(inode); 1007 /* 1008 * do not trim all blocks after i_size if target size is 1009 * larger than i_size. 1010 */ 1011 filemap_invalidate_unlock(inode->i_mapping); 1012 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1013 if (err) 1014 return err; 1015 1016 spin_lock(&F2FS_I(inode)->i_size_lock); 1017 inode->i_mtime = inode->i_ctime = current_time(inode); 1018 F2FS_I(inode)->last_disk_size = i_size_read(inode); 1019 spin_unlock(&F2FS_I(inode)->i_size_lock); 1020 } 1021 1022 __setattr_copy(idmap, inode, attr); 1023 1024 if (attr->ia_valid & ATTR_MODE) { 1025 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode)); 1026 1027 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 1028 if (!err) 1029 inode->i_mode = F2FS_I(inode)->i_acl_mode; 1030 clear_inode_flag(inode, FI_ACL_MODE); 1031 } 1032 } 1033 1034 /* file size may changed here */ 1035 f2fs_mark_inode_dirty_sync(inode, true); 1036 1037 /* inode change will produce dirty node pages flushed by checkpoint */ 1038 f2fs_balance_fs(F2FS_I_SB(inode), true); 1039 1040 return err; 1041 } 1042 1043 const struct inode_operations f2fs_file_inode_operations = { 1044 .getattr = f2fs_getattr, 1045 .setattr = f2fs_setattr, 1046 .get_inode_acl = f2fs_get_acl, 1047 .set_acl = f2fs_set_acl, 1048 .listxattr = f2fs_listxattr, 1049 .fiemap = f2fs_fiemap, 1050 .fileattr_get = f2fs_fileattr_get, 1051 .fileattr_set = f2fs_fileattr_set, 1052 }; 1053 1054 static int fill_zero(struct inode *inode, pgoff_t index, 1055 loff_t start, loff_t len) 1056 { 1057 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1058 struct page *page; 1059 1060 if (!len) 1061 return 0; 1062 1063 f2fs_balance_fs(sbi, true); 1064 1065 f2fs_lock_op(sbi); 1066 page = f2fs_get_new_data_page(inode, NULL, index, false); 1067 f2fs_unlock_op(sbi); 1068 1069 if (IS_ERR(page)) 1070 return PTR_ERR(page); 1071 1072 f2fs_wait_on_page_writeback(page, DATA, true, true); 1073 zero_user(page, start, len); 1074 set_page_dirty(page); 1075 f2fs_put_page(page, 1); 1076 return 0; 1077 } 1078 1079 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1080 { 1081 int err; 1082 1083 while (pg_start < pg_end) { 1084 struct dnode_of_data dn; 1085 pgoff_t end_offset, count; 1086 1087 set_new_dnode(&dn, inode, NULL, NULL, 0); 1088 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1089 if (err) { 1090 if (err == -ENOENT) { 1091 pg_start = f2fs_get_next_page_offset(&dn, 1092 pg_start); 1093 continue; 1094 } 1095 return err; 1096 } 1097 1098 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1099 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1100 1101 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1102 1103 f2fs_truncate_data_blocks_range(&dn, count); 1104 f2fs_put_dnode(&dn); 1105 1106 pg_start += count; 1107 } 1108 return 0; 1109 } 1110 1111 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 1112 { 1113 pgoff_t pg_start, pg_end; 1114 loff_t off_start, off_end; 1115 int ret; 1116 1117 ret = f2fs_convert_inline_inode(inode); 1118 if (ret) 1119 return ret; 1120 1121 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1122 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1123 1124 off_start = offset & (PAGE_SIZE - 1); 1125 off_end = (offset + len) & (PAGE_SIZE - 1); 1126 1127 if (pg_start == pg_end) { 1128 ret = fill_zero(inode, pg_start, off_start, 1129 off_end - off_start); 1130 if (ret) 1131 return ret; 1132 } else { 1133 if (off_start) { 1134 ret = fill_zero(inode, pg_start++, off_start, 1135 PAGE_SIZE - off_start); 1136 if (ret) 1137 return ret; 1138 } 1139 if (off_end) { 1140 ret = fill_zero(inode, pg_end, 0, off_end); 1141 if (ret) 1142 return ret; 1143 } 1144 1145 if (pg_start < pg_end) { 1146 loff_t blk_start, blk_end; 1147 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1148 1149 f2fs_balance_fs(sbi, true); 1150 1151 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1152 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1153 1154 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1155 filemap_invalidate_lock(inode->i_mapping); 1156 1157 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1158 1159 f2fs_lock_op(sbi); 1160 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1161 f2fs_unlock_op(sbi); 1162 1163 filemap_invalidate_unlock(inode->i_mapping); 1164 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1165 } 1166 } 1167 1168 return ret; 1169 } 1170 1171 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1172 int *do_replace, pgoff_t off, pgoff_t len) 1173 { 1174 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1175 struct dnode_of_data dn; 1176 int ret, done, i; 1177 1178 next_dnode: 1179 set_new_dnode(&dn, inode, NULL, NULL, 0); 1180 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1181 if (ret && ret != -ENOENT) { 1182 return ret; 1183 } else if (ret == -ENOENT) { 1184 if (dn.max_level == 0) 1185 return -ENOENT; 1186 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1187 dn.ofs_in_node, len); 1188 blkaddr += done; 1189 do_replace += done; 1190 goto next; 1191 } 1192 1193 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1194 dn.ofs_in_node, len); 1195 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1196 *blkaddr = f2fs_data_blkaddr(&dn); 1197 1198 if (__is_valid_data_blkaddr(*blkaddr) && 1199 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1200 DATA_GENERIC_ENHANCE)) { 1201 f2fs_put_dnode(&dn); 1202 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1203 return -EFSCORRUPTED; 1204 } 1205 1206 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1207 1208 if (f2fs_lfs_mode(sbi)) { 1209 f2fs_put_dnode(&dn); 1210 return -EOPNOTSUPP; 1211 } 1212 1213 /* do not invalidate this block address */ 1214 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1215 *do_replace = 1; 1216 } 1217 } 1218 f2fs_put_dnode(&dn); 1219 next: 1220 len -= done; 1221 off += done; 1222 if (len) 1223 goto next_dnode; 1224 return 0; 1225 } 1226 1227 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1228 int *do_replace, pgoff_t off, int len) 1229 { 1230 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1231 struct dnode_of_data dn; 1232 int ret, i; 1233 1234 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1235 if (*do_replace == 0) 1236 continue; 1237 1238 set_new_dnode(&dn, inode, NULL, NULL, 0); 1239 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1240 if (ret) { 1241 dec_valid_block_count(sbi, inode, 1); 1242 f2fs_invalidate_blocks(sbi, *blkaddr); 1243 } else { 1244 f2fs_update_data_blkaddr(&dn, *blkaddr); 1245 } 1246 f2fs_put_dnode(&dn); 1247 } 1248 return 0; 1249 } 1250 1251 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1252 block_t *blkaddr, int *do_replace, 1253 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1254 { 1255 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1256 pgoff_t i = 0; 1257 int ret; 1258 1259 while (i < len) { 1260 if (blkaddr[i] == NULL_ADDR && !full) { 1261 i++; 1262 continue; 1263 } 1264 1265 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1266 struct dnode_of_data dn; 1267 struct node_info ni; 1268 size_t new_size; 1269 pgoff_t ilen; 1270 1271 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1272 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1273 if (ret) 1274 return ret; 1275 1276 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1277 if (ret) { 1278 f2fs_put_dnode(&dn); 1279 return ret; 1280 } 1281 1282 ilen = min((pgoff_t) 1283 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1284 dn.ofs_in_node, len - i); 1285 do { 1286 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1287 f2fs_truncate_data_blocks_range(&dn, 1); 1288 1289 if (do_replace[i]) { 1290 f2fs_i_blocks_write(src_inode, 1291 1, false, false); 1292 f2fs_i_blocks_write(dst_inode, 1293 1, true, false); 1294 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1295 blkaddr[i], ni.version, true, false); 1296 1297 do_replace[i] = 0; 1298 } 1299 dn.ofs_in_node++; 1300 i++; 1301 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1302 if (dst_inode->i_size < new_size) 1303 f2fs_i_size_write(dst_inode, new_size); 1304 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1305 1306 f2fs_put_dnode(&dn); 1307 } else { 1308 struct page *psrc, *pdst; 1309 1310 psrc = f2fs_get_lock_data_page(src_inode, 1311 src + i, true); 1312 if (IS_ERR(psrc)) 1313 return PTR_ERR(psrc); 1314 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1315 true); 1316 if (IS_ERR(pdst)) { 1317 f2fs_put_page(psrc, 1); 1318 return PTR_ERR(pdst); 1319 } 1320 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); 1321 set_page_dirty(pdst); 1322 f2fs_put_page(pdst, 1); 1323 f2fs_put_page(psrc, 1); 1324 1325 ret = f2fs_truncate_hole(src_inode, 1326 src + i, src + i + 1); 1327 if (ret) 1328 return ret; 1329 i++; 1330 } 1331 } 1332 return 0; 1333 } 1334 1335 static int __exchange_data_block(struct inode *src_inode, 1336 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1337 pgoff_t len, bool full) 1338 { 1339 block_t *src_blkaddr; 1340 int *do_replace; 1341 pgoff_t olen; 1342 int ret; 1343 1344 while (len) { 1345 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1346 1347 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1348 array_size(olen, sizeof(block_t)), 1349 GFP_NOFS); 1350 if (!src_blkaddr) 1351 return -ENOMEM; 1352 1353 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1354 array_size(olen, sizeof(int)), 1355 GFP_NOFS); 1356 if (!do_replace) { 1357 kvfree(src_blkaddr); 1358 return -ENOMEM; 1359 } 1360 1361 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1362 do_replace, src, olen); 1363 if (ret) 1364 goto roll_back; 1365 1366 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1367 do_replace, src, dst, olen, full); 1368 if (ret) 1369 goto roll_back; 1370 1371 src += olen; 1372 dst += olen; 1373 len -= olen; 1374 1375 kvfree(src_blkaddr); 1376 kvfree(do_replace); 1377 } 1378 return 0; 1379 1380 roll_back: 1381 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1382 kvfree(src_blkaddr); 1383 kvfree(do_replace); 1384 return ret; 1385 } 1386 1387 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1388 { 1389 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1390 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1391 pgoff_t start = offset >> PAGE_SHIFT; 1392 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1393 int ret; 1394 1395 f2fs_balance_fs(sbi, true); 1396 1397 /* avoid gc operation during block exchange */ 1398 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1399 filemap_invalidate_lock(inode->i_mapping); 1400 1401 f2fs_lock_op(sbi); 1402 f2fs_drop_extent_tree(inode); 1403 truncate_pagecache(inode, offset); 1404 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1405 f2fs_unlock_op(sbi); 1406 1407 filemap_invalidate_unlock(inode->i_mapping); 1408 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1409 return ret; 1410 } 1411 1412 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1413 { 1414 loff_t new_size; 1415 int ret; 1416 1417 if (offset + len >= i_size_read(inode)) 1418 return -EINVAL; 1419 1420 /* collapse range should be aligned to block size of f2fs. */ 1421 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1422 return -EINVAL; 1423 1424 ret = f2fs_convert_inline_inode(inode); 1425 if (ret) 1426 return ret; 1427 1428 /* write out all dirty pages from offset */ 1429 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1430 if (ret) 1431 return ret; 1432 1433 ret = f2fs_do_collapse(inode, offset, len); 1434 if (ret) 1435 return ret; 1436 1437 /* write out all moved pages, if possible */ 1438 filemap_invalidate_lock(inode->i_mapping); 1439 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1440 truncate_pagecache(inode, offset); 1441 1442 new_size = i_size_read(inode) - len; 1443 ret = f2fs_truncate_blocks(inode, new_size, true); 1444 filemap_invalidate_unlock(inode->i_mapping); 1445 if (!ret) 1446 f2fs_i_size_write(inode, new_size); 1447 return ret; 1448 } 1449 1450 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1451 pgoff_t end) 1452 { 1453 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1454 pgoff_t index = start; 1455 unsigned int ofs_in_node = dn->ofs_in_node; 1456 blkcnt_t count = 0; 1457 int ret; 1458 1459 for (; index < end; index++, dn->ofs_in_node++) { 1460 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1461 count++; 1462 } 1463 1464 dn->ofs_in_node = ofs_in_node; 1465 ret = f2fs_reserve_new_blocks(dn, count); 1466 if (ret) 1467 return ret; 1468 1469 dn->ofs_in_node = ofs_in_node; 1470 for (index = start; index < end; index++, dn->ofs_in_node++) { 1471 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1472 /* 1473 * f2fs_reserve_new_blocks will not guarantee entire block 1474 * allocation. 1475 */ 1476 if (dn->data_blkaddr == NULL_ADDR) { 1477 ret = -ENOSPC; 1478 break; 1479 } 1480 1481 if (dn->data_blkaddr == NEW_ADDR) 1482 continue; 1483 1484 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1485 DATA_GENERIC_ENHANCE)) { 1486 ret = -EFSCORRUPTED; 1487 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1488 break; 1489 } 1490 1491 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1492 dn->data_blkaddr = NEW_ADDR; 1493 f2fs_set_data_blkaddr(dn); 1494 } 1495 1496 f2fs_update_read_extent_cache_range(dn, start, 0, index - start); 1497 f2fs_update_age_extent_cache_range(dn, start, index - start); 1498 1499 return ret; 1500 } 1501 1502 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1503 int mode) 1504 { 1505 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1506 struct address_space *mapping = inode->i_mapping; 1507 pgoff_t index, pg_start, pg_end; 1508 loff_t new_size = i_size_read(inode); 1509 loff_t off_start, off_end; 1510 int ret = 0; 1511 1512 ret = inode_newsize_ok(inode, (len + offset)); 1513 if (ret) 1514 return ret; 1515 1516 ret = f2fs_convert_inline_inode(inode); 1517 if (ret) 1518 return ret; 1519 1520 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1521 if (ret) 1522 return ret; 1523 1524 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1525 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1526 1527 off_start = offset & (PAGE_SIZE - 1); 1528 off_end = (offset + len) & (PAGE_SIZE - 1); 1529 1530 if (pg_start == pg_end) { 1531 ret = fill_zero(inode, pg_start, off_start, 1532 off_end - off_start); 1533 if (ret) 1534 return ret; 1535 1536 new_size = max_t(loff_t, new_size, offset + len); 1537 } else { 1538 if (off_start) { 1539 ret = fill_zero(inode, pg_start++, off_start, 1540 PAGE_SIZE - off_start); 1541 if (ret) 1542 return ret; 1543 1544 new_size = max_t(loff_t, new_size, 1545 (loff_t)pg_start << PAGE_SHIFT); 1546 } 1547 1548 for (index = pg_start; index < pg_end;) { 1549 struct dnode_of_data dn; 1550 unsigned int end_offset; 1551 pgoff_t end; 1552 1553 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1554 filemap_invalidate_lock(mapping); 1555 1556 truncate_pagecache_range(inode, 1557 (loff_t)index << PAGE_SHIFT, 1558 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1559 1560 f2fs_lock_op(sbi); 1561 1562 set_new_dnode(&dn, inode, NULL, NULL, 0); 1563 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1564 if (ret) { 1565 f2fs_unlock_op(sbi); 1566 filemap_invalidate_unlock(mapping); 1567 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1568 goto out; 1569 } 1570 1571 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1572 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1573 1574 ret = f2fs_do_zero_range(&dn, index, end); 1575 f2fs_put_dnode(&dn); 1576 1577 f2fs_unlock_op(sbi); 1578 filemap_invalidate_unlock(mapping); 1579 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1580 1581 f2fs_balance_fs(sbi, dn.node_changed); 1582 1583 if (ret) 1584 goto out; 1585 1586 index = end; 1587 new_size = max_t(loff_t, new_size, 1588 (loff_t)index << PAGE_SHIFT); 1589 } 1590 1591 if (off_end) { 1592 ret = fill_zero(inode, pg_end, 0, off_end); 1593 if (ret) 1594 goto out; 1595 1596 new_size = max_t(loff_t, new_size, offset + len); 1597 } 1598 } 1599 1600 out: 1601 if (new_size > i_size_read(inode)) { 1602 if (mode & FALLOC_FL_KEEP_SIZE) 1603 file_set_keep_isize(inode); 1604 else 1605 f2fs_i_size_write(inode, new_size); 1606 } 1607 return ret; 1608 } 1609 1610 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1611 { 1612 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1613 struct address_space *mapping = inode->i_mapping; 1614 pgoff_t nr, pg_start, pg_end, delta, idx; 1615 loff_t new_size; 1616 int ret = 0; 1617 1618 new_size = i_size_read(inode) + len; 1619 ret = inode_newsize_ok(inode, new_size); 1620 if (ret) 1621 return ret; 1622 1623 if (offset >= i_size_read(inode)) 1624 return -EINVAL; 1625 1626 /* insert range should be aligned to block size of f2fs. */ 1627 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1628 return -EINVAL; 1629 1630 ret = f2fs_convert_inline_inode(inode); 1631 if (ret) 1632 return ret; 1633 1634 f2fs_balance_fs(sbi, true); 1635 1636 filemap_invalidate_lock(mapping); 1637 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1638 filemap_invalidate_unlock(mapping); 1639 if (ret) 1640 return ret; 1641 1642 /* write out all dirty pages from offset */ 1643 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1644 if (ret) 1645 return ret; 1646 1647 pg_start = offset >> PAGE_SHIFT; 1648 pg_end = (offset + len) >> PAGE_SHIFT; 1649 delta = pg_end - pg_start; 1650 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1651 1652 /* avoid gc operation during block exchange */ 1653 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1654 filemap_invalidate_lock(mapping); 1655 truncate_pagecache(inode, offset); 1656 1657 while (!ret && idx > pg_start) { 1658 nr = idx - pg_start; 1659 if (nr > delta) 1660 nr = delta; 1661 idx -= nr; 1662 1663 f2fs_lock_op(sbi); 1664 f2fs_drop_extent_tree(inode); 1665 1666 ret = __exchange_data_block(inode, inode, idx, 1667 idx + delta, nr, false); 1668 f2fs_unlock_op(sbi); 1669 } 1670 filemap_invalidate_unlock(mapping); 1671 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1672 1673 /* write out all moved pages, if possible */ 1674 filemap_invalidate_lock(mapping); 1675 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1676 truncate_pagecache(inode, offset); 1677 filemap_invalidate_unlock(mapping); 1678 1679 if (!ret) 1680 f2fs_i_size_write(inode, new_size); 1681 return ret; 1682 } 1683 1684 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset, 1685 loff_t len, int mode) 1686 { 1687 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1688 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1689 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1690 .m_may_create = true }; 1691 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1692 .init_gc_type = FG_GC, 1693 .should_migrate_blocks = false, 1694 .err_gc_skipped = true, 1695 .nr_free_secs = 0 }; 1696 pgoff_t pg_start, pg_end; 1697 loff_t new_size; 1698 loff_t off_end; 1699 block_t expanded = 0; 1700 int err; 1701 1702 err = inode_newsize_ok(inode, (len + offset)); 1703 if (err) 1704 return err; 1705 1706 err = f2fs_convert_inline_inode(inode); 1707 if (err) 1708 return err; 1709 1710 f2fs_balance_fs(sbi, true); 1711 1712 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1713 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1714 off_end = (offset + len) & (PAGE_SIZE - 1); 1715 1716 map.m_lblk = pg_start; 1717 map.m_len = pg_end - pg_start; 1718 if (off_end) 1719 map.m_len++; 1720 1721 if (!map.m_len) 1722 return 0; 1723 1724 if (f2fs_is_pinned_file(inode)) { 1725 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1726 block_t sec_len = roundup(map.m_len, sec_blks); 1727 1728 map.m_len = sec_blks; 1729 next_alloc: 1730 if (has_not_enough_free_secs(sbi, 0, 1731 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1732 f2fs_down_write(&sbi->gc_lock); 1733 err = f2fs_gc(sbi, &gc_control); 1734 if (err && err != -ENODATA) 1735 goto out_err; 1736 } 1737 1738 f2fs_down_write(&sbi->pin_sem); 1739 1740 f2fs_lock_op(sbi); 1741 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 1742 f2fs_unlock_op(sbi); 1743 1744 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1745 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO); 1746 file_dont_truncate(inode); 1747 1748 f2fs_up_write(&sbi->pin_sem); 1749 1750 expanded += map.m_len; 1751 sec_len -= map.m_len; 1752 map.m_lblk += map.m_len; 1753 if (!err && sec_len) 1754 goto next_alloc; 1755 1756 map.m_len = expanded; 1757 } else { 1758 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO); 1759 expanded = map.m_len; 1760 } 1761 out_err: 1762 if (err) { 1763 pgoff_t last_off; 1764 1765 if (!expanded) 1766 return err; 1767 1768 last_off = pg_start + expanded - 1; 1769 1770 /* update new size to the failed position */ 1771 new_size = (last_off == pg_end) ? offset + len : 1772 (loff_t)(last_off + 1) << PAGE_SHIFT; 1773 } else { 1774 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1775 } 1776 1777 if (new_size > i_size_read(inode)) { 1778 if (mode & FALLOC_FL_KEEP_SIZE) 1779 file_set_keep_isize(inode); 1780 else 1781 f2fs_i_size_write(inode, new_size); 1782 } 1783 1784 return err; 1785 } 1786 1787 static long f2fs_fallocate(struct file *file, int mode, 1788 loff_t offset, loff_t len) 1789 { 1790 struct inode *inode = file_inode(file); 1791 long ret = 0; 1792 1793 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1794 return -EIO; 1795 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1796 return -ENOSPC; 1797 if (!f2fs_is_compress_backend_ready(inode)) 1798 return -EOPNOTSUPP; 1799 1800 /* f2fs only support ->fallocate for regular file */ 1801 if (!S_ISREG(inode->i_mode)) 1802 return -EINVAL; 1803 1804 if (IS_ENCRYPTED(inode) && 1805 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1806 return -EOPNOTSUPP; 1807 1808 /* 1809 * Pinned file should not support partial truncation since the block 1810 * can be used by applications. 1811 */ 1812 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1813 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1814 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1815 return -EOPNOTSUPP; 1816 1817 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1818 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1819 FALLOC_FL_INSERT_RANGE)) 1820 return -EOPNOTSUPP; 1821 1822 inode_lock(inode); 1823 1824 ret = file_modified(file); 1825 if (ret) 1826 goto out; 1827 1828 if (mode & FALLOC_FL_PUNCH_HOLE) { 1829 if (offset >= inode->i_size) 1830 goto out; 1831 1832 ret = f2fs_punch_hole(inode, offset, len); 1833 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1834 ret = f2fs_collapse_range(inode, offset, len); 1835 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1836 ret = f2fs_zero_range(inode, offset, len, mode); 1837 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1838 ret = f2fs_insert_range(inode, offset, len); 1839 } else { 1840 ret = f2fs_expand_inode_data(inode, offset, len, mode); 1841 } 1842 1843 if (!ret) { 1844 inode->i_mtime = inode->i_ctime = current_time(inode); 1845 f2fs_mark_inode_dirty_sync(inode, false); 1846 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1847 } 1848 1849 out: 1850 inode_unlock(inode); 1851 1852 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1853 return ret; 1854 } 1855 1856 static int f2fs_release_file(struct inode *inode, struct file *filp) 1857 { 1858 /* 1859 * f2fs_release_file is called at every close calls. So we should 1860 * not drop any inmemory pages by close called by other process. 1861 */ 1862 if (!(filp->f_mode & FMODE_WRITE) || 1863 atomic_read(&inode->i_writecount) != 1) 1864 return 0; 1865 1866 inode_lock(inode); 1867 f2fs_abort_atomic_write(inode, true); 1868 inode_unlock(inode); 1869 1870 return 0; 1871 } 1872 1873 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1874 { 1875 struct inode *inode = file_inode(file); 1876 1877 /* 1878 * If the process doing a transaction is crashed, we should do 1879 * roll-back. Otherwise, other reader/write can see corrupted database 1880 * until all the writers close its file. Since this should be done 1881 * before dropping file lock, it needs to do in ->flush. 1882 */ 1883 if (F2FS_I(inode)->atomic_write_task == current && 1884 (current->flags & PF_EXITING)) { 1885 inode_lock(inode); 1886 f2fs_abort_atomic_write(inode, true); 1887 inode_unlock(inode); 1888 } 1889 1890 return 0; 1891 } 1892 1893 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1894 { 1895 struct f2fs_inode_info *fi = F2FS_I(inode); 1896 u32 masked_flags = fi->i_flags & mask; 1897 1898 /* mask can be shrunk by flags_valid selector */ 1899 iflags &= mask; 1900 1901 /* Is it quota file? Do not allow user to mess with it */ 1902 if (IS_NOQUOTA(inode)) 1903 return -EPERM; 1904 1905 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1906 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1907 return -EOPNOTSUPP; 1908 if (!f2fs_empty_dir(inode)) 1909 return -ENOTEMPTY; 1910 } 1911 1912 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1913 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1914 return -EOPNOTSUPP; 1915 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1916 return -EINVAL; 1917 } 1918 1919 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1920 if (masked_flags & F2FS_COMPR_FL) { 1921 if (!f2fs_disable_compressed_file(inode)) 1922 return -EINVAL; 1923 } else { 1924 /* try to convert inline_data to support compression */ 1925 int err = f2fs_convert_inline_inode(inode); 1926 if (err) 1927 return err; 1928 if (!f2fs_may_compress(inode)) 1929 return -EINVAL; 1930 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 1931 return -EINVAL; 1932 if (set_compress_context(inode)) 1933 return -EOPNOTSUPP; 1934 } 1935 } 1936 1937 fi->i_flags = iflags | (fi->i_flags & ~mask); 1938 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1939 (fi->i_flags & F2FS_NOCOMP_FL)); 1940 1941 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1942 set_inode_flag(inode, FI_PROJ_INHERIT); 1943 else 1944 clear_inode_flag(inode, FI_PROJ_INHERIT); 1945 1946 inode->i_ctime = current_time(inode); 1947 f2fs_set_inode_flags(inode); 1948 f2fs_mark_inode_dirty_sync(inode, true); 1949 return 0; 1950 } 1951 1952 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 1953 1954 /* 1955 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1956 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1957 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1958 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1959 * 1960 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 1961 * FS_IOC_FSSETXATTR is done by the VFS. 1962 */ 1963 1964 static const struct { 1965 u32 iflag; 1966 u32 fsflag; 1967 } f2fs_fsflags_map[] = { 1968 { F2FS_COMPR_FL, FS_COMPR_FL }, 1969 { F2FS_SYNC_FL, FS_SYNC_FL }, 1970 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1971 { F2FS_APPEND_FL, FS_APPEND_FL }, 1972 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1973 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1974 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1975 { F2FS_INDEX_FL, FS_INDEX_FL }, 1976 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1977 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1978 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1979 }; 1980 1981 #define F2FS_GETTABLE_FS_FL ( \ 1982 FS_COMPR_FL | \ 1983 FS_SYNC_FL | \ 1984 FS_IMMUTABLE_FL | \ 1985 FS_APPEND_FL | \ 1986 FS_NODUMP_FL | \ 1987 FS_NOATIME_FL | \ 1988 FS_NOCOMP_FL | \ 1989 FS_INDEX_FL | \ 1990 FS_DIRSYNC_FL | \ 1991 FS_PROJINHERIT_FL | \ 1992 FS_ENCRYPT_FL | \ 1993 FS_INLINE_DATA_FL | \ 1994 FS_NOCOW_FL | \ 1995 FS_VERITY_FL | \ 1996 FS_CASEFOLD_FL) 1997 1998 #define F2FS_SETTABLE_FS_FL ( \ 1999 FS_COMPR_FL | \ 2000 FS_SYNC_FL | \ 2001 FS_IMMUTABLE_FL | \ 2002 FS_APPEND_FL | \ 2003 FS_NODUMP_FL | \ 2004 FS_NOATIME_FL | \ 2005 FS_NOCOMP_FL | \ 2006 FS_DIRSYNC_FL | \ 2007 FS_PROJINHERIT_FL | \ 2008 FS_CASEFOLD_FL) 2009 2010 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 2011 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 2012 { 2013 u32 fsflags = 0; 2014 int i; 2015 2016 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2017 if (iflags & f2fs_fsflags_map[i].iflag) 2018 fsflags |= f2fs_fsflags_map[i].fsflag; 2019 2020 return fsflags; 2021 } 2022 2023 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 2024 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 2025 { 2026 u32 iflags = 0; 2027 int i; 2028 2029 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2030 if (fsflags & f2fs_fsflags_map[i].fsflag) 2031 iflags |= f2fs_fsflags_map[i].iflag; 2032 2033 return iflags; 2034 } 2035 2036 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2037 { 2038 struct inode *inode = file_inode(filp); 2039 2040 return put_user(inode->i_generation, (int __user *)arg); 2041 } 2042 2043 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate) 2044 { 2045 struct inode *inode = file_inode(filp); 2046 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2047 struct f2fs_inode_info *fi = F2FS_I(inode); 2048 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2049 struct inode *pinode; 2050 loff_t isize; 2051 int ret; 2052 2053 if (!inode_owner_or_capable(idmap, inode)) 2054 return -EACCES; 2055 2056 if (!S_ISREG(inode->i_mode)) 2057 return -EINVAL; 2058 2059 if (filp->f_flags & O_DIRECT) 2060 return -EINVAL; 2061 2062 ret = mnt_want_write_file(filp); 2063 if (ret) 2064 return ret; 2065 2066 inode_lock(inode); 2067 2068 if (!f2fs_disable_compressed_file(inode)) { 2069 ret = -EINVAL; 2070 goto out; 2071 } 2072 2073 if (f2fs_is_atomic_file(inode)) 2074 goto out; 2075 2076 ret = f2fs_convert_inline_inode(inode); 2077 if (ret) 2078 goto out; 2079 2080 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2081 2082 /* 2083 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2084 * f2fs_is_atomic_file. 2085 */ 2086 if (get_dirty_pages(inode)) 2087 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2088 inode->i_ino, get_dirty_pages(inode)); 2089 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2090 if (ret) { 2091 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2092 goto out; 2093 } 2094 2095 /* Check if the inode already has a COW inode */ 2096 if (fi->cow_inode == NULL) { 2097 /* Create a COW inode for atomic write */ 2098 pinode = f2fs_iget(inode->i_sb, fi->i_pino); 2099 if (IS_ERR(pinode)) { 2100 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2101 ret = PTR_ERR(pinode); 2102 goto out; 2103 } 2104 2105 ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode); 2106 iput(pinode); 2107 if (ret) { 2108 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2109 goto out; 2110 } 2111 2112 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2113 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2114 } else { 2115 /* Reuse the already created COW inode */ 2116 f2fs_do_truncate_blocks(fi->cow_inode, 0, true); 2117 } 2118 2119 f2fs_write_inode(inode, NULL); 2120 2121 stat_inc_atomic_inode(inode); 2122 2123 set_inode_flag(inode, FI_ATOMIC_FILE); 2124 2125 isize = i_size_read(inode); 2126 fi->original_i_size = isize; 2127 if (truncate) { 2128 set_inode_flag(inode, FI_ATOMIC_REPLACE); 2129 truncate_inode_pages_final(inode->i_mapping); 2130 f2fs_i_size_write(inode, 0); 2131 isize = 0; 2132 } 2133 f2fs_i_size_write(fi->cow_inode, isize); 2134 2135 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2136 2137 f2fs_update_time(sbi, REQ_TIME); 2138 fi->atomic_write_task = current; 2139 stat_update_max_atomic_write(inode); 2140 fi->atomic_write_cnt = 0; 2141 out: 2142 inode_unlock(inode); 2143 mnt_drop_write_file(filp); 2144 return ret; 2145 } 2146 2147 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2148 { 2149 struct inode *inode = file_inode(filp); 2150 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2151 int ret; 2152 2153 if (!inode_owner_or_capable(idmap, inode)) 2154 return -EACCES; 2155 2156 ret = mnt_want_write_file(filp); 2157 if (ret) 2158 return ret; 2159 2160 f2fs_balance_fs(F2FS_I_SB(inode), true); 2161 2162 inode_lock(inode); 2163 2164 if (f2fs_is_atomic_file(inode)) { 2165 ret = f2fs_commit_atomic_write(inode); 2166 if (!ret) 2167 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2168 2169 f2fs_abort_atomic_write(inode, ret); 2170 } else { 2171 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2172 } 2173 2174 inode_unlock(inode); 2175 mnt_drop_write_file(filp); 2176 return ret; 2177 } 2178 2179 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2180 { 2181 struct inode *inode = file_inode(filp); 2182 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2183 int ret; 2184 2185 if (!inode_owner_or_capable(idmap, inode)) 2186 return -EACCES; 2187 2188 ret = mnt_want_write_file(filp); 2189 if (ret) 2190 return ret; 2191 2192 inode_lock(inode); 2193 2194 f2fs_abort_atomic_write(inode, true); 2195 2196 inode_unlock(inode); 2197 2198 mnt_drop_write_file(filp); 2199 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2200 return ret; 2201 } 2202 2203 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2204 { 2205 struct inode *inode = file_inode(filp); 2206 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2207 struct super_block *sb = sbi->sb; 2208 __u32 in; 2209 int ret = 0; 2210 2211 if (!capable(CAP_SYS_ADMIN)) 2212 return -EPERM; 2213 2214 if (get_user(in, (__u32 __user *)arg)) 2215 return -EFAULT; 2216 2217 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2218 ret = mnt_want_write_file(filp); 2219 if (ret) { 2220 if (ret == -EROFS) { 2221 ret = 0; 2222 f2fs_stop_checkpoint(sbi, false, 2223 STOP_CP_REASON_SHUTDOWN); 2224 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2225 trace_f2fs_shutdown(sbi, in, ret); 2226 } 2227 return ret; 2228 } 2229 } 2230 2231 switch (in) { 2232 case F2FS_GOING_DOWN_FULLSYNC: 2233 ret = freeze_bdev(sb->s_bdev); 2234 if (ret) 2235 goto out; 2236 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2237 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2238 thaw_bdev(sb->s_bdev); 2239 break; 2240 case F2FS_GOING_DOWN_METASYNC: 2241 /* do checkpoint only */ 2242 ret = f2fs_sync_fs(sb, 1); 2243 if (ret) 2244 goto out; 2245 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2246 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2247 break; 2248 case F2FS_GOING_DOWN_NOSYNC: 2249 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2250 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2251 break; 2252 case F2FS_GOING_DOWN_METAFLUSH: 2253 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2254 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2255 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2256 break; 2257 case F2FS_GOING_DOWN_NEED_FSCK: 2258 set_sbi_flag(sbi, SBI_NEED_FSCK); 2259 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2260 set_sbi_flag(sbi, SBI_IS_DIRTY); 2261 /* do checkpoint only */ 2262 ret = f2fs_sync_fs(sb, 1); 2263 goto out; 2264 default: 2265 ret = -EINVAL; 2266 goto out; 2267 } 2268 2269 f2fs_stop_gc_thread(sbi); 2270 f2fs_stop_discard_thread(sbi); 2271 2272 f2fs_drop_discard_cmd(sbi); 2273 clear_opt(sbi, DISCARD); 2274 2275 f2fs_update_time(sbi, REQ_TIME); 2276 out: 2277 if (in != F2FS_GOING_DOWN_FULLSYNC) 2278 mnt_drop_write_file(filp); 2279 2280 trace_f2fs_shutdown(sbi, in, ret); 2281 2282 return ret; 2283 } 2284 2285 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2286 { 2287 struct inode *inode = file_inode(filp); 2288 struct super_block *sb = inode->i_sb; 2289 struct fstrim_range range; 2290 int ret; 2291 2292 if (!capable(CAP_SYS_ADMIN)) 2293 return -EPERM; 2294 2295 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2296 return -EOPNOTSUPP; 2297 2298 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2299 sizeof(range))) 2300 return -EFAULT; 2301 2302 ret = mnt_want_write_file(filp); 2303 if (ret) 2304 return ret; 2305 2306 range.minlen = max((unsigned int)range.minlen, 2307 bdev_discard_granularity(sb->s_bdev)); 2308 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2309 mnt_drop_write_file(filp); 2310 if (ret < 0) 2311 return ret; 2312 2313 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2314 sizeof(range))) 2315 return -EFAULT; 2316 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2317 return 0; 2318 } 2319 2320 static bool uuid_is_nonzero(__u8 u[16]) 2321 { 2322 int i; 2323 2324 for (i = 0; i < 16; i++) 2325 if (u[i]) 2326 return true; 2327 return false; 2328 } 2329 2330 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2331 { 2332 struct inode *inode = file_inode(filp); 2333 2334 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2335 return -EOPNOTSUPP; 2336 2337 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2338 2339 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2340 } 2341 2342 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2343 { 2344 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2345 return -EOPNOTSUPP; 2346 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2347 } 2348 2349 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2350 { 2351 struct inode *inode = file_inode(filp); 2352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2353 u8 encrypt_pw_salt[16]; 2354 int err; 2355 2356 if (!f2fs_sb_has_encrypt(sbi)) 2357 return -EOPNOTSUPP; 2358 2359 err = mnt_want_write_file(filp); 2360 if (err) 2361 return err; 2362 2363 f2fs_down_write(&sbi->sb_lock); 2364 2365 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2366 goto got_it; 2367 2368 /* update superblock with uuid */ 2369 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2370 2371 err = f2fs_commit_super(sbi, false); 2372 if (err) { 2373 /* undo new data */ 2374 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2375 goto out_err; 2376 } 2377 got_it: 2378 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16); 2379 out_err: 2380 f2fs_up_write(&sbi->sb_lock); 2381 mnt_drop_write_file(filp); 2382 2383 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16)) 2384 err = -EFAULT; 2385 2386 return err; 2387 } 2388 2389 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2390 unsigned long arg) 2391 { 2392 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2393 return -EOPNOTSUPP; 2394 2395 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2396 } 2397 2398 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2399 { 2400 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2401 return -EOPNOTSUPP; 2402 2403 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2404 } 2405 2406 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2407 { 2408 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2409 return -EOPNOTSUPP; 2410 2411 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2412 } 2413 2414 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2415 unsigned long arg) 2416 { 2417 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2418 return -EOPNOTSUPP; 2419 2420 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2421 } 2422 2423 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2424 unsigned long arg) 2425 { 2426 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2427 return -EOPNOTSUPP; 2428 2429 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2430 } 2431 2432 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2433 { 2434 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2435 return -EOPNOTSUPP; 2436 2437 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2438 } 2439 2440 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2441 { 2442 struct inode *inode = file_inode(filp); 2443 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2444 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2445 .no_bg_gc = false, 2446 .should_migrate_blocks = false, 2447 .nr_free_secs = 0 }; 2448 __u32 sync; 2449 int ret; 2450 2451 if (!capable(CAP_SYS_ADMIN)) 2452 return -EPERM; 2453 2454 if (get_user(sync, (__u32 __user *)arg)) 2455 return -EFAULT; 2456 2457 if (f2fs_readonly(sbi->sb)) 2458 return -EROFS; 2459 2460 ret = mnt_want_write_file(filp); 2461 if (ret) 2462 return ret; 2463 2464 if (!sync) { 2465 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2466 ret = -EBUSY; 2467 goto out; 2468 } 2469 } else { 2470 f2fs_down_write(&sbi->gc_lock); 2471 } 2472 2473 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2474 gc_control.err_gc_skipped = sync; 2475 ret = f2fs_gc(sbi, &gc_control); 2476 out: 2477 mnt_drop_write_file(filp); 2478 return ret; 2479 } 2480 2481 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2482 { 2483 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2484 struct f2fs_gc_control gc_control = { 2485 .init_gc_type = range->sync ? FG_GC : BG_GC, 2486 .no_bg_gc = false, 2487 .should_migrate_blocks = false, 2488 .err_gc_skipped = range->sync, 2489 .nr_free_secs = 0 }; 2490 u64 end; 2491 int ret; 2492 2493 if (!capable(CAP_SYS_ADMIN)) 2494 return -EPERM; 2495 if (f2fs_readonly(sbi->sb)) 2496 return -EROFS; 2497 2498 end = range->start + range->len; 2499 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2500 end >= MAX_BLKADDR(sbi)) 2501 return -EINVAL; 2502 2503 ret = mnt_want_write_file(filp); 2504 if (ret) 2505 return ret; 2506 2507 do_more: 2508 if (!range->sync) { 2509 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2510 ret = -EBUSY; 2511 goto out; 2512 } 2513 } else { 2514 f2fs_down_write(&sbi->gc_lock); 2515 } 2516 2517 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2518 ret = f2fs_gc(sbi, &gc_control); 2519 if (ret) { 2520 if (ret == -EBUSY) 2521 ret = -EAGAIN; 2522 goto out; 2523 } 2524 range->start += CAP_BLKS_PER_SEC(sbi); 2525 if (range->start <= end) 2526 goto do_more; 2527 out: 2528 mnt_drop_write_file(filp); 2529 return ret; 2530 } 2531 2532 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2533 { 2534 struct f2fs_gc_range range; 2535 2536 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2537 sizeof(range))) 2538 return -EFAULT; 2539 return __f2fs_ioc_gc_range(filp, &range); 2540 } 2541 2542 static int f2fs_ioc_write_checkpoint(struct file *filp) 2543 { 2544 struct inode *inode = file_inode(filp); 2545 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2546 int ret; 2547 2548 if (!capable(CAP_SYS_ADMIN)) 2549 return -EPERM; 2550 2551 if (f2fs_readonly(sbi->sb)) 2552 return -EROFS; 2553 2554 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2555 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2556 return -EINVAL; 2557 } 2558 2559 ret = mnt_want_write_file(filp); 2560 if (ret) 2561 return ret; 2562 2563 ret = f2fs_sync_fs(sbi->sb, 1); 2564 2565 mnt_drop_write_file(filp); 2566 return ret; 2567 } 2568 2569 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2570 struct file *filp, 2571 struct f2fs_defragment *range) 2572 { 2573 struct inode *inode = file_inode(filp); 2574 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2575 .m_seg_type = NO_CHECK_TYPE, 2576 .m_may_create = false }; 2577 struct extent_info ei = {}; 2578 pgoff_t pg_start, pg_end, next_pgofs; 2579 unsigned int blk_per_seg = sbi->blocks_per_seg; 2580 unsigned int total = 0, sec_num; 2581 block_t blk_end = 0; 2582 bool fragmented = false; 2583 int err; 2584 2585 pg_start = range->start >> PAGE_SHIFT; 2586 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2587 2588 f2fs_balance_fs(sbi, true); 2589 2590 inode_lock(inode); 2591 2592 /* if in-place-update policy is enabled, don't waste time here */ 2593 set_inode_flag(inode, FI_OPU_WRITE); 2594 if (f2fs_should_update_inplace(inode, NULL)) { 2595 err = -EINVAL; 2596 goto out; 2597 } 2598 2599 /* writeback all dirty pages in the range */ 2600 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2601 range->start + range->len - 1); 2602 if (err) 2603 goto out; 2604 2605 /* 2606 * lookup mapping info in extent cache, skip defragmenting if physical 2607 * block addresses are continuous. 2608 */ 2609 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) { 2610 if (ei.fofs + ei.len >= pg_end) 2611 goto out; 2612 } 2613 2614 map.m_lblk = pg_start; 2615 map.m_next_pgofs = &next_pgofs; 2616 2617 /* 2618 * lookup mapping info in dnode page cache, skip defragmenting if all 2619 * physical block addresses are continuous even if there are hole(s) 2620 * in logical blocks. 2621 */ 2622 while (map.m_lblk < pg_end) { 2623 map.m_len = pg_end - map.m_lblk; 2624 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2625 if (err) 2626 goto out; 2627 2628 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2629 map.m_lblk = next_pgofs; 2630 continue; 2631 } 2632 2633 if (blk_end && blk_end != map.m_pblk) 2634 fragmented = true; 2635 2636 /* record total count of block that we're going to move */ 2637 total += map.m_len; 2638 2639 blk_end = map.m_pblk + map.m_len; 2640 2641 map.m_lblk += map.m_len; 2642 } 2643 2644 if (!fragmented) { 2645 total = 0; 2646 goto out; 2647 } 2648 2649 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2650 2651 /* 2652 * make sure there are enough free section for LFS allocation, this can 2653 * avoid defragment running in SSR mode when free section are allocated 2654 * intensively 2655 */ 2656 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2657 err = -EAGAIN; 2658 goto out; 2659 } 2660 2661 map.m_lblk = pg_start; 2662 map.m_len = pg_end - pg_start; 2663 total = 0; 2664 2665 while (map.m_lblk < pg_end) { 2666 pgoff_t idx; 2667 int cnt = 0; 2668 2669 do_map: 2670 map.m_len = pg_end - map.m_lblk; 2671 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2672 if (err) 2673 goto clear_out; 2674 2675 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2676 map.m_lblk = next_pgofs; 2677 goto check; 2678 } 2679 2680 set_inode_flag(inode, FI_SKIP_WRITES); 2681 2682 idx = map.m_lblk; 2683 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2684 struct page *page; 2685 2686 page = f2fs_get_lock_data_page(inode, idx, true); 2687 if (IS_ERR(page)) { 2688 err = PTR_ERR(page); 2689 goto clear_out; 2690 } 2691 2692 set_page_dirty(page); 2693 set_page_private_gcing(page); 2694 f2fs_put_page(page, 1); 2695 2696 idx++; 2697 cnt++; 2698 total++; 2699 } 2700 2701 map.m_lblk = idx; 2702 check: 2703 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2704 goto do_map; 2705 2706 clear_inode_flag(inode, FI_SKIP_WRITES); 2707 2708 err = filemap_fdatawrite(inode->i_mapping); 2709 if (err) 2710 goto out; 2711 } 2712 clear_out: 2713 clear_inode_flag(inode, FI_SKIP_WRITES); 2714 out: 2715 clear_inode_flag(inode, FI_OPU_WRITE); 2716 inode_unlock(inode); 2717 if (!err) 2718 range->len = (u64)total << PAGE_SHIFT; 2719 return err; 2720 } 2721 2722 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2723 { 2724 struct inode *inode = file_inode(filp); 2725 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2726 struct f2fs_defragment range; 2727 int err; 2728 2729 if (!capable(CAP_SYS_ADMIN)) 2730 return -EPERM; 2731 2732 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2733 return -EINVAL; 2734 2735 if (f2fs_readonly(sbi->sb)) 2736 return -EROFS; 2737 2738 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2739 sizeof(range))) 2740 return -EFAULT; 2741 2742 /* verify alignment of offset & size */ 2743 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2744 return -EINVAL; 2745 2746 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2747 max_file_blocks(inode))) 2748 return -EINVAL; 2749 2750 err = mnt_want_write_file(filp); 2751 if (err) 2752 return err; 2753 2754 err = f2fs_defragment_range(sbi, filp, &range); 2755 mnt_drop_write_file(filp); 2756 2757 f2fs_update_time(sbi, REQ_TIME); 2758 if (err < 0) 2759 return err; 2760 2761 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2762 sizeof(range))) 2763 return -EFAULT; 2764 2765 return 0; 2766 } 2767 2768 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2769 struct file *file_out, loff_t pos_out, size_t len) 2770 { 2771 struct inode *src = file_inode(file_in); 2772 struct inode *dst = file_inode(file_out); 2773 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2774 size_t olen = len, dst_max_i_size = 0; 2775 size_t dst_osize; 2776 int ret; 2777 2778 if (file_in->f_path.mnt != file_out->f_path.mnt || 2779 src->i_sb != dst->i_sb) 2780 return -EXDEV; 2781 2782 if (unlikely(f2fs_readonly(src->i_sb))) 2783 return -EROFS; 2784 2785 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2786 return -EINVAL; 2787 2788 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2789 return -EOPNOTSUPP; 2790 2791 if (pos_out < 0 || pos_in < 0) 2792 return -EINVAL; 2793 2794 if (src == dst) { 2795 if (pos_in == pos_out) 2796 return 0; 2797 if (pos_out > pos_in && pos_out < pos_in + len) 2798 return -EINVAL; 2799 } 2800 2801 inode_lock(src); 2802 if (src != dst) { 2803 ret = -EBUSY; 2804 if (!inode_trylock(dst)) 2805 goto out; 2806 } 2807 2808 ret = -EINVAL; 2809 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2810 goto out_unlock; 2811 if (len == 0) 2812 olen = len = src->i_size - pos_in; 2813 if (pos_in + len == src->i_size) 2814 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2815 if (len == 0) { 2816 ret = 0; 2817 goto out_unlock; 2818 } 2819 2820 dst_osize = dst->i_size; 2821 if (pos_out + olen > dst->i_size) 2822 dst_max_i_size = pos_out + olen; 2823 2824 /* verify the end result is block aligned */ 2825 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2826 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2827 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2828 goto out_unlock; 2829 2830 ret = f2fs_convert_inline_inode(src); 2831 if (ret) 2832 goto out_unlock; 2833 2834 ret = f2fs_convert_inline_inode(dst); 2835 if (ret) 2836 goto out_unlock; 2837 2838 /* write out all dirty pages from offset */ 2839 ret = filemap_write_and_wait_range(src->i_mapping, 2840 pos_in, pos_in + len); 2841 if (ret) 2842 goto out_unlock; 2843 2844 ret = filemap_write_and_wait_range(dst->i_mapping, 2845 pos_out, pos_out + len); 2846 if (ret) 2847 goto out_unlock; 2848 2849 f2fs_balance_fs(sbi, true); 2850 2851 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2852 if (src != dst) { 2853 ret = -EBUSY; 2854 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2855 goto out_src; 2856 } 2857 2858 f2fs_lock_op(sbi); 2859 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2860 pos_out >> F2FS_BLKSIZE_BITS, 2861 len >> F2FS_BLKSIZE_BITS, false); 2862 2863 if (!ret) { 2864 if (dst_max_i_size) 2865 f2fs_i_size_write(dst, dst_max_i_size); 2866 else if (dst_osize != dst->i_size) 2867 f2fs_i_size_write(dst, dst_osize); 2868 } 2869 f2fs_unlock_op(sbi); 2870 2871 if (src != dst) 2872 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2873 out_src: 2874 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2875 out_unlock: 2876 if (src != dst) 2877 inode_unlock(dst); 2878 out: 2879 inode_unlock(src); 2880 return ret; 2881 } 2882 2883 static int __f2fs_ioc_move_range(struct file *filp, 2884 struct f2fs_move_range *range) 2885 { 2886 struct fd dst; 2887 int err; 2888 2889 if (!(filp->f_mode & FMODE_READ) || 2890 !(filp->f_mode & FMODE_WRITE)) 2891 return -EBADF; 2892 2893 dst = fdget(range->dst_fd); 2894 if (!dst.file) 2895 return -EBADF; 2896 2897 if (!(dst.file->f_mode & FMODE_WRITE)) { 2898 err = -EBADF; 2899 goto err_out; 2900 } 2901 2902 err = mnt_want_write_file(filp); 2903 if (err) 2904 goto err_out; 2905 2906 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2907 range->pos_out, range->len); 2908 2909 mnt_drop_write_file(filp); 2910 err_out: 2911 fdput(dst); 2912 return err; 2913 } 2914 2915 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2916 { 2917 struct f2fs_move_range range; 2918 2919 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2920 sizeof(range))) 2921 return -EFAULT; 2922 return __f2fs_ioc_move_range(filp, &range); 2923 } 2924 2925 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2926 { 2927 struct inode *inode = file_inode(filp); 2928 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2929 struct sit_info *sm = SIT_I(sbi); 2930 unsigned int start_segno = 0, end_segno = 0; 2931 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2932 struct f2fs_flush_device range; 2933 struct f2fs_gc_control gc_control = { 2934 .init_gc_type = FG_GC, 2935 .should_migrate_blocks = true, 2936 .err_gc_skipped = true, 2937 .nr_free_secs = 0 }; 2938 int ret; 2939 2940 if (!capable(CAP_SYS_ADMIN)) 2941 return -EPERM; 2942 2943 if (f2fs_readonly(sbi->sb)) 2944 return -EROFS; 2945 2946 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2947 return -EINVAL; 2948 2949 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2950 sizeof(range))) 2951 return -EFAULT; 2952 2953 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2954 __is_large_section(sbi)) { 2955 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2956 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2957 return -EINVAL; 2958 } 2959 2960 ret = mnt_want_write_file(filp); 2961 if (ret) 2962 return ret; 2963 2964 if (range.dev_num != 0) 2965 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2966 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2967 2968 start_segno = sm->last_victim[FLUSH_DEVICE]; 2969 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2970 start_segno = dev_start_segno; 2971 end_segno = min(start_segno + range.segments, dev_end_segno); 2972 2973 while (start_segno < end_segno) { 2974 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2975 ret = -EBUSY; 2976 goto out; 2977 } 2978 sm->last_victim[GC_CB] = end_segno + 1; 2979 sm->last_victim[GC_GREEDY] = end_segno + 1; 2980 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2981 2982 gc_control.victim_segno = start_segno; 2983 ret = f2fs_gc(sbi, &gc_control); 2984 if (ret == -EAGAIN) 2985 ret = 0; 2986 else if (ret < 0) 2987 break; 2988 start_segno++; 2989 } 2990 out: 2991 mnt_drop_write_file(filp); 2992 return ret; 2993 } 2994 2995 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2996 { 2997 struct inode *inode = file_inode(filp); 2998 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2999 3000 /* Must validate to set it with SQLite behavior in Android. */ 3001 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 3002 3003 return put_user(sb_feature, (u32 __user *)arg); 3004 } 3005 3006 #ifdef CONFIG_QUOTA 3007 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3008 { 3009 struct dquot *transfer_to[MAXQUOTAS] = {}; 3010 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3011 struct super_block *sb = sbi->sb; 3012 int err = 0; 3013 3014 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 3015 if (!IS_ERR(transfer_to[PRJQUOTA])) { 3016 err = __dquot_transfer(inode, transfer_to); 3017 if (err) 3018 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3019 dqput(transfer_to[PRJQUOTA]); 3020 } 3021 return err; 3022 } 3023 3024 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3025 { 3026 struct f2fs_inode_info *fi = F2FS_I(inode); 3027 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3028 struct f2fs_inode *ri = NULL; 3029 kprojid_t kprojid; 3030 int err; 3031 3032 if (!f2fs_sb_has_project_quota(sbi)) { 3033 if (projid != F2FS_DEF_PROJID) 3034 return -EOPNOTSUPP; 3035 else 3036 return 0; 3037 } 3038 3039 if (!f2fs_has_extra_attr(inode)) 3040 return -EOPNOTSUPP; 3041 3042 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3043 3044 if (projid_eq(kprojid, fi->i_projid)) 3045 return 0; 3046 3047 err = -EPERM; 3048 /* Is it quota file? Do not allow user to mess with it */ 3049 if (IS_NOQUOTA(inode)) 3050 return err; 3051 3052 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 3053 return -EOVERFLOW; 3054 3055 err = f2fs_dquot_initialize(inode); 3056 if (err) 3057 return err; 3058 3059 f2fs_lock_op(sbi); 3060 err = f2fs_transfer_project_quota(inode, kprojid); 3061 if (err) 3062 goto out_unlock; 3063 3064 fi->i_projid = kprojid; 3065 inode->i_ctime = current_time(inode); 3066 f2fs_mark_inode_dirty_sync(inode, true); 3067 out_unlock: 3068 f2fs_unlock_op(sbi); 3069 return err; 3070 } 3071 #else 3072 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3073 { 3074 return 0; 3075 } 3076 3077 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3078 { 3079 if (projid != F2FS_DEF_PROJID) 3080 return -EOPNOTSUPP; 3081 return 0; 3082 } 3083 #endif 3084 3085 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3086 { 3087 struct inode *inode = d_inode(dentry); 3088 struct f2fs_inode_info *fi = F2FS_I(inode); 3089 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3090 3091 if (IS_ENCRYPTED(inode)) 3092 fsflags |= FS_ENCRYPT_FL; 3093 if (IS_VERITY(inode)) 3094 fsflags |= FS_VERITY_FL; 3095 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3096 fsflags |= FS_INLINE_DATA_FL; 3097 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3098 fsflags |= FS_NOCOW_FL; 3099 3100 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3101 3102 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3103 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3104 3105 return 0; 3106 } 3107 3108 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3109 struct dentry *dentry, struct fileattr *fa) 3110 { 3111 struct inode *inode = d_inode(dentry); 3112 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3113 u32 iflags; 3114 int err; 3115 3116 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3117 return -EIO; 3118 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3119 return -ENOSPC; 3120 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3121 return -EOPNOTSUPP; 3122 fsflags &= F2FS_SETTABLE_FS_FL; 3123 if (!fa->flags_valid) 3124 mask &= FS_COMMON_FL; 3125 3126 iflags = f2fs_fsflags_to_iflags(fsflags); 3127 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3128 return -EOPNOTSUPP; 3129 3130 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3131 if (!err) 3132 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3133 3134 return err; 3135 } 3136 3137 int f2fs_pin_file_control(struct inode *inode, bool inc) 3138 { 3139 struct f2fs_inode_info *fi = F2FS_I(inode); 3140 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3141 3142 /* Use i_gc_failures for normal file as a risk signal. */ 3143 if (inc) 3144 f2fs_i_gc_failures_write(inode, 3145 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3146 3147 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3148 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3149 __func__, inode->i_ino, 3150 fi->i_gc_failures[GC_FAILURE_PIN]); 3151 clear_inode_flag(inode, FI_PIN_FILE); 3152 return -EAGAIN; 3153 } 3154 return 0; 3155 } 3156 3157 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3158 { 3159 struct inode *inode = file_inode(filp); 3160 __u32 pin; 3161 int ret = 0; 3162 3163 if (get_user(pin, (__u32 __user *)arg)) 3164 return -EFAULT; 3165 3166 if (!S_ISREG(inode->i_mode)) 3167 return -EINVAL; 3168 3169 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3170 return -EROFS; 3171 3172 ret = mnt_want_write_file(filp); 3173 if (ret) 3174 return ret; 3175 3176 inode_lock(inode); 3177 3178 if (!pin) { 3179 clear_inode_flag(inode, FI_PIN_FILE); 3180 f2fs_i_gc_failures_write(inode, 0); 3181 goto done; 3182 } 3183 3184 if (f2fs_should_update_outplace(inode, NULL)) { 3185 ret = -EINVAL; 3186 goto out; 3187 } 3188 3189 if (f2fs_pin_file_control(inode, false)) { 3190 ret = -EAGAIN; 3191 goto out; 3192 } 3193 3194 ret = f2fs_convert_inline_inode(inode); 3195 if (ret) 3196 goto out; 3197 3198 if (!f2fs_disable_compressed_file(inode)) { 3199 ret = -EOPNOTSUPP; 3200 goto out; 3201 } 3202 3203 set_inode_flag(inode, FI_PIN_FILE); 3204 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3205 done: 3206 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3207 out: 3208 inode_unlock(inode); 3209 mnt_drop_write_file(filp); 3210 return ret; 3211 } 3212 3213 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3214 { 3215 struct inode *inode = file_inode(filp); 3216 __u32 pin = 0; 3217 3218 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3219 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3220 return put_user(pin, (u32 __user *)arg); 3221 } 3222 3223 int f2fs_precache_extents(struct inode *inode) 3224 { 3225 struct f2fs_inode_info *fi = F2FS_I(inode); 3226 struct f2fs_map_blocks map; 3227 pgoff_t m_next_extent; 3228 loff_t end; 3229 int err; 3230 3231 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3232 return -EOPNOTSUPP; 3233 3234 map.m_lblk = 0; 3235 map.m_next_pgofs = NULL; 3236 map.m_next_extent = &m_next_extent; 3237 map.m_seg_type = NO_CHECK_TYPE; 3238 map.m_may_create = false; 3239 end = max_file_blocks(inode); 3240 3241 while (map.m_lblk < end) { 3242 map.m_len = end - map.m_lblk; 3243 3244 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3245 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE); 3246 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3247 if (err) 3248 return err; 3249 3250 map.m_lblk = m_next_extent; 3251 } 3252 3253 return 0; 3254 } 3255 3256 static int f2fs_ioc_precache_extents(struct file *filp) 3257 { 3258 return f2fs_precache_extents(file_inode(filp)); 3259 } 3260 3261 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3262 { 3263 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3264 __u64 block_count; 3265 3266 if (!capable(CAP_SYS_ADMIN)) 3267 return -EPERM; 3268 3269 if (f2fs_readonly(sbi->sb)) 3270 return -EROFS; 3271 3272 if (copy_from_user(&block_count, (void __user *)arg, 3273 sizeof(block_count))) 3274 return -EFAULT; 3275 3276 return f2fs_resize_fs(sbi, block_count); 3277 } 3278 3279 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3280 { 3281 struct inode *inode = file_inode(filp); 3282 3283 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3284 3285 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3286 f2fs_warn(F2FS_I_SB(inode), 3287 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3288 inode->i_ino); 3289 return -EOPNOTSUPP; 3290 } 3291 3292 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3293 } 3294 3295 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3296 { 3297 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3298 return -EOPNOTSUPP; 3299 3300 return fsverity_ioctl_measure(filp, (void __user *)arg); 3301 } 3302 3303 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3304 { 3305 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3306 return -EOPNOTSUPP; 3307 3308 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3309 } 3310 3311 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3312 { 3313 struct inode *inode = file_inode(filp); 3314 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3315 char *vbuf; 3316 int count; 3317 int err = 0; 3318 3319 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3320 if (!vbuf) 3321 return -ENOMEM; 3322 3323 f2fs_down_read(&sbi->sb_lock); 3324 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3325 ARRAY_SIZE(sbi->raw_super->volume_name), 3326 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3327 f2fs_up_read(&sbi->sb_lock); 3328 3329 if (copy_to_user((char __user *)arg, vbuf, 3330 min(FSLABEL_MAX, count))) 3331 err = -EFAULT; 3332 3333 kfree(vbuf); 3334 return err; 3335 } 3336 3337 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3338 { 3339 struct inode *inode = file_inode(filp); 3340 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3341 char *vbuf; 3342 int err = 0; 3343 3344 if (!capable(CAP_SYS_ADMIN)) 3345 return -EPERM; 3346 3347 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3348 if (IS_ERR(vbuf)) 3349 return PTR_ERR(vbuf); 3350 3351 err = mnt_want_write_file(filp); 3352 if (err) 3353 goto out; 3354 3355 f2fs_down_write(&sbi->sb_lock); 3356 3357 memset(sbi->raw_super->volume_name, 0, 3358 sizeof(sbi->raw_super->volume_name)); 3359 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3360 sbi->raw_super->volume_name, 3361 ARRAY_SIZE(sbi->raw_super->volume_name)); 3362 3363 err = f2fs_commit_super(sbi, false); 3364 3365 f2fs_up_write(&sbi->sb_lock); 3366 3367 mnt_drop_write_file(filp); 3368 out: 3369 kfree(vbuf); 3370 return err; 3371 } 3372 3373 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3374 { 3375 struct inode *inode = file_inode(filp); 3376 __u64 blocks; 3377 3378 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3379 return -EOPNOTSUPP; 3380 3381 if (!f2fs_compressed_file(inode)) 3382 return -EINVAL; 3383 3384 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3385 return put_user(blocks, (u64 __user *)arg); 3386 } 3387 3388 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3389 { 3390 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3391 unsigned int released_blocks = 0; 3392 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3393 block_t blkaddr; 3394 int i; 3395 3396 for (i = 0; i < count; i++) { 3397 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3398 dn->ofs_in_node + i); 3399 3400 if (!__is_valid_data_blkaddr(blkaddr)) 3401 continue; 3402 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3403 DATA_GENERIC_ENHANCE))) { 3404 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3405 return -EFSCORRUPTED; 3406 } 3407 } 3408 3409 while (count) { 3410 int compr_blocks = 0; 3411 3412 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3413 blkaddr = f2fs_data_blkaddr(dn); 3414 3415 if (i == 0) { 3416 if (blkaddr == COMPRESS_ADDR) 3417 continue; 3418 dn->ofs_in_node += cluster_size; 3419 goto next; 3420 } 3421 3422 if (__is_valid_data_blkaddr(blkaddr)) 3423 compr_blocks++; 3424 3425 if (blkaddr != NEW_ADDR) 3426 continue; 3427 3428 dn->data_blkaddr = NULL_ADDR; 3429 f2fs_set_data_blkaddr(dn); 3430 } 3431 3432 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3433 dec_valid_block_count(sbi, dn->inode, 3434 cluster_size - compr_blocks); 3435 3436 released_blocks += cluster_size - compr_blocks; 3437 next: 3438 count -= cluster_size; 3439 } 3440 3441 return released_blocks; 3442 } 3443 3444 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3445 { 3446 struct inode *inode = file_inode(filp); 3447 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3448 pgoff_t page_idx = 0, last_idx; 3449 unsigned int released_blocks = 0; 3450 int ret; 3451 int writecount; 3452 3453 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3454 return -EOPNOTSUPP; 3455 3456 if (!f2fs_compressed_file(inode)) 3457 return -EINVAL; 3458 3459 if (f2fs_readonly(sbi->sb)) 3460 return -EROFS; 3461 3462 ret = mnt_want_write_file(filp); 3463 if (ret) 3464 return ret; 3465 3466 f2fs_balance_fs(F2FS_I_SB(inode), true); 3467 3468 inode_lock(inode); 3469 3470 writecount = atomic_read(&inode->i_writecount); 3471 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3472 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3473 ret = -EBUSY; 3474 goto out; 3475 } 3476 3477 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3478 ret = -EINVAL; 3479 goto out; 3480 } 3481 3482 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3483 if (ret) 3484 goto out; 3485 3486 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3487 inode->i_ctime = current_time(inode); 3488 f2fs_mark_inode_dirty_sync(inode, true); 3489 3490 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3491 goto out; 3492 3493 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3494 filemap_invalidate_lock(inode->i_mapping); 3495 3496 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3497 3498 while (page_idx < last_idx) { 3499 struct dnode_of_data dn; 3500 pgoff_t end_offset, count; 3501 3502 set_new_dnode(&dn, inode, NULL, NULL, 0); 3503 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3504 if (ret) { 3505 if (ret == -ENOENT) { 3506 page_idx = f2fs_get_next_page_offset(&dn, 3507 page_idx); 3508 ret = 0; 3509 continue; 3510 } 3511 break; 3512 } 3513 3514 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3515 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3516 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3517 3518 ret = release_compress_blocks(&dn, count); 3519 3520 f2fs_put_dnode(&dn); 3521 3522 if (ret < 0) 3523 break; 3524 3525 page_idx += count; 3526 released_blocks += ret; 3527 } 3528 3529 filemap_invalidate_unlock(inode->i_mapping); 3530 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3531 out: 3532 inode_unlock(inode); 3533 3534 mnt_drop_write_file(filp); 3535 3536 if (ret >= 0) { 3537 ret = put_user(released_blocks, (u64 __user *)arg); 3538 } else if (released_blocks && 3539 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3540 set_sbi_flag(sbi, SBI_NEED_FSCK); 3541 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3542 "iblocks=%llu, released=%u, compr_blocks=%u, " 3543 "run fsck to fix.", 3544 __func__, inode->i_ino, inode->i_blocks, 3545 released_blocks, 3546 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3547 } 3548 3549 return ret; 3550 } 3551 3552 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3553 { 3554 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3555 unsigned int reserved_blocks = 0; 3556 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3557 block_t blkaddr; 3558 int i; 3559 3560 for (i = 0; i < count; i++) { 3561 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3562 dn->ofs_in_node + i); 3563 3564 if (!__is_valid_data_blkaddr(blkaddr)) 3565 continue; 3566 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3567 DATA_GENERIC_ENHANCE))) { 3568 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3569 return -EFSCORRUPTED; 3570 } 3571 } 3572 3573 while (count) { 3574 int compr_blocks = 0; 3575 blkcnt_t reserved; 3576 int ret; 3577 3578 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3579 blkaddr = f2fs_data_blkaddr(dn); 3580 3581 if (i == 0) { 3582 if (blkaddr == COMPRESS_ADDR) 3583 continue; 3584 dn->ofs_in_node += cluster_size; 3585 goto next; 3586 } 3587 3588 if (__is_valid_data_blkaddr(blkaddr)) { 3589 compr_blocks++; 3590 continue; 3591 } 3592 3593 dn->data_blkaddr = NEW_ADDR; 3594 f2fs_set_data_blkaddr(dn); 3595 } 3596 3597 reserved = cluster_size - compr_blocks; 3598 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3599 if (ret) 3600 return ret; 3601 3602 if (reserved != cluster_size - compr_blocks) 3603 return -ENOSPC; 3604 3605 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3606 3607 reserved_blocks += reserved; 3608 next: 3609 count -= cluster_size; 3610 } 3611 3612 return reserved_blocks; 3613 } 3614 3615 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3616 { 3617 struct inode *inode = file_inode(filp); 3618 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3619 pgoff_t page_idx = 0, last_idx; 3620 unsigned int reserved_blocks = 0; 3621 int ret; 3622 3623 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3624 return -EOPNOTSUPP; 3625 3626 if (!f2fs_compressed_file(inode)) 3627 return -EINVAL; 3628 3629 if (f2fs_readonly(sbi->sb)) 3630 return -EROFS; 3631 3632 ret = mnt_want_write_file(filp); 3633 if (ret) 3634 return ret; 3635 3636 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3637 goto out; 3638 3639 f2fs_balance_fs(F2FS_I_SB(inode), true); 3640 3641 inode_lock(inode); 3642 3643 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3644 ret = -EINVAL; 3645 goto unlock_inode; 3646 } 3647 3648 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3649 filemap_invalidate_lock(inode->i_mapping); 3650 3651 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3652 3653 while (page_idx < last_idx) { 3654 struct dnode_of_data dn; 3655 pgoff_t end_offset, count; 3656 3657 set_new_dnode(&dn, inode, NULL, NULL, 0); 3658 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3659 if (ret) { 3660 if (ret == -ENOENT) { 3661 page_idx = f2fs_get_next_page_offset(&dn, 3662 page_idx); 3663 ret = 0; 3664 continue; 3665 } 3666 break; 3667 } 3668 3669 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3670 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3671 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3672 3673 ret = reserve_compress_blocks(&dn, count); 3674 3675 f2fs_put_dnode(&dn); 3676 3677 if (ret < 0) 3678 break; 3679 3680 page_idx += count; 3681 reserved_blocks += ret; 3682 } 3683 3684 filemap_invalidate_unlock(inode->i_mapping); 3685 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3686 3687 if (ret >= 0) { 3688 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3689 inode->i_ctime = current_time(inode); 3690 f2fs_mark_inode_dirty_sync(inode, true); 3691 } 3692 unlock_inode: 3693 inode_unlock(inode); 3694 out: 3695 mnt_drop_write_file(filp); 3696 3697 if (ret >= 0) { 3698 ret = put_user(reserved_blocks, (u64 __user *)arg); 3699 } else if (reserved_blocks && 3700 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3701 set_sbi_flag(sbi, SBI_NEED_FSCK); 3702 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3703 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3704 "run fsck to fix.", 3705 __func__, inode->i_ino, inode->i_blocks, 3706 reserved_blocks, 3707 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3708 } 3709 3710 return ret; 3711 } 3712 3713 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3714 pgoff_t off, block_t block, block_t len, u32 flags) 3715 { 3716 sector_t sector = SECTOR_FROM_BLOCK(block); 3717 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3718 int ret = 0; 3719 3720 if (flags & F2FS_TRIM_FILE_DISCARD) { 3721 if (bdev_max_secure_erase_sectors(bdev)) 3722 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3723 GFP_NOFS); 3724 else 3725 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3726 GFP_NOFS); 3727 } 3728 3729 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3730 if (IS_ENCRYPTED(inode)) 3731 ret = fscrypt_zeroout_range(inode, off, block, len); 3732 else 3733 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3734 GFP_NOFS, 0); 3735 } 3736 3737 return ret; 3738 } 3739 3740 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3741 { 3742 struct inode *inode = file_inode(filp); 3743 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3744 struct address_space *mapping = inode->i_mapping; 3745 struct block_device *prev_bdev = NULL; 3746 struct f2fs_sectrim_range range; 3747 pgoff_t index, pg_end, prev_index = 0; 3748 block_t prev_block = 0, len = 0; 3749 loff_t end_addr; 3750 bool to_end = false; 3751 int ret = 0; 3752 3753 if (!(filp->f_mode & FMODE_WRITE)) 3754 return -EBADF; 3755 3756 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3757 sizeof(range))) 3758 return -EFAULT; 3759 3760 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3761 !S_ISREG(inode->i_mode)) 3762 return -EINVAL; 3763 3764 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3765 !f2fs_hw_support_discard(sbi)) || 3766 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3767 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3768 return -EOPNOTSUPP; 3769 3770 file_start_write(filp); 3771 inode_lock(inode); 3772 3773 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3774 range.start >= inode->i_size) { 3775 ret = -EINVAL; 3776 goto err; 3777 } 3778 3779 if (range.len == 0) 3780 goto err; 3781 3782 if (inode->i_size - range.start > range.len) { 3783 end_addr = range.start + range.len; 3784 } else { 3785 end_addr = range.len == (u64)-1 ? 3786 sbi->sb->s_maxbytes : inode->i_size; 3787 to_end = true; 3788 } 3789 3790 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3791 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3792 ret = -EINVAL; 3793 goto err; 3794 } 3795 3796 index = F2FS_BYTES_TO_BLK(range.start); 3797 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3798 3799 ret = f2fs_convert_inline_inode(inode); 3800 if (ret) 3801 goto err; 3802 3803 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3804 filemap_invalidate_lock(mapping); 3805 3806 ret = filemap_write_and_wait_range(mapping, range.start, 3807 to_end ? LLONG_MAX : end_addr - 1); 3808 if (ret) 3809 goto out; 3810 3811 truncate_inode_pages_range(mapping, range.start, 3812 to_end ? -1 : end_addr - 1); 3813 3814 while (index < pg_end) { 3815 struct dnode_of_data dn; 3816 pgoff_t end_offset, count; 3817 int i; 3818 3819 set_new_dnode(&dn, inode, NULL, NULL, 0); 3820 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3821 if (ret) { 3822 if (ret == -ENOENT) { 3823 index = f2fs_get_next_page_offset(&dn, index); 3824 continue; 3825 } 3826 goto out; 3827 } 3828 3829 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3830 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3831 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3832 struct block_device *cur_bdev; 3833 block_t blkaddr = f2fs_data_blkaddr(&dn); 3834 3835 if (!__is_valid_data_blkaddr(blkaddr)) 3836 continue; 3837 3838 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3839 DATA_GENERIC_ENHANCE)) { 3840 ret = -EFSCORRUPTED; 3841 f2fs_put_dnode(&dn); 3842 f2fs_handle_error(sbi, 3843 ERROR_INVALID_BLKADDR); 3844 goto out; 3845 } 3846 3847 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3848 if (f2fs_is_multi_device(sbi)) { 3849 int di = f2fs_target_device_index(sbi, blkaddr); 3850 3851 blkaddr -= FDEV(di).start_blk; 3852 } 3853 3854 if (len) { 3855 if (prev_bdev == cur_bdev && 3856 index == prev_index + len && 3857 blkaddr == prev_block + len) { 3858 len++; 3859 } else { 3860 ret = f2fs_secure_erase(prev_bdev, 3861 inode, prev_index, prev_block, 3862 len, range.flags); 3863 if (ret) { 3864 f2fs_put_dnode(&dn); 3865 goto out; 3866 } 3867 3868 len = 0; 3869 } 3870 } 3871 3872 if (!len) { 3873 prev_bdev = cur_bdev; 3874 prev_index = index; 3875 prev_block = blkaddr; 3876 len = 1; 3877 } 3878 } 3879 3880 f2fs_put_dnode(&dn); 3881 3882 if (fatal_signal_pending(current)) { 3883 ret = -EINTR; 3884 goto out; 3885 } 3886 cond_resched(); 3887 } 3888 3889 if (len) 3890 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3891 prev_block, len, range.flags); 3892 out: 3893 filemap_invalidate_unlock(mapping); 3894 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3895 err: 3896 inode_unlock(inode); 3897 file_end_write(filp); 3898 3899 return ret; 3900 } 3901 3902 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3903 { 3904 struct inode *inode = file_inode(filp); 3905 struct f2fs_comp_option option; 3906 3907 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3908 return -EOPNOTSUPP; 3909 3910 inode_lock_shared(inode); 3911 3912 if (!f2fs_compressed_file(inode)) { 3913 inode_unlock_shared(inode); 3914 return -ENODATA; 3915 } 3916 3917 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3918 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3919 3920 inode_unlock_shared(inode); 3921 3922 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3923 sizeof(option))) 3924 return -EFAULT; 3925 3926 return 0; 3927 } 3928 3929 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 3930 { 3931 struct inode *inode = file_inode(filp); 3932 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3933 struct f2fs_comp_option option; 3934 int ret = 0; 3935 3936 if (!f2fs_sb_has_compression(sbi)) 3937 return -EOPNOTSUPP; 3938 3939 if (!(filp->f_mode & FMODE_WRITE)) 3940 return -EBADF; 3941 3942 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 3943 sizeof(option))) 3944 return -EFAULT; 3945 3946 if (!f2fs_compressed_file(inode) || 3947 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 3948 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 3949 option.algorithm >= COMPRESS_MAX) 3950 return -EINVAL; 3951 3952 file_start_write(filp); 3953 inode_lock(inode); 3954 3955 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 3956 ret = -EBUSY; 3957 goto out; 3958 } 3959 3960 if (F2FS_HAS_BLOCKS(inode)) { 3961 ret = -EFBIG; 3962 goto out; 3963 } 3964 3965 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 3966 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 3967 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size; 3968 f2fs_mark_inode_dirty_sync(inode, true); 3969 3970 if (!f2fs_is_compress_backend_ready(inode)) 3971 f2fs_warn(sbi, "compression algorithm is successfully set, " 3972 "but current kernel doesn't support this algorithm."); 3973 out: 3974 inode_unlock(inode); 3975 file_end_write(filp); 3976 3977 return ret; 3978 } 3979 3980 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 3981 { 3982 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 3983 struct address_space *mapping = inode->i_mapping; 3984 struct page *page; 3985 pgoff_t redirty_idx = page_idx; 3986 int i, page_len = 0, ret = 0; 3987 3988 page_cache_ra_unbounded(&ractl, len, 0); 3989 3990 for (i = 0; i < len; i++, page_idx++) { 3991 page = read_cache_page(mapping, page_idx, NULL, NULL); 3992 if (IS_ERR(page)) { 3993 ret = PTR_ERR(page); 3994 break; 3995 } 3996 page_len++; 3997 } 3998 3999 for (i = 0; i < page_len; i++, redirty_idx++) { 4000 page = find_lock_page(mapping, redirty_idx); 4001 4002 /* It will never fail, when page has pinned above */ 4003 f2fs_bug_on(F2FS_I_SB(inode), !page); 4004 4005 set_page_dirty(page); 4006 f2fs_put_page(page, 1); 4007 f2fs_put_page(page, 0); 4008 } 4009 4010 return ret; 4011 } 4012 4013 static int f2fs_ioc_decompress_file(struct file *filp) 4014 { 4015 struct inode *inode = file_inode(filp); 4016 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4017 struct f2fs_inode_info *fi = F2FS_I(inode); 4018 pgoff_t page_idx = 0, last_idx; 4019 unsigned int blk_per_seg = sbi->blocks_per_seg; 4020 int cluster_size = fi->i_cluster_size; 4021 int count, ret; 4022 4023 if (!f2fs_sb_has_compression(sbi) || 4024 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4025 return -EOPNOTSUPP; 4026 4027 if (!(filp->f_mode & FMODE_WRITE)) 4028 return -EBADF; 4029 4030 if (!f2fs_compressed_file(inode)) 4031 return -EINVAL; 4032 4033 f2fs_balance_fs(F2FS_I_SB(inode), true); 4034 4035 file_start_write(filp); 4036 inode_lock(inode); 4037 4038 if (!f2fs_is_compress_backend_ready(inode)) { 4039 ret = -EOPNOTSUPP; 4040 goto out; 4041 } 4042 4043 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4044 ret = -EINVAL; 4045 goto out; 4046 } 4047 4048 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4049 if (ret) 4050 goto out; 4051 4052 if (!atomic_read(&fi->i_compr_blocks)) 4053 goto out; 4054 4055 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4056 4057 count = last_idx - page_idx; 4058 while (count) { 4059 int len = min(cluster_size, count); 4060 4061 ret = redirty_blocks(inode, page_idx, len); 4062 if (ret < 0) 4063 break; 4064 4065 if (get_dirty_pages(inode) >= blk_per_seg) 4066 filemap_fdatawrite(inode->i_mapping); 4067 4068 count -= len; 4069 page_idx += len; 4070 } 4071 4072 if (!ret) 4073 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4074 LLONG_MAX); 4075 4076 if (ret) 4077 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4078 __func__, ret); 4079 out: 4080 inode_unlock(inode); 4081 file_end_write(filp); 4082 4083 return ret; 4084 } 4085 4086 static int f2fs_ioc_compress_file(struct file *filp) 4087 { 4088 struct inode *inode = file_inode(filp); 4089 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4090 pgoff_t page_idx = 0, last_idx; 4091 unsigned int blk_per_seg = sbi->blocks_per_seg; 4092 int cluster_size = F2FS_I(inode)->i_cluster_size; 4093 int count, ret; 4094 4095 if (!f2fs_sb_has_compression(sbi) || 4096 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4097 return -EOPNOTSUPP; 4098 4099 if (!(filp->f_mode & FMODE_WRITE)) 4100 return -EBADF; 4101 4102 if (!f2fs_compressed_file(inode)) 4103 return -EINVAL; 4104 4105 f2fs_balance_fs(F2FS_I_SB(inode), true); 4106 4107 file_start_write(filp); 4108 inode_lock(inode); 4109 4110 if (!f2fs_is_compress_backend_ready(inode)) { 4111 ret = -EOPNOTSUPP; 4112 goto out; 4113 } 4114 4115 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4116 ret = -EINVAL; 4117 goto out; 4118 } 4119 4120 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4121 if (ret) 4122 goto out; 4123 4124 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4125 4126 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4127 4128 count = last_idx - page_idx; 4129 while (count) { 4130 int len = min(cluster_size, count); 4131 4132 ret = redirty_blocks(inode, page_idx, len); 4133 if (ret < 0) 4134 break; 4135 4136 if (get_dirty_pages(inode) >= blk_per_seg) 4137 filemap_fdatawrite(inode->i_mapping); 4138 4139 count -= len; 4140 page_idx += len; 4141 } 4142 4143 if (!ret) 4144 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4145 LLONG_MAX); 4146 4147 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4148 4149 if (ret) 4150 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4151 __func__, ret); 4152 out: 4153 inode_unlock(inode); 4154 file_end_write(filp); 4155 4156 return ret; 4157 } 4158 4159 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4160 { 4161 switch (cmd) { 4162 case FS_IOC_GETVERSION: 4163 return f2fs_ioc_getversion(filp, arg); 4164 case F2FS_IOC_START_ATOMIC_WRITE: 4165 return f2fs_ioc_start_atomic_write(filp, false); 4166 case F2FS_IOC_START_ATOMIC_REPLACE: 4167 return f2fs_ioc_start_atomic_write(filp, true); 4168 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4169 return f2fs_ioc_commit_atomic_write(filp); 4170 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4171 return f2fs_ioc_abort_atomic_write(filp); 4172 case F2FS_IOC_START_VOLATILE_WRITE: 4173 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4174 return -EOPNOTSUPP; 4175 case F2FS_IOC_SHUTDOWN: 4176 return f2fs_ioc_shutdown(filp, arg); 4177 case FITRIM: 4178 return f2fs_ioc_fitrim(filp, arg); 4179 case FS_IOC_SET_ENCRYPTION_POLICY: 4180 return f2fs_ioc_set_encryption_policy(filp, arg); 4181 case FS_IOC_GET_ENCRYPTION_POLICY: 4182 return f2fs_ioc_get_encryption_policy(filp, arg); 4183 case FS_IOC_GET_ENCRYPTION_PWSALT: 4184 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4185 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4186 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4187 case FS_IOC_ADD_ENCRYPTION_KEY: 4188 return f2fs_ioc_add_encryption_key(filp, arg); 4189 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4190 return f2fs_ioc_remove_encryption_key(filp, arg); 4191 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4192 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4193 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4194 return f2fs_ioc_get_encryption_key_status(filp, arg); 4195 case FS_IOC_GET_ENCRYPTION_NONCE: 4196 return f2fs_ioc_get_encryption_nonce(filp, arg); 4197 case F2FS_IOC_GARBAGE_COLLECT: 4198 return f2fs_ioc_gc(filp, arg); 4199 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4200 return f2fs_ioc_gc_range(filp, arg); 4201 case F2FS_IOC_WRITE_CHECKPOINT: 4202 return f2fs_ioc_write_checkpoint(filp); 4203 case F2FS_IOC_DEFRAGMENT: 4204 return f2fs_ioc_defragment(filp, arg); 4205 case F2FS_IOC_MOVE_RANGE: 4206 return f2fs_ioc_move_range(filp, arg); 4207 case F2FS_IOC_FLUSH_DEVICE: 4208 return f2fs_ioc_flush_device(filp, arg); 4209 case F2FS_IOC_GET_FEATURES: 4210 return f2fs_ioc_get_features(filp, arg); 4211 case F2FS_IOC_GET_PIN_FILE: 4212 return f2fs_ioc_get_pin_file(filp, arg); 4213 case F2FS_IOC_SET_PIN_FILE: 4214 return f2fs_ioc_set_pin_file(filp, arg); 4215 case F2FS_IOC_PRECACHE_EXTENTS: 4216 return f2fs_ioc_precache_extents(filp); 4217 case F2FS_IOC_RESIZE_FS: 4218 return f2fs_ioc_resize_fs(filp, arg); 4219 case FS_IOC_ENABLE_VERITY: 4220 return f2fs_ioc_enable_verity(filp, arg); 4221 case FS_IOC_MEASURE_VERITY: 4222 return f2fs_ioc_measure_verity(filp, arg); 4223 case FS_IOC_READ_VERITY_METADATA: 4224 return f2fs_ioc_read_verity_metadata(filp, arg); 4225 case FS_IOC_GETFSLABEL: 4226 return f2fs_ioc_getfslabel(filp, arg); 4227 case FS_IOC_SETFSLABEL: 4228 return f2fs_ioc_setfslabel(filp, arg); 4229 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4230 return f2fs_get_compress_blocks(filp, arg); 4231 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4232 return f2fs_release_compress_blocks(filp, arg); 4233 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4234 return f2fs_reserve_compress_blocks(filp, arg); 4235 case F2FS_IOC_SEC_TRIM_FILE: 4236 return f2fs_sec_trim_file(filp, arg); 4237 case F2FS_IOC_GET_COMPRESS_OPTION: 4238 return f2fs_ioc_get_compress_option(filp, arg); 4239 case F2FS_IOC_SET_COMPRESS_OPTION: 4240 return f2fs_ioc_set_compress_option(filp, arg); 4241 case F2FS_IOC_DECOMPRESS_FILE: 4242 return f2fs_ioc_decompress_file(filp); 4243 case F2FS_IOC_COMPRESS_FILE: 4244 return f2fs_ioc_compress_file(filp); 4245 default: 4246 return -ENOTTY; 4247 } 4248 } 4249 4250 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4251 { 4252 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4253 return -EIO; 4254 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4255 return -ENOSPC; 4256 4257 return __f2fs_ioctl(filp, cmd, arg); 4258 } 4259 4260 /* 4261 * Return %true if the given read or write request should use direct I/O, or 4262 * %false if it should use buffered I/O. 4263 */ 4264 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4265 struct iov_iter *iter) 4266 { 4267 unsigned int align; 4268 4269 if (!(iocb->ki_flags & IOCB_DIRECT)) 4270 return false; 4271 4272 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) 4273 return false; 4274 4275 /* 4276 * Direct I/O not aligned to the disk's logical_block_size will be 4277 * attempted, but will fail with -EINVAL. 4278 * 4279 * f2fs additionally requires that direct I/O be aligned to the 4280 * filesystem block size, which is often a stricter requirement. 4281 * However, f2fs traditionally falls back to buffered I/O on requests 4282 * that are logical_block_size-aligned but not fs-block aligned. 4283 * 4284 * The below logic implements this behavior. 4285 */ 4286 align = iocb->ki_pos | iov_iter_alignment(iter); 4287 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4288 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4289 return false; 4290 4291 return true; 4292 } 4293 4294 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4295 unsigned int flags) 4296 { 4297 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4298 4299 dec_page_count(sbi, F2FS_DIO_READ); 4300 if (error) 4301 return error; 4302 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size); 4303 return 0; 4304 } 4305 4306 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4307 .end_io = f2fs_dio_read_end_io, 4308 }; 4309 4310 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4311 { 4312 struct file *file = iocb->ki_filp; 4313 struct inode *inode = file_inode(file); 4314 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4315 struct f2fs_inode_info *fi = F2FS_I(inode); 4316 const loff_t pos = iocb->ki_pos; 4317 const size_t count = iov_iter_count(to); 4318 struct iomap_dio *dio; 4319 ssize_t ret; 4320 4321 if (count == 0) 4322 return 0; /* skip atime update */ 4323 4324 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4325 4326 if (iocb->ki_flags & IOCB_NOWAIT) { 4327 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4328 ret = -EAGAIN; 4329 goto out; 4330 } 4331 } else { 4332 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4333 } 4334 4335 /* 4336 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4337 * the higher-level function iomap_dio_rw() in order to ensure that the 4338 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4339 */ 4340 inc_page_count(sbi, F2FS_DIO_READ); 4341 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4342 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4343 if (IS_ERR_OR_NULL(dio)) { 4344 ret = PTR_ERR_OR_ZERO(dio); 4345 if (ret != -EIOCBQUEUED) 4346 dec_page_count(sbi, F2FS_DIO_READ); 4347 } else { 4348 ret = iomap_dio_complete(dio); 4349 } 4350 4351 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4352 4353 file_accessed(file); 4354 out: 4355 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4356 return ret; 4357 } 4358 4359 static void f2fs_trace_rw_file_path(struct kiocb *iocb, size_t count, int rw) 4360 { 4361 struct inode *inode = file_inode(iocb->ki_filp); 4362 char *buf, *path; 4363 4364 buf = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL); 4365 if (!buf) 4366 return; 4367 path = dentry_path_raw(file_dentry(iocb->ki_filp), buf, PATH_MAX); 4368 if (IS_ERR(path)) 4369 goto free_buf; 4370 if (rw == WRITE) 4371 trace_f2fs_datawrite_start(inode, iocb->ki_pos, count, 4372 current->pid, path, current->comm); 4373 else 4374 trace_f2fs_dataread_start(inode, iocb->ki_pos, count, 4375 current->pid, path, current->comm); 4376 free_buf: 4377 kfree(buf); 4378 } 4379 4380 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4381 { 4382 struct inode *inode = file_inode(iocb->ki_filp); 4383 const loff_t pos = iocb->ki_pos; 4384 ssize_t ret; 4385 4386 if (!f2fs_is_compress_backend_ready(inode)) 4387 return -EOPNOTSUPP; 4388 4389 if (trace_f2fs_dataread_start_enabled()) 4390 f2fs_trace_rw_file_path(iocb, iov_iter_count(to), READ); 4391 4392 if (f2fs_should_use_dio(inode, iocb, to)) { 4393 ret = f2fs_dio_read_iter(iocb, to); 4394 } else { 4395 ret = filemap_read(iocb, to, 0); 4396 if (ret > 0) 4397 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4398 APP_BUFFERED_READ_IO, ret); 4399 } 4400 if (trace_f2fs_dataread_end_enabled()) 4401 trace_f2fs_dataread_end(inode, pos, ret); 4402 return ret; 4403 } 4404 4405 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4406 { 4407 struct file *file = iocb->ki_filp; 4408 struct inode *inode = file_inode(file); 4409 ssize_t count; 4410 int err; 4411 4412 if (IS_IMMUTABLE(inode)) 4413 return -EPERM; 4414 4415 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4416 return -EPERM; 4417 4418 count = generic_write_checks(iocb, from); 4419 if (count <= 0) 4420 return count; 4421 4422 err = file_modified(file); 4423 if (err) 4424 return err; 4425 return count; 4426 } 4427 4428 /* 4429 * Preallocate blocks for a write request, if it is possible and helpful to do 4430 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4431 * blocks were preallocated, or a negative errno value if something went 4432 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4433 * requested blocks (not just some of them) have been allocated. 4434 */ 4435 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4436 bool dio) 4437 { 4438 struct inode *inode = file_inode(iocb->ki_filp); 4439 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4440 const loff_t pos = iocb->ki_pos; 4441 const size_t count = iov_iter_count(iter); 4442 struct f2fs_map_blocks map = {}; 4443 int flag; 4444 int ret; 4445 4446 /* If it will be an out-of-place direct write, don't bother. */ 4447 if (dio && f2fs_lfs_mode(sbi)) 4448 return 0; 4449 /* 4450 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4451 * buffered IO, if DIO meets any holes. 4452 */ 4453 if (dio && i_size_read(inode) && 4454 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4455 return 0; 4456 4457 /* No-wait I/O can't allocate blocks. */ 4458 if (iocb->ki_flags & IOCB_NOWAIT) 4459 return 0; 4460 4461 /* If it will be a short write, don't bother. */ 4462 if (fault_in_iov_iter_readable(iter, count)) 4463 return 0; 4464 4465 if (f2fs_has_inline_data(inode)) { 4466 /* If the data will fit inline, don't bother. */ 4467 if (pos + count <= MAX_INLINE_DATA(inode)) 4468 return 0; 4469 ret = f2fs_convert_inline_inode(inode); 4470 if (ret) 4471 return ret; 4472 } 4473 4474 /* Do not preallocate blocks that will be written partially in 4KB. */ 4475 map.m_lblk = F2FS_BLK_ALIGN(pos); 4476 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4477 if (map.m_len > map.m_lblk) 4478 map.m_len -= map.m_lblk; 4479 else 4480 map.m_len = 0; 4481 map.m_may_create = true; 4482 if (dio) { 4483 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4484 flag = F2FS_GET_BLOCK_PRE_DIO; 4485 } else { 4486 map.m_seg_type = NO_CHECK_TYPE; 4487 flag = F2FS_GET_BLOCK_PRE_AIO; 4488 } 4489 4490 ret = f2fs_map_blocks(inode, &map, flag); 4491 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4492 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4493 return ret; 4494 if (ret == 0) 4495 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4496 return map.m_len; 4497 } 4498 4499 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4500 struct iov_iter *from) 4501 { 4502 struct file *file = iocb->ki_filp; 4503 struct inode *inode = file_inode(file); 4504 ssize_t ret; 4505 4506 if (iocb->ki_flags & IOCB_NOWAIT) 4507 return -EOPNOTSUPP; 4508 4509 current->backing_dev_info = inode_to_bdi(inode); 4510 ret = generic_perform_write(iocb, from); 4511 current->backing_dev_info = NULL; 4512 4513 if (ret > 0) { 4514 iocb->ki_pos += ret; 4515 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4516 APP_BUFFERED_IO, ret); 4517 } 4518 return ret; 4519 } 4520 4521 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4522 unsigned int flags) 4523 { 4524 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4525 4526 dec_page_count(sbi, F2FS_DIO_WRITE); 4527 if (error) 4528 return error; 4529 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size); 4530 return 0; 4531 } 4532 4533 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4534 .end_io = f2fs_dio_write_end_io, 4535 }; 4536 4537 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4538 bool *may_need_sync) 4539 { 4540 struct file *file = iocb->ki_filp; 4541 struct inode *inode = file_inode(file); 4542 struct f2fs_inode_info *fi = F2FS_I(inode); 4543 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4544 const bool do_opu = f2fs_lfs_mode(sbi); 4545 const loff_t pos = iocb->ki_pos; 4546 const ssize_t count = iov_iter_count(from); 4547 unsigned int dio_flags; 4548 struct iomap_dio *dio; 4549 ssize_t ret; 4550 4551 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4552 4553 if (iocb->ki_flags & IOCB_NOWAIT) { 4554 /* f2fs_convert_inline_inode() and block allocation can block */ 4555 if (f2fs_has_inline_data(inode) || 4556 !f2fs_overwrite_io(inode, pos, count)) { 4557 ret = -EAGAIN; 4558 goto out; 4559 } 4560 4561 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4562 ret = -EAGAIN; 4563 goto out; 4564 } 4565 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4566 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4567 ret = -EAGAIN; 4568 goto out; 4569 } 4570 } else { 4571 ret = f2fs_convert_inline_inode(inode); 4572 if (ret) 4573 goto out; 4574 4575 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4576 if (do_opu) 4577 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4578 } 4579 4580 /* 4581 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4582 * the higher-level function iomap_dio_rw() in order to ensure that the 4583 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4584 */ 4585 inc_page_count(sbi, F2FS_DIO_WRITE); 4586 dio_flags = 0; 4587 if (pos + count > inode->i_size) 4588 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4589 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4590 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4591 if (IS_ERR_OR_NULL(dio)) { 4592 ret = PTR_ERR_OR_ZERO(dio); 4593 if (ret == -ENOTBLK) 4594 ret = 0; 4595 if (ret != -EIOCBQUEUED) 4596 dec_page_count(sbi, F2FS_DIO_WRITE); 4597 } else { 4598 ret = iomap_dio_complete(dio); 4599 } 4600 4601 if (do_opu) 4602 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4603 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4604 4605 if (ret < 0) 4606 goto out; 4607 if (pos + ret > inode->i_size) 4608 f2fs_i_size_write(inode, pos + ret); 4609 if (!do_opu) 4610 set_inode_flag(inode, FI_UPDATE_WRITE); 4611 4612 if (iov_iter_count(from)) { 4613 ssize_t ret2; 4614 loff_t bufio_start_pos = iocb->ki_pos; 4615 4616 /* 4617 * The direct write was partial, so we need to fall back to a 4618 * buffered write for the remainder. 4619 */ 4620 4621 ret2 = f2fs_buffered_write_iter(iocb, from); 4622 if (iov_iter_count(from)) 4623 f2fs_write_failed(inode, iocb->ki_pos); 4624 if (ret2 < 0) 4625 goto out; 4626 4627 /* 4628 * Ensure that the pagecache pages are written to disk and 4629 * invalidated to preserve the expected O_DIRECT semantics. 4630 */ 4631 if (ret2 > 0) { 4632 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4633 4634 ret += ret2; 4635 4636 ret2 = filemap_write_and_wait_range(file->f_mapping, 4637 bufio_start_pos, 4638 bufio_end_pos); 4639 if (ret2 < 0) 4640 goto out; 4641 invalidate_mapping_pages(file->f_mapping, 4642 bufio_start_pos >> PAGE_SHIFT, 4643 bufio_end_pos >> PAGE_SHIFT); 4644 } 4645 } else { 4646 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4647 *may_need_sync = false; 4648 } 4649 out: 4650 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4651 return ret; 4652 } 4653 4654 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4655 { 4656 struct inode *inode = file_inode(iocb->ki_filp); 4657 const loff_t orig_pos = iocb->ki_pos; 4658 const size_t orig_count = iov_iter_count(from); 4659 loff_t target_size; 4660 bool dio; 4661 bool may_need_sync = true; 4662 int preallocated; 4663 ssize_t ret; 4664 4665 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4666 ret = -EIO; 4667 goto out; 4668 } 4669 4670 if (!f2fs_is_compress_backend_ready(inode)) { 4671 ret = -EOPNOTSUPP; 4672 goto out; 4673 } 4674 4675 if (iocb->ki_flags & IOCB_NOWAIT) { 4676 if (!inode_trylock(inode)) { 4677 ret = -EAGAIN; 4678 goto out; 4679 } 4680 } else { 4681 inode_lock(inode); 4682 } 4683 4684 ret = f2fs_write_checks(iocb, from); 4685 if (ret <= 0) 4686 goto out_unlock; 4687 4688 /* Determine whether we will do a direct write or a buffered write. */ 4689 dio = f2fs_should_use_dio(inode, iocb, from); 4690 4691 /* Possibly preallocate the blocks for the write. */ 4692 target_size = iocb->ki_pos + iov_iter_count(from); 4693 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 4694 if (preallocated < 0) { 4695 ret = preallocated; 4696 } else { 4697 if (trace_f2fs_datawrite_start_enabled()) 4698 f2fs_trace_rw_file_path(iocb, orig_count, WRITE); 4699 4700 /* Do the actual write. */ 4701 ret = dio ? 4702 f2fs_dio_write_iter(iocb, from, &may_need_sync) : 4703 f2fs_buffered_write_iter(iocb, from); 4704 4705 if (trace_f2fs_datawrite_end_enabled()) 4706 trace_f2fs_datawrite_end(inode, orig_pos, ret); 4707 } 4708 4709 /* Don't leave any preallocated blocks around past i_size. */ 4710 if (preallocated && i_size_read(inode) < target_size) { 4711 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4712 filemap_invalidate_lock(inode->i_mapping); 4713 if (!f2fs_truncate(inode)) 4714 file_dont_truncate(inode); 4715 filemap_invalidate_unlock(inode->i_mapping); 4716 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4717 } else { 4718 file_dont_truncate(inode); 4719 } 4720 4721 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 4722 out_unlock: 4723 inode_unlock(inode); 4724 out: 4725 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 4726 if (ret > 0 && may_need_sync) 4727 ret = generic_write_sync(iocb, ret); 4728 return ret; 4729 } 4730 4731 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 4732 int advice) 4733 { 4734 struct address_space *mapping; 4735 struct backing_dev_info *bdi; 4736 struct inode *inode = file_inode(filp); 4737 int err; 4738 4739 if (advice == POSIX_FADV_SEQUENTIAL) { 4740 if (S_ISFIFO(inode->i_mode)) 4741 return -ESPIPE; 4742 4743 mapping = filp->f_mapping; 4744 if (!mapping || len < 0) 4745 return -EINVAL; 4746 4747 bdi = inode_to_bdi(mapping->host); 4748 filp->f_ra.ra_pages = bdi->ra_pages * 4749 F2FS_I_SB(inode)->seq_file_ra_mul; 4750 spin_lock(&filp->f_lock); 4751 filp->f_mode &= ~FMODE_RANDOM; 4752 spin_unlock(&filp->f_lock); 4753 return 0; 4754 } 4755 4756 err = generic_fadvise(filp, offset, len, advice); 4757 if (!err && advice == POSIX_FADV_DONTNEED && 4758 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 4759 f2fs_compressed_file(inode)) 4760 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 4761 4762 return err; 4763 } 4764 4765 #ifdef CONFIG_COMPAT 4766 struct compat_f2fs_gc_range { 4767 u32 sync; 4768 compat_u64 start; 4769 compat_u64 len; 4770 }; 4771 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4772 struct compat_f2fs_gc_range) 4773 4774 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4775 { 4776 struct compat_f2fs_gc_range __user *urange; 4777 struct f2fs_gc_range range; 4778 int err; 4779 4780 urange = compat_ptr(arg); 4781 err = get_user(range.sync, &urange->sync); 4782 err |= get_user(range.start, &urange->start); 4783 err |= get_user(range.len, &urange->len); 4784 if (err) 4785 return -EFAULT; 4786 4787 return __f2fs_ioc_gc_range(file, &range); 4788 } 4789 4790 struct compat_f2fs_move_range { 4791 u32 dst_fd; 4792 compat_u64 pos_in; 4793 compat_u64 pos_out; 4794 compat_u64 len; 4795 }; 4796 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4797 struct compat_f2fs_move_range) 4798 4799 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4800 { 4801 struct compat_f2fs_move_range __user *urange; 4802 struct f2fs_move_range range; 4803 int err; 4804 4805 urange = compat_ptr(arg); 4806 err = get_user(range.dst_fd, &urange->dst_fd); 4807 err |= get_user(range.pos_in, &urange->pos_in); 4808 err |= get_user(range.pos_out, &urange->pos_out); 4809 err |= get_user(range.len, &urange->len); 4810 if (err) 4811 return -EFAULT; 4812 4813 return __f2fs_ioc_move_range(file, &range); 4814 } 4815 4816 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4817 { 4818 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4819 return -EIO; 4820 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4821 return -ENOSPC; 4822 4823 switch (cmd) { 4824 case FS_IOC32_GETVERSION: 4825 cmd = FS_IOC_GETVERSION; 4826 break; 4827 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4828 return f2fs_compat_ioc_gc_range(file, arg); 4829 case F2FS_IOC32_MOVE_RANGE: 4830 return f2fs_compat_ioc_move_range(file, arg); 4831 case F2FS_IOC_START_ATOMIC_WRITE: 4832 case F2FS_IOC_START_ATOMIC_REPLACE: 4833 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4834 case F2FS_IOC_START_VOLATILE_WRITE: 4835 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4836 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4837 case F2FS_IOC_SHUTDOWN: 4838 case FITRIM: 4839 case FS_IOC_SET_ENCRYPTION_POLICY: 4840 case FS_IOC_GET_ENCRYPTION_PWSALT: 4841 case FS_IOC_GET_ENCRYPTION_POLICY: 4842 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4843 case FS_IOC_ADD_ENCRYPTION_KEY: 4844 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4845 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4846 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4847 case FS_IOC_GET_ENCRYPTION_NONCE: 4848 case F2FS_IOC_GARBAGE_COLLECT: 4849 case F2FS_IOC_WRITE_CHECKPOINT: 4850 case F2FS_IOC_DEFRAGMENT: 4851 case F2FS_IOC_FLUSH_DEVICE: 4852 case F2FS_IOC_GET_FEATURES: 4853 case F2FS_IOC_GET_PIN_FILE: 4854 case F2FS_IOC_SET_PIN_FILE: 4855 case F2FS_IOC_PRECACHE_EXTENTS: 4856 case F2FS_IOC_RESIZE_FS: 4857 case FS_IOC_ENABLE_VERITY: 4858 case FS_IOC_MEASURE_VERITY: 4859 case FS_IOC_READ_VERITY_METADATA: 4860 case FS_IOC_GETFSLABEL: 4861 case FS_IOC_SETFSLABEL: 4862 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4863 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4864 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4865 case F2FS_IOC_SEC_TRIM_FILE: 4866 case F2FS_IOC_GET_COMPRESS_OPTION: 4867 case F2FS_IOC_SET_COMPRESS_OPTION: 4868 case F2FS_IOC_DECOMPRESS_FILE: 4869 case F2FS_IOC_COMPRESS_FILE: 4870 break; 4871 default: 4872 return -ENOIOCTLCMD; 4873 } 4874 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4875 } 4876 #endif 4877 4878 const struct file_operations f2fs_file_operations = { 4879 .llseek = f2fs_llseek, 4880 .read_iter = f2fs_file_read_iter, 4881 .write_iter = f2fs_file_write_iter, 4882 .open = f2fs_file_open, 4883 .release = f2fs_release_file, 4884 .mmap = f2fs_file_mmap, 4885 .flush = f2fs_file_flush, 4886 .fsync = f2fs_sync_file, 4887 .fallocate = f2fs_fallocate, 4888 .unlocked_ioctl = f2fs_ioctl, 4889 #ifdef CONFIG_COMPAT 4890 .compat_ioctl = f2fs_compat_ioctl, 4891 #endif 4892 .splice_read = generic_file_splice_read, 4893 .splice_write = iter_file_splice_write, 4894 .fadvise = f2fs_file_fadvise, 4895 }; 4896