xref: /openbmc/linux/fs/f2fs/file.c (revision 1c2dd16a)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35 
36 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
37 {
38 	struct page *page = vmf->page;
39 	struct inode *inode = file_inode(vmf->vma->vm_file);
40 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
41 	struct dnode_of_data dn;
42 	int err;
43 
44 	sb_start_pagefault(inode->i_sb);
45 
46 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
47 
48 	/* block allocation */
49 	f2fs_lock_op(sbi);
50 	set_new_dnode(&dn, inode, NULL, NULL, 0);
51 	err = f2fs_reserve_block(&dn, page->index);
52 	if (err) {
53 		f2fs_unlock_op(sbi);
54 		goto out;
55 	}
56 	f2fs_put_dnode(&dn);
57 	f2fs_unlock_op(sbi);
58 
59 	f2fs_balance_fs(sbi, dn.node_changed);
60 
61 	file_update_time(vmf->vma->vm_file);
62 	lock_page(page);
63 	if (unlikely(page->mapping != inode->i_mapping ||
64 			page_offset(page) > i_size_read(inode) ||
65 			!PageUptodate(page))) {
66 		unlock_page(page);
67 		err = -EFAULT;
68 		goto out;
69 	}
70 
71 	/*
72 	 * check to see if the page is mapped already (no holes)
73 	 */
74 	if (PageMappedToDisk(page))
75 		goto mapped;
76 
77 	/* page is wholly or partially inside EOF */
78 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
79 						i_size_read(inode)) {
80 		unsigned offset;
81 		offset = i_size_read(inode) & ~PAGE_MASK;
82 		zero_user_segment(page, offset, PAGE_SIZE);
83 	}
84 	set_page_dirty(page);
85 	if (!PageUptodate(page))
86 		SetPageUptodate(page);
87 
88 	trace_f2fs_vm_page_mkwrite(page, DATA);
89 mapped:
90 	/* fill the page */
91 	f2fs_wait_on_page_writeback(page, DATA, false);
92 
93 	/* wait for GCed encrypted page writeback */
94 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
95 		f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
96 
97 out:
98 	sb_end_pagefault(inode->i_sb);
99 	f2fs_update_time(sbi, REQ_TIME);
100 	return block_page_mkwrite_return(err);
101 }
102 
103 static const struct vm_operations_struct f2fs_file_vm_ops = {
104 	.fault		= filemap_fault,
105 	.map_pages	= filemap_map_pages,
106 	.page_mkwrite	= f2fs_vm_page_mkwrite,
107 };
108 
109 static int get_parent_ino(struct inode *inode, nid_t *pino)
110 {
111 	struct dentry *dentry;
112 
113 	inode = igrab(inode);
114 	dentry = d_find_any_alias(inode);
115 	iput(inode);
116 	if (!dentry)
117 		return 0;
118 
119 	if (update_dent_inode(inode, inode, &dentry->d_name)) {
120 		dput(dentry);
121 		return 0;
122 	}
123 
124 	*pino = parent_ino(dentry);
125 	dput(dentry);
126 	return 1;
127 }
128 
129 static inline bool need_do_checkpoint(struct inode *inode)
130 {
131 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
132 	bool need_cp = false;
133 
134 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
135 		need_cp = true;
136 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
137 		need_cp = true;
138 	else if (file_wrong_pino(inode))
139 		need_cp = true;
140 	else if (!space_for_roll_forward(sbi))
141 		need_cp = true;
142 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
143 		need_cp = true;
144 	else if (test_opt(sbi, FASTBOOT))
145 		need_cp = true;
146 	else if (sbi->active_logs == 2)
147 		need_cp = true;
148 
149 	return need_cp;
150 }
151 
152 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
153 {
154 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
155 	bool ret = false;
156 	/* But we need to avoid that there are some inode updates */
157 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
158 		ret = true;
159 	f2fs_put_page(i, 0);
160 	return ret;
161 }
162 
163 static void try_to_fix_pino(struct inode *inode)
164 {
165 	struct f2fs_inode_info *fi = F2FS_I(inode);
166 	nid_t pino;
167 
168 	down_write(&fi->i_sem);
169 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
170 			get_parent_ino(inode, &pino)) {
171 		f2fs_i_pino_write(inode, pino);
172 		file_got_pino(inode);
173 	}
174 	up_write(&fi->i_sem);
175 }
176 
177 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
178 						int datasync, bool atomic)
179 {
180 	struct inode *inode = file->f_mapping->host;
181 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
182 	nid_t ino = inode->i_ino;
183 	int ret = 0;
184 	bool need_cp = false;
185 	struct writeback_control wbc = {
186 		.sync_mode = WB_SYNC_ALL,
187 		.nr_to_write = LONG_MAX,
188 		.for_reclaim = 0,
189 	};
190 
191 	if (unlikely(f2fs_readonly(inode->i_sb)))
192 		return 0;
193 
194 	trace_f2fs_sync_file_enter(inode);
195 
196 	/* if fdatasync is triggered, let's do in-place-update */
197 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
198 		set_inode_flag(inode, FI_NEED_IPU);
199 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
200 	clear_inode_flag(inode, FI_NEED_IPU);
201 
202 	if (ret) {
203 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
204 		return ret;
205 	}
206 
207 	/* if the inode is dirty, let's recover all the time */
208 	if (!f2fs_skip_inode_update(inode, datasync)) {
209 		f2fs_write_inode(inode, NULL);
210 		goto go_write;
211 	}
212 
213 	/*
214 	 * if there is no written data, don't waste time to write recovery info.
215 	 */
216 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
217 			!exist_written_data(sbi, ino, APPEND_INO)) {
218 
219 		/* it may call write_inode just prior to fsync */
220 		if (need_inode_page_update(sbi, ino))
221 			goto go_write;
222 
223 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
224 				exist_written_data(sbi, ino, UPDATE_INO))
225 			goto flush_out;
226 		goto out;
227 	}
228 go_write:
229 	/*
230 	 * Both of fdatasync() and fsync() are able to be recovered from
231 	 * sudden-power-off.
232 	 */
233 	down_read(&F2FS_I(inode)->i_sem);
234 	need_cp = need_do_checkpoint(inode);
235 	up_read(&F2FS_I(inode)->i_sem);
236 
237 	if (need_cp) {
238 		/* all the dirty node pages should be flushed for POR */
239 		ret = f2fs_sync_fs(inode->i_sb, 1);
240 
241 		/*
242 		 * We've secured consistency through sync_fs. Following pino
243 		 * will be used only for fsynced inodes after checkpoint.
244 		 */
245 		try_to_fix_pino(inode);
246 		clear_inode_flag(inode, FI_APPEND_WRITE);
247 		clear_inode_flag(inode, FI_UPDATE_WRITE);
248 		goto out;
249 	}
250 sync_nodes:
251 	ret = fsync_node_pages(sbi, inode, &wbc, atomic);
252 	if (ret)
253 		goto out;
254 
255 	/* if cp_error was enabled, we should avoid infinite loop */
256 	if (unlikely(f2fs_cp_error(sbi))) {
257 		ret = -EIO;
258 		goto out;
259 	}
260 
261 	if (need_inode_block_update(sbi, ino)) {
262 		f2fs_mark_inode_dirty_sync(inode, true);
263 		f2fs_write_inode(inode, NULL);
264 		goto sync_nodes;
265 	}
266 
267 	ret = wait_on_node_pages_writeback(sbi, ino);
268 	if (ret)
269 		goto out;
270 
271 	/* once recovery info is written, don't need to tack this */
272 	remove_ino_entry(sbi, ino, APPEND_INO);
273 	clear_inode_flag(inode, FI_APPEND_WRITE);
274 flush_out:
275 	remove_ino_entry(sbi, ino, UPDATE_INO);
276 	clear_inode_flag(inode, FI_UPDATE_WRITE);
277 	if (!atomic)
278 		ret = f2fs_issue_flush(sbi);
279 	f2fs_update_time(sbi, REQ_TIME);
280 out:
281 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
282 	f2fs_trace_ios(NULL, 1);
283 	return ret;
284 }
285 
286 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
287 {
288 	return f2fs_do_sync_file(file, start, end, datasync, false);
289 }
290 
291 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
292 						pgoff_t pgofs, int whence)
293 {
294 	struct pagevec pvec;
295 	int nr_pages;
296 
297 	if (whence != SEEK_DATA)
298 		return 0;
299 
300 	/* find first dirty page index */
301 	pagevec_init(&pvec, 0);
302 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
303 					PAGECACHE_TAG_DIRTY, 1);
304 	pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
305 	pagevec_release(&pvec);
306 	return pgofs;
307 }
308 
309 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
310 							int whence)
311 {
312 	switch (whence) {
313 	case SEEK_DATA:
314 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
315 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
316 			return true;
317 		break;
318 	case SEEK_HOLE:
319 		if (blkaddr == NULL_ADDR)
320 			return true;
321 		break;
322 	}
323 	return false;
324 }
325 
326 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
327 {
328 	struct inode *inode = file->f_mapping->host;
329 	loff_t maxbytes = inode->i_sb->s_maxbytes;
330 	struct dnode_of_data dn;
331 	pgoff_t pgofs, end_offset, dirty;
332 	loff_t data_ofs = offset;
333 	loff_t isize;
334 	int err = 0;
335 
336 	inode_lock(inode);
337 
338 	isize = i_size_read(inode);
339 	if (offset >= isize)
340 		goto fail;
341 
342 	/* handle inline data case */
343 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
344 		if (whence == SEEK_HOLE)
345 			data_ofs = isize;
346 		goto found;
347 	}
348 
349 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
350 
351 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
352 
353 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
354 		set_new_dnode(&dn, inode, NULL, NULL, 0);
355 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
356 		if (err && err != -ENOENT) {
357 			goto fail;
358 		} else if (err == -ENOENT) {
359 			/* direct node does not exists */
360 			if (whence == SEEK_DATA) {
361 				pgofs = get_next_page_offset(&dn, pgofs);
362 				continue;
363 			} else {
364 				goto found;
365 			}
366 		}
367 
368 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
369 
370 		/* find data/hole in dnode block */
371 		for (; dn.ofs_in_node < end_offset;
372 				dn.ofs_in_node++, pgofs++,
373 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
374 			block_t blkaddr;
375 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
376 
377 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
378 				f2fs_put_dnode(&dn);
379 				goto found;
380 			}
381 		}
382 		f2fs_put_dnode(&dn);
383 	}
384 
385 	if (whence == SEEK_DATA)
386 		goto fail;
387 found:
388 	if (whence == SEEK_HOLE && data_ofs > isize)
389 		data_ofs = isize;
390 	inode_unlock(inode);
391 	return vfs_setpos(file, data_ofs, maxbytes);
392 fail:
393 	inode_unlock(inode);
394 	return -ENXIO;
395 }
396 
397 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
398 {
399 	struct inode *inode = file->f_mapping->host;
400 	loff_t maxbytes = inode->i_sb->s_maxbytes;
401 
402 	switch (whence) {
403 	case SEEK_SET:
404 	case SEEK_CUR:
405 	case SEEK_END:
406 		return generic_file_llseek_size(file, offset, whence,
407 						maxbytes, i_size_read(inode));
408 	case SEEK_DATA:
409 	case SEEK_HOLE:
410 		if (offset < 0)
411 			return -ENXIO;
412 		return f2fs_seek_block(file, offset, whence);
413 	}
414 
415 	return -EINVAL;
416 }
417 
418 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
419 {
420 	struct inode *inode = file_inode(file);
421 	int err;
422 
423 	if (f2fs_encrypted_inode(inode)) {
424 		err = fscrypt_get_encryption_info(inode);
425 		if (err)
426 			return 0;
427 		if (!f2fs_encrypted_inode(inode))
428 			return -ENOKEY;
429 	}
430 
431 	/* we don't need to use inline_data strictly */
432 	err = f2fs_convert_inline_inode(inode);
433 	if (err)
434 		return err;
435 
436 	file_accessed(file);
437 	vma->vm_ops = &f2fs_file_vm_ops;
438 	return 0;
439 }
440 
441 static int f2fs_file_open(struct inode *inode, struct file *filp)
442 {
443 	int ret = generic_file_open(inode, filp);
444 	struct dentry *dir;
445 
446 	if (!ret && f2fs_encrypted_inode(inode)) {
447 		ret = fscrypt_get_encryption_info(inode);
448 		if (ret)
449 			return -EACCES;
450 		if (!fscrypt_has_encryption_key(inode))
451 			return -ENOKEY;
452 	}
453 	dir = dget_parent(file_dentry(filp));
454 	if (f2fs_encrypted_inode(d_inode(dir)) &&
455 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
456 		dput(dir);
457 		return -EPERM;
458 	}
459 	dput(dir);
460 	return ret;
461 }
462 
463 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
464 {
465 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
466 	struct f2fs_node *raw_node;
467 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
468 	__le32 *addr;
469 
470 	raw_node = F2FS_NODE(dn->node_page);
471 	addr = blkaddr_in_node(raw_node) + ofs;
472 
473 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
474 		block_t blkaddr = le32_to_cpu(*addr);
475 		if (blkaddr == NULL_ADDR)
476 			continue;
477 
478 		dn->data_blkaddr = NULL_ADDR;
479 		set_data_blkaddr(dn);
480 		invalidate_blocks(sbi, blkaddr);
481 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
482 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
483 		nr_free++;
484 	}
485 
486 	if (nr_free) {
487 		pgoff_t fofs;
488 		/*
489 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
490 		 * we will invalidate all blkaddr in the whole range.
491 		 */
492 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
493 							dn->inode) + ofs;
494 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
495 		dec_valid_block_count(sbi, dn->inode, nr_free);
496 	}
497 	dn->ofs_in_node = ofs;
498 
499 	f2fs_update_time(sbi, REQ_TIME);
500 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
501 					 dn->ofs_in_node, nr_free);
502 	return nr_free;
503 }
504 
505 void truncate_data_blocks(struct dnode_of_data *dn)
506 {
507 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
508 }
509 
510 static int truncate_partial_data_page(struct inode *inode, u64 from,
511 								bool cache_only)
512 {
513 	unsigned offset = from & (PAGE_SIZE - 1);
514 	pgoff_t index = from >> PAGE_SHIFT;
515 	struct address_space *mapping = inode->i_mapping;
516 	struct page *page;
517 
518 	if (!offset && !cache_only)
519 		return 0;
520 
521 	if (cache_only) {
522 		page = find_lock_page(mapping, index);
523 		if (page && PageUptodate(page))
524 			goto truncate_out;
525 		f2fs_put_page(page, 1);
526 		return 0;
527 	}
528 
529 	page = get_lock_data_page(inode, index, true);
530 	if (IS_ERR(page))
531 		return 0;
532 truncate_out:
533 	f2fs_wait_on_page_writeback(page, DATA, true);
534 	zero_user(page, offset, PAGE_SIZE - offset);
535 	if (!cache_only || !f2fs_encrypted_inode(inode) ||
536 					!S_ISREG(inode->i_mode))
537 		set_page_dirty(page);
538 	f2fs_put_page(page, 1);
539 	return 0;
540 }
541 
542 int truncate_blocks(struct inode *inode, u64 from, bool lock)
543 {
544 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
545 	unsigned int blocksize = inode->i_sb->s_blocksize;
546 	struct dnode_of_data dn;
547 	pgoff_t free_from;
548 	int count = 0, err = 0;
549 	struct page *ipage;
550 	bool truncate_page = false;
551 
552 	trace_f2fs_truncate_blocks_enter(inode, from);
553 
554 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
555 
556 	if (free_from >= sbi->max_file_blocks)
557 		goto free_partial;
558 
559 	if (lock)
560 		f2fs_lock_op(sbi);
561 
562 	ipage = get_node_page(sbi, inode->i_ino);
563 	if (IS_ERR(ipage)) {
564 		err = PTR_ERR(ipage);
565 		goto out;
566 	}
567 
568 	if (f2fs_has_inline_data(inode)) {
569 		truncate_inline_inode(ipage, from);
570 		if (from == 0)
571 			clear_inode_flag(inode, FI_DATA_EXIST);
572 		f2fs_put_page(ipage, 1);
573 		truncate_page = true;
574 		goto out;
575 	}
576 
577 	set_new_dnode(&dn, inode, ipage, NULL, 0);
578 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
579 	if (err) {
580 		if (err == -ENOENT)
581 			goto free_next;
582 		goto out;
583 	}
584 
585 	count = ADDRS_PER_PAGE(dn.node_page, inode);
586 
587 	count -= dn.ofs_in_node;
588 	f2fs_bug_on(sbi, count < 0);
589 
590 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
591 		truncate_data_blocks_range(&dn, count);
592 		free_from += count;
593 	}
594 
595 	f2fs_put_dnode(&dn);
596 free_next:
597 	err = truncate_inode_blocks(inode, free_from);
598 out:
599 	if (lock)
600 		f2fs_unlock_op(sbi);
601 free_partial:
602 	/* lastly zero out the first data page */
603 	if (!err)
604 		err = truncate_partial_data_page(inode, from, truncate_page);
605 
606 	trace_f2fs_truncate_blocks_exit(inode, err);
607 	return err;
608 }
609 
610 int f2fs_truncate(struct inode *inode)
611 {
612 	int err;
613 
614 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
615 				S_ISLNK(inode->i_mode)))
616 		return 0;
617 
618 	trace_f2fs_truncate(inode);
619 
620 	/* we should check inline_data size */
621 	if (!f2fs_may_inline_data(inode)) {
622 		err = f2fs_convert_inline_inode(inode);
623 		if (err)
624 			return err;
625 	}
626 
627 	err = truncate_blocks(inode, i_size_read(inode), true);
628 	if (err)
629 		return err;
630 
631 	inode->i_mtime = inode->i_ctime = current_time(inode);
632 	f2fs_mark_inode_dirty_sync(inode, false);
633 	return 0;
634 }
635 
636 int f2fs_getattr(const struct path *path, struct kstat *stat,
637 		 u32 request_mask, unsigned int flags)
638 {
639 	struct inode *inode = d_inode(path->dentry);
640 	generic_fillattr(inode, stat);
641 	stat->blocks <<= 3;
642 	return 0;
643 }
644 
645 #ifdef CONFIG_F2FS_FS_POSIX_ACL
646 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
647 {
648 	unsigned int ia_valid = attr->ia_valid;
649 
650 	if (ia_valid & ATTR_UID)
651 		inode->i_uid = attr->ia_uid;
652 	if (ia_valid & ATTR_GID)
653 		inode->i_gid = attr->ia_gid;
654 	if (ia_valid & ATTR_ATIME)
655 		inode->i_atime = timespec_trunc(attr->ia_atime,
656 						inode->i_sb->s_time_gran);
657 	if (ia_valid & ATTR_MTIME)
658 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
659 						inode->i_sb->s_time_gran);
660 	if (ia_valid & ATTR_CTIME)
661 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
662 						inode->i_sb->s_time_gran);
663 	if (ia_valid & ATTR_MODE) {
664 		umode_t mode = attr->ia_mode;
665 
666 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
667 			mode &= ~S_ISGID;
668 		set_acl_inode(inode, mode);
669 	}
670 }
671 #else
672 #define __setattr_copy setattr_copy
673 #endif
674 
675 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
676 {
677 	struct inode *inode = d_inode(dentry);
678 	int err;
679 	bool size_changed = false;
680 
681 	err = setattr_prepare(dentry, attr);
682 	if (err)
683 		return err;
684 
685 	if (attr->ia_valid & ATTR_SIZE) {
686 		if (f2fs_encrypted_inode(inode) &&
687 				fscrypt_get_encryption_info(inode))
688 			return -EACCES;
689 
690 		if (attr->ia_size <= i_size_read(inode)) {
691 			truncate_setsize(inode, attr->ia_size);
692 			err = f2fs_truncate(inode);
693 			if (err)
694 				return err;
695 		} else {
696 			/*
697 			 * do not trim all blocks after i_size if target size is
698 			 * larger than i_size.
699 			 */
700 			truncate_setsize(inode, attr->ia_size);
701 
702 			/* should convert inline inode here */
703 			if (!f2fs_may_inline_data(inode)) {
704 				err = f2fs_convert_inline_inode(inode);
705 				if (err)
706 					return err;
707 			}
708 			inode->i_mtime = inode->i_ctime = current_time(inode);
709 		}
710 
711 		size_changed = true;
712 	}
713 
714 	__setattr_copy(inode, attr);
715 
716 	if (attr->ia_valid & ATTR_MODE) {
717 		err = posix_acl_chmod(inode, get_inode_mode(inode));
718 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
719 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
720 			clear_inode_flag(inode, FI_ACL_MODE);
721 		}
722 	}
723 
724 	/* file size may changed here */
725 	f2fs_mark_inode_dirty_sync(inode, size_changed);
726 
727 	/* inode change will produce dirty node pages flushed by checkpoint */
728 	f2fs_balance_fs(F2FS_I_SB(inode), true);
729 
730 	return err;
731 }
732 
733 const struct inode_operations f2fs_file_inode_operations = {
734 	.getattr	= f2fs_getattr,
735 	.setattr	= f2fs_setattr,
736 	.get_acl	= f2fs_get_acl,
737 	.set_acl	= f2fs_set_acl,
738 #ifdef CONFIG_F2FS_FS_XATTR
739 	.listxattr	= f2fs_listxattr,
740 #endif
741 	.fiemap		= f2fs_fiemap,
742 };
743 
744 static int fill_zero(struct inode *inode, pgoff_t index,
745 					loff_t start, loff_t len)
746 {
747 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
748 	struct page *page;
749 
750 	if (!len)
751 		return 0;
752 
753 	f2fs_balance_fs(sbi, true);
754 
755 	f2fs_lock_op(sbi);
756 	page = get_new_data_page(inode, NULL, index, false);
757 	f2fs_unlock_op(sbi);
758 
759 	if (IS_ERR(page))
760 		return PTR_ERR(page);
761 
762 	f2fs_wait_on_page_writeback(page, DATA, true);
763 	zero_user(page, start, len);
764 	set_page_dirty(page);
765 	f2fs_put_page(page, 1);
766 	return 0;
767 }
768 
769 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
770 {
771 	int err;
772 
773 	while (pg_start < pg_end) {
774 		struct dnode_of_data dn;
775 		pgoff_t end_offset, count;
776 
777 		set_new_dnode(&dn, inode, NULL, NULL, 0);
778 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
779 		if (err) {
780 			if (err == -ENOENT) {
781 				pg_start++;
782 				continue;
783 			}
784 			return err;
785 		}
786 
787 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
788 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
789 
790 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
791 
792 		truncate_data_blocks_range(&dn, count);
793 		f2fs_put_dnode(&dn);
794 
795 		pg_start += count;
796 	}
797 	return 0;
798 }
799 
800 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
801 {
802 	pgoff_t pg_start, pg_end;
803 	loff_t off_start, off_end;
804 	int ret;
805 
806 	ret = f2fs_convert_inline_inode(inode);
807 	if (ret)
808 		return ret;
809 
810 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
811 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
812 
813 	off_start = offset & (PAGE_SIZE - 1);
814 	off_end = (offset + len) & (PAGE_SIZE - 1);
815 
816 	if (pg_start == pg_end) {
817 		ret = fill_zero(inode, pg_start, off_start,
818 						off_end - off_start);
819 		if (ret)
820 			return ret;
821 	} else {
822 		if (off_start) {
823 			ret = fill_zero(inode, pg_start++, off_start,
824 						PAGE_SIZE - off_start);
825 			if (ret)
826 				return ret;
827 		}
828 		if (off_end) {
829 			ret = fill_zero(inode, pg_end, 0, off_end);
830 			if (ret)
831 				return ret;
832 		}
833 
834 		if (pg_start < pg_end) {
835 			struct address_space *mapping = inode->i_mapping;
836 			loff_t blk_start, blk_end;
837 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
838 
839 			f2fs_balance_fs(sbi, true);
840 
841 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
842 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
843 			truncate_inode_pages_range(mapping, blk_start,
844 					blk_end - 1);
845 
846 			f2fs_lock_op(sbi);
847 			ret = truncate_hole(inode, pg_start, pg_end);
848 			f2fs_unlock_op(sbi);
849 		}
850 	}
851 
852 	return ret;
853 }
854 
855 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
856 				int *do_replace, pgoff_t off, pgoff_t len)
857 {
858 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
859 	struct dnode_of_data dn;
860 	int ret, done, i;
861 
862 next_dnode:
863 	set_new_dnode(&dn, inode, NULL, NULL, 0);
864 	ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
865 	if (ret && ret != -ENOENT) {
866 		return ret;
867 	} else if (ret == -ENOENT) {
868 		if (dn.max_level == 0)
869 			return -ENOENT;
870 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
871 		blkaddr += done;
872 		do_replace += done;
873 		goto next;
874 	}
875 
876 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
877 							dn.ofs_in_node, len);
878 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
879 		*blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
880 		if (!is_checkpointed_data(sbi, *blkaddr)) {
881 
882 			if (test_opt(sbi, LFS)) {
883 				f2fs_put_dnode(&dn);
884 				return -ENOTSUPP;
885 			}
886 
887 			/* do not invalidate this block address */
888 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
889 			*do_replace = 1;
890 		}
891 	}
892 	f2fs_put_dnode(&dn);
893 next:
894 	len -= done;
895 	off += done;
896 	if (len)
897 		goto next_dnode;
898 	return 0;
899 }
900 
901 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
902 				int *do_replace, pgoff_t off, int len)
903 {
904 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
905 	struct dnode_of_data dn;
906 	int ret, i;
907 
908 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
909 		if (*do_replace == 0)
910 			continue;
911 
912 		set_new_dnode(&dn, inode, NULL, NULL, 0);
913 		ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
914 		if (ret) {
915 			dec_valid_block_count(sbi, inode, 1);
916 			invalidate_blocks(sbi, *blkaddr);
917 		} else {
918 			f2fs_update_data_blkaddr(&dn, *blkaddr);
919 		}
920 		f2fs_put_dnode(&dn);
921 	}
922 	return 0;
923 }
924 
925 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
926 			block_t *blkaddr, int *do_replace,
927 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
928 {
929 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
930 	pgoff_t i = 0;
931 	int ret;
932 
933 	while (i < len) {
934 		if (blkaddr[i] == NULL_ADDR && !full) {
935 			i++;
936 			continue;
937 		}
938 
939 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
940 			struct dnode_of_data dn;
941 			struct node_info ni;
942 			size_t new_size;
943 			pgoff_t ilen;
944 
945 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
946 			ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
947 			if (ret)
948 				return ret;
949 
950 			get_node_info(sbi, dn.nid, &ni);
951 			ilen = min((pgoff_t)
952 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
953 						dn.ofs_in_node, len - i);
954 			do {
955 				dn.data_blkaddr = datablock_addr(dn.node_page,
956 								dn.ofs_in_node);
957 				truncate_data_blocks_range(&dn, 1);
958 
959 				if (do_replace[i]) {
960 					f2fs_i_blocks_write(src_inode,
961 								1, false);
962 					f2fs_i_blocks_write(dst_inode,
963 								1, true);
964 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
965 					blkaddr[i], ni.version, true, false);
966 
967 					do_replace[i] = 0;
968 				}
969 				dn.ofs_in_node++;
970 				i++;
971 				new_size = (dst + i) << PAGE_SHIFT;
972 				if (dst_inode->i_size < new_size)
973 					f2fs_i_size_write(dst_inode, new_size);
974 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
975 
976 			f2fs_put_dnode(&dn);
977 		} else {
978 			struct page *psrc, *pdst;
979 
980 			psrc = get_lock_data_page(src_inode, src + i, true);
981 			if (IS_ERR(psrc))
982 				return PTR_ERR(psrc);
983 			pdst = get_new_data_page(dst_inode, NULL, dst + i,
984 								true);
985 			if (IS_ERR(pdst)) {
986 				f2fs_put_page(psrc, 1);
987 				return PTR_ERR(pdst);
988 			}
989 			f2fs_copy_page(psrc, pdst);
990 			set_page_dirty(pdst);
991 			f2fs_put_page(pdst, 1);
992 			f2fs_put_page(psrc, 1);
993 
994 			ret = truncate_hole(src_inode, src + i, src + i + 1);
995 			if (ret)
996 				return ret;
997 			i++;
998 		}
999 	}
1000 	return 0;
1001 }
1002 
1003 static int __exchange_data_block(struct inode *src_inode,
1004 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1005 			pgoff_t len, bool full)
1006 {
1007 	block_t *src_blkaddr;
1008 	int *do_replace;
1009 	pgoff_t olen;
1010 	int ret;
1011 
1012 	while (len) {
1013 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1014 
1015 		src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1016 		if (!src_blkaddr)
1017 			return -ENOMEM;
1018 
1019 		do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1020 		if (!do_replace) {
1021 			kvfree(src_blkaddr);
1022 			return -ENOMEM;
1023 		}
1024 
1025 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1026 					do_replace, src, olen);
1027 		if (ret)
1028 			goto roll_back;
1029 
1030 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1031 					do_replace, src, dst, olen, full);
1032 		if (ret)
1033 			goto roll_back;
1034 
1035 		src += olen;
1036 		dst += olen;
1037 		len -= olen;
1038 
1039 		kvfree(src_blkaddr);
1040 		kvfree(do_replace);
1041 	}
1042 	return 0;
1043 
1044 roll_back:
1045 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1046 	kvfree(src_blkaddr);
1047 	kvfree(do_replace);
1048 	return ret;
1049 }
1050 
1051 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1052 {
1053 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1054 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1055 	int ret;
1056 
1057 	f2fs_balance_fs(sbi, true);
1058 	f2fs_lock_op(sbi);
1059 
1060 	f2fs_drop_extent_tree(inode);
1061 
1062 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1063 	f2fs_unlock_op(sbi);
1064 	return ret;
1065 }
1066 
1067 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1068 {
1069 	pgoff_t pg_start, pg_end;
1070 	loff_t new_size;
1071 	int ret;
1072 
1073 	if (offset + len >= i_size_read(inode))
1074 		return -EINVAL;
1075 
1076 	/* collapse range should be aligned to block size of f2fs. */
1077 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1078 		return -EINVAL;
1079 
1080 	ret = f2fs_convert_inline_inode(inode);
1081 	if (ret)
1082 		return ret;
1083 
1084 	pg_start = offset >> PAGE_SHIFT;
1085 	pg_end = (offset + len) >> PAGE_SHIFT;
1086 
1087 	/* write out all dirty pages from offset */
1088 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1089 	if (ret)
1090 		return ret;
1091 
1092 	truncate_pagecache(inode, offset);
1093 
1094 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1095 	if (ret)
1096 		return ret;
1097 
1098 	/* write out all moved pages, if possible */
1099 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1100 	truncate_pagecache(inode, offset);
1101 
1102 	new_size = i_size_read(inode) - len;
1103 	truncate_pagecache(inode, new_size);
1104 
1105 	ret = truncate_blocks(inode, new_size, true);
1106 	if (!ret)
1107 		f2fs_i_size_write(inode, new_size);
1108 
1109 	return ret;
1110 }
1111 
1112 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1113 								pgoff_t end)
1114 {
1115 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1116 	pgoff_t index = start;
1117 	unsigned int ofs_in_node = dn->ofs_in_node;
1118 	blkcnt_t count = 0;
1119 	int ret;
1120 
1121 	for (; index < end; index++, dn->ofs_in_node++) {
1122 		if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1123 			count++;
1124 	}
1125 
1126 	dn->ofs_in_node = ofs_in_node;
1127 	ret = reserve_new_blocks(dn, count);
1128 	if (ret)
1129 		return ret;
1130 
1131 	dn->ofs_in_node = ofs_in_node;
1132 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1133 		dn->data_blkaddr =
1134 				datablock_addr(dn->node_page, dn->ofs_in_node);
1135 		/*
1136 		 * reserve_new_blocks will not guarantee entire block
1137 		 * allocation.
1138 		 */
1139 		if (dn->data_blkaddr == NULL_ADDR) {
1140 			ret = -ENOSPC;
1141 			break;
1142 		}
1143 		if (dn->data_blkaddr != NEW_ADDR) {
1144 			invalidate_blocks(sbi, dn->data_blkaddr);
1145 			dn->data_blkaddr = NEW_ADDR;
1146 			set_data_blkaddr(dn);
1147 		}
1148 	}
1149 
1150 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1151 
1152 	return ret;
1153 }
1154 
1155 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1156 								int mode)
1157 {
1158 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159 	struct address_space *mapping = inode->i_mapping;
1160 	pgoff_t index, pg_start, pg_end;
1161 	loff_t new_size = i_size_read(inode);
1162 	loff_t off_start, off_end;
1163 	int ret = 0;
1164 
1165 	ret = inode_newsize_ok(inode, (len + offset));
1166 	if (ret)
1167 		return ret;
1168 
1169 	ret = f2fs_convert_inline_inode(inode);
1170 	if (ret)
1171 		return ret;
1172 
1173 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1174 	if (ret)
1175 		return ret;
1176 
1177 	truncate_pagecache_range(inode, offset, offset + len - 1);
1178 
1179 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1180 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1181 
1182 	off_start = offset & (PAGE_SIZE - 1);
1183 	off_end = (offset + len) & (PAGE_SIZE - 1);
1184 
1185 	if (pg_start == pg_end) {
1186 		ret = fill_zero(inode, pg_start, off_start,
1187 						off_end - off_start);
1188 		if (ret)
1189 			return ret;
1190 
1191 		if (offset + len > new_size)
1192 			new_size = offset + len;
1193 		new_size = max_t(loff_t, new_size, offset + len);
1194 	} else {
1195 		if (off_start) {
1196 			ret = fill_zero(inode, pg_start++, off_start,
1197 						PAGE_SIZE - off_start);
1198 			if (ret)
1199 				return ret;
1200 
1201 			new_size = max_t(loff_t, new_size,
1202 					(loff_t)pg_start << PAGE_SHIFT);
1203 		}
1204 
1205 		for (index = pg_start; index < pg_end;) {
1206 			struct dnode_of_data dn;
1207 			unsigned int end_offset;
1208 			pgoff_t end;
1209 
1210 			f2fs_lock_op(sbi);
1211 
1212 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1213 			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1214 			if (ret) {
1215 				f2fs_unlock_op(sbi);
1216 				goto out;
1217 			}
1218 
1219 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1220 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1221 
1222 			ret = f2fs_do_zero_range(&dn, index, end);
1223 			f2fs_put_dnode(&dn);
1224 			f2fs_unlock_op(sbi);
1225 
1226 			f2fs_balance_fs(sbi, dn.node_changed);
1227 
1228 			if (ret)
1229 				goto out;
1230 
1231 			index = end;
1232 			new_size = max_t(loff_t, new_size,
1233 					(loff_t)index << PAGE_SHIFT);
1234 		}
1235 
1236 		if (off_end) {
1237 			ret = fill_zero(inode, pg_end, 0, off_end);
1238 			if (ret)
1239 				goto out;
1240 
1241 			new_size = max_t(loff_t, new_size, offset + len);
1242 		}
1243 	}
1244 
1245 out:
1246 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1247 		f2fs_i_size_write(inode, new_size);
1248 
1249 	return ret;
1250 }
1251 
1252 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1253 {
1254 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1255 	pgoff_t nr, pg_start, pg_end, delta, idx;
1256 	loff_t new_size;
1257 	int ret = 0;
1258 
1259 	new_size = i_size_read(inode) + len;
1260 	if (new_size > inode->i_sb->s_maxbytes)
1261 		return -EFBIG;
1262 
1263 	if (offset >= i_size_read(inode))
1264 		return -EINVAL;
1265 
1266 	/* insert range should be aligned to block size of f2fs. */
1267 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1268 		return -EINVAL;
1269 
1270 	ret = f2fs_convert_inline_inode(inode);
1271 	if (ret)
1272 		return ret;
1273 
1274 	f2fs_balance_fs(sbi, true);
1275 
1276 	ret = truncate_blocks(inode, i_size_read(inode), true);
1277 	if (ret)
1278 		return ret;
1279 
1280 	/* write out all dirty pages from offset */
1281 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1282 	if (ret)
1283 		return ret;
1284 
1285 	truncate_pagecache(inode, offset);
1286 
1287 	pg_start = offset >> PAGE_SHIFT;
1288 	pg_end = (offset + len) >> PAGE_SHIFT;
1289 	delta = pg_end - pg_start;
1290 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1291 
1292 	while (!ret && idx > pg_start) {
1293 		nr = idx - pg_start;
1294 		if (nr > delta)
1295 			nr = delta;
1296 		idx -= nr;
1297 
1298 		f2fs_lock_op(sbi);
1299 		f2fs_drop_extent_tree(inode);
1300 
1301 		ret = __exchange_data_block(inode, inode, idx,
1302 					idx + delta, nr, false);
1303 		f2fs_unlock_op(sbi);
1304 	}
1305 
1306 	/* write out all moved pages, if possible */
1307 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1308 	truncate_pagecache(inode, offset);
1309 
1310 	if (!ret)
1311 		f2fs_i_size_write(inode, new_size);
1312 	return ret;
1313 }
1314 
1315 static int expand_inode_data(struct inode *inode, loff_t offset,
1316 					loff_t len, int mode)
1317 {
1318 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1319 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1320 	pgoff_t pg_end;
1321 	loff_t new_size = i_size_read(inode);
1322 	loff_t off_end;
1323 	int err;
1324 
1325 	err = inode_newsize_ok(inode, (len + offset));
1326 	if (err)
1327 		return err;
1328 
1329 	err = f2fs_convert_inline_inode(inode);
1330 	if (err)
1331 		return err;
1332 
1333 	f2fs_balance_fs(sbi, true);
1334 
1335 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1336 	off_end = (offset + len) & (PAGE_SIZE - 1);
1337 
1338 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1339 	map.m_len = pg_end - map.m_lblk;
1340 	if (off_end)
1341 		map.m_len++;
1342 
1343 	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1344 	if (err) {
1345 		pgoff_t last_off;
1346 
1347 		if (!map.m_len)
1348 			return err;
1349 
1350 		last_off = map.m_lblk + map.m_len - 1;
1351 
1352 		/* update new size to the failed position */
1353 		new_size = (last_off == pg_end) ? offset + len:
1354 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1355 	} else {
1356 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1357 	}
1358 
1359 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1360 		f2fs_i_size_write(inode, new_size);
1361 
1362 	return err;
1363 }
1364 
1365 static long f2fs_fallocate(struct file *file, int mode,
1366 				loff_t offset, loff_t len)
1367 {
1368 	struct inode *inode = file_inode(file);
1369 	long ret = 0;
1370 
1371 	/* f2fs only support ->fallocate for regular file */
1372 	if (!S_ISREG(inode->i_mode))
1373 		return -EINVAL;
1374 
1375 	if (f2fs_encrypted_inode(inode) &&
1376 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1377 		return -EOPNOTSUPP;
1378 
1379 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1380 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1381 			FALLOC_FL_INSERT_RANGE))
1382 		return -EOPNOTSUPP;
1383 
1384 	inode_lock(inode);
1385 
1386 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1387 		if (offset >= inode->i_size)
1388 			goto out;
1389 
1390 		ret = punch_hole(inode, offset, len);
1391 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1392 		ret = f2fs_collapse_range(inode, offset, len);
1393 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1394 		ret = f2fs_zero_range(inode, offset, len, mode);
1395 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1396 		ret = f2fs_insert_range(inode, offset, len);
1397 	} else {
1398 		ret = expand_inode_data(inode, offset, len, mode);
1399 	}
1400 
1401 	if (!ret) {
1402 		inode->i_mtime = inode->i_ctime = current_time(inode);
1403 		f2fs_mark_inode_dirty_sync(inode, false);
1404 		if (mode & FALLOC_FL_KEEP_SIZE)
1405 			file_set_keep_isize(inode);
1406 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1407 	}
1408 
1409 out:
1410 	inode_unlock(inode);
1411 
1412 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1413 	return ret;
1414 }
1415 
1416 static int f2fs_release_file(struct inode *inode, struct file *filp)
1417 {
1418 	/*
1419 	 * f2fs_relase_file is called at every close calls. So we should
1420 	 * not drop any inmemory pages by close called by other process.
1421 	 */
1422 	if (!(filp->f_mode & FMODE_WRITE) ||
1423 			atomic_read(&inode->i_writecount) != 1)
1424 		return 0;
1425 
1426 	/* some remained atomic pages should discarded */
1427 	if (f2fs_is_atomic_file(inode))
1428 		drop_inmem_pages(inode);
1429 	if (f2fs_is_volatile_file(inode)) {
1430 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1431 		set_inode_flag(inode, FI_DROP_CACHE);
1432 		filemap_fdatawrite(inode->i_mapping);
1433 		clear_inode_flag(inode, FI_DROP_CACHE);
1434 	}
1435 	return 0;
1436 }
1437 
1438 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1439 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1440 
1441 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1442 {
1443 	if (S_ISDIR(mode))
1444 		return flags;
1445 	else if (S_ISREG(mode))
1446 		return flags & F2FS_REG_FLMASK;
1447 	else
1448 		return flags & F2FS_OTHER_FLMASK;
1449 }
1450 
1451 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1452 {
1453 	struct inode *inode = file_inode(filp);
1454 	struct f2fs_inode_info *fi = F2FS_I(inode);
1455 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1456 	return put_user(flags, (int __user *)arg);
1457 }
1458 
1459 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1460 {
1461 	struct inode *inode = file_inode(filp);
1462 	struct f2fs_inode_info *fi = F2FS_I(inode);
1463 	unsigned int flags;
1464 	unsigned int oldflags;
1465 	int ret;
1466 
1467 	if (!inode_owner_or_capable(inode))
1468 		return -EACCES;
1469 
1470 	if (get_user(flags, (int __user *)arg))
1471 		return -EFAULT;
1472 
1473 	ret = mnt_want_write_file(filp);
1474 	if (ret)
1475 		return ret;
1476 
1477 	flags = f2fs_mask_flags(inode->i_mode, flags);
1478 
1479 	inode_lock(inode);
1480 
1481 	oldflags = fi->i_flags;
1482 
1483 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1484 		if (!capable(CAP_LINUX_IMMUTABLE)) {
1485 			inode_unlock(inode);
1486 			ret = -EPERM;
1487 			goto out;
1488 		}
1489 	}
1490 
1491 	flags = flags & FS_FL_USER_MODIFIABLE;
1492 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1493 	fi->i_flags = flags;
1494 	inode_unlock(inode);
1495 
1496 	inode->i_ctime = current_time(inode);
1497 	f2fs_set_inode_flags(inode);
1498 out:
1499 	mnt_drop_write_file(filp);
1500 	return ret;
1501 }
1502 
1503 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1504 {
1505 	struct inode *inode = file_inode(filp);
1506 
1507 	return put_user(inode->i_generation, (int __user *)arg);
1508 }
1509 
1510 static int f2fs_ioc_start_atomic_write(struct file *filp)
1511 {
1512 	struct inode *inode = file_inode(filp);
1513 	int ret;
1514 
1515 	if (!inode_owner_or_capable(inode))
1516 		return -EACCES;
1517 
1518 	ret = mnt_want_write_file(filp);
1519 	if (ret)
1520 		return ret;
1521 
1522 	inode_lock(inode);
1523 
1524 	if (f2fs_is_atomic_file(inode))
1525 		goto out;
1526 
1527 	ret = f2fs_convert_inline_inode(inode);
1528 	if (ret)
1529 		goto out;
1530 
1531 	set_inode_flag(inode, FI_ATOMIC_FILE);
1532 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1533 
1534 	if (!get_dirty_pages(inode))
1535 		goto out;
1536 
1537 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1538 		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1539 					inode->i_ino, get_dirty_pages(inode));
1540 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1541 	if (ret)
1542 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1543 out:
1544 	stat_inc_atomic_write(inode);
1545 	stat_update_max_atomic_write(inode);
1546 	inode_unlock(inode);
1547 	mnt_drop_write_file(filp);
1548 	return ret;
1549 }
1550 
1551 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1552 {
1553 	struct inode *inode = file_inode(filp);
1554 	int ret;
1555 
1556 	if (!inode_owner_or_capable(inode))
1557 		return -EACCES;
1558 
1559 	ret = mnt_want_write_file(filp);
1560 	if (ret)
1561 		return ret;
1562 
1563 	inode_lock(inode);
1564 
1565 	if (f2fs_is_volatile_file(inode))
1566 		goto err_out;
1567 
1568 	if (f2fs_is_atomic_file(inode)) {
1569 		ret = commit_inmem_pages(inode);
1570 		if (ret)
1571 			goto err_out;
1572 
1573 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1574 		if (!ret) {
1575 			clear_inode_flag(inode, FI_ATOMIC_FILE);
1576 			stat_dec_atomic_write(inode);
1577 		}
1578 	} else {
1579 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1580 	}
1581 err_out:
1582 	inode_unlock(inode);
1583 	mnt_drop_write_file(filp);
1584 	return ret;
1585 }
1586 
1587 static int f2fs_ioc_start_volatile_write(struct file *filp)
1588 {
1589 	struct inode *inode = file_inode(filp);
1590 	int ret;
1591 
1592 	if (!inode_owner_or_capable(inode))
1593 		return -EACCES;
1594 
1595 	ret = mnt_want_write_file(filp);
1596 	if (ret)
1597 		return ret;
1598 
1599 	inode_lock(inode);
1600 
1601 	if (f2fs_is_volatile_file(inode))
1602 		goto out;
1603 
1604 	ret = f2fs_convert_inline_inode(inode);
1605 	if (ret)
1606 		goto out;
1607 
1608 	set_inode_flag(inode, FI_VOLATILE_FILE);
1609 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1610 out:
1611 	inode_unlock(inode);
1612 	mnt_drop_write_file(filp);
1613 	return ret;
1614 }
1615 
1616 static int f2fs_ioc_release_volatile_write(struct file *filp)
1617 {
1618 	struct inode *inode = file_inode(filp);
1619 	int ret;
1620 
1621 	if (!inode_owner_or_capable(inode))
1622 		return -EACCES;
1623 
1624 	ret = mnt_want_write_file(filp);
1625 	if (ret)
1626 		return ret;
1627 
1628 	inode_lock(inode);
1629 
1630 	if (!f2fs_is_volatile_file(inode))
1631 		goto out;
1632 
1633 	if (!f2fs_is_first_block_written(inode)) {
1634 		ret = truncate_partial_data_page(inode, 0, true);
1635 		goto out;
1636 	}
1637 
1638 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1639 out:
1640 	inode_unlock(inode);
1641 	mnt_drop_write_file(filp);
1642 	return ret;
1643 }
1644 
1645 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1646 {
1647 	struct inode *inode = file_inode(filp);
1648 	int ret;
1649 
1650 	if (!inode_owner_or_capable(inode))
1651 		return -EACCES;
1652 
1653 	ret = mnt_want_write_file(filp);
1654 	if (ret)
1655 		return ret;
1656 
1657 	inode_lock(inode);
1658 
1659 	if (f2fs_is_atomic_file(inode))
1660 		drop_inmem_pages(inode);
1661 	if (f2fs_is_volatile_file(inode)) {
1662 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1663 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1664 	}
1665 
1666 	inode_unlock(inode);
1667 
1668 	mnt_drop_write_file(filp);
1669 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1670 	return ret;
1671 }
1672 
1673 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1674 {
1675 	struct inode *inode = file_inode(filp);
1676 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1677 	struct super_block *sb = sbi->sb;
1678 	__u32 in;
1679 	int ret;
1680 
1681 	if (!capable(CAP_SYS_ADMIN))
1682 		return -EPERM;
1683 
1684 	if (get_user(in, (__u32 __user *)arg))
1685 		return -EFAULT;
1686 
1687 	ret = mnt_want_write_file(filp);
1688 	if (ret)
1689 		return ret;
1690 
1691 	switch (in) {
1692 	case F2FS_GOING_DOWN_FULLSYNC:
1693 		sb = freeze_bdev(sb->s_bdev);
1694 		if (sb && !IS_ERR(sb)) {
1695 			f2fs_stop_checkpoint(sbi, false);
1696 			thaw_bdev(sb->s_bdev, sb);
1697 		}
1698 		break;
1699 	case F2FS_GOING_DOWN_METASYNC:
1700 		/* do checkpoint only */
1701 		f2fs_sync_fs(sb, 1);
1702 		f2fs_stop_checkpoint(sbi, false);
1703 		break;
1704 	case F2FS_GOING_DOWN_NOSYNC:
1705 		f2fs_stop_checkpoint(sbi, false);
1706 		break;
1707 	case F2FS_GOING_DOWN_METAFLUSH:
1708 		sync_meta_pages(sbi, META, LONG_MAX);
1709 		f2fs_stop_checkpoint(sbi, false);
1710 		break;
1711 	default:
1712 		ret = -EINVAL;
1713 		goto out;
1714 	}
1715 	f2fs_update_time(sbi, REQ_TIME);
1716 out:
1717 	mnt_drop_write_file(filp);
1718 	return ret;
1719 }
1720 
1721 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1722 {
1723 	struct inode *inode = file_inode(filp);
1724 	struct super_block *sb = inode->i_sb;
1725 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1726 	struct fstrim_range range;
1727 	int ret;
1728 
1729 	if (!capable(CAP_SYS_ADMIN))
1730 		return -EPERM;
1731 
1732 	if (!blk_queue_discard(q))
1733 		return -EOPNOTSUPP;
1734 
1735 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1736 				sizeof(range)))
1737 		return -EFAULT;
1738 
1739 	ret = mnt_want_write_file(filp);
1740 	if (ret)
1741 		return ret;
1742 
1743 	range.minlen = max((unsigned int)range.minlen,
1744 				q->limits.discard_granularity);
1745 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1746 	mnt_drop_write_file(filp);
1747 	if (ret < 0)
1748 		return ret;
1749 
1750 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1751 				sizeof(range)))
1752 		return -EFAULT;
1753 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1754 	return 0;
1755 }
1756 
1757 static bool uuid_is_nonzero(__u8 u[16])
1758 {
1759 	int i;
1760 
1761 	for (i = 0; i < 16; i++)
1762 		if (u[i])
1763 			return true;
1764 	return false;
1765 }
1766 
1767 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1768 {
1769 	struct inode *inode = file_inode(filp);
1770 
1771 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1772 
1773 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1774 }
1775 
1776 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1777 {
1778 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1779 }
1780 
1781 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1782 {
1783 	struct inode *inode = file_inode(filp);
1784 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1785 	int err;
1786 
1787 	if (!f2fs_sb_has_crypto(inode->i_sb))
1788 		return -EOPNOTSUPP;
1789 
1790 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1791 		goto got_it;
1792 
1793 	err = mnt_want_write_file(filp);
1794 	if (err)
1795 		return err;
1796 
1797 	/* update superblock with uuid */
1798 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1799 
1800 	err = f2fs_commit_super(sbi, false);
1801 	if (err) {
1802 		/* undo new data */
1803 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1804 		mnt_drop_write_file(filp);
1805 		return err;
1806 	}
1807 	mnt_drop_write_file(filp);
1808 got_it:
1809 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1810 									16))
1811 		return -EFAULT;
1812 	return 0;
1813 }
1814 
1815 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1816 {
1817 	struct inode *inode = file_inode(filp);
1818 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1819 	__u32 sync;
1820 	int ret;
1821 
1822 	if (!capable(CAP_SYS_ADMIN))
1823 		return -EPERM;
1824 
1825 	if (get_user(sync, (__u32 __user *)arg))
1826 		return -EFAULT;
1827 
1828 	if (f2fs_readonly(sbi->sb))
1829 		return -EROFS;
1830 
1831 	ret = mnt_want_write_file(filp);
1832 	if (ret)
1833 		return ret;
1834 
1835 	if (!sync) {
1836 		if (!mutex_trylock(&sbi->gc_mutex)) {
1837 			ret = -EBUSY;
1838 			goto out;
1839 		}
1840 	} else {
1841 		mutex_lock(&sbi->gc_mutex);
1842 	}
1843 
1844 	ret = f2fs_gc(sbi, sync, true);
1845 out:
1846 	mnt_drop_write_file(filp);
1847 	return ret;
1848 }
1849 
1850 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1851 {
1852 	struct inode *inode = file_inode(filp);
1853 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1854 	int ret;
1855 
1856 	if (!capable(CAP_SYS_ADMIN))
1857 		return -EPERM;
1858 
1859 	if (f2fs_readonly(sbi->sb))
1860 		return -EROFS;
1861 
1862 	ret = mnt_want_write_file(filp);
1863 	if (ret)
1864 		return ret;
1865 
1866 	ret = f2fs_sync_fs(sbi->sb, 1);
1867 
1868 	mnt_drop_write_file(filp);
1869 	return ret;
1870 }
1871 
1872 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1873 					struct file *filp,
1874 					struct f2fs_defragment *range)
1875 {
1876 	struct inode *inode = file_inode(filp);
1877 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1878 	struct extent_info ei = {0,0,0};
1879 	pgoff_t pg_start, pg_end;
1880 	unsigned int blk_per_seg = sbi->blocks_per_seg;
1881 	unsigned int total = 0, sec_num;
1882 	unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1883 	block_t blk_end = 0;
1884 	bool fragmented = false;
1885 	int err;
1886 
1887 	/* if in-place-update policy is enabled, don't waste time here */
1888 	if (need_inplace_update(inode))
1889 		return -EINVAL;
1890 
1891 	pg_start = range->start >> PAGE_SHIFT;
1892 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
1893 
1894 	f2fs_balance_fs(sbi, true);
1895 
1896 	inode_lock(inode);
1897 
1898 	/* writeback all dirty pages in the range */
1899 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1900 						range->start + range->len - 1);
1901 	if (err)
1902 		goto out;
1903 
1904 	/*
1905 	 * lookup mapping info in extent cache, skip defragmenting if physical
1906 	 * block addresses are continuous.
1907 	 */
1908 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1909 		if (ei.fofs + ei.len >= pg_end)
1910 			goto out;
1911 	}
1912 
1913 	map.m_lblk = pg_start;
1914 
1915 	/*
1916 	 * lookup mapping info in dnode page cache, skip defragmenting if all
1917 	 * physical block addresses are continuous even if there are hole(s)
1918 	 * in logical blocks.
1919 	 */
1920 	while (map.m_lblk < pg_end) {
1921 		map.m_len = pg_end - map.m_lblk;
1922 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1923 		if (err)
1924 			goto out;
1925 
1926 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1927 			map.m_lblk++;
1928 			continue;
1929 		}
1930 
1931 		if (blk_end && blk_end != map.m_pblk) {
1932 			fragmented = true;
1933 			break;
1934 		}
1935 		blk_end = map.m_pblk + map.m_len;
1936 
1937 		map.m_lblk += map.m_len;
1938 	}
1939 
1940 	if (!fragmented)
1941 		goto out;
1942 
1943 	map.m_lblk = pg_start;
1944 	map.m_len = pg_end - pg_start;
1945 
1946 	sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1947 
1948 	/*
1949 	 * make sure there are enough free section for LFS allocation, this can
1950 	 * avoid defragment running in SSR mode when free section are allocated
1951 	 * intensively
1952 	 */
1953 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
1954 		err = -EAGAIN;
1955 		goto out;
1956 	}
1957 
1958 	while (map.m_lblk < pg_end) {
1959 		pgoff_t idx;
1960 		int cnt = 0;
1961 
1962 do_map:
1963 		map.m_len = pg_end - map.m_lblk;
1964 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1965 		if (err)
1966 			goto clear_out;
1967 
1968 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1969 			map.m_lblk++;
1970 			continue;
1971 		}
1972 
1973 		set_inode_flag(inode, FI_DO_DEFRAG);
1974 
1975 		idx = map.m_lblk;
1976 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1977 			struct page *page;
1978 
1979 			page = get_lock_data_page(inode, idx, true);
1980 			if (IS_ERR(page)) {
1981 				err = PTR_ERR(page);
1982 				goto clear_out;
1983 			}
1984 
1985 			set_page_dirty(page);
1986 			f2fs_put_page(page, 1);
1987 
1988 			idx++;
1989 			cnt++;
1990 			total++;
1991 		}
1992 
1993 		map.m_lblk = idx;
1994 
1995 		if (idx < pg_end && cnt < blk_per_seg)
1996 			goto do_map;
1997 
1998 		clear_inode_flag(inode, FI_DO_DEFRAG);
1999 
2000 		err = filemap_fdatawrite(inode->i_mapping);
2001 		if (err)
2002 			goto out;
2003 	}
2004 clear_out:
2005 	clear_inode_flag(inode, FI_DO_DEFRAG);
2006 out:
2007 	inode_unlock(inode);
2008 	if (!err)
2009 		range->len = (u64)total << PAGE_SHIFT;
2010 	return err;
2011 }
2012 
2013 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2014 {
2015 	struct inode *inode = file_inode(filp);
2016 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2017 	struct f2fs_defragment range;
2018 	int err;
2019 
2020 	if (!capable(CAP_SYS_ADMIN))
2021 		return -EPERM;
2022 
2023 	if (!S_ISREG(inode->i_mode))
2024 		return -EINVAL;
2025 
2026 	err = mnt_want_write_file(filp);
2027 	if (err)
2028 		return err;
2029 
2030 	if (f2fs_readonly(sbi->sb)) {
2031 		err = -EROFS;
2032 		goto out;
2033 	}
2034 
2035 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2036 							sizeof(range))) {
2037 		err = -EFAULT;
2038 		goto out;
2039 	}
2040 
2041 	/* verify alignment of offset & size */
2042 	if (range.start & (F2FS_BLKSIZE - 1) ||
2043 		range.len & (F2FS_BLKSIZE - 1)) {
2044 		err = -EINVAL;
2045 		goto out;
2046 	}
2047 
2048 	err = f2fs_defragment_range(sbi, filp, &range);
2049 	f2fs_update_time(sbi, REQ_TIME);
2050 	if (err < 0)
2051 		goto out;
2052 
2053 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2054 							sizeof(range)))
2055 		err = -EFAULT;
2056 out:
2057 	mnt_drop_write_file(filp);
2058 	return err;
2059 }
2060 
2061 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2062 			struct file *file_out, loff_t pos_out, size_t len)
2063 {
2064 	struct inode *src = file_inode(file_in);
2065 	struct inode *dst = file_inode(file_out);
2066 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2067 	size_t olen = len, dst_max_i_size = 0;
2068 	size_t dst_osize;
2069 	int ret;
2070 
2071 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2072 				src->i_sb != dst->i_sb)
2073 		return -EXDEV;
2074 
2075 	if (unlikely(f2fs_readonly(src->i_sb)))
2076 		return -EROFS;
2077 
2078 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2079 		return -EINVAL;
2080 
2081 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2082 		return -EOPNOTSUPP;
2083 
2084 	if (src == dst) {
2085 		if (pos_in == pos_out)
2086 			return 0;
2087 		if (pos_out > pos_in && pos_out < pos_in + len)
2088 			return -EINVAL;
2089 	}
2090 
2091 	inode_lock(src);
2092 	if (src != dst) {
2093 		if (!inode_trylock(dst)) {
2094 			ret = -EBUSY;
2095 			goto out;
2096 		}
2097 	}
2098 
2099 	ret = -EINVAL;
2100 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2101 		goto out_unlock;
2102 	if (len == 0)
2103 		olen = len = src->i_size - pos_in;
2104 	if (pos_in + len == src->i_size)
2105 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2106 	if (len == 0) {
2107 		ret = 0;
2108 		goto out_unlock;
2109 	}
2110 
2111 	dst_osize = dst->i_size;
2112 	if (pos_out + olen > dst->i_size)
2113 		dst_max_i_size = pos_out + olen;
2114 
2115 	/* verify the end result is block aligned */
2116 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2117 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2118 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2119 		goto out_unlock;
2120 
2121 	ret = f2fs_convert_inline_inode(src);
2122 	if (ret)
2123 		goto out_unlock;
2124 
2125 	ret = f2fs_convert_inline_inode(dst);
2126 	if (ret)
2127 		goto out_unlock;
2128 
2129 	/* write out all dirty pages from offset */
2130 	ret = filemap_write_and_wait_range(src->i_mapping,
2131 					pos_in, pos_in + len);
2132 	if (ret)
2133 		goto out_unlock;
2134 
2135 	ret = filemap_write_and_wait_range(dst->i_mapping,
2136 					pos_out, pos_out + len);
2137 	if (ret)
2138 		goto out_unlock;
2139 
2140 	f2fs_balance_fs(sbi, true);
2141 	f2fs_lock_op(sbi);
2142 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2143 				pos_out >> F2FS_BLKSIZE_BITS,
2144 				len >> F2FS_BLKSIZE_BITS, false);
2145 
2146 	if (!ret) {
2147 		if (dst_max_i_size)
2148 			f2fs_i_size_write(dst, dst_max_i_size);
2149 		else if (dst_osize != dst->i_size)
2150 			f2fs_i_size_write(dst, dst_osize);
2151 	}
2152 	f2fs_unlock_op(sbi);
2153 out_unlock:
2154 	if (src != dst)
2155 		inode_unlock(dst);
2156 out:
2157 	inode_unlock(src);
2158 	return ret;
2159 }
2160 
2161 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2162 {
2163 	struct f2fs_move_range range;
2164 	struct fd dst;
2165 	int err;
2166 
2167 	if (!(filp->f_mode & FMODE_READ) ||
2168 			!(filp->f_mode & FMODE_WRITE))
2169 		return -EBADF;
2170 
2171 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2172 							sizeof(range)))
2173 		return -EFAULT;
2174 
2175 	dst = fdget(range.dst_fd);
2176 	if (!dst.file)
2177 		return -EBADF;
2178 
2179 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2180 		err = -EBADF;
2181 		goto err_out;
2182 	}
2183 
2184 	err = mnt_want_write_file(filp);
2185 	if (err)
2186 		goto err_out;
2187 
2188 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2189 					range.pos_out, range.len);
2190 
2191 	mnt_drop_write_file(filp);
2192 
2193 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2194 						&range, sizeof(range)))
2195 		err = -EFAULT;
2196 err_out:
2197 	fdput(dst);
2198 	return err;
2199 }
2200 
2201 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2202 {
2203 	switch (cmd) {
2204 	case F2FS_IOC_GETFLAGS:
2205 		return f2fs_ioc_getflags(filp, arg);
2206 	case F2FS_IOC_SETFLAGS:
2207 		return f2fs_ioc_setflags(filp, arg);
2208 	case F2FS_IOC_GETVERSION:
2209 		return f2fs_ioc_getversion(filp, arg);
2210 	case F2FS_IOC_START_ATOMIC_WRITE:
2211 		return f2fs_ioc_start_atomic_write(filp);
2212 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2213 		return f2fs_ioc_commit_atomic_write(filp);
2214 	case F2FS_IOC_START_VOLATILE_WRITE:
2215 		return f2fs_ioc_start_volatile_write(filp);
2216 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2217 		return f2fs_ioc_release_volatile_write(filp);
2218 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2219 		return f2fs_ioc_abort_volatile_write(filp);
2220 	case F2FS_IOC_SHUTDOWN:
2221 		return f2fs_ioc_shutdown(filp, arg);
2222 	case FITRIM:
2223 		return f2fs_ioc_fitrim(filp, arg);
2224 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2225 		return f2fs_ioc_set_encryption_policy(filp, arg);
2226 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2227 		return f2fs_ioc_get_encryption_policy(filp, arg);
2228 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2229 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2230 	case F2FS_IOC_GARBAGE_COLLECT:
2231 		return f2fs_ioc_gc(filp, arg);
2232 	case F2FS_IOC_WRITE_CHECKPOINT:
2233 		return f2fs_ioc_write_checkpoint(filp, arg);
2234 	case F2FS_IOC_DEFRAGMENT:
2235 		return f2fs_ioc_defragment(filp, arg);
2236 	case F2FS_IOC_MOVE_RANGE:
2237 		return f2fs_ioc_move_range(filp, arg);
2238 	default:
2239 		return -ENOTTY;
2240 	}
2241 }
2242 
2243 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2244 {
2245 	struct file *file = iocb->ki_filp;
2246 	struct inode *inode = file_inode(file);
2247 	struct blk_plug plug;
2248 	ssize_t ret;
2249 
2250 	if (f2fs_encrypted_inode(inode) &&
2251 				!fscrypt_has_encryption_key(inode) &&
2252 				fscrypt_get_encryption_info(inode))
2253 		return -EACCES;
2254 
2255 	inode_lock(inode);
2256 	ret = generic_write_checks(iocb, from);
2257 	if (ret > 0) {
2258 		int err;
2259 
2260 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2261 			set_inode_flag(inode, FI_NO_PREALLOC);
2262 
2263 		err = f2fs_preallocate_blocks(iocb, from);
2264 		if (err) {
2265 			inode_unlock(inode);
2266 			return err;
2267 		}
2268 		blk_start_plug(&plug);
2269 		ret = __generic_file_write_iter(iocb, from);
2270 		blk_finish_plug(&plug);
2271 		clear_inode_flag(inode, FI_NO_PREALLOC);
2272 	}
2273 	inode_unlock(inode);
2274 
2275 	if (ret > 0)
2276 		ret = generic_write_sync(iocb, ret);
2277 	return ret;
2278 }
2279 
2280 #ifdef CONFIG_COMPAT
2281 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2282 {
2283 	switch (cmd) {
2284 	case F2FS_IOC32_GETFLAGS:
2285 		cmd = F2FS_IOC_GETFLAGS;
2286 		break;
2287 	case F2FS_IOC32_SETFLAGS:
2288 		cmd = F2FS_IOC_SETFLAGS;
2289 		break;
2290 	case F2FS_IOC32_GETVERSION:
2291 		cmd = F2FS_IOC_GETVERSION;
2292 		break;
2293 	case F2FS_IOC_START_ATOMIC_WRITE:
2294 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2295 	case F2FS_IOC_START_VOLATILE_WRITE:
2296 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2297 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2298 	case F2FS_IOC_SHUTDOWN:
2299 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2300 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2301 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2302 	case F2FS_IOC_GARBAGE_COLLECT:
2303 	case F2FS_IOC_WRITE_CHECKPOINT:
2304 	case F2FS_IOC_DEFRAGMENT:
2305 		break;
2306 	case F2FS_IOC_MOVE_RANGE:
2307 		break;
2308 	default:
2309 		return -ENOIOCTLCMD;
2310 	}
2311 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2312 }
2313 #endif
2314 
2315 const struct file_operations f2fs_file_operations = {
2316 	.llseek		= f2fs_llseek,
2317 	.read_iter	= generic_file_read_iter,
2318 	.write_iter	= f2fs_file_write_iter,
2319 	.open		= f2fs_file_open,
2320 	.release	= f2fs_release_file,
2321 	.mmap		= f2fs_file_mmap,
2322 	.fsync		= f2fs_sync_file,
2323 	.fallocate	= f2fs_fallocate,
2324 	.unlocked_ioctl	= f2fs_ioctl,
2325 #ifdef CONFIG_COMPAT
2326 	.compat_ioctl	= f2fs_compat_ioctl,
2327 #endif
2328 	.splice_read	= generic_file_splice_read,
2329 	.splice_write	= iter_file_splice_write,
2330 };
2331