1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "xattr.h" 29 #include "acl.h" 30 #include "gc.h" 31 #include "trace.h" 32 #include <trace/events/f2fs.h> 33 34 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 35 { 36 struct inode *inode = file_inode(vmf->vma->vm_file); 37 vm_fault_t ret; 38 39 down_read(&F2FS_I(inode)->i_mmap_sem); 40 ret = filemap_fault(vmf); 41 up_read(&F2FS_I(inode)->i_mmap_sem); 42 43 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 44 45 return ret; 46 } 47 48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 49 { 50 struct page *page = vmf->page; 51 struct inode *inode = file_inode(vmf->vma->vm_file); 52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 53 struct dnode_of_data dn; 54 bool need_alloc = true; 55 int err = 0; 56 57 if (unlikely(f2fs_cp_error(sbi))) { 58 err = -EIO; 59 goto err; 60 } 61 62 if (!f2fs_is_checkpoint_ready(sbi)) { 63 err = -ENOSPC; 64 goto err; 65 } 66 67 #ifdef CONFIG_F2FS_FS_COMPRESSION 68 if (f2fs_compressed_file(inode)) { 69 int ret = f2fs_is_compressed_cluster(inode, page->index); 70 71 if (ret < 0) { 72 err = ret; 73 goto err; 74 } else if (ret) { 75 if (ret < F2FS_I(inode)->i_cluster_size) { 76 err = -EAGAIN; 77 goto err; 78 } 79 need_alloc = false; 80 } 81 } 82 #endif 83 /* should do out of any locked page */ 84 if (need_alloc) 85 f2fs_balance_fs(sbi, true); 86 87 sb_start_pagefault(inode->i_sb); 88 89 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 90 91 file_update_time(vmf->vma->vm_file); 92 down_read(&F2FS_I(inode)->i_mmap_sem); 93 lock_page(page); 94 if (unlikely(page->mapping != inode->i_mapping || 95 page_offset(page) > i_size_read(inode) || 96 !PageUptodate(page))) { 97 unlock_page(page); 98 err = -EFAULT; 99 goto out_sem; 100 } 101 102 if (need_alloc) { 103 /* block allocation */ 104 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 105 set_new_dnode(&dn, inode, NULL, NULL, 0); 106 err = f2fs_get_block(&dn, page->index); 107 f2fs_put_dnode(&dn); 108 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 109 } 110 111 #ifdef CONFIG_F2FS_FS_COMPRESSION 112 if (!need_alloc) { 113 set_new_dnode(&dn, inode, NULL, NULL, 0); 114 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 115 f2fs_put_dnode(&dn); 116 } 117 #endif 118 if (err) { 119 unlock_page(page); 120 goto out_sem; 121 } 122 123 f2fs_wait_on_page_writeback(page, DATA, false, true); 124 125 /* wait for GCed page writeback via META_MAPPING */ 126 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 127 128 /* 129 * check to see if the page is mapped already (no holes) 130 */ 131 if (PageMappedToDisk(page)) 132 goto out_sem; 133 134 /* page is wholly or partially inside EOF */ 135 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 136 i_size_read(inode)) { 137 loff_t offset; 138 139 offset = i_size_read(inode) & ~PAGE_MASK; 140 zero_user_segment(page, offset, PAGE_SIZE); 141 } 142 set_page_dirty(page); 143 if (!PageUptodate(page)) 144 SetPageUptodate(page); 145 146 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 147 f2fs_update_time(sbi, REQ_TIME); 148 149 trace_f2fs_vm_page_mkwrite(page, DATA); 150 out_sem: 151 up_read(&F2FS_I(inode)->i_mmap_sem); 152 153 sb_end_pagefault(inode->i_sb); 154 err: 155 return block_page_mkwrite_return(err); 156 } 157 158 static const struct vm_operations_struct f2fs_file_vm_ops = { 159 .fault = f2fs_filemap_fault, 160 .map_pages = filemap_map_pages, 161 .page_mkwrite = f2fs_vm_page_mkwrite, 162 }; 163 164 static int get_parent_ino(struct inode *inode, nid_t *pino) 165 { 166 struct dentry *dentry; 167 168 inode = igrab(inode); 169 dentry = d_find_any_alias(inode); 170 iput(inode); 171 if (!dentry) 172 return 0; 173 174 *pino = parent_ino(dentry); 175 dput(dentry); 176 return 1; 177 } 178 179 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 180 { 181 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 182 enum cp_reason_type cp_reason = CP_NO_NEEDED; 183 184 if (!S_ISREG(inode->i_mode)) 185 cp_reason = CP_NON_REGULAR; 186 else if (f2fs_compressed_file(inode)) 187 cp_reason = CP_COMPRESSED; 188 else if (inode->i_nlink != 1) 189 cp_reason = CP_HARDLINK; 190 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 191 cp_reason = CP_SB_NEED_CP; 192 else if (file_wrong_pino(inode)) 193 cp_reason = CP_WRONG_PINO; 194 else if (!f2fs_space_for_roll_forward(sbi)) 195 cp_reason = CP_NO_SPC_ROLL; 196 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 197 cp_reason = CP_NODE_NEED_CP; 198 else if (test_opt(sbi, FASTBOOT)) 199 cp_reason = CP_FASTBOOT_MODE; 200 else if (F2FS_OPTION(sbi).active_logs == 2) 201 cp_reason = CP_SPEC_LOG_NUM; 202 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 203 f2fs_need_dentry_mark(sbi, inode->i_ino) && 204 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 205 TRANS_DIR_INO)) 206 cp_reason = CP_RECOVER_DIR; 207 208 return cp_reason; 209 } 210 211 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 212 { 213 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 214 bool ret = false; 215 /* But we need to avoid that there are some inode updates */ 216 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 217 ret = true; 218 f2fs_put_page(i, 0); 219 return ret; 220 } 221 222 static void try_to_fix_pino(struct inode *inode) 223 { 224 struct f2fs_inode_info *fi = F2FS_I(inode); 225 nid_t pino; 226 227 down_write(&fi->i_sem); 228 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 229 get_parent_ino(inode, &pino)) { 230 f2fs_i_pino_write(inode, pino); 231 file_got_pino(inode); 232 } 233 up_write(&fi->i_sem); 234 } 235 236 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 237 int datasync, bool atomic) 238 { 239 struct inode *inode = file->f_mapping->host; 240 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 241 nid_t ino = inode->i_ino; 242 int ret = 0; 243 enum cp_reason_type cp_reason = 0; 244 struct writeback_control wbc = { 245 .sync_mode = WB_SYNC_ALL, 246 .nr_to_write = LONG_MAX, 247 .for_reclaim = 0, 248 }; 249 unsigned int seq_id = 0; 250 251 if (unlikely(f2fs_readonly(inode->i_sb) || 252 is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 253 return 0; 254 255 trace_f2fs_sync_file_enter(inode); 256 257 if (S_ISDIR(inode->i_mode)) 258 goto go_write; 259 260 /* if fdatasync is triggered, let's do in-place-update */ 261 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 262 set_inode_flag(inode, FI_NEED_IPU); 263 ret = file_write_and_wait_range(file, start, end); 264 clear_inode_flag(inode, FI_NEED_IPU); 265 266 if (ret) { 267 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 268 return ret; 269 } 270 271 /* if the inode is dirty, let's recover all the time */ 272 if (!f2fs_skip_inode_update(inode, datasync)) { 273 f2fs_write_inode(inode, NULL); 274 goto go_write; 275 } 276 277 /* 278 * if there is no written data, don't waste time to write recovery info. 279 */ 280 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 281 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 282 283 /* it may call write_inode just prior to fsync */ 284 if (need_inode_page_update(sbi, ino)) 285 goto go_write; 286 287 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 288 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 289 goto flush_out; 290 goto out; 291 } 292 go_write: 293 /* 294 * Both of fdatasync() and fsync() are able to be recovered from 295 * sudden-power-off. 296 */ 297 down_read(&F2FS_I(inode)->i_sem); 298 cp_reason = need_do_checkpoint(inode); 299 up_read(&F2FS_I(inode)->i_sem); 300 301 if (cp_reason) { 302 /* all the dirty node pages should be flushed for POR */ 303 ret = f2fs_sync_fs(inode->i_sb, 1); 304 305 /* 306 * We've secured consistency through sync_fs. Following pino 307 * will be used only for fsynced inodes after checkpoint. 308 */ 309 try_to_fix_pino(inode); 310 clear_inode_flag(inode, FI_APPEND_WRITE); 311 clear_inode_flag(inode, FI_UPDATE_WRITE); 312 goto out; 313 } 314 sync_nodes: 315 atomic_inc(&sbi->wb_sync_req[NODE]); 316 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 317 atomic_dec(&sbi->wb_sync_req[NODE]); 318 if (ret) 319 goto out; 320 321 /* if cp_error was enabled, we should avoid infinite loop */ 322 if (unlikely(f2fs_cp_error(sbi))) { 323 ret = -EIO; 324 goto out; 325 } 326 327 if (f2fs_need_inode_block_update(sbi, ino)) { 328 f2fs_mark_inode_dirty_sync(inode, true); 329 f2fs_write_inode(inode, NULL); 330 goto sync_nodes; 331 } 332 333 /* 334 * If it's atomic_write, it's just fine to keep write ordering. So 335 * here we don't need to wait for node write completion, since we use 336 * node chain which serializes node blocks. If one of node writes are 337 * reordered, we can see simply broken chain, resulting in stopping 338 * roll-forward recovery. It means we'll recover all or none node blocks 339 * given fsync mark. 340 */ 341 if (!atomic) { 342 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 343 if (ret) 344 goto out; 345 } 346 347 /* once recovery info is written, don't need to tack this */ 348 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 349 clear_inode_flag(inode, FI_APPEND_WRITE); 350 flush_out: 351 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 352 ret = f2fs_issue_flush(sbi, inode->i_ino); 353 if (!ret) { 354 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 355 clear_inode_flag(inode, FI_UPDATE_WRITE); 356 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 357 } 358 f2fs_update_time(sbi, REQ_TIME); 359 out: 360 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 361 f2fs_trace_ios(NULL, 1); 362 return ret; 363 } 364 365 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 366 { 367 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 368 return -EIO; 369 return f2fs_do_sync_file(file, start, end, datasync, false); 370 } 371 372 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 373 pgoff_t pgofs, int whence) 374 { 375 struct page *page; 376 int nr_pages; 377 378 if (whence != SEEK_DATA) 379 return 0; 380 381 /* find first dirty page index */ 382 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY, 383 1, &page); 384 if (!nr_pages) 385 return ULONG_MAX; 386 pgofs = page->index; 387 put_page(page); 388 return pgofs; 389 } 390 391 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr, 392 pgoff_t dirty, pgoff_t pgofs, int whence) 393 { 394 switch (whence) { 395 case SEEK_DATA: 396 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 397 __is_valid_data_blkaddr(blkaddr)) 398 return true; 399 break; 400 case SEEK_HOLE: 401 if (blkaddr == NULL_ADDR) 402 return true; 403 break; 404 } 405 return false; 406 } 407 408 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 409 { 410 struct inode *inode = file->f_mapping->host; 411 loff_t maxbytes = inode->i_sb->s_maxbytes; 412 struct dnode_of_data dn; 413 pgoff_t pgofs, end_offset, dirty; 414 loff_t data_ofs = offset; 415 loff_t isize; 416 int err = 0; 417 418 inode_lock(inode); 419 420 isize = i_size_read(inode); 421 if (offset >= isize) 422 goto fail; 423 424 /* handle inline data case */ 425 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 426 if (whence == SEEK_HOLE) 427 data_ofs = isize; 428 goto found; 429 } 430 431 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 432 433 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 434 435 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 436 set_new_dnode(&dn, inode, NULL, NULL, 0); 437 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 438 if (err && err != -ENOENT) { 439 goto fail; 440 } else if (err == -ENOENT) { 441 /* direct node does not exists */ 442 if (whence == SEEK_DATA) { 443 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 444 continue; 445 } else { 446 goto found; 447 } 448 } 449 450 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 451 452 /* find data/hole in dnode block */ 453 for (; dn.ofs_in_node < end_offset; 454 dn.ofs_in_node++, pgofs++, 455 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 456 block_t blkaddr; 457 458 blkaddr = f2fs_data_blkaddr(&dn); 459 460 if (__is_valid_data_blkaddr(blkaddr) && 461 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 462 blkaddr, DATA_GENERIC_ENHANCE)) { 463 f2fs_put_dnode(&dn); 464 goto fail; 465 } 466 467 if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty, 468 pgofs, whence)) { 469 f2fs_put_dnode(&dn); 470 goto found; 471 } 472 } 473 f2fs_put_dnode(&dn); 474 } 475 476 if (whence == SEEK_DATA) 477 goto fail; 478 found: 479 if (whence == SEEK_HOLE && data_ofs > isize) 480 data_ofs = isize; 481 inode_unlock(inode); 482 return vfs_setpos(file, data_ofs, maxbytes); 483 fail: 484 inode_unlock(inode); 485 return -ENXIO; 486 } 487 488 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 489 { 490 struct inode *inode = file->f_mapping->host; 491 loff_t maxbytes = inode->i_sb->s_maxbytes; 492 493 switch (whence) { 494 case SEEK_SET: 495 case SEEK_CUR: 496 case SEEK_END: 497 return generic_file_llseek_size(file, offset, whence, 498 maxbytes, i_size_read(inode)); 499 case SEEK_DATA: 500 case SEEK_HOLE: 501 if (offset < 0) 502 return -ENXIO; 503 return f2fs_seek_block(file, offset, whence); 504 } 505 506 return -EINVAL; 507 } 508 509 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 510 { 511 struct inode *inode = file_inode(file); 512 int err; 513 514 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 515 return -EIO; 516 517 if (!f2fs_is_compress_backend_ready(inode)) 518 return -EOPNOTSUPP; 519 520 /* we don't need to use inline_data strictly */ 521 err = f2fs_convert_inline_inode(inode); 522 if (err) 523 return err; 524 525 file_accessed(file); 526 vma->vm_ops = &f2fs_file_vm_ops; 527 set_inode_flag(inode, FI_MMAP_FILE); 528 return 0; 529 } 530 531 static int f2fs_file_open(struct inode *inode, struct file *filp) 532 { 533 int err = fscrypt_file_open(inode, filp); 534 535 if (err) 536 return err; 537 538 if (!f2fs_is_compress_backend_ready(inode)) 539 return -EOPNOTSUPP; 540 541 err = fsverity_file_open(inode, filp); 542 if (err) 543 return err; 544 545 filp->f_mode |= FMODE_NOWAIT; 546 547 return dquot_file_open(inode, filp); 548 } 549 550 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 551 { 552 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 553 struct f2fs_node *raw_node; 554 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 555 __le32 *addr; 556 int base = 0; 557 bool compressed_cluster = false; 558 int cluster_index = 0, valid_blocks = 0; 559 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 560 561 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 562 base = get_extra_isize(dn->inode); 563 564 raw_node = F2FS_NODE(dn->node_page); 565 addr = blkaddr_in_node(raw_node) + base + ofs; 566 567 /* Assumption: truncateion starts with cluster */ 568 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 569 block_t blkaddr = le32_to_cpu(*addr); 570 571 if (f2fs_compressed_file(dn->inode) && 572 !(cluster_index & (cluster_size - 1))) { 573 if (compressed_cluster) 574 f2fs_i_compr_blocks_update(dn->inode, 575 valid_blocks, false); 576 compressed_cluster = (blkaddr == COMPRESS_ADDR); 577 valid_blocks = 0; 578 } 579 580 if (blkaddr == NULL_ADDR) 581 continue; 582 583 dn->data_blkaddr = NULL_ADDR; 584 f2fs_set_data_blkaddr(dn); 585 586 if (__is_valid_data_blkaddr(blkaddr)) { 587 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 588 DATA_GENERIC_ENHANCE)) 589 continue; 590 if (compressed_cluster) 591 valid_blocks++; 592 } 593 594 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 595 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 596 597 f2fs_invalidate_blocks(sbi, blkaddr); 598 nr_free++; 599 } 600 601 if (compressed_cluster) 602 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 603 604 if (nr_free) { 605 pgoff_t fofs; 606 /* 607 * once we invalidate valid blkaddr in range [ofs, ofs + count], 608 * we will invalidate all blkaddr in the whole range. 609 */ 610 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 611 dn->inode) + ofs; 612 f2fs_update_extent_cache_range(dn, fofs, 0, len); 613 dec_valid_block_count(sbi, dn->inode, nr_free); 614 } 615 dn->ofs_in_node = ofs; 616 617 f2fs_update_time(sbi, REQ_TIME); 618 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 619 dn->ofs_in_node, nr_free); 620 } 621 622 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 623 { 624 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 625 } 626 627 static int truncate_partial_data_page(struct inode *inode, u64 from, 628 bool cache_only) 629 { 630 loff_t offset = from & (PAGE_SIZE - 1); 631 pgoff_t index = from >> PAGE_SHIFT; 632 struct address_space *mapping = inode->i_mapping; 633 struct page *page; 634 635 if (!offset && !cache_only) 636 return 0; 637 638 if (cache_only) { 639 page = find_lock_page(mapping, index); 640 if (page && PageUptodate(page)) 641 goto truncate_out; 642 f2fs_put_page(page, 1); 643 return 0; 644 } 645 646 if (f2fs_compressed_file(inode)) 647 return 0; 648 649 page = f2fs_get_lock_data_page(inode, index, true); 650 if (IS_ERR(page)) 651 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 652 truncate_out: 653 f2fs_wait_on_page_writeback(page, DATA, true, true); 654 zero_user(page, offset, PAGE_SIZE - offset); 655 656 /* An encrypted inode should have a key and truncate the last page. */ 657 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 658 if (!cache_only) 659 set_page_dirty(page); 660 f2fs_put_page(page, 1); 661 return 0; 662 } 663 664 static int do_truncate_blocks(struct inode *inode, u64 from, bool lock) 665 { 666 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 667 struct dnode_of_data dn; 668 pgoff_t free_from; 669 int count = 0, err = 0; 670 struct page *ipage; 671 bool truncate_page = false; 672 673 trace_f2fs_truncate_blocks_enter(inode, from); 674 675 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 676 677 if (free_from >= sbi->max_file_blocks) 678 goto free_partial; 679 680 if (lock) 681 f2fs_lock_op(sbi); 682 683 ipage = f2fs_get_node_page(sbi, inode->i_ino); 684 if (IS_ERR(ipage)) { 685 err = PTR_ERR(ipage); 686 goto out; 687 } 688 689 if (f2fs_has_inline_data(inode)) { 690 f2fs_truncate_inline_inode(inode, ipage, from); 691 f2fs_put_page(ipage, 1); 692 truncate_page = true; 693 goto out; 694 } 695 696 set_new_dnode(&dn, inode, ipage, NULL, 0); 697 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 698 if (err) { 699 if (err == -ENOENT) 700 goto free_next; 701 goto out; 702 } 703 704 count = ADDRS_PER_PAGE(dn.node_page, inode); 705 706 count -= dn.ofs_in_node; 707 f2fs_bug_on(sbi, count < 0); 708 709 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 710 f2fs_truncate_data_blocks_range(&dn, count); 711 free_from += count; 712 } 713 714 f2fs_put_dnode(&dn); 715 free_next: 716 err = f2fs_truncate_inode_blocks(inode, free_from); 717 out: 718 if (lock) 719 f2fs_unlock_op(sbi); 720 free_partial: 721 /* lastly zero out the first data page */ 722 if (!err) 723 err = truncate_partial_data_page(inode, from, truncate_page); 724 725 trace_f2fs_truncate_blocks_exit(inode, err); 726 return err; 727 } 728 729 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 730 { 731 u64 free_from = from; 732 733 /* 734 * for compressed file, only support cluster size 735 * aligned truncation. 736 */ 737 if (f2fs_compressed_file(inode)) { 738 size_t cluster_shift = PAGE_SHIFT + 739 F2FS_I(inode)->i_log_cluster_size; 740 size_t cluster_mask = (1 << cluster_shift) - 1; 741 742 free_from = from >> cluster_shift; 743 if (from & cluster_mask) 744 free_from++; 745 free_from <<= cluster_shift; 746 } 747 748 return do_truncate_blocks(inode, free_from, lock); 749 } 750 751 int f2fs_truncate(struct inode *inode) 752 { 753 int err; 754 755 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 756 return -EIO; 757 758 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 759 S_ISLNK(inode->i_mode))) 760 return 0; 761 762 trace_f2fs_truncate(inode); 763 764 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 765 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 766 return -EIO; 767 } 768 769 /* we should check inline_data size */ 770 if (!f2fs_may_inline_data(inode)) { 771 err = f2fs_convert_inline_inode(inode); 772 if (err) 773 return err; 774 } 775 776 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 777 if (err) 778 return err; 779 780 inode->i_mtime = inode->i_ctime = current_time(inode); 781 f2fs_mark_inode_dirty_sync(inode, false); 782 return 0; 783 } 784 785 int f2fs_getattr(const struct path *path, struct kstat *stat, 786 u32 request_mask, unsigned int query_flags) 787 { 788 struct inode *inode = d_inode(path->dentry); 789 struct f2fs_inode_info *fi = F2FS_I(inode); 790 struct f2fs_inode *ri; 791 unsigned int flags; 792 793 if (f2fs_has_extra_attr(inode) && 794 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 795 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 796 stat->result_mask |= STATX_BTIME; 797 stat->btime.tv_sec = fi->i_crtime.tv_sec; 798 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 799 } 800 801 flags = fi->i_flags; 802 if (flags & F2FS_COMPR_FL) 803 stat->attributes |= STATX_ATTR_COMPRESSED; 804 if (flags & F2FS_APPEND_FL) 805 stat->attributes |= STATX_ATTR_APPEND; 806 if (IS_ENCRYPTED(inode)) 807 stat->attributes |= STATX_ATTR_ENCRYPTED; 808 if (flags & F2FS_IMMUTABLE_FL) 809 stat->attributes |= STATX_ATTR_IMMUTABLE; 810 if (flags & F2FS_NODUMP_FL) 811 stat->attributes |= STATX_ATTR_NODUMP; 812 if (IS_VERITY(inode)) 813 stat->attributes |= STATX_ATTR_VERITY; 814 815 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 816 STATX_ATTR_APPEND | 817 STATX_ATTR_ENCRYPTED | 818 STATX_ATTR_IMMUTABLE | 819 STATX_ATTR_NODUMP | 820 STATX_ATTR_VERITY); 821 822 generic_fillattr(inode, stat); 823 824 /* we need to show initial sectors used for inline_data/dentries */ 825 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 826 f2fs_has_inline_dentry(inode)) 827 stat->blocks += (stat->size + 511) >> 9; 828 829 return 0; 830 } 831 832 #ifdef CONFIG_F2FS_FS_POSIX_ACL 833 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 834 { 835 unsigned int ia_valid = attr->ia_valid; 836 837 if (ia_valid & ATTR_UID) 838 inode->i_uid = attr->ia_uid; 839 if (ia_valid & ATTR_GID) 840 inode->i_gid = attr->ia_gid; 841 if (ia_valid & ATTR_ATIME) 842 inode->i_atime = attr->ia_atime; 843 if (ia_valid & ATTR_MTIME) 844 inode->i_mtime = attr->ia_mtime; 845 if (ia_valid & ATTR_CTIME) 846 inode->i_ctime = attr->ia_ctime; 847 if (ia_valid & ATTR_MODE) { 848 umode_t mode = attr->ia_mode; 849 850 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 851 mode &= ~S_ISGID; 852 set_acl_inode(inode, mode); 853 } 854 } 855 #else 856 #define __setattr_copy setattr_copy 857 #endif 858 859 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 860 { 861 struct inode *inode = d_inode(dentry); 862 int err; 863 864 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 865 return -EIO; 866 867 if ((attr->ia_valid & ATTR_SIZE) && 868 !f2fs_is_compress_backend_ready(inode)) 869 return -EOPNOTSUPP; 870 871 err = setattr_prepare(dentry, attr); 872 if (err) 873 return err; 874 875 err = fscrypt_prepare_setattr(dentry, attr); 876 if (err) 877 return err; 878 879 err = fsverity_prepare_setattr(dentry, attr); 880 if (err) 881 return err; 882 883 if (is_quota_modification(inode, attr)) { 884 err = dquot_initialize(inode); 885 if (err) 886 return err; 887 } 888 if ((attr->ia_valid & ATTR_UID && 889 !uid_eq(attr->ia_uid, inode->i_uid)) || 890 (attr->ia_valid & ATTR_GID && 891 !gid_eq(attr->ia_gid, inode->i_gid))) { 892 f2fs_lock_op(F2FS_I_SB(inode)); 893 err = dquot_transfer(inode, attr); 894 if (err) { 895 set_sbi_flag(F2FS_I_SB(inode), 896 SBI_QUOTA_NEED_REPAIR); 897 f2fs_unlock_op(F2FS_I_SB(inode)); 898 return err; 899 } 900 /* 901 * update uid/gid under lock_op(), so that dquot and inode can 902 * be updated atomically. 903 */ 904 if (attr->ia_valid & ATTR_UID) 905 inode->i_uid = attr->ia_uid; 906 if (attr->ia_valid & ATTR_GID) 907 inode->i_gid = attr->ia_gid; 908 f2fs_mark_inode_dirty_sync(inode, true); 909 f2fs_unlock_op(F2FS_I_SB(inode)); 910 } 911 912 if (attr->ia_valid & ATTR_SIZE) { 913 loff_t old_size = i_size_read(inode); 914 915 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 916 /* 917 * should convert inline inode before i_size_write to 918 * keep smaller than inline_data size with inline flag. 919 */ 920 err = f2fs_convert_inline_inode(inode); 921 if (err) 922 return err; 923 } 924 925 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 926 down_write(&F2FS_I(inode)->i_mmap_sem); 927 928 truncate_setsize(inode, attr->ia_size); 929 930 if (attr->ia_size <= old_size) 931 err = f2fs_truncate(inode); 932 /* 933 * do not trim all blocks after i_size if target size is 934 * larger than i_size. 935 */ 936 up_write(&F2FS_I(inode)->i_mmap_sem); 937 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 938 if (err) 939 return err; 940 941 spin_lock(&F2FS_I(inode)->i_size_lock); 942 inode->i_mtime = inode->i_ctime = current_time(inode); 943 F2FS_I(inode)->last_disk_size = i_size_read(inode); 944 spin_unlock(&F2FS_I(inode)->i_size_lock); 945 } 946 947 __setattr_copy(inode, attr); 948 949 if (attr->ia_valid & ATTR_MODE) { 950 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode)); 951 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 952 inode->i_mode = F2FS_I(inode)->i_acl_mode; 953 clear_inode_flag(inode, FI_ACL_MODE); 954 } 955 } 956 957 /* file size may changed here */ 958 f2fs_mark_inode_dirty_sync(inode, true); 959 960 /* inode change will produce dirty node pages flushed by checkpoint */ 961 f2fs_balance_fs(F2FS_I_SB(inode), true); 962 963 return err; 964 } 965 966 const struct inode_operations f2fs_file_inode_operations = { 967 .getattr = f2fs_getattr, 968 .setattr = f2fs_setattr, 969 .get_acl = f2fs_get_acl, 970 .set_acl = f2fs_set_acl, 971 #ifdef CONFIG_F2FS_FS_XATTR 972 .listxattr = f2fs_listxattr, 973 #endif 974 .fiemap = f2fs_fiemap, 975 }; 976 977 static int fill_zero(struct inode *inode, pgoff_t index, 978 loff_t start, loff_t len) 979 { 980 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 981 struct page *page; 982 983 if (!len) 984 return 0; 985 986 f2fs_balance_fs(sbi, true); 987 988 f2fs_lock_op(sbi); 989 page = f2fs_get_new_data_page(inode, NULL, index, false); 990 f2fs_unlock_op(sbi); 991 992 if (IS_ERR(page)) 993 return PTR_ERR(page); 994 995 f2fs_wait_on_page_writeback(page, DATA, true, true); 996 zero_user(page, start, len); 997 set_page_dirty(page); 998 f2fs_put_page(page, 1); 999 return 0; 1000 } 1001 1002 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1003 { 1004 int err; 1005 1006 while (pg_start < pg_end) { 1007 struct dnode_of_data dn; 1008 pgoff_t end_offset, count; 1009 1010 set_new_dnode(&dn, inode, NULL, NULL, 0); 1011 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1012 if (err) { 1013 if (err == -ENOENT) { 1014 pg_start = f2fs_get_next_page_offset(&dn, 1015 pg_start); 1016 continue; 1017 } 1018 return err; 1019 } 1020 1021 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1022 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1023 1024 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1025 1026 f2fs_truncate_data_blocks_range(&dn, count); 1027 f2fs_put_dnode(&dn); 1028 1029 pg_start += count; 1030 } 1031 return 0; 1032 } 1033 1034 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1035 { 1036 pgoff_t pg_start, pg_end; 1037 loff_t off_start, off_end; 1038 int ret; 1039 1040 ret = f2fs_convert_inline_inode(inode); 1041 if (ret) 1042 return ret; 1043 1044 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1045 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1046 1047 off_start = offset & (PAGE_SIZE - 1); 1048 off_end = (offset + len) & (PAGE_SIZE - 1); 1049 1050 if (pg_start == pg_end) { 1051 ret = fill_zero(inode, pg_start, off_start, 1052 off_end - off_start); 1053 if (ret) 1054 return ret; 1055 } else { 1056 if (off_start) { 1057 ret = fill_zero(inode, pg_start++, off_start, 1058 PAGE_SIZE - off_start); 1059 if (ret) 1060 return ret; 1061 } 1062 if (off_end) { 1063 ret = fill_zero(inode, pg_end, 0, off_end); 1064 if (ret) 1065 return ret; 1066 } 1067 1068 if (pg_start < pg_end) { 1069 struct address_space *mapping = inode->i_mapping; 1070 loff_t blk_start, blk_end; 1071 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1072 1073 f2fs_balance_fs(sbi, true); 1074 1075 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1076 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1077 1078 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1079 down_write(&F2FS_I(inode)->i_mmap_sem); 1080 1081 truncate_inode_pages_range(mapping, blk_start, 1082 blk_end - 1); 1083 1084 f2fs_lock_op(sbi); 1085 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1086 f2fs_unlock_op(sbi); 1087 1088 up_write(&F2FS_I(inode)->i_mmap_sem); 1089 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1090 } 1091 } 1092 1093 return ret; 1094 } 1095 1096 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1097 int *do_replace, pgoff_t off, pgoff_t len) 1098 { 1099 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1100 struct dnode_of_data dn; 1101 int ret, done, i; 1102 1103 next_dnode: 1104 set_new_dnode(&dn, inode, NULL, NULL, 0); 1105 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1106 if (ret && ret != -ENOENT) { 1107 return ret; 1108 } else if (ret == -ENOENT) { 1109 if (dn.max_level == 0) 1110 return -ENOENT; 1111 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1112 dn.ofs_in_node, len); 1113 blkaddr += done; 1114 do_replace += done; 1115 goto next; 1116 } 1117 1118 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1119 dn.ofs_in_node, len); 1120 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1121 *blkaddr = f2fs_data_blkaddr(&dn); 1122 1123 if (__is_valid_data_blkaddr(*blkaddr) && 1124 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1125 DATA_GENERIC_ENHANCE)) { 1126 f2fs_put_dnode(&dn); 1127 return -EFSCORRUPTED; 1128 } 1129 1130 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1131 1132 if (f2fs_lfs_mode(sbi)) { 1133 f2fs_put_dnode(&dn); 1134 return -EOPNOTSUPP; 1135 } 1136 1137 /* do not invalidate this block address */ 1138 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1139 *do_replace = 1; 1140 } 1141 } 1142 f2fs_put_dnode(&dn); 1143 next: 1144 len -= done; 1145 off += done; 1146 if (len) 1147 goto next_dnode; 1148 return 0; 1149 } 1150 1151 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1152 int *do_replace, pgoff_t off, int len) 1153 { 1154 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1155 struct dnode_of_data dn; 1156 int ret, i; 1157 1158 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1159 if (*do_replace == 0) 1160 continue; 1161 1162 set_new_dnode(&dn, inode, NULL, NULL, 0); 1163 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1164 if (ret) { 1165 dec_valid_block_count(sbi, inode, 1); 1166 f2fs_invalidate_blocks(sbi, *blkaddr); 1167 } else { 1168 f2fs_update_data_blkaddr(&dn, *blkaddr); 1169 } 1170 f2fs_put_dnode(&dn); 1171 } 1172 return 0; 1173 } 1174 1175 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1176 block_t *blkaddr, int *do_replace, 1177 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1178 { 1179 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1180 pgoff_t i = 0; 1181 int ret; 1182 1183 while (i < len) { 1184 if (blkaddr[i] == NULL_ADDR && !full) { 1185 i++; 1186 continue; 1187 } 1188 1189 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1190 struct dnode_of_data dn; 1191 struct node_info ni; 1192 size_t new_size; 1193 pgoff_t ilen; 1194 1195 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1196 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1197 if (ret) 1198 return ret; 1199 1200 ret = f2fs_get_node_info(sbi, dn.nid, &ni); 1201 if (ret) { 1202 f2fs_put_dnode(&dn); 1203 return ret; 1204 } 1205 1206 ilen = min((pgoff_t) 1207 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1208 dn.ofs_in_node, len - i); 1209 do { 1210 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1211 f2fs_truncate_data_blocks_range(&dn, 1); 1212 1213 if (do_replace[i]) { 1214 f2fs_i_blocks_write(src_inode, 1215 1, false, false); 1216 f2fs_i_blocks_write(dst_inode, 1217 1, true, false); 1218 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1219 blkaddr[i], ni.version, true, false); 1220 1221 do_replace[i] = 0; 1222 } 1223 dn.ofs_in_node++; 1224 i++; 1225 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1226 if (dst_inode->i_size < new_size) 1227 f2fs_i_size_write(dst_inode, new_size); 1228 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1229 1230 f2fs_put_dnode(&dn); 1231 } else { 1232 struct page *psrc, *pdst; 1233 1234 psrc = f2fs_get_lock_data_page(src_inode, 1235 src + i, true); 1236 if (IS_ERR(psrc)) 1237 return PTR_ERR(psrc); 1238 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1239 true); 1240 if (IS_ERR(pdst)) { 1241 f2fs_put_page(psrc, 1); 1242 return PTR_ERR(pdst); 1243 } 1244 f2fs_copy_page(psrc, pdst); 1245 set_page_dirty(pdst); 1246 f2fs_put_page(pdst, 1); 1247 f2fs_put_page(psrc, 1); 1248 1249 ret = f2fs_truncate_hole(src_inode, 1250 src + i, src + i + 1); 1251 if (ret) 1252 return ret; 1253 i++; 1254 } 1255 } 1256 return 0; 1257 } 1258 1259 static int __exchange_data_block(struct inode *src_inode, 1260 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1261 pgoff_t len, bool full) 1262 { 1263 block_t *src_blkaddr; 1264 int *do_replace; 1265 pgoff_t olen; 1266 int ret; 1267 1268 while (len) { 1269 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1270 1271 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1272 array_size(olen, sizeof(block_t)), 1273 GFP_NOFS); 1274 if (!src_blkaddr) 1275 return -ENOMEM; 1276 1277 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1278 array_size(olen, sizeof(int)), 1279 GFP_NOFS); 1280 if (!do_replace) { 1281 kvfree(src_blkaddr); 1282 return -ENOMEM; 1283 } 1284 1285 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1286 do_replace, src, olen); 1287 if (ret) 1288 goto roll_back; 1289 1290 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1291 do_replace, src, dst, olen, full); 1292 if (ret) 1293 goto roll_back; 1294 1295 src += olen; 1296 dst += olen; 1297 len -= olen; 1298 1299 kvfree(src_blkaddr); 1300 kvfree(do_replace); 1301 } 1302 return 0; 1303 1304 roll_back: 1305 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1306 kvfree(src_blkaddr); 1307 kvfree(do_replace); 1308 return ret; 1309 } 1310 1311 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1312 { 1313 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1314 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1315 pgoff_t start = offset >> PAGE_SHIFT; 1316 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1317 int ret; 1318 1319 f2fs_balance_fs(sbi, true); 1320 1321 /* avoid gc operation during block exchange */ 1322 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1323 down_write(&F2FS_I(inode)->i_mmap_sem); 1324 1325 f2fs_lock_op(sbi); 1326 f2fs_drop_extent_tree(inode); 1327 truncate_pagecache(inode, offset); 1328 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1329 f2fs_unlock_op(sbi); 1330 1331 up_write(&F2FS_I(inode)->i_mmap_sem); 1332 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1333 return ret; 1334 } 1335 1336 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1337 { 1338 loff_t new_size; 1339 int ret; 1340 1341 if (offset + len >= i_size_read(inode)) 1342 return -EINVAL; 1343 1344 /* collapse range should be aligned to block size of f2fs. */ 1345 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1346 return -EINVAL; 1347 1348 ret = f2fs_convert_inline_inode(inode); 1349 if (ret) 1350 return ret; 1351 1352 /* write out all dirty pages from offset */ 1353 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1354 if (ret) 1355 return ret; 1356 1357 ret = f2fs_do_collapse(inode, offset, len); 1358 if (ret) 1359 return ret; 1360 1361 /* write out all moved pages, if possible */ 1362 down_write(&F2FS_I(inode)->i_mmap_sem); 1363 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1364 truncate_pagecache(inode, offset); 1365 1366 new_size = i_size_read(inode) - len; 1367 truncate_pagecache(inode, new_size); 1368 1369 ret = f2fs_truncate_blocks(inode, new_size, true); 1370 up_write(&F2FS_I(inode)->i_mmap_sem); 1371 if (!ret) 1372 f2fs_i_size_write(inode, new_size); 1373 return ret; 1374 } 1375 1376 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1377 pgoff_t end) 1378 { 1379 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1380 pgoff_t index = start; 1381 unsigned int ofs_in_node = dn->ofs_in_node; 1382 blkcnt_t count = 0; 1383 int ret; 1384 1385 for (; index < end; index++, dn->ofs_in_node++) { 1386 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1387 count++; 1388 } 1389 1390 dn->ofs_in_node = ofs_in_node; 1391 ret = f2fs_reserve_new_blocks(dn, count); 1392 if (ret) 1393 return ret; 1394 1395 dn->ofs_in_node = ofs_in_node; 1396 for (index = start; index < end; index++, dn->ofs_in_node++) { 1397 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1398 /* 1399 * f2fs_reserve_new_blocks will not guarantee entire block 1400 * allocation. 1401 */ 1402 if (dn->data_blkaddr == NULL_ADDR) { 1403 ret = -ENOSPC; 1404 break; 1405 } 1406 if (dn->data_blkaddr != NEW_ADDR) { 1407 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1408 dn->data_blkaddr = NEW_ADDR; 1409 f2fs_set_data_blkaddr(dn); 1410 } 1411 } 1412 1413 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1414 1415 return ret; 1416 } 1417 1418 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1419 int mode) 1420 { 1421 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1422 struct address_space *mapping = inode->i_mapping; 1423 pgoff_t index, pg_start, pg_end; 1424 loff_t new_size = i_size_read(inode); 1425 loff_t off_start, off_end; 1426 int ret = 0; 1427 1428 ret = inode_newsize_ok(inode, (len + offset)); 1429 if (ret) 1430 return ret; 1431 1432 ret = f2fs_convert_inline_inode(inode); 1433 if (ret) 1434 return ret; 1435 1436 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1437 if (ret) 1438 return ret; 1439 1440 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1441 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1442 1443 off_start = offset & (PAGE_SIZE - 1); 1444 off_end = (offset + len) & (PAGE_SIZE - 1); 1445 1446 if (pg_start == pg_end) { 1447 ret = fill_zero(inode, pg_start, off_start, 1448 off_end - off_start); 1449 if (ret) 1450 return ret; 1451 1452 new_size = max_t(loff_t, new_size, offset + len); 1453 } else { 1454 if (off_start) { 1455 ret = fill_zero(inode, pg_start++, off_start, 1456 PAGE_SIZE - off_start); 1457 if (ret) 1458 return ret; 1459 1460 new_size = max_t(loff_t, new_size, 1461 (loff_t)pg_start << PAGE_SHIFT); 1462 } 1463 1464 for (index = pg_start; index < pg_end;) { 1465 struct dnode_of_data dn; 1466 unsigned int end_offset; 1467 pgoff_t end; 1468 1469 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1470 down_write(&F2FS_I(inode)->i_mmap_sem); 1471 1472 truncate_pagecache_range(inode, 1473 (loff_t)index << PAGE_SHIFT, 1474 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1475 1476 f2fs_lock_op(sbi); 1477 1478 set_new_dnode(&dn, inode, NULL, NULL, 0); 1479 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1480 if (ret) { 1481 f2fs_unlock_op(sbi); 1482 up_write(&F2FS_I(inode)->i_mmap_sem); 1483 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1484 goto out; 1485 } 1486 1487 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1488 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1489 1490 ret = f2fs_do_zero_range(&dn, index, end); 1491 f2fs_put_dnode(&dn); 1492 1493 f2fs_unlock_op(sbi); 1494 up_write(&F2FS_I(inode)->i_mmap_sem); 1495 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1496 1497 f2fs_balance_fs(sbi, dn.node_changed); 1498 1499 if (ret) 1500 goto out; 1501 1502 index = end; 1503 new_size = max_t(loff_t, new_size, 1504 (loff_t)index << PAGE_SHIFT); 1505 } 1506 1507 if (off_end) { 1508 ret = fill_zero(inode, pg_end, 0, off_end); 1509 if (ret) 1510 goto out; 1511 1512 new_size = max_t(loff_t, new_size, offset + len); 1513 } 1514 } 1515 1516 out: 1517 if (new_size > i_size_read(inode)) { 1518 if (mode & FALLOC_FL_KEEP_SIZE) 1519 file_set_keep_isize(inode); 1520 else 1521 f2fs_i_size_write(inode, new_size); 1522 } 1523 return ret; 1524 } 1525 1526 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1527 { 1528 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1529 pgoff_t nr, pg_start, pg_end, delta, idx; 1530 loff_t new_size; 1531 int ret = 0; 1532 1533 new_size = i_size_read(inode) + len; 1534 ret = inode_newsize_ok(inode, new_size); 1535 if (ret) 1536 return ret; 1537 1538 if (offset >= i_size_read(inode)) 1539 return -EINVAL; 1540 1541 /* insert range should be aligned to block size of f2fs. */ 1542 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1543 return -EINVAL; 1544 1545 ret = f2fs_convert_inline_inode(inode); 1546 if (ret) 1547 return ret; 1548 1549 f2fs_balance_fs(sbi, true); 1550 1551 down_write(&F2FS_I(inode)->i_mmap_sem); 1552 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1553 up_write(&F2FS_I(inode)->i_mmap_sem); 1554 if (ret) 1555 return ret; 1556 1557 /* write out all dirty pages from offset */ 1558 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1559 if (ret) 1560 return ret; 1561 1562 pg_start = offset >> PAGE_SHIFT; 1563 pg_end = (offset + len) >> PAGE_SHIFT; 1564 delta = pg_end - pg_start; 1565 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1566 1567 /* avoid gc operation during block exchange */ 1568 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1569 down_write(&F2FS_I(inode)->i_mmap_sem); 1570 truncate_pagecache(inode, offset); 1571 1572 while (!ret && idx > pg_start) { 1573 nr = idx - pg_start; 1574 if (nr > delta) 1575 nr = delta; 1576 idx -= nr; 1577 1578 f2fs_lock_op(sbi); 1579 f2fs_drop_extent_tree(inode); 1580 1581 ret = __exchange_data_block(inode, inode, idx, 1582 idx + delta, nr, false); 1583 f2fs_unlock_op(sbi); 1584 } 1585 up_write(&F2FS_I(inode)->i_mmap_sem); 1586 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1587 1588 /* write out all moved pages, if possible */ 1589 down_write(&F2FS_I(inode)->i_mmap_sem); 1590 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1591 truncate_pagecache(inode, offset); 1592 up_write(&F2FS_I(inode)->i_mmap_sem); 1593 1594 if (!ret) 1595 f2fs_i_size_write(inode, new_size); 1596 return ret; 1597 } 1598 1599 static int expand_inode_data(struct inode *inode, loff_t offset, 1600 loff_t len, int mode) 1601 { 1602 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1603 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1604 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1605 .m_may_create = true }; 1606 pgoff_t pg_end; 1607 loff_t new_size = i_size_read(inode); 1608 loff_t off_end; 1609 int err; 1610 1611 err = inode_newsize_ok(inode, (len + offset)); 1612 if (err) 1613 return err; 1614 1615 err = f2fs_convert_inline_inode(inode); 1616 if (err) 1617 return err; 1618 1619 f2fs_balance_fs(sbi, true); 1620 1621 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1622 off_end = (offset + len) & (PAGE_SIZE - 1); 1623 1624 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1625 map.m_len = pg_end - map.m_lblk; 1626 if (off_end) 1627 map.m_len++; 1628 1629 if (!map.m_len) 1630 return 0; 1631 1632 if (f2fs_is_pinned_file(inode)) { 1633 block_t len = (map.m_len >> sbi->log_blocks_per_seg) << 1634 sbi->log_blocks_per_seg; 1635 block_t done = 0; 1636 1637 if (map.m_len % sbi->blocks_per_seg) 1638 len += sbi->blocks_per_seg; 1639 1640 map.m_len = sbi->blocks_per_seg; 1641 next_alloc: 1642 if (has_not_enough_free_secs(sbi, 0, 1643 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1644 down_write(&sbi->gc_lock); 1645 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1646 if (err && err != -ENODATA && err != -EAGAIN) 1647 goto out_err; 1648 } 1649 1650 down_write(&sbi->pin_sem); 1651 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1652 f2fs_allocate_new_segments(sbi, CURSEG_COLD_DATA); 1653 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1654 up_write(&sbi->pin_sem); 1655 1656 done += map.m_len; 1657 len -= map.m_len; 1658 map.m_lblk += map.m_len; 1659 if (!err && len) 1660 goto next_alloc; 1661 1662 map.m_len = done; 1663 } else { 1664 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1665 } 1666 out_err: 1667 if (err) { 1668 pgoff_t last_off; 1669 1670 if (!map.m_len) 1671 return err; 1672 1673 last_off = map.m_lblk + map.m_len - 1; 1674 1675 /* update new size to the failed position */ 1676 new_size = (last_off == pg_end) ? offset + len : 1677 (loff_t)(last_off + 1) << PAGE_SHIFT; 1678 } else { 1679 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1680 } 1681 1682 if (new_size > i_size_read(inode)) { 1683 if (mode & FALLOC_FL_KEEP_SIZE) 1684 file_set_keep_isize(inode); 1685 else 1686 f2fs_i_size_write(inode, new_size); 1687 } 1688 1689 return err; 1690 } 1691 1692 static long f2fs_fallocate(struct file *file, int mode, 1693 loff_t offset, loff_t len) 1694 { 1695 struct inode *inode = file_inode(file); 1696 long ret = 0; 1697 1698 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1699 return -EIO; 1700 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1701 return -ENOSPC; 1702 if (!f2fs_is_compress_backend_ready(inode)) 1703 return -EOPNOTSUPP; 1704 1705 /* f2fs only support ->fallocate for regular file */ 1706 if (!S_ISREG(inode->i_mode)) 1707 return -EINVAL; 1708 1709 if (IS_ENCRYPTED(inode) && 1710 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1711 return -EOPNOTSUPP; 1712 1713 if (f2fs_compressed_file(inode) && 1714 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1715 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1716 return -EOPNOTSUPP; 1717 1718 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1719 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1720 FALLOC_FL_INSERT_RANGE)) 1721 return -EOPNOTSUPP; 1722 1723 inode_lock(inode); 1724 1725 if (mode & FALLOC_FL_PUNCH_HOLE) { 1726 if (offset >= inode->i_size) 1727 goto out; 1728 1729 ret = punch_hole(inode, offset, len); 1730 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1731 ret = f2fs_collapse_range(inode, offset, len); 1732 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1733 ret = f2fs_zero_range(inode, offset, len, mode); 1734 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1735 ret = f2fs_insert_range(inode, offset, len); 1736 } else { 1737 ret = expand_inode_data(inode, offset, len, mode); 1738 } 1739 1740 if (!ret) { 1741 inode->i_mtime = inode->i_ctime = current_time(inode); 1742 f2fs_mark_inode_dirty_sync(inode, false); 1743 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1744 } 1745 1746 out: 1747 inode_unlock(inode); 1748 1749 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1750 return ret; 1751 } 1752 1753 static int f2fs_release_file(struct inode *inode, struct file *filp) 1754 { 1755 /* 1756 * f2fs_relase_file is called at every close calls. So we should 1757 * not drop any inmemory pages by close called by other process. 1758 */ 1759 if (!(filp->f_mode & FMODE_WRITE) || 1760 atomic_read(&inode->i_writecount) != 1) 1761 return 0; 1762 1763 /* some remained atomic pages should discarded */ 1764 if (f2fs_is_atomic_file(inode)) 1765 f2fs_drop_inmem_pages(inode); 1766 if (f2fs_is_volatile_file(inode)) { 1767 set_inode_flag(inode, FI_DROP_CACHE); 1768 filemap_fdatawrite(inode->i_mapping); 1769 clear_inode_flag(inode, FI_DROP_CACHE); 1770 clear_inode_flag(inode, FI_VOLATILE_FILE); 1771 stat_dec_volatile_write(inode); 1772 } 1773 return 0; 1774 } 1775 1776 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1777 { 1778 struct inode *inode = file_inode(file); 1779 1780 /* 1781 * If the process doing a transaction is crashed, we should do 1782 * roll-back. Otherwise, other reader/write can see corrupted database 1783 * until all the writers close its file. Since this should be done 1784 * before dropping file lock, it needs to do in ->flush. 1785 */ 1786 if (f2fs_is_atomic_file(inode) && 1787 F2FS_I(inode)->inmem_task == current) 1788 f2fs_drop_inmem_pages(inode); 1789 return 0; 1790 } 1791 1792 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1793 { 1794 struct f2fs_inode_info *fi = F2FS_I(inode); 1795 u32 masked_flags = fi->i_flags & mask; 1796 1797 f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask)); 1798 1799 /* Is it quota file? Do not allow user to mess with it */ 1800 if (IS_NOQUOTA(inode)) 1801 return -EPERM; 1802 1803 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1804 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1805 return -EOPNOTSUPP; 1806 if (!f2fs_empty_dir(inode)) 1807 return -ENOTEMPTY; 1808 } 1809 1810 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1811 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1812 return -EOPNOTSUPP; 1813 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1814 return -EINVAL; 1815 } 1816 1817 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1818 if (masked_flags & F2FS_COMPR_FL) { 1819 if (f2fs_disable_compressed_file(inode)) 1820 return -EINVAL; 1821 } 1822 if (iflags & F2FS_NOCOMP_FL) 1823 return -EINVAL; 1824 if (iflags & F2FS_COMPR_FL) { 1825 if (!f2fs_may_compress(inode)) 1826 return -EINVAL; 1827 1828 set_compress_context(inode); 1829 } 1830 } 1831 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) { 1832 if (masked_flags & F2FS_COMPR_FL) 1833 return -EINVAL; 1834 } 1835 1836 fi->i_flags = iflags | (fi->i_flags & ~mask); 1837 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1838 (fi->i_flags & F2FS_NOCOMP_FL)); 1839 1840 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1841 set_inode_flag(inode, FI_PROJ_INHERIT); 1842 else 1843 clear_inode_flag(inode, FI_PROJ_INHERIT); 1844 1845 inode->i_ctime = current_time(inode); 1846 f2fs_set_inode_flags(inode); 1847 f2fs_mark_inode_dirty_sync(inode, true); 1848 return 0; 1849 } 1850 1851 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */ 1852 1853 /* 1854 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1855 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1856 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1857 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1858 */ 1859 1860 static const struct { 1861 u32 iflag; 1862 u32 fsflag; 1863 } f2fs_fsflags_map[] = { 1864 { F2FS_COMPR_FL, FS_COMPR_FL }, 1865 { F2FS_SYNC_FL, FS_SYNC_FL }, 1866 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1867 { F2FS_APPEND_FL, FS_APPEND_FL }, 1868 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1869 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1870 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1871 { F2FS_INDEX_FL, FS_INDEX_FL }, 1872 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1873 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1874 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1875 }; 1876 1877 #define F2FS_GETTABLE_FS_FL ( \ 1878 FS_COMPR_FL | \ 1879 FS_SYNC_FL | \ 1880 FS_IMMUTABLE_FL | \ 1881 FS_APPEND_FL | \ 1882 FS_NODUMP_FL | \ 1883 FS_NOATIME_FL | \ 1884 FS_NOCOMP_FL | \ 1885 FS_INDEX_FL | \ 1886 FS_DIRSYNC_FL | \ 1887 FS_PROJINHERIT_FL | \ 1888 FS_ENCRYPT_FL | \ 1889 FS_INLINE_DATA_FL | \ 1890 FS_NOCOW_FL | \ 1891 FS_VERITY_FL | \ 1892 FS_CASEFOLD_FL) 1893 1894 #define F2FS_SETTABLE_FS_FL ( \ 1895 FS_COMPR_FL | \ 1896 FS_SYNC_FL | \ 1897 FS_IMMUTABLE_FL | \ 1898 FS_APPEND_FL | \ 1899 FS_NODUMP_FL | \ 1900 FS_NOATIME_FL | \ 1901 FS_NOCOMP_FL | \ 1902 FS_DIRSYNC_FL | \ 1903 FS_PROJINHERIT_FL | \ 1904 FS_CASEFOLD_FL) 1905 1906 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1907 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1908 { 1909 u32 fsflags = 0; 1910 int i; 1911 1912 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1913 if (iflags & f2fs_fsflags_map[i].iflag) 1914 fsflags |= f2fs_fsflags_map[i].fsflag; 1915 1916 return fsflags; 1917 } 1918 1919 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1920 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1921 { 1922 u32 iflags = 0; 1923 int i; 1924 1925 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1926 if (fsflags & f2fs_fsflags_map[i].fsflag) 1927 iflags |= f2fs_fsflags_map[i].iflag; 1928 1929 return iflags; 1930 } 1931 1932 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1933 { 1934 struct inode *inode = file_inode(filp); 1935 struct f2fs_inode_info *fi = F2FS_I(inode); 1936 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1937 1938 if (IS_ENCRYPTED(inode)) 1939 fsflags |= FS_ENCRYPT_FL; 1940 if (IS_VERITY(inode)) 1941 fsflags |= FS_VERITY_FL; 1942 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 1943 fsflags |= FS_INLINE_DATA_FL; 1944 if (is_inode_flag_set(inode, FI_PIN_FILE)) 1945 fsflags |= FS_NOCOW_FL; 1946 1947 fsflags &= F2FS_GETTABLE_FS_FL; 1948 1949 return put_user(fsflags, (int __user *)arg); 1950 } 1951 1952 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1953 { 1954 struct inode *inode = file_inode(filp); 1955 struct f2fs_inode_info *fi = F2FS_I(inode); 1956 u32 fsflags, old_fsflags; 1957 u32 iflags; 1958 int ret; 1959 1960 if (!inode_owner_or_capable(inode)) 1961 return -EACCES; 1962 1963 if (get_user(fsflags, (int __user *)arg)) 1964 return -EFAULT; 1965 1966 if (fsflags & ~F2FS_GETTABLE_FS_FL) 1967 return -EOPNOTSUPP; 1968 fsflags &= F2FS_SETTABLE_FS_FL; 1969 1970 iflags = f2fs_fsflags_to_iflags(fsflags); 1971 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 1972 return -EOPNOTSUPP; 1973 1974 ret = mnt_want_write_file(filp); 1975 if (ret) 1976 return ret; 1977 1978 inode_lock(inode); 1979 1980 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1981 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 1982 if (ret) 1983 goto out; 1984 1985 ret = f2fs_setflags_common(inode, iflags, 1986 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL)); 1987 out: 1988 inode_unlock(inode); 1989 mnt_drop_write_file(filp); 1990 return ret; 1991 } 1992 1993 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1994 { 1995 struct inode *inode = file_inode(filp); 1996 1997 return put_user(inode->i_generation, (int __user *)arg); 1998 } 1999 2000 static int f2fs_ioc_start_atomic_write(struct file *filp) 2001 { 2002 struct inode *inode = file_inode(filp); 2003 struct f2fs_inode_info *fi = F2FS_I(inode); 2004 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2005 int ret; 2006 2007 if (!inode_owner_or_capable(inode)) 2008 return -EACCES; 2009 2010 if (!S_ISREG(inode->i_mode)) 2011 return -EINVAL; 2012 2013 if (filp->f_flags & O_DIRECT) 2014 return -EINVAL; 2015 2016 ret = mnt_want_write_file(filp); 2017 if (ret) 2018 return ret; 2019 2020 inode_lock(inode); 2021 2022 f2fs_disable_compressed_file(inode); 2023 2024 if (f2fs_is_atomic_file(inode)) { 2025 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) 2026 ret = -EINVAL; 2027 goto out; 2028 } 2029 2030 ret = f2fs_convert_inline_inode(inode); 2031 if (ret) 2032 goto out; 2033 2034 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2035 2036 /* 2037 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2038 * f2fs_is_atomic_file. 2039 */ 2040 if (get_dirty_pages(inode)) 2041 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2042 inode->i_ino, get_dirty_pages(inode)); 2043 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2044 if (ret) { 2045 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2046 goto out; 2047 } 2048 2049 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 2050 if (list_empty(&fi->inmem_ilist)) 2051 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 2052 sbi->atomic_files++; 2053 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 2054 2055 /* add inode in inmem_list first and set atomic_file */ 2056 set_inode_flag(inode, FI_ATOMIC_FILE); 2057 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2058 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2059 2060 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2061 F2FS_I(inode)->inmem_task = current; 2062 stat_update_max_atomic_write(inode); 2063 out: 2064 inode_unlock(inode); 2065 mnt_drop_write_file(filp); 2066 return ret; 2067 } 2068 2069 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2070 { 2071 struct inode *inode = file_inode(filp); 2072 int ret; 2073 2074 if (!inode_owner_or_capable(inode)) 2075 return -EACCES; 2076 2077 ret = mnt_want_write_file(filp); 2078 if (ret) 2079 return ret; 2080 2081 f2fs_balance_fs(F2FS_I_SB(inode), true); 2082 2083 inode_lock(inode); 2084 2085 if (f2fs_is_volatile_file(inode)) { 2086 ret = -EINVAL; 2087 goto err_out; 2088 } 2089 2090 if (f2fs_is_atomic_file(inode)) { 2091 ret = f2fs_commit_inmem_pages(inode); 2092 if (ret) 2093 goto err_out; 2094 2095 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2096 if (!ret) 2097 f2fs_drop_inmem_pages(inode); 2098 } else { 2099 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2100 } 2101 err_out: 2102 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2103 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2104 ret = -EINVAL; 2105 } 2106 inode_unlock(inode); 2107 mnt_drop_write_file(filp); 2108 return ret; 2109 } 2110 2111 static int f2fs_ioc_start_volatile_write(struct file *filp) 2112 { 2113 struct inode *inode = file_inode(filp); 2114 int ret; 2115 2116 if (!inode_owner_or_capable(inode)) 2117 return -EACCES; 2118 2119 if (!S_ISREG(inode->i_mode)) 2120 return -EINVAL; 2121 2122 ret = mnt_want_write_file(filp); 2123 if (ret) 2124 return ret; 2125 2126 inode_lock(inode); 2127 2128 if (f2fs_is_volatile_file(inode)) 2129 goto out; 2130 2131 ret = f2fs_convert_inline_inode(inode); 2132 if (ret) 2133 goto out; 2134 2135 stat_inc_volatile_write(inode); 2136 stat_update_max_volatile_write(inode); 2137 2138 set_inode_flag(inode, FI_VOLATILE_FILE); 2139 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2140 out: 2141 inode_unlock(inode); 2142 mnt_drop_write_file(filp); 2143 return ret; 2144 } 2145 2146 static int f2fs_ioc_release_volatile_write(struct file *filp) 2147 { 2148 struct inode *inode = file_inode(filp); 2149 int ret; 2150 2151 if (!inode_owner_or_capable(inode)) 2152 return -EACCES; 2153 2154 ret = mnt_want_write_file(filp); 2155 if (ret) 2156 return ret; 2157 2158 inode_lock(inode); 2159 2160 if (!f2fs_is_volatile_file(inode)) 2161 goto out; 2162 2163 if (!f2fs_is_first_block_written(inode)) { 2164 ret = truncate_partial_data_page(inode, 0, true); 2165 goto out; 2166 } 2167 2168 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 2169 out: 2170 inode_unlock(inode); 2171 mnt_drop_write_file(filp); 2172 return ret; 2173 } 2174 2175 static int f2fs_ioc_abort_volatile_write(struct file *filp) 2176 { 2177 struct inode *inode = file_inode(filp); 2178 int ret; 2179 2180 if (!inode_owner_or_capable(inode)) 2181 return -EACCES; 2182 2183 ret = mnt_want_write_file(filp); 2184 if (ret) 2185 return ret; 2186 2187 inode_lock(inode); 2188 2189 if (f2fs_is_atomic_file(inode)) 2190 f2fs_drop_inmem_pages(inode); 2191 if (f2fs_is_volatile_file(inode)) { 2192 clear_inode_flag(inode, FI_VOLATILE_FILE); 2193 stat_dec_volatile_write(inode); 2194 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2195 } 2196 2197 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2198 2199 inode_unlock(inode); 2200 2201 mnt_drop_write_file(filp); 2202 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2203 return ret; 2204 } 2205 2206 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2207 { 2208 struct inode *inode = file_inode(filp); 2209 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2210 struct super_block *sb = sbi->sb; 2211 __u32 in; 2212 int ret = 0; 2213 2214 if (!capable(CAP_SYS_ADMIN)) 2215 return -EPERM; 2216 2217 if (get_user(in, (__u32 __user *)arg)) 2218 return -EFAULT; 2219 2220 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2221 ret = mnt_want_write_file(filp); 2222 if (ret) 2223 return ret; 2224 } 2225 2226 switch (in) { 2227 case F2FS_GOING_DOWN_FULLSYNC: 2228 sb = freeze_bdev(sb->s_bdev); 2229 if (IS_ERR(sb)) { 2230 ret = PTR_ERR(sb); 2231 goto out; 2232 } 2233 if (sb) { 2234 f2fs_stop_checkpoint(sbi, false); 2235 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2236 thaw_bdev(sb->s_bdev, sb); 2237 } 2238 break; 2239 case F2FS_GOING_DOWN_METASYNC: 2240 /* do checkpoint only */ 2241 ret = f2fs_sync_fs(sb, 1); 2242 if (ret) 2243 goto out; 2244 f2fs_stop_checkpoint(sbi, false); 2245 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2246 break; 2247 case F2FS_GOING_DOWN_NOSYNC: 2248 f2fs_stop_checkpoint(sbi, false); 2249 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2250 break; 2251 case F2FS_GOING_DOWN_METAFLUSH: 2252 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2253 f2fs_stop_checkpoint(sbi, false); 2254 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2255 break; 2256 case F2FS_GOING_DOWN_NEED_FSCK: 2257 set_sbi_flag(sbi, SBI_NEED_FSCK); 2258 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2259 set_sbi_flag(sbi, SBI_IS_DIRTY); 2260 /* do checkpoint only */ 2261 ret = f2fs_sync_fs(sb, 1); 2262 goto out; 2263 default: 2264 ret = -EINVAL; 2265 goto out; 2266 } 2267 2268 f2fs_stop_gc_thread(sbi); 2269 f2fs_stop_discard_thread(sbi); 2270 2271 f2fs_drop_discard_cmd(sbi); 2272 clear_opt(sbi, DISCARD); 2273 2274 f2fs_update_time(sbi, REQ_TIME); 2275 out: 2276 if (in != F2FS_GOING_DOWN_FULLSYNC) 2277 mnt_drop_write_file(filp); 2278 2279 trace_f2fs_shutdown(sbi, in, ret); 2280 2281 return ret; 2282 } 2283 2284 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2285 { 2286 struct inode *inode = file_inode(filp); 2287 struct super_block *sb = inode->i_sb; 2288 struct request_queue *q = bdev_get_queue(sb->s_bdev); 2289 struct fstrim_range range; 2290 int ret; 2291 2292 if (!capable(CAP_SYS_ADMIN)) 2293 return -EPERM; 2294 2295 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2296 return -EOPNOTSUPP; 2297 2298 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2299 sizeof(range))) 2300 return -EFAULT; 2301 2302 ret = mnt_want_write_file(filp); 2303 if (ret) 2304 return ret; 2305 2306 range.minlen = max((unsigned int)range.minlen, 2307 q->limits.discard_granularity); 2308 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2309 mnt_drop_write_file(filp); 2310 if (ret < 0) 2311 return ret; 2312 2313 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2314 sizeof(range))) 2315 return -EFAULT; 2316 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2317 return 0; 2318 } 2319 2320 static bool uuid_is_nonzero(__u8 u[16]) 2321 { 2322 int i; 2323 2324 for (i = 0; i < 16; i++) 2325 if (u[i]) 2326 return true; 2327 return false; 2328 } 2329 2330 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2331 { 2332 struct inode *inode = file_inode(filp); 2333 2334 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2335 return -EOPNOTSUPP; 2336 2337 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2338 2339 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2340 } 2341 2342 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2343 { 2344 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2345 return -EOPNOTSUPP; 2346 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2347 } 2348 2349 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2350 { 2351 struct inode *inode = file_inode(filp); 2352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2353 int err; 2354 2355 if (!f2fs_sb_has_encrypt(sbi)) 2356 return -EOPNOTSUPP; 2357 2358 err = mnt_want_write_file(filp); 2359 if (err) 2360 return err; 2361 2362 down_write(&sbi->sb_lock); 2363 2364 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2365 goto got_it; 2366 2367 /* update superblock with uuid */ 2368 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2369 2370 err = f2fs_commit_super(sbi, false); 2371 if (err) { 2372 /* undo new data */ 2373 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2374 goto out_err; 2375 } 2376 got_it: 2377 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2378 16)) 2379 err = -EFAULT; 2380 out_err: 2381 up_write(&sbi->sb_lock); 2382 mnt_drop_write_file(filp); 2383 return err; 2384 } 2385 2386 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2387 unsigned long arg) 2388 { 2389 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2390 return -EOPNOTSUPP; 2391 2392 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2393 } 2394 2395 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2396 { 2397 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2398 return -EOPNOTSUPP; 2399 2400 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2401 } 2402 2403 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2404 { 2405 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2406 return -EOPNOTSUPP; 2407 2408 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2409 } 2410 2411 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2412 unsigned long arg) 2413 { 2414 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2415 return -EOPNOTSUPP; 2416 2417 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2418 } 2419 2420 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2421 unsigned long arg) 2422 { 2423 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2424 return -EOPNOTSUPP; 2425 2426 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2427 } 2428 2429 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2430 { 2431 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2432 return -EOPNOTSUPP; 2433 2434 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2435 } 2436 2437 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2438 { 2439 struct inode *inode = file_inode(filp); 2440 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2441 __u32 sync; 2442 int ret; 2443 2444 if (!capable(CAP_SYS_ADMIN)) 2445 return -EPERM; 2446 2447 if (get_user(sync, (__u32 __user *)arg)) 2448 return -EFAULT; 2449 2450 if (f2fs_readonly(sbi->sb)) 2451 return -EROFS; 2452 2453 ret = mnt_want_write_file(filp); 2454 if (ret) 2455 return ret; 2456 2457 if (!sync) { 2458 if (!down_write_trylock(&sbi->gc_lock)) { 2459 ret = -EBUSY; 2460 goto out; 2461 } 2462 } else { 2463 down_write(&sbi->gc_lock); 2464 } 2465 2466 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO); 2467 out: 2468 mnt_drop_write_file(filp); 2469 return ret; 2470 } 2471 2472 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2473 { 2474 struct inode *inode = file_inode(filp); 2475 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2476 struct f2fs_gc_range range; 2477 u64 end; 2478 int ret; 2479 2480 if (!capable(CAP_SYS_ADMIN)) 2481 return -EPERM; 2482 2483 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2484 sizeof(range))) 2485 return -EFAULT; 2486 2487 if (f2fs_readonly(sbi->sb)) 2488 return -EROFS; 2489 2490 end = range.start + range.len; 2491 if (end < range.start || range.start < MAIN_BLKADDR(sbi) || 2492 end >= MAX_BLKADDR(sbi)) 2493 return -EINVAL; 2494 2495 ret = mnt_want_write_file(filp); 2496 if (ret) 2497 return ret; 2498 2499 do_more: 2500 if (!range.sync) { 2501 if (!down_write_trylock(&sbi->gc_lock)) { 2502 ret = -EBUSY; 2503 goto out; 2504 } 2505 } else { 2506 down_write(&sbi->gc_lock); 2507 } 2508 2509 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start)); 2510 range.start += BLKS_PER_SEC(sbi); 2511 if (range.start <= end) 2512 goto do_more; 2513 out: 2514 mnt_drop_write_file(filp); 2515 return ret; 2516 } 2517 2518 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2519 { 2520 struct inode *inode = file_inode(filp); 2521 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2522 int ret; 2523 2524 if (!capable(CAP_SYS_ADMIN)) 2525 return -EPERM; 2526 2527 if (f2fs_readonly(sbi->sb)) 2528 return -EROFS; 2529 2530 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2531 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2532 return -EINVAL; 2533 } 2534 2535 ret = mnt_want_write_file(filp); 2536 if (ret) 2537 return ret; 2538 2539 ret = f2fs_sync_fs(sbi->sb, 1); 2540 2541 mnt_drop_write_file(filp); 2542 return ret; 2543 } 2544 2545 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2546 struct file *filp, 2547 struct f2fs_defragment *range) 2548 { 2549 struct inode *inode = file_inode(filp); 2550 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2551 .m_seg_type = NO_CHECK_TYPE , 2552 .m_may_create = false }; 2553 struct extent_info ei = {0, 0, 0}; 2554 pgoff_t pg_start, pg_end, next_pgofs; 2555 unsigned int blk_per_seg = sbi->blocks_per_seg; 2556 unsigned int total = 0, sec_num; 2557 block_t blk_end = 0; 2558 bool fragmented = false; 2559 int err; 2560 2561 /* if in-place-update policy is enabled, don't waste time here */ 2562 if (f2fs_should_update_inplace(inode, NULL)) 2563 return -EINVAL; 2564 2565 pg_start = range->start >> PAGE_SHIFT; 2566 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2567 2568 f2fs_balance_fs(sbi, true); 2569 2570 inode_lock(inode); 2571 2572 /* writeback all dirty pages in the range */ 2573 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2574 range->start + range->len - 1); 2575 if (err) 2576 goto out; 2577 2578 /* 2579 * lookup mapping info in extent cache, skip defragmenting if physical 2580 * block addresses are continuous. 2581 */ 2582 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2583 if (ei.fofs + ei.len >= pg_end) 2584 goto out; 2585 } 2586 2587 map.m_lblk = pg_start; 2588 map.m_next_pgofs = &next_pgofs; 2589 2590 /* 2591 * lookup mapping info in dnode page cache, skip defragmenting if all 2592 * physical block addresses are continuous even if there are hole(s) 2593 * in logical blocks. 2594 */ 2595 while (map.m_lblk < pg_end) { 2596 map.m_len = pg_end - map.m_lblk; 2597 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2598 if (err) 2599 goto out; 2600 2601 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2602 map.m_lblk = next_pgofs; 2603 continue; 2604 } 2605 2606 if (blk_end && blk_end != map.m_pblk) 2607 fragmented = true; 2608 2609 /* record total count of block that we're going to move */ 2610 total += map.m_len; 2611 2612 blk_end = map.m_pblk + map.m_len; 2613 2614 map.m_lblk += map.m_len; 2615 } 2616 2617 if (!fragmented) { 2618 total = 0; 2619 goto out; 2620 } 2621 2622 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi)); 2623 2624 /* 2625 * make sure there are enough free section for LFS allocation, this can 2626 * avoid defragment running in SSR mode when free section are allocated 2627 * intensively 2628 */ 2629 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2630 err = -EAGAIN; 2631 goto out; 2632 } 2633 2634 map.m_lblk = pg_start; 2635 map.m_len = pg_end - pg_start; 2636 total = 0; 2637 2638 while (map.m_lblk < pg_end) { 2639 pgoff_t idx; 2640 int cnt = 0; 2641 2642 do_map: 2643 map.m_len = pg_end - map.m_lblk; 2644 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2645 if (err) 2646 goto clear_out; 2647 2648 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2649 map.m_lblk = next_pgofs; 2650 goto check; 2651 } 2652 2653 set_inode_flag(inode, FI_DO_DEFRAG); 2654 2655 idx = map.m_lblk; 2656 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2657 struct page *page; 2658 2659 page = f2fs_get_lock_data_page(inode, idx, true); 2660 if (IS_ERR(page)) { 2661 err = PTR_ERR(page); 2662 goto clear_out; 2663 } 2664 2665 set_page_dirty(page); 2666 f2fs_put_page(page, 1); 2667 2668 idx++; 2669 cnt++; 2670 total++; 2671 } 2672 2673 map.m_lblk = idx; 2674 check: 2675 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2676 goto do_map; 2677 2678 clear_inode_flag(inode, FI_DO_DEFRAG); 2679 2680 err = filemap_fdatawrite(inode->i_mapping); 2681 if (err) 2682 goto out; 2683 } 2684 clear_out: 2685 clear_inode_flag(inode, FI_DO_DEFRAG); 2686 out: 2687 inode_unlock(inode); 2688 if (!err) 2689 range->len = (u64)total << PAGE_SHIFT; 2690 return err; 2691 } 2692 2693 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2694 { 2695 struct inode *inode = file_inode(filp); 2696 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2697 struct f2fs_defragment range; 2698 int err; 2699 2700 if (!capable(CAP_SYS_ADMIN)) 2701 return -EPERM; 2702 2703 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2704 return -EINVAL; 2705 2706 if (f2fs_readonly(sbi->sb)) 2707 return -EROFS; 2708 2709 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2710 sizeof(range))) 2711 return -EFAULT; 2712 2713 /* verify alignment of offset & size */ 2714 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2715 return -EINVAL; 2716 2717 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2718 sbi->max_file_blocks)) 2719 return -EINVAL; 2720 2721 err = mnt_want_write_file(filp); 2722 if (err) 2723 return err; 2724 2725 err = f2fs_defragment_range(sbi, filp, &range); 2726 mnt_drop_write_file(filp); 2727 2728 f2fs_update_time(sbi, REQ_TIME); 2729 if (err < 0) 2730 return err; 2731 2732 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2733 sizeof(range))) 2734 return -EFAULT; 2735 2736 return 0; 2737 } 2738 2739 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2740 struct file *file_out, loff_t pos_out, size_t len) 2741 { 2742 struct inode *src = file_inode(file_in); 2743 struct inode *dst = file_inode(file_out); 2744 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2745 size_t olen = len, dst_max_i_size = 0; 2746 size_t dst_osize; 2747 int ret; 2748 2749 if (file_in->f_path.mnt != file_out->f_path.mnt || 2750 src->i_sb != dst->i_sb) 2751 return -EXDEV; 2752 2753 if (unlikely(f2fs_readonly(src->i_sb))) 2754 return -EROFS; 2755 2756 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2757 return -EINVAL; 2758 2759 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2760 return -EOPNOTSUPP; 2761 2762 if (src == dst) { 2763 if (pos_in == pos_out) 2764 return 0; 2765 if (pos_out > pos_in && pos_out < pos_in + len) 2766 return -EINVAL; 2767 } 2768 2769 inode_lock(src); 2770 if (src != dst) { 2771 ret = -EBUSY; 2772 if (!inode_trylock(dst)) 2773 goto out; 2774 } 2775 2776 ret = -EINVAL; 2777 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2778 goto out_unlock; 2779 if (len == 0) 2780 olen = len = src->i_size - pos_in; 2781 if (pos_in + len == src->i_size) 2782 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2783 if (len == 0) { 2784 ret = 0; 2785 goto out_unlock; 2786 } 2787 2788 dst_osize = dst->i_size; 2789 if (pos_out + olen > dst->i_size) 2790 dst_max_i_size = pos_out + olen; 2791 2792 /* verify the end result is block aligned */ 2793 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2794 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2795 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2796 goto out_unlock; 2797 2798 ret = f2fs_convert_inline_inode(src); 2799 if (ret) 2800 goto out_unlock; 2801 2802 ret = f2fs_convert_inline_inode(dst); 2803 if (ret) 2804 goto out_unlock; 2805 2806 /* write out all dirty pages from offset */ 2807 ret = filemap_write_and_wait_range(src->i_mapping, 2808 pos_in, pos_in + len); 2809 if (ret) 2810 goto out_unlock; 2811 2812 ret = filemap_write_and_wait_range(dst->i_mapping, 2813 pos_out, pos_out + len); 2814 if (ret) 2815 goto out_unlock; 2816 2817 f2fs_balance_fs(sbi, true); 2818 2819 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2820 if (src != dst) { 2821 ret = -EBUSY; 2822 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2823 goto out_src; 2824 } 2825 2826 f2fs_lock_op(sbi); 2827 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2828 pos_out >> F2FS_BLKSIZE_BITS, 2829 len >> F2FS_BLKSIZE_BITS, false); 2830 2831 if (!ret) { 2832 if (dst_max_i_size) 2833 f2fs_i_size_write(dst, dst_max_i_size); 2834 else if (dst_osize != dst->i_size) 2835 f2fs_i_size_write(dst, dst_osize); 2836 } 2837 f2fs_unlock_op(sbi); 2838 2839 if (src != dst) 2840 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2841 out_src: 2842 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2843 out_unlock: 2844 if (src != dst) 2845 inode_unlock(dst); 2846 out: 2847 inode_unlock(src); 2848 return ret; 2849 } 2850 2851 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2852 { 2853 struct f2fs_move_range range; 2854 struct fd dst; 2855 int err; 2856 2857 if (!(filp->f_mode & FMODE_READ) || 2858 !(filp->f_mode & FMODE_WRITE)) 2859 return -EBADF; 2860 2861 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2862 sizeof(range))) 2863 return -EFAULT; 2864 2865 dst = fdget(range.dst_fd); 2866 if (!dst.file) 2867 return -EBADF; 2868 2869 if (!(dst.file->f_mode & FMODE_WRITE)) { 2870 err = -EBADF; 2871 goto err_out; 2872 } 2873 2874 err = mnt_want_write_file(filp); 2875 if (err) 2876 goto err_out; 2877 2878 err = f2fs_move_file_range(filp, range.pos_in, dst.file, 2879 range.pos_out, range.len); 2880 2881 mnt_drop_write_file(filp); 2882 if (err) 2883 goto err_out; 2884 2885 if (copy_to_user((struct f2fs_move_range __user *)arg, 2886 &range, sizeof(range))) 2887 err = -EFAULT; 2888 err_out: 2889 fdput(dst); 2890 return err; 2891 } 2892 2893 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2894 { 2895 struct inode *inode = file_inode(filp); 2896 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2897 struct sit_info *sm = SIT_I(sbi); 2898 unsigned int start_segno = 0, end_segno = 0; 2899 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2900 struct f2fs_flush_device range; 2901 int ret; 2902 2903 if (!capable(CAP_SYS_ADMIN)) 2904 return -EPERM; 2905 2906 if (f2fs_readonly(sbi->sb)) 2907 return -EROFS; 2908 2909 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2910 return -EINVAL; 2911 2912 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2913 sizeof(range))) 2914 return -EFAULT; 2915 2916 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2917 __is_large_section(sbi)) { 2918 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2919 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2920 return -EINVAL; 2921 } 2922 2923 ret = mnt_want_write_file(filp); 2924 if (ret) 2925 return ret; 2926 2927 if (range.dev_num != 0) 2928 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2929 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2930 2931 start_segno = sm->last_victim[FLUSH_DEVICE]; 2932 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2933 start_segno = dev_start_segno; 2934 end_segno = min(start_segno + range.segments, dev_end_segno); 2935 2936 while (start_segno < end_segno) { 2937 if (!down_write_trylock(&sbi->gc_lock)) { 2938 ret = -EBUSY; 2939 goto out; 2940 } 2941 sm->last_victim[GC_CB] = end_segno + 1; 2942 sm->last_victim[GC_GREEDY] = end_segno + 1; 2943 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2944 ret = f2fs_gc(sbi, true, true, start_segno); 2945 if (ret == -EAGAIN) 2946 ret = 0; 2947 else if (ret < 0) 2948 break; 2949 start_segno++; 2950 } 2951 out: 2952 mnt_drop_write_file(filp); 2953 return ret; 2954 } 2955 2956 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2957 { 2958 struct inode *inode = file_inode(filp); 2959 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2960 2961 /* Must validate to set it with SQLite behavior in Android. */ 2962 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2963 2964 return put_user(sb_feature, (u32 __user *)arg); 2965 } 2966 2967 #ifdef CONFIG_QUOTA 2968 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2969 { 2970 struct dquot *transfer_to[MAXQUOTAS] = {}; 2971 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2972 struct super_block *sb = sbi->sb; 2973 int err = 0; 2974 2975 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2976 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2977 err = __dquot_transfer(inode, transfer_to); 2978 if (err) 2979 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2980 dqput(transfer_to[PRJQUOTA]); 2981 } 2982 return err; 2983 } 2984 2985 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 2986 { 2987 struct inode *inode = file_inode(filp); 2988 struct f2fs_inode_info *fi = F2FS_I(inode); 2989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2990 struct page *ipage; 2991 kprojid_t kprojid; 2992 int err; 2993 2994 if (!f2fs_sb_has_project_quota(sbi)) { 2995 if (projid != F2FS_DEF_PROJID) 2996 return -EOPNOTSUPP; 2997 else 2998 return 0; 2999 } 3000 3001 if (!f2fs_has_extra_attr(inode)) 3002 return -EOPNOTSUPP; 3003 3004 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3005 3006 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 3007 return 0; 3008 3009 err = -EPERM; 3010 /* Is it quota file? Do not allow user to mess with it */ 3011 if (IS_NOQUOTA(inode)) 3012 return err; 3013 3014 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3015 if (IS_ERR(ipage)) 3016 return PTR_ERR(ipage); 3017 3018 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 3019 i_projid)) { 3020 err = -EOVERFLOW; 3021 f2fs_put_page(ipage, 1); 3022 return err; 3023 } 3024 f2fs_put_page(ipage, 1); 3025 3026 err = dquot_initialize(inode); 3027 if (err) 3028 return err; 3029 3030 f2fs_lock_op(sbi); 3031 err = f2fs_transfer_project_quota(inode, kprojid); 3032 if (err) 3033 goto out_unlock; 3034 3035 F2FS_I(inode)->i_projid = kprojid; 3036 inode->i_ctime = current_time(inode); 3037 f2fs_mark_inode_dirty_sync(inode, true); 3038 out_unlock: 3039 f2fs_unlock_op(sbi); 3040 return err; 3041 } 3042 #else 3043 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3044 { 3045 return 0; 3046 } 3047 3048 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 3049 { 3050 if (projid != F2FS_DEF_PROJID) 3051 return -EOPNOTSUPP; 3052 return 0; 3053 } 3054 #endif 3055 3056 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */ 3057 3058 /* 3059 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable 3060 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its 3061 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS. 3062 */ 3063 3064 static const struct { 3065 u32 iflag; 3066 u32 xflag; 3067 } f2fs_xflags_map[] = { 3068 { F2FS_SYNC_FL, FS_XFLAG_SYNC }, 3069 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE }, 3070 { F2FS_APPEND_FL, FS_XFLAG_APPEND }, 3071 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP }, 3072 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME }, 3073 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT }, 3074 }; 3075 3076 #define F2FS_SUPPORTED_XFLAGS ( \ 3077 FS_XFLAG_SYNC | \ 3078 FS_XFLAG_IMMUTABLE | \ 3079 FS_XFLAG_APPEND | \ 3080 FS_XFLAG_NODUMP | \ 3081 FS_XFLAG_NOATIME | \ 3082 FS_XFLAG_PROJINHERIT) 3083 3084 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */ 3085 static inline u32 f2fs_iflags_to_xflags(u32 iflags) 3086 { 3087 u32 xflags = 0; 3088 int i; 3089 3090 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 3091 if (iflags & f2fs_xflags_map[i].iflag) 3092 xflags |= f2fs_xflags_map[i].xflag; 3093 3094 return xflags; 3095 } 3096 3097 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */ 3098 static inline u32 f2fs_xflags_to_iflags(u32 xflags) 3099 { 3100 u32 iflags = 0; 3101 int i; 3102 3103 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 3104 if (xflags & f2fs_xflags_map[i].xflag) 3105 iflags |= f2fs_xflags_map[i].iflag; 3106 3107 return iflags; 3108 } 3109 3110 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa) 3111 { 3112 struct f2fs_inode_info *fi = F2FS_I(inode); 3113 3114 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags)); 3115 3116 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3117 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3118 } 3119 3120 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg) 3121 { 3122 struct inode *inode = file_inode(filp); 3123 struct fsxattr fa; 3124 3125 f2fs_fill_fsxattr(inode, &fa); 3126 3127 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa))) 3128 return -EFAULT; 3129 return 0; 3130 } 3131 3132 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg) 3133 { 3134 struct inode *inode = file_inode(filp); 3135 struct fsxattr fa, old_fa; 3136 u32 iflags; 3137 int err; 3138 3139 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa))) 3140 return -EFAULT; 3141 3142 /* Make sure caller has proper permission */ 3143 if (!inode_owner_or_capable(inode)) 3144 return -EACCES; 3145 3146 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS) 3147 return -EOPNOTSUPP; 3148 3149 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags); 3150 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3151 return -EOPNOTSUPP; 3152 3153 err = mnt_want_write_file(filp); 3154 if (err) 3155 return err; 3156 3157 inode_lock(inode); 3158 3159 f2fs_fill_fsxattr(inode, &old_fa); 3160 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 3161 if (err) 3162 goto out; 3163 3164 err = f2fs_setflags_common(inode, iflags, 3165 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS)); 3166 if (err) 3167 goto out; 3168 3169 err = f2fs_ioc_setproject(filp, fa.fsx_projid); 3170 out: 3171 inode_unlock(inode); 3172 mnt_drop_write_file(filp); 3173 return err; 3174 } 3175 3176 int f2fs_pin_file_control(struct inode *inode, bool inc) 3177 { 3178 struct f2fs_inode_info *fi = F2FS_I(inode); 3179 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3180 3181 /* Use i_gc_failures for normal file as a risk signal. */ 3182 if (inc) 3183 f2fs_i_gc_failures_write(inode, 3184 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3185 3186 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3187 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3188 __func__, inode->i_ino, 3189 fi->i_gc_failures[GC_FAILURE_PIN]); 3190 clear_inode_flag(inode, FI_PIN_FILE); 3191 return -EAGAIN; 3192 } 3193 return 0; 3194 } 3195 3196 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3197 { 3198 struct inode *inode = file_inode(filp); 3199 __u32 pin; 3200 int ret = 0; 3201 3202 if (get_user(pin, (__u32 __user *)arg)) 3203 return -EFAULT; 3204 3205 if (!S_ISREG(inode->i_mode)) 3206 return -EINVAL; 3207 3208 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3209 return -EROFS; 3210 3211 ret = mnt_want_write_file(filp); 3212 if (ret) 3213 return ret; 3214 3215 inode_lock(inode); 3216 3217 if (f2fs_should_update_outplace(inode, NULL)) { 3218 ret = -EINVAL; 3219 goto out; 3220 } 3221 3222 if (!pin) { 3223 clear_inode_flag(inode, FI_PIN_FILE); 3224 f2fs_i_gc_failures_write(inode, 0); 3225 goto done; 3226 } 3227 3228 if (f2fs_pin_file_control(inode, false)) { 3229 ret = -EAGAIN; 3230 goto out; 3231 } 3232 3233 ret = f2fs_convert_inline_inode(inode); 3234 if (ret) 3235 goto out; 3236 3237 if (f2fs_disable_compressed_file(inode)) { 3238 ret = -EOPNOTSUPP; 3239 goto out; 3240 } 3241 3242 set_inode_flag(inode, FI_PIN_FILE); 3243 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3244 done: 3245 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3246 out: 3247 inode_unlock(inode); 3248 mnt_drop_write_file(filp); 3249 return ret; 3250 } 3251 3252 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3253 { 3254 struct inode *inode = file_inode(filp); 3255 __u32 pin = 0; 3256 3257 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3258 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3259 return put_user(pin, (u32 __user *)arg); 3260 } 3261 3262 int f2fs_precache_extents(struct inode *inode) 3263 { 3264 struct f2fs_inode_info *fi = F2FS_I(inode); 3265 struct f2fs_map_blocks map; 3266 pgoff_t m_next_extent; 3267 loff_t end; 3268 int err; 3269 3270 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3271 return -EOPNOTSUPP; 3272 3273 map.m_lblk = 0; 3274 map.m_next_pgofs = NULL; 3275 map.m_next_extent = &m_next_extent; 3276 map.m_seg_type = NO_CHECK_TYPE; 3277 map.m_may_create = false; 3278 end = F2FS_I_SB(inode)->max_file_blocks; 3279 3280 while (map.m_lblk < end) { 3281 map.m_len = end - map.m_lblk; 3282 3283 down_write(&fi->i_gc_rwsem[WRITE]); 3284 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3285 up_write(&fi->i_gc_rwsem[WRITE]); 3286 if (err) 3287 return err; 3288 3289 map.m_lblk = m_next_extent; 3290 } 3291 3292 return err; 3293 } 3294 3295 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3296 { 3297 return f2fs_precache_extents(file_inode(filp)); 3298 } 3299 3300 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3301 { 3302 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3303 __u64 block_count; 3304 int ret; 3305 3306 if (!capable(CAP_SYS_ADMIN)) 3307 return -EPERM; 3308 3309 if (f2fs_readonly(sbi->sb)) 3310 return -EROFS; 3311 3312 if (copy_from_user(&block_count, (void __user *)arg, 3313 sizeof(block_count))) 3314 return -EFAULT; 3315 3316 ret = f2fs_resize_fs(sbi, block_count); 3317 3318 return ret; 3319 } 3320 3321 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3322 { 3323 struct inode *inode = file_inode(filp); 3324 3325 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3326 3327 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3328 f2fs_warn(F2FS_I_SB(inode), 3329 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n", 3330 inode->i_ino); 3331 return -EOPNOTSUPP; 3332 } 3333 3334 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3335 } 3336 3337 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3338 { 3339 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3340 return -EOPNOTSUPP; 3341 3342 return fsverity_ioctl_measure(filp, (void __user *)arg); 3343 } 3344 3345 static int f2fs_get_volume_name(struct file *filp, unsigned long arg) 3346 { 3347 struct inode *inode = file_inode(filp); 3348 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3349 char *vbuf; 3350 int count; 3351 int err = 0; 3352 3353 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3354 if (!vbuf) 3355 return -ENOMEM; 3356 3357 down_read(&sbi->sb_lock); 3358 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3359 ARRAY_SIZE(sbi->raw_super->volume_name), 3360 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3361 up_read(&sbi->sb_lock); 3362 3363 if (copy_to_user((char __user *)arg, vbuf, 3364 min(FSLABEL_MAX, count))) 3365 err = -EFAULT; 3366 3367 kvfree(vbuf); 3368 return err; 3369 } 3370 3371 static int f2fs_set_volume_name(struct file *filp, unsigned long arg) 3372 { 3373 struct inode *inode = file_inode(filp); 3374 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3375 char *vbuf; 3376 int err = 0; 3377 3378 if (!capable(CAP_SYS_ADMIN)) 3379 return -EPERM; 3380 3381 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3382 if (IS_ERR(vbuf)) 3383 return PTR_ERR(vbuf); 3384 3385 err = mnt_want_write_file(filp); 3386 if (err) 3387 goto out; 3388 3389 down_write(&sbi->sb_lock); 3390 3391 memset(sbi->raw_super->volume_name, 0, 3392 sizeof(sbi->raw_super->volume_name)); 3393 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3394 sbi->raw_super->volume_name, 3395 ARRAY_SIZE(sbi->raw_super->volume_name)); 3396 3397 err = f2fs_commit_super(sbi, false); 3398 3399 up_write(&sbi->sb_lock); 3400 3401 mnt_drop_write_file(filp); 3402 out: 3403 kfree(vbuf); 3404 return err; 3405 } 3406 3407 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3408 { 3409 struct inode *inode = file_inode(filp); 3410 __u64 blocks; 3411 3412 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3413 return -EOPNOTSUPP; 3414 3415 if (!f2fs_compressed_file(inode)) 3416 return -EINVAL; 3417 3418 blocks = F2FS_I(inode)->i_compr_blocks; 3419 return put_user(blocks, (u64 __user *)arg); 3420 } 3421 3422 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 3423 { 3424 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 3425 return -EIO; 3426 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 3427 return -ENOSPC; 3428 3429 switch (cmd) { 3430 case F2FS_IOC_GETFLAGS: 3431 return f2fs_ioc_getflags(filp, arg); 3432 case F2FS_IOC_SETFLAGS: 3433 return f2fs_ioc_setflags(filp, arg); 3434 case F2FS_IOC_GETVERSION: 3435 return f2fs_ioc_getversion(filp, arg); 3436 case F2FS_IOC_START_ATOMIC_WRITE: 3437 return f2fs_ioc_start_atomic_write(filp); 3438 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3439 return f2fs_ioc_commit_atomic_write(filp); 3440 case F2FS_IOC_START_VOLATILE_WRITE: 3441 return f2fs_ioc_start_volatile_write(filp); 3442 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3443 return f2fs_ioc_release_volatile_write(filp); 3444 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3445 return f2fs_ioc_abort_volatile_write(filp); 3446 case F2FS_IOC_SHUTDOWN: 3447 return f2fs_ioc_shutdown(filp, arg); 3448 case FITRIM: 3449 return f2fs_ioc_fitrim(filp, arg); 3450 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3451 return f2fs_ioc_set_encryption_policy(filp, arg); 3452 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3453 return f2fs_ioc_get_encryption_policy(filp, arg); 3454 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3455 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 3456 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 3457 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 3458 case FS_IOC_ADD_ENCRYPTION_KEY: 3459 return f2fs_ioc_add_encryption_key(filp, arg); 3460 case FS_IOC_REMOVE_ENCRYPTION_KEY: 3461 return f2fs_ioc_remove_encryption_key(filp, arg); 3462 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 3463 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 3464 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 3465 return f2fs_ioc_get_encryption_key_status(filp, arg); 3466 case FS_IOC_GET_ENCRYPTION_NONCE: 3467 return f2fs_ioc_get_encryption_nonce(filp, arg); 3468 case F2FS_IOC_GARBAGE_COLLECT: 3469 return f2fs_ioc_gc(filp, arg); 3470 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3471 return f2fs_ioc_gc_range(filp, arg); 3472 case F2FS_IOC_WRITE_CHECKPOINT: 3473 return f2fs_ioc_write_checkpoint(filp, arg); 3474 case F2FS_IOC_DEFRAGMENT: 3475 return f2fs_ioc_defragment(filp, arg); 3476 case F2FS_IOC_MOVE_RANGE: 3477 return f2fs_ioc_move_range(filp, arg); 3478 case F2FS_IOC_FLUSH_DEVICE: 3479 return f2fs_ioc_flush_device(filp, arg); 3480 case F2FS_IOC_GET_FEATURES: 3481 return f2fs_ioc_get_features(filp, arg); 3482 case F2FS_IOC_FSGETXATTR: 3483 return f2fs_ioc_fsgetxattr(filp, arg); 3484 case F2FS_IOC_FSSETXATTR: 3485 return f2fs_ioc_fssetxattr(filp, arg); 3486 case F2FS_IOC_GET_PIN_FILE: 3487 return f2fs_ioc_get_pin_file(filp, arg); 3488 case F2FS_IOC_SET_PIN_FILE: 3489 return f2fs_ioc_set_pin_file(filp, arg); 3490 case F2FS_IOC_PRECACHE_EXTENTS: 3491 return f2fs_ioc_precache_extents(filp, arg); 3492 case F2FS_IOC_RESIZE_FS: 3493 return f2fs_ioc_resize_fs(filp, arg); 3494 case FS_IOC_ENABLE_VERITY: 3495 return f2fs_ioc_enable_verity(filp, arg); 3496 case FS_IOC_MEASURE_VERITY: 3497 return f2fs_ioc_measure_verity(filp, arg); 3498 case F2FS_IOC_GET_VOLUME_NAME: 3499 return f2fs_get_volume_name(filp, arg); 3500 case F2FS_IOC_SET_VOLUME_NAME: 3501 return f2fs_set_volume_name(filp, arg); 3502 case F2FS_IOC_GET_COMPRESS_BLOCKS: 3503 return f2fs_get_compress_blocks(filp, arg); 3504 default: 3505 return -ENOTTY; 3506 } 3507 } 3508 3509 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 3510 { 3511 struct file *file = iocb->ki_filp; 3512 struct inode *inode = file_inode(file); 3513 3514 if (!f2fs_is_compress_backend_ready(inode)) 3515 return -EOPNOTSUPP; 3516 3517 return generic_file_read_iter(iocb, iter); 3518 } 3519 3520 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3521 { 3522 struct file *file = iocb->ki_filp; 3523 struct inode *inode = file_inode(file); 3524 ssize_t ret; 3525 3526 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 3527 ret = -EIO; 3528 goto out; 3529 } 3530 3531 if (!f2fs_is_compress_backend_ready(inode)) { 3532 ret = -EOPNOTSUPP; 3533 goto out; 3534 } 3535 3536 if (iocb->ki_flags & IOCB_NOWAIT) { 3537 if (!inode_trylock(inode)) { 3538 ret = -EAGAIN; 3539 goto out; 3540 } 3541 } else { 3542 inode_lock(inode); 3543 } 3544 3545 ret = generic_write_checks(iocb, from); 3546 if (ret > 0) { 3547 bool preallocated = false; 3548 size_t target_size = 0; 3549 int err; 3550 3551 if (iov_iter_fault_in_readable(from, iov_iter_count(from))) 3552 set_inode_flag(inode, FI_NO_PREALLOC); 3553 3554 if ((iocb->ki_flags & IOCB_NOWAIT)) { 3555 if (!f2fs_overwrite_io(inode, iocb->ki_pos, 3556 iov_iter_count(from)) || 3557 f2fs_has_inline_data(inode) || 3558 f2fs_force_buffered_io(inode, iocb, from)) { 3559 clear_inode_flag(inode, FI_NO_PREALLOC); 3560 inode_unlock(inode); 3561 ret = -EAGAIN; 3562 goto out; 3563 } 3564 goto write; 3565 } 3566 3567 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 3568 goto write; 3569 3570 if (iocb->ki_flags & IOCB_DIRECT) { 3571 /* 3572 * Convert inline data for Direct I/O before entering 3573 * f2fs_direct_IO(). 3574 */ 3575 err = f2fs_convert_inline_inode(inode); 3576 if (err) 3577 goto out_err; 3578 /* 3579 * If force_buffere_io() is true, we have to allocate 3580 * blocks all the time, since f2fs_direct_IO will fall 3581 * back to buffered IO. 3582 */ 3583 if (!f2fs_force_buffered_io(inode, iocb, from) && 3584 allow_outplace_dio(inode, iocb, from)) 3585 goto write; 3586 } 3587 preallocated = true; 3588 target_size = iocb->ki_pos + iov_iter_count(from); 3589 3590 err = f2fs_preallocate_blocks(iocb, from); 3591 if (err) { 3592 out_err: 3593 clear_inode_flag(inode, FI_NO_PREALLOC); 3594 inode_unlock(inode); 3595 ret = err; 3596 goto out; 3597 } 3598 write: 3599 ret = __generic_file_write_iter(iocb, from); 3600 clear_inode_flag(inode, FI_NO_PREALLOC); 3601 3602 /* if we couldn't write data, we should deallocate blocks. */ 3603 if (preallocated && i_size_read(inode) < target_size) 3604 f2fs_truncate(inode); 3605 3606 if (ret > 0) 3607 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); 3608 } 3609 inode_unlock(inode); 3610 out: 3611 trace_f2fs_file_write_iter(inode, iocb->ki_pos, 3612 iov_iter_count(from), ret); 3613 if (ret > 0) 3614 ret = generic_write_sync(iocb, ret); 3615 return ret; 3616 } 3617 3618 #ifdef CONFIG_COMPAT 3619 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3620 { 3621 switch (cmd) { 3622 case F2FS_IOC32_GETFLAGS: 3623 cmd = F2FS_IOC_GETFLAGS; 3624 break; 3625 case F2FS_IOC32_SETFLAGS: 3626 cmd = F2FS_IOC_SETFLAGS; 3627 break; 3628 case F2FS_IOC32_GETVERSION: 3629 cmd = F2FS_IOC_GETVERSION; 3630 break; 3631 case F2FS_IOC_START_ATOMIC_WRITE: 3632 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3633 case F2FS_IOC_START_VOLATILE_WRITE: 3634 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3635 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3636 case F2FS_IOC_SHUTDOWN: 3637 case FITRIM: 3638 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3639 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3640 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3641 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 3642 case FS_IOC_ADD_ENCRYPTION_KEY: 3643 case FS_IOC_REMOVE_ENCRYPTION_KEY: 3644 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 3645 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 3646 case FS_IOC_GET_ENCRYPTION_NONCE: 3647 case F2FS_IOC_GARBAGE_COLLECT: 3648 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3649 case F2FS_IOC_WRITE_CHECKPOINT: 3650 case F2FS_IOC_DEFRAGMENT: 3651 case F2FS_IOC_MOVE_RANGE: 3652 case F2FS_IOC_FLUSH_DEVICE: 3653 case F2FS_IOC_GET_FEATURES: 3654 case F2FS_IOC_FSGETXATTR: 3655 case F2FS_IOC_FSSETXATTR: 3656 case F2FS_IOC_GET_PIN_FILE: 3657 case F2FS_IOC_SET_PIN_FILE: 3658 case F2FS_IOC_PRECACHE_EXTENTS: 3659 case F2FS_IOC_RESIZE_FS: 3660 case FS_IOC_ENABLE_VERITY: 3661 case FS_IOC_MEASURE_VERITY: 3662 case F2FS_IOC_GET_VOLUME_NAME: 3663 case F2FS_IOC_SET_VOLUME_NAME: 3664 case F2FS_IOC_GET_COMPRESS_BLOCKS: 3665 break; 3666 default: 3667 return -ENOIOCTLCMD; 3668 } 3669 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 3670 } 3671 #endif 3672 3673 const struct file_operations f2fs_file_operations = { 3674 .llseek = f2fs_llseek, 3675 .read_iter = f2fs_file_read_iter, 3676 .write_iter = f2fs_file_write_iter, 3677 .open = f2fs_file_open, 3678 .release = f2fs_release_file, 3679 .mmap = f2fs_file_mmap, 3680 .flush = f2fs_file_flush, 3681 .fsync = f2fs_sync_file, 3682 .fallocate = f2fs_fallocate, 3683 .unlocked_ioctl = f2fs_ioctl, 3684 #ifdef CONFIG_COMPAT 3685 .compat_ioctl = f2fs_compat_ioctl, 3686 #endif 3687 .splice_read = generic_file_splice_read, 3688 .splice_write = iter_file_splice_write, 3689 }; 3690