xref: /openbmc/linux/fs/f2fs/file.c (revision 0b656310)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (!ret)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		set_new_dnode(&dn, inode, NULL, NULL, 0);
117 		err = f2fs_get_block_locked(&dn, page->index);
118 	}
119 
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 	if (!need_alloc) {
122 		set_new_dnode(&dn, inode, NULL, NULL, 0);
123 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 		f2fs_put_dnode(&dn);
125 	}
126 #endif
127 	if (err) {
128 		unlock_page(page);
129 		goto out_sem;
130 	}
131 
132 	f2fs_wait_on_page_writeback(page, DATA, false, true);
133 
134 	/* wait for GCed page writeback via META_MAPPING */
135 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136 
137 	/*
138 	 * check to see if the page is mapped already (no holes)
139 	 */
140 	if (PageMappedToDisk(page))
141 		goto out_sem;
142 
143 	/* page is wholly or partially inside EOF */
144 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 						i_size_read(inode)) {
146 		loff_t offset;
147 
148 		offset = i_size_read(inode) & ~PAGE_MASK;
149 		zero_user_segment(page, offset, PAGE_SIZE);
150 	}
151 	set_page_dirty(page);
152 	if (!PageUptodate(page))
153 		SetPageUptodate(page);
154 
155 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
156 	f2fs_update_time(sbi, REQ_TIME);
157 
158 	trace_f2fs_vm_page_mkwrite(page, DATA);
159 out_sem:
160 	filemap_invalidate_unlock_shared(inode->i_mapping);
161 
162 	sb_end_pagefault(inode->i_sb);
163 err:
164 	return block_page_mkwrite_return(err);
165 }
166 
167 static const struct vm_operations_struct f2fs_file_vm_ops = {
168 	.fault		= f2fs_filemap_fault,
169 	.map_pages	= filemap_map_pages,
170 	.page_mkwrite	= f2fs_vm_page_mkwrite,
171 };
172 
173 static int get_parent_ino(struct inode *inode, nid_t *pino)
174 {
175 	struct dentry *dentry;
176 
177 	/*
178 	 * Make sure to get the non-deleted alias.  The alias associated with
179 	 * the open file descriptor being fsync()'ed may be deleted already.
180 	 */
181 	dentry = d_find_alias(inode);
182 	if (!dentry)
183 		return 0;
184 
185 	*pino = parent_ino(dentry);
186 	dput(dentry);
187 	return 1;
188 }
189 
190 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
191 {
192 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
193 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
194 
195 	if (!S_ISREG(inode->i_mode))
196 		cp_reason = CP_NON_REGULAR;
197 	else if (f2fs_compressed_file(inode))
198 		cp_reason = CP_COMPRESSED;
199 	else if (inode->i_nlink != 1)
200 		cp_reason = CP_HARDLINK;
201 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
202 		cp_reason = CP_SB_NEED_CP;
203 	else if (file_wrong_pino(inode))
204 		cp_reason = CP_WRONG_PINO;
205 	else if (!f2fs_space_for_roll_forward(sbi))
206 		cp_reason = CP_NO_SPC_ROLL;
207 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
208 		cp_reason = CP_NODE_NEED_CP;
209 	else if (test_opt(sbi, FASTBOOT))
210 		cp_reason = CP_FASTBOOT_MODE;
211 	else if (F2FS_OPTION(sbi).active_logs == 2)
212 		cp_reason = CP_SPEC_LOG_NUM;
213 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
214 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
215 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
216 							TRANS_DIR_INO))
217 		cp_reason = CP_RECOVER_DIR;
218 
219 	return cp_reason;
220 }
221 
222 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
223 {
224 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
225 	bool ret = false;
226 	/* But we need to avoid that there are some inode updates */
227 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
228 		ret = true;
229 	f2fs_put_page(i, 0);
230 	return ret;
231 }
232 
233 static void try_to_fix_pino(struct inode *inode)
234 {
235 	struct f2fs_inode_info *fi = F2FS_I(inode);
236 	nid_t pino;
237 
238 	f2fs_down_write(&fi->i_sem);
239 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
240 			get_parent_ino(inode, &pino)) {
241 		f2fs_i_pino_write(inode, pino);
242 		file_got_pino(inode);
243 	}
244 	f2fs_up_write(&fi->i_sem);
245 }
246 
247 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
248 						int datasync, bool atomic)
249 {
250 	struct inode *inode = file->f_mapping->host;
251 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
252 	nid_t ino = inode->i_ino;
253 	int ret = 0;
254 	enum cp_reason_type cp_reason = 0;
255 	struct writeback_control wbc = {
256 		.sync_mode = WB_SYNC_ALL,
257 		.nr_to_write = LONG_MAX,
258 		.for_reclaim = 0,
259 	};
260 	unsigned int seq_id = 0;
261 
262 	if (unlikely(f2fs_readonly(inode->i_sb)))
263 		return 0;
264 
265 	trace_f2fs_sync_file_enter(inode);
266 
267 	if (S_ISDIR(inode->i_mode))
268 		goto go_write;
269 
270 	/* if fdatasync is triggered, let's do in-place-update */
271 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
272 		set_inode_flag(inode, FI_NEED_IPU);
273 	ret = file_write_and_wait_range(file, start, end);
274 	clear_inode_flag(inode, FI_NEED_IPU);
275 
276 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
277 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
278 		return ret;
279 	}
280 
281 	/* if the inode is dirty, let's recover all the time */
282 	if (!f2fs_skip_inode_update(inode, datasync)) {
283 		f2fs_write_inode(inode, NULL);
284 		goto go_write;
285 	}
286 
287 	/*
288 	 * if there is no written data, don't waste time to write recovery info.
289 	 */
290 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
291 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
292 
293 		/* it may call write_inode just prior to fsync */
294 		if (need_inode_page_update(sbi, ino))
295 			goto go_write;
296 
297 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
298 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
299 			goto flush_out;
300 		goto out;
301 	} else {
302 		/*
303 		 * for OPU case, during fsync(), node can be persisted before
304 		 * data when lower device doesn't support write barrier, result
305 		 * in data corruption after SPO.
306 		 * So for strict fsync mode, force to use atomic write semantics
307 		 * to keep write order in between data/node and last node to
308 		 * avoid potential data corruption.
309 		 */
310 		if (F2FS_OPTION(sbi).fsync_mode ==
311 				FSYNC_MODE_STRICT && !atomic)
312 			atomic = true;
313 	}
314 go_write:
315 	/*
316 	 * Both of fdatasync() and fsync() are able to be recovered from
317 	 * sudden-power-off.
318 	 */
319 	f2fs_down_read(&F2FS_I(inode)->i_sem);
320 	cp_reason = need_do_checkpoint(inode);
321 	f2fs_up_read(&F2FS_I(inode)->i_sem);
322 
323 	if (cp_reason) {
324 		/* all the dirty node pages should be flushed for POR */
325 		ret = f2fs_sync_fs(inode->i_sb, 1);
326 
327 		/*
328 		 * We've secured consistency through sync_fs. Following pino
329 		 * will be used only for fsynced inodes after checkpoint.
330 		 */
331 		try_to_fix_pino(inode);
332 		clear_inode_flag(inode, FI_APPEND_WRITE);
333 		clear_inode_flag(inode, FI_UPDATE_WRITE);
334 		goto out;
335 	}
336 sync_nodes:
337 	atomic_inc(&sbi->wb_sync_req[NODE]);
338 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
339 	atomic_dec(&sbi->wb_sync_req[NODE]);
340 	if (ret)
341 		goto out;
342 
343 	/* if cp_error was enabled, we should avoid infinite loop */
344 	if (unlikely(f2fs_cp_error(sbi))) {
345 		ret = -EIO;
346 		goto out;
347 	}
348 
349 	if (f2fs_need_inode_block_update(sbi, ino)) {
350 		f2fs_mark_inode_dirty_sync(inode, true);
351 		f2fs_write_inode(inode, NULL);
352 		goto sync_nodes;
353 	}
354 
355 	/*
356 	 * If it's atomic_write, it's just fine to keep write ordering. So
357 	 * here we don't need to wait for node write completion, since we use
358 	 * node chain which serializes node blocks. If one of node writes are
359 	 * reordered, we can see simply broken chain, resulting in stopping
360 	 * roll-forward recovery. It means we'll recover all or none node blocks
361 	 * given fsync mark.
362 	 */
363 	if (!atomic) {
364 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
365 		if (ret)
366 			goto out;
367 	}
368 
369 	/* once recovery info is written, don't need to tack this */
370 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
371 	clear_inode_flag(inode, FI_APPEND_WRITE);
372 flush_out:
373 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
374 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
375 		ret = f2fs_issue_flush(sbi, inode->i_ino);
376 	if (!ret) {
377 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
378 		clear_inode_flag(inode, FI_UPDATE_WRITE);
379 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
380 	}
381 	f2fs_update_time(sbi, REQ_TIME);
382 out:
383 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
384 	return ret;
385 }
386 
387 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
388 {
389 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
390 		return -EIO;
391 	return f2fs_do_sync_file(file, start, end, datasync, false);
392 }
393 
394 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
395 				pgoff_t index, int whence)
396 {
397 	switch (whence) {
398 	case SEEK_DATA:
399 		if (__is_valid_data_blkaddr(blkaddr))
400 			return true;
401 		if (blkaddr == NEW_ADDR &&
402 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
403 			return true;
404 		break;
405 	case SEEK_HOLE:
406 		if (blkaddr == NULL_ADDR)
407 			return true;
408 		break;
409 	}
410 	return false;
411 }
412 
413 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
414 {
415 	struct inode *inode = file->f_mapping->host;
416 	loff_t maxbytes = inode->i_sb->s_maxbytes;
417 	struct dnode_of_data dn;
418 	pgoff_t pgofs, end_offset;
419 	loff_t data_ofs = offset;
420 	loff_t isize;
421 	int err = 0;
422 
423 	inode_lock(inode);
424 
425 	isize = i_size_read(inode);
426 	if (offset >= isize)
427 		goto fail;
428 
429 	/* handle inline data case */
430 	if (f2fs_has_inline_data(inode)) {
431 		if (whence == SEEK_HOLE) {
432 			data_ofs = isize;
433 			goto found;
434 		} else if (whence == SEEK_DATA) {
435 			data_ofs = offset;
436 			goto found;
437 		}
438 	}
439 
440 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
441 
442 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
443 		set_new_dnode(&dn, inode, NULL, NULL, 0);
444 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
445 		if (err && err != -ENOENT) {
446 			goto fail;
447 		} else if (err == -ENOENT) {
448 			/* direct node does not exists */
449 			if (whence == SEEK_DATA) {
450 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
451 				continue;
452 			} else {
453 				goto found;
454 			}
455 		}
456 
457 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
458 
459 		/* find data/hole in dnode block */
460 		for (; dn.ofs_in_node < end_offset;
461 				dn.ofs_in_node++, pgofs++,
462 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
463 			block_t blkaddr;
464 
465 			blkaddr = f2fs_data_blkaddr(&dn);
466 
467 			if (__is_valid_data_blkaddr(blkaddr) &&
468 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
469 					blkaddr, DATA_GENERIC_ENHANCE)) {
470 				f2fs_put_dnode(&dn);
471 				goto fail;
472 			}
473 
474 			if (__found_offset(file->f_mapping, blkaddr,
475 							pgofs, whence)) {
476 				f2fs_put_dnode(&dn);
477 				goto found;
478 			}
479 		}
480 		f2fs_put_dnode(&dn);
481 	}
482 
483 	if (whence == SEEK_DATA)
484 		goto fail;
485 found:
486 	if (whence == SEEK_HOLE && data_ofs > isize)
487 		data_ofs = isize;
488 	inode_unlock(inode);
489 	return vfs_setpos(file, data_ofs, maxbytes);
490 fail:
491 	inode_unlock(inode);
492 	return -ENXIO;
493 }
494 
495 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
496 {
497 	struct inode *inode = file->f_mapping->host;
498 	loff_t maxbytes = inode->i_sb->s_maxbytes;
499 
500 	if (f2fs_compressed_file(inode))
501 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
502 
503 	switch (whence) {
504 	case SEEK_SET:
505 	case SEEK_CUR:
506 	case SEEK_END:
507 		return generic_file_llseek_size(file, offset, whence,
508 						maxbytes, i_size_read(inode));
509 	case SEEK_DATA:
510 	case SEEK_HOLE:
511 		if (offset < 0)
512 			return -ENXIO;
513 		return f2fs_seek_block(file, offset, whence);
514 	}
515 
516 	return -EINVAL;
517 }
518 
519 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
520 {
521 	struct inode *inode = file_inode(file);
522 
523 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
524 		return -EIO;
525 
526 	if (!f2fs_is_compress_backend_ready(inode))
527 		return -EOPNOTSUPP;
528 
529 	file_accessed(file);
530 	vma->vm_ops = &f2fs_file_vm_ops;
531 	set_inode_flag(inode, FI_MMAP_FILE);
532 	return 0;
533 }
534 
535 static int f2fs_file_open(struct inode *inode, struct file *filp)
536 {
537 	int err = fscrypt_file_open(inode, filp);
538 
539 	if (err)
540 		return err;
541 
542 	if (!f2fs_is_compress_backend_ready(inode))
543 		return -EOPNOTSUPP;
544 
545 	err = fsverity_file_open(inode, filp);
546 	if (err)
547 		return err;
548 
549 	filp->f_mode |= FMODE_NOWAIT;
550 
551 	return dquot_file_open(inode, filp);
552 }
553 
554 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
555 {
556 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
557 	struct f2fs_node *raw_node;
558 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
559 	__le32 *addr;
560 	int base = 0;
561 	bool compressed_cluster = false;
562 	int cluster_index = 0, valid_blocks = 0;
563 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
564 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
565 
566 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
567 		base = get_extra_isize(dn->inode);
568 
569 	raw_node = F2FS_NODE(dn->node_page);
570 	addr = blkaddr_in_node(raw_node) + base + ofs;
571 
572 	/* Assumption: truncation starts with cluster */
573 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
574 		block_t blkaddr = le32_to_cpu(*addr);
575 
576 		if (f2fs_compressed_file(dn->inode) &&
577 					!(cluster_index & (cluster_size - 1))) {
578 			if (compressed_cluster)
579 				f2fs_i_compr_blocks_update(dn->inode,
580 							valid_blocks, false);
581 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
582 			valid_blocks = 0;
583 		}
584 
585 		if (blkaddr == NULL_ADDR)
586 			continue;
587 
588 		dn->data_blkaddr = NULL_ADDR;
589 		f2fs_set_data_blkaddr(dn);
590 
591 		if (__is_valid_data_blkaddr(blkaddr)) {
592 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
593 					DATA_GENERIC_ENHANCE))
594 				continue;
595 			if (compressed_cluster)
596 				valid_blocks++;
597 		}
598 
599 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
600 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
601 
602 		f2fs_invalidate_blocks(sbi, blkaddr);
603 
604 		if (!released || blkaddr != COMPRESS_ADDR)
605 			nr_free++;
606 	}
607 
608 	if (compressed_cluster)
609 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
610 
611 	if (nr_free) {
612 		pgoff_t fofs;
613 		/*
614 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
615 		 * we will invalidate all blkaddr in the whole range.
616 		 */
617 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
618 							dn->inode) + ofs;
619 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
620 		f2fs_update_age_extent_cache_range(dn, fofs, len);
621 		dec_valid_block_count(sbi, dn->inode, nr_free);
622 	}
623 	dn->ofs_in_node = ofs;
624 
625 	f2fs_update_time(sbi, REQ_TIME);
626 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
627 					 dn->ofs_in_node, nr_free);
628 }
629 
630 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
631 {
632 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
633 }
634 
635 static int truncate_partial_data_page(struct inode *inode, u64 from,
636 								bool cache_only)
637 {
638 	loff_t offset = from & (PAGE_SIZE - 1);
639 	pgoff_t index = from >> PAGE_SHIFT;
640 	struct address_space *mapping = inode->i_mapping;
641 	struct page *page;
642 
643 	if (!offset && !cache_only)
644 		return 0;
645 
646 	if (cache_only) {
647 		page = find_lock_page(mapping, index);
648 		if (page && PageUptodate(page))
649 			goto truncate_out;
650 		f2fs_put_page(page, 1);
651 		return 0;
652 	}
653 
654 	page = f2fs_get_lock_data_page(inode, index, true);
655 	if (IS_ERR(page))
656 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
657 truncate_out:
658 	f2fs_wait_on_page_writeback(page, DATA, true, true);
659 	zero_user(page, offset, PAGE_SIZE - offset);
660 
661 	/* An encrypted inode should have a key and truncate the last page. */
662 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
663 	if (!cache_only)
664 		set_page_dirty(page);
665 	f2fs_put_page(page, 1);
666 	return 0;
667 }
668 
669 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
670 {
671 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
672 	struct dnode_of_data dn;
673 	pgoff_t free_from;
674 	int count = 0, err = 0;
675 	struct page *ipage;
676 	bool truncate_page = false;
677 
678 	trace_f2fs_truncate_blocks_enter(inode, from);
679 
680 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
681 
682 	if (free_from >= max_file_blocks(inode))
683 		goto free_partial;
684 
685 	if (lock)
686 		f2fs_lock_op(sbi);
687 
688 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
689 	if (IS_ERR(ipage)) {
690 		err = PTR_ERR(ipage);
691 		goto out;
692 	}
693 
694 	if (f2fs_has_inline_data(inode)) {
695 		f2fs_truncate_inline_inode(inode, ipage, from);
696 		f2fs_put_page(ipage, 1);
697 		truncate_page = true;
698 		goto out;
699 	}
700 
701 	set_new_dnode(&dn, inode, ipage, NULL, 0);
702 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
703 	if (err) {
704 		if (err == -ENOENT)
705 			goto free_next;
706 		goto out;
707 	}
708 
709 	count = ADDRS_PER_PAGE(dn.node_page, inode);
710 
711 	count -= dn.ofs_in_node;
712 	f2fs_bug_on(sbi, count < 0);
713 
714 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
715 		f2fs_truncate_data_blocks_range(&dn, count);
716 		free_from += count;
717 	}
718 
719 	f2fs_put_dnode(&dn);
720 free_next:
721 	err = f2fs_truncate_inode_blocks(inode, free_from);
722 out:
723 	if (lock)
724 		f2fs_unlock_op(sbi);
725 free_partial:
726 	/* lastly zero out the first data page */
727 	if (!err)
728 		err = truncate_partial_data_page(inode, from, truncate_page);
729 
730 	trace_f2fs_truncate_blocks_exit(inode, err);
731 	return err;
732 }
733 
734 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
735 {
736 	u64 free_from = from;
737 	int err;
738 
739 #ifdef CONFIG_F2FS_FS_COMPRESSION
740 	/*
741 	 * for compressed file, only support cluster size
742 	 * aligned truncation.
743 	 */
744 	if (f2fs_compressed_file(inode))
745 		free_from = round_up(from,
746 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
747 #endif
748 
749 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
750 	if (err)
751 		return err;
752 
753 #ifdef CONFIG_F2FS_FS_COMPRESSION
754 	/*
755 	 * For compressed file, after release compress blocks, don't allow write
756 	 * direct, but we should allow write direct after truncate to zero.
757 	 */
758 	if (f2fs_compressed_file(inode) && !free_from
759 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
760 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
761 
762 	if (from != free_from) {
763 		err = f2fs_truncate_partial_cluster(inode, from, lock);
764 		if (err)
765 			return err;
766 	}
767 #endif
768 
769 	return 0;
770 }
771 
772 int f2fs_truncate(struct inode *inode)
773 {
774 	int err;
775 
776 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
777 		return -EIO;
778 
779 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
780 				S_ISLNK(inode->i_mode)))
781 		return 0;
782 
783 	trace_f2fs_truncate(inode);
784 
785 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
786 		return -EIO;
787 
788 	err = f2fs_dquot_initialize(inode);
789 	if (err)
790 		return err;
791 
792 	/* we should check inline_data size */
793 	if (!f2fs_may_inline_data(inode)) {
794 		err = f2fs_convert_inline_inode(inode);
795 		if (err)
796 			return err;
797 	}
798 
799 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
800 	if (err)
801 		return err;
802 
803 	inode->i_mtime = inode->i_ctime = current_time(inode);
804 	f2fs_mark_inode_dirty_sync(inode, false);
805 	return 0;
806 }
807 
808 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
809 {
810 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
811 
812 	if (!fscrypt_dio_supported(inode))
813 		return true;
814 	if (fsverity_active(inode))
815 		return true;
816 	if (f2fs_compressed_file(inode))
817 		return true;
818 
819 	/* disallow direct IO if any of devices has unaligned blksize */
820 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
821 		return true;
822 	/*
823 	 * for blkzoned device, fallback direct IO to buffered IO, so
824 	 * all IOs can be serialized by log-structured write.
825 	 */
826 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
827 		return true;
828 	if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
829 		return true;
830 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
831 		return true;
832 
833 	return false;
834 }
835 
836 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
837 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
838 {
839 	struct inode *inode = d_inode(path->dentry);
840 	struct f2fs_inode_info *fi = F2FS_I(inode);
841 	struct f2fs_inode *ri = NULL;
842 	unsigned int flags;
843 
844 	if (f2fs_has_extra_attr(inode) &&
845 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
846 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
847 		stat->result_mask |= STATX_BTIME;
848 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
849 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
850 	}
851 
852 	/*
853 	 * Return the DIO alignment restrictions if requested.  We only return
854 	 * this information when requested, since on encrypted files it might
855 	 * take a fair bit of work to get if the file wasn't opened recently.
856 	 *
857 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
858 	 * cannot represent that, so in that case we report no DIO support.
859 	 */
860 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
861 		unsigned int bsize = i_blocksize(inode);
862 
863 		stat->result_mask |= STATX_DIOALIGN;
864 		if (!f2fs_force_buffered_io(inode, WRITE)) {
865 			stat->dio_mem_align = bsize;
866 			stat->dio_offset_align = bsize;
867 		}
868 	}
869 
870 	flags = fi->i_flags;
871 	if (flags & F2FS_COMPR_FL)
872 		stat->attributes |= STATX_ATTR_COMPRESSED;
873 	if (flags & F2FS_APPEND_FL)
874 		stat->attributes |= STATX_ATTR_APPEND;
875 	if (IS_ENCRYPTED(inode))
876 		stat->attributes |= STATX_ATTR_ENCRYPTED;
877 	if (flags & F2FS_IMMUTABLE_FL)
878 		stat->attributes |= STATX_ATTR_IMMUTABLE;
879 	if (flags & F2FS_NODUMP_FL)
880 		stat->attributes |= STATX_ATTR_NODUMP;
881 	if (IS_VERITY(inode))
882 		stat->attributes |= STATX_ATTR_VERITY;
883 
884 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
885 				  STATX_ATTR_APPEND |
886 				  STATX_ATTR_ENCRYPTED |
887 				  STATX_ATTR_IMMUTABLE |
888 				  STATX_ATTR_NODUMP |
889 				  STATX_ATTR_VERITY);
890 
891 	generic_fillattr(idmap, inode, stat);
892 
893 	/* we need to show initial sectors used for inline_data/dentries */
894 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
895 					f2fs_has_inline_dentry(inode))
896 		stat->blocks += (stat->size + 511) >> 9;
897 
898 	return 0;
899 }
900 
901 #ifdef CONFIG_F2FS_FS_POSIX_ACL
902 static void __setattr_copy(struct mnt_idmap *idmap,
903 			   struct inode *inode, const struct iattr *attr)
904 {
905 	unsigned int ia_valid = attr->ia_valid;
906 
907 	i_uid_update(idmap, attr, inode);
908 	i_gid_update(idmap, attr, inode);
909 	if (ia_valid & ATTR_ATIME)
910 		inode->i_atime = attr->ia_atime;
911 	if (ia_valid & ATTR_MTIME)
912 		inode->i_mtime = attr->ia_mtime;
913 	if (ia_valid & ATTR_CTIME)
914 		inode->i_ctime = attr->ia_ctime;
915 	if (ia_valid & ATTR_MODE) {
916 		umode_t mode = attr->ia_mode;
917 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
918 
919 		if (!vfsgid_in_group_p(vfsgid) &&
920 		    !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
921 			mode &= ~S_ISGID;
922 		set_acl_inode(inode, mode);
923 	}
924 }
925 #else
926 #define __setattr_copy setattr_copy
927 #endif
928 
929 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
930 		 struct iattr *attr)
931 {
932 	struct inode *inode = d_inode(dentry);
933 	int err;
934 
935 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
936 		return -EIO;
937 
938 	if (unlikely(IS_IMMUTABLE(inode)))
939 		return -EPERM;
940 
941 	if (unlikely(IS_APPEND(inode) &&
942 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
943 				  ATTR_GID | ATTR_TIMES_SET))))
944 		return -EPERM;
945 
946 	if ((attr->ia_valid & ATTR_SIZE) &&
947 		!f2fs_is_compress_backend_ready(inode))
948 		return -EOPNOTSUPP;
949 
950 	err = setattr_prepare(idmap, dentry, attr);
951 	if (err)
952 		return err;
953 
954 	err = fscrypt_prepare_setattr(dentry, attr);
955 	if (err)
956 		return err;
957 
958 	err = fsverity_prepare_setattr(dentry, attr);
959 	if (err)
960 		return err;
961 
962 	if (is_quota_modification(idmap, inode, attr)) {
963 		err = f2fs_dquot_initialize(inode);
964 		if (err)
965 			return err;
966 	}
967 	if (i_uid_needs_update(idmap, attr, inode) ||
968 	    i_gid_needs_update(idmap, attr, inode)) {
969 		f2fs_lock_op(F2FS_I_SB(inode));
970 		err = dquot_transfer(idmap, inode, attr);
971 		if (err) {
972 			set_sbi_flag(F2FS_I_SB(inode),
973 					SBI_QUOTA_NEED_REPAIR);
974 			f2fs_unlock_op(F2FS_I_SB(inode));
975 			return err;
976 		}
977 		/*
978 		 * update uid/gid under lock_op(), so that dquot and inode can
979 		 * be updated atomically.
980 		 */
981 		i_uid_update(idmap, attr, inode);
982 		i_gid_update(idmap, attr, inode);
983 		f2fs_mark_inode_dirty_sync(inode, true);
984 		f2fs_unlock_op(F2FS_I_SB(inode));
985 	}
986 
987 	if (attr->ia_valid & ATTR_SIZE) {
988 		loff_t old_size = i_size_read(inode);
989 
990 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
991 			/*
992 			 * should convert inline inode before i_size_write to
993 			 * keep smaller than inline_data size with inline flag.
994 			 */
995 			err = f2fs_convert_inline_inode(inode);
996 			if (err)
997 				return err;
998 		}
999 
1000 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1001 		filemap_invalidate_lock(inode->i_mapping);
1002 
1003 		truncate_setsize(inode, attr->ia_size);
1004 
1005 		if (attr->ia_size <= old_size)
1006 			err = f2fs_truncate(inode);
1007 		/*
1008 		 * do not trim all blocks after i_size if target size is
1009 		 * larger than i_size.
1010 		 */
1011 		filemap_invalidate_unlock(inode->i_mapping);
1012 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1013 		if (err)
1014 			return err;
1015 
1016 		spin_lock(&F2FS_I(inode)->i_size_lock);
1017 		inode->i_mtime = inode->i_ctime = current_time(inode);
1018 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1019 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1020 	}
1021 
1022 	__setattr_copy(idmap, inode, attr);
1023 
1024 	if (attr->ia_valid & ATTR_MODE) {
1025 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1026 
1027 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1028 			if (!err)
1029 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1030 			clear_inode_flag(inode, FI_ACL_MODE);
1031 		}
1032 	}
1033 
1034 	/* file size may changed here */
1035 	f2fs_mark_inode_dirty_sync(inode, true);
1036 
1037 	/* inode change will produce dirty node pages flushed by checkpoint */
1038 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1039 
1040 	return err;
1041 }
1042 
1043 const struct inode_operations f2fs_file_inode_operations = {
1044 	.getattr	= f2fs_getattr,
1045 	.setattr	= f2fs_setattr,
1046 	.get_inode_acl	= f2fs_get_acl,
1047 	.set_acl	= f2fs_set_acl,
1048 	.listxattr	= f2fs_listxattr,
1049 	.fiemap		= f2fs_fiemap,
1050 	.fileattr_get	= f2fs_fileattr_get,
1051 	.fileattr_set	= f2fs_fileattr_set,
1052 };
1053 
1054 static int fill_zero(struct inode *inode, pgoff_t index,
1055 					loff_t start, loff_t len)
1056 {
1057 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1058 	struct page *page;
1059 
1060 	if (!len)
1061 		return 0;
1062 
1063 	f2fs_balance_fs(sbi, true);
1064 
1065 	f2fs_lock_op(sbi);
1066 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1067 	f2fs_unlock_op(sbi);
1068 
1069 	if (IS_ERR(page))
1070 		return PTR_ERR(page);
1071 
1072 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1073 	zero_user(page, start, len);
1074 	set_page_dirty(page);
1075 	f2fs_put_page(page, 1);
1076 	return 0;
1077 }
1078 
1079 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1080 {
1081 	int err;
1082 
1083 	while (pg_start < pg_end) {
1084 		struct dnode_of_data dn;
1085 		pgoff_t end_offset, count;
1086 
1087 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1088 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1089 		if (err) {
1090 			if (err == -ENOENT) {
1091 				pg_start = f2fs_get_next_page_offset(&dn,
1092 								pg_start);
1093 				continue;
1094 			}
1095 			return err;
1096 		}
1097 
1098 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1099 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1100 
1101 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1102 
1103 		f2fs_truncate_data_blocks_range(&dn, count);
1104 		f2fs_put_dnode(&dn);
1105 
1106 		pg_start += count;
1107 	}
1108 	return 0;
1109 }
1110 
1111 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1112 {
1113 	pgoff_t pg_start, pg_end;
1114 	loff_t off_start, off_end;
1115 	int ret;
1116 
1117 	ret = f2fs_convert_inline_inode(inode);
1118 	if (ret)
1119 		return ret;
1120 
1121 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1122 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1123 
1124 	off_start = offset & (PAGE_SIZE - 1);
1125 	off_end = (offset + len) & (PAGE_SIZE - 1);
1126 
1127 	if (pg_start == pg_end) {
1128 		ret = fill_zero(inode, pg_start, off_start,
1129 						off_end - off_start);
1130 		if (ret)
1131 			return ret;
1132 	} else {
1133 		if (off_start) {
1134 			ret = fill_zero(inode, pg_start++, off_start,
1135 						PAGE_SIZE - off_start);
1136 			if (ret)
1137 				return ret;
1138 		}
1139 		if (off_end) {
1140 			ret = fill_zero(inode, pg_end, 0, off_end);
1141 			if (ret)
1142 				return ret;
1143 		}
1144 
1145 		if (pg_start < pg_end) {
1146 			loff_t blk_start, blk_end;
1147 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1148 
1149 			f2fs_balance_fs(sbi, true);
1150 
1151 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1152 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1153 
1154 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1155 			filemap_invalidate_lock(inode->i_mapping);
1156 
1157 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1158 
1159 			f2fs_lock_op(sbi);
1160 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1161 			f2fs_unlock_op(sbi);
1162 
1163 			filemap_invalidate_unlock(inode->i_mapping);
1164 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1165 		}
1166 	}
1167 
1168 	return ret;
1169 }
1170 
1171 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1172 				int *do_replace, pgoff_t off, pgoff_t len)
1173 {
1174 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1175 	struct dnode_of_data dn;
1176 	int ret, done, i;
1177 
1178 next_dnode:
1179 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1180 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1181 	if (ret && ret != -ENOENT) {
1182 		return ret;
1183 	} else if (ret == -ENOENT) {
1184 		if (dn.max_level == 0)
1185 			return -ENOENT;
1186 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1187 						dn.ofs_in_node, len);
1188 		blkaddr += done;
1189 		do_replace += done;
1190 		goto next;
1191 	}
1192 
1193 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1194 							dn.ofs_in_node, len);
1195 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1196 		*blkaddr = f2fs_data_blkaddr(&dn);
1197 
1198 		if (__is_valid_data_blkaddr(*blkaddr) &&
1199 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1200 					DATA_GENERIC_ENHANCE)) {
1201 			f2fs_put_dnode(&dn);
1202 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1203 			return -EFSCORRUPTED;
1204 		}
1205 
1206 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1207 
1208 			if (f2fs_lfs_mode(sbi)) {
1209 				f2fs_put_dnode(&dn);
1210 				return -EOPNOTSUPP;
1211 			}
1212 
1213 			/* do not invalidate this block address */
1214 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1215 			*do_replace = 1;
1216 		}
1217 	}
1218 	f2fs_put_dnode(&dn);
1219 next:
1220 	len -= done;
1221 	off += done;
1222 	if (len)
1223 		goto next_dnode;
1224 	return 0;
1225 }
1226 
1227 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1228 				int *do_replace, pgoff_t off, int len)
1229 {
1230 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1231 	struct dnode_of_data dn;
1232 	int ret, i;
1233 
1234 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1235 		if (*do_replace == 0)
1236 			continue;
1237 
1238 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1239 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1240 		if (ret) {
1241 			dec_valid_block_count(sbi, inode, 1);
1242 			f2fs_invalidate_blocks(sbi, *blkaddr);
1243 		} else {
1244 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1245 		}
1246 		f2fs_put_dnode(&dn);
1247 	}
1248 	return 0;
1249 }
1250 
1251 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1252 			block_t *blkaddr, int *do_replace,
1253 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1254 {
1255 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1256 	pgoff_t i = 0;
1257 	int ret;
1258 
1259 	while (i < len) {
1260 		if (blkaddr[i] == NULL_ADDR && !full) {
1261 			i++;
1262 			continue;
1263 		}
1264 
1265 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1266 			struct dnode_of_data dn;
1267 			struct node_info ni;
1268 			size_t new_size;
1269 			pgoff_t ilen;
1270 
1271 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1272 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1273 			if (ret)
1274 				return ret;
1275 
1276 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1277 			if (ret) {
1278 				f2fs_put_dnode(&dn);
1279 				return ret;
1280 			}
1281 
1282 			ilen = min((pgoff_t)
1283 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1284 						dn.ofs_in_node, len - i);
1285 			do {
1286 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1287 				f2fs_truncate_data_blocks_range(&dn, 1);
1288 
1289 				if (do_replace[i]) {
1290 					f2fs_i_blocks_write(src_inode,
1291 							1, false, false);
1292 					f2fs_i_blocks_write(dst_inode,
1293 							1, true, false);
1294 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1295 					blkaddr[i], ni.version, true, false);
1296 
1297 					do_replace[i] = 0;
1298 				}
1299 				dn.ofs_in_node++;
1300 				i++;
1301 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1302 				if (dst_inode->i_size < new_size)
1303 					f2fs_i_size_write(dst_inode, new_size);
1304 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1305 
1306 			f2fs_put_dnode(&dn);
1307 		} else {
1308 			struct page *psrc, *pdst;
1309 
1310 			psrc = f2fs_get_lock_data_page(src_inode,
1311 							src + i, true);
1312 			if (IS_ERR(psrc))
1313 				return PTR_ERR(psrc);
1314 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1315 								true);
1316 			if (IS_ERR(pdst)) {
1317 				f2fs_put_page(psrc, 1);
1318 				return PTR_ERR(pdst);
1319 			}
1320 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1321 			set_page_dirty(pdst);
1322 			f2fs_put_page(pdst, 1);
1323 			f2fs_put_page(psrc, 1);
1324 
1325 			ret = f2fs_truncate_hole(src_inode,
1326 						src + i, src + i + 1);
1327 			if (ret)
1328 				return ret;
1329 			i++;
1330 		}
1331 	}
1332 	return 0;
1333 }
1334 
1335 static int __exchange_data_block(struct inode *src_inode,
1336 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1337 			pgoff_t len, bool full)
1338 {
1339 	block_t *src_blkaddr;
1340 	int *do_replace;
1341 	pgoff_t olen;
1342 	int ret;
1343 
1344 	while (len) {
1345 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1346 
1347 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1348 					array_size(olen, sizeof(block_t)),
1349 					GFP_NOFS);
1350 		if (!src_blkaddr)
1351 			return -ENOMEM;
1352 
1353 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1354 					array_size(olen, sizeof(int)),
1355 					GFP_NOFS);
1356 		if (!do_replace) {
1357 			kvfree(src_blkaddr);
1358 			return -ENOMEM;
1359 		}
1360 
1361 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1362 					do_replace, src, olen);
1363 		if (ret)
1364 			goto roll_back;
1365 
1366 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1367 					do_replace, src, dst, olen, full);
1368 		if (ret)
1369 			goto roll_back;
1370 
1371 		src += olen;
1372 		dst += olen;
1373 		len -= olen;
1374 
1375 		kvfree(src_blkaddr);
1376 		kvfree(do_replace);
1377 	}
1378 	return 0;
1379 
1380 roll_back:
1381 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1382 	kvfree(src_blkaddr);
1383 	kvfree(do_replace);
1384 	return ret;
1385 }
1386 
1387 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1388 {
1389 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1390 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1391 	pgoff_t start = offset >> PAGE_SHIFT;
1392 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1393 	int ret;
1394 
1395 	f2fs_balance_fs(sbi, true);
1396 
1397 	/* avoid gc operation during block exchange */
1398 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1399 	filemap_invalidate_lock(inode->i_mapping);
1400 
1401 	f2fs_lock_op(sbi);
1402 	f2fs_drop_extent_tree(inode);
1403 	truncate_pagecache(inode, offset);
1404 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1405 	f2fs_unlock_op(sbi);
1406 
1407 	filemap_invalidate_unlock(inode->i_mapping);
1408 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1409 	return ret;
1410 }
1411 
1412 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1413 {
1414 	loff_t new_size;
1415 	int ret;
1416 
1417 	if (offset + len >= i_size_read(inode))
1418 		return -EINVAL;
1419 
1420 	/* collapse range should be aligned to block size of f2fs. */
1421 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1422 		return -EINVAL;
1423 
1424 	ret = f2fs_convert_inline_inode(inode);
1425 	if (ret)
1426 		return ret;
1427 
1428 	/* write out all dirty pages from offset */
1429 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1430 	if (ret)
1431 		return ret;
1432 
1433 	ret = f2fs_do_collapse(inode, offset, len);
1434 	if (ret)
1435 		return ret;
1436 
1437 	/* write out all moved pages, if possible */
1438 	filemap_invalidate_lock(inode->i_mapping);
1439 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1440 	truncate_pagecache(inode, offset);
1441 
1442 	new_size = i_size_read(inode) - len;
1443 	ret = f2fs_truncate_blocks(inode, new_size, true);
1444 	filemap_invalidate_unlock(inode->i_mapping);
1445 	if (!ret)
1446 		f2fs_i_size_write(inode, new_size);
1447 	return ret;
1448 }
1449 
1450 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1451 								pgoff_t end)
1452 {
1453 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1454 	pgoff_t index = start;
1455 	unsigned int ofs_in_node = dn->ofs_in_node;
1456 	blkcnt_t count = 0;
1457 	int ret;
1458 
1459 	for (; index < end; index++, dn->ofs_in_node++) {
1460 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1461 			count++;
1462 	}
1463 
1464 	dn->ofs_in_node = ofs_in_node;
1465 	ret = f2fs_reserve_new_blocks(dn, count);
1466 	if (ret)
1467 		return ret;
1468 
1469 	dn->ofs_in_node = ofs_in_node;
1470 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1471 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1472 		/*
1473 		 * f2fs_reserve_new_blocks will not guarantee entire block
1474 		 * allocation.
1475 		 */
1476 		if (dn->data_blkaddr == NULL_ADDR) {
1477 			ret = -ENOSPC;
1478 			break;
1479 		}
1480 
1481 		if (dn->data_blkaddr == NEW_ADDR)
1482 			continue;
1483 
1484 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1485 					DATA_GENERIC_ENHANCE)) {
1486 			ret = -EFSCORRUPTED;
1487 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1488 			break;
1489 		}
1490 
1491 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1492 		dn->data_blkaddr = NEW_ADDR;
1493 		f2fs_set_data_blkaddr(dn);
1494 	}
1495 
1496 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1497 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1498 
1499 	return ret;
1500 }
1501 
1502 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1503 								int mode)
1504 {
1505 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1506 	struct address_space *mapping = inode->i_mapping;
1507 	pgoff_t index, pg_start, pg_end;
1508 	loff_t new_size = i_size_read(inode);
1509 	loff_t off_start, off_end;
1510 	int ret = 0;
1511 
1512 	ret = inode_newsize_ok(inode, (len + offset));
1513 	if (ret)
1514 		return ret;
1515 
1516 	ret = f2fs_convert_inline_inode(inode);
1517 	if (ret)
1518 		return ret;
1519 
1520 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1521 	if (ret)
1522 		return ret;
1523 
1524 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1525 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1526 
1527 	off_start = offset & (PAGE_SIZE - 1);
1528 	off_end = (offset + len) & (PAGE_SIZE - 1);
1529 
1530 	if (pg_start == pg_end) {
1531 		ret = fill_zero(inode, pg_start, off_start,
1532 						off_end - off_start);
1533 		if (ret)
1534 			return ret;
1535 
1536 		new_size = max_t(loff_t, new_size, offset + len);
1537 	} else {
1538 		if (off_start) {
1539 			ret = fill_zero(inode, pg_start++, off_start,
1540 						PAGE_SIZE - off_start);
1541 			if (ret)
1542 				return ret;
1543 
1544 			new_size = max_t(loff_t, new_size,
1545 					(loff_t)pg_start << PAGE_SHIFT);
1546 		}
1547 
1548 		for (index = pg_start; index < pg_end;) {
1549 			struct dnode_of_data dn;
1550 			unsigned int end_offset;
1551 			pgoff_t end;
1552 
1553 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1554 			filemap_invalidate_lock(mapping);
1555 
1556 			truncate_pagecache_range(inode,
1557 				(loff_t)index << PAGE_SHIFT,
1558 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1559 
1560 			f2fs_lock_op(sbi);
1561 
1562 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1563 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1564 			if (ret) {
1565 				f2fs_unlock_op(sbi);
1566 				filemap_invalidate_unlock(mapping);
1567 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1568 				goto out;
1569 			}
1570 
1571 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1572 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1573 
1574 			ret = f2fs_do_zero_range(&dn, index, end);
1575 			f2fs_put_dnode(&dn);
1576 
1577 			f2fs_unlock_op(sbi);
1578 			filemap_invalidate_unlock(mapping);
1579 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1580 
1581 			f2fs_balance_fs(sbi, dn.node_changed);
1582 
1583 			if (ret)
1584 				goto out;
1585 
1586 			index = end;
1587 			new_size = max_t(loff_t, new_size,
1588 					(loff_t)index << PAGE_SHIFT);
1589 		}
1590 
1591 		if (off_end) {
1592 			ret = fill_zero(inode, pg_end, 0, off_end);
1593 			if (ret)
1594 				goto out;
1595 
1596 			new_size = max_t(loff_t, new_size, offset + len);
1597 		}
1598 	}
1599 
1600 out:
1601 	if (new_size > i_size_read(inode)) {
1602 		if (mode & FALLOC_FL_KEEP_SIZE)
1603 			file_set_keep_isize(inode);
1604 		else
1605 			f2fs_i_size_write(inode, new_size);
1606 	}
1607 	return ret;
1608 }
1609 
1610 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1611 {
1612 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1613 	struct address_space *mapping = inode->i_mapping;
1614 	pgoff_t nr, pg_start, pg_end, delta, idx;
1615 	loff_t new_size;
1616 	int ret = 0;
1617 
1618 	new_size = i_size_read(inode) + len;
1619 	ret = inode_newsize_ok(inode, new_size);
1620 	if (ret)
1621 		return ret;
1622 
1623 	if (offset >= i_size_read(inode))
1624 		return -EINVAL;
1625 
1626 	/* insert range should be aligned to block size of f2fs. */
1627 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1628 		return -EINVAL;
1629 
1630 	ret = f2fs_convert_inline_inode(inode);
1631 	if (ret)
1632 		return ret;
1633 
1634 	f2fs_balance_fs(sbi, true);
1635 
1636 	filemap_invalidate_lock(mapping);
1637 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1638 	filemap_invalidate_unlock(mapping);
1639 	if (ret)
1640 		return ret;
1641 
1642 	/* write out all dirty pages from offset */
1643 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1644 	if (ret)
1645 		return ret;
1646 
1647 	pg_start = offset >> PAGE_SHIFT;
1648 	pg_end = (offset + len) >> PAGE_SHIFT;
1649 	delta = pg_end - pg_start;
1650 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1651 
1652 	/* avoid gc operation during block exchange */
1653 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1654 	filemap_invalidate_lock(mapping);
1655 	truncate_pagecache(inode, offset);
1656 
1657 	while (!ret && idx > pg_start) {
1658 		nr = idx - pg_start;
1659 		if (nr > delta)
1660 			nr = delta;
1661 		idx -= nr;
1662 
1663 		f2fs_lock_op(sbi);
1664 		f2fs_drop_extent_tree(inode);
1665 
1666 		ret = __exchange_data_block(inode, inode, idx,
1667 					idx + delta, nr, false);
1668 		f2fs_unlock_op(sbi);
1669 	}
1670 	filemap_invalidate_unlock(mapping);
1671 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1672 
1673 	/* write out all moved pages, if possible */
1674 	filemap_invalidate_lock(mapping);
1675 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1676 	truncate_pagecache(inode, offset);
1677 	filemap_invalidate_unlock(mapping);
1678 
1679 	if (!ret)
1680 		f2fs_i_size_write(inode, new_size);
1681 	return ret;
1682 }
1683 
1684 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1685 					loff_t len, int mode)
1686 {
1687 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1688 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1689 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1690 			.m_may_create = true };
1691 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1692 			.init_gc_type = FG_GC,
1693 			.should_migrate_blocks = false,
1694 			.err_gc_skipped = true,
1695 			.nr_free_secs = 0 };
1696 	pgoff_t pg_start, pg_end;
1697 	loff_t new_size;
1698 	loff_t off_end;
1699 	block_t expanded = 0;
1700 	int err;
1701 
1702 	err = inode_newsize_ok(inode, (len + offset));
1703 	if (err)
1704 		return err;
1705 
1706 	err = f2fs_convert_inline_inode(inode);
1707 	if (err)
1708 		return err;
1709 
1710 	f2fs_balance_fs(sbi, true);
1711 
1712 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1713 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1714 	off_end = (offset + len) & (PAGE_SIZE - 1);
1715 
1716 	map.m_lblk = pg_start;
1717 	map.m_len = pg_end - pg_start;
1718 	if (off_end)
1719 		map.m_len++;
1720 
1721 	if (!map.m_len)
1722 		return 0;
1723 
1724 	if (f2fs_is_pinned_file(inode)) {
1725 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1726 		block_t sec_len = roundup(map.m_len, sec_blks);
1727 
1728 		map.m_len = sec_blks;
1729 next_alloc:
1730 		if (has_not_enough_free_secs(sbi, 0,
1731 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1732 			f2fs_down_write(&sbi->gc_lock);
1733 			err = f2fs_gc(sbi, &gc_control);
1734 			if (err && err != -ENODATA)
1735 				goto out_err;
1736 		}
1737 
1738 		f2fs_down_write(&sbi->pin_sem);
1739 
1740 		f2fs_lock_op(sbi);
1741 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1742 		f2fs_unlock_op(sbi);
1743 
1744 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1745 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1746 		file_dont_truncate(inode);
1747 
1748 		f2fs_up_write(&sbi->pin_sem);
1749 
1750 		expanded += map.m_len;
1751 		sec_len -= map.m_len;
1752 		map.m_lblk += map.m_len;
1753 		if (!err && sec_len)
1754 			goto next_alloc;
1755 
1756 		map.m_len = expanded;
1757 	} else {
1758 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1759 		expanded = map.m_len;
1760 	}
1761 out_err:
1762 	if (err) {
1763 		pgoff_t last_off;
1764 
1765 		if (!expanded)
1766 			return err;
1767 
1768 		last_off = pg_start + expanded - 1;
1769 
1770 		/* update new size to the failed position */
1771 		new_size = (last_off == pg_end) ? offset + len :
1772 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1773 	} else {
1774 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1775 	}
1776 
1777 	if (new_size > i_size_read(inode)) {
1778 		if (mode & FALLOC_FL_KEEP_SIZE)
1779 			file_set_keep_isize(inode);
1780 		else
1781 			f2fs_i_size_write(inode, new_size);
1782 	}
1783 
1784 	return err;
1785 }
1786 
1787 static long f2fs_fallocate(struct file *file, int mode,
1788 				loff_t offset, loff_t len)
1789 {
1790 	struct inode *inode = file_inode(file);
1791 	long ret = 0;
1792 
1793 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1794 		return -EIO;
1795 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1796 		return -ENOSPC;
1797 	if (!f2fs_is_compress_backend_ready(inode))
1798 		return -EOPNOTSUPP;
1799 
1800 	/* f2fs only support ->fallocate for regular file */
1801 	if (!S_ISREG(inode->i_mode))
1802 		return -EINVAL;
1803 
1804 	if (IS_ENCRYPTED(inode) &&
1805 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1806 		return -EOPNOTSUPP;
1807 
1808 	/*
1809 	 * Pinned file should not support partial truncation since the block
1810 	 * can be used by applications.
1811 	 */
1812 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1813 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1814 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1815 		return -EOPNOTSUPP;
1816 
1817 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1818 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1819 			FALLOC_FL_INSERT_RANGE))
1820 		return -EOPNOTSUPP;
1821 
1822 	inode_lock(inode);
1823 
1824 	ret = file_modified(file);
1825 	if (ret)
1826 		goto out;
1827 
1828 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1829 		if (offset >= inode->i_size)
1830 			goto out;
1831 
1832 		ret = f2fs_punch_hole(inode, offset, len);
1833 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1834 		ret = f2fs_collapse_range(inode, offset, len);
1835 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1836 		ret = f2fs_zero_range(inode, offset, len, mode);
1837 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1838 		ret = f2fs_insert_range(inode, offset, len);
1839 	} else {
1840 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1841 	}
1842 
1843 	if (!ret) {
1844 		inode->i_mtime = inode->i_ctime = current_time(inode);
1845 		f2fs_mark_inode_dirty_sync(inode, false);
1846 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1847 	}
1848 
1849 out:
1850 	inode_unlock(inode);
1851 
1852 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1853 	return ret;
1854 }
1855 
1856 static int f2fs_release_file(struct inode *inode, struct file *filp)
1857 {
1858 	/*
1859 	 * f2fs_release_file is called at every close calls. So we should
1860 	 * not drop any inmemory pages by close called by other process.
1861 	 */
1862 	if (!(filp->f_mode & FMODE_WRITE) ||
1863 			atomic_read(&inode->i_writecount) != 1)
1864 		return 0;
1865 
1866 	inode_lock(inode);
1867 	f2fs_abort_atomic_write(inode, true);
1868 	inode_unlock(inode);
1869 
1870 	return 0;
1871 }
1872 
1873 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1874 {
1875 	struct inode *inode = file_inode(file);
1876 
1877 	/*
1878 	 * If the process doing a transaction is crashed, we should do
1879 	 * roll-back. Otherwise, other reader/write can see corrupted database
1880 	 * until all the writers close its file. Since this should be done
1881 	 * before dropping file lock, it needs to do in ->flush.
1882 	 */
1883 	if (F2FS_I(inode)->atomic_write_task == current &&
1884 				(current->flags & PF_EXITING)) {
1885 		inode_lock(inode);
1886 		f2fs_abort_atomic_write(inode, true);
1887 		inode_unlock(inode);
1888 	}
1889 
1890 	return 0;
1891 }
1892 
1893 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1894 {
1895 	struct f2fs_inode_info *fi = F2FS_I(inode);
1896 	u32 masked_flags = fi->i_flags & mask;
1897 
1898 	/* mask can be shrunk by flags_valid selector */
1899 	iflags &= mask;
1900 
1901 	/* Is it quota file? Do not allow user to mess with it */
1902 	if (IS_NOQUOTA(inode))
1903 		return -EPERM;
1904 
1905 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1906 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1907 			return -EOPNOTSUPP;
1908 		if (!f2fs_empty_dir(inode))
1909 			return -ENOTEMPTY;
1910 	}
1911 
1912 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1913 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1914 			return -EOPNOTSUPP;
1915 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1916 			return -EINVAL;
1917 	}
1918 
1919 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1920 		if (masked_flags & F2FS_COMPR_FL) {
1921 			if (!f2fs_disable_compressed_file(inode))
1922 				return -EINVAL;
1923 		} else {
1924 			/* try to convert inline_data to support compression */
1925 			int err = f2fs_convert_inline_inode(inode);
1926 			if (err)
1927 				return err;
1928 			if (!f2fs_may_compress(inode))
1929 				return -EINVAL;
1930 			if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
1931 				return -EINVAL;
1932 			if (set_compress_context(inode))
1933 				return -EOPNOTSUPP;
1934 		}
1935 	}
1936 
1937 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1938 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1939 					(fi->i_flags & F2FS_NOCOMP_FL));
1940 
1941 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1942 		set_inode_flag(inode, FI_PROJ_INHERIT);
1943 	else
1944 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1945 
1946 	inode->i_ctime = current_time(inode);
1947 	f2fs_set_inode_flags(inode);
1948 	f2fs_mark_inode_dirty_sync(inode, true);
1949 	return 0;
1950 }
1951 
1952 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1953 
1954 /*
1955  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1956  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1957  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1958  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1959  *
1960  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1961  * FS_IOC_FSSETXATTR is done by the VFS.
1962  */
1963 
1964 static const struct {
1965 	u32 iflag;
1966 	u32 fsflag;
1967 } f2fs_fsflags_map[] = {
1968 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1969 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1970 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1971 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1972 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1973 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1974 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1975 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1976 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1977 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1978 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1979 };
1980 
1981 #define F2FS_GETTABLE_FS_FL (		\
1982 		FS_COMPR_FL |		\
1983 		FS_SYNC_FL |		\
1984 		FS_IMMUTABLE_FL |	\
1985 		FS_APPEND_FL |		\
1986 		FS_NODUMP_FL |		\
1987 		FS_NOATIME_FL |		\
1988 		FS_NOCOMP_FL |		\
1989 		FS_INDEX_FL |		\
1990 		FS_DIRSYNC_FL |		\
1991 		FS_PROJINHERIT_FL |	\
1992 		FS_ENCRYPT_FL |		\
1993 		FS_INLINE_DATA_FL |	\
1994 		FS_NOCOW_FL |		\
1995 		FS_VERITY_FL |		\
1996 		FS_CASEFOLD_FL)
1997 
1998 #define F2FS_SETTABLE_FS_FL (		\
1999 		FS_COMPR_FL |		\
2000 		FS_SYNC_FL |		\
2001 		FS_IMMUTABLE_FL |	\
2002 		FS_APPEND_FL |		\
2003 		FS_NODUMP_FL |		\
2004 		FS_NOATIME_FL |		\
2005 		FS_NOCOMP_FL |		\
2006 		FS_DIRSYNC_FL |		\
2007 		FS_PROJINHERIT_FL |	\
2008 		FS_CASEFOLD_FL)
2009 
2010 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2011 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2012 {
2013 	u32 fsflags = 0;
2014 	int i;
2015 
2016 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2017 		if (iflags & f2fs_fsflags_map[i].iflag)
2018 			fsflags |= f2fs_fsflags_map[i].fsflag;
2019 
2020 	return fsflags;
2021 }
2022 
2023 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2024 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2025 {
2026 	u32 iflags = 0;
2027 	int i;
2028 
2029 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2030 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2031 			iflags |= f2fs_fsflags_map[i].iflag;
2032 
2033 	return iflags;
2034 }
2035 
2036 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2037 {
2038 	struct inode *inode = file_inode(filp);
2039 
2040 	return put_user(inode->i_generation, (int __user *)arg);
2041 }
2042 
2043 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2044 {
2045 	struct inode *inode = file_inode(filp);
2046 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2047 	struct f2fs_inode_info *fi = F2FS_I(inode);
2048 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2049 	struct inode *pinode;
2050 	loff_t isize;
2051 	int ret;
2052 
2053 	if (!inode_owner_or_capable(idmap, inode))
2054 		return -EACCES;
2055 
2056 	if (!S_ISREG(inode->i_mode))
2057 		return -EINVAL;
2058 
2059 	if (filp->f_flags & O_DIRECT)
2060 		return -EINVAL;
2061 
2062 	ret = mnt_want_write_file(filp);
2063 	if (ret)
2064 		return ret;
2065 
2066 	inode_lock(inode);
2067 
2068 	if (!f2fs_disable_compressed_file(inode)) {
2069 		ret = -EINVAL;
2070 		goto out;
2071 	}
2072 
2073 	if (f2fs_is_atomic_file(inode))
2074 		goto out;
2075 
2076 	ret = f2fs_convert_inline_inode(inode);
2077 	if (ret)
2078 		goto out;
2079 
2080 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2081 
2082 	/*
2083 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2084 	 * f2fs_is_atomic_file.
2085 	 */
2086 	if (get_dirty_pages(inode))
2087 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2088 			  inode->i_ino, get_dirty_pages(inode));
2089 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2090 	if (ret) {
2091 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2092 		goto out;
2093 	}
2094 
2095 	/* Check if the inode already has a COW inode */
2096 	if (fi->cow_inode == NULL) {
2097 		/* Create a COW inode for atomic write */
2098 		pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2099 		if (IS_ERR(pinode)) {
2100 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2101 			ret = PTR_ERR(pinode);
2102 			goto out;
2103 		}
2104 
2105 		ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2106 		iput(pinode);
2107 		if (ret) {
2108 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2109 			goto out;
2110 		}
2111 
2112 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2113 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2114 	} else {
2115 		/* Reuse the already created COW inode */
2116 		f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2117 	}
2118 
2119 	f2fs_write_inode(inode, NULL);
2120 
2121 	stat_inc_atomic_inode(inode);
2122 
2123 	set_inode_flag(inode, FI_ATOMIC_FILE);
2124 
2125 	isize = i_size_read(inode);
2126 	fi->original_i_size = isize;
2127 	if (truncate) {
2128 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2129 		truncate_inode_pages_final(inode->i_mapping);
2130 		f2fs_i_size_write(inode, 0);
2131 		isize = 0;
2132 	}
2133 	f2fs_i_size_write(fi->cow_inode, isize);
2134 
2135 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2136 
2137 	f2fs_update_time(sbi, REQ_TIME);
2138 	fi->atomic_write_task = current;
2139 	stat_update_max_atomic_write(inode);
2140 	fi->atomic_write_cnt = 0;
2141 out:
2142 	inode_unlock(inode);
2143 	mnt_drop_write_file(filp);
2144 	return ret;
2145 }
2146 
2147 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2148 {
2149 	struct inode *inode = file_inode(filp);
2150 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2151 	int ret;
2152 
2153 	if (!inode_owner_or_capable(idmap, inode))
2154 		return -EACCES;
2155 
2156 	ret = mnt_want_write_file(filp);
2157 	if (ret)
2158 		return ret;
2159 
2160 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2161 
2162 	inode_lock(inode);
2163 
2164 	if (f2fs_is_atomic_file(inode)) {
2165 		ret = f2fs_commit_atomic_write(inode);
2166 		if (!ret)
2167 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2168 
2169 		f2fs_abort_atomic_write(inode, ret);
2170 	} else {
2171 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2172 	}
2173 
2174 	inode_unlock(inode);
2175 	mnt_drop_write_file(filp);
2176 	return ret;
2177 }
2178 
2179 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2180 {
2181 	struct inode *inode = file_inode(filp);
2182 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2183 	int ret;
2184 
2185 	if (!inode_owner_or_capable(idmap, inode))
2186 		return -EACCES;
2187 
2188 	ret = mnt_want_write_file(filp);
2189 	if (ret)
2190 		return ret;
2191 
2192 	inode_lock(inode);
2193 
2194 	f2fs_abort_atomic_write(inode, true);
2195 
2196 	inode_unlock(inode);
2197 
2198 	mnt_drop_write_file(filp);
2199 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2200 	return ret;
2201 }
2202 
2203 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2204 {
2205 	struct inode *inode = file_inode(filp);
2206 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2207 	struct super_block *sb = sbi->sb;
2208 	__u32 in;
2209 	int ret = 0;
2210 
2211 	if (!capable(CAP_SYS_ADMIN))
2212 		return -EPERM;
2213 
2214 	if (get_user(in, (__u32 __user *)arg))
2215 		return -EFAULT;
2216 
2217 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2218 		ret = mnt_want_write_file(filp);
2219 		if (ret) {
2220 			if (ret == -EROFS) {
2221 				ret = 0;
2222 				f2fs_stop_checkpoint(sbi, false,
2223 						STOP_CP_REASON_SHUTDOWN);
2224 				set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2225 				trace_f2fs_shutdown(sbi, in, ret);
2226 			}
2227 			return ret;
2228 		}
2229 	}
2230 
2231 	switch (in) {
2232 	case F2FS_GOING_DOWN_FULLSYNC:
2233 		ret = freeze_bdev(sb->s_bdev);
2234 		if (ret)
2235 			goto out;
2236 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2237 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2238 		thaw_bdev(sb->s_bdev);
2239 		break;
2240 	case F2FS_GOING_DOWN_METASYNC:
2241 		/* do checkpoint only */
2242 		ret = f2fs_sync_fs(sb, 1);
2243 		if (ret)
2244 			goto out;
2245 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2246 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2247 		break;
2248 	case F2FS_GOING_DOWN_NOSYNC:
2249 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2250 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2251 		break;
2252 	case F2FS_GOING_DOWN_METAFLUSH:
2253 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2254 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2255 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2256 		break;
2257 	case F2FS_GOING_DOWN_NEED_FSCK:
2258 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2259 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2260 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2261 		/* do checkpoint only */
2262 		ret = f2fs_sync_fs(sb, 1);
2263 		goto out;
2264 	default:
2265 		ret = -EINVAL;
2266 		goto out;
2267 	}
2268 
2269 	f2fs_stop_gc_thread(sbi);
2270 	f2fs_stop_discard_thread(sbi);
2271 
2272 	f2fs_drop_discard_cmd(sbi);
2273 	clear_opt(sbi, DISCARD);
2274 
2275 	f2fs_update_time(sbi, REQ_TIME);
2276 out:
2277 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2278 		mnt_drop_write_file(filp);
2279 
2280 	trace_f2fs_shutdown(sbi, in, ret);
2281 
2282 	return ret;
2283 }
2284 
2285 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2286 {
2287 	struct inode *inode = file_inode(filp);
2288 	struct super_block *sb = inode->i_sb;
2289 	struct fstrim_range range;
2290 	int ret;
2291 
2292 	if (!capable(CAP_SYS_ADMIN))
2293 		return -EPERM;
2294 
2295 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2296 		return -EOPNOTSUPP;
2297 
2298 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2299 				sizeof(range)))
2300 		return -EFAULT;
2301 
2302 	ret = mnt_want_write_file(filp);
2303 	if (ret)
2304 		return ret;
2305 
2306 	range.minlen = max((unsigned int)range.minlen,
2307 			   bdev_discard_granularity(sb->s_bdev));
2308 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2309 	mnt_drop_write_file(filp);
2310 	if (ret < 0)
2311 		return ret;
2312 
2313 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2314 				sizeof(range)))
2315 		return -EFAULT;
2316 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2317 	return 0;
2318 }
2319 
2320 static bool uuid_is_nonzero(__u8 u[16])
2321 {
2322 	int i;
2323 
2324 	for (i = 0; i < 16; i++)
2325 		if (u[i])
2326 			return true;
2327 	return false;
2328 }
2329 
2330 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2331 {
2332 	struct inode *inode = file_inode(filp);
2333 
2334 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2335 		return -EOPNOTSUPP;
2336 
2337 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2338 
2339 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2340 }
2341 
2342 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2343 {
2344 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2345 		return -EOPNOTSUPP;
2346 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2347 }
2348 
2349 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2350 {
2351 	struct inode *inode = file_inode(filp);
2352 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2353 	u8 encrypt_pw_salt[16];
2354 	int err;
2355 
2356 	if (!f2fs_sb_has_encrypt(sbi))
2357 		return -EOPNOTSUPP;
2358 
2359 	err = mnt_want_write_file(filp);
2360 	if (err)
2361 		return err;
2362 
2363 	f2fs_down_write(&sbi->sb_lock);
2364 
2365 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2366 		goto got_it;
2367 
2368 	/* update superblock with uuid */
2369 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2370 
2371 	err = f2fs_commit_super(sbi, false);
2372 	if (err) {
2373 		/* undo new data */
2374 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2375 		goto out_err;
2376 	}
2377 got_it:
2378 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2379 out_err:
2380 	f2fs_up_write(&sbi->sb_lock);
2381 	mnt_drop_write_file(filp);
2382 
2383 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2384 		err = -EFAULT;
2385 
2386 	return err;
2387 }
2388 
2389 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2390 					     unsigned long arg)
2391 {
2392 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2393 		return -EOPNOTSUPP;
2394 
2395 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2396 }
2397 
2398 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2399 {
2400 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2401 		return -EOPNOTSUPP;
2402 
2403 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2404 }
2405 
2406 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2407 {
2408 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2409 		return -EOPNOTSUPP;
2410 
2411 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2412 }
2413 
2414 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2415 						    unsigned long arg)
2416 {
2417 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2418 		return -EOPNOTSUPP;
2419 
2420 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2421 }
2422 
2423 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2424 					      unsigned long arg)
2425 {
2426 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2427 		return -EOPNOTSUPP;
2428 
2429 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2430 }
2431 
2432 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2433 {
2434 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2435 		return -EOPNOTSUPP;
2436 
2437 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2438 }
2439 
2440 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2441 {
2442 	struct inode *inode = file_inode(filp);
2443 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2444 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2445 			.no_bg_gc = false,
2446 			.should_migrate_blocks = false,
2447 			.nr_free_secs = 0 };
2448 	__u32 sync;
2449 	int ret;
2450 
2451 	if (!capable(CAP_SYS_ADMIN))
2452 		return -EPERM;
2453 
2454 	if (get_user(sync, (__u32 __user *)arg))
2455 		return -EFAULT;
2456 
2457 	if (f2fs_readonly(sbi->sb))
2458 		return -EROFS;
2459 
2460 	ret = mnt_want_write_file(filp);
2461 	if (ret)
2462 		return ret;
2463 
2464 	if (!sync) {
2465 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2466 			ret = -EBUSY;
2467 			goto out;
2468 		}
2469 	} else {
2470 		f2fs_down_write(&sbi->gc_lock);
2471 	}
2472 
2473 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2474 	gc_control.err_gc_skipped = sync;
2475 	ret = f2fs_gc(sbi, &gc_control);
2476 out:
2477 	mnt_drop_write_file(filp);
2478 	return ret;
2479 }
2480 
2481 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2482 {
2483 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2484 	struct f2fs_gc_control gc_control = {
2485 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2486 			.no_bg_gc = false,
2487 			.should_migrate_blocks = false,
2488 			.err_gc_skipped = range->sync,
2489 			.nr_free_secs = 0 };
2490 	u64 end;
2491 	int ret;
2492 
2493 	if (!capable(CAP_SYS_ADMIN))
2494 		return -EPERM;
2495 	if (f2fs_readonly(sbi->sb))
2496 		return -EROFS;
2497 
2498 	end = range->start + range->len;
2499 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2500 					end >= MAX_BLKADDR(sbi))
2501 		return -EINVAL;
2502 
2503 	ret = mnt_want_write_file(filp);
2504 	if (ret)
2505 		return ret;
2506 
2507 do_more:
2508 	if (!range->sync) {
2509 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2510 			ret = -EBUSY;
2511 			goto out;
2512 		}
2513 	} else {
2514 		f2fs_down_write(&sbi->gc_lock);
2515 	}
2516 
2517 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2518 	ret = f2fs_gc(sbi, &gc_control);
2519 	if (ret) {
2520 		if (ret == -EBUSY)
2521 			ret = -EAGAIN;
2522 		goto out;
2523 	}
2524 	range->start += CAP_BLKS_PER_SEC(sbi);
2525 	if (range->start <= end)
2526 		goto do_more;
2527 out:
2528 	mnt_drop_write_file(filp);
2529 	return ret;
2530 }
2531 
2532 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2533 {
2534 	struct f2fs_gc_range range;
2535 
2536 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2537 							sizeof(range)))
2538 		return -EFAULT;
2539 	return __f2fs_ioc_gc_range(filp, &range);
2540 }
2541 
2542 static int f2fs_ioc_write_checkpoint(struct file *filp)
2543 {
2544 	struct inode *inode = file_inode(filp);
2545 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2546 	int ret;
2547 
2548 	if (!capable(CAP_SYS_ADMIN))
2549 		return -EPERM;
2550 
2551 	if (f2fs_readonly(sbi->sb))
2552 		return -EROFS;
2553 
2554 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2555 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2556 		return -EINVAL;
2557 	}
2558 
2559 	ret = mnt_want_write_file(filp);
2560 	if (ret)
2561 		return ret;
2562 
2563 	ret = f2fs_sync_fs(sbi->sb, 1);
2564 
2565 	mnt_drop_write_file(filp);
2566 	return ret;
2567 }
2568 
2569 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2570 					struct file *filp,
2571 					struct f2fs_defragment *range)
2572 {
2573 	struct inode *inode = file_inode(filp);
2574 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2575 					.m_seg_type = NO_CHECK_TYPE,
2576 					.m_may_create = false };
2577 	struct extent_info ei = {};
2578 	pgoff_t pg_start, pg_end, next_pgofs;
2579 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2580 	unsigned int total = 0, sec_num;
2581 	block_t blk_end = 0;
2582 	bool fragmented = false;
2583 	int err;
2584 
2585 	pg_start = range->start >> PAGE_SHIFT;
2586 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2587 
2588 	f2fs_balance_fs(sbi, true);
2589 
2590 	inode_lock(inode);
2591 
2592 	/* if in-place-update policy is enabled, don't waste time here */
2593 	set_inode_flag(inode, FI_OPU_WRITE);
2594 	if (f2fs_should_update_inplace(inode, NULL)) {
2595 		err = -EINVAL;
2596 		goto out;
2597 	}
2598 
2599 	/* writeback all dirty pages in the range */
2600 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2601 						range->start + range->len - 1);
2602 	if (err)
2603 		goto out;
2604 
2605 	/*
2606 	 * lookup mapping info in extent cache, skip defragmenting if physical
2607 	 * block addresses are continuous.
2608 	 */
2609 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2610 		if (ei.fofs + ei.len >= pg_end)
2611 			goto out;
2612 	}
2613 
2614 	map.m_lblk = pg_start;
2615 	map.m_next_pgofs = &next_pgofs;
2616 
2617 	/*
2618 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2619 	 * physical block addresses are continuous even if there are hole(s)
2620 	 * in logical blocks.
2621 	 */
2622 	while (map.m_lblk < pg_end) {
2623 		map.m_len = pg_end - map.m_lblk;
2624 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2625 		if (err)
2626 			goto out;
2627 
2628 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2629 			map.m_lblk = next_pgofs;
2630 			continue;
2631 		}
2632 
2633 		if (blk_end && blk_end != map.m_pblk)
2634 			fragmented = true;
2635 
2636 		/* record total count of block that we're going to move */
2637 		total += map.m_len;
2638 
2639 		blk_end = map.m_pblk + map.m_len;
2640 
2641 		map.m_lblk += map.m_len;
2642 	}
2643 
2644 	if (!fragmented) {
2645 		total = 0;
2646 		goto out;
2647 	}
2648 
2649 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2650 
2651 	/*
2652 	 * make sure there are enough free section for LFS allocation, this can
2653 	 * avoid defragment running in SSR mode when free section are allocated
2654 	 * intensively
2655 	 */
2656 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2657 		err = -EAGAIN;
2658 		goto out;
2659 	}
2660 
2661 	map.m_lblk = pg_start;
2662 	map.m_len = pg_end - pg_start;
2663 	total = 0;
2664 
2665 	while (map.m_lblk < pg_end) {
2666 		pgoff_t idx;
2667 		int cnt = 0;
2668 
2669 do_map:
2670 		map.m_len = pg_end - map.m_lblk;
2671 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2672 		if (err)
2673 			goto clear_out;
2674 
2675 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2676 			map.m_lblk = next_pgofs;
2677 			goto check;
2678 		}
2679 
2680 		set_inode_flag(inode, FI_SKIP_WRITES);
2681 
2682 		idx = map.m_lblk;
2683 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2684 			struct page *page;
2685 
2686 			page = f2fs_get_lock_data_page(inode, idx, true);
2687 			if (IS_ERR(page)) {
2688 				err = PTR_ERR(page);
2689 				goto clear_out;
2690 			}
2691 
2692 			set_page_dirty(page);
2693 			set_page_private_gcing(page);
2694 			f2fs_put_page(page, 1);
2695 
2696 			idx++;
2697 			cnt++;
2698 			total++;
2699 		}
2700 
2701 		map.m_lblk = idx;
2702 check:
2703 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2704 			goto do_map;
2705 
2706 		clear_inode_flag(inode, FI_SKIP_WRITES);
2707 
2708 		err = filemap_fdatawrite(inode->i_mapping);
2709 		if (err)
2710 			goto out;
2711 	}
2712 clear_out:
2713 	clear_inode_flag(inode, FI_SKIP_WRITES);
2714 out:
2715 	clear_inode_flag(inode, FI_OPU_WRITE);
2716 	inode_unlock(inode);
2717 	if (!err)
2718 		range->len = (u64)total << PAGE_SHIFT;
2719 	return err;
2720 }
2721 
2722 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2723 {
2724 	struct inode *inode = file_inode(filp);
2725 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2726 	struct f2fs_defragment range;
2727 	int err;
2728 
2729 	if (!capable(CAP_SYS_ADMIN))
2730 		return -EPERM;
2731 
2732 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2733 		return -EINVAL;
2734 
2735 	if (f2fs_readonly(sbi->sb))
2736 		return -EROFS;
2737 
2738 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2739 							sizeof(range)))
2740 		return -EFAULT;
2741 
2742 	/* verify alignment of offset & size */
2743 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2744 		return -EINVAL;
2745 
2746 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2747 					max_file_blocks(inode)))
2748 		return -EINVAL;
2749 
2750 	err = mnt_want_write_file(filp);
2751 	if (err)
2752 		return err;
2753 
2754 	err = f2fs_defragment_range(sbi, filp, &range);
2755 	mnt_drop_write_file(filp);
2756 
2757 	f2fs_update_time(sbi, REQ_TIME);
2758 	if (err < 0)
2759 		return err;
2760 
2761 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2762 							sizeof(range)))
2763 		return -EFAULT;
2764 
2765 	return 0;
2766 }
2767 
2768 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2769 			struct file *file_out, loff_t pos_out, size_t len)
2770 {
2771 	struct inode *src = file_inode(file_in);
2772 	struct inode *dst = file_inode(file_out);
2773 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2774 	size_t olen = len, dst_max_i_size = 0;
2775 	size_t dst_osize;
2776 	int ret;
2777 
2778 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2779 				src->i_sb != dst->i_sb)
2780 		return -EXDEV;
2781 
2782 	if (unlikely(f2fs_readonly(src->i_sb)))
2783 		return -EROFS;
2784 
2785 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2786 		return -EINVAL;
2787 
2788 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2789 		return -EOPNOTSUPP;
2790 
2791 	if (pos_out < 0 || pos_in < 0)
2792 		return -EINVAL;
2793 
2794 	if (src == dst) {
2795 		if (pos_in == pos_out)
2796 			return 0;
2797 		if (pos_out > pos_in && pos_out < pos_in + len)
2798 			return -EINVAL;
2799 	}
2800 
2801 	inode_lock(src);
2802 	if (src != dst) {
2803 		ret = -EBUSY;
2804 		if (!inode_trylock(dst))
2805 			goto out;
2806 	}
2807 
2808 	ret = -EINVAL;
2809 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2810 		goto out_unlock;
2811 	if (len == 0)
2812 		olen = len = src->i_size - pos_in;
2813 	if (pos_in + len == src->i_size)
2814 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2815 	if (len == 0) {
2816 		ret = 0;
2817 		goto out_unlock;
2818 	}
2819 
2820 	dst_osize = dst->i_size;
2821 	if (pos_out + olen > dst->i_size)
2822 		dst_max_i_size = pos_out + olen;
2823 
2824 	/* verify the end result is block aligned */
2825 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2826 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2827 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2828 		goto out_unlock;
2829 
2830 	ret = f2fs_convert_inline_inode(src);
2831 	if (ret)
2832 		goto out_unlock;
2833 
2834 	ret = f2fs_convert_inline_inode(dst);
2835 	if (ret)
2836 		goto out_unlock;
2837 
2838 	/* write out all dirty pages from offset */
2839 	ret = filemap_write_and_wait_range(src->i_mapping,
2840 					pos_in, pos_in + len);
2841 	if (ret)
2842 		goto out_unlock;
2843 
2844 	ret = filemap_write_and_wait_range(dst->i_mapping,
2845 					pos_out, pos_out + len);
2846 	if (ret)
2847 		goto out_unlock;
2848 
2849 	f2fs_balance_fs(sbi, true);
2850 
2851 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2852 	if (src != dst) {
2853 		ret = -EBUSY;
2854 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2855 			goto out_src;
2856 	}
2857 
2858 	f2fs_lock_op(sbi);
2859 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2860 				pos_out >> F2FS_BLKSIZE_BITS,
2861 				len >> F2FS_BLKSIZE_BITS, false);
2862 
2863 	if (!ret) {
2864 		if (dst_max_i_size)
2865 			f2fs_i_size_write(dst, dst_max_i_size);
2866 		else if (dst_osize != dst->i_size)
2867 			f2fs_i_size_write(dst, dst_osize);
2868 	}
2869 	f2fs_unlock_op(sbi);
2870 
2871 	if (src != dst)
2872 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2873 out_src:
2874 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2875 out_unlock:
2876 	if (src != dst)
2877 		inode_unlock(dst);
2878 out:
2879 	inode_unlock(src);
2880 	return ret;
2881 }
2882 
2883 static int __f2fs_ioc_move_range(struct file *filp,
2884 				struct f2fs_move_range *range)
2885 {
2886 	struct fd dst;
2887 	int err;
2888 
2889 	if (!(filp->f_mode & FMODE_READ) ||
2890 			!(filp->f_mode & FMODE_WRITE))
2891 		return -EBADF;
2892 
2893 	dst = fdget(range->dst_fd);
2894 	if (!dst.file)
2895 		return -EBADF;
2896 
2897 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2898 		err = -EBADF;
2899 		goto err_out;
2900 	}
2901 
2902 	err = mnt_want_write_file(filp);
2903 	if (err)
2904 		goto err_out;
2905 
2906 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2907 					range->pos_out, range->len);
2908 
2909 	mnt_drop_write_file(filp);
2910 err_out:
2911 	fdput(dst);
2912 	return err;
2913 }
2914 
2915 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2916 {
2917 	struct f2fs_move_range range;
2918 
2919 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2920 							sizeof(range)))
2921 		return -EFAULT;
2922 	return __f2fs_ioc_move_range(filp, &range);
2923 }
2924 
2925 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2926 {
2927 	struct inode *inode = file_inode(filp);
2928 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2929 	struct sit_info *sm = SIT_I(sbi);
2930 	unsigned int start_segno = 0, end_segno = 0;
2931 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2932 	struct f2fs_flush_device range;
2933 	struct f2fs_gc_control gc_control = {
2934 			.init_gc_type = FG_GC,
2935 			.should_migrate_blocks = true,
2936 			.err_gc_skipped = true,
2937 			.nr_free_secs = 0 };
2938 	int ret;
2939 
2940 	if (!capable(CAP_SYS_ADMIN))
2941 		return -EPERM;
2942 
2943 	if (f2fs_readonly(sbi->sb))
2944 		return -EROFS;
2945 
2946 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2947 		return -EINVAL;
2948 
2949 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2950 							sizeof(range)))
2951 		return -EFAULT;
2952 
2953 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2954 			__is_large_section(sbi)) {
2955 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2956 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2957 		return -EINVAL;
2958 	}
2959 
2960 	ret = mnt_want_write_file(filp);
2961 	if (ret)
2962 		return ret;
2963 
2964 	if (range.dev_num != 0)
2965 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2966 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2967 
2968 	start_segno = sm->last_victim[FLUSH_DEVICE];
2969 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2970 		start_segno = dev_start_segno;
2971 	end_segno = min(start_segno + range.segments, dev_end_segno);
2972 
2973 	while (start_segno < end_segno) {
2974 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2975 			ret = -EBUSY;
2976 			goto out;
2977 		}
2978 		sm->last_victim[GC_CB] = end_segno + 1;
2979 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2980 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2981 
2982 		gc_control.victim_segno = start_segno;
2983 		ret = f2fs_gc(sbi, &gc_control);
2984 		if (ret == -EAGAIN)
2985 			ret = 0;
2986 		else if (ret < 0)
2987 			break;
2988 		start_segno++;
2989 	}
2990 out:
2991 	mnt_drop_write_file(filp);
2992 	return ret;
2993 }
2994 
2995 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2996 {
2997 	struct inode *inode = file_inode(filp);
2998 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2999 
3000 	/* Must validate to set it with SQLite behavior in Android. */
3001 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3002 
3003 	return put_user(sb_feature, (u32 __user *)arg);
3004 }
3005 
3006 #ifdef CONFIG_QUOTA
3007 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3008 {
3009 	struct dquot *transfer_to[MAXQUOTAS] = {};
3010 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3011 	struct super_block *sb = sbi->sb;
3012 	int err = 0;
3013 
3014 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3015 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
3016 		err = __dquot_transfer(inode, transfer_to);
3017 		if (err)
3018 			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3019 		dqput(transfer_to[PRJQUOTA]);
3020 	}
3021 	return err;
3022 }
3023 
3024 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3025 {
3026 	struct f2fs_inode_info *fi = F2FS_I(inode);
3027 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3028 	struct f2fs_inode *ri = NULL;
3029 	kprojid_t kprojid;
3030 	int err;
3031 
3032 	if (!f2fs_sb_has_project_quota(sbi)) {
3033 		if (projid != F2FS_DEF_PROJID)
3034 			return -EOPNOTSUPP;
3035 		else
3036 			return 0;
3037 	}
3038 
3039 	if (!f2fs_has_extra_attr(inode))
3040 		return -EOPNOTSUPP;
3041 
3042 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3043 
3044 	if (projid_eq(kprojid, fi->i_projid))
3045 		return 0;
3046 
3047 	err = -EPERM;
3048 	/* Is it quota file? Do not allow user to mess with it */
3049 	if (IS_NOQUOTA(inode))
3050 		return err;
3051 
3052 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3053 		return -EOVERFLOW;
3054 
3055 	err = f2fs_dquot_initialize(inode);
3056 	if (err)
3057 		return err;
3058 
3059 	f2fs_lock_op(sbi);
3060 	err = f2fs_transfer_project_quota(inode, kprojid);
3061 	if (err)
3062 		goto out_unlock;
3063 
3064 	fi->i_projid = kprojid;
3065 	inode->i_ctime = current_time(inode);
3066 	f2fs_mark_inode_dirty_sync(inode, true);
3067 out_unlock:
3068 	f2fs_unlock_op(sbi);
3069 	return err;
3070 }
3071 #else
3072 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3073 {
3074 	return 0;
3075 }
3076 
3077 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3078 {
3079 	if (projid != F2FS_DEF_PROJID)
3080 		return -EOPNOTSUPP;
3081 	return 0;
3082 }
3083 #endif
3084 
3085 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3086 {
3087 	struct inode *inode = d_inode(dentry);
3088 	struct f2fs_inode_info *fi = F2FS_I(inode);
3089 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3090 
3091 	if (IS_ENCRYPTED(inode))
3092 		fsflags |= FS_ENCRYPT_FL;
3093 	if (IS_VERITY(inode))
3094 		fsflags |= FS_VERITY_FL;
3095 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3096 		fsflags |= FS_INLINE_DATA_FL;
3097 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3098 		fsflags |= FS_NOCOW_FL;
3099 
3100 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3101 
3102 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3103 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3104 
3105 	return 0;
3106 }
3107 
3108 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3109 		      struct dentry *dentry, struct fileattr *fa)
3110 {
3111 	struct inode *inode = d_inode(dentry);
3112 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3113 	u32 iflags;
3114 	int err;
3115 
3116 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3117 		return -EIO;
3118 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3119 		return -ENOSPC;
3120 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3121 		return -EOPNOTSUPP;
3122 	fsflags &= F2FS_SETTABLE_FS_FL;
3123 	if (!fa->flags_valid)
3124 		mask &= FS_COMMON_FL;
3125 
3126 	iflags = f2fs_fsflags_to_iflags(fsflags);
3127 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3128 		return -EOPNOTSUPP;
3129 
3130 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3131 	if (!err)
3132 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3133 
3134 	return err;
3135 }
3136 
3137 int f2fs_pin_file_control(struct inode *inode, bool inc)
3138 {
3139 	struct f2fs_inode_info *fi = F2FS_I(inode);
3140 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3141 
3142 	/* Use i_gc_failures for normal file as a risk signal. */
3143 	if (inc)
3144 		f2fs_i_gc_failures_write(inode,
3145 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3146 
3147 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3148 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3149 			  __func__, inode->i_ino,
3150 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3151 		clear_inode_flag(inode, FI_PIN_FILE);
3152 		return -EAGAIN;
3153 	}
3154 	return 0;
3155 }
3156 
3157 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3158 {
3159 	struct inode *inode = file_inode(filp);
3160 	__u32 pin;
3161 	int ret = 0;
3162 
3163 	if (get_user(pin, (__u32 __user *)arg))
3164 		return -EFAULT;
3165 
3166 	if (!S_ISREG(inode->i_mode))
3167 		return -EINVAL;
3168 
3169 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3170 		return -EROFS;
3171 
3172 	ret = mnt_want_write_file(filp);
3173 	if (ret)
3174 		return ret;
3175 
3176 	inode_lock(inode);
3177 
3178 	if (!pin) {
3179 		clear_inode_flag(inode, FI_PIN_FILE);
3180 		f2fs_i_gc_failures_write(inode, 0);
3181 		goto done;
3182 	}
3183 
3184 	if (f2fs_should_update_outplace(inode, NULL)) {
3185 		ret = -EINVAL;
3186 		goto out;
3187 	}
3188 
3189 	if (f2fs_pin_file_control(inode, false)) {
3190 		ret = -EAGAIN;
3191 		goto out;
3192 	}
3193 
3194 	ret = f2fs_convert_inline_inode(inode);
3195 	if (ret)
3196 		goto out;
3197 
3198 	if (!f2fs_disable_compressed_file(inode)) {
3199 		ret = -EOPNOTSUPP;
3200 		goto out;
3201 	}
3202 
3203 	set_inode_flag(inode, FI_PIN_FILE);
3204 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3205 done:
3206 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3207 out:
3208 	inode_unlock(inode);
3209 	mnt_drop_write_file(filp);
3210 	return ret;
3211 }
3212 
3213 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3214 {
3215 	struct inode *inode = file_inode(filp);
3216 	__u32 pin = 0;
3217 
3218 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3219 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3220 	return put_user(pin, (u32 __user *)arg);
3221 }
3222 
3223 int f2fs_precache_extents(struct inode *inode)
3224 {
3225 	struct f2fs_inode_info *fi = F2FS_I(inode);
3226 	struct f2fs_map_blocks map;
3227 	pgoff_t m_next_extent;
3228 	loff_t end;
3229 	int err;
3230 
3231 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3232 		return -EOPNOTSUPP;
3233 
3234 	map.m_lblk = 0;
3235 	map.m_next_pgofs = NULL;
3236 	map.m_next_extent = &m_next_extent;
3237 	map.m_seg_type = NO_CHECK_TYPE;
3238 	map.m_may_create = false;
3239 	end = max_file_blocks(inode);
3240 
3241 	while (map.m_lblk < end) {
3242 		map.m_len = end - map.m_lblk;
3243 
3244 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3245 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3246 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3247 		if (err)
3248 			return err;
3249 
3250 		map.m_lblk = m_next_extent;
3251 	}
3252 
3253 	return 0;
3254 }
3255 
3256 static int f2fs_ioc_precache_extents(struct file *filp)
3257 {
3258 	return f2fs_precache_extents(file_inode(filp));
3259 }
3260 
3261 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3262 {
3263 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3264 	__u64 block_count;
3265 
3266 	if (!capable(CAP_SYS_ADMIN))
3267 		return -EPERM;
3268 
3269 	if (f2fs_readonly(sbi->sb))
3270 		return -EROFS;
3271 
3272 	if (copy_from_user(&block_count, (void __user *)arg,
3273 			   sizeof(block_count)))
3274 		return -EFAULT;
3275 
3276 	return f2fs_resize_fs(sbi, block_count);
3277 }
3278 
3279 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3280 {
3281 	struct inode *inode = file_inode(filp);
3282 
3283 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3284 
3285 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3286 		f2fs_warn(F2FS_I_SB(inode),
3287 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3288 			  inode->i_ino);
3289 		return -EOPNOTSUPP;
3290 	}
3291 
3292 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3293 }
3294 
3295 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3296 {
3297 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3298 		return -EOPNOTSUPP;
3299 
3300 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3301 }
3302 
3303 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3304 {
3305 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3306 		return -EOPNOTSUPP;
3307 
3308 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3309 }
3310 
3311 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3312 {
3313 	struct inode *inode = file_inode(filp);
3314 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3315 	char *vbuf;
3316 	int count;
3317 	int err = 0;
3318 
3319 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3320 	if (!vbuf)
3321 		return -ENOMEM;
3322 
3323 	f2fs_down_read(&sbi->sb_lock);
3324 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3325 			ARRAY_SIZE(sbi->raw_super->volume_name),
3326 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3327 	f2fs_up_read(&sbi->sb_lock);
3328 
3329 	if (copy_to_user((char __user *)arg, vbuf,
3330 				min(FSLABEL_MAX, count)))
3331 		err = -EFAULT;
3332 
3333 	kfree(vbuf);
3334 	return err;
3335 }
3336 
3337 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3338 {
3339 	struct inode *inode = file_inode(filp);
3340 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3341 	char *vbuf;
3342 	int err = 0;
3343 
3344 	if (!capable(CAP_SYS_ADMIN))
3345 		return -EPERM;
3346 
3347 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3348 	if (IS_ERR(vbuf))
3349 		return PTR_ERR(vbuf);
3350 
3351 	err = mnt_want_write_file(filp);
3352 	if (err)
3353 		goto out;
3354 
3355 	f2fs_down_write(&sbi->sb_lock);
3356 
3357 	memset(sbi->raw_super->volume_name, 0,
3358 			sizeof(sbi->raw_super->volume_name));
3359 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3360 			sbi->raw_super->volume_name,
3361 			ARRAY_SIZE(sbi->raw_super->volume_name));
3362 
3363 	err = f2fs_commit_super(sbi, false);
3364 
3365 	f2fs_up_write(&sbi->sb_lock);
3366 
3367 	mnt_drop_write_file(filp);
3368 out:
3369 	kfree(vbuf);
3370 	return err;
3371 }
3372 
3373 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3374 {
3375 	struct inode *inode = file_inode(filp);
3376 	__u64 blocks;
3377 
3378 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3379 		return -EOPNOTSUPP;
3380 
3381 	if (!f2fs_compressed_file(inode))
3382 		return -EINVAL;
3383 
3384 	blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3385 	return put_user(blocks, (u64 __user *)arg);
3386 }
3387 
3388 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3389 {
3390 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3391 	unsigned int released_blocks = 0;
3392 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3393 	block_t blkaddr;
3394 	int i;
3395 
3396 	for (i = 0; i < count; i++) {
3397 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3398 						dn->ofs_in_node + i);
3399 
3400 		if (!__is_valid_data_blkaddr(blkaddr))
3401 			continue;
3402 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3403 					DATA_GENERIC_ENHANCE))) {
3404 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3405 			return -EFSCORRUPTED;
3406 		}
3407 	}
3408 
3409 	while (count) {
3410 		int compr_blocks = 0;
3411 
3412 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3413 			blkaddr = f2fs_data_blkaddr(dn);
3414 
3415 			if (i == 0) {
3416 				if (blkaddr == COMPRESS_ADDR)
3417 					continue;
3418 				dn->ofs_in_node += cluster_size;
3419 				goto next;
3420 			}
3421 
3422 			if (__is_valid_data_blkaddr(blkaddr))
3423 				compr_blocks++;
3424 
3425 			if (blkaddr != NEW_ADDR)
3426 				continue;
3427 
3428 			dn->data_blkaddr = NULL_ADDR;
3429 			f2fs_set_data_blkaddr(dn);
3430 		}
3431 
3432 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3433 		dec_valid_block_count(sbi, dn->inode,
3434 					cluster_size - compr_blocks);
3435 
3436 		released_blocks += cluster_size - compr_blocks;
3437 next:
3438 		count -= cluster_size;
3439 	}
3440 
3441 	return released_blocks;
3442 }
3443 
3444 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3445 {
3446 	struct inode *inode = file_inode(filp);
3447 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3448 	pgoff_t page_idx = 0, last_idx;
3449 	unsigned int released_blocks = 0;
3450 	int ret;
3451 	int writecount;
3452 
3453 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3454 		return -EOPNOTSUPP;
3455 
3456 	if (!f2fs_compressed_file(inode))
3457 		return -EINVAL;
3458 
3459 	if (f2fs_readonly(sbi->sb))
3460 		return -EROFS;
3461 
3462 	ret = mnt_want_write_file(filp);
3463 	if (ret)
3464 		return ret;
3465 
3466 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3467 
3468 	inode_lock(inode);
3469 
3470 	writecount = atomic_read(&inode->i_writecount);
3471 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3472 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3473 		ret = -EBUSY;
3474 		goto out;
3475 	}
3476 
3477 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3478 		ret = -EINVAL;
3479 		goto out;
3480 	}
3481 
3482 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3483 	if (ret)
3484 		goto out;
3485 
3486 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3487 	inode->i_ctime = current_time(inode);
3488 	f2fs_mark_inode_dirty_sync(inode, true);
3489 
3490 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3491 		goto out;
3492 
3493 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3494 	filemap_invalidate_lock(inode->i_mapping);
3495 
3496 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3497 
3498 	while (page_idx < last_idx) {
3499 		struct dnode_of_data dn;
3500 		pgoff_t end_offset, count;
3501 
3502 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3503 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3504 		if (ret) {
3505 			if (ret == -ENOENT) {
3506 				page_idx = f2fs_get_next_page_offset(&dn,
3507 								page_idx);
3508 				ret = 0;
3509 				continue;
3510 			}
3511 			break;
3512 		}
3513 
3514 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3515 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3516 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3517 
3518 		ret = release_compress_blocks(&dn, count);
3519 
3520 		f2fs_put_dnode(&dn);
3521 
3522 		if (ret < 0)
3523 			break;
3524 
3525 		page_idx += count;
3526 		released_blocks += ret;
3527 	}
3528 
3529 	filemap_invalidate_unlock(inode->i_mapping);
3530 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3531 out:
3532 	inode_unlock(inode);
3533 
3534 	mnt_drop_write_file(filp);
3535 
3536 	if (ret >= 0) {
3537 		ret = put_user(released_blocks, (u64 __user *)arg);
3538 	} else if (released_blocks &&
3539 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3540 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3541 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3542 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3543 			"run fsck to fix.",
3544 			__func__, inode->i_ino, inode->i_blocks,
3545 			released_blocks,
3546 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3547 	}
3548 
3549 	return ret;
3550 }
3551 
3552 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3553 {
3554 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3555 	unsigned int reserved_blocks = 0;
3556 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3557 	block_t blkaddr;
3558 	int i;
3559 
3560 	for (i = 0; i < count; i++) {
3561 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3562 						dn->ofs_in_node + i);
3563 
3564 		if (!__is_valid_data_blkaddr(blkaddr))
3565 			continue;
3566 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3567 					DATA_GENERIC_ENHANCE))) {
3568 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3569 			return -EFSCORRUPTED;
3570 		}
3571 	}
3572 
3573 	while (count) {
3574 		int compr_blocks = 0;
3575 		blkcnt_t reserved;
3576 		int ret;
3577 
3578 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3579 			blkaddr = f2fs_data_blkaddr(dn);
3580 
3581 			if (i == 0) {
3582 				if (blkaddr == COMPRESS_ADDR)
3583 					continue;
3584 				dn->ofs_in_node += cluster_size;
3585 				goto next;
3586 			}
3587 
3588 			if (__is_valid_data_blkaddr(blkaddr)) {
3589 				compr_blocks++;
3590 				continue;
3591 			}
3592 
3593 			dn->data_blkaddr = NEW_ADDR;
3594 			f2fs_set_data_blkaddr(dn);
3595 		}
3596 
3597 		reserved = cluster_size - compr_blocks;
3598 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3599 		if (ret)
3600 			return ret;
3601 
3602 		if (reserved != cluster_size - compr_blocks)
3603 			return -ENOSPC;
3604 
3605 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3606 
3607 		reserved_blocks += reserved;
3608 next:
3609 		count -= cluster_size;
3610 	}
3611 
3612 	return reserved_blocks;
3613 }
3614 
3615 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3616 {
3617 	struct inode *inode = file_inode(filp);
3618 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3619 	pgoff_t page_idx = 0, last_idx;
3620 	unsigned int reserved_blocks = 0;
3621 	int ret;
3622 
3623 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3624 		return -EOPNOTSUPP;
3625 
3626 	if (!f2fs_compressed_file(inode))
3627 		return -EINVAL;
3628 
3629 	if (f2fs_readonly(sbi->sb))
3630 		return -EROFS;
3631 
3632 	ret = mnt_want_write_file(filp);
3633 	if (ret)
3634 		return ret;
3635 
3636 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3637 		goto out;
3638 
3639 	f2fs_balance_fs(F2FS_I_SB(inode), true);
3640 
3641 	inode_lock(inode);
3642 
3643 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3644 		ret = -EINVAL;
3645 		goto unlock_inode;
3646 	}
3647 
3648 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3649 	filemap_invalidate_lock(inode->i_mapping);
3650 
3651 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3652 
3653 	while (page_idx < last_idx) {
3654 		struct dnode_of_data dn;
3655 		pgoff_t end_offset, count;
3656 
3657 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3658 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3659 		if (ret) {
3660 			if (ret == -ENOENT) {
3661 				page_idx = f2fs_get_next_page_offset(&dn,
3662 								page_idx);
3663 				ret = 0;
3664 				continue;
3665 			}
3666 			break;
3667 		}
3668 
3669 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3670 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3671 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3672 
3673 		ret = reserve_compress_blocks(&dn, count);
3674 
3675 		f2fs_put_dnode(&dn);
3676 
3677 		if (ret < 0)
3678 			break;
3679 
3680 		page_idx += count;
3681 		reserved_blocks += ret;
3682 	}
3683 
3684 	filemap_invalidate_unlock(inode->i_mapping);
3685 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3686 
3687 	if (ret >= 0) {
3688 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3689 		inode->i_ctime = current_time(inode);
3690 		f2fs_mark_inode_dirty_sync(inode, true);
3691 	}
3692 unlock_inode:
3693 	inode_unlock(inode);
3694 out:
3695 	mnt_drop_write_file(filp);
3696 
3697 	if (ret >= 0) {
3698 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3699 	} else if (reserved_blocks &&
3700 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3701 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3702 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3703 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3704 			"run fsck to fix.",
3705 			__func__, inode->i_ino, inode->i_blocks,
3706 			reserved_blocks,
3707 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3708 	}
3709 
3710 	return ret;
3711 }
3712 
3713 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3714 		pgoff_t off, block_t block, block_t len, u32 flags)
3715 {
3716 	sector_t sector = SECTOR_FROM_BLOCK(block);
3717 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3718 	int ret = 0;
3719 
3720 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3721 		if (bdev_max_secure_erase_sectors(bdev))
3722 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3723 					GFP_NOFS);
3724 		else
3725 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3726 					GFP_NOFS);
3727 	}
3728 
3729 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3730 		if (IS_ENCRYPTED(inode))
3731 			ret = fscrypt_zeroout_range(inode, off, block, len);
3732 		else
3733 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3734 					GFP_NOFS, 0);
3735 	}
3736 
3737 	return ret;
3738 }
3739 
3740 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3741 {
3742 	struct inode *inode = file_inode(filp);
3743 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3744 	struct address_space *mapping = inode->i_mapping;
3745 	struct block_device *prev_bdev = NULL;
3746 	struct f2fs_sectrim_range range;
3747 	pgoff_t index, pg_end, prev_index = 0;
3748 	block_t prev_block = 0, len = 0;
3749 	loff_t end_addr;
3750 	bool to_end = false;
3751 	int ret = 0;
3752 
3753 	if (!(filp->f_mode & FMODE_WRITE))
3754 		return -EBADF;
3755 
3756 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3757 				sizeof(range)))
3758 		return -EFAULT;
3759 
3760 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3761 			!S_ISREG(inode->i_mode))
3762 		return -EINVAL;
3763 
3764 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3765 			!f2fs_hw_support_discard(sbi)) ||
3766 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3767 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3768 		return -EOPNOTSUPP;
3769 
3770 	file_start_write(filp);
3771 	inode_lock(inode);
3772 
3773 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3774 			range.start >= inode->i_size) {
3775 		ret = -EINVAL;
3776 		goto err;
3777 	}
3778 
3779 	if (range.len == 0)
3780 		goto err;
3781 
3782 	if (inode->i_size - range.start > range.len) {
3783 		end_addr = range.start + range.len;
3784 	} else {
3785 		end_addr = range.len == (u64)-1 ?
3786 			sbi->sb->s_maxbytes : inode->i_size;
3787 		to_end = true;
3788 	}
3789 
3790 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3791 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3792 		ret = -EINVAL;
3793 		goto err;
3794 	}
3795 
3796 	index = F2FS_BYTES_TO_BLK(range.start);
3797 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3798 
3799 	ret = f2fs_convert_inline_inode(inode);
3800 	if (ret)
3801 		goto err;
3802 
3803 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3804 	filemap_invalidate_lock(mapping);
3805 
3806 	ret = filemap_write_and_wait_range(mapping, range.start,
3807 			to_end ? LLONG_MAX : end_addr - 1);
3808 	if (ret)
3809 		goto out;
3810 
3811 	truncate_inode_pages_range(mapping, range.start,
3812 			to_end ? -1 : end_addr - 1);
3813 
3814 	while (index < pg_end) {
3815 		struct dnode_of_data dn;
3816 		pgoff_t end_offset, count;
3817 		int i;
3818 
3819 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3820 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3821 		if (ret) {
3822 			if (ret == -ENOENT) {
3823 				index = f2fs_get_next_page_offset(&dn, index);
3824 				continue;
3825 			}
3826 			goto out;
3827 		}
3828 
3829 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3830 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3831 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3832 			struct block_device *cur_bdev;
3833 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3834 
3835 			if (!__is_valid_data_blkaddr(blkaddr))
3836 				continue;
3837 
3838 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3839 						DATA_GENERIC_ENHANCE)) {
3840 				ret = -EFSCORRUPTED;
3841 				f2fs_put_dnode(&dn);
3842 				f2fs_handle_error(sbi,
3843 						ERROR_INVALID_BLKADDR);
3844 				goto out;
3845 			}
3846 
3847 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3848 			if (f2fs_is_multi_device(sbi)) {
3849 				int di = f2fs_target_device_index(sbi, blkaddr);
3850 
3851 				blkaddr -= FDEV(di).start_blk;
3852 			}
3853 
3854 			if (len) {
3855 				if (prev_bdev == cur_bdev &&
3856 						index == prev_index + len &&
3857 						blkaddr == prev_block + len) {
3858 					len++;
3859 				} else {
3860 					ret = f2fs_secure_erase(prev_bdev,
3861 						inode, prev_index, prev_block,
3862 						len, range.flags);
3863 					if (ret) {
3864 						f2fs_put_dnode(&dn);
3865 						goto out;
3866 					}
3867 
3868 					len = 0;
3869 				}
3870 			}
3871 
3872 			if (!len) {
3873 				prev_bdev = cur_bdev;
3874 				prev_index = index;
3875 				prev_block = blkaddr;
3876 				len = 1;
3877 			}
3878 		}
3879 
3880 		f2fs_put_dnode(&dn);
3881 
3882 		if (fatal_signal_pending(current)) {
3883 			ret = -EINTR;
3884 			goto out;
3885 		}
3886 		cond_resched();
3887 	}
3888 
3889 	if (len)
3890 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3891 				prev_block, len, range.flags);
3892 out:
3893 	filemap_invalidate_unlock(mapping);
3894 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3895 err:
3896 	inode_unlock(inode);
3897 	file_end_write(filp);
3898 
3899 	return ret;
3900 }
3901 
3902 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3903 {
3904 	struct inode *inode = file_inode(filp);
3905 	struct f2fs_comp_option option;
3906 
3907 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3908 		return -EOPNOTSUPP;
3909 
3910 	inode_lock_shared(inode);
3911 
3912 	if (!f2fs_compressed_file(inode)) {
3913 		inode_unlock_shared(inode);
3914 		return -ENODATA;
3915 	}
3916 
3917 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3918 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3919 
3920 	inode_unlock_shared(inode);
3921 
3922 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3923 				sizeof(option)))
3924 		return -EFAULT;
3925 
3926 	return 0;
3927 }
3928 
3929 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3930 {
3931 	struct inode *inode = file_inode(filp);
3932 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3933 	struct f2fs_comp_option option;
3934 	int ret = 0;
3935 
3936 	if (!f2fs_sb_has_compression(sbi))
3937 		return -EOPNOTSUPP;
3938 
3939 	if (!(filp->f_mode & FMODE_WRITE))
3940 		return -EBADF;
3941 
3942 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3943 				sizeof(option)))
3944 		return -EFAULT;
3945 
3946 	if (!f2fs_compressed_file(inode) ||
3947 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3948 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3949 			option.algorithm >= COMPRESS_MAX)
3950 		return -EINVAL;
3951 
3952 	file_start_write(filp);
3953 	inode_lock(inode);
3954 
3955 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3956 		ret = -EBUSY;
3957 		goto out;
3958 	}
3959 
3960 	if (F2FS_HAS_BLOCKS(inode)) {
3961 		ret = -EFBIG;
3962 		goto out;
3963 	}
3964 
3965 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3966 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3967 	F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3968 	f2fs_mark_inode_dirty_sync(inode, true);
3969 
3970 	if (!f2fs_is_compress_backend_ready(inode))
3971 		f2fs_warn(sbi, "compression algorithm is successfully set, "
3972 			"but current kernel doesn't support this algorithm.");
3973 out:
3974 	inode_unlock(inode);
3975 	file_end_write(filp);
3976 
3977 	return ret;
3978 }
3979 
3980 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3981 {
3982 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3983 	struct address_space *mapping = inode->i_mapping;
3984 	struct page *page;
3985 	pgoff_t redirty_idx = page_idx;
3986 	int i, page_len = 0, ret = 0;
3987 
3988 	page_cache_ra_unbounded(&ractl, len, 0);
3989 
3990 	for (i = 0; i < len; i++, page_idx++) {
3991 		page = read_cache_page(mapping, page_idx, NULL, NULL);
3992 		if (IS_ERR(page)) {
3993 			ret = PTR_ERR(page);
3994 			break;
3995 		}
3996 		page_len++;
3997 	}
3998 
3999 	for (i = 0; i < page_len; i++, redirty_idx++) {
4000 		page = find_lock_page(mapping, redirty_idx);
4001 
4002 		/* It will never fail, when page has pinned above */
4003 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4004 
4005 		set_page_dirty(page);
4006 		f2fs_put_page(page, 1);
4007 		f2fs_put_page(page, 0);
4008 	}
4009 
4010 	return ret;
4011 }
4012 
4013 static int f2fs_ioc_decompress_file(struct file *filp)
4014 {
4015 	struct inode *inode = file_inode(filp);
4016 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4017 	struct f2fs_inode_info *fi = F2FS_I(inode);
4018 	pgoff_t page_idx = 0, last_idx;
4019 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4020 	int cluster_size = fi->i_cluster_size;
4021 	int count, ret;
4022 
4023 	if (!f2fs_sb_has_compression(sbi) ||
4024 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4025 		return -EOPNOTSUPP;
4026 
4027 	if (!(filp->f_mode & FMODE_WRITE))
4028 		return -EBADF;
4029 
4030 	if (!f2fs_compressed_file(inode))
4031 		return -EINVAL;
4032 
4033 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4034 
4035 	file_start_write(filp);
4036 	inode_lock(inode);
4037 
4038 	if (!f2fs_is_compress_backend_ready(inode)) {
4039 		ret = -EOPNOTSUPP;
4040 		goto out;
4041 	}
4042 
4043 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4044 		ret = -EINVAL;
4045 		goto out;
4046 	}
4047 
4048 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4049 	if (ret)
4050 		goto out;
4051 
4052 	if (!atomic_read(&fi->i_compr_blocks))
4053 		goto out;
4054 
4055 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4056 
4057 	count = last_idx - page_idx;
4058 	while (count) {
4059 		int len = min(cluster_size, count);
4060 
4061 		ret = redirty_blocks(inode, page_idx, len);
4062 		if (ret < 0)
4063 			break;
4064 
4065 		if (get_dirty_pages(inode) >= blk_per_seg)
4066 			filemap_fdatawrite(inode->i_mapping);
4067 
4068 		count -= len;
4069 		page_idx += len;
4070 	}
4071 
4072 	if (!ret)
4073 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4074 							LLONG_MAX);
4075 
4076 	if (ret)
4077 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4078 			  __func__, ret);
4079 out:
4080 	inode_unlock(inode);
4081 	file_end_write(filp);
4082 
4083 	return ret;
4084 }
4085 
4086 static int f2fs_ioc_compress_file(struct file *filp)
4087 {
4088 	struct inode *inode = file_inode(filp);
4089 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4090 	pgoff_t page_idx = 0, last_idx;
4091 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4092 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4093 	int count, ret;
4094 
4095 	if (!f2fs_sb_has_compression(sbi) ||
4096 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4097 		return -EOPNOTSUPP;
4098 
4099 	if (!(filp->f_mode & FMODE_WRITE))
4100 		return -EBADF;
4101 
4102 	if (!f2fs_compressed_file(inode))
4103 		return -EINVAL;
4104 
4105 	f2fs_balance_fs(F2FS_I_SB(inode), true);
4106 
4107 	file_start_write(filp);
4108 	inode_lock(inode);
4109 
4110 	if (!f2fs_is_compress_backend_ready(inode)) {
4111 		ret = -EOPNOTSUPP;
4112 		goto out;
4113 	}
4114 
4115 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4116 		ret = -EINVAL;
4117 		goto out;
4118 	}
4119 
4120 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4121 	if (ret)
4122 		goto out;
4123 
4124 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4125 
4126 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4127 
4128 	count = last_idx - page_idx;
4129 	while (count) {
4130 		int len = min(cluster_size, count);
4131 
4132 		ret = redirty_blocks(inode, page_idx, len);
4133 		if (ret < 0)
4134 			break;
4135 
4136 		if (get_dirty_pages(inode) >= blk_per_seg)
4137 			filemap_fdatawrite(inode->i_mapping);
4138 
4139 		count -= len;
4140 		page_idx += len;
4141 	}
4142 
4143 	if (!ret)
4144 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4145 							LLONG_MAX);
4146 
4147 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4148 
4149 	if (ret)
4150 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4151 			  __func__, ret);
4152 out:
4153 	inode_unlock(inode);
4154 	file_end_write(filp);
4155 
4156 	return ret;
4157 }
4158 
4159 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4160 {
4161 	switch (cmd) {
4162 	case FS_IOC_GETVERSION:
4163 		return f2fs_ioc_getversion(filp, arg);
4164 	case F2FS_IOC_START_ATOMIC_WRITE:
4165 		return f2fs_ioc_start_atomic_write(filp, false);
4166 	case F2FS_IOC_START_ATOMIC_REPLACE:
4167 		return f2fs_ioc_start_atomic_write(filp, true);
4168 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4169 		return f2fs_ioc_commit_atomic_write(filp);
4170 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4171 		return f2fs_ioc_abort_atomic_write(filp);
4172 	case F2FS_IOC_START_VOLATILE_WRITE:
4173 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4174 		return -EOPNOTSUPP;
4175 	case F2FS_IOC_SHUTDOWN:
4176 		return f2fs_ioc_shutdown(filp, arg);
4177 	case FITRIM:
4178 		return f2fs_ioc_fitrim(filp, arg);
4179 	case FS_IOC_SET_ENCRYPTION_POLICY:
4180 		return f2fs_ioc_set_encryption_policy(filp, arg);
4181 	case FS_IOC_GET_ENCRYPTION_POLICY:
4182 		return f2fs_ioc_get_encryption_policy(filp, arg);
4183 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4184 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4185 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4186 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4187 	case FS_IOC_ADD_ENCRYPTION_KEY:
4188 		return f2fs_ioc_add_encryption_key(filp, arg);
4189 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4190 		return f2fs_ioc_remove_encryption_key(filp, arg);
4191 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4192 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4193 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4194 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4195 	case FS_IOC_GET_ENCRYPTION_NONCE:
4196 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4197 	case F2FS_IOC_GARBAGE_COLLECT:
4198 		return f2fs_ioc_gc(filp, arg);
4199 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4200 		return f2fs_ioc_gc_range(filp, arg);
4201 	case F2FS_IOC_WRITE_CHECKPOINT:
4202 		return f2fs_ioc_write_checkpoint(filp);
4203 	case F2FS_IOC_DEFRAGMENT:
4204 		return f2fs_ioc_defragment(filp, arg);
4205 	case F2FS_IOC_MOVE_RANGE:
4206 		return f2fs_ioc_move_range(filp, arg);
4207 	case F2FS_IOC_FLUSH_DEVICE:
4208 		return f2fs_ioc_flush_device(filp, arg);
4209 	case F2FS_IOC_GET_FEATURES:
4210 		return f2fs_ioc_get_features(filp, arg);
4211 	case F2FS_IOC_GET_PIN_FILE:
4212 		return f2fs_ioc_get_pin_file(filp, arg);
4213 	case F2FS_IOC_SET_PIN_FILE:
4214 		return f2fs_ioc_set_pin_file(filp, arg);
4215 	case F2FS_IOC_PRECACHE_EXTENTS:
4216 		return f2fs_ioc_precache_extents(filp);
4217 	case F2FS_IOC_RESIZE_FS:
4218 		return f2fs_ioc_resize_fs(filp, arg);
4219 	case FS_IOC_ENABLE_VERITY:
4220 		return f2fs_ioc_enable_verity(filp, arg);
4221 	case FS_IOC_MEASURE_VERITY:
4222 		return f2fs_ioc_measure_verity(filp, arg);
4223 	case FS_IOC_READ_VERITY_METADATA:
4224 		return f2fs_ioc_read_verity_metadata(filp, arg);
4225 	case FS_IOC_GETFSLABEL:
4226 		return f2fs_ioc_getfslabel(filp, arg);
4227 	case FS_IOC_SETFSLABEL:
4228 		return f2fs_ioc_setfslabel(filp, arg);
4229 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4230 		return f2fs_get_compress_blocks(filp, arg);
4231 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4232 		return f2fs_release_compress_blocks(filp, arg);
4233 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4234 		return f2fs_reserve_compress_blocks(filp, arg);
4235 	case F2FS_IOC_SEC_TRIM_FILE:
4236 		return f2fs_sec_trim_file(filp, arg);
4237 	case F2FS_IOC_GET_COMPRESS_OPTION:
4238 		return f2fs_ioc_get_compress_option(filp, arg);
4239 	case F2FS_IOC_SET_COMPRESS_OPTION:
4240 		return f2fs_ioc_set_compress_option(filp, arg);
4241 	case F2FS_IOC_DECOMPRESS_FILE:
4242 		return f2fs_ioc_decompress_file(filp);
4243 	case F2FS_IOC_COMPRESS_FILE:
4244 		return f2fs_ioc_compress_file(filp);
4245 	default:
4246 		return -ENOTTY;
4247 	}
4248 }
4249 
4250 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4251 {
4252 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4253 		return -EIO;
4254 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4255 		return -ENOSPC;
4256 
4257 	return __f2fs_ioctl(filp, cmd, arg);
4258 }
4259 
4260 /*
4261  * Return %true if the given read or write request should use direct I/O, or
4262  * %false if it should use buffered I/O.
4263  */
4264 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4265 				struct iov_iter *iter)
4266 {
4267 	unsigned int align;
4268 
4269 	if (!(iocb->ki_flags & IOCB_DIRECT))
4270 		return false;
4271 
4272 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4273 		return false;
4274 
4275 	/*
4276 	 * Direct I/O not aligned to the disk's logical_block_size will be
4277 	 * attempted, but will fail with -EINVAL.
4278 	 *
4279 	 * f2fs additionally requires that direct I/O be aligned to the
4280 	 * filesystem block size, which is often a stricter requirement.
4281 	 * However, f2fs traditionally falls back to buffered I/O on requests
4282 	 * that are logical_block_size-aligned but not fs-block aligned.
4283 	 *
4284 	 * The below logic implements this behavior.
4285 	 */
4286 	align = iocb->ki_pos | iov_iter_alignment(iter);
4287 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4288 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4289 		return false;
4290 
4291 	return true;
4292 }
4293 
4294 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4295 				unsigned int flags)
4296 {
4297 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4298 
4299 	dec_page_count(sbi, F2FS_DIO_READ);
4300 	if (error)
4301 		return error;
4302 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4303 	return 0;
4304 }
4305 
4306 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4307 	.end_io = f2fs_dio_read_end_io,
4308 };
4309 
4310 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4311 {
4312 	struct file *file = iocb->ki_filp;
4313 	struct inode *inode = file_inode(file);
4314 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4315 	struct f2fs_inode_info *fi = F2FS_I(inode);
4316 	const loff_t pos = iocb->ki_pos;
4317 	const size_t count = iov_iter_count(to);
4318 	struct iomap_dio *dio;
4319 	ssize_t ret;
4320 
4321 	if (count == 0)
4322 		return 0; /* skip atime update */
4323 
4324 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4325 
4326 	if (iocb->ki_flags & IOCB_NOWAIT) {
4327 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4328 			ret = -EAGAIN;
4329 			goto out;
4330 		}
4331 	} else {
4332 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4333 	}
4334 
4335 	/*
4336 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4337 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4338 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4339 	 */
4340 	inc_page_count(sbi, F2FS_DIO_READ);
4341 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4342 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4343 	if (IS_ERR_OR_NULL(dio)) {
4344 		ret = PTR_ERR_OR_ZERO(dio);
4345 		if (ret != -EIOCBQUEUED)
4346 			dec_page_count(sbi, F2FS_DIO_READ);
4347 	} else {
4348 		ret = iomap_dio_complete(dio);
4349 	}
4350 
4351 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4352 
4353 	file_accessed(file);
4354 out:
4355 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4356 	return ret;
4357 }
4358 
4359 static void f2fs_trace_rw_file_path(struct kiocb *iocb, size_t count, int rw)
4360 {
4361 	struct inode *inode = file_inode(iocb->ki_filp);
4362 	char *buf, *path;
4363 
4364 	buf = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL);
4365 	if (!buf)
4366 		return;
4367 	path = dentry_path_raw(file_dentry(iocb->ki_filp), buf, PATH_MAX);
4368 	if (IS_ERR(path))
4369 		goto free_buf;
4370 	if (rw == WRITE)
4371 		trace_f2fs_datawrite_start(inode, iocb->ki_pos, count,
4372 				current->pid, path, current->comm);
4373 	else
4374 		trace_f2fs_dataread_start(inode, iocb->ki_pos, count,
4375 				current->pid, path, current->comm);
4376 free_buf:
4377 	kfree(buf);
4378 }
4379 
4380 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4381 {
4382 	struct inode *inode = file_inode(iocb->ki_filp);
4383 	const loff_t pos = iocb->ki_pos;
4384 	ssize_t ret;
4385 
4386 	if (!f2fs_is_compress_backend_ready(inode))
4387 		return -EOPNOTSUPP;
4388 
4389 	if (trace_f2fs_dataread_start_enabled())
4390 		f2fs_trace_rw_file_path(iocb, iov_iter_count(to), READ);
4391 
4392 	if (f2fs_should_use_dio(inode, iocb, to)) {
4393 		ret = f2fs_dio_read_iter(iocb, to);
4394 	} else {
4395 		ret = filemap_read(iocb, to, 0);
4396 		if (ret > 0)
4397 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4398 						APP_BUFFERED_READ_IO, ret);
4399 	}
4400 	if (trace_f2fs_dataread_end_enabled())
4401 		trace_f2fs_dataread_end(inode, pos, ret);
4402 	return ret;
4403 }
4404 
4405 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4406 {
4407 	struct file *file = iocb->ki_filp;
4408 	struct inode *inode = file_inode(file);
4409 	ssize_t count;
4410 	int err;
4411 
4412 	if (IS_IMMUTABLE(inode))
4413 		return -EPERM;
4414 
4415 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4416 		return -EPERM;
4417 
4418 	count = generic_write_checks(iocb, from);
4419 	if (count <= 0)
4420 		return count;
4421 
4422 	err = file_modified(file);
4423 	if (err)
4424 		return err;
4425 	return count;
4426 }
4427 
4428 /*
4429  * Preallocate blocks for a write request, if it is possible and helpful to do
4430  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4431  * blocks were preallocated, or a negative errno value if something went
4432  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4433  * requested blocks (not just some of them) have been allocated.
4434  */
4435 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4436 				   bool dio)
4437 {
4438 	struct inode *inode = file_inode(iocb->ki_filp);
4439 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4440 	const loff_t pos = iocb->ki_pos;
4441 	const size_t count = iov_iter_count(iter);
4442 	struct f2fs_map_blocks map = {};
4443 	int flag;
4444 	int ret;
4445 
4446 	/* If it will be an out-of-place direct write, don't bother. */
4447 	if (dio && f2fs_lfs_mode(sbi))
4448 		return 0;
4449 	/*
4450 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4451 	 * buffered IO, if DIO meets any holes.
4452 	 */
4453 	if (dio && i_size_read(inode) &&
4454 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4455 		return 0;
4456 
4457 	/* No-wait I/O can't allocate blocks. */
4458 	if (iocb->ki_flags & IOCB_NOWAIT)
4459 		return 0;
4460 
4461 	/* If it will be a short write, don't bother. */
4462 	if (fault_in_iov_iter_readable(iter, count))
4463 		return 0;
4464 
4465 	if (f2fs_has_inline_data(inode)) {
4466 		/* If the data will fit inline, don't bother. */
4467 		if (pos + count <= MAX_INLINE_DATA(inode))
4468 			return 0;
4469 		ret = f2fs_convert_inline_inode(inode);
4470 		if (ret)
4471 			return ret;
4472 	}
4473 
4474 	/* Do not preallocate blocks that will be written partially in 4KB. */
4475 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4476 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4477 	if (map.m_len > map.m_lblk)
4478 		map.m_len -= map.m_lblk;
4479 	else
4480 		map.m_len = 0;
4481 	map.m_may_create = true;
4482 	if (dio) {
4483 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4484 		flag = F2FS_GET_BLOCK_PRE_DIO;
4485 	} else {
4486 		map.m_seg_type = NO_CHECK_TYPE;
4487 		flag = F2FS_GET_BLOCK_PRE_AIO;
4488 	}
4489 
4490 	ret = f2fs_map_blocks(inode, &map, flag);
4491 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4492 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4493 		return ret;
4494 	if (ret == 0)
4495 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4496 	return map.m_len;
4497 }
4498 
4499 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4500 					struct iov_iter *from)
4501 {
4502 	struct file *file = iocb->ki_filp;
4503 	struct inode *inode = file_inode(file);
4504 	ssize_t ret;
4505 
4506 	if (iocb->ki_flags & IOCB_NOWAIT)
4507 		return -EOPNOTSUPP;
4508 
4509 	current->backing_dev_info = inode_to_bdi(inode);
4510 	ret = generic_perform_write(iocb, from);
4511 	current->backing_dev_info = NULL;
4512 
4513 	if (ret > 0) {
4514 		iocb->ki_pos += ret;
4515 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4516 						APP_BUFFERED_IO, ret);
4517 	}
4518 	return ret;
4519 }
4520 
4521 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4522 				 unsigned int flags)
4523 {
4524 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4525 
4526 	dec_page_count(sbi, F2FS_DIO_WRITE);
4527 	if (error)
4528 		return error;
4529 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4530 	return 0;
4531 }
4532 
4533 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4534 	.end_io = f2fs_dio_write_end_io,
4535 };
4536 
4537 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4538 				   bool *may_need_sync)
4539 {
4540 	struct file *file = iocb->ki_filp;
4541 	struct inode *inode = file_inode(file);
4542 	struct f2fs_inode_info *fi = F2FS_I(inode);
4543 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4544 	const bool do_opu = f2fs_lfs_mode(sbi);
4545 	const loff_t pos = iocb->ki_pos;
4546 	const ssize_t count = iov_iter_count(from);
4547 	unsigned int dio_flags;
4548 	struct iomap_dio *dio;
4549 	ssize_t ret;
4550 
4551 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4552 
4553 	if (iocb->ki_flags & IOCB_NOWAIT) {
4554 		/* f2fs_convert_inline_inode() and block allocation can block */
4555 		if (f2fs_has_inline_data(inode) ||
4556 		    !f2fs_overwrite_io(inode, pos, count)) {
4557 			ret = -EAGAIN;
4558 			goto out;
4559 		}
4560 
4561 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4562 			ret = -EAGAIN;
4563 			goto out;
4564 		}
4565 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4566 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4567 			ret = -EAGAIN;
4568 			goto out;
4569 		}
4570 	} else {
4571 		ret = f2fs_convert_inline_inode(inode);
4572 		if (ret)
4573 			goto out;
4574 
4575 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4576 		if (do_opu)
4577 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4578 	}
4579 
4580 	/*
4581 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4582 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4583 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4584 	 */
4585 	inc_page_count(sbi, F2FS_DIO_WRITE);
4586 	dio_flags = 0;
4587 	if (pos + count > inode->i_size)
4588 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4589 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4590 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4591 	if (IS_ERR_OR_NULL(dio)) {
4592 		ret = PTR_ERR_OR_ZERO(dio);
4593 		if (ret == -ENOTBLK)
4594 			ret = 0;
4595 		if (ret != -EIOCBQUEUED)
4596 			dec_page_count(sbi, F2FS_DIO_WRITE);
4597 	} else {
4598 		ret = iomap_dio_complete(dio);
4599 	}
4600 
4601 	if (do_opu)
4602 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4603 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4604 
4605 	if (ret < 0)
4606 		goto out;
4607 	if (pos + ret > inode->i_size)
4608 		f2fs_i_size_write(inode, pos + ret);
4609 	if (!do_opu)
4610 		set_inode_flag(inode, FI_UPDATE_WRITE);
4611 
4612 	if (iov_iter_count(from)) {
4613 		ssize_t ret2;
4614 		loff_t bufio_start_pos = iocb->ki_pos;
4615 
4616 		/*
4617 		 * The direct write was partial, so we need to fall back to a
4618 		 * buffered write for the remainder.
4619 		 */
4620 
4621 		ret2 = f2fs_buffered_write_iter(iocb, from);
4622 		if (iov_iter_count(from))
4623 			f2fs_write_failed(inode, iocb->ki_pos);
4624 		if (ret2 < 0)
4625 			goto out;
4626 
4627 		/*
4628 		 * Ensure that the pagecache pages are written to disk and
4629 		 * invalidated to preserve the expected O_DIRECT semantics.
4630 		 */
4631 		if (ret2 > 0) {
4632 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4633 
4634 			ret += ret2;
4635 
4636 			ret2 = filemap_write_and_wait_range(file->f_mapping,
4637 							    bufio_start_pos,
4638 							    bufio_end_pos);
4639 			if (ret2 < 0)
4640 				goto out;
4641 			invalidate_mapping_pages(file->f_mapping,
4642 						 bufio_start_pos >> PAGE_SHIFT,
4643 						 bufio_end_pos >> PAGE_SHIFT);
4644 		}
4645 	} else {
4646 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4647 		*may_need_sync = false;
4648 	}
4649 out:
4650 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4651 	return ret;
4652 }
4653 
4654 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4655 {
4656 	struct inode *inode = file_inode(iocb->ki_filp);
4657 	const loff_t orig_pos = iocb->ki_pos;
4658 	const size_t orig_count = iov_iter_count(from);
4659 	loff_t target_size;
4660 	bool dio;
4661 	bool may_need_sync = true;
4662 	int preallocated;
4663 	ssize_t ret;
4664 
4665 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4666 		ret = -EIO;
4667 		goto out;
4668 	}
4669 
4670 	if (!f2fs_is_compress_backend_ready(inode)) {
4671 		ret = -EOPNOTSUPP;
4672 		goto out;
4673 	}
4674 
4675 	if (iocb->ki_flags & IOCB_NOWAIT) {
4676 		if (!inode_trylock(inode)) {
4677 			ret = -EAGAIN;
4678 			goto out;
4679 		}
4680 	} else {
4681 		inode_lock(inode);
4682 	}
4683 
4684 	ret = f2fs_write_checks(iocb, from);
4685 	if (ret <= 0)
4686 		goto out_unlock;
4687 
4688 	/* Determine whether we will do a direct write or a buffered write. */
4689 	dio = f2fs_should_use_dio(inode, iocb, from);
4690 
4691 	/* Possibly preallocate the blocks for the write. */
4692 	target_size = iocb->ki_pos + iov_iter_count(from);
4693 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4694 	if (preallocated < 0) {
4695 		ret = preallocated;
4696 	} else {
4697 		if (trace_f2fs_datawrite_start_enabled())
4698 			f2fs_trace_rw_file_path(iocb, orig_count, WRITE);
4699 
4700 		/* Do the actual write. */
4701 		ret = dio ?
4702 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4703 			f2fs_buffered_write_iter(iocb, from);
4704 
4705 		if (trace_f2fs_datawrite_end_enabled())
4706 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4707 	}
4708 
4709 	/* Don't leave any preallocated blocks around past i_size. */
4710 	if (preallocated && i_size_read(inode) < target_size) {
4711 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4712 		filemap_invalidate_lock(inode->i_mapping);
4713 		if (!f2fs_truncate(inode))
4714 			file_dont_truncate(inode);
4715 		filemap_invalidate_unlock(inode->i_mapping);
4716 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4717 	} else {
4718 		file_dont_truncate(inode);
4719 	}
4720 
4721 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4722 out_unlock:
4723 	inode_unlock(inode);
4724 out:
4725 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4726 	if (ret > 0 && may_need_sync)
4727 		ret = generic_write_sync(iocb, ret);
4728 	return ret;
4729 }
4730 
4731 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4732 		int advice)
4733 {
4734 	struct address_space *mapping;
4735 	struct backing_dev_info *bdi;
4736 	struct inode *inode = file_inode(filp);
4737 	int err;
4738 
4739 	if (advice == POSIX_FADV_SEQUENTIAL) {
4740 		if (S_ISFIFO(inode->i_mode))
4741 			return -ESPIPE;
4742 
4743 		mapping = filp->f_mapping;
4744 		if (!mapping || len < 0)
4745 			return -EINVAL;
4746 
4747 		bdi = inode_to_bdi(mapping->host);
4748 		filp->f_ra.ra_pages = bdi->ra_pages *
4749 			F2FS_I_SB(inode)->seq_file_ra_mul;
4750 		spin_lock(&filp->f_lock);
4751 		filp->f_mode &= ~FMODE_RANDOM;
4752 		spin_unlock(&filp->f_lock);
4753 		return 0;
4754 	}
4755 
4756 	err = generic_fadvise(filp, offset, len, advice);
4757 	if (!err && advice == POSIX_FADV_DONTNEED &&
4758 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4759 		f2fs_compressed_file(inode))
4760 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4761 
4762 	return err;
4763 }
4764 
4765 #ifdef CONFIG_COMPAT
4766 struct compat_f2fs_gc_range {
4767 	u32 sync;
4768 	compat_u64 start;
4769 	compat_u64 len;
4770 };
4771 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4772 						struct compat_f2fs_gc_range)
4773 
4774 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4775 {
4776 	struct compat_f2fs_gc_range __user *urange;
4777 	struct f2fs_gc_range range;
4778 	int err;
4779 
4780 	urange = compat_ptr(arg);
4781 	err = get_user(range.sync, &urange->sync);
4782 	err |= get_user(range.start, &urange->start);
4783 	err |= get_user(range.len, &urange->len);
4784 	if (err)
4785 		return -EFAULT;
4786 
4787 	return __f2fs_ioc_gc_range(file, &range);
4788 }
4789 
4790 struct compat_f2fs_move_range {
4791 	u32 dst_fd;
4792 	compat_u64 pos_in;
4793 	compat_u64 pos_out;
4794 	compat_u64 len;
4795 };
4796 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4797 					struct compat_f2fs_move_range)
4798 
4799 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4800 {
4801 	struct compat_f2fs_move_range __user *urange;
4802 	struct f2fs_move_range range;
4803 	int err;
4804 
4805 	urange = compat_ptr(arg);
4806 	err = get_user(range.dst_fd, &urange->dst_fd);
4807 	err |= get_user(range.pos_in, &urange->pos_in);
4808 	err |= get_user(range.pos_out, &urange->pos_out);
4809 	err |= get_user(range.len, &urange->len);
4810 	if (err)
4811 		return -EFAULT;
4812 
4813 	return __f2fs_ioc_move_range(file, &range);
4814 }
4815 
4816 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4817 {
4818 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4819 		return -EIO;
4820 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4821 		return -ENOSPC;
4822 
4823 	switch (cmd) {
4824 	case FS_IOC32_GETVERSION:
4825 		cmd = FS_IOC_GETVERSION;
4826 		break;
4827 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4828 		return f2fs_compat_ioc_gc_range(file, arg);
4829 	case F2FS_IOC32_MOVE_RANGE:
4830 		return f2fs_compat_ioc_move_range(file, arg);
4831 	case F2FS_IOC_START_ATOMIC_WRITE:
4832 	case F2FS_IOC_START_ATOMIC_REPLACE:
4833 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4834 	case F2FS_IOC_START_VOLATILE_WRITE:
4835 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4836 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4837 	case F2FS_IOC_SHUTDOWN:
4838 	case FITRIM:
4839 	case FS_IOC_SET_ENCRYPTION_POLICY:
4840 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4841 	case FS_IOC_GET_ENCRYPTION_POLICY:
4842 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4843 	case FS_IOC_ADD_ENCRYPTION_KEY:
4844 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4845 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4846 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4847 	case FS_IOC_GET_ENCRYPTION_NONCE:
4848 	case F2FS_IOC_GARBAGE_COLLECT:
4849 	case F2FS_IOC_WRITE_CHECKPOINT:
4850 	case F2FS_IOC_DEFRAGMENT:
4851 	case F2FS_IOC_FLUSH_DEVICE:
4852 	case F2FS_IOC_GET_FEATURES:
4853 	case F2FS_IOC_GET_PIN_FILE:
4854 	case F2FS_IOC_SET_PIN_FILE:
4855 	case F2FS_IOC_PRECACHE_EXTENTS:
4856 	case F2FS_IOC_RESIZE_FS:
4857 	case FS_IOC_ENABLE_VERITY:
4858 	case FS_IOC_MEASURE_VERITY:
4859 	case FS_IOC_READ_VERITY_METADATA:
4860 	case FS_IOC_GETFSLABEL:
4861 	case FS_IOC_SETFSLABEL:
4862 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4863 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4864 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4865 	case F2FS_IOC_SEC_TRIM_FILE:
4866 	case F2FS_IOC_GET_COMPRESS_OPTION:
4867 	case F2FS_IOC_SET_COMPRESS_OPTION:
4868 	case F2FS_IOC_DECOMPRESS_FILE:
4869 	case F2FS_IOC_COMPRESS_FILE:
4870 		break;
4871 	default:
4872 		return -ENOIOCTLCMD;
4873 	}
4874 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4875 }
4876 #endif
4877 
4878 const struct file_operations f2fs_file_operations = {
4879 	.llseek		= f2fs_llseek,
4880 	.read_iter	= f2fs_file_read_iter,
4881 	.write_iter	= f2fs_file_write_iter,
4882 	.open		= f2fs_file_open,
4883 	.release	= f2fs_release_file,
4884 	.mmap		= f2fs_file_mmap,
4885 	.flush		= f2fs_file_flush,
4886 	.fsync		= f2fs_sync_file,
4887 	.fallocate	= f2fs_fallocate,
4888 	.unlocked_ioctl	= f2fs_ioctl,
4889 #ifdef CONFIG_COMPAT
4890 	.compat_ioctl	= f2fs_compat_ioctl,
4891 #endif
4892 	.splice_read	= generic_file_splice_read,
4893 	.splice_write	= iter_file_splice_write,
4894 	.fadvise	= f2fs_file_fadvise,
4895 };
4896