1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 #include <linux/fadvise.h> 27 #include <linux/iomap.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "acl.h" 34 #include "gc.h" 35 #include "iostat.h" 36 #include <trace/events/f2fs.h> 37 #include <uapi/linux/f2fs.h> 38 39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 40 { 41 struct inode *inode = file_inode(vmf->vma->vm_file); 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (ret & VM_FAULT_LOCKED) 46 f2fs_update_iostat(F2FS_I_SB(inode), inode, 47 APP_MAPPED_READ_IO, F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(IS_IMMUTABLE(inode))) 64 return VM_FAULT_SIGBUS; 65 66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 67 return VM_FAULT_SIGBUS; 68 69 if (unlikely(f2fs_cp_error(sbi))) { 70 err = -EIO; 71 goto err; 72 } 73 74 if (!f2fs_is_checkpoint_ready(sbi)) { 75 err = -ENOSPC; 76 goto err; 77 } 78 79 err = f2fs_convert_inline_inode(inode); 80 if (err) 81 goto err; 82 83 #ifdef CONFIG_F2FS_FS_COMPRESSION 84 if (f2fs_compressed_file(inode)) { 85 int ret = f2fs_is_compressed_cluster(inode, page->index); 86 87 if (ret < 0) { 88 err = ret; 89 goto err; 90 } else if (ret) { 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 filemap_invalidate_lock_shared(inode->i_mapping); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 set_new_dnode(&dn, inode, NULL, NULL, 0); 117 err = f2fs_get_block_locked(&dn, page->index); 118 } 119 120 #ifdef CONFIG_F2FS_FS_COMPRESSION 121 if (!need_alloc) { 122 set_new_dnode(&dn, inode, NULL, NULL, 0); 123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 124 f2fs_put_dnode(&dn); 125 } 126 #endif 127 if (err) { 128 unlock_page(page); 129 goto out_sem; 130 } 131 132 f2fs_wait_on_page_writeback(page, DATA, false, true); 133 134 /* wait for GCed page writeback via META_MAPPING */ 135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 136 137 /* 138 * check to see if the page is mapped already (no holes) 139 */ 140 if (PageMappedToDisk(page)) 141 goto out_sem; 142 143 /* page is wholly or partially inside EOF */ 144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 145 i_size_read(inode)) { 146 loff_t offset; 147 148 offset = i_size_read(inode) & ~PAGE_MASK; 149 zero_user_segment(page, offset, PAGE_SIZE); 150 } 151 set_page_dirty(page); 152 153 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE); 154 f2fs_update_time(sbi, REQ_TIME); 155 156 trace_f2fs_vm_page_mkwrite(page, DATA); 157 out_sem: 158 filemap_invalidate_unlock_shared(inode->i_mapping); 159 160 sb_end_pagefault(inode->i_sb); 161 err: 162 return vmf_fs_error(err); 163 } 164 165 static const struct vm_operations_struct f2fs_file_vm_ops = { 166 .fault = f2fs_filemap_fault, 167 .map_pages = filemap_map_pages, 168 .page_mkwrite = f2fs_vm_page_mkwrite, 169 }; 170 171 static int get_parent_ino(struct inode *inode, nid_t *pino) 172 { 173 struct dentry *dentry; 174 175 /* 176 * Make sure to get the non-deleted alias. The alias associated with 177 * the open file descriptor being fsync()'ed may be deleted already. 178 */ 179 dentry = d_find_alias(inode); 180 if (!dentry) 181 return 0; 182 183 *pino = parent_ino(dentry); 184 dput(dentry); 185 return 1; 186 } 187 188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 189 { 190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 191 enum cp_reason_type cp_reason = CP_NO_NEEDED; 192 193 if (!S_ISREG(inode->i_mode)) 194 cp_reason = CP_NON_REGULAR; 195 else if (f2fs_compressed_file(inode)) 196 cp_reason = CP_COMPRESSED; 197 else if (inode->i_nlink != 1) 198 cp_reason = CP_HARDLINK; 199 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 200 cp_reason = CP_SB_NEED_CP; 201 else if (file_wrong_pino(inode)) 202 cp_reason = CP_WRONG_PINO; 203 else if (!f2fs_space_for_roll_forward(sbi)) 204 cp_reason = CP_NO_SPC_ROLL; 205 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 206 cp_reason = CP_NODE_NEED_CP; 207 else if (test_opt(sbi, FASTBOOT)) 208 cp_reason = CP_FASTBOOT_MODE; 209 else if (F2FS_OPTION(sbi).active_logs == 2) 210 cp_reason = CP_SPEC_LOG_NUM; 211 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 212 f2fs_need_dentry_mark(sbi, inode->i_ino) && 213 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 214 TRANS_DIR_INO)) 215 cp_reason = CP_RECOVER_DIR; 216 else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 217 XATTR_DIR_INO)) 218 cp_reason = CP_XATTR_DIR; 219 220 return cp_reason; 221 } 222 223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 224 { 225 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 226 bool ret = false; 227 /* But we need to avoid that there are some inode updates */ 228 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 229 ret = true; 230 f2fs_put_page(i, 0); 231 return ret; 232 } 233 234 static void try_to_fix_pino(struct inode *inode) 235 { 236 struct f2fs_inode_info *fi = F2FS_I(inode); 237 nid_t pino; 238 239 f2fs_down_write(&fi->i_sem); 240 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 241 get_parent_ino(inode, &pino)) { 242 f2fs_i_pino_write(inode, pino); 243 file_got_pino(inode); 244 } 245 f2fs_up_write(&fi->i_sem); 246 } 247 248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 249 int datasync, bool atomic) 250 { 251 struct inode *inode = file->f_mapping->host; 252 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 253 nid_t ino = inode->i_ino; 254 int ret = 0; 255 enum cp_reason_type cp_reason = 0; 256 struct writeback_control wbc = { 257 .sync_mode = WB_SYNC_ALL, 258 .nr_to_write = LONG_MAX, 259 .for_reclaim = 0, 260 }; 261 unsigned int seq_id = 0; 262 263 if (unlikely(f2fs_readonly(inode->i_sb))) 264 return 0; 265 266 trace_f2fs_sync_file_enter(inode); 267 268 if (S_ISDIR(inode->i_mode)) 269 goto go_write; 270 271 /* if fdatasync is triggered, let's do in-place-update */ 272 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 273 set_inode_flag(inode, FI_NEED_IPU); 274 ret = file_write_and_wait_range(file, start, end); 275 clear_inode_flag(inode, FI_NEED_IPU); 276 277 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 278 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 279 return ret; 280 } 281 282 /* if the inode is dirty, let's recover all the time */ 283 if (!f2fs_skip_inode_update(inode, datasync)) { 284 f2fs_write_inode(inode, NULL); 285 goto go_write; 286 } 287 288 /* 289 * if there is no written data, don't waste time to write recovery info. 290 */ 291 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 292 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 293 294 /* it may call write_inode just prior to fsync */ 295 if (need_inode_page_update(sbi, ino)) 296 goto go_write; 297 298 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 299 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 300 goto flush_out; 301 goto out; 302 } else { 303 /* 304 * for OPU case, during fsync(), node can be persisted before 305 * data when lower device doesn't support write barrier, result 306 * in data corruption after SPO. 307 * So for strict fsync mode, force to use atomic write semantics 308 * to keep write order in between data/node and last node to 309 * avoid potential data corruption. 310 */ 311 if (F2FS_OPTION(sbi).fsync_mode == 312 FSYNC_MODE_STRICT && !atomic) 313 atomic = true; 314 } 315 go_write: 316 /* 317 * Both of fdatasync() and fsync() are able to be recovered from 318 * sudden-power-off. 319 */ 320 f2fs_down_read(&F2FS_I(inode)->i_sem); 321 cp_reason = need_do_checkpoint(inode); 322 f2fs_up_read(&F2FS_I(inode)->i_sem); 323 324 if (cp_reason) { 325 /* all the dirty node pages should be flushed for POR */ 326 ret = f2fs_sync_fs(inode->i_sb, 1); 327 328 /* 329 * We've secured consistency through sync_fs. Following pino 330 * will be used only for fsynced inodes after checkpoint. 331 */ 332 try_to_fix_pino(inode); 333 clear_inode_flag(inode, FI_APPEND_WRITE); 334 clear_inode_flag(inode, FI_UPDATE_WRITE); 335 goto out; 336 } 337 sync_nodes: 338 atomic_inc(&sbi->wb_sync_req[NODE]); 339 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 340 atomic_dec(&sbi->wb_sync_req[NODE]); 341 if (ret) 342 goto out; 343 344 /* if cp_error was enabled, we should avoid infinite loop */ 345 if (unlikely(f2fs_cp_error(sbi))) { 346 ret = -EIO; 347 goto out; 348 } 349 350 if (f2fs_need_inode_block_update(sbi, ino)) { 351 f2fs_mark_inode_dirty_sync(inode, true); 352 f2fs_write_inode(inode, NULL); 353 goto sync_nodes; 354 } 355 356 /* 357 * If it's atomic_write, it's just fine to keep write ordering. So 358 * here we don't need to wait for node write completion, since we use 359 * node chain which serializes node blocks. If one of node writes are 360 * reordered, we can see simply broken chain, resulting in stopping 361 * roll-forward recovery. It means we'll recover all or none node blocks 362 * given fsync mark. 363 */ 364 if (!atomic) { 365 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 366 if (ret) 367 goto out; 368 } 369 370 /* once recovery info is written, don't need to tack this */ 371 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 372 clear_inode_flag(inode, FI_APPEND_WRITE); 373 flush_out: 374 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) || 375 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi))) 376 ret = f2fs_issue_flush(sbi, inode->i_ino); 377 if (!ret) { 378 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 379 clear_inode_flag(inode, FI_UPDATE_WRITE); 380 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 381 } 382 f2fs_update_time(sbi, REQ_TIME); 383 out: 384 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 385 return ret; 386 } 387 388 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 389 { 390 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 391 return -EIO; 392 return f2fs_do_sync_file(file, start, end, datasync, false); 393 } 394 395 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 396 pgoff_t index, int whence) 397 { 398 switch (whence) { 399 case SEEK_DATA: 400 if (__is_valid_data_blkaddr(blkaddr)) 401 return true; 402 if (blkaddr == NEW_ADDR && 403 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 404 return true; 405 break; 406 case SEEK_HOLE: 407 if (blkaddr == NULL_ADDR) 408 return true; 409 break; 410 } 411 return false; 412 } 413 414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 415 { 416 struct inode *inode = file->f_mapping->host; 417 loff_t maxbytes = inode->i_sb->s_maxbytes; 418 struct dnode_of_data dn; 419 pgoff_t pgofs, end_offset; 420 loff_t data_ofs = offset; 421 loff_t isize; 422 int err = 0; 423 424 inode_lock(inode); 425 426 isize = i_size_read(inode); 427 if (offset >= isize) 428 goto fail; 429 430 /* handle inline data case */ 431 if (f2fs_has_inline_data(inode)) { 432 if (whence == SEEK_HOLE) { 433 data_ofs = isize; 434 goto found; 435 } else if (whence == SEEK_DATA) { 436 data_ofs = offset; 437 goto found; 438 } 439 } 440 441 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 442 443 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 444 set_new_dnode(&dn, inode, NULL, NULL, 0); 445 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 446 if (err && err != -ENOENT) { 447 goto fail; 448 } else if (err == -ENOENT) { 449 /* direct node does not exists */ 450 if (whence == SEEK_DATA) { 451 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 452 continue; 453 } else { 454 goto found; 455 } 456 } 457 458 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 459 460 /* find data/hole in dnode block */ 461 for (; dn.ofs_in_node < end_offset; 462 dn.ofs_in_node++, pgofs++, 463 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 464 block_t blkaddr; 465 466 blkaddr = f2fs_data_blkaddr(&dn); 467 468 if (__is_valid_data_blkaddr(blkaddr) && 469 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 470 blkaddr, DATA_GENERIC_ENHANCE)) { 471 f2fs_put_dnode(&dn); 472 goto fail; 473 } 474 475 if (__found_offset(file->f_mapping, blkaddr, 476 pgofs, whence)) { 477 f2fs_put_dnode(&dn); 478 goto found; 479 } 480 } 481 f2fs_put_dnode(&dn); 482 } 483 484 if (whence == SEEK_DATA) 485 goto fail; 486 found: 487 if (whence == SEEK_HOLE && data_ofs > isize) 488 data_ofs = isize; 489 inode_unlock(inode); 490 return vfs_setpos(file, data_ofs, maxbytes); 491 fail: 492 inode_unlock(inode); 493 return -ENXIO; 494 } 495 496 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 497 { 498 struct inode *inode = file->f_mapping->host; 499 loff_t maxbytes = inode->i_sb->s_maxbytes; 500 501 if (f2fs_compressed_file(inode)) 502 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 503 504 switch (whence) { 505 case SEEK_SET: 506 case SEEK_CUR: 507 case SEEK_END: 508 return generic_file_llseek_size(file, offset, whence, 509 maxbytes, i_size_read(inode)); 510 case SEEK_DATA: 511 case SEEK_HOLE: 512 if (offset < 0) 513 return -ENXIO; 514 return f2fs_seek_block(file, offset, whence); 515 } 516 517 return -EINVAL; 518 } 519 520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 521 { 522 struct inode *inode = file_inode(file); 523 524 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 525 return -EIO; 526 527 if (!f2fs_is_compress_backend_ready(inode)) 528 return -EOPNOTSUPP; 529 530 file_accessed(file); 531 vma->vm_ops = &f2fs_file_vm_ops; 532 533 f2fs_down_read(&F2FS_I(inode)->i_sem); 534 set_inode_flag(inode, FI_MMAP_FILE); 535 f2fs_up_read(&F2FS_I(inode)->i_sem); 536 537 return 0; 538 } 539 540 static int finish_preallocate_blocks(struct inode *inode) 541 { 542 int ret; 543 544 inode_lock(inode); 545 if (is_inode_flag_set(inode, FI_OPENED_FILE)) { 546 inode_unlock(inode); 547 return 0; 548 } 549 550 if (!file_should_truncate(inode)) { 551 set_inode_flag(inode, FI_OPENED_FILE); 552 inode_unlock(inode); 553 return 0; 554 } 555 556 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 557 filemap_invalidate_lock(inode->i_mapping); 558 559 truncate_setsize(inode, i_size_read(inode)); 560 ret = f2fs_truncate(inode); 561 562 filemap_invalidate_unlock(inode->i_mapping); 563 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 564 565 if (!ret) 566 set_inode_flag(inode, FI_OPENED_FILE); 567 568 inode_unlock(inode); 569 if (ret) 570 return ret; 571 572 file_dont_truncate(inode); 573 return 0; 574 } 575 576 static int f2fs_file_open(struct inode *inode, struct file *filp) 577 { 578 int err = fscrypt_file_open(inode, filp); 579 580 if (err) 581 return err; 582 583 if (!f2fs_is_compress_backend_ready(inode)) 584 return -EOPNOTSUPP; 585 586 err = fsverity_file_open(inode, filp); 587 if (err) 588 return err; 589 590 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 591 filp->f_mode |= FMODE_CAN_ODIRECT; 592 593 err = dquot_file_open(inode, filp); 594 if (err) 595 return err; 596 597 return finish_preallocate_blocks(inode); 598 } 599 600 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 601 { 602 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 603 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 604 __le32 *addr; 605 bool compressed_cluster = false; 606 int cluster_index = 0, valid_blocks = 0; 607 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 608 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 609 610 addr = get_dnode_addr(dn->inode, dn->node_page) + ofs; 611 612 /* Assumption: truncation starts with cluster */ 613 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 614 block_t blkaddr = le32_to_cpu(*addr); 615 616 if (f2fs_compressed_file(dn->inode) && 617 !(cluster_index & (cluster_size - 1))) { 618 if (compressed_cluster) 619 f2fs_i_compr_blocks_update(dn->inode, 620 valid_blocks, false); 621 compressed_cluster = (blkaddr == COMPRESS_ADDR); 622 valid_blocks = 0; 623 } 624 625 if (blkaddr == NULL_ADDR) 626 continue; 627 628 f2fs_set_data_blkaddr(dn, NULL_ADDR); 629 630 if (__is_valid_data_blkaddr(blkaddr)) { 631 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 632 DATA_GENERIC_ENHANCE)) 633 continue; 634 if (compressed_cluster) 635 valid_blocks++; 636 } 637 638 f2fs_invalidate_blocks(sbi, blkaddr); 639 640 if (!released || blkaddr != COMPRESS_ADDR) 641 nr_free++; 642 } 643 644 if (compressed_cluster) 645 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 646 647 if (nr_free) { 648 pgoff_t fofs; 649 /* 650 * once we invalidate valid blkaddr in range [ofs, ofs + count], 651 * we will invalidate all blkaddr in the whole range. 652 */ 653 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 654 dn->inode) + ofs; 655 f2fs_update_read_extent_cache_range(dn, fofs, 0, len); 656 f2fs_update_age_extent_cache_range(dn, fofs, len); 657 dec_valid_block_count(sbi, dn->inode, nr_free); 658 } 659 dn->ofs_in_node = ofs; 660 661 f2fs_update_time(sbi, REQ_TIME); 662 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 663 dn->ofs_in_node, nr_free); 664 } 665 666 static int truncate_partial_data_page(struct inode *inode, u64 from, 667 bool cache_only) 668 { 669 loff_t offset = from & (PAGE_SIZE - 1); 670 pgoff_t index = from >> PAGE_SHIFT; 671 struct address_space *mapping = inode->i_mapping; 672 struct page *page; 673 674 if (!offset && !cache_only) 675 return 0; 676 677 if (cache_only) { 678 page = find_lock_page(mapping, index); 679 if (page && PageUptodate(page)) 680 goto truncate_out; 681 f2fs_put_page(page, 1); 682 return 0; 683 } 684 685 page = f2fs_get_lock_data_page(inode, index, true); 686 if (IS_ERR(page)) 687 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 688 truncate_out: 689 f2fs_wait_on_page_writeback(page, DATA, true, true); 690 zero_user(page, offset, PAGE_SIZE - offset); 691 692 /* An encrypted inode should have a key and truncate the last page. */ 693 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 694 if (!cache_only) 695 set_page_dirty(page); 696 f2fs_put_page(page, 1); 697 return 0; 698 } 699 700 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 701 { 702 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 703 struct dnode_of_data dn; 704 pgoff_t free_from; 705 int count = 0, err = 0; 706 struct page *ipage; 707 bool truncate_page = false; 708 709 trace_f2fs_truncate_blocks_enter(inode, from); 710 711 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 712 713 if (free_from >= max_file_blocks(inode)) 714 goto free_partial; 715 716 if (lock) 717 f2fs_lock_op(sbi); 718 719 ipage = f2fs_get_node_page(sbi, inode->i_ino); 720 if (IS_ERR(ipage)) { 721 err = PTR_ERR(ipage); 722 goto out; 723 } 724 725 if (f2fs_has_inline_data(inode)) { 726 f2fs_truncate_inline_inode(inode, ipage, from); 727 f2fs_put_page(ipage, 1); 728 truncate_page = true; 729 goto out; 730 } 731 732 set_new_dnode(&dn, inode, ipage, NULL, 0); 733 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 734 if (err) { 735 if (err == -ENOENT) 736 goto free_next; 737 goto out; 738 } 739 740 count = ADDRS_PER_PAGE(dn.node_page, inode); 741 742 count -= dn.ofs_in_node; 743 f2fs_bug_on(sbi, count < 0); 744 745 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 746 f2fs_truncate_data_blocks_range(&dn, count); 747 free_from += count; 748 } 749 750 f2fs_put_dnode(&dn); 751 free_next: 752 err = f2fs_truncate_inode_blocks(inode, free_from); 753 out: 754 if (lock) 755 f2fs_unlock_op(sbi); 756 free_partial: 757 /* lastly zero out the first data page */ 758 if (!err) 759 err = truncate_partial_data_page(inode, from, truncate_page); 760 761 trace_f2fs_truncate_blocks_exit(inode, err); 762 return err; 763 } 764 765 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 766 { 767 u64 free_from = from; 768 int err; 769 770 #ifdef CONFIG_F2FS_FS_COMPRESSION 771 /* 772 * for compressed file, only support cluster size 773 * aligned truncation. 774 */ 775 if (f2fs_compressed_file(inode)) 776 free_from = round_up(from, 777 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 778 #endif 779 780 err = f2fs_do_truncate_blocks(inode, free_from, lock); 781 if (err) 782 return err; 783 784 #ifdef CONFIG_F2FS_FS_COMPRESSION 785 /* 786 * For compressed file, after release compress blocks, don't allow write 787 * direct, but we should allow write direct after truncate to zero. 788 */ 789 if (f2fs_compressed_file(inode) && !free_from 790 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 791 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 792 793 if (from != free_from) { 794 err = f2fs_truncate_partial_cluster(inode, from, lock); 795 if (err) 796 return err; 797 } 798 #endif 799 800 return 0; 801 } 802 803 int f2fs_truncate(struct inode *inode) 804 { 805 int err; 806 807 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 808 return -EIO; 809 810 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 811 S_ISLNK(inode->i_mode))) 812 return 0; 813 814 trace_f2fs_truncate(inode); 815 816 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) 817 return -EIO; 818 819 err = f2fs_dquot_initialize(inode); 820 if (err) 821 return err; 822 823 /* we should check inline_data size */ 824 if (!f2fs_may_inline_data(inode)) { 825 err = f2fs_convert_inline_inode(inode); 826 if (err) 827 return err; 828 } 829 830 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 831 if (err) 832 return err; 833 834 inode->i_mtime = inode_set_ctime_current(inode); 835 f2fs_mark_inode_dirty_sync(inode, false); 836 return 0; 837 } 838 839 static bool f2fs_force_buffered_io(struct inode *inode, int rw) 840 { 841 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 842 843 if (!fscrypt_dio_supported(inode)) 844 return true; 845 if (fsverity_active(inode)) 846 return true; 847 if (f2fs_compressed_file(inode)) 848 return true; 849 if (f2fs_has_inline_data(inode)) 850 return true; 851 852 /* disallow direct IO if any of devices has unaligned blksize */ 853 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 854 return true; 855 /* 856 * for blkzoned device, fallback direct IO to buffered IO, so 857 * all IOs can be serialized by log-structured write. 858 */ 859 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE)) 860 return true; 861 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 862 return true; 863 864 return false; 865 } 866 867 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 868 struct kstat *stat, u32 request_mask, unsigned int query_flags) 869 { 870 struct inode *inode = d_inode(path->dentry); 871 struct f2fs_inode_info *fi = F2FS_I(inode); 872 struct f2fs_inode *ri = NULL; 873 unsigned int flags; 874 875 if (f2fs_has_extra_attr(inode) && 876 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 877 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 878 stat->result_mask |= STATX_BTIME; 879 stat->btime.tv_sec = fi->i_crtime.tv_sec; 880 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 881 } 882 883 /* 884 * Return the DIO alignment restrictions if requested. We only return 885 * this information when requested, since on encrypted files it might 886 * take a fair bit of work to get if the file wasn't opened recently. 887 * 888 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN 889 * cannot represent that, so in that case we report no DIO support. 890 */ 891 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 892 unsigned int bsize = i_blocksize(inode); 893 894 stat->result_mask |= STATX_DIOALIGN; 895 if (!f2fs_force_buffered_io(inode, WRITE)) { 896 stat->dio_mem_align = bsize; 897 stat->dio_offset_align = bsize; 898 } 899 } 900 901 flags = fi->i_flags; 902 if (flags & F2FS_COMPR_FL) 903 stat->attributes |= STATX_ATTR_COMPRESSED; 904 if (flags & F2FS_APPEND_FL) 905 stat->attributes |= STATX_ATTR_APPEND; 906 if (IS_ENCRYPTED(inode)) 907 stat->attributes |= STATX_ATTR_ENCRYPTED; 908 if (flags & F2FS_IMMUTABLE_FL) 909 stat->attributes |= STATX_ATTR_IMMUTABLE; 910 if (flags & F2FS_NODUMP_FL) 911 stat->attributes |= STATX_ATTR_NODUMP; 912 if (IS_VERITY(inode)) 913 stat->attributes |= STATX_ATTR_VERITY; 914 915 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 916 STATX_ATTR_APPEND | 917 STATX_ATTR_ENCRYPTED | 918 STATX_ATTR_IMMUTABLE | 919 STATX_ATTR_NODUMP | 920 STATX_ATTR_VERITY); 921 922 generic_fillattr(idmap, request_mask, inode, stat); 923 924 /* we need to show initial sectors used for inline_data/dentries */ 925 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 926 f2fs_has_inline_dentry(inode)) 927 stat->blocks += (stat->size + 511) >> 9; 928 929 return 0; 930 } 931 932 #ifdef CONFIG_F2FS_FS_POSIX_ACL 933 static void __setattr_copy(struct mnt_idmap *idmap, 934 struct inode *inode, const struct iattr *attr) 935 { 936 unsigned int ia_valid = attr->ia_valid; 937 938 i_uid_update(idmap, attr, inode); 939 i_gid_update(idmap, attr, inode); 940 if (ia_valid & ATTR_ATIME) 941 inode->i_atime = attr->ia_atime; 942 if (ia_valid & ATTR_MTIME) 943 inode->i_mtime = attr->ia_mtime; 944 if (ia_valid & ATTR_CTIME) 945 inode_set_ctime_to_ts(inode, attr->ia_ctime); 946 if (ia_valid & ATTR_MODE) { 947 umode_t mode = attr->ia_mode; 948 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 949 950 if (!vfsgid_in_group_p(vfsgid) && 951 !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 952 mode &= ~S_ISGID; 953 set_acl_inode(inode, mode); 954 } 955 } 956 #else 957 #define __setattr_copy setattr_copy 958 #endif 959 960 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 961 struct iattr *attr) 962 { 963 struct inode *inode = d_inode(dentry); 964 int err; 965 966 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 967 return -EIO; 968 969 if (unlikely(IS_IMMUTABLE(inode))) 970 return -EPERM; 971 972 if (unlikely(IS_APPEND(inode) && 973 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 974 ATTR_GID | ATTR_TIMES_SET)))) 975 return -EPERM; 976 977 if ((attr->ia_valid & ATTR_SIZE)) { 978 if (!f2fs_is_compress_backend_ready(inode)) 979 return -EOPNOTSUPP; 980 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) && 981 !IS_ALIGNED(attr->ia_size, 982 F2FS_BLK_TO_BYTES(F2FS_I(inode)->i_cluster_size))) 983 return -EINVAL; 984 } 985 986 err = setattr_prepare(idmap, dentry, attr); 987 if (err) 988 return err; 989 990 err = fscrypt_prepare_setattr(dentry, attr); 991 if (err) 992 return err; 993 994 err = fsverity_prepare_setattr(dentry, attr); 995 if (err) 996 return err; 997 998 if (is_quota_modification(idmap, inode, attr)) { 999 err = f2fs_dquot_initialize(inode); 1000 if (err) 1001 return err; 1002 } 1003 if (i_uid_needs_update(idmap, attr, inode) || 1004 i_gid_needs_update(idmap, attr, inode)) { 1005 f2fs_lock_op(F2FS_I_SB(inode)); 1006 err = dquot_transfer(idmap, inode, attr); 1007 if (err) { 1008 set_sbi_flag(F2FS_I_SB(inode), 1009 SBI_QUOTA_NEED_REPAIR); 1010 f2fs_unlock_op(F2FS_I_SB(inode)); 1011 return err; 1012 } 1013 /* 1014 * update uid/gid under lock_op(), so that dquot and inode can 1015 * be updated atomically. 1016 */ 1017 i_uid_update(idmap, attr, inode); 1018 i_gid_update(idmap, attr, inode); 1019 f2fs_mark_inode_dirty_sync(inode, true); 1020 f2fs_unlock_op(F2FS_I_SB(inode)); 1021 } 1022 1023 if (attr->ia_valid & ATTR_SIZE) { 1024 loff_t old_size = i_size_read(inode); 1025 1026 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 1027 /* 1028 * should convert inline inode before i_size_write to 1029 * keep smaller than inline_data size with inline flag. 1030 */ 1031 err = f2fs_convert_inline_inode(inode); 1032 if (err) 1033 return err; 1034 } 1035 1036 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1037 filemap_invalidate_lock(inode->i_mapping); 1038 1039 truncate_setsize(inode, attr->ia_size); 1040 1041 if (attr->ia_size <= old_size) 1042 err = f2fs_truncate(inode); 1043 /* 1044 * do not trim all blocks after i_size if target size is 1045 * larger than i_size. 1046 */ 1047 filemap_invalidate_unlock(inode->i_mapping); 1048 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1049 if (err) 1050 return err; 1051 1052 spin_lock(&F2FS_I(inode)->i_size_lock); 1053 inode->i_mtime = inode_set_ctime_current(inode); 1054 F2FS_I(inode)->last_disk_size = i_size_read(inode); 1055 spin_unlock(&F2FS_I(inode)->i_size_lock); 1056 } 1057 1058 __setattr_copy(idmap, inode, attr); 1059 1060 if (attr->ia_valid & ATTR_MODE) { 1061 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode)); 1062 1063 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 1064 if (!err) 1065 inode->i_mode = F2FS_I(inode)->i_acl_mode; 1066 clear_inode_flag(inode, FI_ACL_MODE); 1067 } 1068 } 1069 1070 /* file size may changed here */ 1071 f2fs_mark_inode_dirty_sync(inode, true); 1072 1073 /* inode change will produce dirty node pages flushed by checkpoint */ 1074 f2fs_balance_fs(F2FS_I_SB(inode), true); 1075 1076 return err; 1077 } 1078 1079 const struct inode_operations f2fs_file_inode_operations = { 1080 .getattr = f2fs_getattr, 1081 .setattr = f2fs_setattr, 1082 .get_inode_acl = f2fs_get_acl, 1083 .set_acl = f2fs_set_acl, 1084 .listxattr = f2fs_listxattr, 1085 .fiemap = f2fs_fiemap, 1086 .fileattr_get = f2fs_fileattr_get, 1087 .fileattr_set = f2fs_fileattr_set, 1088 }; 1089 1090 static int fill_zero(struct inode *inode, pgoff_t index, 1091 loff_t start, loff_t len) 1092 { 1093 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1094 struct page *page; 1095 1096 if (!len) 1097 return 0; 1098 1099 f2fs_balance_fs(sbi, true); 1100 1101 f2fs_lock_op(sbi); 1102 page = f2fs_get_new_data_page(inode, NULL, index, false); 1103 f2fs_unlock_op(sbi); 1104 1105 if (IS_ERR(page)) 1106 return PTR_ERR(page); 1107 1108 f2fs_wait_on_page_writeback(page, DATA, true, true); 1109 zero_user(page, start, len); 1110 set_page_dirty(page); 1111 f2fs_put_page(page, 1); 1112 return 0; 1113 } 1114 1115 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1116 { 1117 int err; 1118 1119 while (pg_start < pg_end) { 1120 struct dnode_of_data dn; 1121 pgoff_t end_offset, count; 1122 1123 set_new_dnode(&dn, inode, NULL, NULL, 0); 1124 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1125 if (err) { 1126 if (err == -ENOENT) { 1127 pg_start = f2fs_get_next_page_offset(&dn, 1128 pg_start); 1129 continue; 1130 } 1131 return err; 1132 } 1133 1134 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1135 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1136 1137 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1138 1139 f2fs_truncate_data_blocks_range(&dn, count); 1140 f2fs_put_dnode(&dn); 1141 1142 pg_start += count; 1143 } 1144 return 0; 1145 } 1146 1147 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 1148 { 1149 pgoff_t pg_start, pg_end; 1150 loff_t off_start, off_end; 1151 int ret; 1152 1153 ret = f2fs_convert_inline_inode(inode); 1154 if (ret) 1155 return ret; 1156 1157 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1158 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1159 1160 off_start = offset & (PAGE_SIZE - 1); 1161 off_end = (offset + len) & (PAGE_SIZE - 1); 1162 1163 if (pg_start == pg_end) { 1164 ret = fill_zero(inode, pg_start, off_start, 1165 off_end - off_start); 1166 if (ret) 1167 return ret; 1168 } else { 1169 if (off_start) { 1170 ret = fill_zero(inode, pg_start++, off_start, 1171 PAGE_SIZE - off_start); 1172 if (ret) 1173 return ret; 1174 } 1175 if (off_end) { 1176 ret = fill_zero(inode, pg_end, 0, off_end); 1177 if (ret) 1178 return ret; 1179 } 1180 1181 if (pg_start < pg_end) { 1182 loff_t blk_start, blk_end; 1183 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1184 1185 f2fs_balance_fs(sbi, true); 1186 1187 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1188 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1189 1190 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1191 filemap_invalidate_lock(inode->i_mapping); 1192 1193 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1194 1195 f2fs_lock_op(sbi); 1196 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1197 f2fs_unlock_op(sbi); 1198 1199 filemap_invalidate_unlock(inode->i_mapping); 1200 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1201 } 1202 } 1203 1204 return ret; 1205 } 1206 1207 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1208 int *do_replace, pgoff_t off, pgoff_t len) 1209 { 1210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1211 struct dnode_of_data dn; 1212 int ret, done, i; 1213 1214 next_dnode: 1215 set_new_dnode(&dn, inode, NULL, NULL, 0); 1216 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1217 if (ret && ret != -ENOENT) { 1218 return ret; 1219 } else if (ret == -ENOENT) { 1220 if (dn.max_level == 0) 1221 return -ENOENT; 1222 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1223 dn.ofs_in_node, len); 1224 blkaddr += done; 1225 do_replace += done; 1226 goto next; 1227 } 1228 1229 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1230 dn.ofs_in_node, len); 1231 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1232 *blkaddr = f2fs_data_blkaddr(&dn); 1233 1234 if (__is_valid_data_blkaddr(*blkaddr) && 1235 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1236 DATA_GENERIC_ENHANCE)) { 1237 f2fs_put_dnode(&dn); 1238 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1239 return -EFSCORRUPTED; 1240 } 1241 1242 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1243 1244 if (f2fs_lfs_mode(sbi)) { 1245 f2fs_put_dnode(&dn); 1246 return -EOPNOTSUPP; 1247 } 1248 1249 /* do not invalidate this block address */ 1250 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1251 *do_replace = 1; 1252 } 1253 } 1254 f2fs_put_dnode(&dn); 1255 next: 1256 len -= done; 1257 off += done; 1258 if (len) 1259 goto next_dnode; 1260 return 0; 1261 } 1262 1263 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1264 int *do_replace, pgoff_t off, int len) 1265 { 1266 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1267 struct dnode_of_data dn; 1268 int ret, i; 1269 1270 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1271 if (*do_replace == 0) 1272 continue; 1273 1274 set_new_dnode(&dn, inode, NULL, NULL, 0); 1275 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1276 if (ret) { 1277 dec_valid_block_count(sbi, inode, 1); 1278 f2fs_invalidate_blocks(sbi, *blkaddr); 1279 } else { 1280 f2fs_update_data_blkaddr(&dn, *blkaddr); 1281 } 1282 f2fs_put_dnode(&dn); 1283 } 1284 return 0; 1285 } 1286 1287 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1288 block_t *blkaddr, int *do_replace, 1289 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1290 { 1291 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1292 pgoff_t i = 0; 1293 int ret; 1294 1295 while (i < len) { 1296 if (blkaddr[i] == NULL_ADDR && !full) { 1297 i++; 1298 continue; 1299 } 1300 1301 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1302 struct dnode_of_data dn; 1303 struct node_info ni; 1304 size_t new_size; 1305 pgoff_t ilen; 1306 1307 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1308 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1309 if (ret) 1310 return ret; 1311 1312 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1313 if (ret) { 1314 f2fs_put_dnode(&dn); 1315 return ret; 1316 } 1317 1318 ilen = min((pgoff_t) 1319 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1320 dn.ofs_in_node, len - i); 1321 do { 1322 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1323 f2fs_truncate_data_blocks_range(&dn, 1); 1324 1325 if (do_replace[i]) { 1326 f2fs_i_blocks_write(src_inode, 1327 1, false, false); 1328 f2fs_i_blocks_write(dst_inode, 1329 1, true, false); 1330 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1331 blkaddr[i], ni.version, true, false); 1332 1333 do_replace[i] = 0; 1334 } 1335 dn.ofs_in_node++; 1336 i++; 1337 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1338 if (dst_inode->i_size < new_size) 1339 f2fs_i_size_write(dst_inode, new_size); 1340 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1341 1342 f2fs_put_dnode(&dn); 1343 } else { 1344 struct page *psrc, *pdst; 1345 1346 psrc = f2fs_get_lock_data_page(src_inode, 1347 src + i, true); 1348 if (IS_ERR(psrc)) 1349 return PTR_ERR(psrc); 1350 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1351 true); 1352 if (IS_ERR(pdst)) { 1353 f2fs_put_page(psrc, 1); 1354 return PTR_ERR(pdst); 1355 } 1356 1357 f2fs_wait_on_page_writeback(pdst, DATA, true, true); 1358 1359 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); 1360 set_page_dirty(pdst); 1361 set_page_private_gcing(pdst); 1362 f2fs_put_page(pdst, 1); 1363 f2fs_put_page(psrc, 1); 1364 1365 ret = f2fs_truncate_hole(src_inode, 1366 src + i, src + i + 1); 1367 if (ret) 1368 return ret; 1369 i++; 1370 } 1371 } 1372 return 0; 1373 } 1374 1375 static int __exchange_data_block(struct inode *src_inode, 1376 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1377 pgoff_t len, bool full) 1378 { 1379 block_t *src_blkaddr; 1380 int *do_replace; 1381 pgoff_t olen; 1382 int ret; 1383 1384 while (len) { 1385 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1386 1387 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1388 array_size(olen, sizeof(block_t)), 1389 GFP_NOFS); 1390 if (!src_blkaddr) 1391 return -ENOMEM; 1392 1393 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1394 array_size(olen, sizeof(int)), 1395 GFP_NOFS); 1396 if (!do_replace) { 1397 kvfree(src_blkaddr); 1398 return -ENOMEM; 1399 } 1400 1401 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1402 do_replace, src, olen); 1403 if (ret) 1404 goto roll_back; 1405 1406 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1407 do_replace, src, dst, olen, full); 1408 if (ret) 1409 goto roll_back; 1410 1411 src += olen; 1412 dst += olen; 1413 len -= olen; 1414 1415 kvfree(src_blkaddr); 1416 kvfree(do_replace); 1417 } 1418 return 0; 1419 1420 roll_back: 1421 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1422 kvfree(src_blkaddr); 1423 kvfree(do_replace); 1424 return ret; 1425 } 1426 1427 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1428 { 1429 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1430 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1431 pgoff_t start = offset >> PAGE_SHIFT; 1432 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1433 int ret; 1434 1435 f2fs_balance_fs(sbi, true); 1436 1437 /* avoid gc operation during block exchange */ 1438 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1439 filemap_invalidate_lock(inode->i_mapping); 1440 1441 f2fs_lock_op(sbi); 1442 f2fs_drop_extent_tree(inode); 1443 truncate_pagecache(inode, offset); 1444 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1445 f2fs_unlock_op(sbi); 1446 1447 filemap_invalidate_unlock(inode->i_mapping); 1448 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1449 return ret; 1450 } 1451 1452 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1453 { 1454 loff_t new_size; 1455 int ret; 1456 1457 if (offset + len >= i_size_read(inode)) 1458 return -EINVAL; 1459 1460 /* collapse range should be aligned to block size of f2fs. */ 1461 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1462 return -EINVAL; 1463 1464 ret = f2fs_convert_inline_inode(inode); 1465 if (ret) 1466 return ret; 1467 1468 /* write out all dirty pages from offset */ 1469 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1470 if (ret) 1471 return ret; 1472 1473 ret = f2fs_do_collapse(inode, offset, len); 1474 if (ret) 1475 return ret; 1476 1477 /* write out all moved pages, if possible */ 1478 filemap_invalidate_lock(inode->i_mapping); 1479 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1480 truncate_pagecache(inode, offset); 1481 1482 new_size = i_size_read(inode) - len; 1483 ret = f2fs_truncate_blocks(inode, new_size, true); 1484 filemap_invalidate_unlock(inode->i_mapping); 1485 if (!ret) 1486 f2fs_i_size_write(inode, new_size); 1487 return ret; 1488 } 1489 1490 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1491 pgoff_t end) 1492 { 1493 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1494 pgoff_t index = start; 1495 unsigned int ofs_in_node = dn->ofs_in_node; 1496 blkcnt_t count = 0; 1497 int ret; 1498 1499 for (; index < end; index++, dn->ofs_in_node++) { 1500 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1501 count++; 1502 } 1503 1504 dn->ofs_in_node = ofs_in_node; 1505 ret = f2fs_reserve_new_blocks(dn, count); 1506 if (ret) 1507 return ret; 1508 1509 dn->ofs_in_node = ofs_in_node; 1510 for (index = start; index < end; index++, dn->ofs_in_node++) { 1511 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1512 /* 1513 * f2fs_reserve_new_blocks will not guarantee entire block 1514 * allocation. 1515 */ 1516 if (dn->data_blkaddr == NULL_ADDR) { 1517 ret = -ENOSPC; 1518 break; 1519 } 1520 1521 if (dn->data_blkaddr == NEW_ADDR) 1522 continue; 1523 1524 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1525 DATA_GENERIC_ENHANCE)) { 1526 ret = -EFSCORRUPTED; 1527 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1528 break; 1529 } 1530 1531 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1532 f2fs_set_data_blkaddr(dn, NEW_ADDR); 1533 } 1534 1535 f2fs_update_read_extent_cache_range(dn, start, 0, index - start); 1536 f2fs_update_age_extent_cache_range(dn, start, index - start); 1537 1538 return ret; 1539 } 1540 1541 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1542 int mode) 1543 { 1544 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1545 struct address_space *mapping = inode->i_mapping; 1546 pgoff_t index, pg_start, pg_end; 1547 loff_t new_size = i_size_read(inode); 1548 loff_t off_start, off_end; 1549 int ret = 0; 1550 1551 ret = inode_newsize_ok(inode, (len + offset)); 1552 if (ret) 1553 return ret; 1554 1555 ret = f2fs_convert_inline_inode(inode); 1556 if (ret) 1557 return ret; 1558 1559 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1560 if (ret) 1561 return ret; 1562 1563 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1564 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1565 1566 off_start = offset & (PAGE_SIZE - 1); 1567 off_end = (offset + len) & (PAGE_SIZE - 1); 1568 1569 if (pg_start == pg_end) { 1570 ret = fill_zero(inode, pg_start, off_start, 1571 off_end - off_start); 1572 if (ret) 1573 return ret; 1574 1575 new_size = max_t(loff_t, new_size, offset + len); 1576 } else { 1577 if (off_start) { 1578 ret = fill_zero(inode, pg_start++, off_start, 1579 PAGE_SIZE - off_start); 1580 if (ret) 1581 return ret; 1582 1583 new_size = max_t(loff_t, new_size, 1584 (loff_t)pg_start << PAGE_SHIFT); 1585 } 1586 1587 for (index = pg_start; index < pg_end;) { 1588 struct dnode_of_data dn; 1589 unsigned int end_offset; 1590 pgoff_t end; 1591 1592 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1593 filemap_invalidate_lock(mapping); 1594 1595 truncate_pagecache_range(inode, 1596 (loff_t)index << PAGE_SHIFT, 1597 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1598 1599 f2fs_lock_op(sbi); 1600 1601 set_new_dnode(&dn, inode, NULL, NULL, 0); 1602 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1603 if (ret) { 1604 f2fs_unlock_op(sbi); 1605 filemap_invalidate_unlock(mapping); 1606 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1607 goto out; 1608 } 1609 1610 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1611 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1612 1613 ret = f2fs_do_zero_range(&dn, index, end); 1614 f2fs_put_dnode(&dn); 1615 1616 f2fs_unlock_op(sbi); 1617 filemap_invalidate_unlock(mapping); 1618 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1619 1620 f2fs_balance_fs(sbi, dn.node_changed); 1621 1622 if (ret) 1623 goto out; 1624 1625 index = end; 1626 new_size = max_t(loff_t, new_size, 1627 (loff_t)index << PAGE_SHIFT); 1628 } 1629 1630 if (off_end) { 1631 ret = fill_zero(inode, pg_end, 0, off_end); 1632 if (ret) 1633 goto out; 1634 1635 new_size = max_t(loff_t, new_size, offset + len); 1636 } 1637 } 1638 1639 out: 1640 if (new_size > i_size_read(inode)) { 1641 if (mode & FALLOC_FL_KEEP_SIZE) 1642 file_set_keep_isize(inode); 1643 else 1644 f2fs_i_size_write(inode, new_size); 1645 } 1646 return ret; 1647 } 1648 1649 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1650 { 1651 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1652 struct address_space *mapping = inode->i_mapping; 1653 pgoff_t nr, pg_start, pg_end, delta, idx; 1654 loff_t new_size; 1655 int ret = 0; 1656 1657 new_size = i_size_read(inode) + len; 1658 ret = inode_newsize_ok(inode, new_size); 1659 if (ret) 1660 return ret; 1661 1662 if (offset >= i_size_read(inode)) 1663 return -EINVAL; 1664 1665 /* insert range should be aligned to block size of f2fs. */ 1666 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1667 return -EINVAL; 1668 1669 ret = f2fs_convert_inline_inode(inode); 1670 if (ret) 1671 return ret; 1672 1673 f2fs_balance_fs(sbi, true); 1674 1675 filemap_invalidate_lock(mapping); 1676 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1677 filemap_invalidate_unlock(mapping); 1678 if (ret) 1679 return ret; 1680 1681 /* write out all dirty pages from offset */ 1682 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1683 if (ret) 1684 return ret; 1685 1686 pg_start = offset >> PAGE_SHIFT; 1687 pg_end = (offset + len) >> PAGE_SHIFT; 1688 delta = pg_end - pg_start; 1689 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1690 1691 /* avoid gc operation during block exchange */ 1692 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1693 filemap_invalidate_lock(mapping); 1694 truncate_pagecache(inode, offset); 1695 1696 while (!ret && idx > pg_start) { 1697 nr = idx - pg_start; 1698 if (nr > delta) 1699 nr = delta; 1700 idx -= nr; 1701 1702 f2fs_lock_op(sbi); 1703 f2fs_drop_extent_tree(inode); 1704 1705 ret = __exchange_data_block(inode, inode, idx, 1706 idx + delta, nr, false); 1707 f2fs_unlock_op(sbi); 1708 } 1709 filemap_invalidate_unlock(mapping); 1710 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1711 1712 /* write out all moved pages, if possible */ 1713 filemap_invalidate_lock(mapping); 1714 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1715 truncate_pagecache(inode, offset); 1716 filemap_invalidate_unlock(mapping); 1717 1718 if (!ret) 1719 f2fs_i_size_write(inode, new_size); 1720 return ret; 1721 } 1722 1723 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset, 1724 loff_t len, int mode) 1725 { 1726 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1727 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1728 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1729 .m_may_create = true }; 1730 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1731 .init_gc_type = FG_GC, 1732 .should_migrate_blocks = false, 1733 .err_gc_skipped = true, 1734 .nr_free_secs = 0 }; 1735 pgoff_t pg_start, pg_end; 1736 loff_t new_size; 1737 loff_t off_end; 1738 block_t expanded = 0; 1739 int err; 1740 1741 err = inode_newsize_ok(inode, (len + offset)); 1742 if (err) 1743 return err; 1744 1745 err = f2fs_convert_inline_inode(inode); 1746 if (err) 1747 return err; 1748 1749 f2fs_balance_fs(sbi, true); 1750 1751 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1752 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1753 off_end = (offset + len) & (PAGE_SIZE - 1); 1754 1755 map.m_lblk = pg_start; 1756 map.m_len = pg_end - pg_start; 1757 if (off_end) 1758 map.m_len++; 1759 1760 if (!map.m_len) 1761 return 0; 1762 1763 if (f2fs_is_pinned_file(inode)) { 1764 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1765 block_t sec_len = roundup(map.m_len, sec_blks); 1766 1767 map.m_len = sec_blks; 1768 next_alloc: 1769 if (has_not_enough_free_secs(sbi, 0, 1770 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1771 f2fs_down_write(&sbi->gc_lock); 1772 stat_inc_gc_call_count(sbi, FOREGROUND); 1773 err = f2fs_gc(sbi, &gc_control); 1774 if (err && err != -ENODATA) 1775 goto out_err; 1776 } 1777 1778 f2fs_down_write(&sbi->pin_sem); 1779 1780 err = f2fs_allocate_pinning_section(sbi); 1781 if (err) { 1782 f2fs_up_write(&sbi->pin_sem); 1783 goto out_err; 1784 } 1785 1786 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1787 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO); 1788 file_dont_truncate(inode); 1789 1790 f2fs_up_write(&sbi->pin_sem); 1791 1792 expanded += map.m_len; 1793 sec_len -= map.m_len; 1794 map.m_lblk += map.m_len; 1795 if (!err && sec_len) 1796 goto next_alloc; 1797 1798 map.m_len = expanded; 1799 } else { 1800 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO); 1801 expanded = map.m_len; 1802 } 1803 out_err: 1804 if (err) { 1805 pgoff_t last_off; 1806 1807 if (!expanded) 1808 return err; 1809 1810 last_off = pg_start + expanded - 1; 1811 1812 /* update new size to the failed position */ 1813 new_size = (last_off == pg_end) ? offset + len : 1814 (loff_t)(last_off + 1) << PAGE_SHIFT; 1815 } else { 1816 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1817 } 1818 1819 if (new_size > i_size_read(inode)) { 1820 if (mode & FALLOC_FL_KEEP_SIZE) 1821 file_set_keep_isize(inode); 1822 else 1823 f2fs_i_size_write(inode, new_size); 1824 } 1825 1826 return err; 1827 } 1828 1829 static long f2fs_fallocate(struct file *file, int mode, 1830 loff_t offset, loff_t len) 1831 { 1832 struct inode *inode = file_inode(file); 1833 long ret = 0; 1834 1835 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1836 return -EIO; 1837 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1838 return -ENOSPC; 1839 if (!f2fs_is_compress_backend_ready(inode)) 1840 return -EOPNOTSUPP; 1841 1842 /* f2fs only support ->fallocate for regular file */ 1843 if (!S_ISREG(inode->i_mode)) 1844 return -EINVAL; 1845 1846 if (IS_ENCRYPTED(inode) && 1847 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1848 return -EOPNOTSUPP; 1849 1850 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1851 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1852 FALLOC_FL_INSERT_RANGE)) 1853 return -EOPNOTSUPP; 1854 1855 inode_lock(inode); 1856 1857 /* 1858 * Pinned file should not support partial truncation since the block 1859 * can be used by applications. 1860 */ 1861 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1862 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1863 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) { 1864 ret = -EOPNOTSUPP; 1865 goto out; 1866 } 1867 1868 ret = file_modified(file); 1869 if (ret) 1870 goto out; 1871 1872 if (mode & FALLOC_FL_PUNCH_HOLE) { 1873 if (offset >= inode->i_size) 1874 goto out; 1875 1876 ret = f2fs_punch_hole(inode, offset, len); 1877 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1878 ret = f2fs_collapse_range(inode, offset, len); 1879 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1880 ret = f2fs_zero_range(inode, offset, len, mode); 1881 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1882 ret = f2fs_insert_range(inode, offset, len); 1883 } else { 1884 ret = f2fs_expand_inode_data(inode, offset, len, mode); 1885 } 1886 1887 if (!ret) { 1888 inode->i_mtime = inode_set_ctime_current(inode); 1889 f2fs_mark_inode_dirty_sync(inode, false); 1890 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1891 } 1892 1893 out: 1894 inode_unlock(inode); 1895 1896 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1897 return ret; 1898 } 1899 1900 static int f2fs_release_file(struct inode *inode, struct file *filp) 1901 { 1902 /* 1903 * f2fs_release_file is called at every close calls. So we should 1904 * not drop any inmemory pages by close called by other process. 1905 */ 1906 if (!(filp->f_mode & FMODE_WRITE) || 1907 atomic_read(&inode->i_writecount) != 1) 1908 return 0; 1909 1910 inode_lock(inode); 1911 f2fs_abort_atomic_write(inode, true); 1912 inode_unlock(inode); 1913 1914 return 0; 1915 } 1916 1917 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1918 { 1919 struct inode *inode = file_inode(file); 1920 1921 /* 1922 * If the process doing a transaction is crashed, we should do 1923 * roll-back. Otherwise, other reader/write can see corrupted database 1924 * until all the writers close its file. Since this should be done 1925 * before dropping file lock, it needs to do in ->flush. 1926 */ 1927 if (F2FS_I(inode)->atomic_write_task == current && 1928 (current->flags & PF_EXITING)) { 1929 inode_lock(inode); 1930 f2fs_abort_atomic_write(inode, true); 1931 inode_unlock(inode); 1932 } 1933 1934 return 0; 1935 } 1936 1937 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1938 { 1939 struct f2fs_inode_info *fi = F2FS_I(inode); 1940 u32 masked_flags = fi->i_flags & mask; 1941 1942 /* mask can be shrunk by flags_valid selector */ 1943 iflags &= mask; 1944 1945 /* Is it quota file? Do not allow user to mess with it */ 1946 if (IS_NOQUOTA(inode)) 1947 return -EPERM; 1948 1949 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1950 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1951 return -EOPNOTSUPP; 1952 if (!f2fs_empty_dir(inode)) 1953 return -ENOTEMPTY; 1954 } 1955 1956 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1957 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1958 return -EOPNOTSUPP; 1959 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1960 return -EINVAL; 1961 } 1962 1963 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1964 if (masked_flags & F2FS_COMPR_FL) { 1965 if (!f2fs_disable_compressed_file(inode)) 1966 return -EINVAL; 1967 } else { 1968 /* try to convert inline_data to support compression */ 1969 int err = f2fs_convert_inline_inode(inode); 1970 if (err) 1971 return err; 1972 1973 f2fs_down_write(&F2FS_I(inode)->i_sem); 1974 if (!f2fs_may_compress(inode) || 1975 (S_ISREG(inode->i_mode) && 1976 F2FS_HAS_BLOCKS(inode))) { 1977 f2fs_up_write(&F2FS_I(inode)->i_sem); 1978 return -EINVAL; 1979 } 1980 err = set_compress_context(inode); 1981 f2fs_up_write(&F2FS_I(inode)->i_sem); 1982 1983 if (err) 1984 return err; 1985 } 1986 } 1987 1988 fi->i_flags = iflags | (fi->i_flags & ~mask); 1989 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1990 (fi->i_flags & F2FS_NOCOMP_FL)); 1991 1992 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1993 set_inode_flag(inode, FI_PROJ_INHERIT); 1994 else 1995 clear_inode_flag(inode, FI_PROJ_INHERIT); 1996 1997 inode_set_ctime_current(inode); 1998 f2fs_set_inode_flags(inode); 1999 f2fs_mark_inode_dirty_sync(inode, true); 2000 return 0; 2001 } 2002 2003 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 2004 2005 /* 2006 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 2007 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 2008 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 2009 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 2010 * 2011 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 2012 * FS_IOC_FSSETXATTR is done by the VFS. 2013 */ 2014 2015 static const struct { 2016 u32 iflag; 2017 u32 fsflag; 2018 } f2fs_fsflags_map[] = { 2019 { F2FS_COMPR_FL, FS_COMPR_FL }, 2020 { F2FS_SYNC_FL, FS_SYNC_FL }, 2021 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 2022 { F2FS_APPEND_FL, FS_APPEND_FL }, 2023 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 2024 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 2025 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 2026 { F2FS_INDEX_FL, FS_INDEX_FL }, 2027 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 2028 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 2029 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 2030 }; 2031 2032 #define F2FS_GETTABLE_FS_FL ( \ 2033 FS_COMPR_FL | \ 2034 FS_SYNC_FL | \ 2035 FS_IMMUTABLE_FL | \ 2036 FS_APPEND_FL | \ 2037 FS_NODUMP_FL | \ 2038 FS_NOATIME_FL | \ 2039 FS_NOCOMP_FL | \ 2040 FS_INDEX_FL | \ 2041 FS_DIRSYNC_FL | \ 2042 FS_PROJINHERIT_FL | \ 2043 FS_ENCRYPT_FL | \ 2044 FS_INLINE_DATA_FL | \ 2045 FS_NOCOW_FL | \ 2046 FS_VERITY_FL | \ 2047 FS_CASEFOLD_FL) 2048 2049 #define F2FS_SETTABLE_FS_FL ( \ 2050 FS_COMPR_FL | \ 2051 FS_SYNC_FL | \ 2052 FS_IMMUTABLE_FL | \ 2053 FS_APPEND_FL | \ 2054 FS_NODUMP_FL | \ 2055 FS_NOATIME_FL | \ 2056 FS_NOCOMP_FL | \ 2057 FS_DIRSYNC_FL | \ 2058 FS_PROJINHERIT_FL | \ 2059 FS_CASEFOLD_FL) 2060 2061 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 2062 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 2063 { 2064 u32 fsflags = 0; 2065 int i; 2066 2067 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2068 if (iflags & f2fs_fsflags_map[i].iflag) 2069 fsflags |= f2fs_fsflags_map[i].fsflag; 2070 2071 return fsflags; 2072 } 2073 2074 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 2075 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 2076 { 2077 u32 iflags = 0; 2078 int i; 2079 2080 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2081 if (fsflags & f2fs_fsflags_map[i].fsflag) 2082 iflags |= f2fs_fsflags_map[i].iflag; 2083 2084 return iflags; 2085 } 2086 2087 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2088 { 2089 struct inode *inode = file_inode(filp); 2090 2091 return put_user(inode->i_generation, (int __user *)arg); 2092 } 2093 2094 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate) 2095 { 2096 struct inode *inode = file_inode(filp); 2097 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2098 struct f2fs_inode_info *fi = F2FS_I(inode); 2099 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2100 loff_t isize; 2101 int ret; 2102 2103 if (!inode_owner_or_capable(idmap, inode)) 2104 return -EACCES; 2105 2106 if (!S_ISREG(inode->i_mode)) 2107 return -EINVAL; 2108 2109 if (filp->f_flags & O_DIRECT) 2110 return -EINVAL; 2111 2112 ret = mnt_want_write_file(filp); 2113 if (ret) 2114 return ret; 2115 2116 inode_lock(inode); 2117 2118 if (!f2fs_disable_compressed_file(inode)) { 2119 ret = -EINVAL; 2120 goto out; 2121 } 2122 2123 if (f2fs_is_atomic_file(inode)) 2124 goto out; 2125 2126 ret = f2fs_convert_inline_inode(inode); 2127 if (ret) 2128 goto out; 2129 2130 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2131 2132 /* 2133 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2134 * f2fs_is_atomic_file. 2135 */ 2136 if (get_dirty_pages(inode)) 2137 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2138 inode->i_ino, get_dirty_pages(inode)); 2139 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2140 if (ret) { 2141 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2142 goto out; 2143 } 2144 2145 /* Check if the inode already has a COW inode */ 2146 if (fi->cow_inode == NULL) { 2147 /* Create a COW inode for atomic write */ 2148 struct dentry *dentry = file_dentry(filp); 2149 struct inode *dir = d_inode(dentry->d_parent); 2150 2151 ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode); 2152 if (ret) { 2153 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2154 goto out; 2155 } 2156 2157 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2158 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2159 2160 /* Set the COW inode's atomic_inode to the atomic inode */ 2161 F2FS_I(fi->cow_inode)->atomic_inode = inode; 2162 } else { 2163 /* Reuse the already created COW inode */ 2164 f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode)); 2165 2166 invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1); 2167 2168 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true); 2169 if (ret) { 2170 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2171 goto out; 2172 } 2173 } 2174 2175 f2fs_write_inode(inode, NULL); 2176 2177 stat_inc_atomic_inode(inode); 2178 2179 set_inode_flag(inode, FI_ATOMIC_FILE); 2180 2181 isize = i_size_read(inode); 2182 fi->original_i_size = isize; 2183 if (truncate) { 2184 set_inode_flag(inode, FI_ATOMIC_REPLACE); 2185 truncate_inode_pages_final(inode->i_mapping); 2186 f2fs_i_size_write(inode, 0); 2187 isize = 0; 2188 } 2189 f2fs_i_size_write(fi->cow_inode, isize); 2190 2191 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2192 2193 f2fs_update_time(sbi, REQ_TIME); 2194 fi->atomic_write_task = current; 2195 stat_update_max_atomic_write(inode); 2196 fi->atomic_write_cnt = 0; 2197 out: 2198 inode_unlock(inode); 2199 mnt_drop_write_file(filp); 2200 return ret; 2201 } 2202 2203 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2204 { 2205 struct inode *inode = file_inode(filp); 2206 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2207 int ret; 2208 2209 if (!inode_owner_or_capable(idmap, inode)) 2210 return -EACCES; 2211 2212 ret = mnt_want_write_file(filp); 2213 if (ret) 2214 return ret; 2215 2216 f2fs_balance_fs(F2FS_I_SB(inode), true); 2217 2218 inode_lock(inode); 2219 2220 if (f2fs_is_atomic_file(inode)) { 2221 ret = f2fs_commit_atomic_write(inode); 2222 if (!ret) 2223 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2224 2225 f2fs_abort_atomic_write(inode, ret); 2226 } else { 2227 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2228 } 2229 2230 inode_unlock(inode); 2231 mnt_drop_write_file(filp); 2232 return ret; 2233 } 2234 2235 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2236 { 2237 struct inode *inode = file_inode(filp); 2238 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2239 int ret; 2240 2241 if (!inode_owner_or_capable(idmap, inode)) 2242 return -EACCES; 2243 2244 ret = mnt_want_write_file(filp); 2245 if (ret) 2246 return ret; 2247 2248 inode_lock(inode); 2249 2250 f2fs_abort_atomic_write(inode, true); 2251 2252 inode_unlock(inode); 2253 2254 mnt_drop_write_file(filp); 2255 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2256 return ret; 2257 } 2258 2259 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag, 2260 bool readonly, bool need_lock) 2261 { 2262 struct super_block *sb = sbi->sb; 2263 int ret = 0; 2264 2265 switch (flag) { 2266 case F2FS_GOING_DOWN_FULLSYNC: 2267 ret = freeze_bdev(sb->s_bdev); 2268 if (ret) 2269 goto out; 2270 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2271 thaw_bdev(sb->s_bdev); 2272 break; 2273 case F2FS_GOING_DOWN_METASYNC: 2274 /* do checkpoint only */ 2275 ret = f2fs_sync_fs(sb, 1); 2276 if (ret) 2277 goto out; 2278 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2279 break; 2280 case F2FS_GOING_DOWN_NOSYNC: 2281 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2282 break; 2283 case F2FS_GOING_DOWN_METAFLUSH: 2284 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2285 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2286 break; 2287 case F2FS_GOING_DOWN_NEED_FSCK: 2288 set_sbi_flag(sbi, SBI_NEED_FSCK); 2289 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2290 set_sbi_flag(sbi, SBI_IS_DIRTY); 2291 /* do checkpoint only */ 2292 ret = f2fs_sync_fs(sb, 1); 2293 goto out; 2294 default: 2295 ret = -EINVAL; 2296 goto out; 2297 } 2298 2299 if (readonly) 2300 goto out; 2301 2302 /* grab sb->s_umount to avoid racing w/ remount() */ 2303 if (need_lock) 2304 down_read(&sbi->sb->s_umount); 2305 2306 f2fs_stop_gc_thread(sbi); 2307 f2fs_stop_discard_thread(sbi); 2308 2309 f2fs_drop_discard_cmd(sbi); 2310 clear_opt(sbi, DISCARD); 2311 2312 if (need_lock) 2313 up_read(&sbi->sb->s_umount); 2314 2315 f2fs_update_time(sbi, REQ_TIME); 2316 out: 2317 2318 trace_f2fs_shutdown(sbi, flag, ret); 2319 2320 return ret; 2321 } 2322 2323 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2324 { 2325 struct inode *inode = file_inode(filp); 2326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2327 __u32 in; 2328 int ret; 2329 bool need_drop = false, readonly = false; 2330 2331 if (!capable(CAP_SYS_ADMIN)) 2332 return -EPERM; 2333 2334 if (get_user(in, (__u32 __user *)arg)) 2335 return -EFAULT; 2336 2337 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2338 ret = mnt_want_write_file(filp); 2339 if (ret) { 2340 if (ret != -EROFS) 2341 return ret; 2342 2343 /* fallback to nosync shutdown for readonly fs */ 2344 in = F2FS_GOING_DOWN_NOSYNC; 2345 readonly = true; 2346 } else { 2347 need_drop = true; 2348 } 2349 } 2350 2351 ret = f2fs_do_shutdown(sbi, in, readonly, true); 2352 2353 if (need_drop) 2354 mnt_drop_write_file(filp); 2355 2356 return ret; 2357 } 2358 2359 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2360 { 2361 struct inode *inode = file_inode(filp); 2362 struct super_block *sb = inode->i_sb; 2363 struct fstrim_range range; 2364 int ret; 2365 2366 if (!capable(CAP_SYS_ADMIN)) 2367 return -EPERM; 2368 2369 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2370 return -EOPNOTSUPP; 2371 2372 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2373 sizeof(range))) 2374 return -EFAULT; 2375 2376 ret = mnt_want_write_file(filp); 2377 if (ret) 2378 return ret; 2379 2380 range.minlen = max((unsigned int)range.minlen, 2381 bdev_discard_granularity(sb->s_bdev)); 2382 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2383 mnt_drop_write_file(filp); 2384 if (ret < 0) 2385 return ret; 2386 2387 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2388 sizeof(range))) 2389 return -EFAULT; 2390 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2391 return 0; 2392 } 2393 2394 static bool uuid_is_nonzero(__u8 u[16]) 2395 { 2396 int i; 2397 2398 for (i = 0; i < 16; i++) 2399 if (u[i]) 2400 return true; 2401 return false; 2402 } 2403 2404 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2405 { 2406 struct inode *inode = file_inode(filp); 2407 2408 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2409 return -EOPNOTSUPP; 2410 2411 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2412 2413 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2414 } 2415 2416 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2417 { 2418 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2419 return -EOPNOTSUPP; 2420 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2421 } 2422 2423 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2424 { 2425 struct inode *inode = file_inode(filp); 2426 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2427 u8 encrypt_pw_salt[16]; 2428 int err; 2429 2430 if (!f2fs_sb_has_encrypt(sbi)) 2431 return -EOPNOTSUPP; 2432 2433 err = mnt_want_write_file(filp); 2434 if (err) 2435 return err; 2436 2437 f2fs_down_write(&sbi->sb_lock); 2438 2439 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2440 goto got_it; 2441 2442 /* update superblock with uuid */ 2443 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2444 2445 err = f2fs_commit_super(sbi, false); 2446 if (err) { 2447 /* undo new data */ 2448 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2449 goto out_err; 2450 } 2451 got_it: 2452 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16); 2453 out_err: 2454 f2fs_up_write(&sbi->sb_lock); 2455 mnt_drop_write_file(filp); 2456 2457 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16)) 2458 err = -EFAULT; 2459 2460 return err; 2461 } 2462 2463 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2464 unsigned long arg) 2465 { 2466 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2467 return -EOPNOTSUPP; 2468 2469 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2470 } 2471 2472 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2473 { 2474 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2475 return -EOPNOTSUPP; 2476 2477 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2478 } 2479 2480 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2481 { 2482 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2483 return -EOPNOTSUPP; 2484 2485 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2486 } 2487 2488 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2489 unsigned long arg) 2490 { 2491 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2492 return -EOPNOTSUPP; 2493 2494 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2495 } 2496 2497 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2498 unsigned long arg) 2499 { 2500 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2501 return -EOPNOTSUPP; 2502 2503 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2504 } 2505 2506 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2507 { 2508 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2509 return -EOPNOTSUPP; 2510 2511 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2512 } 2513 2514 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2515 { 2516 struct inode *inode = file_inode(filp); 2517 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2518 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2519 .no_bg_gc = false, 2520 .should_migrate_blocks = false, 2521 .nr_free_secs = 0 }; 2522 __u32 sync; 2523 int ret; 2524 2525 if (!capable(CAP_SYS_ADMIN)) 2526 return -EPERM; 2527 2528 if (get_user(sync, (__u32 __user *)arg)) 2529 return -EFAULT; 2530 2531 if (f2fs_readonly(sbi->sb)) 2532 return -EROFS; 2533 2534 ret = mnt_want_write_file(filp); 2535 if (ret) 2536 return ret; 2537 2538 if (!sync) { 2539 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2540 ret = -EBUSY; 2541 goto out; 2542 } 2543 } else { 2544 f2fs_down_write(&sbi->gc_lock); 2545 } 2546 2547 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2548 gc_control.err_gc_skipped = sync; 2549 stat_inc_gc_call_count(sbi, FOREGROUND); 2550 ret = f2fs_gc(sbi, &gc_control); 2551 out: 2552 mnt_drop_write_file(filp); 2553 return ret; 2554 } 2555 2556 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2557 { 2558 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2559 struct f2fs_gc_control gc_control = { 2560 .init_gc_type = range->sync ? FG_GC : BG_GC, 2561 .no_bg_gc = false, 2562 .should_migrate_blocks = false, 2563 .err_gc_skipped = range->sync, 2564 .nr_free_secs = 0 }; 2565 u64 end; 2566 int ret; 2567 2568 if (!capable(CAP_SYS_ADMIN)) 2569 return -EPERM; 2570 if (f2fs_readonly(sbi->sb)) 2571 return -EROFS; 2572 2573 end = range->start + range->len; 2574 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2575 end >= MAX_BLKADDR(sbi)) 2576 return -EINVAL; 2577 2578 ret = mnt_want_write_file(filp); 2579 if (ret) 2580 return ret; 2581 2582 do_more: 2583 if (!range->sync) { 2584 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2585 ret = -EBUSY; 2586 goto out; 2587 } 2588 } else { 2589 f2fs_down_write(&sbi->gc_lock); 2590 } 2591 2592 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2593 stat_inc_gc_call_count(sbi, FOREGROUND); 2594 ret = f2fs_gc(sbi, &gc_control); 2595 if (ret) { 2596 if (ret == -EBUSY) 2597 ret = -EAGAIN; 2598 goto out; 2599 } 2600 range->start += CAP_BLKS_PER_SEC(sbi); 2601 if (range->start <= end) 2602 goto do_more; 2603 out: 2604 mnt_drop_write_file(filp); 2605 return ret; 2606 } 2607 2608 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2609 { 2610 struct f2fs_gc_range range; 2611 2612 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2613 sizeof(range))) 2614 return -EFAULT; 2615 return __f2fs_ioc_gc_range(filp, &range); 2616 } 2617 2618 static int f2fs_ioc_write_checkpoint(struct file *filp) 2619 { 2620 struct inode *inode = file_inode(filp); 2621 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2622 int ret; 2623 2624 if (!capable(CAP_SYS_ADMIN)) 2625 return -EPERM; 2626 2627 if (f2fs_readonly(sbi->sb)) 2628 return -EROFS; 2629 2630 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2631 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2632 return -EINVAL; 2633 } 2634 2635 ret = mnt_want_write_file(filp); 2636 if (ret) 2637 return ret; 2638 2639 ret = f2fs_sync_fs(sbi->sb, 1); 2640 2641 mnt_drop_write_file(filp); 2642 return ret; 2643 } 2644 2645 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2646 struct file *filp, 2647 struct f2fs_defragment *range) 2648 { 2649 struct inode *inode = file_inode(filp); 2650 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2651 .m_seg_type = NO_CHECK_TYPE, 2652 .m_may_create = false }; 2653 struct extent_info ei = {}; 2654 pgoff_t pg_start, pg_end, next_pgofs; 2655 unsigned int total = 0, sec_num; 2656 block_t blk_end = 0; 2657 bool fragmented = false; 2658 int err; 2659 2660 pg_start = range->start >> PAGE_SHIFT; 2661 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2662 2663 f2fs_balance_fs(sbi, true); 2664 2665 inode_lock(inode); 2666 2667 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 2668 err = -EINVAL; 2669 goto unlock_out; 2670 } 2671 2672 /* if in-place-update policy is enabled, don't waste time here */ 2673 set_inode_flag(inode, FI_OPU_WRITE); 2674 if (f2fs_should_update_inplace(inode, NULL)) { 2675 err = -EINVAL; 2676 goto out; 2677 } 2678 2679 /* writeback all dirty pages in the range */ 2680 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2681 range->start + range->len - 1); 2682 if (err) 2683 goto out; 2684 2685 /* 2686 * lookup mapping info in extent cache, skip defragmenting if physical 2687 * block addresses are continuous. 2688 */ 2689 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) { 2690 if (ei.fofs + ei.len >= pg_end) 2691 goto out; 2692 } 2693 2694 map.m_lblk = pg_start; 2695 map.m_next_pgofs = &next_pgofs; 2696 2697 /* 2698 * lookup mapping info in dnode page cache, skip defragmenting if all 2699 * physical block addresses are continuous even if there are hole(s) 2700 * in logical blocks. 2701 */ 2702 while (map.m_lblk < pg_end) { 2703 map.m_len = pg_end - map.m_lblk; 2704 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2705 if (err) 2706 goto out; 2707 2708 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2709 map.m_lblk = next_pgofs; 2710 continue; 2711 } 2712 2713 if (blk_end && blk_end != map.m_pblk) 2714 fragmented = true; 2715 2716 /* record total count of block that we're going to move */ 2717 total += map.m_len; 2718 2719 blk_end = map.m_pblk + map.m_len; 2720 2721 map.m_lblk += map.m_len; 2722 } 2723 2724 if (!fragmented) { 2725 total = 0; 2726 goto out; 2727 } 2728 2729 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2730 2731 /* 2732 * make sure there are enough free section for LFS allocation, this can 2733 * avoid defragment running in SSR mode when free section are allocated 2734 * intensively 2735 */ 2736 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2737 err = -EAGAIN; 2738 goto out; 2739 } 2740 2741 map.m_lblk = pg_start; 2742 map.m_len = pg_end - pg_start; 2743 total = 0; 2744 2745 while (map.m_lblk < pg_end) { 2746 pgoff_t idx; 2747 int cnt = 0; 2748 2749 do_map: 2750 map.m_len = pg_end - map.m_lblk; 2751 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2752 if (err) 2753 goto clear_out; 2754 2755 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2756 map.m_lblk = next_pgofs; 2757 goto check; 2758 } 2759 2760 set_inode_flag(inode, FI_SKIP_WRITES); 2761 2762 idx = map.m_lblk; 2763 while (idx < map.m_lblk + map.m_len && 2764 cnt < BLKS_PER_SEG(sbi)) { 2765 struct page *page; 2766 2767 page = f2fs_get_lock_data_page(inode, idx, true); 2768 if (IS_ERR(page)) { 2769 err = PTR_ERR(page); 2770 goto clear_out; 2771 } 2772 2773 f2fs_wait_on_page_writeback(page, DATA, true, true); 2774 2775 set_page_dirty(page); 2776 set_page_private_gcing(page); 2777 f2fs_put_page(page, 1); 2778 2779 idx++; 2780 cnt++; 2781 total++; 2782 } 2783 2784 map.m_lblk = idx; 2785 check: 2786 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi)) 2787 goto do_map; 2788 2789 clear_inode_flag(inode, FI_SKIP_WRITES); 2790 2791 err = filemap_fdatawrite(inode->i_mapping); 2792 if (err) 2793 goto out; 2794 } 2795 clear_out: 2796 clear_inode_flag(inode, FI_SKIP_WRITES); 2797 out: 2798 clear_inode_flag(inode, FI_OPU_WRITE); 2799 unlock_out: 2800 inode_unlock(inode); 2801 if (!err) 2802 range->len = (u64)total << PAGE_SHIFT; 2803 return err; 2804 } 2805 2806 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2807 { 2808 struct inode *inode = file_inode(filp); 2809 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2810 struct f2fs_defragment range; 2811 int err; 2812 2813 if (!capable(CAP_SYS_ADMIN)) 2814 return -EPERM; 2815 2816 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2817 return -EINVAL; 2818 2819 if (f2fs_readonly(sbi->sb)) 2820 return -EROFS; 2821 2822 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2823 sizeof(range))) 2824 return -EFAULT; 2825 2826 /* verify alignment of offset & size */ 2827 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2828 return -EINVAL; 2829 2830 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2831 max_file_blocks(inode))) 2832 return -EINVAL; 2833 2834 err = mnt_want_write_file(filp); 2835 if (err) 2836 return err; 2837 2838 err = f2fs_defragment_range(sbi, filp, &range); 2839 mnt_drop_write_file(filp); 2840 2841 f2fs_update_time(sbi, REQ_TIME); 2842 if (err < 0) 2843 return err; 2844 2845 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2846 sizeof(range))) 2847 return -EFAULT; 2848 2849 return 0; 2850 } 2851 2852 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2853 struct file *file_out, loff_t pos_out, size_t len) 2854 { 2855 struct inode *src = file_inode(file_in); 2856 struct inode *dst = file_inode(file_out); 2857 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2858 size_t olen = len, dst_max_i_size = 0; 2859 size_t dst_osize; 2860 int ret; 2861 2862 if (file_in->f_path.mnt != file_out->f_path.mnt || 2863 src->i_sb != dst->i_sb) 2864 return -EXDEV; 2865 2866 if (unlikely(f2fs_readonly(src->i_sb))) 2867 return -EROFS; 2868 2869 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2870 return -EINVAL; 2871 2872 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2873 return -EOPNOTSUPP; 2874 2875 if (pos_out < 0 || pos_in < 0) 2876 return -EINVAL; 2877 2878 if (src == dst) { 2879 if (pos_in == pos_out) 2880 return 0; 2881 if (pos_out > pos_in && pos_out < pos_in + len) 2882 return -EINVAL; 2883 } 2884 2885 inode_lock(src); 2886 if (src != dst) { 2887 ret = -EBUSY; 2888 if (!inode_trylock(dst)) 2889 goto out; 2890 } 2891 2892 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) || 2893 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) { 2894 ret = -EOPNOTSUPP; 2895 goto out_unlock; 2896 } 2897 2898 ret = -EINVAL; 2899 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2900 goto out_unlock; 2901 if (len == 0) 2902 olen = len = src->i_size - pos_in; 2903 if (pos_in + len == src->i_size) 2904 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2905 if (len == 0) { 2906 ret = 0; 2907 goto out_unlock; 2908 } 2909 2910 dst_osize = dst->i_size; 2911 if (pos_out + olen > dst->i_size) 2912 dst_max_i_size = pos_out + olen; 2913 2914 /* verify the end result is block aligned */ 2915 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2916 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2917 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2918 goto out_unlock; 2919 2920 ret = f2fs_convert_inline_inode(src); 2921 if (ret) 2922 goto out_unlock; 2923 2924 ret = f2fs_convert_inline_inode(dst); 2925 if (ret) 2926 goto out_unlock; 2927 2928 /* write out all dirty pages from offset */ 2929 ret = filemap_write_and_wait_range(src->i_mapping, 2930 pos_in, pos_in + len); 2931 if (ret) 2932 goto out_unlock; 2933 2934 ret = filemap_write_and_wait_range(dst->i_mapping, 2935 pos_out, pos_out + len); 2936 if (ret) 2937 goto out_unlock; 2938 2939 f2fs_balance_fs(sbi, true); 2940 2941 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2942 if (src != dst) { 2943 ret = -EBUSY; 2944 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2945 goto out_src; 2946 } 2947 2948 f2fs_lock_op(sbi); 2949 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2950 pos_out >> F2FS_BLKSIZE_BITS, 2951 len >> F2FS_BLKSIZE_BITS, false); 2952 2953 if (!ret) { 2954 if (dst_max_i_size) 2955 f2fs_i_size_write(dst, dst_max_i_size); 2956 else if (dst_osize != dst->i_size) 2957 f2fs_i_size_write(dst, dst_osize); 2958 } 2959 f2fs_unlock_op(sbi); 2960 2961 if (src != dst) 2962 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2963 out_src: 2964 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2965 if (ret) 2966 goto out_unlock; 2967 2968 src->i_mtime = inode_set_ctime_current(src); 2969 f2fs_mark_inode_dirty_sync(src, false); 2970 if (src != dst) { 2971 dst->i_mtime = inode_set_ctime_current(dst); 2972 f2fs_mark_inode_dirty_sync(dst, false); 2973 } 2974 f2fs_update_time(sbi, REQ_TIME); 2975 2976 out_unlock: 2977 if (src != dst) 2978 inode_unlock(dst); 2979 out: 2980 inode_unlock(src); 2981 return ret; 2982 } 2983 2984 static int __f2fs_ioc_move_range(struct file *filp, 2985 struct f2fs_move_range *range) 2986 { 2987 struct fd dst; 2988 int err; 2989 2990 if (!(filp->f_mode & FMODE_READ) || 2991 !(filp->f_mode & FMODE_WRITE)) 2992 return -EBADF; 2993 2994 dst = fdget(range->dst_fd); 2995 if (!dst.file) 2996 return -EBADF; 2997 2998 if (!(dst.file->f_mode & FMODE_WRITE)) { 2999 err = -EBADF; 3000 goto err_out; 3001 } 3002 3003 err = mnt_want_write_file(filp); 3004 if (err) 3005 goto err_out; 3006 3007 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 3008 range->pos_out, range->len); 3009 3010 mnt_drop_write_file(filp); 3011 err_out: 3012 fdput(dst); 3013 return err; 3014 } 3015 3016 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 3017 { 3018 struct f2fs_move_range range; 3019 3020 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 3021 sizeof(range))) 3022 return -EFAULT; 3023 return __f2fs_ioc_move_range(filp, &range); 3024 } 3025 3026 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 3027 { 3028 struct inode *inode = file_inode(filp); 3029 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3030 struct sit_info *sm = SIT_I(sbi); 3031 unsigned int start_segno = 0, end_segno = 0; 3032 unsigned int dev_start_segno = 0, dev_end_segno = 0; 3033 struct f2fs_flush_device range; 3034 struct f2fs_gc_control gc_control = { 3035 .init_gc_type = FG_GC, 3036 .should_migrate_blocks = true, 3037 .err_gc_skipped = true, 3038 .nr_free_secs = 0 }; 3039 int ret; 3040 3041 if (!capable(CAP_SYS_ADMIN)) 3042 return -EPERM; 3043 3044 if (f2fs_readonly(sbi->sb)) 3045 return -EROFS; 3046 3047 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3048 return -EINVAL; 3049 3050 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 3051 sizeof(range))) 3052 return -EFAULT; 3053 3054 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 3055 __is_large_section(sbi)) { 3056 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1", 3057 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi)); 3058 return -EINVAL; 3059 } 3060 3061 ret = mnt_want_write_file(filp); 3062 if (ret) 3063 return ret; 3064 3065 if (range.dev_num != 0) 3066 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 3067 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 3068 3069 start_segno = sm->last_victim[FLUSH_DEVICE]; 3070 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 3071 start_segno = dev_start_segno; 3072 end_segno = min(start_segno + range.segments, dev_end_segno); 3073 3074 while (start_segno < end_segno) { 3075 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 3076 ret = -EBUSY; 3077 goto out; 3078 } 3079 sm->last_victim[GC_CB] = end_segno + 1; 3080 sm->last_victim[GC_GREEDY] = end_segno + 1; 3081 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 3082 3083 gc_control.victim_segno = start_segno; 3084 stat_inc_gc_call_count(sbi, FOREGROUND); 3085 ret = f2fs_gc(sbi, &gc_control); 3086 if (ret == -EAGAIN) 3087 ret = 0; 3088 else if (ret < 0) 3089 break; 3090 start_segno++; 3091 } 3092 out: 3093 mnt_drop_write_file(filp); 3094 return ret; 3095 } 3096 3097 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 3098 { 3099 struct inode *inode = file_inode(filp); 3100 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 3101 3102 /* Must validate to set it with SQLite behavior in Android. */ 3103 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 3104 3105 return put_user(sb_feature, (u32 __user *)arg); 3106 } 3107 3108 #ifdef CONFIG_QUOTA 3109 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3110 { 3111 struct dquot *transfer_to[MAXQUOTAS] = {}; 3112 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3113 struct super_block *sb = sbi->sb; 3114 int err; 3115 3116 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 3117 if (IS_ERR(transfer_to[PRJQUOTA])) 3118 return PTR_ERR(transfer_to[PRJQUOTA]); 3119 3120 err = __dquot_transfer(inode, transfer_to); 3121 if (err) 3122 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3123 dqput(transfer_to[PRJQUOTA]); 3124 return err; 3125 } 3126 3127 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3128 { 3129 struct f2fs_inode_info *fi = F2FS_I(inode); 3130 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3131 struct f2fs_inode *ri = NULL; 3132 kprojid_t kprojid; 3133 int err; 3134 3135 if (!f2fs_sb_has_project_quota(sbi)) { 3136 if (projid != F2FS_DEF_PROJID) 3137 return -EOPNOTSUPP; 3138 else 3139 return 0; 3140 } 3141 3142 if (!f2fs_has_extra_attr(inode)) 3143 return -EOPNOTSUPP; 3144 3145 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3146 3147 if (projid_eq(kprojid, fi->i_projid)) 3148 return 0; 3149 3150 err = -EPERM; 3151 /* Is it quota file? Do not allow user to mess with it */ 3152 if (IS_NOQUOTA(inode)) 3153 return err; 3154 3155 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 3156 return -EOVERFLOW; 3157 3158 err = f2fs_dquot_initialize(inode); 3159 if (err) 3160 return err; 3161 3162 f2fs_lock_op(sbi); 3163 err = f2fs_transfer_project_quota(inode, kprojid); 3164 if (err) 3165 goto out_unlock; 3166 3167 fi->i_projid = kprojid; 3168 inode_set_ctime_current(inode); 3169 f2fs_mark_inode_dirty_sync(inode, true); 3170 out_unlock: 3171 f2fs_unlock_op(sbi); 3172 return err; 3173 } 3174 #else 3175 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3176 { 3177 return 0; 3178 } 3179 3180 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3181 { 3182 if (projid != F2FS_DEF_PROJID) 3183 return -EOPNOTSUPP; 3184 return 0; 3185 } 3186 #endif 3187 3188 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3189 { 3190 struct inode *inode = d_inode(dentry); 3191 struct f2fs_inode_info *fi = F2FS_I(inode); 3192 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3193 3194 if (IS_ENCRYPTED(inode)) 3195 fsflags |= FS_ENCRYPT_FL; 3196 if (IS_VERITY(inode)) 3197 fsflags |= FS_VERITY_FL; 3198 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3199 fsflags |= FS_INLINE_DATA_FL; 3200 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3201 fsflags |= FS_NOCOW_FL; 3202 3203 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3204 3205 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3206 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3207 3208 return 0; 3209 } 3210 3211 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3212 struct dentry *dentry, struct fileattr *fa) 3213 { 3214 struct inode *inode = d_inode(dentry); 3215 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3216 u32 iflags; 3217 int err; 3218 3219 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3220 return -EIO; 3221 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3222 return -ENOSPC; 3223 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3224 return -EOPNOTSUPP; 3225 fsflags &= F2FS_SETTABLE_FS_FL; 3226 if (!fa->flags_valid) 3227 mask &= FS_COMMON_FL; 3228 3229 iflags = f2fs_fsflags_to_iflags(fsflags); 3230 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3231 return -EOPNOTSUPP; 3232 3233 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3234 if (!err) 3235 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3236 3237 return err; 3238 } 3239 3240 int f2fs_pin_file_control(struct inode *inode, bool inc) 3241 { 3242 struct f2fs_inode_info *fi = F2FS_I(inode); 3243 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3244 3245 /* Use i_gc_failures for normal file as a risk signal. */ 3246 if (inc) 3247 f2fs_i_gc_failures_write(inode, 3248 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3249 3250 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3251 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3252 __func__, inode->i_ino, 3253 fi->i_gc_failures[GC_FAILURE_PIN]); 3254 clear_inode_flag(inode, FI_PIN_FILE); 3255 return -EAGAIN; 3256 } 3257 return 0; 3258 } 3259 3260 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3261 { 3262 struct inode *inode = file_inode(filp); 3263 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3264 __u32 pin; 3265 int ret = 0; 3266 3267 if (get_user(pin, (__u32 __user *)arg)) 3268 return -EFAULT; 3269 3270 if (!S_ISREG(inode->i_mode)) 3271 return -EINVAL; 3272 3273 if (f2fs_readonly(sbi->sb)) 3274 return -EROFS; 3275 3276 ret = mnt_want_write_file(filp); 3277 if (ret) 3278 return ret; 3279 3280 inode_lock(inode); 3281 3282 if (!pin) { 3283 clear_inode_flag(inode, FI_PIN_FILE); 3284 f2fs_i_gc_failures_write(inode, 0); 3285 goto done; 3286 } else if (f2fs_is_pinned_file(inode)) { 3287 goto done; 3288 } 3289 3290 if (f2fs_sb_has_blkzoned(sbi) && F2FS_HAS_BLOCKS(inode)) { 3291 ret = -EFBIG; 3292 goto out; 3293 } 3294 3295 /* Let's allow file pinning on zoned device. */ 3296 if (!f2fs_sb_has_blkzoned(sbi) && 3297 f2fs_should_update_outplace(inode, NULL)) { 3298 ret = -EINVAL; 3299 goto out; 3300 } 3301 3302 if (f2fs_pin_file_control(inode, false)) { 3303 ret = -EAGAIN; 3304 goto out; 3305 } 3306 3307 ret = f2fs_convert_inline_inode(inode); 3308 if (ret) 3309 goto out; 3310 3311 if (!f2fs_disable_compressed_file(inode)) { 3312 ret = -EOPNOTSUPP; 3313 goto out; 3314 } 3315 3316 set_inode_flag(inode, FI_PIN_FILE); 3317 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3318 done: 3319 f2fs_update_time(sbi, REQ_TIME); 3320 out: 3321 inode_unlock(inode); 3322 mnt_drop_write_file(filp); 3323 return ret; 3324 } 3325 3326 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3327 { 3328 struct inode *inode = file_inode(filp); 3329 __u32 pin = 0; 3330 3331 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3332 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3333 return put_user(pin, (u32 __user *)arg); 3334 } 3335 3336 int f2fs_precache_extents(struct inode *inode) 3337 { 3338 struct f2fs_inode_info *fi = F2FS_I(inode); 3339 struct f2fs_map_blocks map; 3340 pgoff_t m_next_extent; 3341 loff_t end; 3342 int err; 3343 3344 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3345 return -EOPNOTSUPP; 3346 3347 map.m_lblk = 0; 3348 map.m_pblk = 0; 3349 map.m_next_pgofs = NULL; 3350 map.m_next_extent = &m_next_extent; 3351 map.m_seg_type = NO_CHECK_TYPE; 3352 map.m_may_create = false; 3353 end = max_file_blocks(inode); 3354 3355 while (map.m_lblk < end) { 3356 map.m_len = end - map.m_lblk; 3357 3358 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3359 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE); 3360 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3361 if (err) 3362 return err; 3363 3364 map.m_lblk = m_next_extent; 3365 } 3366 3367 return 0; 3368 } 3369 3370 static int f2fs_ioc_precache_extents(struct file *filp) 3371 { 3372 return f2fs_precache_extents(file_inode(filp)); 3373 } 3374 3375 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3376 { 3377 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3378 __u64 block_count; 3379 3380 if (!capable(CAP_SYS_ADMIN)) 3381 return -EPERM; 3382 3383 if (f2fs_readonly(sbi->sb)) 3384 return -EROFS; 3385 3386 if (copy_from_user(&block_count, (void __user *)arg, 3387 sizeof(block_count))) 3388 return -EFAULT; 3389 3390 return f2fs_resize_fs(filp, block_count); 3391 } 3392 3393 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3394 { 3395 struct inode *inode = file_inode(filp); 3396 3397 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3398 3399 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3400 f2fs_warn(F2FS_I_SB(inode), 3401 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3402 inode->i_ino); 3403 return -EOPNOTSUPP; 3404 } 3405 3406 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3407 } 3408 3409 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3410 { 3411 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3412 return -EOPNOTSUPP; 3413 3414 return fsverity_ioctl_measure(filp, (void __user *)arg); 3415 } 3416 3417 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3418 { 3419 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3420 return -EOPNOTSUPP; 3421 3422 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3423 } 3424 3425 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3426 { 3427 struct inode *inode = file_inode(filp); 3428 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3429 char *vbuf; 3430 int count; 3431 int err = 0; 3432 3433 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3434 if (!vbuf) 3435 return -ENOMEM; 3436 3437 f2fs_down_read(&sbi->sb_lock); 3438 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3439 ARRAY_SIZE(sbi->raw_super->volume_name), 3440 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3441 f2fs_up_read(&sbi->sb_lock); 3442 3443 if (copy_to_user((char __user *)arg, vbuf, 3444 min(FSLABEL_MAX, count))) 3445 err = -EFAULT; 3446 3447 kfree(vbuf); 3448 return err; 3449 } 3450 3451 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3452 { 3453 struct inode *inode = file_inode(filp); 3454 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3455 char *vbuf; 3456 int err = 0; 3457 3458 if (!capable(CAP_SYS_ADMIN)) 3459 return -EPERM; 3460 3461 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3462 if (IS_ERR(vbuf)) 3463 return PTR_ERR(vbuf); 3464 3465 err = mnt_want_write_file(filp); 3466 if (err) 3467 goto out; 3468 3469 f2fs_down_write(&sbi->sb_lock); 3470 3471 memset(sbi->raw_super->volume_name, 0, 3472 sizeof(sbi->raw_super->volume_name)); 3473 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3474 sbi->raw_super->volume_name, 3475 ARRAY_SIZE(sbi->raw_super->volume_name)); 3476 3477 err = f2fs_commit_super(sbi, false); 3478 3479 f2fs_up_write(&sbi->sb_lock); 3480 3481 mnt_drop_write_file(filp); 3482 out: 3483 kfree(vbuf); 3484 return err; 3485 } 3486 3487 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks) 3488 { 3489 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3490 return -EOPNOTSUPP; 3491 3492 if (!f2fs_compressed_file(inode)) 3493 return -EINVAL; 3494 3495 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3496 3497 return 0; 3498 } 3499 3500 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg) 3501 { 3502 struct inode *inode = file_inode(filp); 3503 __u64 blocks; 3504 int ret; 3505 3506 ret = f2fs_get_compress_blocks(inode, &blocks); 3507 if (ret < 0) 3508 return ret; 3509 3510 return put_user(blocks, (u64 __user *)arg); 3511 } 3512 3513 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3514 { 3515 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3516 unsigned int released_blocks = 0; 3517 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3518 block_t blkaddr; 3519 int i; 3520 3521 for (i = 0; i < count; i++) { 3522 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3523 dn->ofs_in_node + i); 3524 3525 if (!__is_valid_data_blkaddr(blkaddr)) 3526 continue; 3527 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3528 DATA_GENERIC_ENHANCE))) { 3529 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3530 return -EFSCORRUPTED; 3531 } 3532 } 3533 3534 while (count) { 3535 int compr_blocks = 0; 3536 3537 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3538 blkaddr = f2fs_data_blkaddr(dn); 3539 3540 if (i == 0) { 3541 if (blkaddr == COMPRESS_ADDR) 3542 continue; 3543 dn->ofs_in_node += cluster_size; 3544 goto next; 3545 } 3546 3547 if (__is_valid_data_blkaddr(blkaddr)) 3548 compr_blocks++; 3549 3550 if (blkaddr != NEW_ADDR) 3551 continue; 3552 3553 f2fs_set_data_blkaddr(dn, NULL_ADDR); 3554 } 3555 3556 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3557 dec_valid_block_count(sbi, dn->inode, 3558 cluster_size - compr_blocks); 3559 3560 released_blocks += cluster_size - compr_blocks; 3561 next: 3562 count -= cluster_size; 3563 } 3564 3565 return released_blocks; 3566 } 3567 3568 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3569 { 3570 struct inode *inode = file_inode(filp); 3571 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3572 pgoff_t page_idx = 0, last_idx; 3573 unsigned int released_blocks = 0; 3574 int ret; 3575 int writecount; 3576 3577 if (!f2fs_sb_has_compression(sbi)) 3578 return -EOPNOTSUPP; 3579 3580 if (f2fs_readonly(sbi->sb)) 3581 return -EROFS; 3582 3583 ret = mnt_want_write_file(filp); 3584 if (ret) 3585 return ret; 3586 3587 f2fs_balance_fs(sbi, true); 3588 3589 inode_lock(inode); 3590 3591 writecount = atomic_read(&inode->i_writecount); 3592 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3593 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3594 ret = -EBUSY; 3595 goto out; 3596 } 3597 3598 if (!f2fs_compressed_file(inode) || 3599 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3600 ret = -EINVAL; 3601 goto out; 3602 } 3603 3604 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3605 if (ret) 3606 goto out; 3607 3608 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3609 ret = -EPERM; 3610 goto out; 3611 } 3612 3613 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3614 inode_set_ctime_current(inode); 3615 f2fs_mark_inode_dirty_sync(inode, true); 3616 3617 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3618 filemap_invalidate_lock(inode->i_mapping); 3619 3620 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3621 3622 while (page_idx < last_idx) { 3623 struct dnode_of_data dn; 3624 pgoff_t end_offset, count; 3625 3626 f2fs_lock_op(sbi); 3627 3628 set_new_dnode(&dn, inode, NULL, NULL, 0); 3629 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3630 if (ret) { 3631 f2fs_unlock_op(sbi); 3632 if (ret == -ENOENT) { 3633 page_idx = f2fs_get_next_page_offset(&dn, 3634 page_idx); 3635 ret = 0; 3636 continue; 3637 } 3638 break; 3639 } 3640 3641 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3642 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3643 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3644 3645 ret = release_compress_blocks(&dn, count); 3646 3647 f2fs_put_dnode(&dn); 3648 3649 f2fs_unlock_op(sbi); 3650 3651 if (ret < 0) 3652 break; 3653 3654 page_idx += count; 3655 released_blocks += ret; 3656 } 3657 3658 filemap_invalidate_unlock(inode->i_mapping); 3659 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3660 out: 3661 inode_unlock(inode); 3662 3663 mnt_drop_write_file(filp); 3664 3665 if (ret >= 0) { 3666 ret = put_user(released_blocks, (u64 __user *)arg); 3667 } else if (released_blocks && 3668 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3669 set_sbi_flag(sbi, SBI_NEED_FSCK); 3670 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3671 "iblocks=%llu, released=%u, compr_blocks=%u, " 3672 "run fsck to fix.", 3673 __func__, inode->i_ino, inode->i_blocks, 3674 released_blocks, 3675 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3676 } 3677 3678 return ret; 3679 } 3680 3681 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count, 3682 unsigned int *reserved_blocks) 3683 { 3684 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3685 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3686 block_t blkaddr; 3687 int i; 3688 3689 for (i = 0; i < count; i++) { 3690 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3691 dn->ofs_in_node + i); 3692 3693 if (!__is_valid_data_blkaddr(blkaddr)) 3694 continue; 3695 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3696 DATA_GENERIC_ENHANCE))) { 3697 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3698 return -EFSCORRUPTED; 3699 } 3700 } 3701 3702 while (count) { 3703 int compr_blocks = 0; 3704 blkcnt_t reserved = 0; 3705 blkcnt_t to_reserved; 3706 int ret; 3707 3708 for (i = 0; i < cluster_size; i++) { 3709 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3710 dn->ofs_in_node + i); 3711 3712 if (i == 0) { 3713 if (blkaddr != COMPRESS_ADDR) { 3714 dn->ofs_in_node += cluster_size; 3715 goto next; 3716 } 3717 continue; 3718 } 3719 3720 /* 3721 * compressed cluster was not released due to it 3722 * fails in release_compress_blocks(), so NEW_ADDR 3723 * is a possible case. 3724 */ 3725 if (blkaddr == NEW_ADDR) { 3726 reserved++; 3727 continue; 3728 } 3729 if (__is_valid_data_blkaddr(blkaddr)) { 3730 compr_blocks++; 3731 continue; 3732 } 3733 } 3734 3735 to_reserved = cluster_size - compr_blocks - reserved; 3736 3737 /* for the case all blocks in cluster were reserved */ 3738 if (to_reserved == 1) { 3739 dn->ofs_in_node += cluster_size; 3740 goto next; 3741 } 3742 3743 ret = inc_valid_block_count(sbi, dn->inode, 3744 &to_reserved, false); 3745 if (unlikely(ret)) 3746 return ret; 3747 3748 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3749 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 3750 f2fs_set_data_blkaddr(dn, NEW_ADDR); 3751 } 3752 3753 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3754 3755 *reserved_blocks += to_reserved; 3756 next: 3757 count -= cluster_size; 3758 } 3759 3760 return 0; 3761 } 3762 3763 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3764 { 3765 struct inode *inode = file_inode(filp); 3766 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3767 pgoff_t page_idx = 0, last_idx; 3768 unsigned int reserved_blocks = 0; 3769 int ret; 3770 3771 if (!f2fs_sb_has_compression(sbi)) 3772 return -EOPNOTSUPP; 3773 3774 if (f2fs_readonly(sbi->sb)) 3775 return -EROFS; 3776 3777 ret = mnt_want_write_file(filp); 3778 if (ret) 3779 return ret; 3780 3781 f2fs_balance_fs(sbi, true); 3782 3783 inode_lock(inode); 3784 3785 if (!f2fs_compressed_file(inode) || 3786 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3787 ret = -EINVAL; 3788 goto unlock_inode; 3789 } 3790 3791 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3792 goto unlock_inode; 3793 3794 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3795 filemap_invalidate_lock(inode->i_mapping); 3796 3797 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3798 3799 while (page_idx < last_idx) { 3800 struct dnode_of_data dn; 3801 pgoff_t end_offset, count; 3802 3803 f2fs_lock_op(sbi); 3804 3805 set_new_dnode(&dn, inode, NULL, NULL, 0); 3806 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3807 if (ret) { 3808 f2fs_unlock_op(sbi); 3809 if (ret == -ENOENT) { 3810 page_idx = f2fs_get_next_page_offset(&dn, 3811 page_idx); 3812 ret = 0; 3813 continue; 3814 } 3815 break; 3816 } 3817 3818 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3819 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3820 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3821 3822 ret = reserve_compress_blocks(&dn, count, &reserved_blocks); 3823 3824 f2fs_put_dnode(&dn); 3825 3826 f2fs_unlock_op(sbi); 3827 3828 if (ret < 0) 3829 break; 3830 3831 page_idx += count; 3832 } 3833 3834 filemap_invalidate_unlock(inode->i_mapping); 3835 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3836 3837 if (!ret) { 3838 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3839 inode_set_ctime_current(inode); 3840 f2fs_mark_inode_dirty_sync(inode, true); 3841 } 3842 unlock_inode: 3843 inode_unlock(inode); 3844 mnt_drop_write_file(filp); 3845 3846 if (!ret) { 3847 ret = put_user(reserved_blocks, (u64 __user *)arg); 3848 } else if (reserved_blocks && 3849 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3850 set_sbi_flag(sbi, SBI_NEED_FSCK); 3851 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3852 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3853 "run fsck to fix.", 3854 __func__, inode->i_ino, inode->i_blocks, 3855 reserved_blocks, 3856 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3857 } 3858 3859 return ret; 3860 } 3861 3862 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3863 pgoff_t off, block_t block, block_t len, u32 flags) 3864 { 3865 sector_t sector = SECTOR_FROM_BLOCK(block); 3866 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3867 int ret = 0; 3868 3869 if (flags & F2FS_TRIM_FILE_DISCARD) { 3870 if (bdev_max_secure_erase_sectors(bdev)) 3871 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3872 GFP_NOFS); 3873 else 3874 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3875 GFP_NOFS); 3876 } 3877 3878 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3879 if (IS_ENCRYPTED(inode)) 3880 ret = fscrypt_zeroout_range(inode, off, block, len); 3881 else 3882 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3883 GFP_NOFS, 0); 3884 } 3885 3886 return ret; 3887 } 3888 3889 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3890 { 3891 struct inode *inode = file_inode(filp); 3892 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3893 struct address_space *mapping = inode->i_mapping; 3894 struct block_device *prev_bdev = NULL; 3895 struct f2fs_sectrim_range range; 3896 pgoff_t index, pg_end, prev_index = 0; 3897 block_t prev_block = 0, len = 0; 3898 loff_t end_addr; 3899 bool to_end = false; 3900 int ret = 0; 3901 3902 if (!(filp->f_mode & FMODE_WRITE)) 3903 return -EBADF; 3904 3905 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3906 sizeof(range))) 3907 return -EFAULT; 3908 3909 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3910 !S_ISREG(inode->i_mode)) 3911 return -EINVAL; 3912 3913 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3914 !f2fs_hw_support_discard(sbi)) || 3915 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3916 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3917 return -EOPNOTSUPP; 3918 3919 file_start_write(filp); 3920 inode_lock(inode); 3921 3922 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3923 range.start >= inode->i_size) { 3924 ret = -EINVAL; 3925 goto err; 3926 } 3927 3928 if (range.len == 0) 3929 goto err; 3930 3931 if (inode->i_size - range.start > range.len) { 3932 end_addr = range.start + range.len; 3933 } else { 3934 end_addr = range.len == (u64)-1 ? 3935 sbi->sb->s_maxbytes : inode->i_size; 3936 to_end = true; 3937 } 3938 3939 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3940 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3941 ret = -EINVAL; 3942 goto err; 3943 } 3944 3945 index = F2FS_BYTES_TO_BLK(range.start); 3946 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3947 3948 ret = f2fs_convert_inline_inode(inode); 3949 if (ret) 3950 goto err; 3951 3952 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3953 filemap_invalidate_lock(mapping); 3954 3955 ret = filemap_write_and_wait_range(mapping, range.start, 3956 to_end ? LLONG_MAX : end_addr - 1); 3957 if (ret) 3958 goto out; 3959 3960 truncate_inode_pages_range(mapping, range.start, 3961 to_end ? -1 : end_addr - 1); 3962 3963 while (index < pg_end) { 3964 struct dnode_of_data dn; 3965 pgoff_t end_offset, count; 3966 int i; 3967 3968 set_new_dnode(&dn, inode, NULL, NULL, 0); 3969 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3970 if (ret) { 3971 if (ret == -ENOENT) { 3972 index = f2fs_get_next_page_offset(&dn, index); 3973 continue; 3974 } 3975 goto out; 3976 } 3977 3978 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3979 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3980 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3981 struct block_device *cur_bdev; 3982 block_t blkaddr = f2fs_data_blkaddr(&dn); 3983 3984 if (!__is_valid_data_blkaddr(blkaddr)) 3985 continue; 3986 3987 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3988 DATA_GENERIC_ENHANCE)) { 3989 ret = -EFSCORRUPTED; 3990 f2fs_put_dnode(&dn); 3991 f2fs_handle_error(sbi, 3992 ERROR_INVALID_BLKADDR); 3993 goto out; 3994 } 3995 3996 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3997 if (f2fs_is_multi_device(sbi)) { 3998 int di = f2fs_target_device_index(sbi, blkaddr); 3999 4000 blkaddr -= FDEV(di).start_blk; 4001 } 4002 4003 if (len) { 4004 if (prev_bdev == cur_bdev && 4005 index == prev_index + len && 4006 blkaddr == prev_block + len) { 4007 len++; 4008 } else { 4009 ret = f2fs_secure_erase(prev_bdev, 4010 inode, prev_index, prev_block, 4011 len, range.flags); 4012 if (ret) { 4013 f2fs_put_dnode(&dn); 4014 goto out; 4015 } 4016 4017 len = 0; 4018 } 4019 } 4020 4021 if (!len) { 4022 prev_bdev = cur_bdev; 4023 prev_index = index; 4024 prev_block = blkaddr; 4025 len = 1; 4026 } 4027 } 4028 4029 f2fs_put_dnode(&dn); 4030 4031 if (fatal_signal_pending(current)) { 4032 ret = -EINTR; 4033 goto out; 4034 } 4035 cond_resched(); 4036 } 4037 4038 if (len) 4039 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 4040 prev_block, len, range.flags); 4041 out: 4042 filemap_invalidate_unlock(mapping); 4043 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4044 err: 4045 inode_unlock(inode); 4046 file_end_write(filp); 4047 4048 return ret; 4049 } 4050 4051 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 4052 { 4053 struct inode *inode = file_inode(filp); 4054 struct f2fs_comp_option option; 4055 4056 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 4057 return -EOPNOTSUPP; 4058 4059 inode_lock_shared(inode); 4060 4061 if (!f2fs_compressed_file(inode)) { 4062 inode_unlock_shared(inode); 4063 return -ENODATA; 4064 } 4065 4066 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 4067 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 4068 4069 inode_unlock_shared(inode); 4070 4071 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 4072 sizeof(option))) 4073 return -EFAULT; 4074 4075 return 0; 4076 } 4077 4078 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 4079 { 4080 struct inode *inode = file_inode(filp); 4081 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4082 struct f2fs_comp_option option; 4083 int ret = 0; 4084 4085 if (!f2fs_sb_has_compression(sbi)) 4086 return -EOPNOTSUPP; 4087 4088 if (!(filp->f_mode & FMODE_WRITE)) 4089 return -EBADF; 4090 4091 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 4092 sizeof(option))) 4093 return -EFAULT; 4094 4095 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 4096 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 4097 option.algorithm >= COMPRESS_MAX) 4098 return -EINVAL; 4099 4100 file_start_write(filp); 4101 inode_lock(inode); 4102 4103 f2fs_down_write(&F2FS_I(inode)->i_sem); 4104 if (!f2fs_compressed_file(inode)) { 4105 ret = -EINVAL; 4106 goto out; 4107 } 4108 4109 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 4110 ret = -EBUSY; 4111 goto out; 4112 } 4113 4114 if (F2FS_HAS_BLOCKS(inode)) { 4115 ret = -EFBIG; 4116 goto out; 4117 } 4118 4119 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 4120 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 4121 F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size); 4122 /* Set default level */ 4123 if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) 4124 F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 4125 else 4126 F2FS_I(inode)->i_compress_level = 0; 4127 /* Adjust mount option level */ 4128 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm && 4129 F2FS_OPTION(sbi).compress_level) 4130 F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level; 4131 f2fs_mark_inode_dirty_sync(inode, true); 4132 4133 if (!f2fs_is_compress_backend_ready(inode)) 4134 f2fs_warn(sbi, "compression algorithm is successfully set, " 4135 "but current kernel doesn't support this algorithm."); 4136 out: 4137 f2fs_up_write(&F2FS_I(inode)->i_sem); 4138 inode_unlock(inode); 4139 file_end_write(filp); 4140 4141 return ret; 4142 } 4143 4144 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 4145 { 4146 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 4147 struct address_space *mapping = inode->i_mapping; 4148 struct page *page; 4149 pgoff_t redirty_idx = page_idx; 4150 int i, page_len = 0, ret = 0; 4151 4152 page_cache_ra_unbounded(&ractl, len, 0); 4153 4154 for (i = 0; i < len; i++, page_idx++) { 4155 page = read_cache_page(mapping, page_idx, NULL, NULL); 4156 if (IS_ERR(page)) { 4157 ret = PTR_ERR(page); 4158 break; 4159 } 4160 page_len++; 4161 } 4162 4163 for (i = 0; i < page_len; i++, redirty_idx++) { 4164 page = find_lock_page(mapping, redirty_idx); 4165 4166 /* It will never fail, when page has pinned above */ 4167 f2fs_bug_on(F2FS_I_SB(inode), !page); 4168 4169 f2fs_wait_on_page_writeback(page, DATA, true, true); 4170 4171 set_page_dirty(page); 4172 set_page_private_gcing(page); 4173 f2fs_put_page(page, 1); 4174 f2fs_put_page(page, 0); 4175 } 4176 4177 return ret; 4178 } 4179 4180 static int f2fs_ioc_decompress_file(struct file *filp) 4181 { 4182 struct inode *inode = file_inode(filp); 4183 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4184 struct f2fs_inode_info *fi = F2FS_I(inode); 4185 pgoff_t page_idx = 0, last_idx, cluster_idx; 4186 int ret; 4187 4188 if (!f2fs_sb_has_compression(sbi) || 4189 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4190 return -EOPNOTSUPP; 4191 4192 if (!(filp->f_mode & FMODE_WRITE)) 4193 return -EBADF; 4194 4195 f2fs_balance_fs(sbi, true); 4196 4197 file_start_write(filp); 4198 inode_lock(inode); 4199 4200 if (!f2fs_is_compress_backend_ready(inode)) { 4201 ret = -EOPNOTSUPP; 4202 goto out; 4203 } 4204 4205 if (!f2fs_compressed_file(inode) || 4206 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4207 ret = -EINVAL; 4208 goto out; 4209 } 4210 4211 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4212 if (ret) 4213 goto out; 4214 4215 if (!atomic_read(&fi->i_compr_blocks)) 4216 goto out; 4217 4218 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4219 last_idx >>= fi->i_log_cluster_size; 4220 4221 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) { 4222 page_idx = cluster_idx << fi->i_log_cluster_size; 4223 4224 if (!f2fs_is_compressed_cluster(inode, page_idx)) 4225 continue; 4226 4227 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size); 4228 if (ret < 0) 4229 break; 4230 4231 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) { 4232 ret = filemap_fdatawrite(inode->i_mapping); 4233 if (ret < 0) 4234 break; 4235 } 4236 4237 cond_resched(); 4238 if (fatal_signal_pending(current)) { 4239 ret = -EINTR; 4240 break; 4241 } 4242 } 4243 4244 if (!ret) 4245 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4246 LLONG_MAX); 4247 4248 if (ret) 4249 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4250 __func__, ret); 4251 out: 4252 inode_unlock(inode); 4253 file_end_write(filp); 4254 4255 return ret; 4256 } 4257 4258 static int f2fs_ioc_compress_file(struct file *filp) 4259 { 4260 struct inode *inode = file_inode(filp); 4261 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4262 struct f2fs_inode_info *fi = F2FS_I(inode); 4263 pgoff_t page_idx = 0, last_idx, cluster_idx; 4264 int ret; 4265 4266 if (!f2fs_sb_has_compression(sbi) || 4267 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4268 return -EOPNOTSUPP; 4269 4270 if (!(filp->f_mode & FMODE_WRITE)) 4271 return -EBADF; 4272 4273 f2fs_balance_fs(sbi, true); 4274 4275 file_start_write(filp); 4276 inode_lock(inode); 4277 4278 if (!f2fs_is_compress_backend_ready(inode)) { 4279 ret = -EOPNOTSUPP; 4280 goto out; 4281 } 4282 4283 if (!f2fs_compressed_file(inode) || 4284 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4285 ret = -EINVAL; 4286 goto out; 4287 } 4288 4289 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4290 if (ret) 4291 goto out; 4292 4293 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4294 4295 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4296 last_idx >>= fi->i_log_cluster_size; 4297 4298 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) { 4299 page_idx = cluster_idx << fi->i_log_cluster_size; 4300 4301 if (f2fs_is_sparse_cluster(inode, page_idx)) 4302 continue; 4303 4304 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size); 4305 if (ret < 0) 4306 break; 4307 4308 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) { 4309 ret = filemap_fdatawrite(inode->i_mapping); 4310 if (ret < 0) 4311 break; 4312 } 4313 4314 cond_resched(); 4315 if (fatal_signal_pending(current)) { 4316 ret = -EINTR; 4317 break; 4318 } 4319 } 4320 4321 if (!ret) 4322 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4323 LLONG_MAX); 4324 4325 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4326 4327 if (ret) 4328 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4329 __func__, ret); 4330 out: 4331 inode_unlock(inode); 4332 file_end_write(filp); 4333 4334 return ret; 4335 } 4336 4337 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4338 { 4339 switch (cmd) { 4340 case FS_IOC_GETVERSION: 4341 return f2fs_ioc_getversion(filp, arg); 4342 case F2FS_IOC_START_ATOMIC_WRITE: 4343 return f2fs_ioc_start_atomic_write(filp, false); 4344 case F2FS_IOC_START_ATOMIC_REPLACE: 4345 return f2fs_ioc_start_atomic_write(filp, true); 4346 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4347 return f2fs_ioc_commit_atomic_write(filp); 4348 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4349 return f2fs_ioc_abort_atomic_write(filp); 4350 case F2FS_IOC_START_VOLATILE_WRITE: 4351 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4352 return -EOPNOTSUPP; 4353 case F2FS_IOC_SHUTDOWN: 4354 return f2fs_ioc_shutdown(filp, arg); 4355 case FITRIM: 4356 return f2fs_ioc_fitrim(filp, arg); 4357 case FS_IOC_SET_ENCRYPTION_POLICY: 4358 return f2fs_ioc_set_encryption_policy(filp, arg); 4359 case FS_IOC_GET_ENCRYPTION_POLICY: 4360 return f2fs_ioc_get_encryption_policy(filp, arg); 4361 case FS_IOC_GET_ENCRYPTION_PWSALT: 4362 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4363 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4364 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4365 case FS_IOC_ADD_ENCRYPTION_KEY: 4366 return f2fs_ioc_add_encryption_key(filp, arg); 4367 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4368 return f2fs_ioc_remove_encryption_key(filp, arg); 4369 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4370 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4371 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4372 return f2fs_ioc_get_encryption_key_status(filp, arg); 4373 case FS_IOC_GET_ENCRYPTION_NONCE: 4374 return f2fs_ioc_get_encryption_nonce(filp, arg); 4375 case F2FS_IOC_GARBAGE_COLLECT: 4376 return f2fs_ioc_gc(filp, arg); 4377 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4378 return f2fs_ioc_gc_range(filp, arg); 4379 case F2FS_IOC_WRITE_CHECKPOINT: 4380 return f2fs_ioc_write_checkpoint(filp); 4381 case F2FS_IOC_DEFRAGMENT: 4382 return f2fs_ioc_defragment(filp, arg); 4383 case F2FS_IOC_MOVE_RANGE: 4384 return f2fs_ioc_move_range(filp, arg); 4385 case F2FS_IOC_FLUSH_DEVICE: 4386 return f2fs_ioc_flush_device(filp, arg); 4387 case F2FS_IOC_GET_FEATURES: 4388 return f2fs_ioc_get_features(filp, arg); 4389 case F2FS_IOC_GET_PIN_FILE: 4390 return f2fs_ioc_get_pin_file(filp, arg); 4391 case F2FS_IOC_SET_PIN_FILE: 4392 return f2fs_ioc_set_pin_file(filp, arg); 4393 case F2FS_IOC_PRECACHE_EXTENTS: 4394 return f2fs_ioc_precache_extents(filp); 4395 case F2FS_IOC_RESIZE_FS: 4396 return f2fs_ioc_resize_fs(filp, arg); 4397 case FS_IOC_ENABLE_VERITY: 4398 return f2fs_ioc_enable_verity(filp, arg); 4399 case FS_IOC_MEASURE_VERITY: 4400 return f2fs_ioc_measure_verity(filp, arg); 4401 case FS_IOC_READ_VERITY_METADATA: 4402 return f2fs_ioc_read_verity_metadata(filp, arg); 4403 case FS_IOC_GETFSLABEL: 4404 return f2fs_ioc_getfslabel(filp, arg); 4405 case FS_IOC_SETFSLABEL: 4406 return f2fs_ioc_setfslabel(filp, arg); 4407 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4408 return f2fs_ioc_get_compress_blocks(filp, arg); 4409 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4410 return f2fs_release_compress_blocks(filp, arg); 4411 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4412 return f2fs_reserve_compress_blocks(filp, arg); 4413 case F2FS_IOC_SEC_TRIM_FILE: 4414 return f2fs_sec_trim_file(filp, arg); 4415 case F2FS_IOC_GET_COMPRESS_OPTION: 4416 return f2fs_ioc_get_compress_option(filp, arg); 4417 case F2FS_IOC_SET_COMPRESS_OPTION: 4418 return f2fs_ioc_set_compress_option(filp, arg); 4419 case F2FS_IOC_DECOMPRESS_FILE: 4420 return f2fs_ioc_decompress_file(filp); 4421 case F2FS_IOC_COMPRESS_FILE: 4422 return f2fs_ioc_compress_file(filp); 4423 default: 4424 return -ENOTTY; 4425 } 4426 } 4427 4428 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4429 { 4430 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4431 return -EIO; 4432 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4433 return -ENOSPC; 4434 4435 return __f2fs_ioctl(filp, cmd, arg); 4436 } 4437 4438 /* 4439 * Return %true if the given read or write request should use direct I/O, or 4440 * %false if it should use buffered I/O. 4441 */ 4442 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4443 struct iov_iter *iter) 4444 { 4445 unsigned int align; 4446 4447 if (!(iocb->ki_flags & IOCB_DIRECT)) 4448 return false; 4449 4450 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) 4451 return false; 4452 4453 /* 4454 * Direct I/O not aligned to the disk's logical_block_size will be 4455 * attempted, but will fail with -EINVAL. 4456 * 4457 * f2fs additionally requires that direct I/O be aligned to the 4458 * filesystem block size, which is often a stricter requirement. 4459 * However, f2fs traditionally falls back to buffered I/O on requests 4460 * that are logical_block_size-aligned but not fs-block aligned. 4461 * 4462 * The below logic implements this behavior. 4463 */ 4464 align = iocb->ki_pos | iov_iter_alignment(iter); 4465 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4466 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4467 return false; 4468 4469 return true; 4470 } 4471 4472 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4473 unsigned int flags) 4474 { 4475 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4476 4477 dec_page_count(sbi, F2FS_DIO_READ); 4478 if (error) 4479 return error; 4480 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size); 4481 return 0; 4482 } 4483 4484 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4485 .end_io = f2fs_dio_read_end_io, 4486 }; 4487 4488 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4489 { 4490 struct file *file = iocb->ki_filp; 4491 struct inode *inode = file_inode(file); 4492 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4493 struct f2fs_inode_info *fi = F2FS_I(inode); 4494 const loff_t pos = iocb->ki_pos; 4495 const size_t count = iov_iter_count(to); 4496 struct iomap_dio *dio; 4497 ssize_t ret; 4498 4499 if (count == 0) 4500 return 0; /* skip atime update */ 4501 4502 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4503 4504 if (iocb->ki_flags & IOCB_NOWAIT) { 4505 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4506 ret = -EAGAIN; 4507 goto out; 4508 } 4509 } else { 4510 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4511 } 4512 4513 /* 4514 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4515 * the higher-level function iomap_dio_rw() in order to ensure that the 4516 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4517 */ 4518 inc_page_count(sbi, F2FS_DIO_READ); 4519 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4520 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4521 if (IS_ERR_OR_NULL(dio)) { 4522 ret = PTR_ERR_OR_ZERO(dio); 4523 if (ret != -EIOCBQUEUED) 4524 dec_page_count(sbi, F2FS_DIO_READ); 4525 } else { 4526 ret = iomap_dio_complete(dio); 4527 } 4528 4529 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4530 4531 file_accessed(file); 4532 out: 4533 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4534 return ret; 4535 } 4536 4537 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count, 4538 int rw) 4539 { 4540 struct inode *inode = file_inode(file); 4541 char *buf, *path; 4542 4543 buf = f2fs_getname(F2FS_I_SB(inode)); 4544 if (!buf) 4545 return; 4546 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX); 4547 if (IS_ERR(path)) 4548 goto free_buf; 4549 if (rw == WRITE) 4550 trace_f2fs_datawrite_start(inode, pos, count, 4551 current->pid, path, current->comm); 4552 else 4553 trace_f2fs_dataread_start(inode, pos, count, 4554 current->pid, path, current->comm); 4555 free_buf: 4556 f2fs_putname(buf); 4557 } 4558 4559 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4560 { 4561 struct inode *inode = file_inode(iocb->ki_filp); 4562 const loff_t pos = iocb->ki_pos; 4563 ssize_t ret; 4564 4565 if (!f2fs_is_compress_backend_ready(inode)) 4566 return -EOPNOTSUPP; 4567 4568 if (trace_f2fs_dataread_start_enabled()) 4569 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 4570 iov_iter_count(to), READ); 4571 4572 /* In LFS mode, if there is inflight dio, wait for its completion */ 4573 if (f2fs_lfs_mode(F2FS_I_SB(inode))) 4574 inode_dio_wait(inode); 4575 4576 if (f2fs_should_use_dio(inode, iocb, to)) { 4577 ret = f2fs_dio_read_iter(iocb, to); 4578 } else { 4579 ret = filemap_read(iocb, to, 0); 4580 if (ret > 0) 4581 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4582 APP_BUFFERED_READ_IO, ret); 4583 } 4584 if (trace_f2fs_dataread_end_enabled()) 4585 trace_f2fs_dataread_end(inode, pos, ret); 4586 return ret; 4587 } 4588 4589 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos, 4590 struct pipe_inode_info *pipe, 4591 size_t len, unsigned int flags) 4592 { 4593 struct inode *inode = file_inode(in); 4594 const loff_t pos = *ppos; 4595 ssize_t ret; 4596 4597 if (!f2fs_is_compress_backend_ready(inode)) 4598 return -EOPNOTSUPP; 4599 4600 if (trace_f2fs_dataread_start_enabled()) 4601 f2fs_trace_rw_file_path(in, pos, len, READ); 4602 4603 ret = filemap_splice_read(in, ppos, pipe, len, flags); 4604 if (ret > 0) 4605 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4606 APP_BUFFERED_READ_IO, ret); 4607 4608 if (trace_f2fs_dataread_end_enabled()) 4609 trace_f2fs_dataread_end(inode, pos, ret); 4610 return ret; 4611 } 4612 4613 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4614 { 4615 struct file *file = iocb->ki_filp; 4616 struct inode *inode = file_inode(file); 4617 ssize_t count; 4618 int err; 4619 4620 if (IS_IMMUTABLE(inode)) 4621 return -EPERM; 4622 4623 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4624 return -EPERM; 4625 4626 count = generic_write_checks(iocb, from); 4627 if (count <= 0) 4628 return count; 4629 4630 err = file_modified(file); 4631 if (err) 4632 return err; 4633 return count; 4634 } 4635 4636 /* 4637 * Preallocate blocks for a write request, if it is possible and helpful to do 4638 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4639 * blocks were preallocated, or a negative errno value if something went 4640 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4641 * requested blocks (not just some of them) have been allocated. 4642 */ 4643 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4644 bool dio) 4645 { 4646 struct inode *inode = file_inode(iocb->ki_filp); 4647 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4648 const loff_t pos = iocb->ki_pos; 4649 const size_t count = iov_iter_count(iter); 4650 struct f2fs_map_blocks map = {}; 4651 int flag; 4652 int ret; 4653 4654 /* If it will be an out-of-place direct write, don't bother. */ 4655 if (dio && f2fs_lfs_mode(sbi)) 4656 return 0; 4657 /* 4658 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4659 * buffered IO, if DIO meets any holes. 4660 */ 4661 if (dio && i_size_read(inode) && 4662 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4663 return 0; 4664 4665 /* No-wait I/O can't allocate blocks. */ 4666 if (iocb->ki_flags & IOCB_NOWAIT) 4667 return 0; 4668 4669 /* If it will be a short write, don't bother. */ 4670 if (fault_in_iov_iter_readable(iter, count)) 4671 return 0; 4672 4673 if (f2fs_has_inline_data(inode)) { 4674 /* If the data will fit inline, don't bother. */ 4675 if (pos + count <= MAX_INLINE_DATA(inode)) 4676 return 0; 4677 ret = f2fs_convert_inline_inode(inode); 4678 if (ret) 4679 return ret; 4680 } 4681 4682 /* Do not preallocate blocks that will be written partially in 4KB. */ 4683 map.m_lblk = F2FS_BLK_ALIGN(pos); 4684 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4685 if (map.m_len > map.m_lblk) 4686 map.m_len -= map.m_lblk; 4687 else 4688 map.m_len = 0; 4689 map.m_may_create = true; 4690 if (dio) { 4691 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4692 flag = F2FS_GET_BLOCK_PRE_DIO; 4693 } else { 4694 map.m_seg_type = NO_CHECK_TYPE; 4695 flag = F2FS_GET_BLOCK_PRE_AIO; 4696 } 4697 4698 ret = f2fs_map_blocks(inode, &map, flag); 4699 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4700 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4701 return ret; 4702 if (ret == 0) 4703 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4704 return map.m_len; 4705 } 4706 4707 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4708 struct iov_iter *from) 4709 { 4710 struct file *file = iocb->ki_filp; 4711 struct inode *inode = file_inode(file); 4712 ssize_t ret; 4713 4714 if (iocb->ki_flags & IOCB_NOWAIT) 4715 return -EOPNOTSUPP; 4716 4717 ret = generic_perform_write(iocb, from); 4718 4719 if (ret > 0) { 4720 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4721 APP_BUFFERED_IO, ret); 4722 } 4723 return ret; 4724 } 4725 4726 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4727 unsigned int flags) 4728 { 4729 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4730 4731 dec_page_count(sbi, F2FS_DIO_WRITE); 4732 if (error) 4733 return error; 4734 f2fs_update_time(sbi, REQ_TIME); 4735 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size); 4736 return 0; 4737 } 4738 4739 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4740 .end_io = f2fs_dio_write_end_io, 4741 }; 4742 4743 static void f2fs_flush_buffered_write(struct address_space *mapping, 4744 loff_t start_pos, loff_t end_pos) 4745 { 4746 int ret; 4747 4748 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos); 4749 if (ret < 0) 4750 return; 4751 invalidate_mapping_pages(mapping, 4752 start_pos >> PAGE_SHIFT, 4753 end_pos >> PAGE_SHIFT); 4754 } 4755 4756 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4757 bool *may_need_sync) 4758 { 4759 struct file *file = iocb->ki_filp; 4760 struct inode *inode = file_inode(file); 4761 struct f2fs_inode_info *fi = F2FS_I(inode); 4762 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4763 const bool do_opu = f2fs_lfs_mode(sbi); 4764 const loff_t pos = iocb->ki_pos; 4765 const ssize_t count = iov_iter_count(from); 4766 unsigned int dio_flags; 4767 struct iomap_dio *dio; 4768 ssize_t ret; 4769 4770 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4771 4772 if (iocb->ki_flags & IOCB_NOWAIT) { 4773 /* f2fs_convert_inline_inode() and block allocation can block */ 4774 if (f2fs_has_inline_data(inode) || 4775 !f2fs_overwrite_io(inode, pos, count)) { 4776 ret = -EAGAIN; 4777 goto out; 4778 } 4779 4780 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4781 ret = -EAGAIN; 4782 goto out; 4783 } 4784 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4785 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4786 ret = -EAGAIN; 4787 goto out; 4788 } 4789 } else { 4790 ret = f2fs_convert_inline_inode(inode); 4791 if (ret) 4792 goto out; 4793 4794 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4795 if (do_opu) 4796 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4797 } 4798 4799 /* 4800 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4801 * the higher-level function iomap_dio_rw() in order to ensure that the 4802 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4803 */ 4804 inc_page_count(sbi, F2FS_DIO_WRITE); 4805 dio_flags = 0; 4806 if (pos + count > inode->i_size) 4807 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4808 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4809 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4810 if (IS_ERR_OR_NULL(dio)) { 4811 ret = PTR_ERR_OR_ZERO(dio); 4812 if (ret == -ENOTBLK) 4813 ret = 0; 4814 if (ret != -EIOCBQUEUED) 4815 dec_page_count(sbi, F2FS_DIO_WRITE); 4816 } else { 4817 ret = iomap_dio_complete(dio); 4818 } 4819 4820 if (do_opu) 4821 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4822 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4823 4824 if (ret < 0) 4825 goto out; 4826 if (pos + ret > inode->i_size) 4827 f2fs_i_size_write(inode, pos + ret); 4828 if (!do_opu) 4829 set_inode_flag(inode, FI_UPDATE_WRITE); 4830 4831 if (iov_iter_count(from)) { 4832 ssize_t ret2; 4833 loff_t bufio_start_pos = iocb->ki_pos; 4834 4835 /* 4836 * The direct write was partial, so we need to fall back to a 4837 * buffered write for the remainder. 4838 */ 4839 4840 ret2 = f2fs_buffered_write_iter(iocb, from); 4841 if (iov_iter_count(from)) 4842 f2fs_write_failed(inode, iocb->ki_pos); 4843 if (ret2 < 0) 4844 goto out; 4845 4846 /* 4847 * Ensure that the pagecache pages are written to disk and 4848 * invalidated to preserve the expected O_DIRECT semantics. 4849 */ 4850 if (ret2 > 0) { 4851 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4852 4853 ret += ret2; 4854 4855 f2fs_flush_buffered_write(file->f_mapping, 4856 bufio_start_pos, 4857 bufio_end_pos); 4858 } 4859 } else { 4860 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4861 *may_need_sync = false; 4862 } 4863 out: 4864 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4865 return ret; 4866 } 4867 4868 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4869 { 4870 struct inode *inode = file_inode(iocb->ki_filp); 4871 const loff_t orig_pos = iocb->ki_pos; 4872 const size_t orig_count = iov_iter_count(from); 4873 loff_t target_size; 4874 bool dio; 4875 bool may_need_sync = true; 4876 int preallocated; 4877 ssize_t ret; 4878 4879 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4880 ret = -EIO; 4881 goto out; 4882 } 4883 4884 if (!f2fs_is_compress_backend_ready(inode)) { 4885 ret = -EOPNOTSUPP; 4886 goto out; 4887 } 4888 4889 if (iocb->ki_flags & IOCB_NOWAIT) { 4890 if (!inode_trylock(inode)) { 4891 ret = -EAGAIN; 4892 goto out; 4893 } 4894 } else { 4895 inode_lock(inode); 4896 } 4897 4898 ret = f2fs_write_checks(iocb, from); 4899 if (ret <= 0) 4900 goto out_unlock; 4901 4902 /* Determine whether we will do a direct write or a buffered write. */ 4903 dio = f2fs_should_use_dio(inode, iocb, from); 4904 4905 /* Possibly preallocate the blocks for the write. */ 4906 target_size = iocb->ki_pos + iov_iter_count(from); 4907 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 4908 if (preallocated < 0) { 4909 ret = preallocated; 4910 } else { 4911 if (trace_f2fs_datawrite_start_enabled()) 4912 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 4913 orig_count, WRITE); 4914 4915 /* Do the actual write. */ 4916 ret = dio ? 4917 f2fs_dio_write_iter(iocb, from, &may_need_sync) : 4918 f2fs_buffered_write_iter(iocb, from); 4919 4920 if (trace_f2fs_datawrite_end_enabled()) 4921 trace_f2fs_datawrite_end(inode, orig_pos, ret); 4922 } 4923 4924 /* Don't leave any preallocated blocks around past i_size. */ 4925 if (preallocated && i_size_read(inode) < target_size) { 4926 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4927 filemap_invalidate_lock(inode->i_mapping); 4928 if (!f2fs_truncate(inode)) 4929 file_dont_truncate(inode); 4930 filemap_invalidate_unlock(inode->i_mapping); 4931 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4932 } else { 4933 file_dont_truncate(inode); 4934 } 4935 4936 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 4937 out_unlock: 4938 inode_unlock(inode); 4939 out: 4940 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 4941 4942 if (ret > 0 && may_need_sync) 4943 ret = generic_write_sync(iocb, ret); 4944 4945 /* If buffered IO was forced, flush and drop the data from 4946 * the page cache to preserve O_DIRECT semantics 4947 */ 4948 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT)) 4949 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping, 4950 orig_pos, 4951 orig_pos + ret - 1); 4952 4953 return ret; 4954 } 4955 4956 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 4957 int advice) 4958 { 4959 struct address_space *mapping; 4960 struct backing_dev_info *bdi; 4961 struct inode *inode = file_inode(filp); 4962 int err; 4963 4964 if (advice == POSIX_FADV_SEQUENTIAL) { 4965 if (S_ISFIFO(inode->i_mode)) 4966 return -ESPIPE; 4967 4968 mapping = filp->f_mapping; 4969 if (!mapping || len < 0) 4970 return -EINVAL; 4971 4972 bdi = inode_to_bdi(mapping->host); 4973 filp->f_ra.ra_pages = bdi->ra_pages * 4974 F2FS_I_SB(inode)->seq_file_ra_mul; 4975 spin_lock(&filp->f_lock); 4976 filp->f_mode &= ~FMODE_RANDOM; 4977 spin_unlock(&filp->f_lock); 4978 return 0; 4979 } 4980 4981 err = generic_fadvise(filp, offset, len, advice); 4982 if (!err && advice == POSIX_FADV_DONTNEED && 4983 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 4984 f2fs_compressed_file(inode)) 4985 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 4986 4987 return err; 4988 } 4989 4990 #ifdef CONFIG_COMPAT 4991 struct compat_f2fs_gc_range { 4992 u32 sync; 4993 compat_u64 start; 4994 compat_u64 len; 4995 }; 4996 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4997 struct compat_f2fs_gc_range) 4998 4999 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 5000 { 5001 struct compat_f2fs_gc_range __user *urange; 5002 struct f2fs_gc_range range; 5003 int err; 5004 5005 urange = compat_ptr(arg); 5006 err = get_user(range.sync, &urange->sync); 5007 err |= get_user(range.start, &urange->start); 5008 err |= get_user(range.len, &urange->len); 5009 if (err) 5010 return -EFAULT; 5011 5012 return __f2fs_ioc_gc_range(file, &range); 5013 } 5014 5015 struct compat_f2fs_move_range { 5016 u32 dst_fd; 5017 compat_u64 pos_in; 5018 compat_u64 pos_out; 5019 compat_u64 len; 5020 }; 5021 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 5022 struct compat_f2fs_move_range) 5023 5024 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 5025 { 5026 struct compat_f2fs_move_range __user *urange; 5027 struct f2fs_move_range range; 5028 int err; 5029 5030 urange = compat_ptr(arg); 5031 err = get_user(range.dst_fd, &urange->dst_fd); 5032 err |= get_user(range.pos_in, &urange->pos_in); 5033 err |= get_user(range.pos_out, &urange->pos_out); 5034 err |= get_user(range.len, &urange->len); 5035 if (err) 5036 return -EFAULT; 5037 5038 return __f2fs_ioc_move_range(file, &range); 5039 } 5040 5041 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5042 { 5043 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 5044 return -EIO; 5045 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 5046 return -ENOSPC; 5047 5048 switch (cmd) { 5049 case FS_IOC32_GETVERSION: 5050 cmd = FS_IOC_GETVERSION; 5051 break; 5052 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 5053 return f2fs_compat_ioc_gc_range(file, arg); 5054 case F2FS_IOC32_MOVE_RANGE: 5055 return f2fs_compat_ioc_move_range(file, arg); 5056 case F2FS_IOC_START_ATOMIC_WRITE: 5057 case F2FS_IOC_START_ATOMIC_REPLACE: 5058 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 5059 case F2FS_IOC_START_VOLATILE_WRITE: 5060 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 5061 case F2FS_IOC_ABORT_ATOMIC_WRITE: 5062 case F2FS_IOC_SHUTDOWN: 5063 case FITRIM: 5064 case FS_IOC_SET_ENCRYPTION_POLICY: 5065 case FS_IOC_GET_ENCRYPTION_PWSALT: 5066 case FS_IOC_GET_ENCRYPTION_POLICY: 5067 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 5068 case FS_IOC_ADD_ENCRYPTION_KEY: 5069 case FS_IOC_REMOVE_ENCRYPTION_KEY: 5070 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 5071 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 5072 case FS_IOC_GET_ENCRYPTION_NONCE: 5073 case F2FS_IOC_GARBAGE_COLLECT: 5074 case F2FS_IOC_WRITE_CHECKPOINT: 5075 case F2FS_IOC_DEFRAGMENT: 5076 case F2FS_IOC_FLUSH_DEVICE: 5077 case F2FS_IOC_GET_FEATURES: 5078 case F2FS_IOC_GET_PIN_FILE: 5079 case F2FS_IOC_SET_PIN_FILE: 5080 case F2FS_IOC_PRECACHE_EXTENTS: 5081 case F2FS_IOC_RESIZE_FS: 5082 case FS_IOC_ENABLE_VERITY: 5083 case FS_IOC_MEASURE_VERITY: 5084 case FS_IOC_READ_VERITY_METADATA: 5085 case FS_IOC_GETFSLABEL: 5086 case FS_IOC_SETFSLABEL: 5087 case F2FS_IOC_GET_COMPRESS_BLOCKS: 5088 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 5089 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 5090 case F2FS_IOC_SEC_TRIM_FILE: 5091 case F2FS_IOC_GET_COMPRESS_OPTION: 5092 case F2FS_IOC_SET_COMPRESS_OPTION: 5093 case F2FS_IOC_DECOMPRESS_FILE: 5094 case F2FS_IOC_COMPRESS_FILE: 5095 break; 5096 default: 5097 return -ENOIOCTLCMD; 5098 } 5099 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5100 } 5101 #endif 5102 5103 const struct file_operations f2fs_file_operations = { 5104 .llseek = f2fs_llseek, 5105 .read_iter = f2fs_file_read_iter, 5106 .write_iter = f2fs_file_write_iter, 5107 .iopoll = iocb_bio_iopoll, 5108 .open = f2fs_file_open, 5109 .release = f2fs_release_file, 5110 .mmap = f2fs_file_mmap, 5111 .flush = f2fs_file_flush, 5112 .fsync = f2fs_sync_file, 5113 .fallocate = f2fs_fallocate, 5114 .unlocked_ioctl = f2fs_ioctl, 5115 #ifdef CONFIG_COMPAT 5116 .compat_ioctl = f2fs_compat_ioctl, 5117 #endif 5118 .splice_read = f2fs_file_splice_read, 5119 .splice_write = iter_file_splice_write, 5120 .fadvise = f2fs_file_fadvise, 5121 }; 5122