xref: /openbmc/linux/fs/f2fs/file.c (revision 09b06c25)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (ret & VM_FAULT_LOCKED)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 
63 	if (unlikely(IS_IMMUTABLE(inode)))
64 		return VM_FAULT_SIGBUS;
65 
66 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 		return VM_FAULT_SIGBUS;
68 
69 	if (unlikely(f2fs_cp_error(sbi))) {
70 		err = -EIO;
71 		goto err;
72 	}
73 
74 	if (!f2fs_is_checkpoint_ready(sbi)) {
75 		err = -ENOSPC;
76 		goto err;
77 	}
78 
79 	err = f2fs_convert_inline_inode(inode);
80 	if (err)
81 		goto err;
82 
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 	if (f2fs_compressed_file(inode)) {
85 		int ret = f2fs_is_compressed_cluster(inode, page->index);
86 
87 		if (ret < 0) {
88 			err = ret;
89 			goto err;
90 		} else if (ret) {
91 			need_alloc = false;
92 		}
93 	}
94 #endif
95 	/* should do out of any locked page */
96 	if (need_alloc)
97 		f2fs_balance_fs(sbi, true);
98 
99 	sb_start_pagefault(inode->i_sb);
100 
101 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102 
103 	file_update_time(vmf->vma->vm_file);
104 	filemap_invalidate_lock_shared(inode->i_mapping);
105 	lock_page(page);
106 	if (unlikely(page->mapping != inode->i_mapping ||
107 			page_offset(page) > i_size_read(inode) ||
108 			!PageUptodate(page))) {
109 		unlock_page(page);
110 		err = -EFAULT;
111 		goto out_sem;
112 	}
113 
114 	if (need_alloc) {
115 		/* block allocation */
116 		set_new_dnode(&dn, inode, NULL, NULL, 0);
117 		err = f2fs_get_block_locked(&dn, page->index);
118 	}
119 
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 	if (!need_alloc) {
122 		set_new_dnode(&dn, inode, NULL, NULL, 0);
123 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 		f2fs_put_dnode(&dn);
125 	}
126 #endif
127 	if (err) {
128 		unlock_page(page);
129 		goto out_sem;
130 	}
131 
132 	f2fs_wait_on_page_writeback(page, DATA, false, true);
133 
134 	/* wait for GCed page writeback via META_MAPPING */
135 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136 
137 	/*
138 	 * check to see if the page is mapped already (no holes)
139 	 */
140 	if (PageMappedToDisk(page))
141 		goto out_sem;
142 
143 	/* page is wholly or partially inside EOF */
144 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 						i_size_read(inode)) {
146 		loff_t offset;
147 
148 		offset = i_size_read(inode) & ~PAGE_MASK;
149 		zero_user_segment(page, offset, PAGE_SIZE);
150 	}
151 	set_page_dirty(page);
152 
153 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154 	f2fs_update_time(sbi, REQ_TIME);
155 
156 	trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158 	filemap_invalidate_unlock_shared(inode->i_mapping);
159 
160 	sb_end_pagefault(inode->i_sb);
161 err:
162 	return vmf_fs_error(err);
163 }
164 
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166 	.fault		= f2fs_filemap_fault,
167 	.map_pages	= filemap_map_pages,
168 	.page_mkwrite	= f2fs_vm_page_mkwrite,
169 };
170 
171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173 	struct dentry *dentry;
174 
175 	/*
176 	 * Make sure to get the non-deleted alias.  The alias associated with
177 	 * the open file descriptor being fsync()'ed may be deleted already.
178 	 */
179 	dentry = d_find_alias(inode);
180 	if (!dentry)
181 		return 0;
182 
183 	*pino = parent_ino(dentry);
184 	dput(dentry);
185 	return 1;
186 }
187 
188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
192 
193 	if (!S_ISREG(inode->i_mode))
194 		cp_reason = CP_NON_REGULAR;
195 	else if (f2fs_compressed_file(inode))
196 		cp_reason = CP_COMPRESSED;
197 	else if (inode->i_nlink != 1)
198 		cp_reason = CP_HARDLINK;
199 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200 		cp_reason = CP_SB_NEED_CP;
201 	else if (file_wrong_pino(inode))
202 		cp_reason = CP_WRONG_PINO;
203 	else if (!f2fs_space_for_roll_forward(sbi))
204 		cp_reason = CP_NO_SPC_ROLL;
205 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206 		cp_reason = CP_NODE_NEED_CP;
207 	else if (test_opt(sbi, FASTBOOT))
208 		cp_reason = CP_FASTBOOT_MODE;
209 	else if (F2FS_OPTION(sbi).active_logs == 2)
210 		cp_reason = CP_SPEC_LOG_NUM;
211 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214 							TRANS_DIR_INO))
215 		cp_reason = CP_RECOVER_DIR;
216 	else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
217 							XATTR_DIR_INO))
218 		cp_reason = CP_XATTR_DIR;
219 
220 	return cp_reason;
221 }
222 
223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
224 {
225 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
226 	bool ret = false;
227 	/* But we need to avoid that there are some inode updates */
228 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
229 		ret = true;
230 	f2fs_put_page(i, 0);
231 	return ret;
232 }
233 
234 static void try_to_fix_pino(struct inode *inode)
235 {
236 	struct f2fs_inode_info *fi = F2FS_I(inode);
237 	nid_t pino;
238 
239 	f2fs_down_write(&fi->i_sem);
240 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
241 			get_parent_ino(inode, &pino)) {
242 		f2fs_i_pino_write(inode, pino);
243 		file_got_pino(inode);
244 	}
245 	f2fs_up_write(&fi->i_sem);
246 }
247 
248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
249 						int datasync, bool atomic)
250 {
251 	struct inode *inode = file->f_mapping->host;
252 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
253 	nid_t ino = inode->i_ino;
254 	int ret = 0;
255 	enum cp_reason_type cp_reason = 0;
256 	struct writeback_control wbc = {
257 		.sync_mode = WB_SYNC_ALL,
258 		.nr_to_write = LONG_MAX,
259 		.for_reclaim = 0,
260 	};
261 	unsigned int seq_id = 0;
262 
263 	if (unlikely(f2fs_readonly(inode->i_sb)))
264 		return 0;
265 
266 	trace_f2fs_sync_file_enter(inode);
267 
268 	if (S_ISDIR(inode->i_mode))
269 		goto go_write;
270 
271 	/* if fdatasync is triggered, let's do in-place-update */
272 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
273 		set_inode_flag(inode, FI_NEED_IPU);
274 	ret = file_write_and_wait_range(file, start, end);
275 	clear_inode_flag(inode, FI_NEED_IPU);
276 
277 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
278 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
279 		return ret;
280 	}
281 
282 	/* if the inode is dirty, let's recover all the time */
283 	if (!f2fs_skip_inode_update(inode, datasync)) {
284 		f2fs_write_inode(inode, NULL);
285 		goto go_write;
286 	}
287 
288 	/*
289 	 * if there is no written data, don't waste time to write recovery info.
290 	 */
291 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
292 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
293 
294 		/* it may call write_inode just prior to fsync */
295 		if (need_inode_page_update(sbi, ino))
296 			goto go_write;
297 
298 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
299 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
300 			goto flush_out;
301 		goto out;
302 	} else {
303 		/*
304 		 * for OPU case, during fsync(), node can be persisted before
305 		 * data when lower device doesn't support write barrier, result
306 		 * in data corruption after SPO.
307 		 * So for strict fsync mode, force to use atomic write semantics
308 		 * to keep write order in between data/node and last node to
309 		 * avoid potential data corruption.
310 		 */
311 		if (F2FS_OPTION(sbi).fsync_mode ==
312 				FSYNC_MODE_STRICT && !atomic)
313 			atomic = true;
314 	}
315 go_write:
316 	/*
317 	 * Both of fdatasync() and fsync() are able to be recovered from
318 	 * sudden-power-off.
319 	 */
320 	f2fs_down_read(&F2FS_I(inode)->i_sem);
321 	cp_reason = need_do_checkpoint(inode);
322 	f2fs_up_read(&F2FS_I(inode)->i_sem);
323 
324 	if (cp_reason) {
325 		/* all the dirty node pages should be flushed for POR */
326 		ret = f2fs_sync_fs(inode->i_sb, 1);
327 
328 		/*
329 		 * We've secured consistency through sync_fs. Following pino
330 		 * will be used only for fsynced inodes after checkpoint.
331 		 */
332 		try_to_fix_pino(inode);
333 		clear_inode_flag(inode, FI_APPEND_WRITE);
334 		clear_inode_flag(inode, FI_UPDATE_WRITE);
335 		goto out;
336 	}
337 sync_nodes:
338 	atomic_inc(&sbi->wb_sync_req[NODE]);
339 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
340 	atomic_dec(&sbi->wb_sync_req[NODE]);
341 	if (ret)
342 		goto out;
343 
344 	/* if cp_error was enabled, we should avoid infinite loop */
345 	if (unlikely(f2fs_cp_error(sbi))) {
346 		ret = -EIO;
347 		goto out;
348 	}
349 
350 	if (f2fs_need_inode_block_update(sbi, ino)) {
351 		f2fs_mark_inode_dirty_sync(inode, true);
352 		f2fs_write_inode(inode, NULL);
353 		goto sync_nodes;
354 	}
355 
356 	/*
357 	 * If it's atomic_write, it's just fine to keep write ordering. So
358 	 * here we don't need to wait for node write completion, since we use
359 	 * node chain which serializes node blocks. If one of node writes are
360 	 * reordered, we can see simply broken chain, resulting in stopping
361 	 * roll-forward recovery. It means we'll recover all or none node blocks
362 	 * given fsync mark.
363 	 */
364 	if (!atomic) {
365 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
366 		if (ret)
367 			goto out;
368 	}
369 
370 	/* once recovery info is written, don't need to tack this */
371 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
372 	clear_inode_flag(inode, FI_APPEND_WRITE);
373 flush_out:
374 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
375 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
376 		ret = f2fs_issue_flush(sbi, inode->i_ino);
377 	if (!ret) {
378 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
379 		clear_inode_flag(inode, FI_UPDATE_WRITE);
380 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
381 	}
382 	f2fs_update_time(sbi, REQ_TIME);
383 out:
384 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
385 	return ret;
386 }
387 
388 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
389 {
390 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
391 		return -EIO;
392 	return f2fs_do_sync_file(file, start, end, datasync, false);
393 }
394 
395 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
396 				pgoff_t index, int whence)
397 {
398 	switch (whence) {
399 	case SEEK_DATA:
400 		if (__is_valid_data_blkaddr(blkaddr))
401 			return true;
402 		if (blkaddr == NEW_ADDR &&
403 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
404 			return true;
405 		break;
406 	case SEEK_HOLE:
407 		if (blkaddr == NULL_ADDR)
408 			return true;
409 		break;
410 	}
411 	return false;
412 }
413 
414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
415 {
416 	struct inode *inode = file->f_mapping->host;
417 	loff_t maxbytes = inode->i_sb->s_maxbytes;
418 	struct dnode_of_data dn;
419 	pgoff_t pgofs, end_offset;
420 	loff_t data_ofs = offset;
421 	loff_t isize;
422 	int err = 0;
423 
424 	inode_lock(inode);
425 
426 	isize = i_size_read(inode);
427 	if (offset >= isize)
428 		goto fail;
429 
430 	/* handle inline data case */
431 	if (f2fs_has_inline_data(inode)) {
432 		if (whence == SEEK_HOLE) {
433 			data_ofs = isize;
434 			goto found;
435 		} else if (whence == SEEK_DATA) {
436 			data_ofs = offset;
437 			goto found;
438 		}
439 	}
440 
441 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
442 
443 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
444 		set_new_dnode(&dn, inode, NULL, NULL, 0);
445 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
446 		if (err && err != -ENOENT) {
447 			goto fail;
448 		} else if (err == -ENOENT) {
449 			/* direct node does not exists */
450 			if (whence == SEEK_DATA) {
451 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
452 				continue;
453 			} else {
454 				goto found;
455 			}
456 		}
457 
458 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
459 
460 		/* find data/hole in dnode block */
461 		for (; dn.ofs_in_node < end_offset;
462 				dn.ofs_in_node++, pgofs++,
463 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
464 			block_t blkaddr;
465 
466 			blkaddr = f2fs_data_blkaddr(&dn);
467 
468 			if (__is_valid_data_blkaddr(blkaddr) &&
469 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
470 					blkaddr, DATA_GENERIC_ENHANCE)) {
471 				f2fs_put_dnode(&dn);
472 				goto fail;
473 			}
474 
475 			if (__found_offset(file->f_mapping, blkaddr,
476 							pgofs, whence)) {
477 				f2fs_put_dnode(&dn);
478 				goto found;
479 			}
480 		}
481 		f2fs_put_dnode(&dn);
482 	}
483 
484 	if (whence == SEEK_DATA)
485 		goto fail;
486 found:
487 	if (whence == SEEK_HOLE && data_ofs > isize)
488 		data_ofs = isize;
489 	inode_unlock(inode);
490 	return vfs_setpos(file, data_ofs, maxbytes);
491 fail:
492 	inode_unlock(inode);
493 	return -ENXIO;
494 }
495 
496 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
497 {
498 	struct inode *inode = file->f_mapping->host;
499 	loff_t maxbytes = inode->i_sb->s_maxbytes;
500 
501 	if (f2fs_compressed_file(inode))
502 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
503 
504 	switch (whence) {
505 	case SEEK_SET:
506 	case SEEK_CUR:
507 	case SEEK_END:
508 		return generic_file_llseek_size(file, offset, whence,
509 						maxbytes, i_size_read(inode));
510 	case SEEK_DATA:
511 	case SEEK_HOLE:
512 		if (offset < 0)
513 			return -ENXIO;
514 		return f2fs_seek_block(file, offset, whence);
515 	}
516 
517 	return -EINVAL;
518 }
519 
520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
521 {
522 	struct inode *inode = file_inode(file);
523 
524 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
525 		return -EIO;
526 
527 	if (!f2fs_is_compress_backend_ready(inode))
528 		return -EOPNOTSUPP;
529 
530 	file_accessed(file);
531 	vma->vm_ops = &f2fs_file_vm_ops;
532 
533 	f2fs_down_read(&F2FS_I(inode)->i_sem);
534 	set_inode_flag(inode, FI_MMAP_FILE);
535 	f2fs_up_read(&F2FS_I(inode)->i_sem);
536 
537 	return 0;
538 }
539 
540 static int finish_preallocate_blocks(struct inode *inode)
541 {
542 	int ret;
543 
544 	inode_lock(inode);
545 	if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
546 		inode_unlock(inode);
547 		return 0;
548 	}
549 
550 	if (!file_should_truncate(inode)) {
551 		set_inode_flag(inode, FI_OPENED_FILE);
552 		inode_unlock(inode);
553 		return 0;
554 	}
555 
556 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
557 	filemap_invalidate_lock(inode->i_mapping);
558 
559 	truncate_setsize(inode, i_size_read(inode));
560 	ret = f2fs_truncate(inode);
561 
562 	filemap_invalidate_unlock(inode->i_mapping);
563 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
564 
565 	if (!ret)
566 		set_inode_flag(inode, FI_OPENED_FILE);
567 
568 	inode_unlock(inode);
569 	if (ret)
570 		return ret;
571 
572 	file_dont_truncate(inode);
573 	return 0;
574 }
575 
576 static int f2fs_file_open(struct inode *inode, struct file *filp)
577 {
578 	int err = fscrypt_file_open(inode, filp);
579 
580 	if (err)
581 		return err;
582 
583 	if (!f2fs_is_compress_backend_ready(inode))
584 		return -EOPNOTSUPP;
585 
586 	err = fsverity_file_open(inode, filp);
587 	if (err)
588 		return err;
589 
590 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
591 	filp->f_mode |= FMODE_CAN_ODIRECT;
592 
593 	err = dquot_file_open(inode, filp);
594 	if (err)
595 		return err;
596 
597 	return finish_preallocate_blocks(inode);
598 }
599 
600 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
601 {
602 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
603 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
604 	__le32 *addr;
605 	bool compressed_cluster = false;
606 	int cluster_index = 0, valid_blocks = 0;
607 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
608 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
609 
610 	addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
611 
612 	/* Assumption: truncation starts with cluster */
613 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
614 		block_t blkaddr = le32_to_cpu(*addr);
615 
616 		if (f2fs_compressed_file(dn->inode) &&
617 					!(cluster_index & (cluster_size - 1))) {
618 			if (compressed_cluster)
619 				f2fs_i_compr_blocks_update(dn->inode,
620 							valid_blocks, false);
621 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
622 			valid_blocks = 0;
623 		}
624 
625 		if (blkaddr == NULL_ADDR)
626 			continue;
627 
628 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
629 
630 		if (__is_valid_data_blkaddr(blkaddr)) {
631 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
632 					DATA_GENERIC_ENHANCE))
633 				continue;
634 			if (compressed_cluster)
635 				valid_blocks++;
636 		}
637 
638 		f2fs_invalidate_blocks(sbi, blkaddr);
639 
640 		if (!released || blkaddr != COMPRESS_ADDR)
641 			nr_free++;
642 	}
643 
644 	if (compressed_cluster)
645 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
646 
647 	if (nr_free) {
648 		pgoff_t fofs;
649 		/*
650 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
651 		 * we will invalidate all blkaddr in the whole range.
652 		 */
653 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
654 							dn->inode) + ofs;
655 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
656 		f2fs_update_age_extent_cache_range(dn, fofs, len);
657 		dec_valid_block_count(sbi, dn->inode, nr_free);
658 	}
659 	dn->ofs_in_node = ofs;
660 
661 	f2fs_update_time(sbi, REQ_TIME);
662 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
663 					 dn->ofs_in_node, nr_free);
664 }
665 
666 static int truncate_partial_data_page(struct inode *inode, u64 from,
667 								bool cache_only)
668 {
669 	loff_t offset = from & (PAGE_SIZE - 1);
670 	pgoff_t index = from >> PAGE_SHIFT;
671 	struct address_space *mapping = inode->i_mapping;
672 	struct page *page;
673 
674 	if (!offset && !cache_only)
675 		return 0;
676 
677 	if (cache_only) {
678 		page = find_lock_page(mapping, index);
679 		if (page && PageUptodate(page))
680 			goto truncate_out;
681 		f2fs_put_page(page, 1);
682 		return 0;
683 	}
684 
685 	page = f2fs_get_lock_data_page(inode, index, true);
686 	if (IS_ERR(page))
687 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
688 truncate_out:
689 	f2fs_wait_on_page_writeback(page, DATA, true, true);
690 	zero_user(page, offset, PAGE_SIZE - offset);
691 
692 	/* An encrypted inode should have a key and truncate the last page. */
693 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
694 	if (!cache_only)
695 		set_page_dirty(page);
696 	f2fs_put_page(page, 1);
697 	return 0;
698 }
699 
700 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
701 {
702 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
703 	struct dnode_of_data dn;
704 	pgoff_t free_from;
705 	int count = 0, err = 0;
706 	struct page *ipage;
707 	bool truncate_page = false;
708 
709 	trace_f2fs_truncate_blocks_enter(inode, from);
710 
711 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
712 
713 	if (free_from >= max_file_blocks(inode))
714 		goto free_partial;
715 
716 	if (lock)
717 		f2fs_lock_op(sbi);
718 
719 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
720 	if (IS_ERR(ipage)) {
721 		err = PTR_ERR(ipage);
722 		goto out;
723 	}
724 
725 	if (f2fs_has_inline_data(inode)) {
726 		f2fs_truncate_inline_inode(inode, ipage, from);
727 		f2fs_put_page(ipage, 1);
728 		truncate_page = true;
729 		goto out;
730 	}
731 
732 	set_new_dnode(&dn, inode, ipage, NULL, 0);
733 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
734 	if (err) {
735 		if (err == -ENOENT)
736 			goto free_next;
737 		goto out;
738 	}
739 
740 	count = ADDRS_PER_PAGE(dn.node_page, inode);
741 
742 	count -= dn.ofs_in_node;
743 	f2fs_bug_on(sbi, count < 0);
744 
745 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
746 		f2fs_truncate_data_blocks_range(&dn, count);
747 		free_from += count;
748 	}
749 
750 	f2fs_put_dnode(&dn);
751 free_next:
752 	err = f2fs_truncate_inode_blocks(inode, free_from);
753 out:
754 	if (lock)
755 		f2fs_unlock_op(sbi);
756 free_partial:
757 	/* lastly zero out the first data page */
758 	if (!err)
759 		err = truncate_partial_data_page(inode, from, truncate_page);
760 
761 	trace_f2fs_truncate_blocks_exit(inode, err);
762 	return err;
763 }
764 
765 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
766 {
767 	u64 free_from = from;
768 	int err;
769 
770 #ifdef CONFIG_F2FS_FS_COMPRESSION
771 	/*
772 	 * for compressed file, only support cluster size
773 	 * aligned truncation.
774 	 */
775 	if (f2fs_compressed_file(inode))
776 		free_from = round_up(from,
777 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
778 #endif
779 
780 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
781 	if (err)
782 		return err;
783 
784 #ifdef CONFIG_F2FS_FS_COMPRESSION
785 	/*
786 	 * For compressed file, after release compress blocks, don't allow write
787 	 * direct, but we should allow write direct after truncate to zero.
788 	 */
789 	if (f2fs_compressed_file(inode) && !free_from
790 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
791 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
792 
793 	if (from != free_from) {
794 		err = f2fs_truncate_partial_cluster(inode, from, lock);
795 		if (err)
796 			return err;
797 	}
798 #endif
799 
800 	return 0;
801 }
802 
803 int f2fs_truncate(struct inode *inode)
804 {
805 	int err;
806 
807 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
808 		return -EIO;
809 
810 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
811 				S_ISLNK(inode->i_mode)))
812 		return 0;
813 
814 	trace_f2fs_truncate(inode);
815 
816 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
817 		return -EIO;
818 
819 	err = f2fs_dquot_initialize(inode);
820 	if (err)
821 		return err;
822 
823 	/* we should check inline_data size */
824 	if (!f2fs_may_inline_data(inode)) {
825 		err = f2fs_convert_inline_inode(inode);
826 		if (err)
827 			return err;
828 	}
829 
830 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
831 	if (err)
832 		return err;
833 
834 	inode->i_mtime = inode_set_ctime_current(inode);
835 	f2fs_mark_inode_dirty_sync(inode, false);
836 	return 0;
837 }
838 
839 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
840 {
841 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
842 
843 	if (!fscrypt_dio_supported(inode))
844 		return true;
845 	if (fsverity_active(inode))
846 		return true;
847 	if (f2fs_compressed_file(inode))
848 		return true;
849 	if (f2fs_has_inline_data(inode))
850 		return true;
851 
852 	/* disallow direct IO if any of devices has unaligned blksize */
853 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
854 		return true;
855 	/*
856 	 * for blkzoned device, fallback direct IO to buffered IO, so
857 	 * all IOs can be serialized by log-structured write.
858 	 */
859 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
860 		return true;
861 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
862 		return true;
863 
864 	return false;
865 }
866 
867 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
868 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
869 {
870 	struct inode *inode = d_inode(path->dentry);
871 	struct f2fs_inode_info *fi = F2FS_I(inode);
872 	struct f2fs_inode *ri = NULL;
873 	unsigned int flags;
874 
875 	if (f2fs_has_extra_attr(inode) &&
876 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
877 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
878 		stat->result_mask |= STATX_BTIME;
879 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
880 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
881 	}
882 
883 	/*
884 	 * Return the DIO alignment restrictions if requested.  We only return
885 	 * this information when requested, since on encrypted files it might
886 	 * take a fair bit of work to get if the file wasn't opened recently.
887 	 *
888 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
889 	 * cannot represent that, so in that case we report no DIO support.
890 	 */
891 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
892 		unsigned int bsize = i_blocksize(inode);
893 
894 		stat->result_mask |= STATX_DIOALIGN;
895 		if (!f2fs_force_buffered_io(inode, WRITE)) {
896 			stat->dio_mem_align = bsize;
897 			stat->dio_offset_align = bsize;
898 		}
899 	}
900 
901 	flags = fi->i_flags;
902 	if (flags & F2FS_COMPR_FL)
903 		stat->attributes |= STATX_ATTR_COMPRESSED;
904 	if (flags & F2FS_APPEND_FL)
905 		stat->attributes |= STATX_ATTR_APPEND;
906 	if (IS_ENCRYPTED(inode))
907 		stat->attributes |= STATX_ATTR_ENCRYPTED;
908 	if (flags & F2FS_IMMUTABLE_FL)
909 		stat->attributes |= STATX_ATTR_IMMUTABLE;
910 	if (flags & F2FS_NODUMP_FL)
911 		stat->attributes |= STATX_ATTR_NODUMP;
912 	if (IS_VERITY(inode))
913 		stat->attributes |= STATX_ATTR_VERITY;
914 
915 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
916 				  STATX_ATTR_APPEND |
917 				  STATX_ATTR_ENCRYPTED |
918 				  STATX_ATTR_IMMUTABLE |
919 				  STATX_ATTR_NODUMP |
920 				  STATX_ATTR_VERITY);
921 
922 	generic_fillattr(idmap, request_mask, inode, stat);
923 
924 	/* we need to show initial sectors used for inline_data/dentries */
925 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
926 					f2fs_has_inline_dentry(inode))
927 		stat->blocks += (stat->size + 511) >> 9;
928 
929 	return 0;
930 }
931 
932 #ifdef CONFIG_F2FS_FS_POSIX_ACL
933 static void __setattr_copy(struct mnt_idmap *idmap,
934 			   struct inode *inode, const struct iattr *attr)
935 {
936 	unsigned int ia_valid = attr->ia_valid;
937 
938 	i_uid_update(idmap, attr, inode);
939 	i_gid_update(idmap, attr, inode);
940 	if (ia_valid & ATTR_ATIME)
941 		inode->i_atime = attr->ia_atime;
942 	if (ia_valid & ATTR_MTIME)
943 		inode->i_mtime = attr->ia_mtime;
944 	if (ia_valid & ATTR_CTIME)
945 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
946 	if (ia_valid & ATTR_MODE) {
947 		umode_t mode = attr->ia_mode;
948 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
949 
950 		if (!vfsgid_in_group_p(vfsgid) &&
951 		    !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
952 			mode &= ~S_ISGID;
953 		set_acl_inode(inode, mode);
954 	}
955 }
956 #else
957 #define __setattr_copy setattr_copy
958 #endif
959 
960 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
961 		 struct iattr *attr)
962 {
963 	struct inode *inode = d_inode(dentry);
964 	int err;
965 
966 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
967 		return -EIO;
968 
969 	if (unlikely(IS_IMMUTABLE(inode)))
970 		return -EPERM;
971 
972 	if (unlikely(IS_APPEND(inode) &&
973 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
974 				  ATTR_GID | ATTR_TIMES_SET))))
975 		return -EPERM;
976 
977 	if ((attr->ia_valid & ATTR_SIZE)) {
978 		if (!f2fs_is_compress_backend_ready(inode))
979 			return -EOPNOTSUPP;
980 		if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
981 			!IS_ALIGNED(attr->ia_size,
982 			F2FS_BLK_TO_BYTES(F2FS_I(inode)->i_cluster_size)))
983 			return -EINVAL;
984 	}
985 
986 	err = setattr_prepare(idmap, dentry, attr);
987 	if (err)
988 		return err;
989 
990 	err = fscrypt_prepare_setattr(dentry, attr);
991 	if (err)
992 		return err;
993 
994 	err = fsverity_prepare_setattr(dentry, attr);
995 	if (err)
996 		return err;
997 
998 	if (is_quota_modification(idmap, inode, attr)) {
999 		err = f2fs_dquot_initialize(inode);
1000 		if (err)
1001 			return err;
1002 	}
1003 	if (i_uid_needs_update(idmap, attr, inode) ||
1004 	    i_gid_needs_update(idmap, attr, inode)) {
1005 		f2fs_lock_op(F2FS_I_SB(inode));
1006 		err = dquot_transfer(idmap, inode, attr);
1007 		if (err) {
1008 			set_sbi_flag(F2FS_I_SB(inode),
1009 					SBI_QUOTA_NEED_REPAIR);
1010 			f2fs_unlock_op(F2FS_I_SB(inode));
1011 			return err;
1012 		}
1013 		/*
1014 		 * update uid/gid under lock_op(), so that dquot and inode can
1015 		 * be updated atomically.
1016 		 */
1017 		i_uid_update(idmap, attr, inode);
1018 		i_gid_update(idmap, attr, inode);
1019 		f2fs_mark_inode_dirty_sync(inode, true);
1020 		f2fs_unlock_op(F2FS_I_SB(inode));
1021 	}
1022 
1023 	if (attr->ia_valid & ATTR_SIZE) {
1024 		loff_t old_size = i_size_read(inode);
1025 
1026 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1027 			/*
1028 			 * should convert inline inode before i_size_write to
1029 			 * keep smaller than inline_data size with inline flag.
1030 			 */
1031 			err = f2fs_convert_inline_inode(inode);
1032 			if (err)
1033 				return err;
1034 		}
1035 
1036 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1037 		filemap_invalidate_lock(inode->i_mapping);
1038 
1039 		truncate_setsize(inode, attr->ia_size);
1040 
1041 		if (attr->ia_size <= old_size)
1042 			err = f2fs_truncate(inode);
1043 		/*
1044 		 * do not trim all blocks after i_size if target size is
1045 		 * larger than i_size.
1046 		 */
1047 		filemap_invalidate_unlock(inode->i_mapping);
1048 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1049 		if (err)
1050 			return err;
1051 
1052 		spin_lock(&F2FS_I(inode)->i_size_lock);
1053 		inode->i_mtime = inode_set_ctime_current(inode);
1054 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1055 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1056 	}
1057 
1058 	__setattr_copy(idmap, inode, attr);
1059 
1060 	if (attr->ia_valid & ATTR_MODE) {
1061 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1062 
1063 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1064 			if (!err)
1065 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1066 			clear_inode_flag(inode, FI_ACL_MODE);
1067 		}
1068 	}
1069 
1070 	/* file size may changed here */
1071 	f2fs_mark_inode_dirty_sync(inode, true);
1072 
1073 	/* inode change will produce dirty node pages flushed by checkpoint */
1074 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1075 
1076 	return err;
1077 }
1078 
1079 const struct inode_operations f2fs_file_inode_operations = {
1080 	.getattr	= f2fs_getattr,
1081 	.setattr	= f2fs_setattr,
1082 	.get_inode_acl	= f2fs_get_acl,
1083 	.set_acl	= f2fs_set_acl,
1084 	.listxattr	= f2fs_listxattr,
1085 	.fiemap		= f2fs_fiemap,
1086 	.fileattr_get	= f2fs_fileattr_get,
1087 	.fileattr_set	= f2fs_fileattr_set,
1088 };
1089 
1090 static int fill_zero(struct inode *inode, pgoff_t index,
1091 					loff_t start, loff_t len)
1092 {
1093 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1094 	struct page *page;
1095 
1096 	if (!len)
1097 		return 0;
1098 
1099 	f2fs_balance_fs(sbi, true);
1100 
1101 	f2fs_lock_op(sbi);
1102 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1103 	f2fs_unlock_op(sbi);
1104 
1105 	if (IS_ERR(page))
1106 		return PTR_ERR(page);
1107 
1108 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1109 	zero_user(page, start, len);
1110 	set_page_dirty(page);
1111 	f2fs_put_page(page, 1);
1112 	return 0;
1113 }
1114 
1115 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1116 {
1117 	int err;
1118 
1119 	while (pg_start < pg_end) {
1120 		struct dnode_of_data dn;
1121 		pgoff_t end_offset, count;
1122 
1123 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1124 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1125 		if (err) {
1126 			if (err == -ENOENT) {
1127 				pg_start = f2fs_get_next_page_offset(&dn,
1128 								pg_start);
1129 				continue;
1130 			}
1131 			return err;
1132 		}
1133 
1134 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1135 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1136 
1137 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1138 
1139 		f2fs_truncate_data_blocks_range(&dn, count);
1140 		f2fs_put_dnode(&dn);
1141 
1142 		pg_start += count;
1143 	}
1144 	return 0;
1145 }
1146 
1147 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1148 {
1149 	pgoff_t pg_start, pg_end;
1150 	loff_t off_start, off_end;
1151 	int ret;
1152 
1153 	ret = f2fs_convert_inline_inode(inode);
1154 	if (ret)
1155 		return ret;
1156 
1157 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1158 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1159 
1160 	off_start = offset & (PAGE_SIZE - 1);
1161 	off_end = (offset + len) & (PAGE_SIZE - 1);
1162 
1163 	if (pg_start == pg_end) {
1164 		ret = fill_zero(inode, pg_start, off_start,
1165 						off_end - off_start);
1166 		if (ret)
1167 			return ret;
1168 	} else {
1169 		if (off_start) {
1170 			ret = fill_zero(inode, pg_start++, off_start,
1171 						PAGE_SIZE - off_start);
1172 			if (ret)
1173 				return ret;
1174 		}
1175 		if (off_end) {
1176 			ret = fill_zero(inode, pg_end, 0, off_end);
1177 			if (ret)
1178 				return ret;
1179 		}
1180 
1181 		if (pg_start < pg_end) {
1182 			loff_t blk_start, blk_end;
1183 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1184 
1185 			f2fs_balance_fs(sbi, true);
1186 
1187 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1188 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1189 
1190 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1191 			filemap_invalidate_lock(inode->i_mapping);
1192 
1193 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1194 
1195 			f2fs_lock_op(sbi);
1196 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1197 			f2fs_unlock_op(sbi);
1198 
1199 			filemap_invalidate_unlock(inode->i_mapping);
1200 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1201 		}
1202 	}
1203 
1204 	return ret;
1205 }
1206 
1207 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1208 				int *do_replace, pgoff_t off, pgoff_t len)
1209 {
1210 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1211 	struct dnode_of_data dn;
1212 	int ret, done, i;
1213 
1214 next_dnode:
1215 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1216 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1217 	if (ret && ret != -ENOENT) {
1218 		return ret;
1219 	} else if (ret == -ENOENT) {
1220 		if (dn.max_level == 0)
1221 			return -ENOENT;
1222 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1223 						dn.ofs_in_node, len);
1224 		blkaddr += done;
1225 		do_replace += done;
1226 		goto next;
1227 	}
1228 
1229 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1230 							dn.ofs_in_node, len);
1231 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1232 		*blkaddr = f2fs_data_blkaddr(&dn);
1233 
1234 		if (__is_valid_data_blkaddr(*blkaddr) &&
1235 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1236 					DATA_GENERIC_ENHANCE)) {
1237 			f2fs_put_dnode(&dn);
1238 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1239 			return -EFSCORRUPTED;
1240 		}
1241 
1242 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1243 
1244 			if (f2fs_lfs_mode(sbi)) {
1245 				f2fs_put_dnode(&dn);
1246 				return -EOPNOTSUPP;
1247 			}
1248 
1249 			/* do not invalidate this block address */
1250 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1251 			*do_replace = 1;
1252 		}
1253 	}
1254 	f2fs_put_dnode(&dn);
1255 next:
1256 	len -= done;
1257 	off += done;
1258 	if (len)
1259 		goto next_dnode;
1260 	return 0;
1261 }
1262 
1263 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1264 				int *do_replace, pgoff_t off, int len)
1265 {
1266 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1267 	struct dnode_of_data dn;
1268 	int ret, i;
1269 
1270 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1271 		if (*do_replace == 0)
1272 			continue;
1273 
1274 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1275 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1276 		if (ret) {
1277 			dec_valid_block_count(sbi, inode, 1);
1278 			f2fs_invalidate_blocks(sbi, *blkaddr);
1279 		} else {
1280 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1281 		}
1282 		f2fs_put_dnode(&dn);
1283 	}
1284 	return 0;
1285 }
1286 
1287 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1288 			block_t *blkaddr, int *do_replace,
1289 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1290 {
1291 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1292 	pgoff_t i = 0;
1293 	int ret;
1294 
1295 	while (i < len) {
1296 		if (blkaddr[i] == NULL_ADDR && !full) {
1297 			i++;
1298 			continue;
1299 		}
1300 
1301 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1302 			struct dnode_of_data dn;
1303 			struct node_info ni;
1304 			size_t new_size;
1305 			pgoff_t ilen;
1306 
1307 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1308 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1309 			if (ret)
1310 				return ret;
1311 
1312 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1313 			if (ret) {
1314 				f2fs_put_dnode(&dn);
1315 				return ret;
1316 			}
1317 
1318 			ilen = min((pgoff_t)
1319 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1320 						dn.ofs_in_node, len - i);
1321 			do {
1322 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1323 				f2fs_truncate_data_blocks_range(&dn, 1);
1324 
1325 				if (do_replace[i]) {
1326 					f2fs_i_blocks_write(src_inode,
1327 							1, false, false);
1328 					f2fs_i_blocks_write(dst_inode,
1329 							1, true, false);
1330 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1331 					blkaddr[i], ni.version, true, false);
1332 
1333 					do_replace[i] = 0;
1334 				}
1335 				dn.ofs_in_node++;
1336 				i++;
1337 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1338 				if (dst_inode->i_size < new_size)
1339 					f2fs_i_size_write(dst_inode, new_size);
1340 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1341 
1342 			f2fs_put_dnode(&dn);
1343 		} else {
1344 			struct page *psrc, *pdst;
1345 
1346 			psrc = f2fs_get_lock_data_page(src_inode,
1347 							src + i, true);
1348 			if (IS_ERR(psrc))
1349 				return PTR_ERR(psrc);
1350 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1351 								true);
1352 			if (IS_ERR(pdst)) {
1353 				f2fs_put_page(psrc, 1);
1354 				return PTR_ERR(pdst);
1355 			}
1356 
1357 			f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1358 
1359 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1360 			set_page_dirty(pdst);
1361 			set_page_private_gcing(pdst);
1362 			f2fs_put_page(pdst, 1);
1363 			f2fs_put_page(psrc, 1);
1364 
1365 			ret = f2fs_truncate_hole(src_inode,
1366 						src + i, src + i + 1);
1367 			if (ret)
1368 				return ret;
1369 			i++;
1370 		}
1371 	}
1372 	return 0;
1373 }
1374 
1375 static int __exchange_data_block(struct inode *src_inode,
1376 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1377 			pgoff_t len, bool full)
1378 {
1379 	block_t *src_blkaddr;
1380 	int *do_replace;
1381 	pgoff_t olen;
1382 	int ret;
1383 
1384 	while (len) {
1385 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1386 
1387 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1388 					array_size(olen, sizeof(block_t)),
1389 					GFP_NOFS);
1390 		if (!src_blkaddr)
1391 			return -ENOMEM;
1392 
1393 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1394 					array_size(olen, sizeof(int)),
1395 					GFP_NOFS);
1396 		if (!do_replace) {
1397 			kvfree(src_blkaddr);
1398 			return -ENOMEM;
1399 		}
1400 
1401 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1402 					do_replace, src, olen);
1403 		if (ret)
1404 			goto roll_back;
1405 
1406 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1407 					do_replace, src, dst, olen, full);
1408 		if (ret)
1409 			goto roll_back;
1410 
1411 		src += olen;
1412 		dst += olen;
1413 		len -= olen;
1414 
1415 		kvfree(src_blkaddr);
1416 		kvfree(do_replace);
1417 	}
1418 	return 0;
1419 
1420 roll_back:
1421 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1422 	kvfree(src_blkaddr);
1423 	kvfree(do_replace);
1424 	return ret;
1425 }
1426 
1427 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1428 {
1429 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1430 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1431 	pgoff_t start = offset >> PAGE_SHIFT;
1432 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1433 	int ret;
1434 
1435 	f2fs_balance_fs(sbi, true);
1436 
1437 	/* avoid gc operation during block exchange */
1438 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1439 	filemap_invalidate_lock(inode->i_mapping);
1440 
1441 	f2fs_lock_op(sbi);
1442 	f2fs_drop_extent_tree(inode);
1443 	truncate_pagecache(inode, offset);
1444 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1445 	f2fs_unlock_op(sbi);
1446 
1447 	filemap_invalidate_unlock(inode->i_mapping);
1448 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1449 	return ret;
1450 }
1451 
1452 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1453 {
1454 	loff_t new_size;
1455 	int ret;
1456 
1457 	if (offset + len >= i_size_read(inode))
1458 		return -EINVAL;
1459 
1460 	/* collapse range should be aligned to block size of f2fs. */
1461 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1462 		return -EINVAL;
1463 
1464 	ret = f2fs_convert_inline_inode(inode);
1465 	if (ret)
1466 		return ret;
1467 
1468 	/* write out all dirty pages from offset */
1469 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1470 	if (ret)
1471 		return ret;
1472 
1473 	ret = f2fs_do_collapse(inode, offset, len);
1474 	if (ret)
1475 		return ret;
1476 
1477 	/* write out all moved pages, if possible */
1478 	filemap_invalidate_lock(inode->i_mapping);
1479 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1480 	truncate_pagecache(inode, offset);
1481 
1482 	new_size = i_size_read(inode) - len;
1483 	ret = f2fs_truncate_blocks(inode, new_size, true);
1484 	filemap_invalidate_unlock(inode->i_mapping);
1485 	if (!ret)
1486 		f2fs_i_size_write(inode, new_size);
1487 	return ret;
1488 }
1489 
1490 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1491 								pgoff_t end)
1492 {
1493 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1494 	pgoff_t index = start;
1495 	unsigned int ofs_in_node = dn->ofs_in_node;
1496 	blkcnt_t count = 0;
1497 	int ret;
1498 
1499 	for (; index < end; index++, dn->ofs_in_node++) {
1500 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1501 			count++;
1502 	}
1503 
1504 	dn->ofs_in_node = ofs_in_node;
1505 	ret = f2fs_reserve_new_blocks(dn, count);
1506 	if (ret)
1507 		return ret;
1508 
1509 	dn->ofs_in_node = ofs_in_node;
1510 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1511 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1512 		/*
1513 		 * f2fs_reserve_new_blocks will not guarantee entire block
1514 		 * allocation.
1515 		 */
1516 		if (dn->data_blkaddr == NULL_ADDR) {
1517 			ret = -ENOSPC;
1518 			break;
1519 		}
1520 
1521 		if (dn->data_blkaddr == NEW_ADDR)
1522 			continue;
1523 
1524 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1525 					DATA_GENERIC_ENHANCE)) {
1526 			ret = -EFSCORRUPTED;
1527 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1528 			break;
1529 		}
1530 
1531 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1532 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1533 	}
1534 
1535 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1536 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1537 
1538 	return ret;
1539 }
1540 
1541 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1542 								int mode)
1543 {
1544 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1545 	struct address_space *mapping = inode->i_mapping;
1546 	pgoff_t index, pg_start, pg_end;
1547 	loff_t new_size = i_size_read(inode);
1548 	loff_t off_start, off_end;
1549 	int ret = 0;
1550 
1551 	ret = inode_newsize_ok(inode, (len + offset));
1552 	if (ret)
1553 		return ret;
1554 
1555 	ret = f2fs_convert_inline_inode(inode);
1556 	if (ret)
1557 		return ret;
1558 
1559 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1560 	if (ret)
1561 		return ret;
1562 
1563 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1564 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1565 
1566 	off_start = offset & (PAGE_SIZE - 1);
1567 	off_end = (offset + len) & (PAGE_SIZE - 1);
1568 
1569 	if (pg_start == pg_end) {
1570 		ret = fill_zero(inode, pg_start, off_start,
1571 						off_end - off_start);
1572 		if (ret)
1573 			return ret;
1574 
1575 		new_size = max_t(loff_t, new_size, offset + len);
1576 	} else {
1577 		if (off_start) {
1578 			ret = fill_zero(inode, pg_start++, off_start,
1579 						PAGE_SIZE - off_start);
1580 			if (ret)
1581 				return ret;
1582 
1583 			new_size = max_t(loff_t, new_size,
1584 					(loff_t)pg_start << PAGE_SHIFT);
1585 		}
1586 
1587 		for (index = pg_start; index < pg_end;) {
1588 			struct dnode_of_data dn;
1589 			unsigned int end_offset;
1590 			pgoff_t end;
1591 
1592 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1593 			filemap_invalidate_lock(mapping);
1594 
1595 			truncate_pagecache_range(inode,
1596 				(loff_t)index << PAGE_SHIFT,
1597 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1598 
1599 			f2fs_lock_op(sbi);
1600 
1601 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1602 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1603 			if (ret) {
1604 				f2fs_unlock_op(sbi);
1605 				filemap_invalidate_unlock(mapping);
1606 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1607 				goto out;
1608 			}
1609 
1610 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1611 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1612 
1613 			ret = f2fs_do_zero_range(&dn, index, end);
1614 			f2fs_put_dnode(&dn);
1615 
1616 			f2fs_unlock_op(sbi);
1617 			filemap_invalidate_unlock(mapping);
1618 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1619 
1620 			f2fs_balance_fs(sbi, dn.node_changed);
1621 
1622 			if (ret)
1623 				goto out;
1624 
1625 			index = end;
1626 			new_size = max_t(loff_t, new_size,
1627 					(loff_t)index << PAGE_SHIFT);
1628 		}
1629 
1630 		if (off_end) {
1631 			ret = fill_zero(inode, pg_end, 0, off_end);
1632 			if (ret)
1633 				goto out;
1634 
1635 			new_size = max_t(loff_t, new_size, offset + len);
1636 		}
1637 	}
1638 
1639 out:
1640 	if (new_size > i_size_read(inode)) {
1641 		if (mode & FALLOC_FL_KEEP_SIZE)
1642 			file_set_keep_isize(inode);
1643 		else
1644 			f2fs_i_size_write(inode, new_size);
1645 	}
1646 	return ret;
1647 }
1648 
1649 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1650 {
1651 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1652 	struct address_space *mapping = inode->i_mapping;
1653 	pgoff_t nr, pg_start, pg_end, delta, idx;
1654 	loff_t new_size;
1655 	int ret = 0;
1656 
1657 	new_size = i_size_read(inode) + len;
1658 	ret = inode_newsize_ok(inode, new_size);
1659 	if (ret)
1660 		return ret;
1661 
1662 	if (offset >= i_size_read(inode))
1663 		return -EINVAL;
1664 
1665 	/* insert range should be aligned to block size of f2fs. */
1666 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1667 		return -EINVAL;
1668 
1669 	ret = f2fs_convert_inline_inode(inode);
1670 	if (ret)
1671 		return ret;
1672 
1673 	f2fs_balance_fs(sbi, true);
1674 
1675 	filemap_invalidate_lock(mapping);
1676 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1677 	filemap_invalidate_unlock(mapping);
1678 	if (ret)
1679 		return ret;
1680 
1681 	/* write out all dirty pages from offset */
1682 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1683 	if (ret)
1684 		return ret;
1685 
1686 	pg_start = offset >> PAGE_SHIFT;
1687 	pg_end = (offset + len) >> PAGE_SHIFT;
1688 	delta = pg_end - pg_start;
1689 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1690 
1691 	/* avoid gc operation during block exchange */
1692 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1693 	filemap_invalidate_lock(mapping);
1694 	truncate_pagecache(inode, offset);
1695 
1696 	while (!ret && idx > pg_start) {
1697 		nr = idx - pg_start;
1698 		if (nr > delta)
1699 			nr = delta;
1700 		idx -= nr;
1701 
1702 		f2fs_lock_op(sbi);
1703 		f2fs_drop_extent_tree(inode);
1704 
1705 		ret = __exchange_data_block(inode, inode, idx,
1706 					idx + delta, nr, false);
1707 		f2fs_unlock_op(sbi);
1708 	}
1709 	filemap_invalidate_unlock(mapping);
1710 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1711 
1712 	/* write out all moved pages, if possible */
1713 	filemap_invalidate_lock(mapping);
1714 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1715 	truncate_pagecache(inode, offset);
1716 	filemap_invalidate_unlock(mapping);
1717 
1718 	if (!ret)
1719 		f2fs_i_size_write(inode, new_size);
1720 	return ret;
1721 }
1722 
1723 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1724 					loff_t len, int mode)
1725 {
1726 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1727 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1728 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1729 			.m_may_create = true };
1730 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1731 			.init_gc_type = FG_GC,
1732 			.should_migrate_blocks = false,
1733 			.err_gc_skipped = true,
1734 			.nr_free_secs = 0 };
1735 	pgoff_t pg_start, pg_end;
1736 	loff_t new_size;
1737 	loff_t off_end;
1738 	block_t expanded = 0;
1739 	int err;
1740 
1741 	err = inode_newsize_ok(inode, (len + offset));
1742 	if (err)
1743 		return err;
1744 
1745 	err = f2fs_convert_inline_inode(inode);
1746 	if (err)
1747 		return err;
1748 
1749 	f2fs_balance_fs(sbi, true);
1750 
1751 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1752 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1753 	off_end = (offset + len) & (PAGE_SIZE - 1);
1754 
1755 	map.m_lblk = pg_start;
1756 	map.m_len = pg_end - pg_start;
1757 	if (off_end)
1758 		map.m_len++;
1759 
1760 	if (!map.m_len)
1761 		return 0;
1762 
1763 	if (f2fs_is_pinned_file(inode)) {
1764 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1765 		block_t sec_len = roundup(map.m_len, sec_blks);
1766 
1767 		map.m_len = sec_blks;
1768 next_alloc:
1769 		if (has_not_enough_free_secs(sbi, 0,
1770 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1771 			f2fs_down_write(&sbi->gc_lock);
1772 			stat_inc_gc_call_count(sbi, FOREGROUND);
1773 			err = f2fs_gc(sbi, &gc_control);
1774 			if (err && err != -ENODATA)
1775 				goto out_err;
1776 		}
1777 
1778 		f2fs_down_write(&sbi->pin_sem);
1779 
1780 		err = f2fs_allocate_pinning_section(sbi);
1781 		if (err) {
1782 			f2fs_up_write(&sbi->pin_sem);
1783 			goto out_err;
1784 		}
1785 
1786 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1787 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1788 		file_dont_truncate(inode);
1789 
1790 		f2fs_up_write(&sbi->pin_sem);
1791 
1792 		expanded += map.m_len;
1793 		sec_len -= map.m_len;
1794 		map.m_lblk += map.m_len;
1795 		if (!err && sec_len)
1796 			goto next_alloc;
1797 
1798 		map.m_len = expanded;
1799 	} else {
1800 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1801 		expanded = map.m_len;
1802 	}
1803 out_err:
1804 	if (err) {
1805 		pgoff_t last_off;
1806 
1807 		if (!expanded)
1808 			return err;
1809 
1810 		last_off = pg_start + expanded - 1;
1811 
1812 		/* update new size to the failed position */
1813 		new_size = (last_off == pg_end) ? offset + len :
1814 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1815 	} else {
1816 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1817 	}
1818 
1819 	if (new_size > i_size_read(inode)) {
1820 		if (mode & FALLOC_FL_KEEP_SIZE)
1821 			file_set_keep_isize(inode);
1822 		else
1823 			f2fs_i_size_write(inode, new_size);
1824 	}
1825 
1826 	return err;
1827 }
1828 
1829 static long f2fs_fallocate(struct file *file, int mode,
1830 				loff_t offset, loff_t len)
1831 {
1832 	struct inode *inode = file_inode(file);
1833 	long ret = 0;
1834 
1835 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1836 		return -EIO;
1837 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1838 		return -ENOSPC;
1839 	if (!f2fs_is_compress_backend_ready(inode))
1840 		return -EOPNOTSUPP;
1841 
1842 	/* f2fs only support ->fallocate for regular file */
1843 	if (!S_ISREG(inode->i_mode))
1844 		return -EINVAL;
1845 
1846 	if (IS_ENCRYPTED(inode) &&
1847 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1848 		return -EOPNOTSUPP;
1849 
1850 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1851 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1852 			FALLOC_FL_INSERT_RANGE))
1853 		return -EOPNOTSUPP;
1854 
1855 	inode_lock(inode);
1856 
1857 	/*
1858 	 * Pinned file should not support partial truncation since the block
1859 	 * can be used by applications.
1860 	 */
1861 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1862 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1863 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1864 		ret = -EOPNOTSUPP;
1865 		goto out;
1866 	}
1867 
1868 	ret = file_modified(file);
1869 	if (ret)
1870 		goto out;
1871 
1872 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1873 		if (offset >= inode->i_size)
1874 			goto out;
1875 
1876 		ret = f2fs_punch_hole(inode, offset, len);
1877 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1878 		ret = f2fs_collapse_range(inode, offset, len);
1879 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1880 		ret = f2fs_zero_range(inode, offset, len, mode);
1881 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1882 		ret = f2fs_insert_range(inode, offset, len);
1883 	} else {
1884 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1885 	}
1886 
1887 	if (!ret) {
1888 		inode->i_mtime = inode_set_ctime_current(inode);
1889 		f2fs_mark_inode_dirty_sync(inode, false);
1890 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1891 	}
1892 
1893 out:
1894 	inode_unlock(inode);
1895 
1896 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1897 	return ret;
1898 }
1899 
1900 static int f2fs_release_file(struct inode *inode, struct file *filp)
1901 {
1902 	/*
1903 	 * f2fs_release_file is called at every close calls. So we should
1904 	 * not drop any inmemory pages by close called by other process.
1905 	 */
1906 	if (!(filp->f_mode & FMODE_WRITE) ||
1907 			atomic_read(&inode->i_writecount) != 1)
1908 		return 0;
1909 
1910 	inode_lock(inode);
1911 	f2fs_abort_atomic_write(inode, true);
1912 	inode_unlock(inode);
1913 
1914 	return 0;
1915 }
1916 
1917 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1918 {
1919 	struct inode *inode = file_inode(file);
1920 
1921 	/*
1922 	 * If the process doing a transaction is crashed, we should do
1923 	 * roll-back. Otherwise, other reader/write can see corrupted database
1924 	 * until all the writers close its file. Since this should be done
1925 	 * before dropping file lock, it needs to do in ->flush.
1926 	 */
1927 	if (F2FS_I(inode)->atomic_write_task == current &&
1928 				(current->flags & PF_EXITING)) {
1929 		inode_lock(inode);
1930 		f2fs_abort_atomic_write(inode, true);
1931 		inode_unlock(inode);
1932 	}
1933 
1934 	return 0;
1935 }
1936 
1937 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1938 {
1939 	struct f2fs_inode_info *fi = F2FS_I(inode);
1940 	u32 masked_flags = fi->i_flags & mask;
1941 
1942 	/* mask can be shrunk by flags_valid selector */
1943 	iflags &= mask;
1944 
1945 	/* Is it quota file? Do not allow user to mess with it */
1946 	if (IS_NOQUOTA(inode))
1947 		return -EPERM;
1948 
1949 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1950 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1951 			return -EOPNOTSUPP;
1952 		if (!f2fs_empty_dir(inode))
1953 			return -ENOTEMPTY;
1954 	}
1955 
1956 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1957 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1958 			return -EOPNOTSUPP;
1959 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1960 			return -EINVAL;
1961 	}
1962 
1963 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1964 		if (masked_flags & F2FS_COMPR_FL) {
1965 			if (!f2fs_disable_compressed_file(inode))
1966 				return -EINVAL;
1967 		} else {
1968 			/* try to convert inline_data to support compression */
1969 			int err = f2fs_convert_inline_inode(inode);
1970 			if (err)
1971 				return err;
1972 
1973 			f2fs_down_write(&F2FS_I(inode)->i_sem);
1974 			if (!f2fs_may_compress(inode) ||
1975 					(S_ISREG(inode->i_mode) &&
1976 					F2FS_HAS_BLOCKS(inode))) {
1977 				f2fs_up_write(&F2FS_I(inode)->i_sem);
1978 				return -EINVAL;
1979 			}
1980 			err = set_compress_context(inode);
1981 			f2fs_up_write(&F2FS_I(inode)->i_sem);
1982 
1983 			if (err)
1984 				return err;
1985 		}
1986 	}
1987 
1988 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1989 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1990 					(fi->i_flags & F2FS_NOCOMP_FL));
1991 
1992 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1993 		set_inode_flag(inode, FI_PROJ_INHERIT);
1994 	else
1995 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1996 
1997 	inode_set_ctime_current(inode);
1998 	f2fs_set_inode_flags(inode);
1999 	f2fs_mark_inode_dirty_sync(inode, true);
2000 	return 0;
2001 }
2002 
2003 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2004 
2005 /*
2006  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2007  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2008  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
2009  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2010  *
2011  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2012  * FS_IOC_FSSETXATTR is done by the VFS.
2013  */
2014 
2015 static const struct {
2016 	u32 iflag;
2017 	u32 fsflag;
2018 } f2fs_fsflags_map[] = {
2019 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
2020 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
2021 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
2022 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
2023 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
2024 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
2025 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
2026 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
2027 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
2028 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
2029 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
2030 };
2031 
2032 #define F2FS_GETTABLE_FS_FL (		\
2033 		FS_COMPR_FL |		\
2034 		FS_SYNC_FL |		\
2035 		FS_IMMUTABLE_FL |	\
2036 		FS_APPEND_FL |		\
2037 		FS_NODUMP_FL |		\
2038 		FS_NOATIME_FL |		\
2039 		FS_NOCOMP_FL |		\
2040 		FS_INDEX_FL |		\
2041 		FS_DIRSYNC_FL |		\
2042 		FS_PROJINHERIT_FL |	\
2043 		FS_ENCRYPT_FL |		\
2044 		FS_INLINE_DATA_FL |	\
2045 		FS_NOCOW_FL |		\
2046 		FS_VERITY_FL |		\
2047 		FS_CASEFOLD_FL)
2048 
2049 #define F2FS_SETTABLE_FS_FL (		\
2050 		FS_COMPR_FL |		\
2051 		FS_SYNC_FL |		\
2052 		FS_IMMUTABLE_FL |	\
2053 		FS_APPEND_FL |		\
2054 		FS_NODUMP_FL |		\
2055 		FS_NOATIME_FL |		\
2056 		FS_NOCOMP_FL |		\
2057 		FS_DIRSYNC_FL |		\
2058 		FS_PROJINHERIT_FL |	\
2059 		FS_CASEFOLD_FL)
2060 
2061 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2062 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2063 {
2064 	u32 fsflags = 0;
2065 	int i;
2066 
2067 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2068 		if (iflags & f2fs_fsflags_map[i].iflag)
2069 			fsflags |= f2fs_fsflags_map[i].fsflag;
2070 
2071 	return fsflags;
2072 }
2073 
2074 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2075 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2076 {
2077 	u32 iflags = 0;
2078 	int i;
2079 
2080 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2081 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2082 			iflags |= f2fs_fsflags_map[i].iflag;
2083 
2084 	return iflags;
2085 }
2086 
2087 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2088 {
2089 	struct inode *inode = file_inode(filp);
2090 
2091 	return put_user(inode->i_generation, (int __user *)arg);
2092 }
2093 
2094 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2095 {
2096 	struct inode *inode = file_inode(filp);
2097 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2098 	struct f2fs_inode_info *fi = F2FS_I(inode);
2099 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2100 	loff_t isize;
2101 	int ret;
2102 
2103 	if (!inode_owner_or_capable(idmap, inode))
2104 		return -EACCES;
2105 
2106 	if (!S_ISREG(inode->i_mode))
2107 		return -EINVAL;
2108 
2109 	if (filp->f_flags & O_DIRECT)
2110 		return -EINVAL;
2111 
2112 	ret = mnt_want_write_file(filp);
2113 	if (ret)
2114 		return ret;
2115 
2116 	inode_lock(inode);
2117 
2118 	if (!f2fs_disable_compressed_file(inode)) {
2119 		ret = -EINVAL;
2120 		goto out;
2121 	}
2122 
2123 	if (f2fs_is_atomic_file(inode))
2124 		goto out;
2125 
2126 	ret = f2fs_convert_inline_inode(inode);
2127 	if (ret)
2128 		goto out;
2129 
2130 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2131 
2132 	/*
2133 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2134 	 * f2fs_is_atomic_file.
2135 	 */
2136 	if (get_dirty_pages(inode))
2137 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2138 			  inode->i_ino, get_dirty_pages(inode));
2139 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2140 	if (ret) {
2141 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2142 		goto out;
2143 	}
2144 
2145 	/* Check if the inode already has a COW inode */
2146 	if (fi->cow_inode == NULL) {
2147 		/* Create a COW inode for atomic write */
2148 		struct dentry *dentry = file_dentry(filp);
2149 		struct inode *dir = d_inode(dentry->d_parent);
2150 
2151 		ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2152 		if (ret) {
2153 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2154 			goto out;
2155 		}
2156 
2157 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2158 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2159 
2160 		/* Set the COW inode's atomic_inode to the atomic inode */
2161 		F2FS_I(fi->cow_inode)->atomic_inode = inode;
2162 	} else {
2163 		/* Reuse the already created COW inode */
2164 		f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2165 
2166 		invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2167 
2168 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2169 		if (ret) {
2170 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2171 			goto out;
2172 		}
2173 	}
2174 
2175 	f2fs_write_inode(inode, NULL);
2176 
2177 	stat_inc_atomic_inode(inode);
2178 
2179 	set_inode_flag(inode, FI_ATOMIC_FILE);
2180 
2181 	isize = i_size_read(inode);
2182 	fi->original_i_size = isize;
2183 	if (truncate) {
2184 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2185 		truncate_inode_pages_final(inode->i_mapping);
2186 		f2fs_i_size_write(inode, 0);
2187 		isize = 0;
2188 	}
2189 	f2fs_i_size_write(fi->cow_inode, isize);
2190 
2191 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2192 
2193 	f2fs_update_time(sbi, REQ_TIME);
2194 	fi->atomic_write_task = current;
2195 	stat_update_max_atomic_write(inode);
2196 	fi->atomic_write_cnt = 0;
2197 out:
2198 	inode_unlock(inode);
2199 	mnt_drop_write_file(filp);
2200 	return ret;
2201 }
2202 
2203 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2204 {
2205 	struct inode *inode = file_inode(filp);
2206 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2207 	int ret;
2208 
2209 	if (!inode_owner_or_capable(idmap, inode))
2210 		return -EACCES;
2211 
2212 	ret = mnt_want_write_file(filp);
2213 	if (ret)
2214 		return ret;
2215 
2216 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2217 
2218 	inode_lock(inode);
2219 
2220 	if (f2fs_is_atomic_file(inode)) {
2221 		ret = f2fs_commit_atomic_write(inode);
2222 		if (!ret)
2223 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2224 
2225 		f2fs_abort_atomic_write(inode, ret);
2226 	} else {
2227 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2228 	}
2229 
2230 	inode_unlock(inode);
2231 	mnt_drop_write_file(filp);
2232 	return ret;
2233 }
2234 
2235 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2236 {
2237 	struct inode *inode = file_inode(filp);
2238 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2239 	int ret;
2240 
2241 	if (!inode_owner_or_capable(idmap, inode))
2242 		return -EACCES;
2243 
2244 	ret = mnt_want_write_file(filp);
2245 	if (ret)
2246 		return ret;
2247 
2248 	inode_lock(inode);
2249 
2250 	f2fs_abort_atomic_write(inode, true);
2251 
2252 	inode_unlock(inode);
2253 
2254 	mnt_drop_write_file(filp);
2255 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2256 	return ret;
2257 }
2258 
2259 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2260 						bool readonly, bool need_lock)
2261 {
2262 	struct super_block *sb = sbi->sb;
2263 	int ret = 0;
2264 
2265 	switch (flag) {
2266 	case F2FS_GOING_DOWN_FULLSYNC:
2267 		ret = freeze_bdev(sb->s_bdev);
2268 		if (ret)
2269 			goto out;
2270 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2271 		thaw_bdev(sb->s_bdev);
2272 		break;
2273 	case F2FS_GOING_DOWN_METASYNC:
2274 		/* do checkpoint only */
2275 		ret = f2fs_sync_fs(sb, 1);
2276 		if (ret)
2277 			goto out;
2278 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2279 		break;
2280 	case F2FS_GOING_DOWN_NOSYNC:
2281 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2282 		break;
2283 	case F2FS_GOING_DOWN_METAFLUSH:
2284 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2285 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2286 		break;
2287 	case F2FS_GOING_DOWN_NEED_FSCK:
2288 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2289 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2290 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2291 		/* do checkpoint only */
2292 		ret = f2fs_sync_fs(sb, 1);
2293 		goto out;
2294 	default:
2295 		ret = -EINVAL;
2296 		goto out;
2297 	}
2298 
2299 	if (readonly)
2300 		goto out;
2301 
2302 	/* grab sb->s_umount to avoid racing w/ remount() */
2303 	if (need_lock)
2304 		down_read(&sbi->sb->s_umount);
2305 
2306 	f2fs_stop_gc_thread(sbi);
2307 	f2fs_stop_discard_thread(sbi);
2308 
2309 	f2fs_drop_discard_cmd(sbi);
2310 	clear_opt(sbi, DISCARD);
2311 
2312 	if (need_lock)
2313 		up_read(&sbi->sb->s_umount);
2314 
2315 	f2fs_update_time(sbi, REQ_TIME);
2316 out:
2317 
2318 	trace_f2fs_shutdown(sbi, flag, ret);
2319 
2320 	return ret;
2321 }
2322 
2323 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2324 {
2325 	struct inode *inode = file_inode(filp);
2326 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2327 	__u32 in;
2328 	int ret;
2329 	bool need_drop = false, readonly = false;
2330 
2331 	if (!capable(CAP_SYS_ADMIN))
2332 		return -EPERM;
2333 
2334 	if (get_user(in, (__u32 __user *)arg))
2335 		return -EFAULT;
2336 
2337 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2338 		ret = mnt_want_write_file(filp);
2339 		if (ret) {
2340 			if (ret != -EROFS)
2341 				return ret;
2342 
2343 			/* fallback to nosync shutdown for readonly fs */
2344 			in = F2FS_GOING_DOWN_NOSYNC;
2345 			readonly = true;
2346 		} else {
2347 			need_drop = true;
2348 		}
2349 	}
2350 
2351 	ret = f2fs_do_shutdown(sbi, in, readonly, true);
2352 
2353 	if (need_drop)
2354 		mnt_drop_write_file(filp);
2355 
2356 	return ret;
2357 }
2358 
2359 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2360 {
2361 	struct inode *inode = file_inode(filp);
2362 	struct super_block *sb = inode->i_sb;
2363 	struct fstrim_range range;
2364 	int ret;
2365 
2366 	if (!capable(CAP_SYS_ADMIN))
2367 		return -EPERM;
2368 
2369 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2370 		return -EOPNOTSUPP;
2371 
2372 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2373 				sizeof(range)))
2374 		return -EFAULT;
2375 
2376 	ret = mnt_want_write_file(filp);
2377 	if (ret)
2378 		return ret;
2379 
2380 	range.minlen = max((unsigned int)range.minlen,
2381 			   bdev_discard_granularity(sb->s_bdev));
2382 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2383 	mnt_drop_write_file(filp);
2384 	if (ret < 0)
2385 		return ret;
2386 
2387 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2388 				sizeof(range)))
2389 		return -EFAULT;
2390 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2391 	return 0;
2392 }
2393 
2394 static bool uuid_is_nonzero(__u8 u[16])
2395 {
2396 	int i;
2397 
2398 	for (i = 0; i < 16; i++)
2399 		if (u[i])
2400 			return true;
2401 	return false;
2402 }
2403 
2404 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2405 {
2406 	struct inode *inode = file_inode(filp);
2407 
2408 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2409 		return -EOPNOTSUPP;
2410 
2411 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2412 
2413 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2414 }
2415 
2416 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2417 {
2418 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2419 		return -EOPNOTSUPP;
2420 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2421 }
2422 
2423 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2424 {
2425 	struct inode *inode = file_inode(filp);
2426 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2427 	u8 encrypt_pw_salt[16];
2428 	int err;
2429 
2430 	if (!f2fs_sb_has_encrypt(sbi))
2431 		return -EOPNOTSUPP;
2432 
2433 	err = mnt_want_write_file(filp);
2434 	if (err)
2435 		return err;
2436 
2437 	f2fs_down_write(&sbi->sb_lock);
2438 
2439 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2440 		goto got_it;
2441 
2442 	/* update superblock with uuid */
2443 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2444 
2445 	err = f2fs_commit_super(sbi, false);
2446 	if (err) {
2447 		/* undo new data */
2448 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2449 		goto out_err;
2450 	}
2451 got_it:
2452 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2453 out_err:
2454 	f2fs_up_write(&sbi->sb_lock);
2455 	mnt_drop_write_file(filp);
2456 
2457 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2458 		err = -EFAULT;
2459 
2460 	return err;
2461 }
2462 
2463 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2464 					     unsigned long arg)
2465 {
2466 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2467 		return -EOPNOTSUPP;
2468 
2469 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2470 }
2471 
2472 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2473 {
2474 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2475 		return -EOPNOTSUPP;
2476 
2477 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2478 }
2479 
2480 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2481 {
2482 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2483 		return -EOPNOTSUPP;
2484 
2485 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2486 }
2487 
2488 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2489 						    unsigned long arg)
2490 {
2491 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2492 		return -EOPNOTSUPP;
2493 
2494 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2495 }
2496 
2497 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2498 					      unsigned long arg)
2499 {
2500 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2501 		return -EOPNOTSUPP;
2502 
2503 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2504 }
2505 
2506 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2507 {
2508 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2509 		return -EOPNOTSUPP;
2510 
2511 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2512 }
2513 
2514 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2515 {
2516 	struct inode *inode = file_inode(filp);
2517 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2518 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2519 			.no_bg_gc = false,
2520 			.should_migrate_blocks = false,
2521 			.nr_free_secs = 0 };
2522 	__u32 sync;
2523 	int ret;
2524 
2525 	if (!capable(CAP_SYS_ADMIN))
2526 		return -EPERM;
2527 
2528 	if (get_user(sync, (__u32 __user *)arg))
2529 		return -EFAULT;
2530 
2531 	if (f2fs_readonly(sbi->sb))
2532 		return -EROFS;
2533 
2534 	ret = mnt_want_write_file(filp);
2535 	if (ret)
2536 		return ret;
2537 
2538 	if (!sync) {
2539 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2540 			ret = -EBUSY;
2541 			goto out;
2542 		}
2543 	} else {
2544 		f2fs_down_write(&sbi->gc_lock);
2545 	}
2546 
2547 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2548 	gc_control.err_gc_skipped = sync;
2549 	stat_inc_gc_call_count(sbi, FOREGROUND);
2550 	ret = f2fs_gc(sbi, &gc_control);
2551 out:
2552 	mnt_drop_write_file(filp);
2553 	return ret;
2554 }
2555 
2556 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2557 {
2558 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2559 	struct f2fs_gc_control gc_control = {
2560 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2561 			.no_bg_gc = false,
2562 			.should_migrate_blocks = false,
2563 			.err_gc_skipped = range->sync,
2564 			.nr_free_secs = 0 };
2565 	u64 end;
2566 	int ret;
2567 
2568 	if (!capable(CAP_SYS_ADMIN))
2569 		return -EPERM;
2570 	if (f2fs_readonly(sbi->sb))
2571 		return -EROFS;
2572 
2573 	end = range->start + range->len;
2574 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2575 					end >= MAX_BLKADDR(sbi))
2576 		return -EINVAL;
2577 
2578 	ret = mnt_want_write_file(filp);
2579 	if (ret)
2580 		return ret;
2581 
2582 do_more:
2583 	if (!range->sync) {
2584 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2585 			ret = -EBUSY;
2586 			goto out;
2587 		}
2588 	} else {
2589 		f2fs_down_write(&sbi->gc_lock);
2590 	}
2591 
2592 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2593 	stat_inc_gc_call_count(sbi, FOREGROUND);
2594 	ret = f2fs_gc(sbi, &gc_control);
2595 	if (ret) {
2596 		if (ret == -EBUSY)
2597 			ret = -EAGAIN;
2598 		goto out;
2599 	}
2600 	range->start += CAP_BLKS_PER_SEC(sbi);
2601 	if (range->start <= end)
2602 		goto do_more;
2603 out:
2604 	mnt_drop_write_file(filp);
2605 	return ret;
2606 }
2607 
2608 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2609 {
2610 	struct f2fs_gc_range range;
2611 
2612 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2613 							sizeof(range)))
2614 		return -EFAULT;
2615 	return __f2fs_ioc_gc_range(filp, &range);
2616 }
2617 
2618 static int f2fs_ioc_write_checkpoint(struct file *filp)
2619 {
2620 	struct inode *inode = file_inode(filp);
2621 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2622 	int ret;
2623 
2624 	if (!capable(CAP_SYS_ADMIN))
2625 		return -EPERM;
2626 
2627 	if (f2fs_readonly(sbi->sb))
2628 		return -EROFS;
2629 
2630 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2631 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2632 		return -EINVAL;
2633 	}
2634 
2635 	ret = mnt_want_write_file(filp);
2636 	if (ret)
2637 		return ret;
2638 
2639 	ret = f2fs_sync_fs(sbi->sb, 1);
2640 
2641 	mnt_drop_write_file(filp);
2642 	return ret;
2643 }
2644 
2645 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2646 					struct file *filp,
2647 					struct f2fs_defragment *range)
2648 {
2649 	struct inode *inode = file_inode(filp);
2650 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2651 					.m_seg_type = NO_CHECK_TYPE,
2652 					.m_may_create = false };
2653 	struct extent_info ei = {};
2654 	pgoff_t pg_start, pg_end, next_pgofs;
2655 	unsigned int total = 0, sec_num;
2656 	block_t blk_end = 0;
2657 	bool fragmented = false;
2658 	int err;
2659 
2660 	pg_start = range->start >> PAGE_SHIFT;
2661 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2662 
2663 	f2fs_balance_fs(sbi, true);
2664 
2665 	inode_lock(inode);
2666 
2667 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2668 		err = -EINVAL;
2669 		goto unlock_out;
2670 	}
2671 
2672 	/* if in-place-update policy is enabled, don't waste time here */
2673 	set_inode_flag(inode, FI_OPU_WRITE);
2674 	if (f2fs_should_update_inplace(inode, NULL)) {
2675 		err = -EINVAL;
2676 		goto out;
2677 	}
2678 
2679 	/* writeback all dirty pages in the range */
2680 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2681 						range->start + range->len - 1);
2682 	if (err)
2683 		goto out;
2684 
2685 	/*
2686 	 * lookup mapping info in extent cache, skip defragmenting if physical
2687 	 * block addresses are continuous.
2688 	 */
2689 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2690 		if (ei.fofs + ei.len >= pg_end)
2691 			goto out;
2692 	}
2693 
2694 	map.m_lblk = pg_start;
2695 	map.m_next_pgofs = &next_pgofs;
2696 
2697 	/*
2698 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2699 	 * physical block addresses are continuous even if there are hole(s)
2700 	 * in logical blocks.
2701 	 */
2702 	while (map.m_lblk < pg_end) {
2703 		map.m_len = pg_end - map.m_lblk;
2704 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2705 		if (err)
2706 			goto out;
2707 
2708 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2709 			map.m_lblk = next_pgofs;
2710 			continue;
2711 		}
2712 
2713 		if (blk_end && blk_end != map.m_pblk)
2714 			fragmented = true;
2715 
2716 		/* record total count of block that we're going to move */
2717 		total += map.m_len;
2718 
2719 		blk_end = map.m_pblk + map.m_len;
2720 
2721 		map.m_lblk += map.m_len;
2722 	}
2723 
2724 	if (!fragmented) {
2725 		total = 0;
2726 		goto out;
2727 	}
2728 
2729 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2730 
2731 	/*
2732 	 * make sure there are enough free section for LFS allocation, this can
2733 	 * avoid defragment running in SSR mode when free section are allocated
2734 	 * intensively
2735 	 */
2736 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2737 		err = -EAGAIN;
2738 		goto out;
2739 	}
2740 
2741 	map.m_lblk = pg_start;
2742 	map.m_len = pg_end - pg_start;
2743 	total = 0;
2744 
2745 	while (map.m_lblk < pg_end) {
2746 		pgoff_t idx;
2747 		int cnt = 0;
2748 
2749 do_map:
2750 		map.m_len = pg_end - map.m_lblk;
2751 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2752 		if (err)
2753 			goto clear_out;
2754 
2755 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2756 			map.m_lblk = next_pgofs;
2757 			goto check;
2758 		}
2759 
2760 		set_inode_flag(inode, FI_SKIP_WRITES);
2761 
2762 		idx = map.m_lblk;
2763 		while (idx < map.m_lblk + map.m_len &&
2764 						cnt < BLKS_PER_SEG(sbi)) {
2765 			struct page *page;
2766 
2767 			page = f2fs_get_lock_data_page(inode, idx, true);
2768 			if (IS_ERR(page)) {
2769 				err = PTR_ERR(page);
2770 				goto clear_out;
2771 			}
2772 
2773 			f2fs_wait_on_page_writeback(page, DATA, true, true);
2774 
2775 			set_page_dirty(page);
2776 			set_page_private_gcing(page);
2777 			f2fs_put_page(page, 1);
2778 
2779 			idx++;
2780 			cnt++;
2781 			total++;
2782 		}
2783 
2784 		map.m_lblk = idx;
2785 check:
2786 		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2787 			goto do_map;
2788 
2789 		clear_inode_flag(inode, FI_SKIP_WRITES);
2790 
2791 		err = filemap_fdatawrite(inode->i_mapping);
2792 		if (err)
2793 			goto out;
2794 	}
2795 clear_out:
2796 	clear_inode_flag(inode, FI_SKIP_WRITES);
2797 out:
2798 	clear_inode_flag(inode, FI_OPU_WRITE);
2799 unlock_out:
2800 	inode_unlock(inode);
2801 	if (!err)
2802 		range->len = (u64)total << PAGE_SHIFT;
2803 	return err;
2804 }
2805 
2806 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2807 {
2808 	struct inode *inode = file_inode(filp);
2809 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2810 	struct f2fs_defragment range;
2811 	int err;
2812 
2813 	if (!capable(CAP_SYS_ADMIN))
2814 		return -EPERM;
2815 
2816 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2817 		return -EINVAL;
2818 
2819 	if (f2fs_readonly(sbi->sb))
2820 		return -EROFS;
2821 
2822 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2823 							sizeof(range)))
2824 		return -EFAULT;
2825 
2826 	/* verify alignment of offset & size */
2827 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2828 		return -EINVAL;
2829 
2830 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2831 					max_file_blocks(inode)))
2832 		return -EINVAL;
2833 
2834 	err = mnt_want_write_file(filp);
2835 	if (err)
2836 		return err;
2837 
2838 	err = f2fs_defragment_range(sbi, filp, &range);
2839 	mnt_drop_write_file(filp);
2840 
2841 	f2fs_update_time(sbi, REQ_TIME);
2842 	if (err < 0)
2843 		return err;
2844 
2845 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2846 							sizeof(range)))
2847 		return -EFAULT;
2848 
2849 	return 0;
2850 }
2851 
2852 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2853 			struct file *file_out, loff_t pos_out, size_t len)
2854 {
2855 	struct inode *src = file_inode(file_in);
2856 	struct inode *dst = file_inode(file_out);
2857 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2858 	size_t olen = len, dst_max_i_size = 0;
2859 	size_t dst_osize;
2860 	int ret;
2861 
2862 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2863 				src->i_sb != dst->i_sb)
2864 		return -EXDEV;
2865 
2866 	if (unlikely(f2fs_readonly(src->i_sb)))
2867 		return -EROFS;
2868 
2869 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2870 		return -EINVAL;
2871 
2872 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2873 		return -EOPNOTSUPP;
2874 
2875 	if (pos_out < 0 || pos_in < 0)
2876 		return -EINVAL;
2877 
2878 	if (src == dst) {
2879 		if (pos_in == pos_out)
2880 			return 0;
2881 		if (pos_out > pos_in && pos_out < pos_in + len)
2882 			return -EINVAL;
2883 	}
2884 
2885 	inode_lock(src);
2886 	if (src != dst) {
2887 		ret = -EBUSY;
2888 		if (!inode_trylock(dst))
2889 			goto out;
2890 	}
2891 
2892 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2893 		f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2894 		ret = -EOPNOTSUPP;
2895 		goto out_unlock;
2896 	}
2897 
2898 	ret = -EINVAL;
2899 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2900 		goto out_unlock;
2901 	if (len == 0)
2902 		olen = len = src->i_size - pos_in;
2903 	if (pos_in + len == src->i_size)
2904 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2905 	if (len == 0) {
2906 		ret = 0;
2907 		goto out_unlock;
2908 	}
2909 
2910 	dst_osize = dst->i_size;
2911 	if (pos_out + olen > dst->i_size)
2912 		dst_max_i_size = pos_out + olen;
2913 
2914 	/* verify the end result is block aligned */
2915 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2916 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2917 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2918 		goto out_unlock;
2919 
2920 	ret = f2fs_convert_inline_inode(src);
2921 	if (ret)
2922 		goto out_unlock;
2923 
2924 	ret = f2fs_convert_inline_inode(dst);
2925 	if (ret)
2926 		goto out_unlock;
2927 
2928 	/* write out all dirty pages from offset */
2929 	ret = filemap_write_and_wait_range(src->i_mapping,
2930 					pos_in, pos_in + len);
2931 	if (ret)
2932 		goto out_unlock;
2933 
2934 	ret = filemap_write_and_wait_range(dst->i_mapping,
2935 					pos_out, pos_out + len);
2936 	if (ret)
2937 		goto out_unlock;
2938 
2939 	f2fs_balance_fs(sbi, true);
2940 
2941 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2942 	if (src != dst) {
2943 		ret = -EBUSY;
2944 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2945 			goto out_src;
2946 	}
2947 
2948 	f2fs_lock_op(sbi);
2949 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2950 				pos_out >> F2FS_BLKSIZE_BITS,
2951 				len >> F2FS_BLKSIZE_BITS, false);
2952 
2953 	if (!ret) {
2954 		if (dst_max_i_size)
2955 			f2fs_i_size_write(dst, dst_max_i_size);
2956 		else if (dst_osize != dst->i_size)
2957 			f2fs_i_size_write(dst, dst_osize);
2958 	}
2959 	f2fs_unlock_op(sbi);
2960 
2961 	if (src != dst)
2962 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2963 out_src:
2964 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2965 	if (ret)
2966 		goto out_unlock;
2967 
2968 	src->i_mtime = inode_set_ctime_current(src);
2969 	f2fs_mark_inode_dirty_sync(src, false);
2970 	if (src != dst) {
2971 		dst->i_mtime = inode_set_ctime_current(dst);
2972 		f2fs_mark_inode_dirty_sync(dst, false);
2973 	}
2974 	f2fs_update_time(sbi, REQ_TIME);
2975 
2976 out_unlock:
2977 	if (src != dst)
2978 		inode_unlock(dst);
2979 out:
2980 	inode_unlock(src);
2981 	return ret;
2982 }
2983 
2984 static int __f2fs_ioc_move_range(struct file *filp,
2985 				struct f2fs_move_range *range)
2986 {
2987 	struct fd dst;
2988 	int err;
2989 
2990 	if (!(filp->f_mode & FMODE_READ) ||
2991 			!(filp->f_mode & FMODE_WRITE))
2992 		return -EBADF;
2993 
2994 	dst = fdget(range->dst_fd);
2995 	if (!dst.file)
2996 		return -EBADF;
2997 
2998 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2999 		err = -EBADF;
3000 		goto err_out;
3001 	}
3002 
3003 	err = mnt_want_write_file(filp);
3004 	if (err)
3005 		goto err_out;
3006 
3007 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
3008 					range->pos_out, range->len);
3009 
3010 	mnt_drop_write_file(filp);
3011 err_out:
3012 	fdput(dst);
3013 	return err;
3014 }
3015 
3016 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3017 {
3018 	struct f2fs_move_range range;
3019 
3020 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3021 							sizeof(range)))
3022 		return -EFAULT;
3023 	return __f2fs_ioc_move_range(filp, &range);
3024 }
3025 
3026 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3027 {
3028 	struct inode *inode = file_inode(filp);
3029 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3030 	struct sit_info *sm = SIT_I(sbi);
3031 	unsigned int start_segno = 0, end_segno = 0;
3032 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
3033 	struct f2fs_flush_device range;
3034 	struct f2fs_gc_control gc_control = {
3035 			.init_gc_type = FG_GC,
3036 			.should_migrate_blocks = true,
3037 			.err_gc_skipped = true,
3038 			.nr_free_secs = 0 };
3039 	int ret;
3040 
3041 	if (!capable(CAP_SYS_ADMIN))
3042 		return -EPERM;
3043 
3044 	if (f2fs_readonly(sbi->sb))
3045 		return -EROFS;
3046 
3047 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3048 		return -EINVAL;
3049 
3050 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3051 							sizeof(range)))
3052 		return -EFAULT;
3053 
3054 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3055 			__is_large_section(sbi)) {
3056 		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3057 			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3058 		return -EINVAL;
3059 	}
3060 
3061 	ret = mnt_want_write_file(filp);
3062 	if (ret)
3063 		return ret;
3064 
3065 	if (range.dev_num != 0)
3066 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3067 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3068 
3069 	start_segno = sm->last_victim[FLUSH_DEVICE];
3070 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3071 		start_segno = dev_start_segno;
3072 	end_segno = min(start_segno + range.segments, dev_end_segno);
3073 
3074 	while (start_segno < end_segno) {
3075 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3076 			ret = -EBUSY;
3077 			goto out;
3078 		}
3079 		sm->last_victim[GC_CB] = end_segno + 1;
3080 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3081 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3082 
3083 		gc_control.victim_segno = start_segno;
3084 		stat_inc_gc_call_count(sbi, FOREGROUND);
3085 		ret = f2fs_gc(sbi, &gc_control);
3086 		if (ret == -EAGAIN)
3087 			ret = 0;
3088 		else if (ret < 0)
3089 			break;
3090 		start_segno++;
3091 	}
3092 out:
3093 	mnt_drop_write_file(filp);
3094 	return ret;
3095 }
3096 
3097 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3098 {
3099 	struct inode *inode = file_inode(filp);
3100 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3101 
3102 	/* Must validate to set it with SQLite behavior in Android. */
3103 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3104 
3105 	return put_user(sb_feature, (u32 __user *)arg);
3106 }
3107 
3108 #ifdef CONFIG_QUOTA
3109 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3110 {
3111 	struct dquot *transfer_to[MAXQUOTAS] = {};
3112 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3113 	struct super_block *sb = sbi->sb;
3114 	int err;
3115 
3116 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3117 	if (IS_ERR(transfer_to[PRJQUOTA]))
3118 		return PTR_ERR(transfer_to[PRJQUOTA]);
3119 
3120 	err = __dquot_transfer(inode, transfer_to);
3121 	if (err)
3122 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3123 	dqput(transfer_to[PRJQUOTA]);
3124 	return err;
3125 }
3126 
3127 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3128 {
3129 	struct f2fs_inode_info *fi = F2FS_I(inode);
3130 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3131 	struct f2fs_inode *ri = NULL;
3132 	kprojid_t kprojid;
3133 	int err;
3134 
3135 	if (!f2fs_sb_has_project_quota(sbi)) {
3136 		if (projid != F2FS_DEF_PROJID)
3137 			return -EOPNOTSUPP;
3138 		else
3139 			return 0;
3140 	}
3141 
3142 	if (!f2fs_has_extra_attr(inode))
3143 		return -EOPNOTSUPP;
3144 
3145 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3146 
3147 	if (projid_eq(kprojid, fi->i_projid))
3148 		return 0;
3149 
3150 	err = -EPERM;
3151 	/* Is it quota file? Do not allow user to mess with it */
3152 	if (IS_NOQUOTA(inode))
3153 		return err;
3154 
3155 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3156 		return -EOVERFLOW;
3157 
3158 	err = f2fs_dquot_initialize(inode);
3159 	if (err)
3160 		return err;
3161 
3162 	f2fs_lock_op(sbi);
3163 	err = f2fs_transfer_project_quota(inode, kprojid);
3164 	if (err)
3165 		goto out_unlock;
3166 
3167 	fi->i_projid = kprojid;
3168 	inode_set_ctime_current(inode);
3169 	f2fs_mark_inode_dirty_sync(inode, true);
3170 out_unlock:
3171 	f2fs_unlock_op(sbi);
3172 	return err;
3173 }
3174 #else
3175 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3176 {
3177 	return 0;
3178 }
3179 
3180 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3181 {
3182 	if (projid != F2FS_DEF_PROJID)
3183 		return -EOPNOTSUPP;
3184 	return 0;
3185 }
3186 #endif
3187 
3188 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3189 {
3190 	struct inode *inode = d_inode(dentry);
3191 	struct f2fs_inode_info *fi = F2FS_I(inode);
3192 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3193 
3194 	if (IS_ENCRYPTED(inode))
3195 		fsflags |= FS_ENCRYPT_FL;
3196 	if (IS_VERITY(inode))
3197 		fsflags |= FS_VERITY_FL;
3198 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3199 		fsflags |= FS_INLINE_DATA_FL;
3200 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3201 		fsflags |= FS_NOCOW_FL;
3202 
3203 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3204 
3205 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3206 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3207 
3208 	return 0;
3209 }
3210 
3211 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3212 		      struct dentry *dentry, struct fileattr *fa)
3213 {
3214 	struct inode *inode = d_inode(dentry);
3215 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3216 	u32 iflags;
3217 	int err;
3218 
3219 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3220 		return -EIO;
3221 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3222 		return -ENOSPC;
3223 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3224 		return -EOPNOTSUPP;
3225 	fsflags &= F2FS_SETTABLE_FS_FL;
3226 	if (!fa->flags_valid)
3227 		mask &= FS_COMMON_FL;
3228 
3229 	iflags = f2fs_fsflags_to_iflags(fsflags);
3230 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3231 		return -EOPNOTSUPP;
3232 
3233 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3234 	if (!err)
3235 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3236 
3237 	return err;
3238 }
3239 
3240 int f2fs_pin_file_control(struct inode *inode, bool inc)
3241 {
3242 	struct f2fs_inode_info *fi = F2FS_I(inode);
3243 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3244 
3245 	/* Use i_gc_failures for normal file as a risk signal. */
3246 	if (inc)
3247 		f2fs_i_gc_failures_write(inode,
3248 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3249 
3250 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3251 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3252 			  __func__, inode->i_ino,
3253 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3254 		clear_inode_flag(inode, FI_PIN_FILE);
3255 		return -EAGAIN;
3256 	}
3257 	return 0;
3258 }
3259 
3260 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3261 {
3262 	struct inode *inode = file_inode(filp);
3263 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3264 	__u32 pin;
3265 	int ret = 0;
3266 
3267 	if (get_user(pin, (__u32 __user *)arg))
3268 		return -EFAULT;
3269 
3270 	if (!S_ISREG(inode->i_mode))
3271 		return -EINVAL;
3272 
3273 	if (f2fs_readonly(sbi->sb))
3274 		return -EROFS;
3275 
3276 	ret = mnt_want_write_file(filp);
3277 	if (ret)
3278 		return ret;
3279 
3280 	inode_lock(inode);
3281 
3282 	if (!pin) {
3283 		clear_inode_flag(inode, FI_PIN_FILE);
3284 		f2fs_i_gc_failures_write(inode, 0);
3285 		goto done;
3286 	} else if (f2fs_is_pinned_file(inode)) {
3287 		goto done;
3288 	}
3289 
3290 	if (f2fs_sb_has_blkzoned(sbi) && F2FS_HAS_BLOCKS(inode)) {
3291 		ret = -EFBIG;
3292 		goto out;
3293 	}
3294 
3295 	/* Let's allow file pinning on zoned device. */
3296 	if (!f2fs_sb_has_blkzoned(sbi) &&
3297 	    f2fs_should_update_outplace(inode, NULL)) {
3298 		ret = -EINVAL;
3299 		goto out;
3300 	}
3301 
3302 	if (f2fs_pin_file_control(inode, false)) {
3303 		ret = -EAGAIN;
3304 		goto out;
3305 	}
3306 
3307 	ret = f2fs_convert_inline_inode(inode);
3308 	if (ret)
3309 		goto out;
3310 
3311 	if (!f2fs_disable_compressed_file(inode)) {
3312 		ret = -EOPNOTSUPP;
3313 		goto out;
3314 	}
3315 
3316 	set_inode_flag(inode, FI_PIN_FILE);
3317 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3318 done:
3319 	f2fs_update_time(sbi, REQ_TIME);
3320 out:
3321 	inode_unlock(inode);
3322 	mnt_drop_write_file(filp);
3323 	return ret;
3324 }
3325 
3326 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3327 {
3328 	struct inode *inode = file_inode(filp);
3329 	__u32 pin = 0;
3330 
3331 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3332 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3333 	return put_user(pin, (u32 __user *)arg);
3334 }
3335 
3336 int f2fs_precache_extents(struct inode *inode)
3337 {
3338 	struct f2fs_inode_info *fi = F2FS_I(inode);
3339 	struct f2fs_map_blocks map;
3340 	pgoff_t m_next_extent;
3341 	loff_t end;
3342 	int err;
3343 
3344 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3345 		return -EOPNOTSUPP;
3346 
3347 	map.m_lblk = 0;
3348 	map.m_pblk = 0;
3349 	map.m_next_pgofs = NULL;
3350 	map.m_next_extent = &m_next_extent;
3351 	map.m_seg_type = NO_CHECK_TYPE;
3352 	map.m_may_create = false;
3353 	end = max_file_blocks(inode);
3354 
3355 	while (map.m_lblk < end) {
3356 		map.m_len = end - map.m_lblk;
3357 
3358 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3359 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3360 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3361 		if (err)
3362 			return err;
3363 
3364 		map.m_lblk = m_next_extent;
3365 	}
3366 
3367 	return 0;
3368 }
3369 
3370 static int f2fs_ioc_precache_extents(struct file *filp)
3371 {
3372 	return f2fs_precache_extents(file_inode(filp));
3373 }
3374 
3375 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3376 {
3377 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3378 	__u64 block_count;
3379 
3380 	if (!capable(CAP_SYS_ADMIN))
3381 		return -EPERM;
3382 
3383 	if (f2fs_readonly(sbi->sb))
3384 		return -EROFS;
3385 
3386 	if (copy_from_user(&block_count, (void __user *)arg,
3387 			   sizeof(block_count)))
3388 		return -EFAULT;
3389 
3390 	return f2fs_resize_fs(filp, block_count);
3391 }
3392 
3393 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3394 {
3395 	struct inode *inode = file_inode(filp);
3396 
3397 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3398 
3399 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3400 		f2fs_warn(F2FS_I_SB(inode),
3401 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3402 			  inode->i_ino);
3403 		return -EOPNOTSUPP;
3404 	}
3405 
3406 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3407 }
3408 
3409 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3410 {
3411 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3412 		return -EOPNOTSUPP;
3413 
3414 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3415 }
3416 
3417 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3418 {
3419 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3420 		return -EOPNOTSUPP;
3421 
3422 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3423 }
3424 
3425 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3426 {
3427 	struct inode *inode = file_inode(filp);
3428 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3429 	char *vbuf;
3430 	int count;
3431 	int err = 0;
3432 
3433 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3434 	if (!vbuf)
3435 		return -ENOMEM;
3436 
3437 	f2fs_down_read(&sbi->sb_lock);
3438 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3439 			ARRAY_SIZE(sbi->raw_super->volume_name),
3440 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3441 	f2fs_up_read(&sbi->sb_lock);
3442 
3443 	if (copy_to_user((char __user *)arg, vbuf,
3444 				min(FSLABEL_MAX, count)))
3445 		err = -EFAULT;
3446 
3447 	kfree(vbuf);
3448 	return err;
3449 }
3450 
3451 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3452 {
3453 	struct inode *inode = file_inode(filp);
3454 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3455 	char *vbuf;
3456 	int err = 0;
3457 
3458 	if (!capable(CAP_SYS_ADMIN))
3459 		return -EPERM;
3460 
3461 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3462 	if (IS_ERR(vbuf))
3463 		return PTR_ERR(vbuf);
3464 
3465 	err = mnt_want_write_file(filp);
3466 	if (err)
3467 		goto out;
3468 
3469 	f2fs_down_write(&sbi->sb_lock);
3470 
3471 	memset(sbi->raw_super->volume_name, 0,
3472 			sizeof(sbi->raw_super->volume_name));
3473 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3474 			sbi->raw_super->volume_name,
3475 			ARRAY_SIZE(sbi->raw_super->volume_name));
3476 
3477 	err = f2fs_commit_super(sbi, false);
3478 
3479 	f2fs_up_write(&sbi->sb_lock);
3480 
3481 	mnt_drop_write_file(filp);
3482 out:
3483 	kfree(vbuf);
3484 	return err;
3485 }
3486 
3487 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3488 {
3489 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3490 		return -EOPNOTSUPP;
3491 
3492 	if (!f2fs_compressed_file(inode))
3493 		return -EINVAL;
3494 
3495 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3496 
3497 	return 0;
3498 }
3499 
3500 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3501 {
3502 	struct inode *inode = file_inode(filp);
3503 	__u64 blocks;
3504 	int ret;
3505 
3506 	ret = f2fs_get_compress_blocks(inode, &blocks);
3507 	if (ret < 0)
3508 		return ret;
3509 
3510 	return put_user(blocks, (u64 __user *)arg);
3511 }
3512 
3513 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3514 {
3515 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3516 	unsigned int released_blocks = 0;
3517 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3518 	block_t blkaddr;
3519 	int i;
3520 
3521 	for (i = 0; i < count; i++) {
3522 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3523 						dn->ofs_in_node + i);
3524 
3525 		if (!__is_valid_data_blkaddr(blkaddr))
3526 			continue;
3527 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3528 					DATA_GENERIC_ENHANCE))) {
3529 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3530 			return -EFSCORRUPTED;
3531 		}
3532 	}
3533 
3534 	while (count) {
3535 		int compr_blocks = 0;
3536 
3537 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3538 			blkaddr = f2fs_data_blkaddr(dn);
3539 
3540 			if (i == 0) {
3541 				if (blkaddr == COMPRESS_ADDR)
3542 					continue;
3543 				dn->ofs_in_node += cluster_size;
3544 				goto next;
3545 			}
3546 
3547 			if (__is_valid_data_blkaddr(blkaddr))
3548 				compr_blocks++;
3549 
3550 			if (blkaddr != NEW_ADDR)
3551 				continue;
3552 
3553 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3554 		}
3555 
3556 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3557 		dec_valid_block_count(sbi, dn->inode,
3558 					cluster_size - compr_blocks);
3559 
3560 		released_blocks += cluster_size - compr_blocks;
3561 next:
3562 		count -= cluster_size;
3563 	}
3564 
3565 	return released_blocks;
3566 }
3567 
3568 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3569 {
3570 	struct inode *inode = file_inode(filp);
3571 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3572 	pgoff_t page_idx = 0, last_idx;
3573 	unsigned int released_blocks = 0;
3574 	int ret;
3575 	int writecount;
3576 
3577 	if (!f2fs_sb_has_compression(sbi))
3578 		return -EOPNOTSUPP;
3579 
3580 	if (f2fs_readonly(sbi->sb))
3581 		return -EROFS;
3582 
3583 	ret = mnt_want_write_file(filp);
3584 	if (ret)
3585 		return ret;
3586 
3587 	f2fs_balance_fs(sbi, true);
3588 
3589 	inode_lock(inode);
3590 
3591 	writecount = atomic_read(&inode->i_writecount);
3592 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3593 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3594 		ret = -EBUSY;
3595 		goto out;
3596 	}
3597 
3598 	if (!f2fs_compressed_file(inode) ||
3599 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3600 		ret = -EINVAL;
3601 		goto out;
3602 	}
3603 
3604 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3605 	if (ret)
3606 		goto out;
3607 
3608 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3609 		ret = -EPERM;
3610 		goto out;
3611 	}
3612 
3613 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3614 	inode_set_ctime_current(inode);
3615 	f2fs_mark_inode_dirty_sync(inode, true);
3616 
3617 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3618 	filemap_invalidate_lock(inode->i_mapping);
3619 
3620 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3621 
3622 	while (page_idx < last_idx) {
3623 		struct dnode_of_data dn;
3624 		pgoff_t end_offset, count;
3625 
3626 		f2fs_lock_op(sbi);
3627 
3628 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3629 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3630 		if (ret) {
3631 			f2fs_unlock_op(sbi);
3632 			if (ret == -ENOENT) {
3633 				page_idx = f2fs_get_next_page_offset(&dn,
3634 								page_idx);
3635 				ret = 0;
3636 				continue;
3637 			}
3638 			break;
3639 		}
3640 
3641 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3642 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3643 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3644 
3645 		ret = release_compress_blocks(&dn, count);
3646 
3647 		f2fs_put_dnode(&dn);
3648 
3649 		f2fs_unlock_op(sbi);
3650 
3651 		if (ret < 0)
3652 			break;
3653 
3654 		page_idx += count;
3655 		released_blocks += ret;
3656 	}
3657 
3658 	filemap_invalidate_unlock(inode->i_mapping);
3659 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3660 out:
3661 	inode_unlock(inode);
3662 
3663 	mnt_drop_write_file(filp);
3664 
3665 	if (ret >= 0) {
3666 		ret = put_user(released_blocks, (u64 __user *)arg);
3667 	} else if (released_blocks &&
3668 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3669 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3670 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3671 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3672 			"run fsck to fix.",
3673 			__func__, inode->i_ino, inode->i_blocks,
3674 			released_blocks,
3675 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3676 	}
3677 
3678 	return ret;
3679 }
3680 
3681 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3682 		unsigned int *reserved_blocks)
3683 {
3684 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3685 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3686 	block_t blkaddr;
3687 	int i;
3688 
3689 	for (i = 0; i < count; i++) {
3690 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3691 						dn->ofs_in_node + i);
3692 
3693 		if (!__is_valid_data_blkaddr(blkaddr))
3694 			continue;
3695 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3696 					DATA_GENERIC_ENHANCE))) {
3697 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3698 			return -EFSCORRUPTED;
3699 		}
3700 	}
3701 
3702 	while (count) {
3703 		int compr_blocks = 0;
3704 		blkcnt_t reserved = 0;
3705 		blkcnt_t to_reserved;
3706 		int ret;
3707 
3708 		for (i = 0; i < cluster_size; i++) {
3709 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
3710 						dn->ofs_in_node + i);
3711 
3712 			if (i == 0) {
3713 				if (blkaddr != COMPRESS_ADDR) {
3714 					dn->ofs_in_node += cluster_size;
3715 					goto next;
3716 				}
3717 				continue;
3718 			}
3719 
3720 			/*
3721 			 * compressed cluster was not released due to it
3722 			 * fails in release_compress_blocks(), so NEW_ADDR
3723 			 * is a possible case.
3724 			 */
3725 			if (blkaddr == NEW_ADDR) {
3726 				reserved++;
3727 				continue;
3728 			}
3729 			if (__is_valid_data_blkaddr(blkaddr)) {
3730 				compr_blocks++;
3731 				continue;
3732 			}
3733 		}
3734 
3735 		to_reserved = cluster_size - compr_blocks - reserved;
3736 
3737 		/* for the case all blocks in cluster were reserved */
3738 		if (to_reserved == 1) {
3739 			dn->ofs_in_node += cluster_size;
3740 			goto next;
3741 		}
3742 
3743 		ret = inc_valid_block_count(sbi, dn->inode,
3744 						&to_reserved, false);
3745 		if (unlikely(ret))
3746 			return ret;
3747 
3748 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3749 			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3750 				f2fs_set_data_blkaddr(dn, NEW_ADDR);
3751 		}
3752 
3753 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3754 
3755 		*reserved_blocks += to_reserved;
3756 next:
3757 		count -= cluster_size;
3758 	}
3759 
3760 	return 0;
3761 }
3762 
3763 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3764 {
3765 	struct inode *inode = file_inode(filp);
3766 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3767 	pgoff_t page_idx = 0, last_idx;
3768 	unsigned int reserved_blocks = 0;
3769 	int ret;
3770 
3771 	if (!f2fs_sb_has_compression(sbi))
3772 		return -EOPNOTSUPP;
3773 
3774 	if (f2fs_readonly(sbi->sb))
3775 		return -EROFS;
3776 
3777 	ret = mnt_want_write_file(filp);
3778 	if (ret)
3779 		return ret;
3780 
3781 	f2fs_balance_fs(sbi, true);
3782 
3783 	inode_lock(inode);
3784 
3785 	if (!f2fs_compressed_file(inode) ||
3786 		!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3787 		ret = -EINVAL;
3788 		goto unlock_inode;
3789 	}
3790 
3791 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3792 		goto unlock_inode;
3793 
3794 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3795 	filemap_invalidate_lock(inode->i_mapping);
3796 
3797 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3798 
3799 	while (page_idx < last_idx) {
3800 		struct dnode_of_data dn;
3801 		pgoff_t end_offset, count;
3802 
3803 		f2fs_lock_op(sbi);
3804 
3805 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3806 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3807 		if (ret) {
3808 			f2fs_unlock_op(sbi);
3809 			if (ret == -ENOENT) {
3810 				page_idx = f2fs_get_next_page_offset(&dn,
3811 								page_idx);
3812 				ret = 0;
3813 				continue;
3814 			}
3815 			break;
3816 		}
3817 
3818 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3819 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3820 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3821 
3822 		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3823 
3824 		f2fs_put_dnode(&dn);
3825 
3826 		f2fs_unlock_op(sbi);
3827 
3828 		if (ret < 0)
3829 			break;
3830 
3831 		page_idx += count;
3832 	}
3833 
3834 	filemap_invalidate_unlock(inode->i_mapping);
3835 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3836 
3837 	if (!ret) {
3838 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3839 		inode_set_ctime_current(inode);
3840 		f2fs_mark_inode_dirty_sync(inode, true);
3841 	}
3842 unlock_inode:
3843 	inode_unlock(inode);
3844 	mnt_drop_write_file(filp);
3845 
3846 	if (!ret) {
3847 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3848 	} else if (reserved_blocks &&
3849 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3850 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3851 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3852 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3853 			"run fsck to fix.",
3854 			__func__, inode->i_ino, inode->i_blocks,
3855 			reserved_blocks,
3856 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3857 	}
3858 
3859 	return ret;
3860 }
3861 
3862 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3863 		pgoff_t off, block_t block, block_t len, u32 flags)
3864 {
3865 	sector_t sector = SECTOR_FROM_BLOCK(block);
3866 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3867 	int ret = 0;
3868 
3869 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3870 		if (bdev_max_secure_erase_sectors(bdev))
3871 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3872 					GFP_NOFS);
3873 		else
3874 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3875 					GFP_NOFS);
3876 	}
3877 
3878 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3879 		if (IS_ENCRYPTED(inode))
3880 			ret = fscrypt_zeroout_range(inode, off, block, len);
3881 		else
3882 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3883 					GFP_NOFS, 0);
3884 	}
3885 
3886 	return ret;
3887 }
3888 
3889 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3890 {
3891 	struct inode *inode = file_inode(filp);
3892 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3893 	struct address_space *mapping = inode->i_mapping;
3894 	struct block_device *prev_bdev = NULL;
3895 	struct f2fs_sectrim_range range;
3896 	pgoff_t index, pg_end, prev_index = 0;
3897 	block_t prev_block = 0, len = 0;
3898 	loff_t end_addr;
3899 	bool to_end = false;
3900 	int ret = 0;
3901 
3902 	if (!(filp->f_mode & FMODE_WRITE))
3903 		return -EBADF;
3904 
3905 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3906 				sizeof(range)))
3907 		return -EFAULT;
3908 
3909 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3910 			!S_ISREG(inode->i_mode))
3911 		return -EINVAL;
3912 
3913 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3914 			!f2fs_hw_support_discard(sbi)) ||
3915 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3916 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3917 		return -EOPNOTSUPP;
3918 
3919 	file_start_write(filp);
3920 	inode_lock(inode);
3921 
3922 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3923 			range.start >= inode->i_size) {
3924 		ret = -EINVAL;
3925 		goto err;
3926 	}
3927 
3928 	if (range.len == 0)
3929 		goto err;
3930 
3931 	if (inode->i_size - range.start > range.len) {
3932 		end_addr = range.start + range.len;
3933 	} else {
3934 		end_addr = range.len == (u64)-1 ?
3935 			sbi->sb->s_maxbytes : inode->i_size;
3936 		to_end = true;
3937 	}
3938 
3939 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3940 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3941 		ret = -EINVAL;
3942 		goto err;
3943 	}
3944 
3945 	index = F2FS_BYTES_TO_BLK(range.start);
3946 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3947 
3948 	ret = f2fs_convert_inline_inode(inode);
3949 	if (ret)
3950 		goto err;
3951 
3952 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3953 	filemap_invalidate_lock(mapping);
3954 
3955 	ret = filemap_write_and_wait_range(mapping, range.start,
3956 			to_end ? LLONG_MAX : end_addr - 1);
3957 	if (ret)
3958 		goto out;
3959 
3960 	truncate_inode_pages_range(mapping, range.start,
3961 			to_end ? -1 : end_addr - 1);
3962 
3963 	while (index < pg_end) {
3964 		struct dnode_of_data dn;
3965 		pgoff_t end_offset, count;
3966 		int i;
3967 
3968 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3969 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3970 		if (ret) {
3971 			if (ret == -ENOENT) {
3972 				index = f2fs_get_next_page_offset(&dn, index);
3973 				continue;
3974 			}
3975 			goto out;
3976 		}
3977 
3978 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3979 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3980 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3981 			struct block_device *cur_bdev;
3982 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3983 
3984 			if (!__is_valid_data_blkaddr(blkaddr))
3985 				continue;
3986 
3987 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3988 						DATA_GENERIC_ENHANCE)) {
3989 				ret = -EFSCORRUPTED;
3990 				f2fs_put_dnode(&dn);
3991 				f2fs_handle_error(sbi,
3992 						ERROR_INVALID_BLKADDR);
3993 				goto out;
3994 			}
3995 
3996 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3997 			if (f2fs_is_multi_device(sbi)) {
3998 				int di = f2fs_target_device_index(sbi, blkaddr);
3999 
4000 				blkaddr -= FDEV(di).start_blk;
4001 			}
4002 
4003 			if (len) {
4004 				if (prev_bdev == cur_bdev &&
4005 						index == prev_index + len &&
4006 						blkaddr == prev_block + len) {
4007 					len++;
4008 				} else {
4009 					ret = f2fs_secure_erase(prev_bdev,
4010 						inode, prev_index, prev_block,
4011 						len, range.flags);
4012 					if (ret) {
4013 						f2fs_put_dnode(&dn);
4014 						goto out;
4015 					}
4016 
4017 					len = 0;
4018 				}
4019 			}
4020 
4021 			if (!len) {
4022 				prev_bdev = cur_bdev;
4023 				prev_index = index;
4024 				prev_block = blkaddr;
4025 				len = 1;
4026 			}
4027 		}
4028 
4029 		f2fs_put_dnode(&dn);
4030 
4031 		if (fatal_signal_pending(current)) {
4032 			ret = -EINTR;
4033 			goto out;
4034 		}
4035 		cond_resched();
4036 	}
4037 
4038 	if (len)
4039 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4040 				prev_block, len, range.flags);
4041 out:
4042 	filemap_invalidate_unlock(mapping);
4043 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4044 err:
4045 	inode_unlock(inode);
4046 	file_end_write(filp);
4047 
4048 	return ret;
4049 }
4050 
4051 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4052 {
4053 	struct inode *inode = file_inode(filp);
4054 	struct f2fs_comp_option option;
4055 
4056 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4057 		return -EOPNOTSUPP;
4058 
4059 	inode_lock_shared(inode);
4060 
4061 	if (!f2fs_compressed_file(inode)) {
4062 		inode_unlock_shared(inode);
4063 		return -ENODATA;
4064 	}
4065 
4066 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4067 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4068 
4069 	inode_unlock_shared(inode);
4070 
4071 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4072 				sizeof(option)))
4073 		return -EFAULT;
4074 
4075 	return 0;
4076 }
4077 
4078 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4079 {
4080 	struct inode *inode = file_inode(filp);
4081 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4082 	struct f2fs_comp_option option;
4083 	int ret = 0;
4084 
4085 	if (!f2fs_sb_has_compression(sbi))
4086 		return -EOPNOTSUPP;
4087 
4088 	if (!(filp->f_mode & FMODE_WRITE))
4089 		return -EBADF;
4090 
4091 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4092 				sizeof(option)))
4093 		return -EFAULT;
4094 
4095 	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4096 		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4097 		option.algorithm >= COMPRESS_MAX)
4098 		return -EINVAL;
4099 
4100 	file_start_write(filp);
4101 	inode_lock(inode);
4102 
4103 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4104 	if (!f2fs_compressed_file(inode)) {
4105 		ret = -EINVAL;
4106 		goto out;
4107 	}
4108 
4109 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4110 		ret = -EBUSY;
4111 		goto out;
4112 	}
4113 
4114 	if (F2FS_HAS_BLOCKS(inode)) {
4115 		ret = -EFBIG;
4116 		goto out;
4117 	}
4118 
4119 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4120 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4121 	F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4122 	/* Set default level */
4123 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4124 		F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4125 	else
4126 		F2FS_I(inode)->i_compress_level = 0;
4127 	/* Adjust mount option level */
4128 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4129 	    F2FS_OPTION(sbi).compress_level)
4130 		F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4131 	f2fs_mark_inode_dirty_sync(inode, true);
4132 
4133 	if (!f2fs_is_compress_backend_ready(inode))
4134 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4135 			"but current kernel doesn't support this algorithm.");
4136 out:
4137 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4138 	inode_unlock(inode);
4139 	file_end_write(filp);
4140 
4141 	return ret;
4142 }
4143 
4144 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4145 {
4146 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4147 	struct address_space *mapping = inode->i_mapping;
4148 	struct page *page;
4149 	pgoff_t redirty_idx = page_idx;
4150 	int i, page_len = 0, ret = 0;
4151 
4152 	page_cache_ra_unbounded(&ractl, len, 0);
4153 
4154 	for (i = 0; i < len; i++, page_idx++) {
4155 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4156 		if (IS_ERR(page)) {
4157 			ret = PTR_ERR(page);
4158 			break;
4159 		}
4160 		page_len++;
4161 	}
4162 
4163 	for (i = 0; i < page_len; i++, redirty_idx++) {
4164 		page = find_lock_page(mapping, redirty_idx);
4165 
4166 		/* It will never fail, when page has pinned above */
4167 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4168 
4169 		f2fs_wait_on_page_writeback(page, DATA, true, true);
4170 
4171 		set_page_dirty(page);
4172 		set_page_private_gcing(page);
4173 		f2fs_put_page(page, 1);
4174 		f2fs_put_page(page, 0);
4175 	}
4176 
4177 	return ret;
4178 }
4179 
4180 static int f2fs_ioc_decompress_file(struct file *filp)
4181 {
4182 	struct inode *inode = file_inode(filp);
4183 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4184 	struct f2fs_inode_info *fi = F2FS_I(inode);
4185 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4186 	int ret;
4187 
4188 	if (!f2fs_sb_has_compression(sbi) ||
4189 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4190 		return -EOPNOTSUPP;
4191 
4192 	if (!(filp->f_mode & FMODE_WRITE))
4193 		return -EBADF;
4194 
4195 	f2fs_balance_fs(sbi, true);
4196 
4197 	file_start_write(filp);
4198 	inode_lock(inode);
4199 
4200 	if (!f2fs_is_compress_backend_ready(inode)) {
4201 		ret = -EOPNOTSUPP;
4202 		goto out;
4203 	}
4204 
4205 	if (!f2fs_compressed_file(inode) ||
4206 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4207 		ret = -EINVAL;
4208 		goto out;
4209 	}
4210 
4211 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4212 	if (ret)
4213 		goto out;
4214 
4215 	if (!atomic_read(&fi->i_compr_blocks))
4216 		goto out;
4217 
4218 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4219 	last_idx >>= fi->i_log_cluster_size;
4220 
4221 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4222 		page_idx = cluster_idx << fi->i_log_cluster_size;
4223 
4224 		if (!f2fs_is_compressed_cluster(inode, page_idx))
4225 			continue;
4226 
4227 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4228 		if (ret < 0)
4229 			break;
4230 
4231 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4232 			ret = filemap_fdatawrite(inode->i_mapping);
4233 			if (ret < 0)
4234 				break;
4235 		}
4236 
4237 		cond_resched();
4238 		if (fatal_signal_pending(current)) {
4239 			ret = -EINTR;
4240 			break;
4241 		}
4242 	}
4243 
4244 	if (!ret)
4245 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4246 							LLONG_MAX);
4247 
4248 	if (ret)
4249 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4250 			  __func__, ret);
4251 out:
4252 	inode_unlock(inode);
4253 	file_end_write(filp);
4254 
4255 	return ret;
4256 }
4257 
4258 static int f2fs_ioc_compress_file(struct file *filp)
4259 {
4260 	struct inode *inode = file_inode(filp);
4261 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4262 	struct f2fs_inode_info *fi = F2FS_I(inode);
4263 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4264 	int ret;
4265 
4266 	if (!f2fs_sb_has_compression(sbi) ||
4267 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4268 		return -EOPNOTSUPP;
4269 
4270 	if (!(filp->f_mode & FMODE_WRITE))
4271 		return -EBADF;
4272 
4273 	f2fs_balance_fs(sbi, true);
4274 
4275 	file_start_write(filp);
4276 	inode_lock(inode);
4277 
4278 	if (!f2fs_is_compress_backend_ready(inode)) {
4279 		ret = -EOPNOTSUPP;
4280 		goto out;
4281 	}
4282 
4283 	if (!f2fs_compressed_file(inode) ||
4284 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4285 		ret = -EINVAL;
4286 		goto out;
4287 	}
4288 
4289 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4290 	if (ret)
4291 		goto out;
4292 
4293 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4294 
4295 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4296 	last_idx >>= fi->i_log_cluster_size;
4297 
4298 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4299 		page_idx = cluster_idx << fi->i_log_cluster_size;
4300 
4301 		if (f2fs_is_sparse_cluster(inode, page_idx))
4302 			continue;
4303 
4304 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4305 		if (ret < 0)
4306 			break;
4307 
4308 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4309 			ret = filemap_fdatawrite(inode->i_mapping);
4310 			if (ret < 0)
4311 				break;
4312 		}
4313 
4314 		cond_resched();
4315 		if (fatal_signal_pending(current)) {
4316 			ret = -EINTR;
4317 			break;
4318 		}
4319 	}
4320 
4321 	if (!ret)
4322 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4323 							LLONG_MAX);
4324 
4325 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4326 
4327 	if (ret)
4328 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4329 			  __func__, ret);
4330 out:
4331 	inode_unlock(inode);
4332 	file_end_write(filp);
4333 
4334 	return ret;
4335 }
4336 
4337 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4338 {
4339 	switch (cmd) {
4340 	case FS_IOC_GETVERSION:
4341 		return f2fs_ioc_getversion(filp, arg);
4342 	case F2FS_IOC_START_ATOMIC_WRITE:
4343 		return f2fs_ioc_start_atomic_write(filp, false);
4344 	case F2FS_IOC_START_ATOMIC_REPLACE:
4345 		return f2fs_ioc_start_atomic_write(filp, true);
4346 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4347 		return f2fs_ioc_commit_atomic_write(filp);
4348 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4349 		return f2fs_ioc_abort_atomic_write(filp);
4350 	case F2FS_IOC_START_VOLATILE_WRITE:
4351 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4352 		return -EOPNOTSUPP;
4353 	case F2FS_IOC_SHUTDOWN:
4354 		return f2fs_ioc_shutdown(filp, arg);
4355 	case FITRIM:
4356 		return f2fs_ioc_fitrim(filp, arg);
4357 	case FS_IOC_SET_ENCRYPTION_POLICY:
4358 		return f2fs_ioc_set_encryption_policy(filp, arg);
4359 	case FS_IOC_GET_ENCRYPTION_POLICY:
4360 		return f2fs_ioc_get_encryption_policy(filp, arg);
4361 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4362 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4363 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4364 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4365 	case FS_IOC_ADD_ENCRYPTION_KEY:
4366 		return f2fs_ioc_add_encryption_key(filp, arg);
4367 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4368 		return f2fs_ioc_remove_encryption_key(filp, arg);
4369 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4370 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4371 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4372 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4373 	case FS_IOC_GET_ENCRYPTION_NONCE:
4374 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4375 	case F2FS_IOC_GARBAGE_COLLECT:
4376 		return f2fs_ioc_gc(filp, arg);
4377 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4378 		return f2fs_ioc_gc_range(filp, arg);
4379 	case F2FS_IOC_WRITE_CHECKPOINT:
4380 		return f2fs_ioc_write_checkpoint(filp);
4381 	case F2FS_IOC_DEFRAGMENT:
4382 		return f2fs_ioc_defragment(filp, arg);
4383 	case F2FS_IOC_MOVE_RANGE:
4384 		return f2fs_ioc_move_range(filp, arg);
4385 	case F2FS_IOC_FLUSH_DEVICE:
4386 		return f2fs_ioc_flush_device(filp, arg);
4387 	case F2FS_IOC_GET_FEATURES:
4388 		return f2fs_ioc_get_features(filp, arg);
4389 	case F2FS_IOC_GET_PIN_FILE:
4390 		return f2fs_ioc_get_pin_file(filp, arg);
4391 	case F2FS_IOC_SET_PIN_FILE:
4392 		return f2fs_ioc_set_pin_file(filp, arg);
4393 	case F2FS_IOC_PRECACHE_EXTENTS:
4394 		return f2fs_ioc_precache_extents(filp);
4395 	case F2FS_IOC_RESIZE_FS:
4396 		return f2fs_ioc_resize_fs(filp, arg);
4397 	case FS_IOC_ENABLE_VERITY:
4398 		return f2fs_ioc_enable_verity(filp, arg);
4399 	case FS_IOC_MEASURE_VERITY:
4400 		return f2fs_ioc_measure_verity(filp, arg);
4401 	case FS_IOC_READ_VERITY_METADATA:
4402 		return f2fs_ioc_read_verity_metadata(filp, arg);
4403 	case FS_IOC_GETFSLABEL:
4404 		return f2fs_ioc_getfslabel(filp, arg);
4405 	case FS_IOC_SETFSLABEL:
4406 		return f2fs_ioc_setfslabel(filp, arg);
4407 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4408 		return f2fs_ioc_get_compress_blocks(filp, arg);
4409 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4410 		return f2fs_release_compress_blocks(filp, arg);
4411 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4412 		return f2fs_reserve_compress_blocks(filp, arg);
4413 	case F2FS_IOC_SEC_TRIM_FILE:
4414 		return f2fs_sec_trim_file(filp, arg);
4415 	case F2FS_IOC_GET_COMPRESS_OPTION:
4416 		return f2fs_ioc_get_compress_option(filp, arg);
4417 	case F2FS_IOC_SET_COMPRESS_OPTION:
4418 		return f2fs_ioc_set_compress_option(filp, arg);
4419 	case F2FS_IOC_DECOMPRESS_FILE:
4420 		return f2fs_ioc_decompress_file(filp);
4421 	case F2FS_IOC_COMPRESS_FILE:
4422 		return f2fs_ioc_compress_file(filp);
4423 	default:
4424 		return -ENOTTY;
4425 	}
4426 }
4427 
4428 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4429 {
4430 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4431 		return -EIO;
4432 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4433 		return -ENOSPC;
4434 
4435 	return __f2fs_ioctl(filp, cmd, arg);
4436 }
4437 
4438 /*
4439  * Return %true if the given read or write request should use direct I/O, or
4440  * %false if it should use buffered I/O.
4441  */
4442 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4443 				struct iov_iter *iter)
4444 {
4445 	unsigned int align;
4446 
4447 	if (!(iocb->ki_flags & IOCB_DIRECT))
4448 		return false;
4449 
4450 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4451 		return false;
4452 
4453 	/*
4454 	 * Direct I/O not aligned to the disk's logical_block_size will be
4455 	 * attempted, but will fail with -EINVAL.
4456 	 *
4457 	 * f2fs additionally requires that direct I/O be aligned to the
4458 	 * filesystem block size, which is often a stricter requirement.
4459 	 * However, f2fs traditionally falls back to buffered I/O on requests
4460 	 * that are logical_block_size-aligned but not fs-block aligned.
4461 	 *
4462 	 * The below logic implements this behavior.
4463 	 */
4464 	align = iocb->ki_pos | iov_iter_alignment(iter);
4465 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4466 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4467 		return false;
4468 
4469 	return true;
4470 }
4471 
4472 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4473 				unsigned int flags)
4474 {
4475 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4476 
4477 	dec_page_count(sbi, F2FS_DIO_READ);
4478 	if (error)
4479 		return error;
4480 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4481 	return 0;
4482 }
4483 
4484 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4485 	.end_io = f2fs_dio_read_end_io,
4486 };
4487 
4488 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4489 {
4490 	struct file *file = iocb->ki_filp;
4491 	struct inode *inode = file_inode(file);
4492 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4493 	struct f2fs_inode_info *fi = F2FS_I(inode);
4494 	const loff_t pos = iocb->ki_pos;
4495 	const size_t count = iov_iter_count(to);
4496 	struct iomap_dio *dio;
4497 	ssize_t ret;
4498 
4499 	if (count == 0)
4500 		return 0; /* skip atime update */
4501 
4502 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4503 
4504 	if (iocb->ki_flags & IOCB_NOWAIT) {
4505 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4506 			ret = -EAGAIN;
4507 			goto out;
4508 		}
4509 	} else {
4510 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4511 	}
4512 
4513 	/*
4514 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4515 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4516 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4517 	 */
4518 	inc_page_count(sbi, F2FS_DIO_READ);
4519 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4520 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4521 	if (IS_ERR_OR_NULL(dio)) {
4522 		ret = PTR_ERR_OR_ZERO(dio);
4523 		if (ret != -EIOCBQUEUED)
4524 			dec_page_count(sbi, F2FS_DIO_READ);
4525 	} else {
4526 		ret = iomap_dio_complete(dio);
4527 	}
4528 
4529 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4530 
4531 	file_accessed(file);
4532 out:
4533 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4534 	return ret;
4535 }
4536 
4537 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4538 				    int rw)
4539 {
4540 	struct inode *inode = file_inode(file);
4541 	char *buf, *path;
4542 
4543 	buf = f2fs_getname(F2FS_I_SB(inode));
4544 	if (!buf)
4545 		return;
4546 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4547 	if (IS_ERR(path))
4548 		goto free_buf;
4549 	if (rw == WRITE)
4550 		trace_f2fs_datawrite_start(inode, pos, count,
4551 				current->pid, path, current->comm);
4552 	else
4553 		trace_f2fs_dataread_start(inode, pos, count,
4554 				current->pid, path, current->comm);
4555 free_buf:
4556 	f2fs_putname(buf);
4557 }
4558 
4559 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4560 {
4561 	struct inode *inode = file_inode(iocb->ki_filp);
4562 	const loff_t pos = iocb->ki_pos;
4563 	ssize_t ret;
4564 
4565 	if (!f2fs_is_compress_backend_ready(inode))
4566 		return -EOPNOTSUPP;
4567 
4568 	if (trace_f2fs_dataread_start_enabled())
4569 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4570 					iov_iter_count(to), READ);
4571 
4572 	/* In LFS mode, if there is inflight dio, wait for its completion */
4573 	if (f2fs_lfs_mode(F2FS_I_SB(inode)))
4574 		inode_dio_wait(inode);
4575 
4576 	if (f2fs_should_use_dio(inode, iocb, to)) {
4577 		ret = f2fs_dio_read_iter(iocb, to);
4578 	} else {
4579 		ret = filemap_read(iocb, to, 0);
4580 		if (ret > 0)
4581 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4582 						APP_BUFFERED_READ_IO, ret);
4583 	}
4584 	if (trace_f2fs_dataread_end_enabled())
4585 		trace_f2fs_dataread_end(inode, pos, ret);
4586 	return ret;
4587 }
4588 
4589 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4590 				     struct pipe_inode_info *pipe,
4591 				     size_t len, unsigned int flags)
4592 {
4593 	struct inode *inode = file_inode(in);
4594 	const loff_t pos = *ppos;
4595 	ssize_t ret;
4596 
4597 	if (!f2fs_is_compress_backend_ready(inode))
4598 		return -EOPNOTSUPP;
4599 
4600 	if (trace_f2fs_dataread_start_enabled())
4601 		f2fs_trace_rw_file_path(in, pos, len, READ);
4602 
4603 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4604 	if (ret > 0)
4605 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4606 				   APP_BUFFERED_READ_IO, ret);
4607 
4608 	if (trace_f2fs_dataread_end_enabled())
4609 		trace_f2fs_dataread_end(inode, pos, ret);
4610 	return ret;
4611 }
4612 
4613 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4614 {
4615 	struct file *file = iocb->ki_filp;
4616 	struct inode *inode = file_inode(file);
4617 	ssize_t count;
4618 	int err;
4619 
4620 	if (IS_IMMUTABLE(inode))
4621 		return -EPERM;
4622 
4623 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4624 		return -EPERM;
4625 
4626 	count = generic_write_checks(iocb, from);
4627 	if (count <= 0)
4628 		return count;
4629 
4630 	err = file_modified(file);
4631 	if (err)
4632 		return err;
4633 	return count;
4634 }
4635 
4636 /*
4637  * Preallocate blocks for a write request, if it is possible and helpful to do
4638  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4639  * blocks were preallocated, or a negative errno value if something went
4640  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4641  * requested blocks (not just some of them) have been allocated.
4642  */
4643 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4644 				   bool dio)
4645 {
4646 	struct inode *inode = file_inode(iocb->ki_filp);
4647 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4648 	const loff_t pos = iocb->ki_pos;
4649 	const size_t count = iov_iter_count(iter);
4650 	struct f2fs_map_blocks map = {};
4651 	int flag;
4652 	int ret;
4653 
4654 	/* If it will be an out-of-place direct write, don't bother. */
4655 	if (dio && f2fs_lfs_mode(sbi))
4656 		return 0;
4657 	/*
4658 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4659 	 * buffered IO, if DIO meets any holes.
4660 	 */
4661 	if (dio && i_size_read(inode) &&
4662 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4663 		return 0;
4664 
4665 	/* No-wait I/O can't allocate blocks. */
4666 	if (iocb->ki_flags & IOCB_NOWAIT)
4667 		return 0;
4668 
4669 	/* If it will be a short write, don't bother. */
4670 	if (fault_in_iov_iter_readable(iter, count))
4671 		return 0;
4672 
4673 	if (f2fs_has_inline_data(inode)) {
4674 		/* If the data will fit inline, don't bother. */
4675 		if (pos + count <= MAX_INLINE_DATA(inode))
4676 			return 0;
4677 		ret = f2fs_convert_inline_inode(inode);
4678 		if (ret)
4679 			return ret;
4680 	}
4681 
4682 	/* Do not preallocate blocks that will be written partially in 4KB. */
4683 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4684 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4685 	if (map.m_len > map.m_lblk)
4686 		map.m_len -= map.m_lblk;
4687 	else
4688 		map.m_len = 0;
4689 	map.m_may_create = true;
4690 	if (dio) {
4691 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4692 		flag = F2FS_GET_BLOCK_PRE_DIO;
4693 	} else {
4694 		map.m_seg_type = NO_CHECK_TYPE;
4695 		flag = F2FS_GET_BLOCK_PRE_AIO;
4696 	}
4697 
4698 	ret = f2fs_map_blocks(inode, &map, flag);
4699 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4700 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4701 		return ret;
4702 	if (ret == 0)
4703 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4704 	return map.m_len;
4705 }
4706 
4707 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4708 					struct iov_iter *from)
4709 {
4710 	struct file *file = iocb->ki_filp;
4711 	struct inode *inode = file_inode(file);
4712 	ssize_t ret;
4713 
4714 	if (iocb->ki_flags & IOCB_NOWAIT)
4715 		return -EOPNOTSUPP;
4716 
4717 	ret = generic_perform_write(iocb, from);
4718 
4719 	if (ret > 0) {
4720 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4721 						APP_BUFFERED_IO, ret);
4722 	}
4723 	return ret;
4724 }
4725 
4726 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4727 				 unsigned int flags)
4728 {
4729 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4730 
4731 	dec_page_count(sbi, F2FS_DIO_WRITE);
4732 	if (error)
4733 		return error;
4734 	f2fs_update_time(sbi, REQ_TIME);
4735 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4736 	return 0;
4737 }
4738 
4739 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4740 	.end_io = f2fs_dio_write_end_io,
4741 };
4742 
4743 static void f2fs_flush_buffered_write(struct address_space *mapping,
4744 				      loff_t start_pos, loff_t end_pos)
4745 {
4746 	int ret;
4747 
4748 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4749 	if (ret < 0)
4750 		return;
4751 	invalidate_mapping_pages(mapping,
4752 				 start_pos >> PAGE_SHIFT,
4753 				 end_pos >> PAGE_SHIFT);
4754 }
4755 
4756 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4757 				   bool *may_need_sync)
4758 {
4759 	struct file *file = iocb->ki_filp;
4760 	struct inode *inode = file_inode(file);
4761 	struct f2fs_inode_info *fi = F2FS_I(inode);
4762 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4763 	const bool do_opu = f2fs_lfs_mode(sbi);
4764 	const loff_t pos = iocb->ki_pos;
4765 	const ssize_t count = iov_iter_count(from);
4766 	unsigned int dio_flags;
4767 	struct iomap_dio *dio;
4768 	ssize_t ret;
4769 
4770 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4771 
4772 	if (iocb->ki_flags & IOCB_NOWAIT) {
4773 		/* f2fs_convert_inline_inode() and block allocation can block */
4774 		if (f2fs_has_inline_data(inode) ||
4775 		    !f2fs_overwrite_io(inode, pos, count)) {
4776 			ret = -EAGAIN;
4777 			goto out;
4778 		}
4779 
4780 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4781 			ret = -EAGAIN;
4782 			goto out;
4783 		}
4784 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4785 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4786 			ret = -EAGAIN;
4787 			goto out;
4788 		}
4789 	} else {
4790 		ret = f2fs_convert_inline_inode(inode);
4791 		if (ret)
4792 			goto out;
4793 
4794 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4795 		if (do_opu)
4796 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4797 	}
4798 
4799 	/*
4800 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4801 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4802 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4803 	 */
4804 	inc_page_count(sbi, F2FS_DIO_WRITE);
4805 	dio_flags = 0;
4806 	if (pos + count > inode->i_size)
4807 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4808 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4809 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4810 	if (IS_ERR_OR_NULL(dio)) {
4811 		ret = PTR_ERR_OR_ZERO(dio);
4812 		if (ret == -ENOTBLK)
4813 			ret = 0;
4814 		if (ret != -EIOCBQUEUED)
4815 			dec_page_count(sbi, F2FS_DIO_WRITE);
4816 	} else {
4817 		ret = iomap_dio_complete(dio);
4818 	}
4819 
4820 	if (do_opu)
4821 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4822 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4823 
4824 	if (ret < 0)
4825 		goto out;
4826 	if (pos + ret > inode->i_size)
4827 		f2fs_i_size_write(inode, pos + ret);
4828 	if (!do_opu)
4829 		set_inode_flag(inode, FI_UPDATE_WRITE);
4830 
4831 	if (iov_iter_count(from)) {
4832 		ssize_t ret2;
4833 		loff_t bufio_start_pos = iocb->ki_pos;
4834 
4835 		/*
4836 		 * The direct write was partial, so we need to fall back to a
4837 		 * buffered write for the remainder.
4838 		 */
4839 
4840 		ret2 = f2fs_buffered_write_iter(iocb, from);
4841 		if (iov_iter_count(from))
4842 			f2fs_write_failed(inode, iocb->ki_pos);
4843 		if (ret2 < 0)
4844 			goto out;
4845 
4846 		/*
4847 		 * Ensure that the pagecache pages are written to disk and
4848 		 * invalidated to preserve the expected O_DIRECT semantics.
4849 		 */
4850 		if (ret2 > 0) {
4851 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4852 
4853 			ret += ret2;
4854 
4855 			f2fs_flush_buffered_write(file->f_mapping,
4856 						  bufio_start_pos,
4857 						  bufio_end_pos);
4858 		}
4859 	} else {
4860 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4861 		*may_need_sync = false;
4862 	}
4863 out:
4864 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4865 	return ret;
4866 }
4867 
4868 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4869 {
4870 	struct inode *inode = file_inode(iocb->ki_filp);
4871 	const loff_t orig_pos = iocb->ki_pos;
4872 	const size_t orig_count = iov_iter_count(from);
4873 	loff_t target_size;
4874 	bool dio;
4875 	bool may_need_sync = true;
4876 	int preallocated;
4877 	ssize_t ret;
4878 
4879 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4880 		ret = -EIO;
4881 		goto out;
4882 	}
4883 
4884 	if (!f2fs_is_compress_backend_ready(inode)) {
4885 		ret = -EOPNOTSUPP;
4886 		goto out;
4887 	}
4888 
4889 	if (iocb->ki_flags & IOCB_NOWAIT) {
4890 		if (!inode_trylock(inode)) {
4891 			ret = -EAGAIN;
4892 			goto out;
4893 		}
4894 	} else {
4895 		inode_lock(inode);
4896 	}
4897 
4898 	ret = f2fs_write_checks(iocb, from);
4899 	if (ret <= 0)
4900 		goto out_unlock;
4901 
4902 	/* Determine whether we will do a direct write or a buffered write. */
4903 	dio = f2fs_should_use_dio(inode, iocb, from);
4904 
4905 	/* Possibly preallocate the blocks for the write. */
4906 	target_size = iocb->ki_pos + iov_iter_count(from);
4907 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4908 	if (preallocated < 0) {
4909 		ret = preallocated;
4910 	} else {
4911 		if (trace_f2fs_datawrite_start_enabled())
4912 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4913 						orig_count, WRITE);
4914 
4915 		/* Do the actual write. */
4916 		ret = dio ?
4917 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4918 			f2fs_buffered_write_iter(iocb, from);
4919 
4920 		if (trace_f2fs_datawrite_end_enabled())
4921 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4922 	}
4923 
4924 	/* Don't leave any preallocated blocks around past i_size. */
4925 	if (preallocated && i_size_read(inode) < target_size) {
4926 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4927 		filemap_invalidate_lock(inode->i_mapping);
4928 		if (!f2fs_truncate(inode))
4929 			file_dont_truncate(inode);
4930 		filemap_invalidate_unlock(inode->i_mapping);
4931 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4932 	} else {
4933 		file_dont_truncate(inode);
4934 	}
4935 
4936 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4937 out_unlock:
4938 	inode_unlock(inode);
4939 out:
4940 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4941 
4942 	if (ret > 0 && may_need_sync)
4943 		ret = generic_write_sync(iocb, ret);
4944 
4945 	/* If buffered IO was forced, flush and drop the data from
4946 	 * the page cache to preserve O_DIRECT semantics
4947 	 */
4948 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4949 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4950 					  orig_pos,
4951 					  orig_pos + ret - 1);
4952 
4953 	return ret;
4954 }
4955 
4956 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4957 		int advice)
4958 {
4959 	struct address_space *mapping;
4960 	struct backing_dev_info *bdi;
4961 	struct inode *inode = file_inode(filp);
4962 	int err;
4963 
4964 	if (advice == POSIX_FADV_SEQUENTIAL) {
4965 		if (S_ISFIFO(inode->i_mode))
4966 			return -ESPIPE;
4967 
4968 		mapping = filp->f_mapping;
4969 		if (!mapping || len < 0)
4970 			return -EINVAL;
4971 
4972 		bdi = inode_to_bdi(mapping->host);
4973 		filp->f_ra.ra_pages = bdi->ra_pages *
4974 			F2FS_I_SB(inode)->seq_file_ra_mul;
4975 		spin_lock(&filp->f_lock);
4976 		filp->f_mode &= ~FMODE_RANDOM;
4977 		spin_unlock(&filp->f_lock);
4978 		return 0;
4979 	}
4980 
4981 	err = generic_fadvise(filp, offset, len, advice);
4982 	if (!err && advice == POSIX_FADV_DONTNEED &&
4983 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4984 		f2fs_compressed_file(inode))
4985 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4986 
4987 	return err;
4988 }
4989 
4990 #ifdef CONFIG_COMPAT
4991 struct compat_f2fs_gc_range {
4992 	u32 sync;
4993 	compat_u64 start;
4994 	compat_u64 len;
4995 };
4996 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4997 						struct compat_f2fs_gc_range)
4998 
4999 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5000 {
5001 	struct compat_f2fs_gc_range __user *urange;
5002 	struct f2fs_gc_range range;
5003 	int err;
5004 
5005 	urange = compat_ptr(arg);
5006 	err = get_user(range.sync, &urange->sync);
5007 	err |= get_user(range.start, &urange->start);
5008 	err |= get_user(range.len, &urange->len);
5009 	if (err)
5010 		return -EFAULT;
5011 
5012 	return __f2fs_ioc_gc_range(file, &range);
5013 }
5014 
5015 struct compat_f2fs_move_range {
5016 	u32 dst_fd;
5017 	compat_u64 pos_in;
5018 	compat_u64 pos_out;
5019 	compat_u64 len;
5020 };
5021 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
5022 					struct compat_f2fs_move_range)
5023 
5024 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5025 {
5026 	struct compat_f2fs_move_range __user *urange;
5027 	struct f2fs_move_range range;
5028 	int err;
5029 
5030 	urange = compat_ptr(arg);
5031 	err = get_user(range.dst_fd, &urange->dst_fd);
5032 	err |= get_user(range.pos_in, &urange->pos_in);
5033 	err |= get_user(range.pos_out, &urange->pos_out);
5034 	err |= get_user(range.len, &urange->len);
5035 	if (err)
5036 		return -EFAULT;
5037 
5038 	return __f2fs_ioc_move_range(file, &range);
5039 }
5040 
5041 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5042 {
5043 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5044 		return -EIO;
5045 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5046 		return -ENOSPC;
5047 
5048 	switch (cmd) {
5049 	case FS_IOC32_GETVERSION:
5050 		cmd = FS_IOC_GETVERSION;
5051 		break;
5052 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5053 		return f2fs_compat_ioc_gc_range(file, arg);
5054 	case F2FS_IOC32_MOVE_RANGE:
5055 		return f2fs_compat_ioc_move_range(file, arg);
5056 	case F2FS_IOC_START_ATOMIC_WRITE:
5057 	case F2FS_IOC_START_ATOMIC_REPLACE:
5058 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5059 	case F2FS_IOC_START_VOLATILE_WRITE:
5060 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5061 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
5062 	case F2FS_IOC_SHUTDOWN:
5063 	case FITRIM:
5064 	case FS_IOC_SET_ENCRYPTION_POLICY:
5065 	case FS_IOC_GET_ENCRYPTION_PWSALT:
5066 	case FS_IOC_GET_ENCRYPTION_POLICY:
5067 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5068 	case FS_IOC_ADD_ENCRYPTION_KEY:
5069 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
5070 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5071 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5072 	case FS_IOC_GET_ENCRYPTION_NONCE:
5073 	case F2FS_IOC_GARBAGE_COLLECT:
5074 	case F2FS_IOC_WRITE_CHECKPOINT:
5075 	case F2FS_IOC_DEFRAGMENT:
5076 	case F2FS_IOC_FLUSH_DEVICE:
5077 	case F2FS_IOC_GET_FEATURES:
5078 	case F2FS_IOC_GET_PIN_FILE:
5079 	case F2FS_IOC_SET_PIN_FILE:
5080 	case F2FS_IOC_PRECACHE_EXTENTS:
5081 	case F2FS_IOC_RESIZE_FS:
5082 	case FS_IOC_ENABLE_VERITY:
5083 	case FS_IOC_MEASURE_VERITY:
5084 	case FS_IOC_READ_VERITY_METADATA:
5085 	case FS_IOC_GETFSLABEL:
5086 	case FS_IOC_SETFSLABEL:
5087 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5088 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5089 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5090 	case F2FS_IOC_SEC_TRIM_FILE:
5091 	case F2FS_IOC_GET_COMPRESS_OPTION:
5092 	case F2FS_IOC_SET_COMPRESS_OPTION:
5093 	case F2FS_IOC_DECOMPRESS_FILE:
5094 	case F2FS_IOC_COMPRESS_FILE:
5095 		break;
5096 	default:
5097 		return -ENOIOCTLCMD;
5098 	}
5099 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5100 }
5101 #endif
5102 
5103 const struct file_operations f2fs_file_operations = {
5104 	.llseek		= f2fs_llseek,
5105 	.read_iter	= f2fs_file_read_iter,
5106 	.write_iter	= f2fs_file_write_iter,
5107 	.iopoll		= iocb_bio_iopoll,
5108 	.open		= f2fs_file_open,
5109 	.release	= f2fs_release_file,
5110 	.mmap		= f2fs_file_mmap,
5111 	.flush		= f2fs_file_flush,
5112 	.fsync		= f2fs_sync_file,
5113 	.fallocate	= f2fs_fallocate,
5114 	.unlocked_ioctl	= f2fs_ioctl,
5115 #ifdef CONFIG_COMPAT
5116 	.compat_ioctl	= f2fs_compat_ioctl,
5117 #endif
5118 	.splice_read	= f2fs_file_splice_read,
5119 	.splice_write	= iter_file_splice_write,
5120 	.fadvise	= f2fs_file_fadvise,
5121 };
5122