1 /* 2 * fs/f2fs/file.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/stat.h> 14 #include <linux/buffer_head.h> 15 #include <linux/writeback.h> 16 #include <linux/blkdev.h> 17 #include <linux/falloc.h> 18 #include <linux/types.h> 19 #include <linux/compat.h> 20 #include <linux/uaccess.h> 21 #include <linux/mount.h> 22 23 #include "f2fs.h" 24 #include "node.h" 25 #include "segment.h" 26 #include "xattr.h" 27 #include "acl.h" 28 #include <trace/events/f2fs.h> 29 30 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma, 31 struct vm_fault *vmf) 32 { 33 struct page *page = vmf->page; 34 struct inode *inode = file_inode(vma->vm_file); 35 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 36 block_t old_blk_addr; 37 struct dnode_of_data dn; 38 int err, ilock; 39 40 f2fs_balance_fs(sbi); 41 42 sb_start_pagefault(inode->i_sb); 43 44 /* block allocation */ 45 ilock = mutex_lock_op(sbi); 46 set_new_dnode(&dn, inode, NULL, NULL, 0); 47 err = get_dnode_of_data(&dn, page->index, ALLOC_NODE); 48 if (err) { 49 mutex_unlock_op(sbi, ilock); 50 goto out; 51 } 52 53 old_blk_addr = dn.data_blkaddr; 54 55 if (old_blk_addr == NULL_ADDR) { 56 err = reserve_new_block(&dn); 57 if (err) { 58 f2fs_put_dnode(&dn); 59 mutex_unlock_op(sbi, ilock); 60 goto out; 61 } 62 } 63 f2fs_put_dnode(&dn); 64 mutex_unlock_op(sbi, ilock); 65 66 file_update_time(vma->vm_file); 67 lock_page(page); 68 if (page->mapping != inode->i_mapping || 69 page_offset(page) > i_size_read(inode) || 70 !PageUptodate(page)) { 71 unlock_page(page); 72 err = -EFAULT; 73 goto out; 74 } 75 76 /* 77 * check to see if the page is mapped already (no holes) 78 */ 79 if (PageMappedToDisk(page)) 80 goto mapped; 81 82 /* page is wholly or partially inside EOF */ 83 if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) { 84 unsigned offset; 85 offset = i_size_read(inode) & ~PAGE_CACHE_MASK; 86 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 87 } 88 set_page_dirty(page); 89 SetPageUptodate(page); 90 91 mapped: 92 /* fill the page */ 93 wait_on_page_writeback(page); 94 out: 95 sb_end_pagefault(inode->i_sb); 96 return block_page_mkwrite_return(err); 97 } 98 99 static const struct vm_operations_struct f2fs_file_vm_ops = { 100 .fault = filemap_fault, 101 .page_mkwrite = f2fs_vm_page_mkwrite, 102 .remap_pages = generic_file_remap_pages, 103 }; 104 105 static int get_parent_ino(struct inode *inode, nid_t *pino) 106 { 107 struct dentry *dentry; 108 109 inode = igrab(inode); 110 dentry = d_find_any_alias(inode); 111 iput(inode); 112 if (!dentry) 113 return 0; 114 115 if (update_dent_inode(inode, &dentry->d_name)) { 116 dput(dentry); 117 return 0; 118 } 119 120 *pino = parent_ino(dentry); 121 dput(dentry); 122 return 1; 123 } 124 125 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 126 { 127 struct inode *inode = file->f_mapping->host; 128 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 129 int ret = 0; 130 bool need_cp = false; 131 struct writeback_control wbc = { 132 .sync_mode = WB_SYNC_ALL, 133 .nr_to_write = LONG_MAX, 134 .for_reclaim = 0, 135 }; 136 137 if (f2fs_readonly(inode->i_sb)) 138 return 0; 139 140 trace_f2fs_sync_file_enter(inode); 141 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 142 if (ret) { 143 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); 144 return ret; 145 } 146 147 /* guarantee free sections for fsync */ 148 f2fs_balance_fs(sbi); 149 150 mutex_lock(&inode->i_mutex); 151 152 /* 153 * Both of fdatasync() and fsync() are able to be recovered from 154 * sudden-power-off. 155 */ 156 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1) 157 need_cp = true; 158 else if (file_wrong_pino(inode)) 159 need_cp = true; 160 else if (!space_for_roll_forward(sbi)) 161 need_cp = true; 162 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 163 need_cp = true; 164 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi))) 165 need_cp = true; 166 167 if (need_cp) { 168 nid_t pino; 169 170 F2FS_I(inode)->xattr_ver = 0; 171 172 /* all the dirty node pages should be flushed for POR */ 173 ret = f2fs_sync_fs(inode->i_sb, 1); 174 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 175 get_parent_ino(inode, &pino)) { 176 F2FS_I(inode)->i_pino = pino; 177 file_got_pino(inode); 178 mark_inode_dirty_sync(inode); 179 ret = f2fs_write_inode(inode, NULL); 180 if (ret) 181 goto out; 182 } 183 } else { 184 /* if there is no written node page, write its inode page */ 185 while (!sync_node_pages(sbi, inode->i_ino, &wbc)) { 186 mark_inode_dirty_sync(inode); 187 ret = f2fs_write_inode(inode, NULL); 188 if (ret) 189 goto out; 190 } 191 filemap_fdatawait_range(sbi->node_inode->i_mapping, 192 0, LONG_MAX); 193 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 194 } 195 out: 196 mutex_unlock(&inode->i_mutex); 197 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); 198 return ret; 199 } 200 201 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 202 { 203 file_accessed(file); 204 vma->vm_ops = &f2fs_file_vm_ops; 205 return 0; 206 } 207 208 int truncate_data_blocks_range(struct dnode_of_data *dn, int count) 209 { 210 int nr_free = 0, ofs = dn->ofs_in_node; 211 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 212 struct f2fs_node *raw_node; 213 __le32 *addr; 214 215 raw_node = F2FS_NODE(dn->node_page); 216 addr = blkaddr_in_node(raw_node) + ofs; 217 218 for ( ; count > 0; count--, addr++, dn->ofs_in_node++) { 219 block_t blkaddr = le32_to_cpu(*addr); 220 if (blkaddr == NULL_ADDR) 221 continue; 222 223 update_extent_cache(NULL_ADDR, dn); 224 invalidate_blocks(sbi, blkaddr); 225 nr_free++; 226 } 227 if (nr_free) { 228 dec_valid_block_count(sbi, dn->inode, nr_free); 229 set_page_dirty(dn->node_page); 230 sync_inode_page(dn); 231 } 232 dn->ofs_in_node = ofs; 233 234 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 235 dn->ofs_in_node, nr_free); 236 return nr_free; 237 } 238 239 void truncate_data_blocks(struct dnode_of_data *dn) 240 { 241 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK); 242 } 243 244 static void truncate_partial_data_page(struct inode *inode, u64 from) 245 { 246 unsigned offset = from & (PAGE_CACHE_SIZE - 1); 247 struct page *page; 248 249 if (!offset) 250 return; 251 252 page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false); 253 if (IS_ERR(page)) 254 return; 255 256 lock_page(page); 257 if (page->mapping != inode->i_mapping) { 258 f2fs_put_page(page, 1); 259 return; 260 } 261 wait_on_page_writeback(page); 262 zero_user(page, offset, PAGE_CACHE_SIZE - offset); 263 set_page_dirty(page); 264 f2fs_put_page(page, 1); 265 } 266 267 static int truncate_blocks(struct inode *inode, u64 from) 268 { 269 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 270 unsigned int blocksize = inode->i_sb->s_blocksize; 271 struct dnode_of_data dn; 272 pgoff_t free_from; 273 int count = 0, ilock = -1; 274 int err; 275 276 trace_f2fs_truncate_blocks_enter(inode, from); 277 278 free_from = (pgoff_t) 279 ((from + blocksize - 1) >> (sbi->log_blocksize)); 280 281 ilock = mutex_lock_op(sbi); 282 set_new_dnode(&dn, inode, NULL, NULL, 0); 283 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE); 284 if (err) { 285 if (err == -ENOENT) 286 goto free_next; 287 mutex_unlock_op(sbi, ilock); 288 trace_f2fs_truncate_blocks_exit(inode, err); 289 return err; 290 } 291 292 if (IS_INODE(dn.node_page)) 293 count = ADDRS_PER_INODE(F2FS_I(inode)); 294 else 295 count = ADDRS_PER_BLOCK; 296 297 count -= dn.ofs_in_node; 298 BUG_ON(count < 0); 299 300 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 301 truncate_data_blocks_range(&dn, count); 302 free_from += count; 303 } 304 305 f2fs_put_dnode(&dn); 306 free_next: 307 err = truncate_inode_blocks(inode, free_from); 308 mutex_unlock_op(sbi, ilock); 309 310 /* lastly zero out the first data page */ 311 truncate_partial_data_page(inode, from); 312 313 trace_f2fs_truncate_blocks_exit(inode, err); 314 return err; 315 } 316 317 void f2fs_truncate(struct inode *inode) 318 { 319 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 320 S_ISLNK(inode->i_mode))) 321 return; 322 323 trace_f2fs_truncate(inode); 324 325 if (!truncate_blocks(inode, i_size_read(inode))) { 326 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 327 mark_inode_dirty(inode); 328 } 329 } 330 331 int f2fs_getattr(struct vfsmount *mnt, 332 struct dentry *dentry, struct kstat *stat) 333 { 334 struct inode *inode = dentry->d_inode; 335 generic_fillattr(inode, stat); 336 stat->blocks <<= 3; 337 return 0; 338 } 339 340 #ifdef CONFIG_F2FS_FS_POSIX_ACL 341 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 342 { 343 struct f2fs_inode_info *fi = F2FS_I(inode); 344 unsigned int ia_valid = attr->ia_valid; 345 346 if (ia_valid & ATTR_UID) 347 inode->i_uid = attr->ia_uid; 348 if (ia_valid & ATTR_GID) 349 inode->i_gid = attr->ia_gid; 350 if (ia_valid & ATTR_ATIME) 351 inode->i_atime = timespec_trunc(attr->ia_atime, 352 inode->i_sb->s_time_gran); 353 if (ia_valid & ATTR_MTIME) 354 inode->i_mtime = timespec_trunc(attr->ia_mtime, 355 inode->i_sb->s_time_gran); 356 if (ia_valid & ATTR_CTIME) 357 inode->i_ctime = timespec_trunc(attr->ia_ctime, 358 inode->i_sb->s_time_gran); 359 if (ia_valid & ATTR_MODE) { 360 umode_t mode = attr->ia_mode; 361 362 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 363 mode &= ~S_ISGID; 364 set_acl_inode(fi, mode); 365 } 366 } 367 #else 368 #define __setattr_copy setattr_copy 369 #endif 370 371 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 372 { 373 struct inode *inode = dentry->d_inode; 374 struct f2fs_inode_info *fi = F2FS_I(inode); 375 int err; 376 377 err = inode_change_ok(inode, attr); 378 if (err) 379 return err; 380 381 if ((attr->ia_valid & ATTR_SIZE) && 382 attr->ia_size != i_size_read(inode)) { 383 truncate_setsize(inode, attr->ia_size); 384 f2fs_truncate(inode); 385 f2fs_balance_fs(F2FS_SB(inode->i_sb)); 386 } 387 388 __setattr_copy(inode, attr); 389 390 if (attr->ia_valid & ATTR_MODE) { 391 err = f2fs_acl_chmod(inode); 392 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) { 393 inode->i_mode = fi->i_acl_mode; 394 clear_inode_flag(fi, FI_ACL_MODE); 395 } 396 } 397 398 mark_inode_dirty(inode); 399 return err; 400 } 401 402 const struct inode_operations f2fs_file_inode_operations = { 403 .getattr = f2fs_getattr, 404 .setattr = f2fs_setattr, 405 .get_acl = f2fs_get_acl, 406 #ifdef CONFIG_F2FS_FS_XATTR 407 .setxattr = generic_setxattr, 408 .getxattr = generic_getxattr, 409 .listxattr = f2fs_listxattr, 410 .removexattr = generic_removexattr, 411 #endif 412 }; 413 414 static void fill_zero(struct inode *inode, pgoff_t index, 415 loff_t start, loff_t len) 416 { 417 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 418 struct page *page; 419 int ilock; 420 421 if (!len) 422 return; 423 424 f2fs_balance_fs(sbi); 425 426 ilock = mutex_lock_op(sbi); 427 page = get_new_data_page(inode, NULL, index, false); 428 mutex_unlock_op(sbi, ilock); 429 430 if (!IS_ERR(page)) { 431 wait_on_page_writeback(page); 432 zero_user(page, start, len); 433 set_page_dirty(page); 434 f2fs_put_page(page, 1); 435 } 436 } 437 438 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 439 { 440 pgoff_t index; 441 int err; 442 443 for (index = pg_start; index < pg_end; index++) { 444 struct dnode_of_data dn; 445 446 set_new_dnode(&dn, inode, NULL, NULL, 0); 447 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 448 if (err) { 449 if (err == -ENOENT) 450 continue; 451 return err; 452 } 453 454 if (dn.data_blkaddr != NULL_ADDR) 455 truncate_data_blocks_range(&dn, 1); 456 f2fs_put_dnode(&dn); 457 } 458 return 0; 459 } 460 461 static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode) 462 { 463 pgoff_t pg_start, pg_end; 464 loff_t off_start, off_end; 465 int ret = 0; 466 467 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; 468 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; 469 470 off_start = offset & (PAGE_CACHE_SIZE - 1); 471 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); 472 473 if (pg_start == pg_end) { 474 fill_zero(inode, pg_start, off_start, 475 off_end - off_start); 476 } else { 477 if (off_start) 478 fill_zero(inode, pg_start++, off_start, 479 PAGE_CACHE_SIZE - off_start); 480 if (off_end) 481 fill_zero(inode, pg_end, 0, off_end); 482 483 if (pg_start < pg_end) { 484 struct address_space *mapping = inode->i_mapping; 485 loff_t blk_start, blk_end; 486 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 487 int ilock; 488 489 f2fs_balance_fs(sbi); 490 491 blk_start = pg_start << PAGE_CACHE_SHIFT; 492 blk_end = pg_end << PAGE_CACHE_SHIFT; 493 truncate_inode_pages_range(mapping, blk_start, 494 blk_end - 1); 495 496 ilock = mutex_lock_op(sbi); 497 ret = truncate_hole(inode, pg_start, pg_end); 498 mutex_unlock_op(sbi, ilock); 499 } 500 } 501 502 if (!(mode & FALLOC_FL_KEEP_SIZE) && 503 i_size_read(inode) <= (offset + len)) { 504 i_size_write(inode, offset); 505 mark_inode_dirty(inode); 506 } 507 508 return ret; 509 } 510 511 static int expand_inode_data(struct inode *inode, loff_t offset, 512 loff_t len, int mode) 513 { 514 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 515 pgoff_t index, pg_start, pg_end; 516 loff_t new_size = i_size_read(inode); 517 loff_t off_start, off_end; 518 int ret = 0; 519 520 ret = inode_newsize_ok(inode, (len + offset)); 521 if (ret) 522 return ret; 523 524 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; 525 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; 526 527 off_start = offset & (PAGE_CACHE_SIZE - 1); 528 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); 529 530 for (index = pg_start; index <= pg_end; index++) { 531 struct dnode_of_data dn; 532 int ilock; 533 534 ilock = mutex_lock_op(sbi); 535 set_new_dnode(&dn, inode, NULL, NULL, 0); 536 ret = get_dnode_of_data(&dn, index, ALLOC_NODE); 537 if (ret) { 538 mutex_unlock_op(sbi, ilock); 539 break; 540 } 541 542 if (dn.data_blkaddr == NULL_ADDR) { 543 ret = reserve_new_block(&dn); 544 if (ret) { 545 f2fs_put_dnode(&dn); 546 mutex_unlock_op(sbi, ilock); 547 break; 548 } 549 } 550 f2fs_put_dnode(&dn); 551 mutex_unlock_op(sbi, ilock); 552 553 if (pg_start == pg_end) 554 new_size = offset + len; 555 else if (index == pg_start && off_start) 556 new_size = (index + 1) << PAGE_CACHE_SHIFT; 557 else if (index == pg_end) 558 new_size = (index << PAGE_CACHE_SHIFT) + off_end; 559 else 560 new_size += PAGE_CACHE_SIZE; 561 } 562 563 if (!(mode & FALLOC_FL_KEEP_SIZE) && 564 i_size_read(inode) < new_size) { 565 i_size_write(inode, new_size); 566 mark_inode_dirty(inode); 567 } 568 569 return ret; 570 } 571 572 static long f2fs_fallocate(struct file *file, int mode, 573 loff_t offset, loff_t len) 574 { 575 struct inode *inode = file_inode(file); 576 long ret; 577 578 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 579 return -EOPNOTSUPP; 580 581 if (mode & FALLOC_FL_PUNCH_HOLE) 582 ret = punch_hole(inode, offset, len, mode); 583 else 584 ret = expand_inode_data(inode, offset, len, mode); 585 586 if (!ret) { 587 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 588 mark_inode_dirty(inode); 589 } 590 trace_f2fs_fallocate(inode, mode, offset, len, ret); 591 return ret; 592 } 593 594 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 595 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 596 597 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 598 { 599 if (S_ISDIR(mode)) 600 return flags; 601 else if (S_ISREG(mode)) 602 return flags & F2FS_REG_FLMASK; 603 else 604 return flags & F2FS_OTHER_FLMASK; 605 } 606 607 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 608 { 609 struct inode *inode = file_inode(filp); 610 struct f2fs_inode_info *fi = F2FS_I(inode); 611 unsigned int flags; 612 int ret; 613 614 switch (cmd) { 615 case F2FS_IOC_GETFLAGS: 616 flags = fi->i_flags & FS_FL_USER_VISIBLE; 617 return put_user(flags, (int __user *) arg); 618 case F2FS_IOC_SETFLAGS: 619 { 620 unsigned int oldflags; 621 622 ret = mnt_want_write_file(filp); 623 if (ret) 624 return ret; 625 626 if (!inode_owner_or_capable(inode)) { 627 ret = -EACCES; 628 goto out; 629 } 630 631 if (get_user(flags, (int __user *) arg)) { 632 ret = -EFAULT; 633 goto out; 634 } 635 636 flags = f2fs_mask_flags(inode->i_mode, flags); 637 638 mutex_lock(&inode->i_mutex); 639 640 oldflags = fi->i_flags; 641 642 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 643 if (!capable(CAP_LINUX_IMMUTABLE)) { 644 mutex_unlock(&inode->i_mutex); 645 ret = -EPERM; 646 goto out; 647 } 648 } 649 650 flags = flags & FS_FL_USER_MODIFIABLE; 651 flags |= oldflags & ~FS_FL_USER_MODIFIABLE; 652 fi->i_flags = flags; 653 mutex_unlock(&inode->i_mutex); 654 655 f2fs_set_inode_flags(inode); 656 inode->i_ctime = CURRENT_TIME; 657 mark_inode_dirty(inode); 658 out: 659 mnt_drop_write_file(filp); 660 return ret; 661 } 662 default: 663 return -ENOTTY; 664 } 665 } 666 667 #ifdef CONFIG_COMPAT 668 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 669 { 670 switch (cmd) { 671 case F2FS_IOC32_GETFLAGS: 672 cmd = F2FS_IOC_GETFLAGS; 673 break; 674 case F2FS_IOC32_SETFLAGS: 675 cmd = F2FS_IOC_SETFLAGS; 676 break; 677 default: 678 return -ENOIOCTLCMD; 679 } 680 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 681 } 682 #endif 683 684 const struct file_operations f2fs_file_operations = { 685 .llseek = generic_file_llseek, 686 .read = do_sync_read, 687 .write = do_sync_write, 688 .aio_read = generic_file_aio_read, 689 .aio_write = generic_file_aio_write, 690 .open = generic_file_open, 691 .mmap = f2fs_file_mmap, 692 .fsync = f2fs_sync_file, 693 .fallocate = f2fs_fallocate, 694 .unlocked_ioctl = f2fs_ioctl, 695 #ifdef CONFIG_COMPAT 696 .compat_ioctl = f2fs_compat_ioctl, 697 #endif 698 .splice_read = generic_file_splice_read, 699 .splice_write = generic_file_splice_write, 700 }; 701