1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
f2fs_filemap_fault(struct vm_fault * vmf)39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 struct inode *inode = file_inode(vmf->vma->vm_file);
42 vm_fault_t ret;
43
44 ret = filemap_fault(vmf);
45 if (ret & VM_FAULT_LOCKED)
46 f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48
49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51 return ret;
52 }
53
f2fs_vm_page_mkwrite(struct vm_fault * vmf)54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 struct page *page = vmf->page;
57 struct inode *inode = file_inode(vmf->vma->vm_file);
58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 struct dnode_of_data dn;
60 bool need_alloc = true;
61 int err = 0;
62
63 if (unlikely(IS_IMMUTABLE(inode)))
64 return VM_FAULT_SIGBUS;
65
66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 return VM_FAULT_SIGBUS;
68
69 if (unlikely(f2fs_cp_error(sbi))) {
70 err = -EIO;
71 goto err;
72 }
73
74 if (!f2fs_is_checkpoint_ready(sbi)) {
75 err = -ENOSPC;
76 goto err;
77 }
78
79 err = f2fs_convert_inline_inode(inode);
80 if (err)
81 goto err;
82
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 if (f2fs_compressed_file(inode)) {
85 int ret = f2fs_is_compressed_cluster(inode, page->index);
86
87 if (ret < 0) {
88 err = ret;
89 goto err;
90 } else if (ret) {
91 need_alloc = false;
92 }
93 }
94 #endif
95 /* should do out of any locked page */
96 if (need_alloc)
97 f2fs_balance_fs(sbi, true);
98
99 sb_start_pagefault(inode->i_sb);
100
101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103 file_update_time(vmf->vma->vm_file);
104 filemap_invalidate_lock_shared(inode->i_mapping);
105 lock_page(page);
106 if (unlikely(page->mapping != inode->i_mapping ||
107 page_offset(page) > i_size_read(inode) ||
108 !PageUptodate(page))) {
109 unlock_page(page);
110 err = -EFAULT;
111 goto out_sem;
112 }
113
114 if (need_alloc) {
115 /* block allocation */
116 set_new_dnode(&dn, inode, NULL, NULL, 0);
117 err = f2fs_get_block_locked(&dn, page->index);
118 }
119
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 if (!need_alloc) {
122 set_new_dnode(&dn, inode, NULL, NULL, 0);
123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 f2fs_put_dnode(&dn);
125 }
126 #endif
127 if (err) {
128 unlock_page(page);
129 goto out_sem;
130 }
131
132 f2fs_wait_on_page_writeback(page, DATA, false, true);
133
134 /* wait for GCed page writeback via META_MAPPING */
135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136
137 /*
138 * check to see if the page is mapped already (no holes)
139 */
140 if (PageMappedToDisk(page))
141 goto out_sem;
142
143 /* page is wholly or partially inside EOF */
144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 i_size_read(inode)) {
146 loff_t offset;
147
148 offset = i_size_read(inode) & ~PAGE_MASK;
149 zero_user_segment(page, offset, PAGE_SIZE);
150 }
151 set_page_dirty(page);
152
153 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154 f2fs_update_time(sbi, REQ_TIME);
155
156 trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158 filemap_invalidate_unlock_shared(inode->i_mapping);
159
160 sb_end_pagefault(inode->i_sb);
161 err:
162 return vmf_fs_error(err);
163 }
164
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166 .fault = f2fs_filemap_fault,
167 .map_pages = filemap_map_pages,
168 .page_mkwrite = f2fs_vm_page_mkwrite,
169 };
170
get_parent_ino(struct inode * inode,nid_t * pino)171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173 struct dentry *dentry;
174
175 /*
176 * Make sure to get the non-deleted alias. The alias associated with
177 * the open file descriptor being fsync()'ed may be deleted already.
178 */
179 dentry = d_find_alias(inode);
180 if (!dentry)
181 return 0;
182
183 *pino = parent_ino(dentry);
184 dput(dentry);
185 return 1;
186 }
187
need_do_checkpoint(struct inode * inode)188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 enum cp_reason_type cp_reason = CP_NO_NEEDED;
192
193 if (!S_ISREG(inode->i_mode))
194 cp_reason = CP_NON_REGULAR;
195 else if (f2fs_compressed_file(inode))
196 cp_reason = CP_COMPRESSED;
197 else if (inode->i_nlink != 1)
198 cp_reason = CP_HARDLINK;
199 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200 cp_reason = CP_SB_NEED_CP;
201 else if (file_wrong_pino(inode))
202 cp_reason = CP_WRONG_PINO;
203 else if (!f2fs_space_for_roll_forward(sbi))
204 cp_reason = CP_NO_SPC_ROLL;
205 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206 cp_reason = CP_NODE_NEED_CP;
207 else if (test_opt(sbi, FASTBOOT))
208 cp_reason = CP_FASTBOOT_MODE;
209 else if (F2FS_OPTION(sbi).active_logs == 2)
210 cp_reason = CP_SPEC_LOG_NUM;
211 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214 TRANS_DIR_INO))
215 cp_reason = CP_RECOVER_DIR;
216 else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
217 XATTR_DIR_INO))
218 cp_reason = CP_XATTR_DIR;
219
220 return cp_reason;
221 }
222
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
224 {
225 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
226 bool ret = false;
227 /* But we need to avoid that there are some inode updates */
228 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
229 ret = true;
230 f2fs_put_page(i, 0);
231 return ret;
232 }
233
try_to_fix_pino(struct inode * inode)234 static void try_to_fix_pino(struct inode *inode)
235 {
236 struct f2fs_inode_info *fi = F2FS_I(inode);
237 nid_t pino;
238
239 f2fs_down_write(&fi->i_sem);
240 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
241 get_parent_ino(inode, &pino)) {
242 f2fs_i_pino_write(inode, pino);
243 file_got_pino(inode);
244 }
245 f2fs_up_write(&fi->i_sem);
246 }
247
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
249 int datasync, bool atomic)
250 {
251 struct inode *inode = file->f_mapping->host;
252 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
253 nid_t ino = inode->i_ino;
254 int ret = 0;
255 enum cp_reason_type cp_reason = 0;
256 struct writeback_control wbc = {
257 .sync_mode = WB_SYNC_ALL,
258 .nr_to_write = LONG_MAX,
259 .for_reclaim = 0,
260 };
261 unsigned int seq_id = 0;
262
263 if (unlikely(f2fs_readonly(inode->i_sb)))
264 return 0;
265
266 trace_f2fs_sync_file_enter(inode);
267
268 if (S_ISDIR(inode->i_mode))
269 goto go_write;
270
271 /* if fdatasync is triggered, let's do in-place-update */
272 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
273 set_inode_flag(inode, FI_NEED_IPU);
274 ret = file_write_and_wait_range(file, start, end);
275 clear_inode_flag(inode, FI_NEED_IPU);
276
277 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
278 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
279 return ret;
280 }
281
282 /* if the inode is dirty, let's recover all the time */
283 if (!f2fs_skip_inode_update(inode, datasync)) {
284 f2fs_write_inode(inode, NULL);
285 goto go_write;
286 }
287
288 /*
289 * if there is no written data, don't waste time to write recovery info.
290 */
291 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
292 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
293
294 /* it may call write_inode just prior to fsync */
295 if (need_inode_page_update(sbi, ino))
296 goto go_write;
297
298 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
299 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
300 goto flush_out;
301 goto out;
302 } else {
303 /*
304 * for OPU case, during fsync(), node can be persisted before
305 * data when lower device doesn't support write barrier, result
306 * in data corruption after SPO.
307 * So for strict fsync mode, force to use atomic write semantics
308 * to keep write order in between data/node and last node to
309 * avoid potential data corruption.
310 */
311 if (F2FS_OPTION(sbi).fsync_mode ==
312 FSYNC_MODE_STRICT && !atomic)
313 atomic = true;
314 }
315 go_write:
316 /*
317 * Both of fdatasync() and fsync() are able to be recovered from
318 * sudden-power-off.
319 */
320 f2fs_down_read(&F2FS_I(inode)->i_sem);
321 cp_reason = need_do_checkpoint(inode);
322 f2fs_up_read(&F2FS_I(inode)->i_sem);
323
324 if (cp_reason) {
325 /* all the dirty node pages should be flushed for POR */
326 ret = f2fs_sync_fs(inode->i_sb, 1);
327
328 /*
329 * We've secured consistency through sync_fs. Following pino
330 * will be used only for fsynced inodes after checkpoint.
331 */
332 try_to_fix_pino(inode);
333 clear_inode_flag(inode, FI_APPEND_WRITE);
334 clear_inode_flag(inode, FI_UPDATE_WRITE);
335 goto out;
336 }
337 sync_nodes:
338 atomic_inc(&sbi->wb_sync_req[NODE]);
339 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
340 atomic_dec(&sbi->wb_sync_req[NODE]);
341 if (ret)
342 goto out;
343
344 /* if cp_error was enabled, we should avoid infinite loop */
345 if (unlikely(f2fs_cp_error(sbi))) {
346 ret = -EIO;
347 goto out;
348 }
349
350 if (f2fs_need_inode_block_update(sbi, ino)) {
351 f2fs_mark_inode_dirty_sync(inode, true);
352 f2fs_write_inode(inode, NULL);
353 goto sync_nodes;
354 }
355
356 /*
357 * If it's atomic_write, it's just fine to keep write ordering. So
358 * here we don't need to wait for node write completion, since we use
359 * node chain which serializes node blocks. If one of node writes are
360 * reordered, we can see simply broken chain, resulting in stopping
361 * roll-forward recovery. It means we'll recover all or none node blocks
362 * given fsync mark.
363 */
364 if (!atomic) {
365 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
366 if (ret)
367 goto out;
368 }
369
370 /* once recovery info is written, don't need to tack this */
371 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
372 clear_inode_flag(inode, FI_APPEND_WRITE);
373 flush_out:
374 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
375 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
376 ret = f2fs_issue_flush(sbi, inode->i_ino);
377 if (!ret) {
378 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
379 clear_inode_flag(inode, FI_UPDATE_WRITE);
380 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
381 }
382 f2fs_update_time(sbi, REQ_TIME);
383 out:
384 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
385 return ret;
386 }
387
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)388 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
389 {
390 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
391 return -EIO;
392 return f2fs_do_sync_file(file, start, end, datasync, false);
393 }
394
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)395 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
396 pgoff_t index, int whence)
397 {
398 switch (whence) {
399 case SEEK_DATA:
400 if (__is_valid_data_blkaddr(blkaddr))
401 return true;
402 if (blkaddr == NEW_ADDR &&
403 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
404 return true;
405 break;
406 case SEEK_HOLE:
407 if (blkaddr == NULL_ADDR)
408 return true;
409 break;
410 }
411 return false;
412 }
413
f2fs_seek_block(struct file * file,loff_t offset,int whence)414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
415 {
416 struct inode *inode = file->f_mapping->host;
417 loff_t maxbytes = inode->i_sb->s_maxbytes;
418 struct dnode_of_data dn;
419 pgoff_t pgofs, end_offset;
420 loff_t data_ofs = offset;
421 loff_t isize;
422 int err = 0;
423
424 inode_lock(inode);
425
426 isize = i_size_read(inode);
427 if (offset >= isize)
428 goto fail;
429
430 /* handle inline data case */
431 if (f2fs_has_inline_data(inode)) {
432 if (whence == SEEK_HOLE) {
433 data_ofs = isize;
434 goto found;
435 } else if (whence == SEEK_DATA) {
436 data_ofs = offset;
437 goto found;
438 }
439 }
440
441 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
442
443 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
444 set_new_dnode(&dn, inode, NULL, NULL, 0);
445 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
446 if (err && err != -ENOENT) {
447 goto fail;
448 } else if (err == -ENOENT) {
449 /* direct node does not exists */
450 if (whence == SEEK_DATA) {
451 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
452 continue;
453 } else {
454 goto found;
455 }
456 }
457
458 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
459
460 /* find data/hole in dnode block */
461 for (; dn.ofs_in_node < end_offset;
462 dn.ofs_in_node++, pgofs++,
463 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
464 block_t blkaddr;
465
466 blkaddr = f2fs_data_blkaddr(&dn);
467
468 if (__is_valid_data_blkaddr(blkaddr) &&
469 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
470 blkaddr, DATA_GENERIC_ENHANCE)) {
471 f2fs_put_dnode(&dn);
472 goto fail;
473 }
474
475 if (__found_offset(file->f_mapping, blkaddr,
476 pgofs, whence)) {
477 f2fs_put_dnode(&dn);
478 goto found;
479 }
480 }
481 f2fs_put_dnode(&dn);
482 }
483
484 if (whence == SEEK_DATA)
485 goto fail;
486 found:
487 if (whence == SEEK_HOLE && data_ofs > isize)
488 data_ofs = isize;
489 inode_unlock(inode);
490 return vfs_setpos(file, data_ofs, maxbytes);
491 fail:
492 inode_unlock(inode);
493 return -ENXIO;
494 }
495
f2fs_llseek(struct file * file,loff_t offset,int whence)496 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
497 {
498 struct inode *inode = file->f_mapping->host;
499 loff_t maxbytes = inode->i_sb->s_maxbytes;
500
501 if (f2fs_compressed_file(inode))
502 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
503
504 switch (whence) {
505 case SEEK_SET:
506 case SEEK_CUR:
507 case SEEK_END:
508 return generic_file_llseek_size(file, offset, whence,
509 maxbytes, i_size_read(inode));
510 case SEEK_DATA:
511 case SEEK_HOLE:
512 if (offset < 0)
513 return -ENXIO;
514 return f2fs_seek_block(file, offset, whence);
515 }
516
517 return -EINVAL;
518 }
519
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
521 {
522 struct inode *inode = file_inode(file);
523
524 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
525 return -EIO;
526
527 if (!f2fs_is_compress_backend_ready(inode))
528 return -EOPNOTSUPP;
529
530 file_accessed(file);
531 vma->vm_ops = &f2fs_file_vm_ops;
532
533 f2fs_down_read(&F2FS_I(inode)->i_sem);
534 set_inode_flag(inode, FI_MMAP_FILE);
535 f2fs_up_read(&F2FS_I(inode)->i_sem);
536
537 return 0;
538 }
539
finish_preallocate_blocks(struct inode * inode)540 static int finish_preallocate_blocks(struct inode *inode)
541 {
542 int ret;
543
544 inode_lock(inode);
545 if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
546 inode_unlock(inode);
547 return 0;
548 }
549
550 if (!file_should_truncate(inode)) {
551 set_inode_flag(inode, FI_OPENED_FILE);
552 inode_unlock(inode);
553 return 0;
554 }
555
556 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
557 filemap_invalidate_lock(inode->i_mapping);
558
559 truncate_setsize(inode, i_size_read(inode));
560 ret = f2fs_truncate(inode);
561
562 filemap_invalidate_unlock(inode->i_mapping);
563 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
564
565 if (!ret)
566 set_inode_flag(inode, FI_OPENED_FILE);
567
568 inode_unlock(inode);
569 if (ret)
570 return ret;
571
572 file_dont_truncate(inode);
573 return 0;
574 }
575
f2fs_file_open(struct inode * inode,struct file * filp)576 static int f2fs_file_open(struct inode *inode, struct file *filp)
577 {
578 int err = fscrypt_file_open(inode, filp);
579
580 if (err)
581 return err;
582
583 if (!f2fs_is_compress_backend_ready(inode))
584 return -EOPNOTSUPP;
585
586 err = fsverity_file_open(inode, filp);
587 if (err)
588 return err;
589
590 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
591 filp->f_mode |= FMODE_CAN_ODIRECT;
592
593 err = dquot_file_open(inode, filp);
594 if (err)
595 return err;
596
597 return finish_preallocate_blocks(inode);
598 }
599
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)600 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
601 {
602 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
603 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
604 __le32 *addr;
605 bool compressed_cluster = false;
606 int cluster_index = 0, valid_blocks = 0;
607 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
608 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
609
610 addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
611
612 /* Assumption: truncation starts with cluster */
613 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
614 block_t blkaddr = le32_to_cpu(*addr);
615
616 if (f2fs_compressed_file(dn->inode) &&
617 !(cluster_index & (cluster_size - 1))) {
618 if (compressed_cluster)
619 f2fs_i_compr_blocks_update(dn->inode,
620 valid_blocks, false);
621 compressed_cluster = (blkaddr == COMPRESS_ADDR);
622 valid_blocks = 0;
623 }
624
625 if (blkaddr == NULL_ADDR)
626 continue;
627
628 f2fs_set_data_blkaddr(dn, NULL_ADDR);
629
630 if (__is_valid_data_blkaddr(blkaddr)) {
631 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
632 DATA_GENERIC_ENHANCE))
633 continue;
634 if (compressed_cluster)
635 valid_blocks++;
636 }
637
638 f2fs_invalidate_blocks(sbi, blkaddr);
639
640 if (!released || blkaddr != COMPRESS_ADDR)
641 nr_free++;
642 }
643
644 if (compressed_cluster)
645 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
646
647 if (nr_free) {
648 pgoff_t fofs;
649 /*
650 * once we invalidate valid blkaddr in range [ofs, ofs + count],
651 * we will invalidate all blkaddr in the whole range.
652 */
653 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
654 dn->inode) + ofs;
655 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
656 f2fs_update_age_extent_cache_range(dn, fofs, len);
657 dec_valid_block_count(sbi, dn->inode, nr_free);
658 }
659 dn->ofs_in_node = ofs;
660
661 f2fs_update_time(sbi, REQ_TIME);
662 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
663 dn->ofs_in_node, nr_free);
664 }
665
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)666 static int truncate_partial_data_page(struct inode *inode, u64 from,
667 bool cache_only)
668 {
669 loff_t offset = from & (PAGE_SIZE - 1);
670 pgoff_t index = from >> PAGE_SHIFT;
671 struct address_space *mapping = inode->i_mapping;
672 struct page *page;
673
674 if (!offset && !cache_only)
675 return 0;
676
677 if (cache_only) {
678 page = find_lock_page(mapping, index);
679 if (page && PageUptodate(page))
680 goto truncate_out;
681 f2fs_put_page(page, 1);
682 return 0;
683 }
684
685 page = f2fs_get_lock_data_page(inode, index, true);
686 if (IS_ERR(page))
687 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
688 truncate_out:
689 f2fs_wait_on_page_writeback(page, DATA, true, true);
690 zero_user(page, offset, PAGE_SIZE - offset);
691
692 /* An encrypted inode should have a key and truncate the last page. */
693 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
694 if (!cache_only)
695 set_page_dirty(page);
696 f2fs_put_page(page, 1);
697 return 0;
698 }
699
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)700 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
701 {
702 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
703 struct dnode_of_data dn;
704 pgoff_t free_from;
705 int count = 0, err = 0;
706 struct page *ipage;
707 bool truncate_page = false;
708
709 trace_f2fs_truncate_blocks_enter(inode, from);
710
711 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
712
713 if (free_from >= max_file_blocks(inode))
714 goto free_partial;
715
716 if (lock)
717 f2fs_lock_op(sbi);
718
719 ipage = f2fs_get_node_page(sbi, inode->i_ino);
720 if (IS_ERR(ipage)) {
721 err = PTR_ERR(ipage);
722 goto out;
723 }
724
725 if (f2fs_has_inline_data(inode)) {
726 f2fs_truncate_inline_inode(inode, ipage, from);
727 f2fs_put_page(ipage, 1);
728 truncate_page = true;
729 goto out;
730 }
731
732 set_new_dnode(&dn, inode, ipage, NULL, 0);
733 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
734 if (err) {
735 if (err == -ENOENT)
736 goto free_next;
737 goto out;
738 }
739
740 count = ADDRS_PER_PAGE(dn.node_page, inode);
741
742 count -= dn.ofs_in_node;
743 f2fs_bug_on(sbi, count < 0);
744
745 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
746 f2fs_truncate_data_blocks_range(&dn, count);
747 free_from += count;
748 }
749
750 f2fs_put_dnode(&dn);
751 free_next:
752 err = f2fs_truncate_inode_blocks(inode, free_from);
753 out:
754 if (lock)
755 f2fs_unlock_op(sbi);
756 free_partial:
757 /* lastly zero out the first data page */
758 if (!err)
759 err = truncate_partial_data_page(inode, from, truncate_page);
760
761 trace_f2fs_truncate_blocks_exit(inode, err);
762 return err;
763 }
764
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)765 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
766 {
767 u64 free_from = from;
768 int err;
769
770 #ifdef CONFIG_F2FS_FS_COMPRESSION
771 /*
772 * for compressed file, only support cluster size
773 * aligned truncation.
774 */
775 if (f2fs_compressed_file(inode))
776 free_from = round_up(from,
777 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
778 #endif
779
780 err = f2fs_do_truncate_blocks(inode, free_from, lock);
781 if (err)
782 return err;
783
784 #ifdef CONFIG_F2FS_FS_COMPRESSION
785 /*
786 * For compressed file, after release compress blocks, don't allow write
787 * direct, but we should allow write direct after truncate to zero.
788 */
789 if (f2fs_compressed_file(inode) && !free_from
790 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
791 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
792
793 if (from != free_from) {
794 err = f2fs_truncate_partial_cluster(inode, from, lock);
795 if (err)
796 return err;
797 }
798 #endif
799
800 return 0;
801 }
802
f2fs_truncate(struct inode * inode)803 int f2fs_truncate(struct inode *inode)
804 {
805 int err;
806
807 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
808 return -EIO;
809
810 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
811 S_ISLNK(inode->i_mode)))
812 return 0;
813
814 trace_f2fs_truncate(inode);
815
816 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
817 return -EIO;
818
819 err = f2fs_dquot_initialize(inode);
820 if (err)
821 return err;
822
823 /* we should check inline_data size */
824 if (!f2fs_may_inline_data(inode)) {
825 err = f2fs_convert_inline_inode(inode);
826 if (err)
827 return err;
828 }
829
830 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
831 if (err)
832 return err;
833
834 inode->i_mtime = inode_set_ctime_current(inode);
835 f2fs_mark_inode_dirty_sync(inode, false);
836 return 0;
837 }
838
f2fs_force_buffered_io(struct inode * inode,int rw)839 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
840 {
841 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
842
843 if (!fscrypt_dio_supported(inode))
844 return true;
845 if (fsverity_active(inode))
846 return true;
847 if (f2fs_compressed_file(inode))
848 return true;
849 /*
850 * only force direct read to use buffered IO, for direct write,
851 * it expects inline data conversion before committing IO.
852 */
853 if (f2fs_has_inline_data(inode) && rw == READ)
854 return true;
855
856 /* disallow direct IO if any of devices has unaligned blksize */
857 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
858 return true;
859 /*
860 * for blkzoned device, fallback direct IO to buffered IO, so
861 * all IOs can be serialized by log-structured write.
862 */
863 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
864 return true;
865 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
866 return true;
867
868 return false;
869 }
870
f2fs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)871 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
872 struct kstat *stat, u32 request_mask, unsigned int query_flags)
873 {
874 struct inode *inode = d_inode(path->dentry);
875 struct f2fs_inode_info *fi = F2FS_I(inode);
876 struct f2fs_inode *ri = NULL;
877 unsigned int flags;
878
879 if (f2fs_has_extra_attr(inode) &&
880 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
881 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
882 stat->result_mask |= STATX_BTIME;
883 stat->btime.tv_sec = fi->i_crtime.tv_sec;
884 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
885 }
886
887 /*
888 * Return the DIO alignment restrictions if requested. We only return
889 * this information when requested, since on encrypted files it might
890 * take a fair bit of work to get if the file wasn't opened recently.
891 *
892 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN
893 * cannot represent that, so in that case we report no DIO support.
894 */
895 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
896 unsigned int bsize = i_blocksize(inode);
897
898 stat->result_mask |= STATX_DIOALIGN;
899 if (!f2fs_force_buffered_io(inode, WRITE)) {
900 stat->dio_mem_align = bsize;
901 stat->dio_offset_align = bsize;
902 }
903 }
904
905 flags = fi->i_flags;
906 if (flags & F2FS_COMPR_FL)
907 stat->attributes |= STATX_ATTR_COMPRESSED;
908 if (flags & F2FS_APPEND_FL)
909 stat->attributes |= STATX_ATTR_APPEND;
910 if (IS_ENCRYPTED(inode))
911 stat->attributes |= STATX_ATTR_ENCRYPTED;
912 if (flags & F2FS_IMMUTABLE_FL)
913 stat->attributes |= STATX_ATTR_IMMUTABLE;
914 if (flags & F2FS_NODUMP_FL)
915 stat->attributes |= STATX_ATTR_NODUMP;
916 if (IS_VERITY(inode))
917 stat->attributes |= STATX_ATTR_VERITY;
918
919 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
920 STATX_ATTR_APPEND |
921 STATX_ATTR_ENCRYPTED |
922 STATX_ATTR_IMMUTABLE |
923 STATX_ATTR_NODUMP |
924 STATX_ATTR_VERITY);
925
926 generic_fillattr(idmap, request_mask, inode, stat);
927
928 /* we need to show initial sectors used for inline_data/dentries */
929 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
930 f2fs_has_inline_dentry(inode))
931 stat->blocks += (stat->size + 511) >> 9;
932
933 return 0;
934 }
935
936 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct mnt_idmap * idmap,struct inode * inode,const struct iattr * attr)937 static void __setattr_copy(struct mnt_idmap *idmap,
938 struct inode *inode, const struct iattr *attr)
939 {
940 unsigned int ia_valid = attr->ia_valid;
941
942 i_uid_update(idmap, attr, inode);
943 i_gid_update(idmap, attr, inode);
944 if (ia_valid & ATTR_ATIME)
945 inode->i_atime = attr->ia_atime;
946 if (ia_valid & ATTR_MTIME)
947 inode->i_mtime = attr->ia_mtime;
948 if (ia_valid & ATTR_CTIME)
949 inode_set_ctime_to_ts(inode, attr->ia_ctime);
950 if (ia_valid & ATTR_MODE) {
951 umode_t mode = attr->ia_mode;
952 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
953
954 if (!vfsgid_in_group_p(vfsgid) &&
955 !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
956 mode &= ~S_ISGID;
957 set_acl_inode(inode, mode);
958 }
959 }
960 #else
961 #define __setattr_copy setattr_copy
962 #endif
963
f2fs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)964 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
965 struct iattr *attr)
966 {
967 struct inode *inode = d_inode(dentry);
968 int err;
969
970 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
971 return -EIO;
972
973 if (unlikely(IS_IMMUTABLE(inode)))
974 return -EPERM;
975
976 if (unlikely(IS_APPEND(inode) &&
977 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
978 ATTR_GID | ATTR_TIMES_SET))))
979 return -EPERM;
980
981 if ((attr->ia_valid & ATTR_SIZE)) {
982 if (!f2fs_is_compress_backend_ready(inode))
983 return -EOPNOTSUPP;
984 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
985 !IS_ALIGNED(attr->ia_size,
986 F2FS_BLK_TO_BYTES(F2FS_I(inode)->i_cluster_size)))
987 return -EINVAL;
988 }
989
990 err = setattr_prepare(idmap, dentry, attr);
991 if (err)
992 return err;
993
994 err = fscrypt_prepare_setattr(dentry, attr);
995 if (err)
996 return err;
997
998 err = fsverity_prepare_setattr(dentry, attr);
999 if (err)
1000 return err;
1001
1002 if (is_quota_modification(idmap, inode, attr)) {
1003 err = f2fs_dquot_initialize(inode);
1004 if (err)
1005 return err;
1006 }
1007 if (i_uid_needs_update(idmap, attr, inode) ||
1008 i_gid_needs_update(idmap, attr, inode)) {
1009 f2fs_lock_op(F2FS_I_SB(inode));
1010 err = dquot_transfer(idmap, inode, attr);
1011 if (err) {
1012 set_sbi_flag(F2FS_I_SB(inode),
1013 SBI_QUOTA_NEED_REPAIR);
1014 f2fs_unlock_op(F2FS_I_SB(inode));
1015 return err;
1016 }
1017 /*
1018 * update uid/gid under lock_op(), so that dquot and inode can
1019 * be updated atomically.
1020 */
1021 i_uid_update(idmap, attr, inode);
1022 i_gid_update(idmap, attr, inode);
1023 f2fs_mark_inode_dirty_sync(inode, true);
1024 f2fs_unlock_op(F2FS_I_SB(inode));
1025 }
1026
1027 if (attr->ia_valid & ATTR_SIZE) {
1028 loff_t old_size = i_size_read(inode);
1029
1030 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1031 /*
1032 * should convert inline inode before i_size_write to
1033 * keep smaller than inline_data size with inline flag.
1034 */
1035 err = f2fs_convert_inline_inode(inode);
1036 if (err)
1037 return err;
1038 }
1039
1040 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1041 filemap_invalidate_lock(inode->i_mapping);
1042
1043 truncate_setsize(inode, attr->ia_size);
1044
1045 if (attr->ia_size <= old_size)
1046 err = f2fs_truncate(inode);
1047 /*
1048 * do not trim all blocks after i_size if target size is
1049 * larger than i_size.
1050 */
1051 filemap_invalidate_unlock(inode->i_mapping);
1052 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1053 if (err)
1054 return err;
1055
1056 spin_lock(&F2FS_I(inode)->i_size_lock);
1057 inode->i_mtime = inode_set_ctime_current(inode);
1058 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1059 spin_unlock(&F2FS_I(inode)->i_size_lock);
1060 }
1061
1062 __setattr_copy(idmap, inode, attr);
1063
1064 if (attr->ia_valid & ATTR_MODE) {
1065 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1066
1067 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1068 if (!err)
1069 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1070 clear_inode_flag(inode, FI_ACL_MODE);
1071 }
1072 }
1073
1074 /* file size may changed here */
1075 f2fs_mark_inode_dirty_sync(inode, true);
1076
1077 /* inode change will produce dirty node pages flushed by checkpoint */
1078 f2fs_balance_fs(F2FS_I_SB(inode), true);
1079
1080 return err;
1081 }
1082
1083 const struct inode_operations f2fs_file_inode_operations = {
1084 .getattr = f2fs_getattr,
1085 .setattr = f2fs_setattr,
1086 .get_inode_acl = f2fs_get_acl,
1087 .set_acl = f2fs_set_acl,
1088 .listxattr = f2fs_listxattr,
1089 .fiemap = f2fs_fiemap,
1090 .fileattr_get = f2fs_fileattr_get,
1091 .fileattr_set = f2fs_fileattr_set,
1092 };
1093
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1094 static int fill_zero(struct inode *inode, pgoff_t index,
1095 loff_t start, loff_t len)
1096 {
1097 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1098 struct page *page;
1099
1100 if (!len)
1101 return 0;
1102
1103 f2fs_balance_fs(sbi, true);
1104
1105 f2fs_lock_op(sbi);
1106 page = f2fs_get_new_data_page(inode, NULL, index, false);
1107 f2fs_unlock_op(sbi);
1108
1109 if (IS_ERR(page))
1110 return PTR_ERR(page);
1111
1112 f2fs_wait_on_page_writeback(page, DATA, true, true);
1113 zero_user(page, start, len);
1114 set_page_dirty(page);
1115 f2fs_put_page(page, 1);
1116 return 0;
1117 }
1118
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1119 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1120 {
1121 int err;
1122
1123 while (pg_start < pg_end) {
1124 struct dnode_of_data dn;
1125 pgoff_t end_offset, count;
1126
1127 set_new_dnode(&dn, inode, NULL, NULL, 0);
1128 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1129 if (err) {
1130 if (err == -ENOENT) {
1131 pg_start = f2fs_get_next_page_offset(&dn,
1132 pg_start);
1133 continue;
1134 }
1135 return err;
1136 }
1137
1138 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1139 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1140
1141 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1142
1143 f2fs_truncate_data_blocks_range(&dn, count);
1144 f2fs_put_dnode(&dn);
1145
1146 pg_start += count;
1147 }
1148 return 0;
1149 }
1150
f2fs_punch_hole(struct inode * inode,loff_t offset,loff_t len)1151 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1152 {
1153 pgoff_t pg_start, pg_end;
1154 loff_t off_start, off_end;
1155 int ret;
1156
1157 ret = f2fs_convert_inline_inode(inode);
1158 if (ret)
1159 return ret;
1160
1161 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1162 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1163
1164 off_start = offset & (PAGE_SIZE - 1);
1165 off_end = (offset + len) & (PAGE_SIZE - 1);
1166
1167 if (pg_start == pg_end) {
1168 ret = fill_zero(inode, pg_start, off_start,
1169 off_end - off_start);
1170 if (ret)
1171 return ret;
1172 } else {
1173 if (off_start) {
1174 ret = fill_zero(inode, pg_start++, off_start,
1175 PAGE_SIZE - off_start);
1176 if (ret)
1177 return ret;
1178 }
1179 if (off_end) {
1180 ret = fill_zero(inode, pg_end, 0, off_end);
1181 if (ret)
1182 return ret;
1183 }
1184
1185 if (pg_start < pg_end) {
1186 loff_t blk_start, blk_end;
1187 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1188
1189 f2fs_balance_fs(sbi, true);
1190
1191 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1192 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1193
1194 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1195 filemap_invalidate_lock(inode->i_mapping);
1196
1197 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1198
1199 f2fs_lock_op(sbi);
1200 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1201 f2fs_unlock_op(sbi);
1202
1203 filemap_invalidate_unlock(inode->i_mapping);
1204 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1205 }
1206 }
1207
1208 return ret;
1209 }
1210
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1211 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1212 int *do_replace, pgoff_t off, pgoff_t len)
1213 {
1214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215 struct dnode_of_data dn;
1216 int ret, done, i;
1217
1218 next_dnode:
1219 set_new_dnode(&dn, inode, NULL, NULL, 0);
1220 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1221 if (ret && ret != -ENOENT) {
1222 return ret;
1223 } else if (ret == -ENOENT) {
1224 if (dn.max_level == 0)
1225 return -ENOENT;
1226 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1227 dn.ofs_in_node, len);
1228 blkaddr += done;
1229 do_replace += done;
1230 goto next;
1231 }
1232
1233 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1234 dn.ofs_in_node, len);
1235 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1236 *blkaddr = f2fs_data_blkaddr(&dn);
1237
1238 if (__is_valid_data_blkaddr(*blkaddr) &&
1239 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1240 DATA_GENERIC_ENHANCE)) {
1241 f2fs_put_dnode(&dn);
1242 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1243 return -EFSCORRUPTED;
1244 }
1245
1246 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1247
1248 if (f2fs_lfs_mode(sbi)) {
1249 f2fs_put_dnode(&dn);
1250 return -EOPNOTSUPP;
1251 }
1252
1253 /* do not invalidate this block address */
1254 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1255 *do_replace = 1;
1256 }
1257 }
1258 f2fs_put_dnode(&dn);
1259 next:
1260 len -= done;
1261 off += done;
1262 if (len)
1263 goto next_dnode;
1264 return 0;
1265 }
1266
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1267 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1268 int *do_replace, pgoff_t off, int len)
1269 {
1270 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1271 struct dnode_of_data dn;
1272 int ret, i;
1273
1274 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1275 if (*do_replace == 0)
1276 continue;
1277
1278 set_new_dnode(&dn, inode, NULL, NULL, 0);
1279 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1280 if (ret) {
1281 dec_valid_block_count(sbi, inode, 1);
1282 f2fs_invalidate_blocks(sbi, *blkaddr);
1283 } else {
1284 f2fs_update_data_blkaddr(&dn, *blkaddr);
1285 }
1286 f2fs_put_dnode(&dn);
1287 }
1288 return 0;
1289 }
1290
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1291 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1292 block_t *blkaddr, int *do_replace,
1293 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1294 {
1295 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1296 pgoff_t i = 0;
1297 int ret;
1298
1299 while (i < len) {
1300 if (blkaddr[i] == NULL_ADDR && !full) {
1301 i++;
1302 continue;
1303 }
1304
1305 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1306 struct dnode_of_data dn;
1307 struct node_info ni;
1308 size_t new_size;
1309 pgoff_t ilen;
1310
1311 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1312 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1313 if (ret)
1314 return ret;
1315
1316 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1317 if (ret) {
1318 f2fs_put_dnode(&dn);
1319 return ret;
1320 }
1321
1322 ilen = min((pgoff_t)
1323 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1324 dn.ofs_in_node, len - i);
1325 do {
1326 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1327 f2fs_truncate_data_blocks_range(&dn, 1);
1328
1329 if (do_replace[i]) {
1330 f2fs_i_blocks_write(src_inode,
1331 1, false, false);
1332 f2fs_i_blocks_write(dst_inode,
1333 1, true, false);
1334 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1335 blkaddr[i], ni.version, true, false);
1336
1337 do_replace[i] = 0;
1338 }
1339 dn.ofs_in_node++;
1340 i++;
1341 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1342 if (dst_inode->i_size < new_size)
1343 f2fs_i_size_write(dst_inode, new_size);
1344 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1345
1346 f2fs_put_dnode(&dn);
1347 } else {
1348 struct page *psrc, *pdst;
1349
1350 psrc = f2fs_get_lock_data_page(src_inode,
1351 src + i, true);
1352 if (IS_ERR(psrc))
1353 return PTR_ERR(psrc);
1354 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1355 true);
1356 if (IS_ERR(pdst)) {
1357 f2fs_put_page(psrc, 1);
1358 return PTR_ERR(pdst);
1359 }
1360
1361 f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1362
1363 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1364 set_page_dirty(pdst);
1365 set_page_private_gcing(pdst);
1366 f2fs_put_page(pdst, 1);
1367 f2fs_put_page(psrc, 1);
1368
1369 ret = f2fs_truncate_hole(src_inode,
1370 src + i, src + i + 1);
1371 if (ret)
1372 return ret;
1373 i++;
1374 }
1375 }
1376 return 0;
1377 }
1378
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1379 static int __exchange_data_block(struct inode *src_inode,
1380 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1381 pgoff_t len, bool full)
1382 {
1383 block_t *src_blkaddr;
1384 int *do_replace;
1385 pgoff_t olen;
1386 int ret;
1387
1388 while (len) {
1389 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1390
1391 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1392 array_size(olen, sizeof(block_t)),
1393 GFP_NOFS);
1394 if (!src_blkaddr)
1395 return -ENOMEM;
1396
1397 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1398 array_size(olen, sizeof(int)),
1399 GFP_NOFS);
1400 if (!do_replace) {
1401 kvfree(src_blkaddr);
1402 return -ENOMEM;
1403 }
1404
1405 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1406 do_replace, src, olen);
1407 if (ret)
1408 goto roll_back;
1409
1410 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1411 do_replace, src, dst, olen, full);
1412 if (ret)
1413 goto roll_back;
1414
1415 src += olen;
1416 dst += olen;
1417 len -= olen;
1418
1419 kvfree(src_blkaddr);
1420 kvfree(do_replace);
1421 }
1422 return 0;
1423
1424 roll_back:
1425 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1426 kvfree(src_blkaddr);
1427 kvfree(do_replace);
1428 return ret;
1429 }
1430
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1431 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1432 {
1433 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1434 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1435 pgoff_t start = offset >> PAGE_SHIFT;
1436 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1437 int ret;
1438
1439 f2fs_balance_fs(sbi, true);
1440
1441 /* avoid gc operation during block exchange */
1442 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1443 filemap_invalidate_lock(inode->i_mapping);
1444
1445 f2fs_lock_op(sbi);
1446 f2fs_drop_extent_tree(inode);
1447 truncate_pagecache(inode, offset);
1448 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1449 f2fs_unlock_op(sbi);
1450
1451 filemap_invalidate_unlock(inode->i_mapping);
1452 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1453 return ret;
1454 }
1455
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1456 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1457 {
1458 loff_t new_size;
1459 int ret;
1460
1461 if (offset + len >= i_size_read(inode))
1462 return -EINVAL;
1463
1464 /* collapse range should be aligned to block size of f2fs. */
1465 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1466 return -EINVAL;
1467
1468 ret = f2fs_convert_inline_inode(inode);
1469 if (ret)
1470 return ret;
1471
1472 /* write out all dirty pages from offset */
1473 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1474 if (ret)
1475 return ret;
1476
1477 ret = f2fs_do_collapse(inode, offset, len);
1478 if (ret)
1479 return ret;
1480
1481 /* write out all moved pages, if possible */
1482 filemap_invalidate_lock(inode->i_mapping);
1483 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1484 truncate_pagecache(inode, offset);
1485
1486 new_size = i_size_read(inode) - len;
1487 ret = f2fs_truncate_blocks(inode, new_size, true);
1488 filemap_invalidate_unlock(inode->i_mapping);
1489 if (!ret)
1490 f2fs_i_size_write(inode, new_size);
1491 return ret;
1492 }
1493
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1494 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1495 pgoff_t end)
1496 {
1497 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1498 pgoff_t index = start;
1499 unsigned int ofs_in_node = dn->ofs_in_node;
1500 blkcnt_t count = 0;
1501 int ret;
1502
1503 for (; index < end; index++, dn->ofs_in_node++) {
1504 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1505 count++;
1506 }
1507
1508 dn->ofs_in_node = ofs_in_node;
1509 ret = f2fs_reserve_new_blocks(dn, count);
1510 if (ret)
1511 return ret;
1512
1513 dn->ofs_in_node = ofs_in_node;
1514 for (index = start; index < end; index++, dn->ofs_in_node++) {
1515 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1516 /*
1517 * f2fs_reserve_new_blocks will not guarantee entire block
1518 * allocation.
1519 */
1520 if (dn->data_blkaddr == NULL_ADDR) {
1521 ret = -ENOSPC;
1522 break;
1523 }
1524
1525 if (dn->data_blkaddr == NEW_ADDR)
1526 continue;
1527
1528 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1529 DATA_GENERIC_ENHANCE)) {
1530 ret = -EFSCORRUPTED;
1531 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1532 break;
1533 }
1534
1535 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1536 f2fs_set_data_blkaddr(dn, NEW_ADDR);
1537 }
1538
1539 f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1540 f2fs_update_age_extent_cache_range(dn, start, index - start);
1541
1542 return ret;
1543 }
1544
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1545 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1546 int mode)
1547 {
1548 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1549 struct address_space *mapping = inode->i_mapping;
1550 pgoff_t index, pg_start, pg_end;
1551 loff_t new_size = i_size_read(inode);
1552 loff_t off_start, off_end;
1553 int ret = 0;
1554
1555 ret = inode_newsize_ok(inode, (len + offset));
1556 if (ret)
1557 return ret;
1558
1559 ret = f2fs_convert_inline_inode(inode);
1560 if (ret)
1561 return ret;
1562
1563 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1564 if (ret)
1565 return ret;
1566
1567 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1568 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1569
1570 off_start = offset & (PAGE_SIZE - 1);
1571 off_end = (offset + len) & (PAGE_SIZE - 1);
1572
1573 if (pg_start == pg_end) {
1574 ret = fill_zero(inode, pg_start, off_start,
1575 off_end - off_start);
1576 if (ret)
1577 return ret;
1578
1579 new_size = max_t(loff_t, new_size, offset + len);
1580 } else {
1581 if (off_start) {
1582 ret = fill_zero(inode, pg_start++, off_start,
1583 PAGE_SIZE - off_start);
1584 if (ret)
1585 return ret;
1586
1587 new_size = max_t(loff_t, new_size,
1588 (loff_t)pg_start << PAGE_SHIFT);
1589 }
1590
1591 for (index = pg_start; index < pg_end;) {
1592 struct dnode_of_data dn;
1593 unsigned int end_offset;
1594 pgoff_t end;
1595
1596 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1597 filemap_invalidate_lock(mapping);
1598
1599 truncate_pagecache_range(inode,
1600 (loff_t)index << PAGE_SHIFT,
1601 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1602
1603 f2fs_lock_op(sbi);
1604
1605 set_new_dnode(&dn, inode, NULL, NULL, 0);
1606 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1607 if (ret) {
1608 f2fs_unlock_op(sbi);
1609 filemap_invalidate_unlock(mapping);
1610 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1611 goto out;
1612 }
1613
1614 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1615 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1616
1617 ret = f2fs_do_zero_range(&dn, index, end);
1618 f2fs_put_dnode(&dn);
1619
1620 f2fs_unlock_op(sbi);
1621 filemap_invalidate_unlock(mapping);
1622 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1623
1624 f2fs_balance_fs(sbi, dn.node_changed);
1625
1626 if (ret)
1627 goto out;
1628
1629 index = end;
1630 new_size = max_t(loff_t, new_size,
1631 (loff_t)index << PAGE_SHIFT);
1632 }
1633
1634 if (off_end) {
1635 ret = fill_zero(inode, pg_end, 0, off_end);
1636 if (ret)
1637 goto out;
1638
1639 new_size = max_t(loff_t, new_size, offset + len);
1640 }
1641 }
1642
1643 out:
1644 if (new_size > i_size_read(inode)) {
1645 if (mode & FALLOC_FL_KEEP_SIZE)
1646 file_set_keep_isize(inode);
1647 else
1648 f2fs_i_size_write(inode, new_size);
1649 }
1650 return ret;
1651 }
1652
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1653 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1654 {
1655 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1656 struct address_space *mapping = inode->i_mapping;
1657 pgoff_t nr, pg_start, pg_end, delta, idx;
1658 loff_t new_size;
1659 int ret = 0;
1660
1661 new_size = i_size_read(inode) + len;
1662 ret = inode_newsize_ok(inode, new_size);
1663 if (ret)
1664 return ret;
1665
1666 if (offset >= i_size_read(inode))
1667 return -EINVAL;
1668
1669 /* insert range should be aligned to block size of f2fs. */
1670 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1671 return -EINVAL;
1672
1673 ret = f2fs_convert_inline_inode(inode);
1674 if (ret)
1675 return ret;
1676
1677 f2fs_balance_fs(sbi, true);
1678
1679 filemap_invalidate_lock(mapping);
1680 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1681 filemap_invalidate_unlock(mapping);
1682 if (ret)
1683 return ret;
1684
1685 /* write out all dirty pages from offset */
1686 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1687 if (ret)
1688 return ret;
1689
1690 pg_start = offset >> PAGE_SHIFT;
1691 pg_end = (offset + len) >> PAGE_SHIFT;
1692 delta = pg_end - pg_start;
1693 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1694
1695 /* avoid gc operation during block exchange */
1696 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1697 filemap_invalidate_lock(mapping);
1698 truncate_pagecache(inode, offset);
1699
1700 while (!ret && idx > pg_start) {
1701 nr = idx - pg_start;
1702 if (nr > delta)
1703 nr = delta;
1704 idx -= nr;
1705
1706 f2fs_lock_op(sbi);
1707 f2fs_drop_extent_tree(inode);
1708
1709 ret = __exchange_data_block(inode, inode, idx,
1710 idx + delta, nr, false);
1711 f2fs_unlock_op(sbi);
1712 }
1713 filemap_invalidate_unlock(mapping);
1714 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1715
1716 /* write out all moved pages, if possible */
1717 filemap_invalidate_lock(mapping);
1718 filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1719 truncate_pagecache(inode, offset);
1720 filemap_invalidate_unlock(mapping);
1721
1722 if (!ret)
1723 f2fs_i_size_write(inode, new_size);
1724 return ret;
1725 }
1726
f2fs_expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1727 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1728 loff_t len, int mode)
1729 {
1730 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1731 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1732 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1733 .m_may_create = true };
1734 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1735 .init_gc_type = FG_GC,
1736 .should_migrate_blocks = false,
1737 .err_gc_skipped = true,
1738 .nr_free_secs = 0 };
1739 pgoff_t pg_start, pg_end;
1740 loff_t new_size;
1741 loff_t off_end;
1742 block_t expanded = 0;
1743 int err;
1744
1745 err = inode_newsize_ok(inode, (len + offset));
1746 if (err)
1747 return err;
1748
1749 err = f2fs_convert_inline_inode(inode);
1750 if (err)
1751 return err;
1752
1753 f2fs_balance_fs(sbi, true);
1754
1755 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1756 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1757 off_end = (offset + len) & (PAGE_SIZE - 1);
1758
1759 map.m_lblk = pg_start;
1760 map.m_len = pg_end - pg_start;
1761 if (off_end)
1762 map.m_len++;
1763
1764 if (!map.m_len)
1765 return 0;
1766
1767 if (f2fs_is_pinned_file(inode)) {
1768 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1769 block_t sec_len = roundup(map.m_len, sec_blks);
1770
1771 map.m_len = sec_blks;
1772 next_alloc:
1773 if (has_not_enough_free_secs(sbi, 0,
1774 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1775 f2fs_down_write(&sbi->gc_lock);
1776 stat_inc_gc_call_count(sbi, FOREGROUND);
1777 err = f2fs_gc(sbi, &gc_control);
1778 if (err && err != -ENODATA)
1779 goto out_err;
1780 }
1781
1782 f2fs_down_write(&sbi->pin_sem);
1783
1784 err = f2fs_allocate_pinning_section(sbi);
1785 if (err) {
1786 f2fs_up_write(&sbi->pin_sem);
1787 goto out_err;
1788 }
1789
1790 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1791 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1792 file_dont_truncate(inode);
1793
1794 f2fs_up_write(&sbi->pin_sem);
1795
1796 expanded += map.m_len;
1797 sec_len -= map.m_len;
1798 map.m_lblk += map.m_len;
1799 if (!err && sec_len)
1800 goto next_alloc;
1801
1802 map.m_len = expanded;
1803 } else {
1804 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1805 expanded = map.m_len;
1806 }
1807 out_err:
1808 if (err) {
1809 pgoff_t last_off;
1810
1811 if (!expanded)
1812 return err;
1813
1814 last_off = pg_start + expanded - 1;
1815
1816 /* update new size to the failed position */
1817 new_size = (last_off == pg_end) ? offset + len :
1818 (loff_t)(last_off + 1) << PAGE_SHIFT;
1819 } else {
1820 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1821 }
1822
1823 if (new_size > i_size_read(inode)) {
1824 if (mode & FALLOC_FL_KEEP_SIZE)
1825 file_set_keep_isize(inode);
1826 else
1827 f2fs_i_size_write(inode, new_size);
1828 }
1829
1830 return err;
1831 }
1832
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1833 static long f2fs_fallocate(struct file *file, int mode,
1834 loff_t offset, loff_t len)
1835 {
1836 struct inode *inode = file_inode(file);
1837 long ret = 0;
1838
1839 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1840 return -EIO;
1841 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1842 return -ENOSPC;
1843 if (!f2fs_is_compress_backend_ready(inode))
1844 return -EOPNOTSUPP;
1845
1846 /* f2fs only support ->fallocate for regular file */
1847 if (!S_ISREG(inode->i_mode))
1848 return -EINVAL;
1849
1850 if (IS_ENCRYPTED(inode) &&
1851 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1852 return -EOPNOTSUPP;
1853
1854 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1855 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1856 FALLOC_FL_INSERT_RANGE))
1857 return -EOPNOTSUPP;
1858
1859 inode_lock(inode);
1860
1861 /*
1862 * Pinned file should not support partial truncation since the block
1863 * can be used by applications.
1864 */
1865 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1866 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1867 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1868 ret = -EOPNOTSUPP;
1869 goto out;
1870 }
1871
1872 ret = file_modified(file);
1873 if (ret)
1874 goto out;
1875
1876 if (mode & FALLOC_FL_PUNCH_HOLE) {
1877 if (offset >= inode->i_size)
1878 goto out;
1879
1880 ret = f2fs_punch_hole(inode, offset, len);
1881 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1882 ret = f2fs_collapse_range(inode, offset, len);
1883 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1884 ret = f2fs_zero_range(inode, offset, len, mode);
1885 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1886 ret = f2fs_insert_range(inode, offset, len);
1887 } else {
1888 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1889 }
1890
1891 if (!ret) {
1892 inode->i_mtime = inode_set_ctime_current(inode);
1893 f2fs_mark_inode_dirty_sync(inode, false);
1894 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1895 }
1896
1897 out:
1898 inode_unlock(inode);
1899
1900 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1901 return ret;
1902 }
1903
f2fs_release_file(struct inode * inode,struct file * filp)1904 static int f2fs_release_file(struct inode *inode, struct file *filp)
1905 {
1906 /*
1907 * f2fs_release_file is called at every close calls. So we should
1908 * not drop any inmemory pages by close called by other process.
1909 */
1910 if (!(filp->f_mode & FMODE_WRITE) ||
1911 atomic_read(&inode->i_writecount) != 1)
1912 return 0;
1913
1914 inode_lock(inode);
1915 f2fs_abort_atomic_write(inode, true);
1916 inode_unlock(inode);
1917
1918 return 0;
1919 }
1920
f2fs_file_flush(struct file * file,fl_owner_t id)1921 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1922 {
1923 struct inode *inode = file_inode(file);
1924
1925 /*
1926 * If the process doing a transaction is crashed, we should do
1927 * roll-back. Otherwise, other reader/write can see corrupted database
1928 * until all the writers close its file. Since this should be done
1929 * before dropping file lock, it needs to do in ->flush.
1930 */
1931 if (F2FS_I(inode)->atomic_write_task == current &&
1932 (current->flags & PF_EXITING)) {
1933 inode_lock(inode);
1934 f2fs_abort_atomic_write(inode, true);
1935 inode_unlock(inode);
1936 }
1937
1938 return 0;
1939 }
1940
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1941 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1942 {
1943 struct f2fs_inode_info *fi = F2FS_I(inode);
1944 u32 masked_flags = fi->i_flags & mask;
1945
1946 /* mask can be shrunk by flags_valid selector */
1947 iflags &= mask;
1948
1949 /* Is it quota file? Do not allow user to mess with it */
1950 if (IS_NOQUOTA(inode))
1951 return -EPERM;
1952
1953 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1954 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1955 return -EOPNOTSUPP;
1956 if (!f2fs_empty_dir(inode))
1957 return -ENOTEMPTY;
1958 }
1959
1960 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1961 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1962 return -EOPNOTSUPP;
1963 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1964 return -EINVAL;
1965 }
1966
1967 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1968 if (masked_flags & F2FS_COMPR_FL) {
1969 if (!f2fs_disable_compressed_file(inode))
1970 return -EINVAL;
1971 } else {
1972 /* try to convert inline_data to support compression */
1973 int err = f2fs_convert_inline_inode(inode);
1974 if (err)
1975 return err;
1976
1977 f2fs_down_write(&F2FS_I(inode)->i_sem);
1978 if (!f2fs_may_compress(inode) ||
1979 (S_ISREG(inode->i_mode) &&
1980 F2FS_HAS_BLOCKS(inode))) {
1981 f2fs_up_write(&F2FS_I(inode)->i_sem);
1982 return -EINVAL;
1983 }
1984 err = set_compress_context(inode);
1985 f2fs_up_write(&F2FS_I(inode)->i_sem);
1986
1987 if (err)
1988 return err;
1989 }
1990 }
1991
1992 fi->i_flags = iflags | (fi->i_flags & ~mask);
1993 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1994 (fi->i_flags & F2FS_NOCOMP_FL));
1995
1996 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1997 set_inode_flag(inode, FI_PROJ_INHERIT);
1998 else
1999 clear_inode_flag(inode, FI_PROJ_INHERIT);
2000
2001 inode_set_ctime_current(inode);
2002 f2fs_set_inode_flags(inode);
2003 f2fs_mark_inode_dirty_sync(inode, true);
2004 return 0;
2005 }
2006
2007 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2008
2009 /*
2010 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2011 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2012 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
2013 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2014 *
2015 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2016 * FS_IOC_FSSETXATTR is done by the VFS.
2017 */
2018
2019 static const struct {
2020 u32 iflag;
2021 u32 fsflag;
2022 } f2fs_fsflags_map[] = {
2023 { F2FS_COMPR_FL, FS_COMPR_FL },
2024 { F2FS_SYNC_FL, FS_SYNC_FL },
2025 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
2026 { F2FS_APPEND_FL, FS_APPEND_FL },
2027 { F2FS_NODUMP_FL, FS_NODUMP_FL },
2028 { F2FS_NOATIME_FL, FS_NOATIME_FL },
2029 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
2030 { F2FS_INDEX_FL, FS_INDEX_FL },
2031 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
2032 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
2033 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
2034 };
2035
2036 #define F2FS_GETTABLE_FS_FL ( \
2037 FS_COMPR_FL | \
2038 FS_SYNC_FL | \
2039 FS_IMMUTABLE_FL | \
2040 FS_APPEND_FL | \
2041 FS_NODUMP_FL | \
2042 FS_NOATIME_FL | \
2043 FS_NOCOMP_FL | \
2044 FS_INDEX_FL | \
2045 FS_DIRSYNC_FL | \
2046 FS_PROJINHERIT_FL | \
2047 FS_ENCRYPT_FL | \
2048 FS_INLINE_DATA_FL | \
2049 FS_NOCOW_FL | \
2050 FS_VERITY_FL | \
2051 FS_CASEFOLD_FL)
2052
2053 #define F2FS_SETTABLE_FS_FL ( \
2054 FS_COMPR_FL | \
2055 FS_SYNC_FL | \
2056 FS_IMMUTABLE_FL | \
2057 FS_APPEND_FL | \
2058 FS_NODUMP_FL | \
2059 FS_NOATIME_FL | \
2060 FS_NOCOMP_FL | \
2061 FS_DIRSYNC_FL | \
2062 FS_PROJINHERIT_FL | \
2063 FS_CASEFOLD_FL)
2064
2065 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)2066 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2067 {
2068 u32 fsflags = 0;
2069 int i;
2070
2071 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2072 if (iflags & f2fs_fsflags_map[i].iflag)
2073 fsflags |= f2fs_fsflags_map[i].fsflag;
2074
2075 return fsflags;
2076 }
2077
2078 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)2079 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2080 {
2081 u32 iflags = 0;
2082 int i;
2083
2084 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2085 if (fsflags & f2fs_fsflags_map[i].fsflag)
2086 iflags |= f2fs_fsflags_map[i].iflag;
2087
2088 return iflags;
2089 }
2090
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2091 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2092 {
2093 struct inode *inode = file_inode(filp);
2094
2095 return put_user(inode->i_generation, (int __user *)arg);
2096 }
2097
f2fs_ioc_start_atomic_write(struct file * filp,bool truncate)2098 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2099 {
2100 struct inode *inode = file_inode(filp);
2101 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2102 struct f2fs_inode_info *fi = F2FS_I(inode);
2103 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2104 loff_t isize;
2105 int ret;
2106
2107 if (!(filp->f_mode & FMODE_WRITE))
2108 return -EBADF;
2109
2110 if (!inode_owner_or_capable(idmap, inode))
2111 return -EACCES;
2112
2113 if (!S_ISREG(inode->i_mode))
2114 return -EINVAL;
2115
2116 if (filp->f_flags & O_DIRECT)
2117 return -EINVAL;
2118
2119 ret = mnt_want_write_file(filp);
2120 if (ret)
2121 return ret;
2122
2123 inode_lock(inode);
2124
2125 if (!f2fs_disable_compressed_file(inode)) {
2126 ret = -EINVAL;
2127 goto out;
2128 }
2129
2130 if (f2fs_is_atomic_file(inode))
2131 goto out;
2132
2133 ret = f2fs_convert_inline_inode(inode);
2134 if (ret)
2135 goto out;
2136
2137 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2138
2139 /*
2140 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2141 * f2fs_is_atomic_file.
2142 */
2143 if (get_dirty_pages(inode))
2144 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2145 inode->i_ino, get_dirty_pages(inode));
2146 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2147 if (ret) {
2148 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2149 goto out;
2150 }
2151
2152 /* Check if the inode already has a COW inode */
2153 if (fi->cow_inode == NULL) {
2154 /* Create a COW inode for atomic write */
2155 struct dentry *dentry = file_dentry(filp);
2156 struct inode *dir = d_inode(dentry->d_parent);
2157
2158 ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2159 if (ret) {
2160 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2161 goto out;
2162 }
2163
2164 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2165 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2166
2167 /* Set the COW inode's atomic_inode to the atomic inode */
2168 F2FS_I(fi->cow_inode)->atomic_inode = inode;
2169 } else {
2170 /* Reuse the already created COW inode */
2171 f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2172
2173 invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2174
2175 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2176 if (ret) {
2177 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2178 goto out;
2179 }
2180 }
2181
2182 f2fs_write_inode(inode, NULL);
2183
2184 stat_inc_atomic_inode(inode);
2185
2186 set_inode_flag(inode, FI_ATOMIC_FILE);
2187
2188 isize = i_size_read(inode);
2189 fi->original_i_size = isize;
2190 if (truncate) {
2191 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2192 truncate_inode_pages_final(inode->i_mapping);
2193 f2fs_i_size_write(inode, 0);
2194 isize = 0;
2195 }
2196 f2fs_i_size_write(fi->cow_inode, isize);
2197
2198 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2199
2200 f2fs_update_time(sbi, REQ_TIME);
2201 fi->atomic_write_task = current;
2202 stat_update_max_atomic_write(inode);
2203 fi->atomic_write_cnt = 0;
2204 out:
2205 inode_unlock(inode);
2206 mnt_drop_write_file(filp);
2207 return ret;
2208 }
2209
f2fs_ioc_commit_atomic_write(struct file * filp)2210 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2211 {
2212 struct inode *inode = file_inode(filp);
2213 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2214 int ret;
2215
2216 if (!(filp->f_mode & FMODE_WRITE))
2217 return -EBADF;
2218
2219 if (!inode_owner_or_capable(idmap, inode))
2220 return -EACCES;
2221
2222 ret = mnt_want_write_file(filp);
2223 if (ret)
2224 return ret;
2225
2226 f2fs_balance_fs(F2FS_I_SB(inode), true);
2227
2228 inode_lock(inode);
2229
2230 if (f2fs_is_atomic_file(inode)) {
2231 ret = f2fs_commit_atomic_write(inode);
2232 if (!ret)
2233 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2234
2235 f2fs_abort_atomic_write(inode, ret);
2236 } else {
2237 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2238 }
2239
2240 inode_unlock(inode);
2241 mnt_drop_write_file(filp);
2242 return ret;
2243 }
2244
f2fs_ioc_abort_atomic_write(struct file * filp)2245 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2246 {
2247 struct inode *inode = file_inode(filp);
2248 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2249 int ret;
2250
2251 if (!(filp->f_mode & FMODE_WRITE))
2252 return -EBADF;
2253
2254 if (!inode_owner_or_capable(idmap, inode))
2255 return -EACCES;
2256
2257 ret = mnt_want_write_file(filp);
2258 if (ret)
2259 return ret;
2260
2261 inode_lock(inode);
2262
2263 f2fs_abort_atomic_write(inode, true);
2264
2265 inode_unlock(inode);
2266
2267 mnt_drop_write_file(filp);
2268 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2269 return ret;
2270 }
2271
f2fs_do_shutdown(struct f2fs_sb_info * sbi,unsigned int flag,bool readonly,bool need_lock)2272 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2273 bool readonly, bool need_lock)
2274 {
2275 struct super_block *sb = sbi->sb;
2276 int ret = 0;
2277
2278 switch (flag) {
2279 case F2FS_GOING_DOWN_FULLSYNC:
2280 ret = freeze_bdev(sb->s_bdev);
2281 if (ret)
2282 goto out;
2283 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2284 thaw_bdev(sb->s_bdev);
2285 break;
2286 case F2FS_GOING_DOWN_METASYNC:
2287 /* do checkpoint only */
2288 ret = f2fs_sync_fs(sb, 1);
2289 if (ret)
2290 goto out;
2291 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2292 break;
2293 case F2FS_GOING_DOWN_NOSYNC:
2294 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2295 break;
2296 case F2FS_GOING_DOWN_METAFLUSH:
2297 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2298 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2299 break;
2300 case F2FS_GOING_DOWN_NEED_FSCK:
2301 set_sbi_flag(sbi, SBI_NEED_FSCK);
2302 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2303 set_sbi_flag(sbi, SBI_IS_DIRTY);
2304 /* do checkpoint only */
2305 ret = f2fs_sync_fs(sb, 1);
2306 goto out;
2307 default:
2308 ret = -EINVAL;
2309 goto out;
2310 }
2311
2312 if (readonly)
2313 goto out;
2314
2315 /*
2316 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2317 * paths.
2318 */
2319 if (need_lock)
2320 down_write(&sbi->sb->s_umount);
2321
2322 f2fs_stop_gc_thread(sbi);
2323 f2fs_stop_discard_thread(sbi);
2324
2325 f2fs_drop_discard_cmd(sbi);
2326 clear_opt(sbi, DISCARD);
2327
2328 if (need_lock)
2329 up_write(&sbi->sb->s_umount);
2330
2331 f2fs_update_time(sbi, REQ_TIME);
2332 out:
2333
2334 trace_f2fs_shutdown(sbi, flag, ret);
2335
2336 return ret;
2337 }
2338
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2339 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2340 {
2341 struct inode *inode = file_inode(filp);
2342 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2343 __u32 in;
2344 int ret;
2345 bool need_drop = false, readonly = false;
2346
2347 if (!capable(CAP_SYS_ADMIN))
2348 return -EPERM;
2349
2350 if (get_user(in, (__u32 __user *)arg))
2351 return -EFAULT;
2352
2353 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2354 ret = mnt_want_write_file(filp);
2355 if (ret) {
2356 if (ret != -EROFS)
2357 return ret;
2358
2359 /* fallback to nosync shutdown for readonly fs */
2360 in = F2FS_GOING_DOWN_NOSYNC;
2361 readonly = true;
2362 } else {
2363 need_drop = true;
2364 }
2365 }
2366
2367 ret = f2fs_do_shutdown(sbi, in, readonly, true);
2368
2369 if (need_drop)
2370 mnt_drop_write_file(filp);
2371
2372 return ret;
2373 }
2374
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2375 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2376 {
2377 struct inode *inode = file_inode(filp);
2378 struct super_block *sb = inode->i_sb;
2379 struct fstrim_range range;
2380 int ret;
2381
2382 if (!capable(CAP_SYS_ADMIN))
2383 return -EPERM;
2384
2385 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2386 return -EOPNOTSUPP;
2387
2388 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2389 sizeof(range)))
2390 return -EFAULT;
2391
2392 ret = mnt_want_write_file(filp);
2393 if (ret)
2394 return ret;
2395
2396 range.minlen = max((unsigned int)range.minlen,
2397 bdev_discard_granularity(sb->s_bdev));
2398 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2399 mnt_drop_write_file(filp);
2400 if (ret < 0)
2401 return ret;
2402
2403 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2404 sizeof(range)))
2405 return -EFAULT;
2406 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2407 return 0;
2408 }
2409
uuid_is_nonzero(__u8 u[16])2410 static bool uuid_is_nonzero(__u8 u[16])
2411 {
2412 int i;
2413
2414 for (i = 0; i < 16; i++)
2415 if (u[i])
2416 return true;
2417 return false;
2418 }
2419
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2420 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2421 {
2422 struct inode *inode = file_inode(filp);
2423
2424 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2425 return -EOPNOTSUPP;
2426
2427 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2428
2429 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2430 }
2431
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2432 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2433 {
2434 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2435 return -EOPNOTSUPP;
2436 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2437 }
2438
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2439 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2440 {
2441 struct inode *inode = file_inode(filp);
2442 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2443 u8 encrypt_pw_salt[16];
2444 int err;
2445
2446 if (!f2fs_sb_has_encrypt(sbi))
2447 return -EOPNOTSUPP;
2448
2449 err = mnt_want_write_file(filp);
2450 if (err)
2451 return err;
2452
2453 f2fs_down_write(&sbi->sb_lock);
2454
2455 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2456 goto got_it;
2457
2458 /* update superblock with uuid */
2459 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2460
2461 err = f2fs_commit_super(sbi, false);
2462 if (err) {
2463 /* undo new data */
2464 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2465 goto out_err;
2466 }
2467 got_it:
2468 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2469 out_err:
2470 f2fs_up_write(&sbi->sb_lock);
2471 mnt_drop_write_file(filp);
2472
2473 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2474 err = -EFAULT;
2475
2476 return err;
2477 }
2478
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2479 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2480 unsigned long arg)
2481 {
2482 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2483 return -EOPNOTSUPP;
2484
2485 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2486 }
2487
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2488 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2489 {
2490 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2491 return -EOPNOTSUPP;
2492
2493 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2494 }
2495
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2496 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2497 {
2498 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2499 return -EOPNOTSUPP;
2500
2501 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2502 }
2503
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2504 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2505 unsigned long arg)
2506 {
2507 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2508 return -EOPNOTSUPP;
2509
2510 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2511 }
2512
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2513 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2514 unsigned long arg)
2515 {
2516 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2517 return -EOPNOTSUPP;
2518
2519 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2520 }
2521
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2522 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2523 {
2524 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2525 return -EOPNOTSUPP;
2526
2527 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2528 }
2529
f2fs_ioc_gc(struct file * filp,unsigned long arg)2530 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2531 {
2532 struct inode *inode = file_inode(filp);
2533 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2534 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2535 .no_bg_gc = false,
2536 .should_migrate_blocks = false,
2537 .nr_free_secs = 0 };
2538 __u32 sync;
2539 int ret;
2540
2541 if (!capable(CAP_SYS_ADMIN))
2542 return -EPERM;
2543
2544 if (get_user(sync, (__u32 __user *)arg))
2545 return -EFAULT;
2546
2547 if (f2fs_readonly(sbi->sb))
2548 return -EROFS;
2549
2550 ret = mnt_want_write_file(filp);
2551 if (ret)
2552 return ret;
2553
2554 if (!sync) {
2555 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2556 ret = -EBUSY;
2557 goto out;
2558 }
2559 } else {
2560 f2fs_down_write(&sbi->gc_lock);
2561 }
2562
2563 gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2564 gc_control.err_gc_skipped = sync;
2565 stat_inc_gc_call_count(sbi, FOREGROUND);
2566 ret = f2fs_gc(sbi, &gc_control);
2567 out:
2568 mnt_drop_write_file(filp);
2569 return ret;
2570 }
2571
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2572 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2573 {
2574 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2575 struct f2fs_gc_control gc_control = {
2576 .init_gc_type = range->sync ? FG_GC : BG_GC,
2577 .no_bg_gc = false,
2578 .should_migrate_blocks = false,
2579 .err_gc_skipped = range->sync,
2580 .nr_free_secs = 0 };
2581 u64 end;
2582 int ret;
2583
2584 if (!capable(CAP_SYS_ADMIN))
2585 return -EPERM;
2586 if (f2fs_readonly(sbi->sb))
2587 return -EROFS;
2588
2589 end = range->start + range->len;
2590 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2591 end >= MAX_BLKADDR(sbi))
2592 return -EINVAL;
2593
2594 ret = mnt_want_write_file(filp);
2595 if (ret)
2596 return ret;
2597
2598 do_more:
2599 if (!range->sync) {
2600 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2601 ret = -EBUSY;
2602 goto out;
2603 }
2604 } else {
2605 f2fs_down_write(&sbi->gc_lock);
2606 }
2607
2608 gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2609 stat_inc_gc_call_count(sbi, FOREGROUND);
2610 ret = f2fs_gc(sbi, &gc_control);
2611 if (ret) {
2612 if (ret == -EBUSY)
2613 ret = -EAGAIN;
2614 goto out;
2615 }
2616 range->start += CAP_BLKS_PER_SEC(sbi);
2617 if (range->start <= end)
2618 goto do_more;
2619 out:
2620 mnt_drop_write_file(filp);
2621 return ret;
2622 }
2623
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2624 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2625 {
2626 struct f2fs_gc_range range;
2627
2628 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2629 sizeof(range)))
2630 return -EFAULT;
2631 return __f2fs_ioc_gc_range(filp, &range);
2632 }
2633
f2fs_ioc_write_checkpoint(struct file * filp)2634 static int f2fs_ioc_write_checkpoint(struct file *filp)
2635 {
2636 struct inode *inode = file_inode(filp);
2637 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2638 int ret;
2639
2640 if (!capable(CAP_SYS_ADMIN))
2641 return -EPERM;
2642
2643 if (f2fs_readonly(sbi->sb))
2644 return -EROFS;
2645
2646 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2647 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2648 return -EINVAL;
2649 }
2650
2651 ret = mnt_want_write_file(filp);
2652 if (ret)
2653 return ret;
2654
2655 ret = f2fs_sync_fs(sbi->sb, 1);
2656
2657 mnt_drop_write_file(filp);
2658 return ret;
2659 }
2660
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2661 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2662 struct file *filp,
2663 struct f2fs_defragment *range)
2664 {
2665 struct inode *inode = file_inode(filp);
2666 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2667 .m_seg_type = NO_CHECK_TYPE,
2668 .m_may_create = false };
2669 struct extent_info ei = {};
2670 pgoff_t pg_start, pg_end, next_pgofs;
2671 unsigned int total = 0, sec_num;
2672 block_t blk_end = 0;
2673 bool fragmented = false;
2674 int err;
2675
2676 pg_start = range->start >> PAGE_SHIFT;
2677 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2678
2679 f2fs_balance_fs(sbi, true);
2680
2681 inode_lock(inode);
2682
2683 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2684 f2fs_is_atomic_file(inode)) {
2685 err = -EINVAL;
2686 goto unlock_out;
2687 }
2688
2689 /* if in-place-update policy is enabled, don't waste time here */
2690 set_inode_flag(inode, FI_OPU_WRITE);
2691 if (f2fs_should_update_inplace(inode, NULL)) {
2692 err = -EINVAL;
2693 goto out;
2694 }
2695
2696 /* writeback all dirty pages in the range */
2697 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2698 range->start + range->len - 1);
2699 if (err)
2700 goto out;
2701
2702 /*
2703 * lookup mapping info in extent cache, skip defragmenting if physical
2704 * block addresses are continuous.
2705 */
2706 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2707 if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2708 goto out;
2709 }
2710
2711 map.m_lblk = pg_start;
2712 map.m_next_pgofs = &next_pgofs;
2713
2714 /*
2715 * lookup mapping info in dnode page cache, skip defragmenting if all
2716 * physical block addresses are continuous even if there are hole(s)
2717 * in logical blocks.
2718 */
2719 while (map.m_lblk < pg_end) {
2720 map.m_len = pg_end - map.m_lblk;
2721 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2722 if (err)
2723 goto out;
2724
2725 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2726 map.m_lblk = next_pgofs;
2727 continue;
2728 }
2729
2730 if (blk_end && blk_end != map.m_pblk)
2731 fragmented = true;
2732
2733 /* record total count of block that we're going to move */
2734 total += map.m_len;
2735
2736 blk_end = map.m_pblk + map.m_len;
2737
2738 map.m_lblk += map.m_len;
2739 }
2740
2741 if (!fragmented) {
2742 total = 0;
2743 goto out;
2744 }
2745
2746 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2747
2748 /*
2749 * make sure there are enough free section for LFS allocation, this can
2750 * avoid defragment running in SSR mode when free section are allocated
2751 * intensively
2752 */
2753 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2754 err = -EAGAIN;
2755 goto out;
2756 }
2757
2758 map.m_lblk = pg_start;
2759 map.m_len = pg_end - pg_start;
2760 total = 0;
2761
2762 while (map.m_lblk < pg_end) {
2763 pgoff_t idx;
2764 int cnt = 0;
2765
2766 do_map:
2767 map.m_len = pg_end - map.m_lblk;
2768 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2769 if (err)
2770 goto clear_out;
2771
2772 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2773 map.m_lblk = next_pgofs;
2774 goto check;
2775 }
2776
2777 set_inode_flag(inode, FI_SKIP_WRITES);
2778
2779 idx = map.m_lblk;
2780 while (idx < map.m_lblk + map.m_len &&
2781 cnt < BLKS_PER_SEG(sbi)) {
2782 struct page *page;
2783
2784 page = f2fs_get_lock_data_page(inode, idx, true);
2785 if (IS_ERR(page)) {
2786 err = PTR_ERR(page);
2787 goto clear_out;
2788 }
2789
2790 f2fs_wait_on_page_writeback(page, DATA, true, true);
2791
2792 set_page_dirty(page);
2793 set_page_private_gcing(page);
2794 f2fs_put_page(page, 1);
2795
2796 idx++;
2797 cnt++;
2798 total++;
2799 }
2800
2801 map.m_lblk = idx;
2802 check:
2803 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2804 goto do_map;
2805
2806 clear_inode_flag(inode, FI_SKIP_WRITES);
2807
2808 err = filemap_fdatawrite(inode->i_mapping);
2809 if (err)
2810 goto out;
2811 }
2812 clear_out:
2813 clear_inode_flag(inode, FI_SKIP_WRITES);
2814 out:
2815 clear_inode_flag(inode, FI_OPU_WRITE);
2816 unlock_out:
2817 inode_unlock(inode);
2818 if (!err)
2819 range->len = (u64)total << PAGE_SHIFT;
2820 return err;
2821 }
2822
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2823 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2824 {
2825 struct inode *inode = file_inode(filp);
2826 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2827 struct f2fs_defragment range;
2828 int err;
2829
2830 if (!capable(CAP_SYS_ADMIN))
2831 return -EPERM;
2832
2833 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2834 return -EINVAL;
2835
2836 if (f2fs_readonly(sbi->sb))
2837 return -EROFS;
2838
2839 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2840 sizeof(range)))
2841 return -EFAULT;
2842
2843 /* verify alignment of offset & size */
2844 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2845 return -EINVAL;
2846
2847 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2848 max_file_blocks(inode)))
2849 return -EINVAL;
2850
2851 err = mnt_want_write_file(filp);
2852 if (err)
2853 return err;
2854
2855 err = f2fs_defragment_range(sbi, filp, &range);
2856 mnt_drop_write_file(filp);
2857
2858 f2fs_update_time(sbi, REQ_TIME);
2859 if (err < 0)
2860 return err;
2861
2862 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2863 sizeof(range)))
2864 return -EFAULT;
2865
2866 return 0;
2867 }
2868
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2869 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2870 struct file *file_out, loff_t pos_out, size_t len)
2871 {
2872 struct inode *src = file_inode(file_in);
2873 struct inode *dst = file_inode(file_out);
2874 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2875 size_t olen = len, dst_max_i_size = 0;
2876 size_t dst_osize;
2877 int ret;
2878
2879 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2880 src->i_sb != dst->i_sb)
2881 return -EXDEV;
2882
2883 if (unlikely(f2fs_readonly(src->i_sb)))
2884 return -EROFS;
2885
2886 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2887 return -EINVAL;
2888
2889 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2890 return -EOPNOTSUPP;
2891
2892 if (pos_out < 0 || pos_in < 0)
2893 return -EINVAL;
2894
2895 if (src == dst) {
2896 if (pos_in == pos_out)
2897 return 0;
2898 if (pos_out > pos_in && pos_out < pos_in + len)
2899 return -EINVAL;
2900 }
2901
2902 inode_lock(src);
2903 if (src != dst) {
2904 ret = -EBUSY;
2905 if (!inode_trylock(dst))
2906 goto out;
2907 }
2908
2909 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2910 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2911 ret = -EOPNOTSUPP;
2912 goto out_unlock;
2913 }
2914
2915 if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
2916 ret = -EINVAL;
2917 goto out_unlock;
2918 }
2919
2920 ret = -EINVAL;
2921 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2922 goto out_unlock;
2923 if (len == 0)
2924 olen = len = src->i_size - pos_in;
2925 if (pos_in + len == src->i_size)
2926 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2927 if (len == 0) {
2928 ret = 0;
2929 goto out_unlock;
2930 }
2931
2932 dst_osize = dst->i_size;
2933 if (pos_out + olen > dst->i_size)
2934 dst_max_i_size = pos_out + olen;
2935
2936 /* verify the end result is block aligned */
2937 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2938 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2939 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2940 goto out_unlock;
2941
2942 ret = f2fs_convert_inline_inode(src);
2943 if (ret)
2944 goto out_unlock;
2945
2946 ret = f2fs_convert_inline_inode(dst);
2947 if (ret)
2948 goto out_unlock;
2949
2950 /* write out all dirty pages from offset */
2951 ret = filemap_write_and_wait_range(src->i_mapping,
2952 pos_in, pos_in + len);
2953 if (ret)
2954 goto out_unlock;
2955
2956 ret = filemap_write_and_wait_range(dst->i_mapping,
2957 pos_out, pos_out + len);
2958 if (ret)
2959 goto out_unlock;
2960
2961 f2fs_balance_fs(sbi, true);
2962
2963 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2964 if (src != dst) {
2965 ret = -EBUSY;
2966 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2967 goto out_src;
2968 }
2969
2970 f2fs_lock_op(sbi);
2971 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2972 pos_out >> F2FS_BLKSIZE_BITS,
2973 len >> F2FS_BLKSIZE_BITS, false);
2974
2975 if (!ret) {
2976 if (dst_max_i_size)
2977 f2fs_i_size_write(dst, dst_max_i_size);
2978 else if (dst_osize != dst->i_size)
2979 f2fs_i_size_write(dst, dst_osize);
2980 }
2981 f2fs_unlock_op(sbi);
2982
2983 if (src != dst)
2984 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2985 out_src:
2986 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2987 if (ret)
2988 goto out_unlock;
2989
2990 src->i_mtime = inode_set_ctime_current(src);
2991 f2fs_mark_inode_dirty_sync(src, false);
2992 if (src != dst) {
2993 dst->i_mtime = inode_set_ctime_current(dst);
2994 f2fs_mark_inode_dirty_sync(dst, false);
2995 }
2996 f2fs_update_time(sbi, REQ_TIME);
2997
2998 out_unlock:
2999 if (src != dst)
3000 inode_unlock(dst);
3001 out:
3002 inode_unlock(src);
3003 return ret;
3004 }
3005
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)3006 static int __f2fs_ioc_move_range(struct file *filp,
3007 struct f2fs_move_range *range)
3008 {
3009 struct fd dst;
3010 int err;
3011
3012 if (!(filp->f_mode & FMODE_READ) ||
3013 !(filp->f_mode & FMODE_WRITE))
3014 return -EBADF;
3015
3016 dst = fdget(range->dst_fd);
3017 if (!dst.file)
3018 return -EBADF;
3019
3020 if (!(dst.file->f_mode & FMODE_WRITE)) {
3021 err = -EBADF;
3022 goto err_out;
3023 }
3024
3025 err = mnt_want_write_file(filp);
3026 if (err)
3027 goto err_out;
3028
3029 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
3030 range->pos_out, range->len);
3031
3032 mnt_drop_write_file(filp);
3033 err_out:
3034 fdput(dst);
3035 return err;
3036 }
3037
f2fs_ioc_move_range(struct file * filp,unsigned long arg)3038 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3039 {
3040 struct f2fs_move_range range;
3041
3042 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3043 sizeof(range)))
3044 return -EFAULT;
3045 return __f2fs_ioc_move_range(filp, &range);
3046 }
3047
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)3048 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3049 {
3050 struct inode *inode = file_inode(filp);
3051 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3052 struct sit_info *sm = SIT_I(sbi);
3053 unsigned int start_segno = 0, end_segno = 0;
3054 unsigned int dev_start_segno = 0, dev_end_segno = 0;
3055 struct f2fs_flush_device range;
3056 struct f2fs_gc_control gc_control = {
3057 .init_gc_type = FG_GC,
3058 .should_migrate_blocks = true,
3059 .err_gc_skipped = true,
3060 .nr_free_secs = 0 };
3061 int ret;
3062
3063 if (!capable(CAP_SYS_ADMIN))
3064 return -EPERM;
3065
3066 if (f2fs_readonly(sbi->sb))
3067 return -EROFS;
3068
3069 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3070 return -EINVAL;
3071
3072 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3073 sizeof(range)))
3074 return -EFAULT;
3075
3076 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3077 __is_large_section(sbi)) {
3078 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3079 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3080 return -EINVAL;
3081 }
3082
3083 ret = mnt_want_write_file(filp);
3084 if (ret)
3085 return ret;
3086
3087 if (range.dev_num != 0)
3088 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3089 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3090
3091 start_segno = sm->last_victim[FLUSH_DEVICE];
3092 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3093 start_segno = dev_start_segno;
3094 end_segno = min(start_segno + range.segments, dev_end_segno);
3095
3096 while (start_segno < end_segno) {
3097 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3098 ret = -EBUSY;
3099 goto out;
3100 }
3101 sm->last_victim[GC_CB] = end_segno + 1;
3102 sm->last_victim[GC_GREEDY] = end_segno + 1;
3103 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3104
3105 gc_control.victim_segno = start_segno;
3106 stat_inc_gc_call_count(sbi, FOREGROUND);
3107 ret = f2fs_gc(sbi, &gc_control);
3108 if (ret == -EAGAIN)
3109 ret = 0;
3110 else if (ret < 0)
3111 break;
3112 start_segno++;
3113 }
3114 out:
3115 mnt_drop_write_file(filp);
3116 return ret;
3117 }
3118
f2fs_ioc_get_features(struct file * filp,unsigned long arg)3119 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3120 {
3121 struct inode *inode = file_inode(filp);
3122 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3123
3124 /* Must validate to set it with SQLite behavior in Android. */
3125 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3126
3127 return put_user(sb_feature, (u32 __user *)arg);
3128 }
3129
3130 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3131 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3132 {
3133 struct dquot *transfer_to[MAXQUOTAS] = {};
3134 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3135 struct super_block *sb = sbi->sb;
3136 int err;
3137
3138 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3139 if (IS_ERR(transfer_to[PRJQUOTA]))
3140 return PTR_ERR(transfer_to[PRJQUOTA]);
3141
3142 err = __dquot_transfer(inode, transfer_to);
3143 if (err)
3144 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3145 dqput(transfer_to[PRJQUOTA]);
3146 return err;
3147 }
3148
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3149 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3150 {
3151 struct f2fs_inode_info *fi = F2FS_I(inode);
3152 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3153 struct f2fs_inode *ri = NULL;
3154 kprojid_t kprojid;
3155 int err;
3156
3157 if (!f2fs_sb_has_project_quota(sbi)) {
3158 if (projid != F2FS_DEF_PROJID)
3159 return -EOPNOTSUPP;
3160 else
3161 return 0;
3162 }
3163
3164 if (!f2fs_has_extra_attr(inode))
3165 return -EOPNOTSUPP;
3166
3167 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3168
3169 if (projid_eq(kprojid, fi->i_projid))
3170 return 0;
3171
3172 err = -EPERM;
3173 /* Is it quota file? Do not allow user to mess with it */
3174 if (IS_NOQUOTA(inode))
3175 return err;
3176
3177 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3178 return -EOVERFLOW;
3179
3180 err = f2fs_dquot_initialize(inode);
3181 if (err)
3182 return err;
3183
3184 f2fs_lock_op(sbi);
3185 err = f2fs_transfer_project_quota(inode, kprojid);
3186 if (err)
3187 goto out_unlock;
3188
3189 fi->i_projid = kprojid;
3190 inode_set_ctime_current(inode);
3191 f2fs_mark_inode_dirty_sync(inode, true);
3192 out_unlock:
3193 f2fs_unlock_op(sbi);
3194 return err;
3195 }
3196 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3197 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3198 {
3199 return 0;
3200 }
3201
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3202 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3203 {
3204 if (projid != F2FS_DEF_PROJID)
3205 return -EOPNOTSUPP;
3206 return 0;
3207 }
3208 #endif
3209
f2fs_fileattr_get(struct dentry * dentry,struct fileattr * fa)3210 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3211 {
3212 struct inode *inode = d_inode(dentry);
3213 struct f2fs_inode_info *fi = F2FS_I(inode);
3214 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3215
3216 if (IS_ENCRYPTED(inode))
3217 fsflags |= FS_ENCRYPT_FL;
3218 if (IS_VERITY(inode))
3219 fsflags |= FS_VERITY_FL;
3220 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3221 fsflags |= FS_INLINE_DATA_FL;
3222 if (is_inode_flag_set(inode, FI_PIN_FILE))
3223 fsflags |= FS_NOCOW_FL;
3224
3225 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3226
3227 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3228 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3229
3230 return 0;
3231 }
3232
f2fs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3233 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3234 struct dentry *dentry, struct fileattr *fa)
3235 {
3236 struct inode *inode = d_inode(dentry);
3237 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3238 u32 iflags;
3239 int err;
3240
3241 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3242 return -EIO;
3243 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3244 return -ENOSPC;
3245 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3246 return -EOPNOTSUPP;
3247 fsflags &= F2FS_SETTABLE_FS_FL;
3248 if (!fa->flags_valid)
3249 mask &= FS_COMMON_FL;
3250
3251 iflags = f2fs_fsflags_to_iflags(fsflags);
3252 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3253 return -EOPNOTSUPP;
3254
3255 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3256 if (!err)
3257 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3258
3259 return err;
3260 }
3261
f2fs_pin_file_control(struct inode * inode,bool inc)3262 int f2fs_pin_file_control(struct inode *inode, bool inc)
3263 {
3264 struct f2fs_inode_info *fi = F2FS_I(inode);
3265 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3266
3267 /* Use i_gc_failures for normal file as a risk signal. */
3268 if (inc)
3269 f2fs_i_gc_failures_write(inode,
3270 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3271
3272 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3273 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3274 __func__, inode->i_ino,
3275 fi->i_gc_failures[GC_FAILURE_PIN]);
3276 clear_inode_flag(inode, FI_PIN_FILE);
3277 return -EAGAIN;
3278 }
3279 return 0;
3280 }
3281
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3282 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3283 {
3284 struct inode *inode = file_inode(filp);
3285 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3286 __u32 pin;
3287 int ret = 0;
3288
3289 if (get_user(pin, (__u32 __user *)arg))
3290 return -EFAULT;
3291
3292 if (!S_ISREG(inode->i_mode))
3293 return -EINVAL;
3294
3295 if (f2fs_readonly(sbi->sb))
3296 return -EROFS;
3297
3298 ret = mnt_want_write_file(filp);
3299 if (ret)
3300 return ret;
3301
3302 inode_lock(inode);
3303
3304 if (f2fs_is_atomic_file(inode)) {
3305 ret = -EINVAL;
3306 goto out;
3307 }
3308
3309 if (!pin) {
3310 clear_inode_flag(inode, FI_PIN_FILE);
3311 f2fs_i_gc_failures_write(inode, 0);
3312 goto done;
3313 } else if (f2fs_is_pinned_file(inode)) {
3314 goto done;
3315 }
3316
3317 if (f2fs_sb_has_blkzoned(sbi) && F2FS_HAS_BLOCKS(inode)) {
3318 ret = -EFBIG;
3319 goto out;
3320 }
3321
3322 /* Let's allow file pinning on zoned device. */
3323 if (!f2fs_sb_has_blkzoned(sbi) &&
3324 f2fs_should_update_outplace(inode, NULL)) {
3325 ret = -EINVAL;
3326 goto out;
3327 }
3328
3329 if (f2fs_pin_file_control(inode, false)) {
3330 ret = -EAGAIN;
3331 goto out;
3332 }
3333
3334 ret = f2fs_convert_inline_inode(inode);
3335 if (ret)
3336 goto out;
3337
3338 if (!f2fs_disable_compressed_file(inode)) {
3339 ret = -EOPNOTSUPP;
3340 goto out;
3341 }
3342
3343 set_inode_flag(inode, FI_PIN_FILE);
3344 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3345 done:
3346 f2fs_update_time(sbi, REQ_TIME);
3347 out:
3348 inode_unlock(inode);
3349 mnt_drop_write_file(filp);
3350 return ret;
3351 }
3352
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3353 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3354 {
3355 struct inode *inode = file_inode(filp);
3356 __u32 pin = 0;
3357
3358 if (is_inode_flag_set(inode, FI_PIN_FILE))
3359 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3360 return put_user(pin, (u32 __user *)arg);
3361 }
3362
f2fs_precache_extents(struct inode * inode)3363 int f2fs_precache_extents(struct inode *inode)
3364 {
3365 struct f2fs_inode_info *fi = F2FS_I(inode);
3366 struct f2fs_map_blocks map;
3367 pgoff_t m_next_extent;
3368 loff_t end;
3369 int err;
3370
3371 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3372 return -EOPNOTSUPP;
3373
3374 map.m_lblk = 0;
3375 map.m_pblk = 0;
3376 map.m_next_pgofs = NULL;
3377 map.m_next_extent = &m_next_extent;
3378 map.m_seg_type = NO_CHECK_TYPE;
3379 map.m_may_create = false;
3380 end = max_file_blocks(inode);
3381
3382 while (map.m_lblk < end) {
3383 map.m_len = end - map.m_lblk;
3384
3385 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3386 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3387 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3388 if (err)
3389 return err;
3390
3391 map.m_lblk = m_next_extent;
3392 }
3393
3394 return 0;
3395 }
3396
f2fs_ioc_precache_extents(struct file * filp)3397 static int f2fs_ioc_precache_extents(struct file *filp)
3398 {
3399 return f2fs_precache_extents(file_inode(filp));
3400 }
3401
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3402 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3403 {
3404 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3405 __u64 block_count;
3406
3407 if (!capable(CAP_SYS_ADMIN))
3408 return -EPERM;
3409
3410 if (f2fs_readonly(sbi->sb))
3411 return -EROFS;
3412
3413 if (copy_from_user(&block_count, (void __user *)arg,
3414 sizeof(block_count)))
3415 return -EFAULT;
3416
3417 return f2fs_resize_fs(filp, block_count);
3418 }
3419
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3420 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3421 {
3422 struct inode *inode = file_inode(filp);
3423
3424 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3425
3426 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3427 f2fs_warn(F2FS_I_SB(inode),
3428 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3429 inode->i_ino);
3430 return -EOPNOTSUPP;
3431 }
3432
3433 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3434 }
3435
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3436 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3437 {
3438 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3439 return -EOPNOTSUPP;
3440
3441 return fsverity_ioctl_measure(filp, (void __user *)arg);
3442 }
3443
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3444 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3445 {
3446 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3447 return -EOPNOTSUPP;
3448
3449 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3450 }
3451
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3452 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3453 {
3454 struct inode *inode = file_inode(filp);
3455 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3456 char *vbuf;
3457 int count;
3458 int err = 0;
3459
3460 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3461 if (!vbuf)
3462 return -ENOMEM;
3463
3464 f2fs_down_read(&sbi->sb_lock);
3465 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3466 ARRAY_SIZE(sbi->raw_super->volume_name),
3467 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3468 f2fs_up_read(&sbi->sb_lock);
3469
3470 if (copy_to_user((char __user *)arg, vbuf,
3471 min(FSLABEL_MAX, count)))
3472 err = -EFAULT;
3473
3474 kfree(vbuf);
3475 return err;
3476 }
3477
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3478 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3479 {
3480 struct inode *inode = file_inode(filp);
3481 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3482 char *vbuf;
3483 int err = 0;
3484
3485 if (!capable(CAP_SYS_ADMIN))
3486 return -EPERM;
3487
3488 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3489 if (IS_ERR(vbuf))
3490 return PTR_ERR(vbuf);
3491
3492 err = mnt_want_write_file(filp);
3493 if (err)
3494 goto out;
3495
3496 f2fs_down_write(&sbi->sb_lock);
3497
3498 memset(sbi->raw_super->volume_name, 0,
3499 sizeof(sbi->raw_super->volume_name));
3500 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3501 sbi->raw_super->volume_name,
3502 ARRAY_SIZE(sbi->raw_super->volume_name));
3503
3504 err = f2fs_commit_super(sbi, false);
3505
3506 f2fs_up_write(&sbi->sb_lock);
3507
3508 mnt_drop_write_file(filp);
3509 out:
3510 kfree(vbuf);
3511 return err;
3512 }
3513
f2fs_get_compress_blocks(struct inode * inode,__u64 * blocks)3514 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3515 {
3516 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3517 return -EOPNOTSUPP;
3518
3519 if (!f2fs_compressed_file(inode))
3520 return -EINVAL;
3521
3522 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3523
3524 return 0;
3525 }
3526
f2fs_ioc_get_compress_blocks(struct file * filp,unsigned long arg)3527 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3528 {
3529 struct inode *inode = file_inode(filp);
3530 __u64 blocks;
3531 int ret;
3532
3533 ret = f2fs_get_compress_blocks(inode, &blocks);
3534 if (ret < 0)
3535 return ret;
3536
3537 return put_user(blocks, (u64 __user *)arg);
3538 }
3539
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3540 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3541 {
3542 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3543 unsigned int released_blocks = 0;
3544 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3545 block_t blkaddr;
3546 int i;
3547
3548 for (i = 0; i < count; i++) {
3549 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3550 dn->ofs_in_node + i);
3551
3552 if (!__is_valid_data_blkaddr(blkaddr))
3553 continue;
3554 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3555 DATA_GENERIC_ENHANCE))) {
3556 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3557 return -EFSCORRUPTED;
3558 }
3559 }
3560
3561 while (count) {
3562 int compr_blocks = 0;
3563
3564 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3565 blkaddr = f2fs_data_blkaddr(dn);
3566
3567 if (i == 0) {
3568 if (blkaddr == COMPRESS_ADDR)
3569 continue;
3570 dn->ofs_in_node += cluster_size;
3571 goto next;
3572 }
3573
3574 if (__is_valid_data_blkaddr(blkaddr))
3575 compr_blocks++;
3576
3577 if (blkaddr != NEW_ADDR)
3578 continue;
3579
3580 f2fs_set_data_blkaddr(dn, NULL_ADDR);
3581 }
3582
3583 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3584 dec_valid_block_count(sbi, dn->inode,
3585 cluster_size - compr_blocks);
3586
3587 released_blocks += cluster_size - compr_blocks;
3588 next:
3589 count -= cluster_size;
3590 }
3591
3592 return released_blocks;
3593 }
3594
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3595 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3596 {
3597 struct inode *inode = file_inode(filp);
3598 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3599 pgoff_t page_idx = 0, last_idx;
3600 unsigned int released_blocks = 0;
3601 int ret;
3602 int writecount;
3603
3604 if (!f2fs_sb_has_compression(sbi))
3605 return -EOPNOTSUPP;
3606
3607 if (f2fs_readonly(sbi->sb))
3608 return -EROFS;
3609
3610 ret = mnt_want_write_file(filp);
3611 if (ret)
3612 return ret;
3613
3614 f2fs_balance_fs(sbi, true);
3615
3616 inode_lock(inode);
3617
3618 writecount = atomic_read(&inode->i_writecount);
3619 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3620 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3621 ret = -EBUSY;
3622 goto out;
3623 }
3624
3625 if (!f2fs_compressed_file(inode) ||
3626 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3627 ret = -EINVAL;
3628 goto out;
3629 }
3630
3631 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3632 if (ret)
3633 goto out;
3634
3635 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3636 ret = -EPERM;
3637 goto out;
3638 }
3639
3640 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3641 inode_set_ctime_current(inode);
3642 f2fs_mark_inode_dirty_sync(inode, true);
3643
3644 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3645 filemap_invalidate_lock(inode->i_mapping);
3646
3647 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3648
3649 while (page_idx < last_idx) {
3650 struct dnode_of_data dn;
3651 pgoff_t end_offset, count;
3652
3653 f2fs_lock_op(sbi);
3654
3655 set_new_dnode(&dn, inode, NULL, NULL, 0);
3656 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3657 if (ret) {
3658 f2fs_unlock_op(sbi);
3659 if (ret == -ENOENT) {
3660 page_idx = f2fs_get_next_page_offset(&dn,
3661 page_idx);
3662 ret = 0;
3663 continue;
3664 }
3665 break;
3666 }
3667
3668 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3669 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3670 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3671
3672 ret = release_compress_blocks(&dn, count);
3673
3674 f2fs_put_dnode(&dn);
3675
3676 f2fs_unlock_op(sbi);
3677
3678 if (ret < 0)
3679 break;
3680
3681 page_idx += count;
3682 released_blocks += ret;
3683 }
3684
3685 filemap_invalidate_unlock(inode->i_mapping);
3686 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3687 out:
3688 inode_unlock(inode);
3689
3690 mnt_drop_write_file(filp);
3691
3692 if (ret >= 0) {
3693 ret = put_user(released_blocks, (u64 __user *)arg);
3694 } else if (released_blocks &&
3695 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3696 set_sbi_flag(sbi, SBI_NEED_FSCK);
3697 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3698 "iblocks=%llu, released=%u, compr_blocks=%u, "
3699 "run fsck to fix.",
3700 __func__, inode->i_ino, inode->i_blocks,
3701 released_blocks,
3702 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3703 }
3704
3705 return ret;
3706 }
3707
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count,unsigned int * reserved_blocks)3708 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3709 unsigned int *reserved_blocks)
3710 {
3711 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3712 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3713 block_t blkaddr;
3714 int i;
3715
3716 for (i = 0; i < count; i++) {
3717 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3718 dn->ofs_in_node + i);
3719
3720 if (!__is_valid_data_blkaddr(blkaddr))
3721 continue;
3722 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3723 DATA_GENERIC_ENHANCE))) {
3724 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3725 return -EFSCORRUPTED;
3726 }
3727 }
3728
3729 while (count) {
3730 int compr_blocks = 0;
3731 blkcnt_t reserved = 0;
3732 blkcnt_t to_reserved;
3733 int ret;
3734
3735 for (i = 0; i < cluster_size; i++) {
3736 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3737 dn->ofs_in_node + i);
3738
3739 if (i == 0) {
3740 if (blkaddr != COMPRESS_ADDR) {
3741 dn->ofs_in_node += cluster_size;
3742 goto next;
3743 }
3744 continue;
3745 }
3746
3747 /*
3748 * compressed cluster was not released due to it
3749 * fails in release_compress_blocks(), so NEW_ADDR
3750 * is a possible case.
3751 */
3752 if (blkaddr == NEW_ADDR) {
3753 reserved++;
3754 continue;
3755 }
3756 if (__is_valid_data_blkaddr(blkaddr)) {
3757 compr_blocks++;
3758 continue;
3759 }
3760 }
3761
3762 to_reserved = cluster_size - compr_blocks - reserved;
3763
3764 /* for the case all blocks in cluster were reserved */
3765 if (reserved && to_reserved == 1) {
3766 dn->ofs_in_node += cluster_size;
3767 goto next;
3768 }
3769
3770 ret = inc_valid_block_count(sbi, dn->inode,
3771 &to_reserved, false);
3772 if (unlikely(ret))
3773 return ret;
3774
3775 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3776 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3777 f2fs_set_data_blkaddr(dn, NEW_ADDR);
3778 }
3779
3780 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3781
3782 *reserved_blocks += to_reserved;
3783 next:
3784 count -= cluster_size;
3785 }
3786
3787 return 0;
3788 }
3789
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3790 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3791 {
3792 struct inode *inode = file_inode(filp);
3793 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3794 pgoff_t page_idx = 0, last_idx;
3795 unsigned int reserved_blocks = 0;
3796 int ret;
3797
3798 if (!f2fs_sb_has_compression(sbi))
3799 return -EOPNOTSUPP;
3800
3801 if (f2fs_readonly(sbi->sb))
3802 return -EROFS;
3803
3804 ret = mnt_want_write_file(filp);
3805 if (ret)
3806 return ret;
3807
3808 f2fs_balance_fs(sbi, true);
3809
3810 inode_lock(inode);
3811
3812 if (!f2fs_compressed_file(inode) ||
3813 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3814 ret = -EINVAL;
3815 goto unlock_inode;
3816 }
3817
3818 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3819 goto unlock_inode;
3820
3821 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3822 filemap_invalidate_lock(inode->i_mapping);
3823
3824 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3825
3826 while (page_idx < last_idx) {
3827 struct dnode_of_data dn;
3828 pgoff_t end_offset, count;
3829
3830 f2fs_lock_op(sbi);
3831
3832 set_new_dnode(&dn, inode, NULL, NULL, 0);
3833 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3834 if (ret) {
3835 f2fs_unlock_op(sbi);
3836 if (ret == -ENOENT) {
3837 page_idx = f2fs_get_next_page_offset(&dn,
3838 page_idx);
3839 ret = 0;
3840 continue;
3841 }
3842 break;
3843 }
3844
3845 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3846 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3847 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3848
3849 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3850
3851 f2fs_put_dnode(&dn);
3852
3853 f2fs_unlock_op(sbi);
3854
3855 if (ret < 0)
3856 break;
3857
3858 page_idx += count;
3859 }
3860
3861 filemap_invalidate_unlock(inode->i_mapping);
3862 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3863
3864 if (!ret) {
3865 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3866 inode_set_ctime_current(inode);
3867 f2fs_mark_inode_dirty_sync(inode, true);
3868 }
3869 unlock_inode:
3870 inode_unlock(inode);
3871 mnt_drop_write_file(filp);
3872
3873 if (!ret) {
3874 ret = put_user(reserved_blocks, (u64 __user *)arg);
3875 } else if (reserved_blocks &&
3876 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3877 set_sbi_flag(sbi, SBI_NEED_FSCK);
3878 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3879 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3880 "run fsck to fix.",
3881 __func__, inode->i_ino, inode->i_blocks,
3882 reserved_blocks,
3883 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3884 }
3885
3886 return ret;
3887 }
3888
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3889 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3890 pgoff_t off, block_t block, block_t len, u32 flags)
3891 {
3892 sector_t sector = SECTOR_FROM_BLOCK(block);
3893 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3894 int ret = 0;
3895
3896 if (flags & F2FS_TRIM_FILE_DISCARD) {
3897 if (bdev_max_secure_erase_sectors(bdev))
3898 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3899 GFP_NOFS);
3900 else
3901 ret = blkdev_issue_discard(bdev, sector, nr_sects,
3902 GFP_NOFS);
3903 }
3904
3905 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3906 if (IS_ENCRYPTED(inode))
3907 ret = fscrypt_zeroout_range(inode, off, block, len);
3908 else
3909 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3910 GFP_NOFS, 0);
3911 }
3912
3913 return ret;
3914 }
3915
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3916 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3917 {
3918 struct inode *inode = file_inode(filp);
3919 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3920 struct address_space *mapping = inode->i_mapping;
3921 struct block_device *prev_bdev = NULL;
3922 struct f2fs_sectrim_range range;
3923 pgoff_t index, pg_end, prev_index = 0;
3924 block_t prev_block = 0, len = 0;
3925 loff_t end_addr;
3926 bool to_end = false;
3927 int ret = 0;
3928
3929 if (!(filp->f_mode & FMODE_WRITE))
3930 return -EBADF;
3931
3932 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3933 sizeof(range)))
3934 return -EFAULT;
3935
3936 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3937 !S_ISREG(inode->i_mode))
3938 return -EINVAL;
3939
3940 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3941 !f2fs_hw_support_discard(sbi)) ||
3942 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3943 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3944 return -EOPNOTSUPP;
3945
3946 file_start_write(filp);
3947 inode_lock(inode);
3948
3949 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3950 range.start >= inode->i_size) {
3951 ret = -EINVAL;
3952 goto err;
3953 }
3954
3955 if (range.len == 0)
3956 goto err;
3957
3958 if (inode->i_size - range.start > range.len) {
3959 end_addr = range.start + range.len;
3960 } else {
3961 end_addr = range.len == (u64)-1 ?
3962 sbi->sb->s_maxbytes : inode->i_size;
3963 to_end = true;
3964 }
3965
3966 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3967 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3968 ret = -EINVAL;
3969 goto err;
3970 }
3971
3972 index = F2FS_BYTES_TO_BLK(range.start);
3973 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3974
3975 ret = f2fs_convert_inline_inode(inode);
3976 if (ret)
3977 goto err;
3978
3979 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3980 filemap_invalidate_lock(mapping);
3981
3982 ret = filemap_write_and_wait_range(mapping, range.start,
3983 to_end ? LLONG_MAX : end_addr - 1);
3984 if (ret)
3985 goto out;
3986
3987 truncate_inode_pages_range(mapping, range.start,
3988 to_end ? -1 : end_addr - 1);
3989
3990 while (index < pg_end) {
3991 struct dnode_of_data dn;
3992 pgoff_t end_offset, count;
3993 int i;
3994
3995 set_new_dnode(&dn, inode, NULL, NULL, 0);
3996 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3997 if (ret) {
3998 if (ret == -ENOENT) {
3999 index = f2fs_get_next_page_offset(&dn, index);
4000 continue;
4001 }
4002 goto out;
4003 }
4004
4005 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4006 count = min(end_offset - dn.ofs_in_node, pg_end - index);
4007 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4008 struct block_device *cur_bdev;
4009 block_t blkaddr = f2fs_data_blkaddr(&dn);
4010
4011 if (!__is_valid_data_blkaddr(blkaddr))
4012 continue;
4013
4014 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4015 DATA_GENERIC_ENHANCE)) {
4016 ret = -EFSCORRUPTED;
4017 f2fs_put_dnode(&dn);
4018 f2fs_handle_error(sbi,
4019 ERROR_INVALID_BLKADDR);
4020 goto out;
4021 }
4022
4023 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4024 if (f2fs_is_multi_device(sbi)) {
4025 int di = f2fs_target_device_index(sbi, blkaddr);
4026
4027 blkaddr -= FDEV(di).start_blk;
4028 }
4029
4030 if (len) {
4031 if (prev_bdev == cur_bdev &&
4032 index == prev_index + len &&
4033 blkaddr == prev_block + len) {
4034 len++;
4035 } else {
4036 ret = f2fs_secure_erase(prev_bdev,
4037 inode, prev_index, prev_block,
4038 len, range.flags);
4039 if (ret) {
4040 f2fs_put_dnode(&dn);
4041 goto out;
4042 }
4043
4044 len = 0;
4045 }
4046 }
4047
4048 if (!len) {
4049 prev_bdev = cur_bdev;
4050 prev_index = index;
4051 prev_block = blkaddr;
4052 len = 1;
4053 }
4054 }
4055
4056 f2fs_put_dnode(&dn);
4057
4058 if (fatal_signal_pending(current)) {
4059 ret = -EINTR;
4060 goto out;
4061 }
4062 cond_resched();
4063 }
4064
4065 if (len)
4066 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4067 prev_block, len, range.flags);
4068 out:
4069 filemap_invalidate_unlock(mapping);
4070 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4071 err:
4072 inode_unlock(inode);
4073 file_end_write(filp);
4074
4075 return ret;
4076 }
4077
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)4078 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4079 {
4080 struct inode *inode = file_inode(filp);
4081 struct f2fs_comp_option option;
4082
4083 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4084 return -EOPNOTSUPP;
4085
4086 inode_lock_shared(inode);
4087
4088 if (!f2fs_compressed_file(inode)) {
4089 inode_unlock_shared(inode);
4090 return -ENODATA;
4091 }
4092
4093 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4094 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4095
4096 inode_unlock_shared(inode);
4097
4098 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4099 sizeof(option)))
4100 return -EFAULT;
4101
4102 return 0;
4103 }
4104
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)4105 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4106 {
4107 struct inode *inode = file_inode(filp);
4108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4109 struct f2fs_comp_option option;
4110 int ret = 0;
4111
4112 if (!f2fs_sb_has_compression(sbi))
4113 return -EOPNOTSUPP;
4114
4115 if (!(filp->f_mode & FMODE_WRITE))
4116 return -EBADF;
4117
4118 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4119 sizeof(option)))
4120 return -EFAULT;
4121
4122 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4123 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4124 option.algorithm >= COMPRESS_MAX)
4125 return -EINVAL;
4126
4127 file_start_write(filp);
4128 inode_lock(inode);
4129
4130 f2fs_down_write(&F2FS_I(inode)->i_sem);
4131 if (!f2fs_compressed_file(inode)) {
4132 ret = -EINVAL;
4133 goto out;
4134 }
4135
4136 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4137 ret = -EBUSY;
4138 goto out;
4139 }
4140
4141 if (F2FS_HAS_BLOCKS(inode)) {
4142 ret = -EFBIG;
4143 goto out;
4144 }
4145
4146 F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4147 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4148 F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4149 /* Set default level */
4150 if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4151 F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4152 else
4153 F2FS_I(inode)->i_compress_level = 0;
4154 /* Adjust mount option level */
4155 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4156 F2FS_OPTION(sbi).compress_level)
4157 F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4158 f2fs_mark_inode_dirty_sync(inode, true);
4159
4160 if (!f2fs_is_compress_backend_ready(inode))
4161 f2fs_warn(sbi, "compression algorithm is successfully set, "
4162 "but current kernel doesn't support this algorithm.");
4163 out:
4164 f2fs_up_write(&F2FS_I(inode)->i_sem);
4165 inode_unlock(inode);
4166 file_end_write(filp);
4167
4168 return ret;
4169 }
4170
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)4171 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4172 {
4173 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4174 struct address_space *mapping = inode->i_mapping;
4175 struct page *page;
4176 pgoff_t redirty_idx = page_idx;
4177 int i, page_len = 0, ret = 0;
4178
4179 page_cache_ra_unbounded(&ractl, len, 0);
4180
4181 for (i = 0; i < len; i++, page_idx++) {
4182 page = read_cache_page(mapping, page_idx, NULL, NULL);
4183 if (IS_ERR(page)) {
4184 ret = PTR_ERR(page);
4185 break;
4186 }
4187 page_len++;
4188 }
4189
4190 for (i = 0; i < page_len; i++, redirty_idx++) {
4191 page = find_lock_page(mapping, redirty_idx);
4192
4193 /* It will never fail, when page has pinned above */
4194 f2fs_bug_on(F2FS_I_SB(inode), !page);
4195
4196 f2fs_wait_on_page_writeback(page, DATA, true, true);
4197
4198 set_page_dirty(page);
4199 set_page_private_gcing(page);
4200 f2fs_put_page(page, 1);
4201 f2fs_put_page(page, 0);
4202 }
4203
4204 return ret;
4205 }
4206
f2fs_ioc_decompress_file(struct file * filp)4207 static int f2fs_ioc_decompress_file(struct file *filp)
4208 {
4209 struct inode *inode = file_inode(filp);
4210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4211 struct f2fs_inode_info *fi = F2FS_I(inode);
4212 pgoff_t page_idx = 0, last_idx, cluster_idx;
4213 int ret;
4214
4215 if (!f2fs_sb_has_compression(sbi) ||
4216 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4217 return -EOPNOTSUPP;
4218
4219 if (!(filp->f_mode & FMODE_WRITE))
4220 return -EBADF;
4221
4222 f2fs_balance_fs(sbi, true);
4223
4224 file_start_write(filp);
4225 inode_lock(inode);
4226
4227 if (!f2fs_is_compress_backend_ready(inode)) {
4228 ret = -EOPNOTSUPP;
4229 goto out;
4230 }
4231
4232 if (!f2fs_compressed_file(inode) ||
4233 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4234 ret = -EINVAL;
4235 goto out;
4236 }
4237
4238 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4239 if (ret)
4240 goto out;
4241
4242 if (!atomic_read(&fi->i_compr_blocks))
4243 goto out;
4244
4245 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4246 last_idx >>= fi->i_log_cluster_size;
4247
4248 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4249 page_idx = cluster_idx << fi->i_log_cluster_size;
4250
4251 if (!f2fs_is_compressed_cluster(inode, page_idx))
4252 continue;
4253
4254 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4255 if (ret < 0)
4256 break;
4257
4258 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4259 ret = filemap_fdatawrite(inode->i_mapping);
4260 if (ret < 0)
4261 break;
4262 }
4263
4264 cond_resched();
4265 if (fatal_signal_pending(current)) {
4266 ret = -EINTR;
4267 break;
4268 }
4269 }
4270
4271 if (!ret)
4272 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4273 LLONG_MAX);
4274
4275 if (ret)
4276 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4277 __func__, ret);
4278 out:
4279 inode_unlock(inode);
4280 file_end_write(filp);
4281
4282 return ret;
4283 }
4284
f2fs_ioc_compress_file(struct file * filp)4285 static int f2fs_ioc_compress_file(struct file *filp)
4286 {
4287 struct inode *inode = file_inode(filp);
4288 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4289 struct f2fs_inode_info *fi = F2FS_I(inode);
4290 pgoff_t page_idx = 0, last_idx, cluster_idx;
4291 int ret;
4292
4293 if (!f2fs_sb_has_compression(sbi) ||
4294 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4295 return -EOPNOTSUPP;
4296
4297 if (!(filp->f_mode & FMODE_WRITE))
4298 return -EBADF;
4299
4300 f2fs_balance_fs(sbi, true);
4301
4302 file_start_write(filp);
4303 inode_lock(inode);
4304
4305 if (!f2fs_is_compress_backend_ready(inode)) {
4306 ret = -EOPNOTSUPP;
4307 goto out;
4308 }
4309
4310 if (!f2fs_compressed_file(inode) ||
4311 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4312 ret = -EINVAL;
4313 goto out;
4314 }
4315
4316 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4317 if (ret)
4318 goto out;
4319
4320 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4321
4322 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4323 last_idx >>= fi->i_log_cluster_size;
4324
4325 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4326 page_idx = cluster_idx << fi->i_log_cluster_size;
4327
4328 if (f2fs_is_sparse_cluster(inode, page_idx))
4329 continue;
4330
4331 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4332 if (ret < 0)
4333 break;
4334
4335 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4336 ret = filemap_fdatawrite(inode->i_mapping);
4337 if (ret < 0)
4338 break;
4339 }
4340
4341 cond_resched();
4342 if (fatal_signal_pending(current)) {
4343 ret = -EINTR;
4344 break;
4345 }
4346 }
4347
4348 if (!ret)
4349 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4350 LLONG_MAX);
4351
4352 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4353
4354 if (ret)
4355 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4356 __func__, ret);
4357 out:
4358 inode_unlock(inode);
4359 file_end_write(filp);
4360
4361 return ret;
4362 }
4363
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4364 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4365 {
4366 switch (cmd) {
4367 case FS_IOC_GETVERSION:
4368 return f2fs_ioc_getversion(filp, arg);
4369 case F2FS_IOC_START_ATOMIC_WRITE:
4370 return f2fs_ioc_start_atomic_write(filp, false);
4371 case F2FS_IOC_START_ATOMIC_REPLACE:
4372 return f2fs_ioc_start_atomic_write(filp, true);
4373 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4374 return f2fs_ioc_commit_atomic_write(filp);
4375 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4376 return f2fs_ioc_abort_atomic_write(filp);
4377 case F2FS_IOC_START_VOLATILE_WRITE:
4378 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4379 return -EOPNOTSUPP;
4380 case F2FS_IOC_SHUTDOWN:
4381 return f2fs_ioc_shutdown(filp, arg);
4382 case FITRIM:
4383 return f2fs_ioc_fitrim(filp, arg);
4384 case FS_IOC_SET_ENCRYPTION_POLICY:
4385 return f2fs_ioc_set_encryption_policy(filp, arg);
4386 case FS_IOC_GET_ENCRYPTION_POLICY:
4387 return f2fs_ioc_get_encryption_policy(filp, arg);
4388 case FS_IOC_GET_ENCRYPTION_PWSALT:
4389 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4390 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4391 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4392 case FS_IOC_ADD_ENCRYPTION_KEY:
4393 return f2fs_ioc_add_encryption_key(filp, arg);
4394 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4395 return f2fs_ioc_remove_encryption_key(filp, arg);
4396 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4397 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4398 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4399 return f2fs_ioc_get_encryption_key_status(filp, arg);
4400 case FS_IOC_GET_ENCRYPTION_NONCE:
4401 return f2fs_ioc_get_encryption_nonce(filp, arg);
4402 case F2FS_IOC_GARBAGE_COLLECT:
4403 return f2fs_ioc_gc(filp, arg);
4404 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4405 return f2fs_ioc_gc_range(filp, arg);
4406 case F2FS_IOC_WRITE_CHECKPOINT:
4407 return f2fs_ioc_write_checkpoint(filp);
4408 case F2FS_IOC_DEFRAGMENT:
4409 return f2fs_ioc_defragment(filp, arg);
4410 case F2FS_IOC_MOVE_RANGE:
4411 return f2fs_ioc_move_range(filp, arg);
4412 case F2FS_IOC_FLUSH_DEVICE:
4413 return f2fs_ioc_flush_device(filp, arg);
4414 case F2FS_IOC_GET_FEATURES:
4415 return f2fs_ioc_get_features(filp, arg);
4416 case F2FS_IOC_GET_PIN_FILE:
4417 return f2fs_ioc_get_pin_file(filp, arg);
4418 case F2FS_IOC_SET_PIN_FILE:
4419 return f2fs_ioc_set_pin_file(filp, arg);
4420 case F2FS_IOC_PRECACHE_EXTENTS:
4421 return f2fs_ioc_precache_extents(filp);
4422 case F2FS_IOC_RESIZE_FS:
4423 return f2fs_ioc_resize_fs(filp, arg);
4424 case FS_IOC_ENABLE_VERITY:
4425 return f2fs_ioc_enable_verity(filp, arg);
4426 case FS_IOC_MEASURE_VERITY:
4427 return f2fs_ioc_measure_verity(filp, arg);
4428 case FS_IOC_READ_VERITY_METADATA:
4429 return f2fs_ioc_read_verity_metadata(filp, arg);
4430 case FS_IOC_GETFSLABEL:
4431 return f2fs_ioc_getfslabel(filp, arg);
4432 case FS_IOC_SETFSLABEL:
4433 return f2fs_ioc_setfslabel(filp, arg);
4434 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4435 return f2fs_ioc_get_compress_blocks(filp, arg);
4436 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4437 return f2fs_release_compress_blocks(filp, arg);
4438 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4439 return f2fs_reserve_compress_blocks(filp, arg);
4440 case F2FS_IOC_SEC_TRIM_FILE:
4441 return f2fs_sec_trim_file(filp, arg);
4442 case F2FS_IOC_GET_COMPRESS_OPTION:
4443 return f2fs_ioc_get_compress_option(filp, arg);
4444 case F2FS_IOC_SET_COMPRESS_OPTION:
4445 return f2fs_ioc_set_compress_option(filp, arg);
4446 case F2FS_IOC_DECOMPRESS_FILE:
4447 return f2fs_ioc_decompress_file(filp);
4448 case F2FS_IOC_COMPRESS_FILE:
4449 return f2fs_ioc_compress_file(filp);
4450 default:
4451 return -ENOTTY;
4452 }
4453 }
4454
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4455 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4456 {
4457 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4458 return -EIO;
4459 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4460 return -ENOSPC;
4461
4462 return __f2fs_ioctl(filp, cmd, arg);
4463 }
4464
4465 /*
4466 * Return %true if the given read or write request should use direct I/O, or
4467 * %false if it should use buffered I/O.
4468 */
f2fs_should_use_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4469 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4470 struct iov_iter *iter)
4471 {
4472 unsigned int align;
4473
4474 if (!(iocb->ki_flags & IOCB_DIRECT))
4475 return false;
4476
4477 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4478 return false;
4479
4480 /*
4481 * Direct I/O not aligned to the disk's logical_block_size will be
4482 * attempted, but will fail with -EINVAL.
4483 *
4484 * f2fs additionally requires that direct I/O be aligned to the
4485 * filesystem block size, which is often a stricter requirement.
4486 * However, f2fs traditionally falls back to buffered I/O on requests
4487 * that are logical_block_size-aligned but not fs-block aligned.
4488 *
4489 * The below logic implements this behavior.
4490 */
4491 align = iocb->ki_pos | iov_iter_alignment(iter);
4492 if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4493 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4494 return false;
4495
4496 return true;
4497 }
4498
f2fs_dio_read_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4499 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4500 unsigned int flags)
4501 {
4502 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4503
4504 dec_page_count(sbi, F2FS_DIO_READ);
4505 if (error)
4506 return error;
4507 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4508 return 0;
4509 }
4510
4511 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4512 .end_io = f2fs_dio_read_end_io,
4513 };
4514
f2fs_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)4515 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4516 {
4517 struct file *file = iocb->ki_filp;
4518 struct inode *inode = file_inode(file);
4519 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4520 struct f2fs_inode_info *fi = F2FS_I(inode);
4521 const loff_t pos = iocb->ki_pos;
4522 const size_t count = iov_iter_count(to);
4523 struct iomap_dio *dio;
4524 ssize_t ret;
4525
4526 if (count == 0)
4527 return 0; /* skip atime update */
4528
4529 trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4530
4531 if (iocb->ki_flags & IOCB_NOWAIT) {
4532 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4533 ret = -EAGAIN;
4534 goto out;
4535 }
4536 } else {
4537 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4538 }
4539
4540 /*
4541 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4542 * the higher-level function iomap_dio_rw() in order to ensure that the
4543 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4544 */
4545 inc_page_count(sbi, F2FS_DIO_READ);
4546 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4547 &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4548 if (IS_ERR_OR_NULL(dio)) {
4549 ret = PTR_ERR_OR_ZERO(dio);
4550 if (ret != -EIOCBQUEUED)
4551 dec_page_count(sbi, F2FS_DIO_READ);
4552 } else {
4553 ret = iomap_dio_complete(dio);
4554 }
4555
4556 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4557
4558 file_accessed(file);
4559 out:
4560 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4561 return ret;
4562 }
4563
f2fs_trace_rw_file_path(struct file * file,loff_t pos,size_t count,int rw)4564 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4565 int rw)
4566 {
4567 struct inode *inode = file_inode(file);
4568 char *buf, *path;
4569
4570 buf = f2fs_getname(F2FS_I_SB(inode));
4571 if (!buf)
4572 return;
4573 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4574 if (IS_ERR(path))
4575 goto free_buf;
4576 if (rw == WRITE)
4577 trace_f2fs_datawrite_start(inode, pos, count,
4578 current->pid, path, current->comm);
4579 else
4580 trace_f2fs_dataread_start(inode, pos, count,
4581 current->pid, path, current->comm);
4582 free_buf:
4583 f2fs_putname(buf);
4584 }
4585
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4586 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4587 {
4588 struct inode *inode = file_inode(iocb->ki_filp);
4589 const loff_t pos = iocb->ki_pos;
4590 ssize_t ret;
4591
4592 if (!f2fs_is_compress_backend_ready(inode))
4593 return -EOPNOTSUPP;
4594
4595 if (trace_f2fs_dataread_start_enabled())
4596 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4597 iov_iter_count(to), READ);
4598
4599 /* In LFS mode, if there is inflight dio, wait for its completion */
4600 if (f2fs_lfs_mode(F2FS_I_SB(inode)))
4601 inode_dio_wait(inode);
4602
4603 if (f2fs_should_use_dio(inode, iocb, to)) {
4604 ret = f2fs_dio_read_iter(iocb, to);
4605 } else {
4606 ret = filemap_read(iocb, to, 0);
4607 if (ret > 0)
4608 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4609 APP_BUFFERED_READ_IO, ret);
4610 }
4611 if (trace_f2fs_dataread_end_enabled())
4612 trace_f2fs_dataread_end(inode, pos, ret);
4613 return ret;
4614 }
4615
f2fs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)4616 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4617 struct pipe_inode_info *pipe,
4618 size_t len, unsigned int flags)
4619 {
4620 struct inode *inode = file_inode(in);
4621 const loff_t pos = *ppos;
4622 ssize_t ret;
4623
4624 if (!f2fs_is_compress_backend_ready(inode))
4625 return -EOPNOTSUPP;
4626
4627 if (trace_f2fs_dataread_start_enabled())
4628 f2fs_trace_rw_file_path(in, pos, len, READ);
4629
4630 ret = filemap_splice_read(in, ppos, pipe, len, flags);
4631 if (ret > 0)
4632 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4633 APP_BUFFERED_READ_IO, ret);
4634
4635 if (trace_f2fs_dataread_end_enabled())
4636 trace_f2fs_dataread_end(inode, pos, ret);
4637 return ret;
4638 }
4639
f2fs_write_checks(struct kiocb * iocb,struct iov_iter * from)4640 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4641 {
4642 struct file *file = iocb->ki_filp;
4643 struct inode *inode = file_inode(file);
4644 ssize_t count;
4645 int err;
4646
4647 if (IS_IMMUTABLE(inode))
4648 return -EPERM;
4649
4650 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4651 return -EPERM;
4652
4653 count = generic_write_checks(iocb, from);
4654 if (count <= 0)
4655 return count;
4656
4657 err = file_modified(file);
4658 if (err)
4659 return err;
4660 return count;
4661 }
4662
4663 /*
4664 * Preallocate blocks for a write request, if it is possible and helpful to do
4665 * so. Returns a positive number if blocks may have been preallocated, 0 if no
4666 * blocks were preallocated, or a negative errno value if something went
4667 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4668 * requested blocks (not just some of them) have been allocated.
4669 */
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * iter,bool dio)4670 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4671 bool dio)
4672 {
4673 struct inode *inode = file_inode(iocb->ki_filp);
4674 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4675 const loff_t pos = iocb->ki_pos;
4676 const size_t count = iov_iter_count(iter);
4677 struct f2fs_map_blocks map = {};
4678 int flag;
4679 int ret;
4680
4681 /* If it will be an out-of-place direct write, don't bother. */
4682 if (dio && f2fs_lfs_mode(sbi))
4683 return 0;
4684 /*
4685 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4686 * buffered IO, if DIO meets any holes.
4687 */
4688 if (dio && i_size_read(inode) &&
4689 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4690 return 0;
4691
4692 /* No-wait I/O can't allocate blocks. */
4693 if (iocb->ki_flags & IOCB_NOWAIT)
4694 return 0;
4695
4696 /* If it will be a short write, don't bother. */
4697 if (fault_in_iov_iter_readable(iter, count))
4698 return 0;
4699
4700 if (f2fs_has_inline_data(inode)) {
4701 /* If the data will fit inline, don't bother. */
4702 if (pos + count <= MAX_INLINE_DATA(inode))
4703 return 0;
4704 ret = f2fs_convert_inline_inode(inode);
4705 if (ret)
4706 return ret;
4707 }
4708
4709 /* Do not preallocate blocks that will be written partially in 4KB. */
4710 map.m_lblk = F2FS_BLK_ALIGN(pos);
4711 map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4712 if (map.m_len > map.m_lblk)
4713 map.m_len -= map.m_lblk;
4714 else
4715 map.m_len = 0;
4716 map.m_may_create = true;
4717 if (dio) {
4718 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4719 flag = F2FS_GET_BLOCK_PRE_DIO;
4720 } else {
4721 map.m_seg_type = NO_CHECK_TYPE;
4722 flag = F2FS_GET_BLOCK_PRE_AIO;
4723 }
4724
4725 ret = f2fs_map_blocks(inode, &map, flag);
4726 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4727 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4728 return ret;
4729 if (ret == 0)
4730 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4731 return map.m_len;
4732 }
4733
f2fs_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)4734 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4735 struct iov_iter *from)
4736 {
4737 struct file *file = iocb->ki_filp;
4738 struct inode *inode = file_inode(file);
4739 ssize_t ret;
4740
4741 if (iocb->ki_flags & IOCB_NOWAIT)
4742 return -EOPNOTSUPP;
4743
4744 ret = generic_perform_write(iocb, from);
4745
4746 if (ret > 0) {
4747 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4748 APP_BUFFERED_IO, ret);
4749 }
4750 return ret;
4751 }
4752
f2fs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4753 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4754 unsigned int flags)
4755 {
4756 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4757
4758 dec_page_count(sbi, F2FS_DIO_WRITE);
4759 if (error)
4760 return error;
4761 f2fs_update_time(sbi, REQ_TIME);
4762 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4763 return 0;
4764 }
4765
4766 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4767 .end_io = f2fs_dio_write_end_io,
4768 };
4769
f2fs_flush_buffered_write(struct address_space * mapping,loff_t start_pos,loff_t end_pos)4770 static void f2fs_flush_buffered_write(struct address_space *mapping,
4771 loff_t start_pos, loff_t end_pos)
4772 {
4773 int ret;
4774
4775 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4776 if (ret < 0)
4777 return;
4778 invalidate_mapping_pages(mapping,
4779 start_pos >> PAGE_SHIFT,
4780 end_pos >> PAGE_SHIFT);
4781 }
4782
f2fs_dio_write_iter(struct kiocb * iocb,struct iov_iter * from,bool * may_need_sync)4783 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4784 bool *may_need_sync)
4785 {
4786 struct file *file = iocb->ki_filp;
4787 struct inode *inode = file_inode(file);
4788 struct f2fs_inode_info *fi = F2FS_I(inode);
4789 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4790 const bool do_opu = f2fs_lfs_mode(sbi);
4791 const loff_t pos = iocb->ki_pos;
4792 const ssize_t count = iov_iter_count(from);
4793 unsigned int dio_flags;
4794 struct iomap_dio *dio;
4795 ssize_t ret;
4796
4797 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4798
4799 if (iocb->ki_flags & IOCB_NOWAIT) {
4800 /* f2fs_convert_inline_inode() and block allocation can block */
4801 if (f2fs_has_inline_data(inode) ||
4802 !f2fs_overwrite_io(inode, pos, count)) {
4803 ret = -EAGAIN;
4804 goto out;
4805 }
4806
4807 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4808 ret = -EAGAIN;
4809 goto out;
4810 }
4811 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4812 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4813 ret = -EAGAIN;
4814 goto out;
4815 }
4816 } else {
4817 ret = f2fs_convert_inline_inode(inode);
4818 if (ret)
4819 goto out;
4820
4821 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4822 if (do_opu)
4823 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4824 }
4825
4826 /*
4827 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4828 * the higher-level function iomap_dio_rw() in order to ensure that the
4829 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4830 */
4831 inc_page_count(sbi, F2FS_DIO_WRITE);
4832 dio_flags = 0;
4833 if (pos + count > inode->i_size)
4834 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4835 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4836 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4837 if (IS_ERR_OR_NULL(dio)) {
4838 ret = PTR_ERR_OR_ZERO(dio);
4839 if (ret == -ENOTBLK)
4840 ret = 0;
4841 if (ret != -EIOCBQUEUED)
4842 dec_page_count(sbi, F2FS_DIO_WRITE);
4843 } else {
4844 ret = iomap_dio_complete(dio);
4845 }
4846
4847 if (do_opu)
4848 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4849 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4850
4851 if (ret < 0)
4852 goto out;
4853 if (pos + ret > inode->i_size)
4854 f2fs_i_size_write(inode, pos + ret);
4855 if (!do_opu)
4856 set_inode_flag(inode, FI_UPDATE_WRITE);
4857
4858 if (iov_iter_count(from)) {
4859 ssize_t ret2;
4860 loff_t bufio_start_pos = iocb->ki_pos;
4861
4862 /*
4863 * The direct write was partial, so we need to fall back to a
4864 * buffered write for the remainder.
4865 */
4866
4867 ret2 = f2fs_buffered_write_iter(iocb, from);
4868 if (iov_iter_count(from))
4869 f2fs_write_failed(inode, iocb->ki_pos);
4870 if (ret2 < 0)
4871 goto out;
4872
4873 /*
4874 * Ensure that the pagecache pages are written to disk and
4875 * invalidated to preserve the expected O_DIRECT semantics.
4876 */
4877 if (ret2 > 0) {
4878 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4879
4880 ret += ret2;
4881
4882 f2fs_flush_buffered_write(file->f_mapping,
4883 bufio_start_pos,
4884 bufio_end_pos);
4885 }
4886 } else {
4887 /* iomap_dio_rw() already handled the generic_write_sync(). */
4888 *may_need_sync = false;
4889 }
4890 out:
4891 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4892 return ret;
4893 }
4894
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4895 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4896 {
4897 struct inode *inode = file_inode(iocb->ki_filp);
4898 const loff_t orig_pos = iocb->ki_pos;
4899 const size_t orig_count = iov_iter_count(from);
4900 loff_t target_size;
4901 bool dio;
4902 bool may_need_sync = true;
4903 int preallocated;
4904 ssize_t ret;
4905
4906 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4907 ret = -EIO;
4908 goto out;
4909 }
4910
4911 if (!f2fs_is_compress_backend_ready(inode)) {
4912 ret = -EOPNOTSUPP;
4913 goto out;
4914 }
4915
4916 if (iocb->ki_flags & IOCB_NOWAIT) {
4917 if (!inode_trylock(inode)) {
4918 ret = -EAGAIN;
4919 goto out;
4920 }
4921 } else {
4922 inode_lock(inode);
4923 }
4924
4925 ret = f2fs_write_checks(iocb, from);
4926 if (ret <= 0)
4927 goto out_unlock;
4928
4929 /* Determine whether we will do a direct write or a buffered write. */
4930 dio = f2fs_should_use_dio(inode, iocb, from);
4931
4932 /* Possibly preallocate the blocks for the write. */
4933 target_size = iocb->ki_pos + iov_iter_count(from);
4934 preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4935 if (preallocated < 0) {
4936 ret = preallocated;
4937 } else {
4938 if (trace_f2fs_datawrite_start_enabled())
4939 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4940 orig_count, WRITE);
4941
4942 /* Do the actual write. */
4943 ret = dio ?
4944 f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4945 f2fs_buffered_write_iter(iocb, from);
4946
4947 if (trace_f2fs_datawrite_end_enabled())
4948 trace_f2fs_datawrite_end(inode, orig_pos, ret);
4949 }
4950
4951 /* Don't leave any preallocated blocks around past i_size. */
4952 if (preallocated && i_size_read(inode) < target_size) {
4953 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4954 filemap_invalidate_lock(inode->i_mapping);
4955 if (!f2fs_truncate(inode))
4956 file_dont_truncate(inode);
4957 filemap_invalidate_unlock(inode->i_mapping);
4958 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4959 } else {
4960 file_dont_truncate(inode);
4961 }
4962
4963 clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4964 out_unlock:
4965 inode_unlock(inode);
4966 out:
4967 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4968
4969 if (ret > 0 && may_need_sync)
4970 ret = generic_write_sync(iocb, ret);
4971
4972 /* If buffered IO was forced, flush and drop the data from
4973 * the page cache to preserve O_DIRECT semantics
4974 */
4975 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4976 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4977 orig_pos,
4978 orig_pos + ret - 1);
4979
4980 return ret;
4981 }
4982
f2fs_file_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)4983 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4984 int advice)
4985 {
4986 struct address_space *mapping;
4987 struct backing_dev_info *bdi;
4988 struct inode *inode = file_inode(filp);
4989 int err;
4990
4991 if (advice == POSIX_FADV_SEQUENTIAL) {
4992 if (S_ISFIFO(inode->i_mode))
4993 return -ESPIPE;
4994
4995 mapping = filp->f_mapping;
4996 if (!mapping || len < 0)
4997 return -EINVAL;
4998
4999 bdi = inode_to_bdi(mapping->host);
5000 filp->f_ra.ra_pages = bdi->ra_pages *
5001 F2FS_I_SB(inode)->seq_file_ra_mul;
5002 spin_lock(&filp->f_lock);
5003 filp->f_mode &= ~FMODE_RANDOM;
5004 spin_unlock(&filp->f_lock);
5005 return 0;
5006 }
5007
5008 err = generic_fadvise(filp, offset, len, advice);
5009 if (!err && advice == POSIX_FADV_DONTNEED &&
5010 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5011 f2fs_compressed_file(inode))
5012 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5013
5014 return err;
5015 }
5016
5017 #ifdef CONFIG_COMPAT
5018 struct compat_f2fs_gc_range {
5019 u32 sync;
5020 compat_u64 start;
5021 compat_u64 len;
5022 };
5023 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
5024 struct compat_f2fs_gc_range)
5025
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)5026 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5027 {
5028 struct compat_f2fs_gc_range __user *urange;
5029 struct f2fs_gc_range range;
5030 int err;
5031
5032 urange = compat_ptr(arg);
5033 err = get_user(range.sync, &urange->sync);
5034 err |= get_user(range.start, &urange->start);
5035 err |= get_user(range.len, &urange->len);
5036 if (err)
5037 return -EFAULT;
5038
5039 return __f2fs_ioc_gc_range(file, &range);
5040 }
5041
5042 struct compat_f2fs_move_range {
5043 u32 dst_fd;
5044 compat_u64 pos_in;
5045 compat_u64 pos_out;
5046 compat_u64 len;
5047 };
5048 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
5049 struct compat_f2fs_move_range)
5050
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)5051 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5052 {
5053 struct compat_f2fs_move_range __user *urange;
5054 struct f2fs_move_range range;
5055 int err;
5056
5057 urange = compat_ptr(arg);
5058 err = get_user(range.dst_fd, &urange->dst_fd);
5059 err |= get_user(range.pos_in, &urange->pos_in);
5060 err |= get_user(range.pos_out, &urange->pos_out);
5061 err |= get_user(range.len, &urange->len);
5062 if (err)
5063 return -EFAULT;
5064
5065 return __f2fs_ioc_move_range(file, &range);
5066 }
5067
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5068 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5069 {
5070 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5071 return -EIO;
5072 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5073 return -ENOSPC;
5074
5075 switch (cmd) {
5076 case FS_IOC32_GETVERSION:
5077 cmd = FS_IOC_GETVERSION;
5078 break;
5079 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5080 return f2fs_compat_ioc_gc_range(file, arg);
5081 case F2FS_IOC32_MOVE_RANGE:
5082 return f2fs_compat_ioc_move_range(file, arg);
5083 case F2FS_IOC_START_ATOMIC_WRITE:
5084 case F2FS_IOC_START_ATOMIC_REPLACE:
5085 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5086 case F2FS_IOC_START_VOLATILE_WRITE:
5087 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5088 case F2FS_IOC_ABORT_ATOMIC_WRITE:
5089 case F2FS_IOC_SHUTDOWN:
5090 case FITRIM:
5091 case FS_IOC_SET_ENCRYPTION_POLICY:
5092 case FS_IOC_GET_ENCRYPTION_PWSALT:
5093 case FS_IOC_GET_ENCRYPTION_POLICY:
5094 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5095 case FS_IOC_ADD_ENCRYPTION_KEY:
5096 case FS_IOC_REMOVE_ENCRYPTION_KEY:
5097 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5098 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5099 case FS_IOC_GET_ENCRYPTION_NONCE:
5100 case F2FS_IOC_GARBAGE_COLLECT:
5101 case F2FS_IOC_WRITE_CHECKPOINT:
5102 case F2FS_IOC_DEFRAGMENT:
5103 case F2FS_IOC_FLUSH_DEVICE:
5104 case F2FS_IOC_GET_FEATURES:
5105 case F2FS_IOC_GET_PIN_FILE:
5106 case F2FS_IOC_SET_PIN_FILE:
5107 case F2FS_IOC_PRECACHE_EXTENTS:
5108 case F2FS_IOC_RESIZE_FS:
5109 case FS_IOC_ENABLE_VERITY:
5110 case FS_IOC_MEASURE_VERITY:
5111 case FS_IOC_READ_VERITY_METADATA:
5112 case FS_IOC_GETFSLABEL:
5113 case FS_IOC_SETFSLABEL:
5114 case F2FS_IOC_GET_COMPRESS_BLOCKS:
5115 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5116 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5117 case F2FS_IOC_SEC_TRIM_FILE:
5118 case F2FS_IOC_GET_COMPRESS_OPTION:
5119 case F2FS_IOC_SET_COMPRESS_OPTION:
5120 case F2FS_IOC_DECOMPRESS_FILE:
5121 case F2FS_IOC_COMPRESS_FILE:
5122 break;
5123 default:
5124 return -ENOIOCTLCMD;
5125 }
5126 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5127 }
5128 #endif
5129
5130 const struct file_operations f2fs_file_operations = {
5131 .llseek = f2fs_llseek,
5132 .read_iter = f2fs_file_read_iter,
5133 .write_iter = f2fs_file_write_iter,
5134 .iopoll = iocb_bio_iopoll,
5135 .open = f2fs_file_open,
5136 .release = f2fs_release_file,
5137 .mmap = f2fs_file_mmap,
5138 .flush = f2fs_file_flush,
5139 .fsync = f2fs_sync_file,
5140 .fallocate = f2fs_fallocate,
5141 .unlocked_ioctl = f2fs_ioctl,
5142 #ifdef CONFIG_COMPAT
5143 .compat_ioctl = f2fs_compat_ioctl,
5144 #endif
5145 .splice_read = f2fs_file_splice_read,
5146 .splice_write = iter_file_splice_write,
5147 .fadvise = f2fs_file_fadvise,
5148 };
5149