xref: /openbmc/linux/fs/f2fs/f2fs.h (revision fa4320ce)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (unlikely(condition)) {				\
37 			WARN_ON(1);					\
38 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39 		}							\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_MAX,
60 };
61 
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
64 
65 struct f2fs_fault_info {
66 	atomic_t inject_ops;
67 	unsigned int inject_rate;
68 	unsigned int inject_type;
69 };
70 
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74 
75 /*
76  * For mount options
77  */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
93 #define F2FS_MOUNT_USRQUOTA		0x00080000
94 #define F2FS_MOUNT_GRPQUOTA		0x00100000
95 #define F2FS_MOUNT_PRJQUOTA		0x00200000
96 #define F2FS_MOUNT_QUOTA		0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
100 #define F2FS_MOUNT_NORECOVERY		0x04000000
101 #define F2FS_MOUNT_ATGC			0x08000000
102 
103 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107 
108 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109 		typecheck(unsigned long long, b) &&			\
110 		((long long)((a) - (b)) > 0))
111 
112 typedef u32 block_t;	/*
113 			 * should not change u32, since it is the on-disk block
114 			 * address format, __le32.
115 			 */
116 typedef u32 nid_t;
117 
118 #define COMPRESS_EXT_NUM		16
119 
120 struct f2fs_mount_info {
121 	unsigned int opt;
122 	int write_io_size_bits;		/* Write IO size bits */
123 	block_t root_reserved_blocks;	/* root reserved blocks */
124 	kuid_t s_resuid;		/* reserved blocks for uid */
125 	kgid_t s_resgid;		/* reserved blocks for gid */
126 	int active_logs;		/* # of active logs */
127 	int inline_xattr_size;		/* inline xattr size */
128 #ifdef CONFIG_F2FS_FAULT_INJECTION
129 	struct f2fs_fault_info fault_info;	/* For fault injection */
130 #endif
131 #ifdef CONFIG_QUOTA
132 	/* Names of quota files with journalled quota */
133 	char *s_qf_names[MAXQUOTAS];
134 	int s_jquota_fmt;			/* Format of quota to use */
135 #endif
136 	/* For which write hints are passed down to block layer */
137 	int whint_mode;
138 	int alloc_mode;			/* segment allocation policy */
139 	int fsync_mode;			/* fsync policy */
140 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
141 	int bggc_mode;			/* bggc mode: off, on or sync */
142 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
143 	block_t unusable_cap_perc;	/* percentage for cap */
144 	block_t unusable_cap;		/* Amount of space allowed to be
145 					 * unusable when disabling checkpoint
146 					 */
147 
148 	/* For compression */
149 	unsigned char compress_algorithm;	/* algorithm type */
150 	unsigned compress_log_size;		/* cluster log size */
151 	unsigned char compress_ext_cnt;		/* extension count */
152 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
153 };
154 
155 #define F2FS_FEATURE_ENCRYPT		0x0001
156 #define F2FS_FEATURE_BLKZONED		0x0002
157 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
158 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
159 #define F2FS_FEATURE_PRJQUOTA		0x0010
160 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
161 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
162 #define F2FS_FEATURE_QUOTA_INO		0x0080
163 #define F2FS_FEATURE_INODE_CRTIME	0x0100
164 #define F2FS_FEATURE_LOST_FOUND		0x0200
165 #define F2FS_FEATURE_VERITY		0x0400
166 #define F2FS_FEATURE_SB_CHKSUM		0x0800
167 #define F2FS_FEATURE_CASEFOLD		0x1000
168 #define F2FS_FEATURE_COMPRESSION	0x2000
169 
170 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
171 	((raw_super->feature & cpu_to_le32(mask)) != 0)
172 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
173 #define F2FS_SET_FEATURE(sbi, mask)					\
174 	(sbi->raw_super->feature |= cpu_to_le32(mask))
175 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
176 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
177 
178 /*
179  * Default values for user and/or group using reserved blocks
180  */
181 #define	F2FS_DEF_RESUID		0
182 #define	F2FS_DEF_RESGID		0
183 
184 /*
185  * For checkpoint manager
186  */
187 enum {
188 	NAT_BITMAP,
189 	SIT_BITMAP
190 };
191 
192 #define	CP_UMOUNT	0x00000001
193 #define	CP_FASTBOOT	0x00000002
194 #define	CP_SYNC		0x00000004
195 #define	CP_RECOVERY	0x00000008
196 #define	CP_DISCARD	0x00000010
197 #define CP_TRIMMED	0x00000020
198 #define CP_PAUSE	0x00000040
199 #define CP_RESIZE 	0x00000080
200 
201 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
202 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
203 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
204 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
205 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
206 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
207 #define DEF_CP_INTERVAL			60	/* 60 secs */
208 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
209 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
210 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
211 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
212 
213 struct cp_control {
214 	int reason;
215 	__u64 trim_start;
216 	__u64 trim_end;
217 	__u64 trim_minlen;
218 };
219 
220 /*
221  * indicate meta/data type
222  */
223 enum {
224 	META_CP,
225 	META_NAT,
226 	META_SIT,
227 	META_SSA,
228 	META_MAX,
229 	META_POR,
230 	DATA_GENERIC,		/* check range only */
231 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
232 	DATA_GENERIC_ENHANCE_READ,	/*
233 					 * strong check on range and segment
234 					 * bitmap but no warning due to race
235 					 * condition of read on truncated area
236 					 * by extent_cache
237 					 */
238 	META_GENERIC,
239 };
240 
241 /* for the list of ino */
242 enum {
243 	ORPHAN_INO,		/* for orphan ino list */
244 	APPEND_INO,		/* for append ino list */
245 	UPDATE_INO,		/* for update ino list */
246 	TRANS_DIR_INO,		/* for trasactions dir ino list */
247 	FLUSH_INO,		/* for multiple device flushing */
248 	MAX_INO_ENTRY,		/* max. list */
249 };
250 
251 struct ino_entry {
252 	struct list_head list;		/* list head */
253 	nid_t ino;			/* inode number */
254 	unsigned int dirty_device;	/* dirty device bitmap */
255 };
256 
257 /* for the list of inodes to be GCed */
258 struct inode_entry {
259 	struct list_head list;	/* list head */
260 	struct inode *inode;	/* vfs inode pointer */
261 };
262 
263 struct fsync_node_entry {
264 	struct list_head list;	/* list head */
265 	struct page *page;	/* warm node page pointer */
266 	unsigned int seq_id;	/* sequence id */
267 };
268 
269 /* for the bitmap indicate blocks to be discarded */
270 struct discard_entry {
271 	struct list_head list;	/* list head */
272 	block_t start_blkaddr;	/* start blockaddr of current segment */
273 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
274 };
275 
276 /* default discard granularity of inner discard thread, unit: block count */
277 #define DEFAULT_DISCARD_GRANULARITY		16
278 
279 /* max discard pend list number */
280 #define MAX_PLIST_NUM		512
281 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
282 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
283 
284 enum {
285 	D_PREP,			/* initial */
286 	D_PARTIAL,		/* partially submitted */
287 	D_SUBMIT,		/* all submitted */
288 	D_DONE,			/* finished */
289 };
290 
291 struct discard_info {
292 	block_t lstart;			/* logical start address */
293 	block_t len;			/* length */
294 	block_t start;			/* actual start address in dev */
295 };
296 
297 struct discard_cmd {
298 	struct rb_node rb_node;		/* rb node located in rb-tree */
299 	union {
300 		struct {
301 			block_t lstart;	/* logical start address */
302 			block_t len;	/* length */
303 			block_t start;	/* actual start address in dev */
304 		};
305 		struct discard_info di;	/* discard info */
306 
307 	};
308 	struct list_head list;		/* command list */
309 	struct completion wait;		/* compleation */
310 	struct block_device *bdev;	/* bdev */
311 	unsigned short ref;		/* reference count */
312 	unsigned char state;		/* state */
313 	unsigned char queued;		/* queued discard */
314 	int error;			/* bio error */
315 	spinlock_t lock;		/* for state/bio_ref updating */
316 	unsigned short bio_ref;		/* bio reference count */
317 };
318 
319 enum {
320 	DPOLICY_BG,
321 	DPOLICY_FORCE,
322 	DPOLICY_FSTRIM,
323 	DPOLICY_UMOUNT,
324 	MAX_DPOLICY,
325 };
326 
327 struct discard_policy {
328 	int type;			/* type of discard */
329 	unsigned int min_interval;	/* used for candidates exist */
330 	unsigned int mid_interval;	/* used for device busy */
331 	unsigned int max_interval;	/* used for candidates not exist */
332 	unsigned int max_requests;	/* # of discards issued per round */
333 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
334 	bool io_aware;			/* issue discard in idle time */
335 	bool sync;			/* submit discard with REQ_SYNC flag */
336 	bool ordered;			/* issue discard by lba order */
337 	bool timeout;			/* discard timeout for put_super */
338 	unsigned int granularity;	/* discard granularity */
339 };
340 
341 struct discard_cmd_control {
342 	struct task_struct *f2fs_issue_discard;	/* discard thread */
343 	struct list_head entry_list;		/* 4KB discard entry list */
344 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
345 	struct list_head wait_list;		/* store on-flushing entries */
346 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
347 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
348 	unsigned int discard_wake;		/* to wake up discard thread */
349 	struct mutex cmd_lock;
350 	unsigned int nr_discards;		/* # of discards in the list */
351 	unsigned int max_discards;		/* max. discards to be issued */
352 	unsigned int discard_granularity;	/* discard granularity */
353 	unsigned int undiscard_blks;		/* # of undiscard blocks */
354 	unsigned int next_pos;			/* next discard position */
355 	atomic_t issued_discard;		/* # of issued discard */
356 	atomic_t queued_discard;		/* # of queued discard */
357 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
358 	struct rb_root_cached root;		/* root of discard rb-tree */
359 	bool rbtree_check;			/* config for consistence check */
360 };
361 
362 /* for the list of fsync inodes, used only during recovery */
363 struct fsync_inode_entry {
364 	struct list_head list;	/* list head */
365 	struct inode *inode;	/* vfs inode pointer */
366 	block_t blkaddr;	/* block address locating the last fsync */
367 	block_t last_dentry;	/* block address locating the last dentry */
368 };
369 
370 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
371 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
372 
373 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
374 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
375 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
376 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
377 
378 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
379 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
380 
381 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
382 {
383 	int before = nats_in_cursum(journal);
384 
385 	journal->n_nats = cpu_to_le16(before + i);
386 	return before;
387 }
388 
389 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
390 {
391 	int before = sits_in_cursum(journal);
392 
393 	journal->n_sits = cpu_to_le16(before + i);
394 	return before;
395 }
396 
397 static inline bool __has_cursum_space(struct f2fs_journal *journal,
398 							int size, int type)
399 {
400 	if (type == NAT_JOURNAL)
401 		return size <= MAX_NAT_JENTRIES(journal);
402 	return size <= MAX_SIT_JENTRIES(journal);
403 }
404 
405 /* for inline stuff */
406 #define DEF_INLINE_RESERVED_SIZE	1
407 static inline int get_extra_isize(struct inode *inode);
408 static inline int get_inline_xattr_addrs(struct inode *inode);
409 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
410 				(CUR_ADDRS_PER_INODE(inode) -		\
411 				get_inline_xattr_addrs(inode) -	\
412 				DEF_INLINE_RESERVED_SIZE))
413 
414 /* for inline dir */
415 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
416 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
417 				BITS_PER_BYTE + 1))
418 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
419 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
420 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
421 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
422 				NR_INLINE_DENTRY(inode) + \
423 				INLINE_DENTRY_BITMAP_SIZE(inode)))
424 
425 /*
426  * For INODE and NODE manager
427  */
428 /* for directory operations */
429 
430 struct f2fs_filename {
431 	/*
432 	 * The filename the user specified.  This is NULL for some
433 	 * filesystem-internal operations, e.g. converting an inline directory
434 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
435 	 */
436 	const struct qstr *usr_fname;
437 
438 	/*
439 	 * The on-disk filename.  For encrypted directories, this is encrypted.
440 	 * This may be NULL for lookups in an encrypted dir without the key.
441 	 */
442 	struct fscrypt_str disk_name;
443 
444 	/* The dirhash of this filename */
445 	f2fs_hash_t hash;
446 
447 #ifdef CONFIG_FS_ENCRYPTION
448 	/*
449 	 * For lookups in encrypted directories: either the buffer backing
450 	 * disk_name, or a buffer that holds the decoded no-key name.
451 	 */
452 	struct fscrypt_str crypto_buf;
453 #endif
454 #ifdef CONFIG_UNICODE
455 	/*
456 	 * For casefolded directories: the casefolded name, but it's left NULL
457 	 * if the original name is not valid Unicode or if the filesystem is
458 	 * doing an internal operation where usr_fname is also NULL.  In these
459 	 * cases we fall back to treating the name as an opaque byte sequence.
460 	 */
461 	struct fscrypt_str cf_name;
462 #endif
463 };
464 
465 struct f2fs_dentry_ptr {
466 	struct inode *inode;
467 	void *bitmap;
468 	struct f2fs_dir_entry *dentry;
469 	__u8 (*filename)[F2FS_SLOT_LEN];
470 	int max;
471 	int nr_bitmap;
472 };
473 
474 static inline void make_dentry_ptr_block(struct inode *inode,
475 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
476 {
477 	d->inode = inode;
478 	d->max = NR_DENTRY_IN_BLOCK;
479 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
480 	d->bitmap = t->dentry_bitmap;
481 	d->dentry = t->dentry;
482 	d->filename = t->filename;
483 }
484 
485 static inline void make_dentry_ptr_inline(struct inode *inode,
486 					struct f2fs_dentry_ptr *d, void *t)
487 {
488 	int entry_cnt = NR_INLINE_DENTRY(inode);
489 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
490 	int reserved_size = INLINE_RESERVED_SIZE(inode);
491 
492 	d->inode = inode;
493 	d->max = entry_cnt;
494 	d->nr_bitmap = bitmap_size;
495 	d->bitmap = t;
496 	d->dentry = t + bitmap_size + reserved_size;
497 	d->filename = t + bitmap_size + reserved_size +
498 					SIZE_OF_DIR_ENTRY * entry_cnt;
499 }
500 
501 /*
502  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
503  * as its node offset to distinguish from index node blocks.
504  * But some bits are used to mark the node block.
505  */
506 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
507 				>> OFFSET_BIT_SHIFT)
508 enum {
509 	ALLOC_NODE,			/* allocate a new node page if needed */
510 	LOOKUP_NODE,			/* look up a node without readahead */
511 	LOOKUP_NODE_RA,			/*
512 					 * look up a node with readahead called
513 					 * by get_data_block.
514 					 */
515 };
516 
517 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
518 
519 /* congestion wait timeout value, default: 20ms */
520 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
521 
522 /* maximum retry quota flush count */
523 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
524 
525 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
526 
527 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
528 
529 /* for in-memory extent cache entry */
530 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
531 
532 /* number of extent info in extent cache we try to shrink */
533 #define EXTENT_CACHE_SHRINK_NUMBER	128
534 
535 struct rb_entry {
536 	struct rb_node rb_node;		/* rb node located in rb-tree */
537 	union {
538 		struct {
539 			unsigned int ofs;	/* start offset of the entry */
540 			unsigned int len;	/* length of the entry */
541 		};
542 		unsigned long long key;		/* 64-bits key */
543 	} __packed;
544 };
545 
546 struct extent_info {
547 	unsigned int fofs;		/* start offset in a file */
548 	unsigned int len;		/* length of the extent */
549 	u32 blk;			/* start block address of the extent */
550 };
551 
552 struct extent_node {
553 	struct rb_node rb_node;		/* rb node located in rb-tree */
554 	struct extent_info ei;		/* extent info */
555 	struct list_head list;		/* node in global extent list of sbi */
556 	struct extent_tree *et;		/* extent tree pointer */
557 };
558 
559 struct extent_tree {
560 	nid_t ino;			/* inode number */
561 	struct rb_root_cached root;	/* root of extent info rb-tree */
562 	struct extent_node *cached_en;	/* recently accessed extent node */
563 	struct extent_info largest;	/* largested extent info */
564 	struct list_head list;		/* to be used by sbi->zombie_list */
565 	rwlock_t lock;			/* protect extent info rb-tree */
566 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
567 	bool largest_updated;		/* largest extent updated */
568 };
569 
570 /*
571  * This structure is taken from ext4_map_blocks.
572  *
573  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
574  */
575 #define F2FS_MAP_NEW		(1 << BH_New)
576 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
577 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
578 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
579 				F2FS_MAP_UNWRITTEN)
580 
581 struct f2fs_map_blocks {
582 	block_t m_pblk;
583 	block_t m_lblk;
584 	unsigned int m_len;
585 	unsigned int m_flags;
586 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
587 	pgoff_t *m_next_extent;		/* point to next possible extent */
588 	int m_seg_type;
589 	bool m_may_create;		/* indicate it is from write path */
590 };
591 
592 /* for flag in get_data_block */
593 enum {
594 	F2FS_GET_BLOCK_DEFAULT,
595 	F2FS_GET_BLOCK_FIEMAP,
596 	F2FS_GET_BLOCK_BMAP,
597 	F2FS_GET_BLOCK_DIO,
598 	F2FS_GET_BLOCK_PRE_DIO,
599 	F2FS_GET_BLOCK_PRE_AIO,
600 	F2FS_GET_BLOCK_PRECACHE,
601 };
602 
603 /*
604  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
605  */
606 #define FADVISE_COLD_BIT	0x01
607 #define FADVISE_LOST_PINO_BIT	0x02
608 #define FADVISE_ENCRYPT_BIT	0x04
609 #define FADVISE_ENC_NAME_BIT	0x08
610 #define FADVISE_KEEP_SIZE_BIT	0x10
611 #define FADVISE_HOT_BIT		0x20
612 #define FADVISE_VERITY_BIT	0x40
613 
614 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
615 
616 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
617 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
618 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
619 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
620 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
621 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
622 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
623 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
624 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
625 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
626 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
627 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
628 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
629 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
630 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
631 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
632 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
633 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
634 
635 #define DEF_DIR_LEVEL		0
636 
637 enum {
638 	GC_FAILURE_PIN,
639 	GC_FAILURE_ATOMIC,
640 	MAX_GC_FAILURE
641 };
642 
643 /* used for f2fs_inode_info->flags */
644 enum {
645 	FI_NEW_INODE,		/* indicate newly allocated inode */
646 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
647 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
648 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
649 	FI_INC_LINK,		/* need to increment i_nlink */
650 	FI_ACL_MODE,		/* indicate acl mode */
651 	FI_NO_ALLOC,		/* should not allocate any blocks */
652 	FI_FREE_NID,		/* free allocated nide */
653 	FI_NO_EXTENT,		/* not to use the extent cache */
654 	FI_INLINE_XATTR,	/* used for inline xattr */
655 	FI_INLINE_DATA,		/* used for inline data*/
656 	FI_INLINE_DENTRY,	/* used for inline dentry */
657 	FI_APPEND_WRITE,	/* inode has appended data */
658 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
659 	FI_NEED_IPU,		/* used for ipu per file */
660 	FI_ATOMIC_FILE,		/* indicate atomic file */
661 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
662 	FI_VOLATILE_FILE,	/* indicate volatile file */
663 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
664 	FI_DROP_CACHE,		/* drop dirty page cache */
665 	FI_DATA_EXIST,		/* indicate data exists */
666 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
667 	FI_DO_DEFRAG,		/* indicate defragment is running */
668 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
669 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
670 	FI_HOT_DATA,		/* indicate file is hot */
671 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
672 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
673 	FI_PIN_FILE,		/* indicate file should not be gced */
674 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
675 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
676 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
677 	FI_MMAP_FILE,		/* indicate file was mmapped */
678 	FI_MAX,			/* max flag, never be used */
679 };
680 
681 struct f2fs_inode_info {
682 	struct inode vfs_inode;		/* serve a vfs inode */
683 	unsigned long i_flags;		/* keep an inode flags for ioctl */
684 	unsigned char i_advise;		/* use to give file attribute hints */
685 	unsigned char i_dir_level;	/* use for dentry level for large dir */
686 	unsigned int i_current_depth;	/* only for directory depth */
687 	/* for gc failure statistic */
688 	unsigned int i_gc_failures[MAX_GC_FAILURE];
689 	unsigned int i_pino;		/* parent inode number */
690 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
691 
692 	/* Use below internally in f2fs*/
693 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
694 	struct rw_semaphore i_sem;	/* protect fi info */
695 	atomic_t dirty_pages;		/* # of dirty pages */
696 	f2fs_hash_t chash;		/* hash value of given file name */
697 	unsigned int clevel;		/* maximum level of given file name */
698 	struct task_struct *task;	/* lookup and create consistency */
699 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
700 	nid_t i_xattr_nid;		/* node id that contains xattrs */
701 	loff_t	last_disk_size;		/* lastly written file size */
702 	spinlock_t i_size_lock;		/* protect last_disk_size */
703 
704 #ifdef CONFIG_QUOTA
705 	struct dquot *i_dquot[MAXQUOTAS];
706 
707 	/* quota space reservation, managed internally by quota code */
708 	qsize_t i_reserved_quota;
709 #endif
710 	struct list_head dirty_list;	/* dirty list for dirs and files */
711 	struct list_head gdirty_list;	/* linked in global dirty list */
712 	struct list_head inmem_ilist;	/* list for inmem inodes */
713 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
714 	struct task_struct *inmem_task;	/* store inmemory task */
715 	struct mutex inmem_lock;	/* lock for inmemory pages */
716 	pgoff_t ra_offset;		/* ongoing readahead offset */
717 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
718 
719 	/* avoid racing between foreground op and gc */
720 	struct rw_semaphore i_gc_rwsem[2];
721 	struct rw_semaphore i_mmap_sem;
722 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
723 
724 	int i_extra_isize;		/* size of extra space located in i_addr */
725 	kprojid_t i_projid;		/* id for project quota */
726 	int i_inline_xattr_size;	/* inline xattr size */
727 	struct timespec64 i_crtime;	/* inode creation time */
728 	struct timespec64 i_disk_time[4];/* inode disk times */
729 
730 	/* for file compress */
731 	atomic_t i_compr_blocks;		/* # of compressed blocks */
732 	unsigned char i_compress_algorithm;	/* algorithm type */
733 	unsigned char i_log_cluster_size;	/* log of cluster size */
734 	unsigned int i_cluster_size;		/* cluster size */
735 };
736 
737 static inline void get_extent_info(struct extent_info *ext,
738 					struct f2fs_extent *i_ext)
739 {
740 	ext->fofs = le32_to_cpu(i_ext->fofs);
741 	ext->blk = le32_to_cpu(i_ext->blk);
742 	ext->len = le32_to_cpu(i_ext->len);
743 }
744 
745 static inline void set_raw_extent(struct extent_info *ext,
746 					struct f2fs_extent *i_ext)
747 {
748 	i_ext->fofs = cpu_to_le32(ext->fofs);
749 	i_ext->blk = cpu_to_le32(ext->blk);
750 	i_ext->len = cpu_to_le32(ext->len);
751 }
752 
753 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
754 						u32 blk, unsigned int len)
755 {
756 	ei->fofs = fofs;
757 	ei->blk = blk;
758 	ei->len = len;
759 }
760 
761 static inline bool __is_discard_mergeable(struct discard_info *back,
762 			struct discard_info *front, unsigned int max_len)
763 {
764 	return (back->lstart + back->len == front->lstart) &&
765 		(back->len + front->len <= max_len);
766 }
767 
768 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
769 			struct discard_info *back, unsigned int max_len)
770 {
771 	return __is_discard_mergeable(back, cur, max_len);
772 }
773 
774 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
775 			struct discard_info *front, unsigned int max_len)
776 {
777 	return __is_discard_mergeable(cur, front, max_len);
778 }
779 
780 static inline bool __is_extent_mergeable(struct extent_info *back,
781 						struct extent_info *front)
782 {
783 	return (back->fofs + back->len == front->fofs &&
784 			back->blk + back->len == front->blk);
785 }
786 
787 static inline bool __is_back_mergeable(struct extent_info *cur,
788 						struct extent_info *back)
789 {
790 	return __is_extent_mergeable(back, cur);
791 }
792 
793 static inline bool __is_front_mergeable(struct extent_info *cur,
794 						struct extent_info *front)
795 {
796 	return __is_extent_mergeable(cur, front);
797 }
798 
799 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
800 static inline void __try_update_largest_extent(struct extent_tree *et,
801 						struct extent_node *en)
802 {
803 	if (en->ei.len > et->largest.len) {
804 		et->largest = en->ei;
805 		et->largest_updated = true;
806 	}
807 }
808 
809 /*
810  * For free nid management
811  */
812 enum nid_state {
813 	FREE_NID,		/* newly added to free nid list */
814 	PREALLOC_NID,		/* it is preallocated */
815 	MAX_NID_STATE,
816 };
817 
818 struct f2fs_nm_info {
819 	block_t nat_blkaddr;		/* base disk address of NAT */
820 	nid_t max_nid;			/* maximum possible node ids */
821 	nid_t available_nids;		/* # of available node ids */
822 	nid_t next_scan_nid;		/* the next nid to be scanned */
823 	unsigned int ram_thresh;	/* control the memory footprint */
824 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
825 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
826 
827 	/* NAT cache management */
828 	struct radix_tree_root nat_root;/* root of the nat entry cache */
829 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
830 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
831 	struct list_head nat_entries;	/* cached nat entry list (clean) */
832 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
833 	unsigned int nat_cnt;		/* the # of cached nat entries */
834 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
835 	unsigned int nat_blocks;	/* # of nat blocks */
836 
837 	/* free node ids management */
838 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
839 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
840 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
841 	spinlock_t nid_list_lock;	/* protect nid lists ops */
842 	struct mutex build_lock;	/* lock for build free nids */
843 	unsigned char **free_nid_bitmap;
844 	unsigned char *nat_block_bitmap;
845 	unsigned short *free_nid_count;	/* free nid count of NAT block */
846 
847 	/* for checkpoint */
848 	char *nat_bitmap;		/* NAT bitmap pointer */
849 
850 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
851 	unsigned char *nat_bits;	/* NAT bits blocks */
852 	unsigned char *full_nat_bits;	/* full NAT pages */
853 	unsigned char *empty_nat_bits;	/* empty NAT pages */
854 #ifdef CONFIG_F2FS_CHECK_FS
855 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
856 #endif
857 	int bitmap_size;		/* bitmap size */
858 };
859 
860 /*
861  * this structure is used as one of function parameters.
862  * all the information are dedicated to a given direct node block determined
863  * by the data offset in a file.
864  */
865 struct dnode_of_data {
866 	struct inode *inode;		/* vfs inode pointer */
867 	struct page *inode_page;	/* its inode page, NULL is possible */
868 	struct page *node_page;		/* cached direct node page */
869 	nid_t nid;			/* node id of the direct node block */
870 	unsigned int ofs_in_node;	/* data offset in the node page */
871 	bool inode_page_locked;		/* inode page is locked or not */
872 	bool node_changed;		/* is node block changed */
873 	char cur_level;			/* level of hole node page */
874 	char max_level;			/* level of current page located */
875 	block_t	data_blkaddr;		/* block address of the node block */
876 };
877 
878 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
879 		struct page *ipage, struct page *npage, nid_t nid)
880 {
881 	memset(dn, 0, sizeof(*dn));
882 	dn->inode = inode;
883 	dn->inode_page = ipage;
884 	dn->node_page = npage;
885 	dn->nid = nid;
886 }
887 
888 /*
889  * For SIT manager
890  *
891  * By default, there are 6 active log areas across the whole main area.
892  * When considering hot and cold data separation to reduce cleaning overhead,
893  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
894  * respectively.
895  * In the current design, you should not change the numbers intentionally.
896  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
897  * logs individually according to the underlying devices. (default: 6)
898  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
899  * data and 8 for node logs.
900  */
901 #define	NR_CURSEG_DATA_TYPE	(3)
902 #define NR_CURSEG_NODE_TYPE	(3)
903 #define NR_CURSEG_INMEM_TYPE	(2)
904 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
905 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
906 
907 enum {
908 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
909 	CURSEG_WARM_DATA,	/* data blocks */
910 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
911 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
912 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
913 	CURSEG_COLD_NODE,	/* indirect node blocks */
914 	NR_PERSISTENT_LOG,	/* number of persistent log */
915 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
916 				/* pinned file that needs consecutive block address */
917 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
918 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
919 };
920 
921 struct flush_cmd {
922 	struct completion wait;
923 	struct llist_node llnode;
924 	nid_t ino;
925 	int ret;
926 };
927 
928 struct flush_cmd_control {
929 	struct task_struct *f2fs_issue_flush;	/* flush thread */
930 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
931 	atomic_t issued_flush;			/* # of issued flushes */
932 	atomic_t queued_flush;			/* # of queued flushes */
933 	struct llist_head issue_list;		/* list for command issue */
934 	struct llist_node *dispatch_list;	/* list for command dispatch */
935 };
936 
937 struct f2fs_sm_info {
938 	struct sit_info *sit_info;		/* whole segment information */
939 	struct free_segmap_info *free_info;	/* free segment information */
940 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
941 	struct curseg_info *curseg_array;	/* active segment information */
942 
943 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
944 
945 	block_t seg0_blkaddr;		/* block address of 0'th segment */
946 	block_t main_blkaddr;		/* start block address of main area */
947 	block_t ssa_blkaddr;		/* start block address of SSA area */
948 
949 	unsigned int segment_count;	/* total # of segments */
950 	unsigned int main_segments;	/* # of segments in main area */
951 	unsigned int reserved_segments;	/* # of reserved segments */
952 	unsigned int ovp_segments;	/* # of overprovision segments */
953 
954 	/* a threshold to reclaim prefree segments */
955 	unsigned int rec_prefree_segments;
956 
957 	/* for batched trimming */
958 	unsigned int trim_sections;		/* # of sections to trim */
959 
960 	struct list_head sit_entry_set;	/* sit entry set list */
961 
962 	unsigned int ipu_policy;	/* in-place-update policy */
963 	unsigned int min_ipu_util;	/* in-place-update threshold */
964 	unsigned int min_fsync_blocks;	/* threshold for fsync */
965 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
966 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
967 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
968 
969 	/* for flush command control */
970 	struct flush_cmd_control *fcc_info;
971 
972 	/* for discard command control */
973 	struct discard_cmd_control *dcc_info;
974 };
975 
976 /*
977  * For superblock
978  */
979 /*
980  * COUNT_TYPE for monitoring
981  *
982  * f2fs monitors the number of several block types such as on-writeback,
983  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
984  */
985 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
986 enum count_type {
987 	F2FS_DIRTY_DENTS,
988 	F2FS_DIRTY_DATA,
989 	F2FS_DIRTY_QDATA,
990 	F2FS_DIRTY_NODES,
991 	F2FS_DIRTY_META,
992 	F2FS_INMEM_PAGES,
993 	F2FS_DIRTY_IMETA,
994 	F2FS_WB_CP_DATA,
995 	F2FS_WB_DATA,
996 	F2FS_RD_DATA,
997 	F2FS_RD_NODE,
998 	F2FS_RD_META,
999 	F2FS_DIO_WRITE,
1000 	F2FS_DIO_READ,
1001 	NR_COUNT_TYPE,
1002 };
1003 
1004 /*
1005  * The below are the page types of bios used in submit_bio().
1006  * The available types are:
1007  * DATA			User data pages. It operates as async mode.
1008  * NODE			Node pages. It operates as async mode.
1009  * META			FS metadata pages such as SIT, NAT, CP.
1010  * NR_PAGE_TYPE		The number of page types.
1011  * META_FLUSH		Make sure the previous pages are written
1012  *			with waiting the bio's completion
1013  * ...			Only can be used with META.
1014  */
1015 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1016 enum page_type {
1017 	DATA,
1018 	NODE,
1019 	META,
1020 	NR_PAGE_TYPE,
1021 	META_FLUSH,
1022 	INMEM,		/* the below types are used by tracepoints only. */
1023 	INMEM_DROP,
1024 	INMEM_INVALIDATE,
1025 	INMEM_REVOKE,
1026 	IPU,
1027 	OPU,
1028 };
1029 
1030 enum temp_type {
1031 	HOT = 0,	/* must be zero for meta bio */
1032 	WARM,
1033 	COLD,
1034 	NR_TEMP_TYPE,
1035 };
1036 
1037 enum need_lock_type {
1038 	LOCK_REQ = 0,
1039 	LOCK_DONE,
1040 	LOCK_RETRY,
1041 };
1042 
1043 enum cp_reason_type {
1044 	CP_NO_NEEDED,
1045 	CP_NON_REGULAR,
1046 	CP_COMPRESSED,
1047 	CP_HARDLINK,
1048 	CP_SB_NEED_CP,
1049 	CP_WRONG_PINO,
1050 	CP_NO_SPC_ROLL,
1051 	CP_NODE_NEED_CP,
1052 	CP_FASTBOOT_MODE,
1053 	CP_SPEC_LOG_NUM,
1054 	CP_RECOVER_DIR,
1055 };
1056 
1057 enum iostat_type {
1058 	/* WRITE IO */
1059 	APP_DIRECT_IO,			/* app direct write IOs */
1060 	APP_BUFFERED_IO,		/* app buffered write IOs */
1061 	APP_WRITE_IO,			/* app write IOs */
1062 	APP_MAPPED_IO,			/* app mapped IOs */
1063 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1064 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1065 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1066 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1067 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1068 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1069 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1070 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1071 
1072 	/* READ IO */
1073 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1074 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1075 	APP_READ_IO,			/* app read IOs */
1076 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1077 	FS_DATA_READ_IO,		/* data read IOs */
1078 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1079 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1080 	FS_NODE_READ_IO,		/* node read IOs */
1081 	FS_META_READ_IO,		/* meta read IOs */
1082 
1083 	/* other */
1084 	FS_DISCARD,			/* discard */
1085 	NR_IO_TYPE,
1086 };
1087 
1088 struct f2fs_io_info {
1089 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1090 	nid_t ino;		/* inode number */
1091 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1092 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1093 	int op;			/* contains REQ_OP_ */
1094 	int op_flags;		/* req_flag_bits */
1095 	block_t new_blkaddr;	/* new block address to be written */
1096 	block_t old_blkaddr;	/* old block address before Cow */
1097 	struct page *page;	/* page to be written */
1098 	struct page *encrypted_page;	/* encrypted page */
1099 	struct page *compressed_page;	/* compressed page */
1100 	struct list_head list;		/* serialize IOs */
1101 	bool submitted;		/* indicate IO submission */
1102 	int need_lock;		/* indicate we need to lock cp_rwsem */
1103 	bool in_list;		/* indicate fio is in io_list */
1104 	bool is_por;		/* indicate IO is from recovery or not */
1105 	bool retry;		/* need to reallocate block address */
1106 	int compr_blocks;	/* # of compressed block addresses */
1107 	bool encrypted;		/* indicate file is encrypted */
1108 	enum iostat_type io_type;	/* io type */
1109 	struct writeback_control *io_wbc; /* writeback control */
1110 	struct bio **bio;		/* bio for ipu */
1111 	sector_t *last_block;		/* last block number in bio */
1112 	unsigned char version;		/* version of the node */
1113 };
1114 
1115 struct bio_entry {
1116 	struct bio *bio;
1117 	struct list_head list;
1118 };
1119 
1120 #define is_read_io(rw) ((rw) == READ)
1121 struct f2fs_bio_info {
1122 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1123 	struct bio *bio;		/* bios to merge */
1124 	sector_t last_block_in_bio;	/* last block number */
1125 	struct f2fs_io_info fio;	/* store buffered io info. */
1126 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1127 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1128 	struct list_head io_list;	/* track fios */
1129 	struct list_head bio_list;	/* bio entry list head */
1130 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1131 };
1132 
1133 #define FDEV(i)				(sbi->devs[i])
1134 #define RDEV(i)				(raw_super->devs[i])
1135 struct f2fs_dev_info {
1136 	struct block_device *bdev;
1137 	char path[MAX_PATH_LEN];
1138 	unsigned int total_segments;
1139 	block_t start_blk;
1140 	block_t end_blk;
1141 #ifdef CONFIG_BLK_DEV_ZONED
1142 	unsigned int nr_blkz;		/* Total number of zones */
1143 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1144 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1145 #endif
1146 };
1147 
1148 enum inode_type {
1149 	DIR_INODE,			/* for dirty dir inode */
1150 	FILE_INODE,			/* for dirty regular/symlink inode */
1151 	DIRTY_META,			/* for all dirtied inode metadata */
1152 	ATOMIC_FILE,			/* for all atomic files */
1153 	NR_INODE_TYPE,
1154 };
1155 
1156 /* for inner inode cache management */
1157 struct inode_management {
1158 	struct radix_tree_root ino_root;	/* ino entry array */
1159 	spinlock_t ino_lock;			/* for ino entry lock */
1160 	struct list_head ino_list;		/* inode list head */
1161 	unsigned long ino_num;			/* number of entries */
1162 };
1163 
1164 /* for GC_AT */
1165 struct atgc_management {
1166 	bool atgc_enabled;			/* ATGC is enabled or not */
1167 	struct rb_root_cached root;		/* root of victim rb-tree */
1168 	struct list_head victim_list;		/* linked with all victim entries */
1169 	unsigned int victim_count;		/* victim count in rb-tree */
1170 	unsigned int candidate_ratio;		/* candidate ratio */
1171 	unsigned int max_candidate_count;	/* max candidate count */
1172 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1173 	unsigned long long age_threshold;	/* age threshold */
1174 };
1175 
1176 /* For s_flag in struct f2fs_sb_info */
1177 enum {
1178 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1179 	SBI_IS_CLOSE,				/* specify unmounting */
1180 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1181 	SBI_POR_DOING,				/* recovery is doing or not */
1182 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1183 	SBI_NEED_CP,				/* need to checkpoint */
1184 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1185 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1186 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1187 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1188 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1189 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1190 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1191 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1192 };
1193 
1194 enum {
1195 	CP_TIME,
1196 	REQ_TIME,
1197 	DISCARD_TIME,
1198 	GC_TIME,
1199 	DISABLE_TIME,
1200 	UMOUNT_DISCARD_TIMEOUT,
1201 	MAX_TIME,
1202 };
1203 
1204 enum {
1205 	GC_NORMAL,
1206 	GC_IDLE_CB,
1207 	GC_IDLE_GREEDY,
1208 	GC_IDLE_AT,
1209 	GC_URGENT_HIGH,
1210 	GC_URGENT_LOW,
1211 };
1212 
1213 enum {
1214 	BGGC_MODE_ON,		/* background gc is on */
1215 	BGGC_MODE_OFF,		/* background gc is off */
1216 	BGGC_MODE_SYNC,		/*
1217 				 * background gc is on, migrating blocks
1218 				 * like foreground gc
1219 				 */
1220 };
1221 
1222 enum {
1223 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1224 	FS_MODE_LFS,		/* use lfs allocation only */
1225 };
1226 
1227 enum {
1228 	WHINT_MODE_OFF,		/* not pass down write hints */
1229 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1230 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1231 };
1232 
1233 enum {
1234 	ALLOC_MODE_DEFAULT,	/* stay default */
1235 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1236 };
1237 
1238 enum fsync_mode {
1239 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1240 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1241 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1242 };
1243 
1244 /*
1245  * this value is set in page as a private data which indicate that
1246  * the page is atomically written, and it is in inmem_pages list.
1247  */
1248 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1249 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1250 
1251 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1252 		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1253 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1254 		(page_private(page) == DUMMY_WRITTEN_PAGE)
1255 
1256 #ifdef CONFIG_F2FS_IO_TRACE
1257 #define IS_IO_TRACED_PAGE(page)			\
1258 		(page_private(page) > 0 &&		\
1259 		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1260 #else
1261 #define IS_IO_TRACED_PAGE(page) (0)
1262 #endif
1263 
1264 /* For compression */
1265 enum compress_algorithm_type {
1266 	COMPRESS_LZO,
1267 	COMPRESS_LZ4,
1268 	COMPRESS_ZSTD,
1269 	COMPRESS_LZORLE,
1270 	COMPRESS_MAX,
1271 };
1272 
1273 #define COMPRESS_DATA_RESERVED_SIZE		5
1274 struct compress_data {
1275 	__le32 clen;			/* compressed data size */
1276 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1277 	u8 cdata[];			/* compressed data */
1278 };
1279 
1280 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1281 
1282 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1283 
1284 /* compress context */
1285 struct compress_ctx {
1286 	struct inode *inode;		/* inode the context belong to */
1287 	pgoff_t cluster_idx;		/* cluster index number */
1288 	unsigned int cluster_size;	/* page count in cluster */
1289 	unsigned int log_cluster_size;	/* log of cluster size */
1290 	struct page **rpages;		/* pages store raw data in cluster */
1291 	unsigned int nr_rpages;		/* total page number in rpages */
1292 	struct page **cpages;		/* pages store compressed data in cluster */
1293 	unsigned int nr_cpages;		/* total page number in cpages */
1294 	void *rbuf;			/* virtual mapped address on rpages */
1295 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1296 	size_t rlen;			/* valid data length in rbuf */
1297 	size_t clen;			/* valid data length in cbuf */
1298 	void *private;			/* payload buffer for specified compression algorithm */
1299 	void *private2;			/* extra payload buffer */
1300 };
1301 
1302 /* compress context for write IO path */
1303 struct compress_io_ctx {
1304 	u32 magic;			/* magic number to indicate page is compressed */
1305 	struct inode *inode;		/* inode the context belong to */
1306 	struct page **rpages;		/* pages store raw data in cluster */
1307 	unsigned int nr_rpages;		/* total page number in rpages */
1308 	atomic_t pending_pages;		/* in-flight compressed page count */
1309 };
1310 
1311 /* decompress io context for read IO path */
1312 struct decompress_io_ctx {
1313 	u32 magic;			/* magic number to indicate page is compressed */
1314 	struct inode *inode;		/* inode the context belong to */
1315 	pgoff_t cluster_idx;		/* cluster index number */
1316 	unsigned int cluster_size;	/* page count in cluster */
1317 	unsigned int log_cluster_size;	/* log of cluster size */
1318 	struct page **rpages;		/* pages store raw data in cluster */
1319 	unsigned int nr_rpages;		/* total page number in rpages */
1320 	struct page **cpages;		/* pages store compressed data in cluster */
1321 	unsigned int nr_cpages;		/* total page number in cpages */
1322 	struct page **tpages;		/* temp pages to pad holes in cluster */
1323 	void *rbuf;			/* virtual mapped address on rpages */
1324 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1325 	size_t rlen;			/* valid data length in rbuf */
1326 	size_t clen;			/* valid data length in cbuf */
1327 	atomic_t pending_pages;		/* in-flight compressed page count */
1328 	bool failed;			/* indicate IO error during decompression */
1329 	void *private;			/* payload buffer for specified decompression algorithm */
1330 	void *private2;			/* extra payload buffer */
1331 };
1332 
1333 #define NULL_CLUSTER			((unsigned int)(~0))
1334 #define MIN_COMPRESS_LOG_SIZE		2
1335 #define MAX_COMPRESS_LOG_SIZE		8
1336 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1337 
1338 struct f2fs_sb_info {
1339 	struct super_block *sb;			/* pointer to VFS super block */
1340 	struct proc_dir_entry *s_proc;		/* proc entry */
1341 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1342 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1343 	int valid_super_block;			/* valid super block no */
1344 	unsigned long s_flag;				/* flags for sbi */
1345 	struct mutex writepages;		/* mutex for writepages() */
1346 
1347 #ifdef CONFIG_BLK_DEV_ZONED
1348 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1349 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1350 #endif
1351 
1352 	/* for node-related operations */
1353 	struct f2fs_nm_info *nm_info;		/* node manager */
1354 	struct inode *node_inode;		/* cache node blocks */
1355 
1356 	/* for segment-related operations */
1357 	struct f2fs_sm_info *sm_info;		/* segment manager */
1358 
1359 	/* for bio operations */
1360 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1361 	/* keep migration IO order for LFS mode */
1362 	struct rw_semaphore io_order_lock;
1363 	mempool_t *write_io_dummy;		/* Dummy pages */
1364 
1365 	/* for checkpoint */
1366 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1367 	int cur_cp_pack;			/* remain current cp pack */
1368 	spinlock_t cp_lock;			/* for flag in ckpt */
1369 	struct inode *meta_inode;		/* cache meta blocks */
1370 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1371 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1372 	struct rw_semaphore node_write;		/* locking node writes */
1373 	struct rw_semaphore node_change;	/* locking node change */
1374 	wait_queue_head_t cp_wait;
1375 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1376 	long interval_time[MAX_TIME];		/* to store thresholds */
1377 
1378 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1379 
1380 	spinlock_t fsync_node_lock;		/* for node entry lock */
1381 	struct list_head fsync_node_list;	/* node list head */
1382 	unsigned int fsync_seg_id;		/* sequence id */
1383 	unsigned int fsync_node_num;		/* number of node entries */
1384 
1385 	/* for orphan inode, use 0'th array */
1386 	unsigned int max_orphans;		/* max orphan inodes */
1387 
1388 	/* for inode management */
1389 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1390 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1391 	struct mutex flush_lock;		/* for flush exclusion */
1392 
1393 	/* for extent tree cache */
1394 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1395 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1396 	struct list_head extent_list;		/* lru list for shrinker */
1397 	spinlock_t extent_lock;			/* locking extent lru list */
1398 	atomic_t total_ext_tree;		/* extent tree count */
1399 	struct list_head zombie_list;		/* extent zombie tree list */
1400 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1401 	atomic_t total_ext_node;		/* extent info count */
1402 
1403 	/* basic filesystem units */
1404 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1405 	unsigned int log_blocksize;		/* log2 block size */
1406 	unsigned int blocksize;			/* block size */
1407 	unsigned int root_ino_num;		/* root inode number*/
1408 	unsigned int node_ino_num;		/* node inode number*/
1409 	unsigned int meta_ino_num;		/* meta inode number*/
1410 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1411 	unsigned int blocks_per_seg;		/* blocks per segment */
1412 	unsigned int segs_per_sec;		/* segments per section */
1413 	unsigned int secs_per_zone;		/* sections per zone */
1414 	unsigned int total_sections;		/* total section count */
1415 	unsigned int total_node_count;		/* total node block count */
1416 	unsigned int total_valid_node_count;	/* valid node block count */
1417 	loff_t max_file_blocks;			/* max block index of file */
1418 	int dir_level;				/* directory level */
1419 	int readdir_ra;				/* readahead inode in readdir */
1420 
1421 	block_t user_block_count;		/* # of user blocks */
1422 	block_t total_valid_block_count;	/* # of valid blocks */
1423 	block_t discard_blks;			/* discard command candidats */
1424 	block_t last_valid_block_count;		/* for recovery */
1425 	block_t reserved_blocks;		/* configurable reserved blocks */
1426 	block_t current_reserved_blocks;	/* current reserved blocks */
1427 
1428 	/* Additional tracking for no checkpoint mode */
1429 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1430 
1431 	unsigned int nquota_files;		/* # of quota sysfile */
1432 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1433 
1434 	/* # of pages, see count_type */
1435 	atomic_t nr_pages[NR_COUNT_TYPE];
1436 	/* # of allocated blocks */
1437 	struct percpu_counter alloc_valid_block_count;
1438 
1439 	/* writeback control */
1440 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1441 
1442 	/* valid inode count */
1443 	struct percpu_counter total_valid_inode_count;
1444 
1445 	struct f2fs_mount_info mount_opt;	/* mount options */
1446 
1447 	/* for cleaning operations */
1448 	struct rw_semaphore gc_lock;		/*
1449 						 * semaphore for GC, avoid
1450 						 * race between GC and GC or CP
1451 						 */
1452 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1453 	struct atgc_management am;		/* atgc management */
1454 	unsigned int cur_victim_sec;		/* current victim section num */
1455 	unsigned int gc_mode;			/* current GC state */
1456 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1457 
1458 	/* for skip statistic */
1459 	unsigned int atomic_files;		/* # of opened atomic file */
1460 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1461 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1462 
1463 	/* threshold for gc trials on pinned files */
1464 	u64 gc_pin_file_threshold;
1465 	struct rw_semaphore pin_sem;
1466 
1467 	/* maximum # of trials to find a victim segment for SSR and GC */
1468 	unsigned int max_victim_search;
1469 	/* migration granularity of garbage collection, unit: segment */
1470 	unsigned int migration_granularity;
1471 
1472 	/*
1473 	 * for stat information.
1474 	 * one is for the LFS mode, and the other is for the SSR mode.
1475 	 */
1476 #ifdef CONFIG_F2FS_STAT_FS
1477 	struct f2fs_stat_info *stat_info;	/* FS status information */
1478 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1479 	unsigned int segment_count[2];		/* # of allocated segments */
1480 	unsigned int block_count[2];		/* # of allocated blocks */
1481 	atomic_t inplace_count;		/* # of inplace update */
1482 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1483 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1484 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1485 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1486 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1487 	atomic_t inline_inode;			/* # of inline_data inodes */
1488 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1489 	atomic_t compr_inode;			/* # of compressed inodes */
1490 	atomic64_t compr_blocks;		/* # of compressed blocks */
1491 	atomic_t vw_cnt;			/* # of volatile writes */
1492 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1493 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1494 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1495 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1496 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1497 #endif
1498 	spinlock_t stat_lock;			/* lock for stat operations */
1499 
1500 	/* For app/fs IO statistics */
1501 	spinlock_t iostat_lock;
1502 	unsigned long long rw_iostat[NR_IO_TYPE];
1503 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1504 	bool iostat_enable;
1505 	unsigned long iostat_next_period;
1506 	unsigned int iostat_period_ms;
1507 
1508 	/* to attach REQ_META|REQ_FUA flags */
1509 	unsigned int data_io_flag;
1510 	unsigned int node_io_flag;
1511 
1512 	/* For sysfs suppport */
1513 	struct kobject s_kobj;
1514 	struct completion s_kobj_unregister;
1515 
1516 	/* For shrinker support */
1517 	struct list_head s_list;
1518 	int s_ndevs;				/* number of devices */
1519 	struct f2fs_dev_info *devs;		/* for device list */
1520 	unsigned int dirty_device;		/* for checkpoint data flush */
1521 	spinlock_t dev_lock;			/* protect dirty_device */
1522 	struct mutex umount_mutex;
1523 	unsigned int shrinker_run_no;
1524 
1525 	/* For write statistics */
1526 	u64 sectors_written_start;
1527 	u64 kbytes_written;
1528 
1529 	/* Reference to checksum algorithm driver via cryptoapi */
1530 	struct crypto_shash *s_chksum_driver;
1531 
1532 	/* Precomputed FS UUID checksum for seeding other checksums */
1533 	__u32 s_chksum_seed;
1534 
1535 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1536 
1537 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1538 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1539 
1540 #ifdef CONFIG_F2FS_FS_COMPRESSION
1541 	struct kmem_cache *page_array_slab;	/* page array entry */
1542 	unsigned int page_array_slab_size;	/* default page array slab size */
1543 #endif
1544 };
1545 
1546 struct f2fs_private_dio {
1547 	struct inode *inode;
1548 	void *orig_private;
1549 	bio_end_io_t *orig_end_io;
1550 	bool write;
1551 };
1552 
1553 #ifdef CONFIG_F2FS_FAULT_INJECTION
1554 #define f2fs_show_injection_info(sbi, type)					\
1555 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1556 		KERN_INFO, sbi->sb->s_id,				\
1557 		f2fs_fault_name[type],					\
1558 		__func__, __builtin_return_address(0))
1559 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1560 {
1561 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1562 
1563 	if (!ffi->inject_rate)
1564 		return false;
1565 
1566 	if (!IS_FAULT_SET(ffi, type))
1567 		return false;
1568 
1569 	atomic_inc(&ffi->inject_ops);
1570 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1571 		atomic_set(&ffi->inject_ops, 0);
1572 		return true;
1573 	}
1574 	return false;
1575 }
1576 #else
1577 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1578 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1579 {
1580 	return false;
1581 }
1582 #endif
1583 
1584 /*
1585  * Test if the mounted volume is a multi-device volume.
1586  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1587  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1588  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1589  */
1590 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1591 {
1592 	return sbi->s_ndevs > 1;
1593 }
1594 
1595 /* For write statistics. Suppose sector size is 512 bytes,
1596  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1597  */
1598 #define BD_PART_WRITTEN(s)						 \
1599 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1600 		(s)->sectors_written_start) >> 1)
1601 
1602 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1603 {
1604 	unsigned long now = jiffies;
1605 
1606 	sbi->last_time[type] = now;
1607 
1608 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1609 	if (type == REQ_TIME) {
1610 		sbi->last_time[DISCARD_TIME] = now;
1611 		sbi->last_time[GC_TIME] = now;
1612 	}
1613 }
1614 
1615 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1616 {
1617 	unsigned long interval = sbi->interval_time[type] * HZ;
1618 
1619 	return time_after(jiffies, sbi->last_time[type] + interval);
1620 }
1621 
1622 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1623 						int type)
1624 {
1625 	unsigned long interval = sbi->interval_time[type] * HZ;
1626 	unsigned int wait_ms = 0;
1627 	long delta;
1628 
1629 	delta = (sbi->last_time[type] + interval) - jiffies;
1630 	if (delta > 0)
1631 		wait_ms = jiffies_to_msecs(delta);
1632 
1633 	return wait_ms;
1634 }
1635 
1636 /*
1637  * Inline functions
1638  */
1639 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1640 			      const void *address, unsigned int length)
1641 {
1642 	struct {
1643 		struct shash_desc shash;
1644 		char ctx[4];
1645 	} desc;
1646 	int err;
1647 
1648 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1649 
1650 	desc.shash.tfm = sbi->s_chksum_driver;
1651 	*(u32 *)desc.ctx = crc;
1652 
1653 	err = crypto_shash_update(&desc.shash, address, length);
1654 	BUG_ON(err);
1655 
1656 	return *(u32 *)desc.ctx;
1657 }
1658 
1659 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1660 			   unsigned int length)
1661 {
1662 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1663 }
1664 
1665 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1666 				  void *buf, size_t buf_size)
1667 {
1668 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1669 }
1670 
1671 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1672 			      const void *address, unsigned int length)
1673 {
1674 	return __f2fs_crc32(sbi, crc, address, length);
1675 }
1676 
1677 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1678 {
1679 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1680 }
1681 
1682 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1683 {
1684 	return sb->s_fs_info;
1685 }
1686 
1687 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1688 {
1689 	return F2FS_SB(inode->i_sb);
1690 }
1691 
1692 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1693 {
1694 	return F2FS_I_SB(mapping->host);
1695 }
1696 
1697 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1698 {
1699 	return F2FS_M_SB(page_file_mapping(page));
1700 }
1701 
1702 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1703 {
1704 	return (struct f2fs_super_block *)(sbi->raw_super);
1705 }
1706 
1707 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1708 {
1709 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1710 }
1711 
1712 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1713 {
1714 	return (struct f2fs_node *)page_address(page);
1715 }
1716 
1717 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1718 {
1719 	return &((struct f2fs_node *)page_address(page))->i;
1720 }
1721 
1722 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1723 {
1724 	return (struct f2fs_nm_info *)(sbi->nm_info);
1725 }
1726 
1727 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1728 {
1729 	return (struct f2fs_sm_info *)(sbi->sm_info);
1730 }
1731 
1732 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1733 {
1734 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1735 }
1736 
1737 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1738 {
1739 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1740 }
1741 
1742 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1743 {
1744 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1745 }
1746 
1747 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1748 {
1749 	return sbi->meta_inode->i_mapping;
1750 }
1751 
1752 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1753 {
1754 	return sbi->node_inode->i_mapping;
1755 }
1756 
1757 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1758 {
1759 	return test_bit(type, &sbi->s_flag);
1760 }
1761 
1762 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1763 {
1764 	set_bit(type, &sbi->s_flag);
1765 }
1766 
1767 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1768 {
1769 	clear_bit(type, &sbi->s_flag);
1770 }
1771 
1772 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1773 {
1774 	return le64_to_cpu(cp->checkpoint_ver);
1775 }
1776 
1777 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1778 {
1779 	if (type < F2FS_MAX_QUOTAS)
1780 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1781 	return 0;
1782 }
1783 
1784 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1785 {
1786 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1787 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1788 }
1789 
1790 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1791 {
1792 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1793 
1794 	return ckpt_flags & f;
1795 }
1796 
1797 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1798 {
1799 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1800 }
1801 
1802 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1803 {
1804 	unsigned int ckpt_flags;
1805 
1806 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1807 	ckpt_flags |= f;
1808 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1809 }
1810 
1811 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1812 {
1813 	unsigned long flags;
1814 
1815 	spin_lock_irqsave(&sbi->cp_lock, flags);
1816 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1817 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1818 }
1819 
1820 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1821 {
1822 	unsigned int ckpt_flags;
1823 
1824 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1825 	ckpt_flags &= (~f);
1826 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1827 }
1828 
1829 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1830 {
1831 	unsigned long flags;
1832 
1833 	spin_lock_irqsave(&sbi->cp_lock, flags);
1834 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1835 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1836 }
1837 
1838 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1839 {
1840 	unsigned long flags;
1841 	unsigned char *nat_bits;
1842 
1843 	/*
1844 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1845 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1846 	 * so let's rely on regular fsck or unclean shutdown.
1847 	 */
1848 
1849 	if (lock)
1850 		spin_lock_irqsave(&sbi->cp_lock, flags);
1851 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1852 	nat_bits = NM_I(sbi)->nat_bits;
1853 	NM_I(sbi)->nat_bits = NULL;
1854 	if (lock)
1855 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1856 
1857 	kvfree(nat_bits);
1858 }
1859 
1860 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1861 					struct cp_control *cpc)
1862 {
1863 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1864 
1865 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1866 }
1867 
1868 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1869 {
1870 	down_read(&sbi->cp_rwsem);
1871 }
1872 
1873 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1874 {
1875 	return down_read_trylock(&sbi->cp_rwsem);
1876 }
1877 
1878 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1879 {
1880 	up_read(&sbi->cp_rwsem);
1881 }
1882 
1883 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1884 {
1885 	down_write(&sbi->cp_rwsem);
1886 }
1887 
1888 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1889 {
1890 	up_write(&sbi->cp_rwsem);
1891 }
1892 
1893 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1894 {
1895 	int reason = CP_SYNC;
1896 
1897 	if (test_opt(sbi, FASTBOOT))
1898 		reason = CP_FASTBOOT;
1899 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1900 		reason = CP_UMOUNT;
1901 	return reason;
1902 }
1903 
1904 static inline bool __remain_node_summaries(int reason)
1905 {
1906 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1907 }
1908 
1909 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1910 {
1911 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1912 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1913 }
1914 
1915 /*
1916  * Check whether the inode has blocks or not
1917  */
1918 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1919 {
1920 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1921 
1922 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1923 }
1924 
1925 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1926 {
1927 	return ofs == XATTR_NODE_OFFSET;
1928 }
1929 
1930 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1931 					struct inode *inode, bool cap)
1932 {
1933 	if (!inode)
1934 		return true;
1935 	if (!test_opt(sbi, RESERVE_ROOT))
1936 		return false;
1937 	if (IS_NOQUOTA(inode))
1938 		return true;
1939 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1940 		return true;
1941 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1942 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1943 		return true;
1944 	if (cap && capable(CAP_SYS_RESOURCE))
1945 		return true;
1946 	return false;
1947 }
1948 
1949 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1950 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1951 				 struct inode *inode, blkcnt_t *count)
1952 {
1953 	blkcnt_t diff = 0, release = 0;
1954 	block_t avail_user_block_count;
1955 	int ret;
1956 
1957 	ret = dquot_reserve_block(inode, *count);
1958 	if (ret)
1959 		return ret;
1960 
1961 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1962 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
1963 		release = *count;
1964 		goto release_quota;
1965 	}
1966 
1967 	/*
1968 	 * let's increase this in prior to actual block count change in order
1969 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1970 	 */
1971 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1972 
1973 	spin_lock(&sbi->stat_lock);
1974 	sbi->total_valid_block_count += (block_t)(*count);
1975 	avail_user_block_count = sbi->user_block_count -
1976 					sbi->current_reserved_blocks;
1977 
1978 	if (!__allow_reserved_blocks(sbi, inode, true))
1979 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1980 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1981 		if (avail_user_block_count > sbi->unusable_block_count)
1982 			avail_user_block_count -= sbi->unusable_block_count;
1983 		else
1984 			avail_user_block_count = 0;
1985 	}
1986 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1987 		diff = sbi->total_valid_block_count - avail_user_block_count;
1988 		if (diff > *count)
1989 			diff = *count;
1990 		*count -= diff;
1991 		release = diff;
1992 		sbi->total_valid_block_count -= diff;
1993 		if (!*count) {
1994 			spin_unlock(&sbi->stat_lock);
1995 			goto enospc;
1996 		}
1997 	}
1998 	spin_unlock(&sbi->stat_lock);
1999 
2000 	if (unlikely(release)) {
2001 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2002 		dquot_release_reservation_block(inode, release);
2003 	}
2004 	f2fs_i_blocks_write(inode, *count, true, true);
2005 	return 0;
2006 
2007 enospc:
2008 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2009 release_quota:
2010 	dquot_release_reservation_block(inode, release);
2011 	return -ENOSPC;
2012 }
2013 
2014 __printf(2, 3)
2015 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2016 
2017 #define f2fs_err(sbi, fmt, ...)						\
2018 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2019 #define f2fs_warn(sbi, fmt, ...)					\
2020 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2021 #define f2fs_notice(sbi, fmt, ...)					\
2022 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2023 #define f2fs_info(sbi, fmt, ...)					\
2024 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2025 #define f2fs_debug(sbi, fmt, ...)					\
2026 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2027 
2028 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2029 						struct inode *inode,
2030 						block_t count)
2031 {
2032 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2033 
2034 	spin_lock(&sbi->stat_lock);
2035 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2036 	sbi->total_valid_block_count -= (block_t)count;
2037 	if (sbi->reserved_blocks &&
2038 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2039 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2040 					sbi->current_reserved_blocks + count);
2041 	spin_unlock(&sbi->stat_lock);
2042 	if (unlikely(inode->i_blocks < sectors)) {
2043 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2044 			  inode->i_ino,
2045 			  (unsigned long long)inode->i_blocks,
2046 			  (unsigned long long)sectors);
2047 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2048 		return;
2049 	}
2050 	f2fs_i_blocks_write(inode, count, false, true);
2051 }
2052 
2053 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2054 {
2055 	atomic_inc(&sbi->nr_pages[count_type]);
2056 
2057 	if (count_type == F2FS_DIRTY_DENTS ||
2058 			count_type == F2FS_DIRTY_NODES ||
2059 			count_type == F2FS_DIRTY_META ||
2060 			count_type == F2FS_DIRTY_QDATA ||
2061 			count_type == F2FS_DIRTY_IMETA)
2062 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2063 }
2064 
2065 static inline void inode_inc_dirty_pages(struct inode *inode)
2066 {
2067 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2068 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2069 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2070 	if (IS_NOQUOTA(inode))
2071 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2072 }
2073 
2074 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2075 {
2076 	atomic_dec(&sbi->nr_pages[count_type]);
2077 }
2078 
2079 static inline void inode_dec_dirty_pages(struct inode *inode)
2080 {
2081 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2082 			!S_ISLNK(inode->i_mode))
2083 		return;
2084 
2085 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2086 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2087 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2088 	if (IS_NOQUOTA(inode))
2089 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2090 }
2091 
2092 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2093 {
2094 	return atomic_read(&sbi->nr_pages[count_type]);
2095 }
2096 
2097 static inline int get_dirty_pages(struct inode *inode)
2098 {
2099 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2100 }
2101 
2102 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2103 {
2104 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2105 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2106 						sbi->log_blocks_per_seg;
2107 
2108 	return segs / sbi->segs_per_sec;
2109 }
2110 
2111 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2112 {
2113 	return sbi->total_valid_block_count;
2114 }
2115 
2116 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2117 {
2118 	return sbi->discard_blks;
2119 }
2120 
2121 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2122 {
2123 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2124 
2125 	/* return NAT or SIT bitmap */
2126 	if (flag == NAT_BITMAP)
2127 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2128 	else if (flag == SIT_BITMAP)
2129 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2130 
2131 	return 0;
2132 }
2133 
2134 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2135 {
2136 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2137 }
2138 
2139 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2140 {
2141 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2142 	int offset;
2143 
2144 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2145 		offset = (flag == SIT_BITMAP) ?
2146 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2147 		/*
2148 		 * if large_nat_bitmap feature is enabled, leave checksum
2149 		 * protection for all nat/sit bitmaps.
2150 		 */
2151 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2152 	}
2153 
2154 	if (__cp_payload(sbi) > 0) {
2155 		if (flag == NAT_BITMAP)
2156 			return &ckpt->sit_nat_version_bitmap;
2157 		else
2158 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2159 	} else {
2160 		offset = (flag == NAT_BITMAP) ?
2161 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2162 		return &ckpt->sit_nat_version_bitmap + offset;
2163 	}
2164 }
2165 
2166 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2167 {
2168 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2169 
2170 	if (sbi->cur_cp_pack == 2)
2171 		start_addr += sbi->blocks_per_seg;
2172 	return start_addr;
2173 }
2174 
2175 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2176 {
2177 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2178 
2179 	if (sbi->cur_cp_pack == 1)
2180 		start_addr += sbi->blocks_per_seg;
2181 	return start_addr;
2182 }
2183 
2184 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2185 {
2186 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2187 }
2188 
2189 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2190 {
2191 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2192 }
2193 
2194 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2195 					struct inode *inode, bool is_inode)
2196 {
2197 	block_t	valid_block_count;
2198 	unsigned int valid_node_count, user_block_count;
2199 	int err;
2200 
2201 	if (is_inode) {
2202 		if (inode) {
2203 			err = dquot_alloc_inode(inode);
2204 			if (err)
2205 				return err;
2206 		}
2207 	} else {
2208 		err = dquot_reserve_block(inode, 1);
2209 		if (err)
2210 			return err;
2211 	}
2212 
2213 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2214 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2215 		goto enospc;
2216 	}
2217 
2218 	spin_lock(&sbi->stat_lock);
2219 
2220 	valid_block_count = sbi->total_valid_block_count +
2221 					sbi->current_reserved_blocks + 1;
2222 
2223 	if (!__allow_reserved_blocks(sbi, inode, false))
2224 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2225 	user_block_count = sbi->user_block_count;
2226 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2227 		user_block_count -= sbi->unusable_block_count;
2228 
2229 	if (unlikely(valid_block_count > user_block_count)) {
2230 		spin_unlock(&sbi->stat_lock);
2231 		goto enospc;
2232 	}
2233 
2234 	valid_node_count = sbi->total_valid_node_count + 1;
2235 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2236 		spin_unlock(&sbi->stat_lock);
2237 		goto enospc;
2238 	}
2239 
2240 	sbi->total_valid_node_count++;
2241 	sbi->total_valid_block_count++;
2242 	spin_unlock(&sbi->stat_lock);
2243 
2244 	if (inode) {
2245 		if (is_inode)
2246 			f2fs_mark_inode_dirty_sync(inode, true);
2247 		else
2248 			f2fs_i_blocks_write(inode, 1, true, true);
2249 	}
2250 
2251 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2252 	return 0;
2253 
2254 enospc:
2255 	if (is_inode) {
2256 		if (inode)
2257 			dquot_free_inode(inode);
2258 	} else {
2259 		dquot_release_reservation_block(inode, 1);
2260 	}
2261 	return -ENOSPC;
2262 }
2263 
2264 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2265 					struct inode *inode, bool is_inode)
2266 {
2267 	spin_lock(&sbi->stat_lock);
2268 
2269 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2270 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2271 
2272 	sbi->total_valid_node_count--;
2273 	sbi->total_valid_block_count--;
2274 	if (sbi->reserved_blocks &&
2275 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2276 		sbi->current_reserved_blocks++;
2277 
2278 	spin_unlock(&sbi->stat_lock);
2279 
2280 	if (is_inode) {
2281 		dquot_free_inode(inode);
2282 	} else {
2283 		if (unlikely(inode->i_blocks == 0)) {
2284 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2285 				  inode->i_ino,
2286 				  (unsigned long long)inode->i_blocks);
2287 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2288 			return;
2289 		}
2290 		f2fs_i_blocks_write(inode, 1, false, true);
2291 	}
2292 }
2293 
2294 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2295 {
2296 	return sbi->total_valid_node_count;
2297 }
2298 
2299 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2300 {
2301 	percpu_counter_inc(&sbi->total_valid_inode_count);
2302 }
2303 
2304 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2305 {
2306 	percpu_counter_dec(&sbi->total_valid_inode_count);
2307 }
2308 
2309 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2310 {
2311 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2312 }
2313 
2314 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2315 						pgoff_t index, bool for_write)
2316 {
2317 	struct page *page;
2318 
2319 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2320 		if (!for_write)
2321 			page = find_get_page_flags(mapping, index,
2322 							FGP_LOCK | FGP_ACCESSED);
2323 		else
2324 			page = find_lock_page(mapping, index);
2325 		if (page)
2326 			return page;
2327 
2328 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2329 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2330 							FAULT_PAGE_ALLOC);
2331 			return NULL;
2332 		}
2333 	}
2334 
2335 	if (!for_write)
2336 		return grab_cache_page(mapping, index);
2337 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2338 }
2339 
2340 static inline struct page *f2fs_pagecache_get_page(
2341 				struct address_space *mapping, pgoff_t index,
2342 				int fgp_flags, gfp_t gfp_mask)
2343 {
2344 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2345 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2346 		return NULL;
2347 	}
2348 
2349 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2350 }
2351 
2352 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2353 {
2354 	char *src_kaddr = kmap(src);
2355 	char *dst_kaddr = kmap(dst);
2356 
2357 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2358 	kunmap(dst);
2359 	kunmap(src);
2360 }
2361 
2362 static inline void f2fs_put_page(struct page *page, int unlock)
2363 {
2364 	if (!page)
2365 		return;
2366 
2367 	if (unlock) {
2368 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2369 		unlock_page(page);
2370 	}
2371 	put_page(page);
2372 }
2373 
2374 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2375 {
2376 	if (dn->node_page)
2377 		f2fs_put_page(dn->node_page, 1);
2378 	if (dn->inode_page && dn->node_page != dn->inode_page)
2379 		f2fs_put_page(dn->inode_page, 0);
2380 	dn->node_page = NULL;
2381 	dn->inode_page = NULL;
2382 }
2383 
2384 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2385 					size_t size)
2386 {
2387 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2388 }
2389 
2390 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2391 						gfp_t flags)
2392 {
2393 	void *entry;
2394 
2395 	entry = kmem_cache_alloc(cachep, flags);
2396 	if (!entry)
2397 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2398 	return entry;
2399 }
2400 
2401 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2402 {
2403 	if (sbi->gc_mode == GC_URGENT_HIGH)
2404 		return true;
2405 
2406 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2407 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2408 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2409 		get_pages(sbi, F2FS_DIO_READ) ||
2410 		get_pages(sbi, F2FS_DIO_WRITE))
2411 		return false;
2412 
2413 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2414 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2415 		return false;
2416 
2417 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2418 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2419 		return false;
2420 
2421 	if (sbi->gc_mode == GC_URGENT_LOW &&
2422 			(type == DISCARD_TIME || type == GC_TIME))
2423 		return true;
2424 
2425 	return f2fs_time_over(sbi, type);
2426 }
2427 
2428 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2429 				unsigned long index, void *item)
2430 {
2431 	while (radix_tree_insert(root, index, item))
2432 		cond_resched();
2433 }
2434 
2435 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2436 
2437 static inline bool IS_INODE(struct page *page)
2438 {
2439 	struct f2fs_node *p = F2FS_NODE(page);
2440 
2441 	return RAW_IS_INODE(p);
2442 }
2443 
2444 static inline int offset_in_addr(struct f2fs_inode *i)
2445 {
2446 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2447 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2448 }
2449 
2450 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2451 {
2452 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2453 }
2454 
2455 static inline int f2fs_has_extra_attr(struct inode *inode);
2456 static inline block_t data_blkaddr(struct inode *inode,
2457 			struct page *node_page, unsigned int offset)
2458 {
2459 	struct f2fs_node *raw_node;
2460 	__le32 *addr_array;
2461 	int base = 0;
2462 	bool is_inode = IS_INODE(node_page);
2463 
2464 	raw_node = F2FS_NODE(node_page);
2465 
2466 	if (is_inode) {
2467 		if (!inode)
2468 			/* from GC path only */
2469 			base = offset_in_addr(&raw_node->i);
2470 		else if (f2fs_has_extra_attr(inode))
2471 			base = get_extra_isize(inode);
2472 	}
2473 
2474 	addr_array = blkaddr_in_node(raw_node);
2475 	return le32_to_cpu(addr_array[base + offset]);
2476 }
2477 
2478 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2479 {
2480 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2481 }
2482 
2483 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2484 {
2485 	int mask;
2486 
2487 	addr += (nr >> 3);
2488 	mask = 1 << (7 - (nr & 0x07));
2489 	return mask & *addr;
2490 }
2491 
2492 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2493 {
2494 	int mask;
2495 
2496 	addr += (nr >> 3);
2497 	mask = 1 << (7 - (nr & 0x07));
2498 	*addr |= mask;
2499 }
2500 
2501 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2502 {
2503 	int mask;
2504 
2505 	addr += (nr >> 3);
2506 	mask = 1 << (7 - (nr & 0x07));
2507 	*addr &= ~mask;
2508 }
2509 
2510 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2511 {
2512 	int mask;
2513 	int ret;
2514 
2515 	addr += (nr >> 3);
2516 	mask = 1 << (7 - (nr & 0x07));
2517 	ret = mask & *addr;
2518 	*addr |= mask;
2519 	return ret;
2520 }
2521 
2522 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2523 {
2524 	int mask;
2525 	int ret;
2526 
2527 	addr += (nr >> 3);
2528 	mask = 1 << (7 - (nr & 0x07));
2529 	ret = mask & *addr;
2530 	*addr &= ~mask;
2531 	return ret;
2532 }
2533 
2534 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2535 {
2536 	int mask;
2537 
2538 	addr += (nr >> 3);
2539 	mask = 1 << (7 - (nr & 0x07));
2540 	*addr ^= mask;
2541 }
2542 
2543 /*
2544  * On-disk inode flags (f2fs_inode::i_flags)
2545  */
2546 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2547 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2548 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2549 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2550 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2551 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2552 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2553 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2554 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2555 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2556 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2557 
2558 /* Flags that should be inherited by new inodes from their parent. */
2559 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2560 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2561 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2562 
2563 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2564 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2565 				F2FS_CASEFOLD_FL))
2566 
2567 /* Flags that are appropriate for non-directories/regular files. */
2568 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2569 
2570 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2571 {
2572 	if (S_ISDIR(mode))
2573 		return flags;
2574 	else if (S_ISREG(mode))
2575 		return flags & F2FS_REG_FLMASK;
2576 	else
2577 		return flags & F2FS_OTHER_FLMASK;
2578 }
2579 
2580 static inline void __mark_inode_dirty_flag(struct inode *inode,
2581 						int flag, bool set)
2582 {
2583 	switch (flag) {
2584 	case FI_INLINE_XATTR:
2585 	case FI_INLINE_DATA:
2586 	case FI_INLINE_DENTRY:
2587 	case FI_NEW_INODE:
2588 		if (set)
2589 			return;
2590 		fallthrough;
2591 	case FI_DATA_EXIST:
2592 	case FI_INLINE_DOTS:
2593 	case FI_PIN_FILE:
2594 		f2fs_mark_inode_dirty_sync(inode, true);
2595 	}
2596 }
2597 
2598 static inline void set_inode_flag(struct inode *inode, int flag)
2599 {
2600 	set_bit(flag, F2FS_I(inode)->flags);
2601 	__mark_inode_dirty_flag(inode, flag, true);
2602 }
2603 
2604 static inline int is_inode_flag_set(struct inode *inode, int flag)
2605 {
2606 	return test_bit(flag, F2FS_I(inode)->flags);
2607 }
2608 
2609 static inline void clear_inode_flag(struct inode *inode, int flag)
2610 {
2611 	clear_bit(flag, F2FS_I(inode)->flags);
2612 	__mark_inode_dirty_flag(inode, flag, false);
2613 }
2614 
2615 static inline bool f2fs_verity_in_progress(struct inode *inode)
2616 {
2617 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2618 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2619 }
2620 
2621 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2622 {
2623 	F2FS_I(inode)->i_acl_mode = mode;
2624 	set_inode_flag(inode, FI_ACL_MODE);
2625 	f2fs_mark_inode_dirty_sync(inode, false);
2626 }
2627 
2628 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2629 {
2630 	if (inc)
2631 		inc_nlink(inode);
2632 	else
2633 		drop_nlink(inode);
2634 	f2fs_mark_inode_dirty_sync(inode, true);
2635 }
2636 
2637 static inline void f2fs_i_blocks_write(struct inode *inode,
2638 					block_t diff, bool add, bool claim)
2639 {
2640 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2641 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2642 
2643 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2644 	if (add) {
2645 		if (claim)
2646 			dquot_claim_block(inode, diff);
2647 		else
2648 			dquot_alloc_block_nofail(inode, diff);
2649 	} else {
2650 		dquot_free_block(inode, diff);
2651 	}
2652 
2653 	f2fs_mark_inode_dirty_sync(inode, true);
2654 	if (clean || recover)
2655 		set_inode_flag(inode, FI_AUTO_RECOVER);
2656 }
2657 
2658 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2659 {
2660 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2661 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2662 
2663 	if (i_size_read(inode) == i_size)
2664 		return;
2665 
2666 	i_size_write(inode, i_size);
2667 	f2fs_mark_inode_dirty_sync(inode, true);
2668 	if (clean || recover)
2669 		set_inode_flag(inode, FI_AUTO_RECOVER);
2670 }
2671 
2672 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2673 {
2674 	F2FS_I(inode)->i_current_depth = depth;
2675 	f2fs_mark_inode_dirty_sync(inode, true);
2676 }
2677 
2678 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2679 					unsigned int count)
2680 {
2681 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2682 	f2fs_mark_inode_dirty_sync(inode, true);
2683 }
2684 
2685 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2686 {
2687 	F2FS_I(inode)->i_xattr_nid = xnid;
2688 	f2fs_mark_inode_dirty_sync(inode, true);
2689 }
2690 
2691 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2692 {
2693 	F2FS_I(inode)->i_pino = pino;
2694 	f2fs_mark_inode_dirty_sync(inode, true);
2695 }
2696 
2697 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2698 {
2699 	struct f2fs_inode_info *fi = F2FS_I(inode);
2700 
2701 	if (ri->i_inline & F2FS_INLINE_XATTR)
2702 		set_bit(FI_INLINE_XATTR, fi->flags);
2703 	if (ri->i_inline & F2FS_INLINE_DATA)
2704 		set_bit(FI_INLINE_DATA, fi->flags);
2705 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2706 		set_bit(FI_INLINE_DENTRY, fi->flags);
2707 	if (ri->i_inline & F2FS_DATA_EXIST)
2708 		set_bit(FI_DATA_EXIST, fi->flags);
2709 	if (ri->i_inline & F2FS_INLINE_DOTS)
2710 		set_bit(FI_INLINE_DOTS, fi->flags);
2711 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2712 		set_bit(FI_EXTRA_ATTR, fi->flags);
2713 	if (ri->i_inline & F2FS_PIN_FILE)
2714 		set_bit(FI_PIN_FILE, fi->flags);
2715 }
2716 
2717 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2718 {
2719 	ri->i_inline = 0;
2720 
2721 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2722 		ri->i_inline |= F2FS_INLINE_XATTR;
2723 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2724 		ri->i_inline |= F2FS_INLINE_DATA;
2725 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2726 		ri->i_inline |= F2FS_INLINE_DENTRY;
2727 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2728 		ri->i_inline |= F2FS_DATA_EXIST;
2729 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2730 		ri->i_inline |= F2FS_INLINE_DOTS;
2731 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2732 		ri->i_inline |= F2FS_EXTRA_ATTR;
2733 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2734 		ri->i_inline |= F2FS_PIN_FILE;
2735 }
2736 
2737 static inline int f2fs_has_extra_attr(struct inode *inode)
2738 {
2739 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2740 }
2741 
2742 static inline int f2fs_has_inline_xattr(struct inode *inode)
2743 {
2744 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2745 }
2746 
2747 static inline int f2fs_compressed_file(struct inode *inode)
2748 {
2749 	return S_ISREG(inode->i_mode) &&
2750 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2751 }
2752 
2753 static inline unsigned int addrs_per_inode(struct inode *inode)
2754 {
2755 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2756 				get_inline_xattr_addrs(inode);
2757 
2758 	if (!f2fs_compressed_file(inode))
2759 		return addrs;
2760 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2761 }
2762 
2763 static inline unsigned int addrs_per_block(struct inode *inode)
2764 {
2765 	if (!f2fs_compressed_file(inode))
2766 		return DEF_ADDRS_PER_BLOCK;
2767 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2768 }
2769 
2770 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2771 {
2772 	struct f2fs_inode *ri = F2FS_INODE(page);
2773 
2774 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2775 					get_inline_xattr_addrs(inode)]);
2776 }
2777 
2778 static inline int inline_xattr_size(struct inode *inode)
2779 {
2780 	if (f2fs_has_inline_xattr(inode))
2781 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2782 	return 0;
2783 }
2784 
2785 static inline int f2fs_has_inline_data(struct inode *inode)
2786 {
2787 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2788 }
2789 
2790 static inline int f2fs_exist_data(struct inode *inode)
2791 {
2792 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2793 }
2794 
2795 static inline int f2fs_has_inline_dots(struct inode *inode)
2796 {
2797 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2798 }
2799 
2800 static inline int f2fs_is_mmap_file(struct inode *inode)
2801 {
2802 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2803 }
2804 
2805 static inline bool f2fs_is_pinned_file(struct inode *inode)
2806 {
2807 	return is_inode_flag_set(inode, FI_PIN_FILE);
2808 }
2809 
2810 static inline bool f2fs_is_atomic_file(struct inode *inode)
2811 {
2812 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2813 }
2814 
2815 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2816 {
2817 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2818 }
2819 
2820 static inline bool f2fs_is_volatile_file(struct inode *inode)
2821 {
2822 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2823 }
2824 
2825 static inline bool f2fs_is_first_block_written(struct inode *inode)
2826 {
2827 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2828 }
2829 
2830 static inline bool f2fs_is_drop_cache(struct inode *inode)
2831 {
2832 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2833 }
2834 
2835 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2836 {
2837 	struct f2fs_inode *ri = F2FS_INODE(page);
2838 	int extra_size = get_extra_isize(inode);
2839 
2840 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2841 }
2842 
2843 static inline int f2fs_has_inline_dentry(struct inode *inode)
2844 {
2845 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2846 }
2847 
2848 static inline int is_file(struct inode *inode, int type)
2849 {
2850 	return F2FS_I(inode)->i_advise & type;
2851 }
2852 
2853 static inline void set_file(struct inode *inode, int type)
2854 {
2855 	F2FS_I(inode)->i_advise |= type;
2856 	f2fs_mark_inode_dirty_sync(inode, true);
2857 }
2858 
2859 static inline void clear_file(struct inode *inode, int type)
2860 {
2861 	F2FS_I(inode)->i_advise &= ~type;
2862 	f2fs_mark_inode_dirty_sync(inode, true);
2863 }
2864 
2865 static inline bool f2fs_is_time_consistent(struct inode *inode)
2866 {
2867 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2868 		return false;
2869 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2870 		return false;
2871 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2872 		return false;
2873 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2874 						&F2FS_I(inode)->i_crtime))
2875 		return false;
2876 	return true;
2877 }
2878 
2879 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2880 {
2881 	bool ret;
2882 
2883 	if (dsync) {
2884 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2885 
2886 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2887 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2888 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2889 		return ret;
2890 	}
2891 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2892 			file_keep_isize(inode) ||
2893 			i_size_read(inode) & ~PAGE_MASK)
2894 		return false;
2895 
2896 	if (!f2fs_is_time_consistent(inode))
2897 		return false;
2898 
2899 	spin_lock(&F2FS_I(inode)->i_size_lock);
2900 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2901 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2902 
2903 	return ret;
2904 }
2905 
2906 static inline bool f2fs_readonly(struct super_block *sb)
2907 {
2908 	return sb_rdonly(sb);
2909 }
2910 
2911 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2912 {
2913 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2914 }
2915 
2916 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2917 {
2918 	if (len == 1 && name[0] == '.')
2919 		return true;
2920 
2921 	if (len == 2 && name[0] == '.' && name[1] == '.')
2922 		return true;
2923 
2924 	return false;
2925 }
2926 
2927 static inline bool f2fs_may_extent_tree(struct inode *inode)
2928 {
2929 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2930 
2931 	if (!test_opt(sbi, EXTENT_CACHE) ||
2932 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
2933 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2934 		return false;
2935 
2936 	/*
2937 	 * for recovered files during mount do not create extents
2938 	 * if shrinker is not registered.
2939 	 */
2940 	if (list_empty(&sbi->s_list))
2941 		return false;
2942 
2943 	return S_ISREG(inode->i_mode);
2944 }
2945 
2946 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2947 					size_t size, gfp_t flags)
2948 {
2949 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2950 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2951 		return NULL;
2952 	}
2953 
2954 	return kmalloc(size, flags);
2955 }
2956 
2957 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2958 					size_t size, gfp_t flags)
2959 {
2960 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2961 }
2962 
2963 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2964 					size_t size, gfp_t flags)
2965 {
2966 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2967 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
2968 		return NULL;
2969 	}
2970 
2971 	return kvmalloc(size, flags);
2972 }
2973 
2974 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2975 					size_t size, gfp_t flags)
2976 {
2977 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2978 }
2979 
2980 static inline int get_extra_isize(struct inode *inode)
2981 {
2982 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2983 }
2984 
2985 static inline int get_inline_xattr_addrs(struct inode *inode)
2986 {
2987 	return F2FS_I(inode)->i_inline_xattr_size;
2988 }
2989 
2990 #define f2fs_get_inode_mode(i) \
2991 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2992 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2993 
2994 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2995 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2996 	offsetof(struct f2fs_inode, i_extra_isize))	\
2997 
2998 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2999 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3000 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3001 		sizeof((f2fs_inode)->field))			\
3002 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3003 
3004 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3005 #define MIN_IOSTAT_PERIOD_MS		100
3006 /* maximum period of iostat tracing is 1 day */
3007 #define MAX_IOSTAT_PERIOD_MS		8640000
3008 
3009 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3010 {
3011 	int i;
3012 
3013 	spin_lock(&sbi->iostat_lock);
3014 	for (i = 0; i < NR_IO_TYPE; i++) {
3015 		sbi->rw_iostat[i] = 0;
3016 		sbi->prev_rw_iostat[i] = 0;
3017 	}
3018 	spin_unlock(&sbi->iostat_lock);
3019 }
3020 
3021 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3022 
3023 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3024 			enum iostat_type type, unsigned long long io_bytes)
3025 {
3026 	if (!sbi->iostat_enable)
3027 		return;
3028 	spin_lock(&sbi->iostat_lock);
3029 	sbi->rw_iostat[type] += io_bytes;
3030 
3031 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3032 		sbi->rw_iostat[APP_BUFFERED_IO] =
3033 			sbi->rw_iostat[APP_WRITE_IO] -
3034 			sbi->rw_iostat[APP_DIRECT_IO];
3035 
3036 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3037 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3038 			sbi->rw_iostat[APP_READ_IO] -
3039 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3040 	spin_unlock(&sbi->iostat_lock);
3041 
3042 	f2fs_record_iostat(sbi);
3043 }
3044 
3045 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3046 
3047 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3048 
3049 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3050 					block_t blkaddr, int type);
3051 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3052 					block_t blkaddr, int type)
3053 {
3054 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3055 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3056 			 blkaddr, type);
3057 		f2fs_bug_on(sbi, 1);
3058 	}
3059 }
3060 
3061 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3062 {
3063 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3064 			blkaddr == COMPRESS_ADDR)
3065 		return false;
3066 	return true;
3067 }
3068 
3069 static inline void f2fs_set_page_private(struct page *page,
3070 						unsigned long data)
3071 {
3072 	if (PagePrivate(page))
3073 		return;
3074 
3075 	attach_page_private(page, (void *)data);
3076 }
3077 
3078 static inline void f2fs_clear_page_private(struct page *page)
3079 {
3080 	detach_page_private(page);
3081 }
3082 
3083 /*
3084  * file.c
3085  */
3086 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3087 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3088 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3089 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3090 int f2fs_truncate(struct inode *inode);
3091 int f2fs_getattr(const struct path *path, struct kstat *stat,
3092 			u32 request_mask, unsigned int flags);
3093 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3094 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3095 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3096 int f2fs_precache_extents(struct inode *inode);
3097 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3098 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3099 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3100 int f2fs_pin_file_control(struct inode *inode, bool inc);
3101 
3102 /*
3103  * inode.c
3104  */
3105 void f2fs_set_inode_flags(struct inode *inode);
3106 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3107 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3108 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3109 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3110 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3111 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3112 void f2fs_update_inode_page(struct inode *inode);
3113 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3114 void f2fs_evict_inode(struct inode *inode);
3115 void f2fs_handle_failed_inode(struct inode *inode);
3116 
3117 /*
3118  * namei.c
3119  */
3120 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3121 							bool hot, bool set);
3122 struct dentry *f2fs_get_parent(struct dentry *child);
3123 
3124 /*
3125  * dir.c
3126  */
3127 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3128 int f2fs_init_casefolded_name(const struct inode *dir,
3129 			      struct f2fs_filename *fname);
3130 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3131 			int lookup, struct f2fs_filename *fname);
3132 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3133 			struct f2fs_filename *fname);
3134 void f2fs_free_filename(struct f2fs_filename *fname);
3135 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3136 			const struct f2fs_filename *fname, int *max_slots);
3137 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3138 			unsigned int start_pos, struct fscrypt_str *fstr);
3139 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3140 			struct f2fs_dentry_ptr *d);
3141 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3142 			const struct f2fs_filename *fname, struct page *dpage);
3143 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3144 			unsigned int current_depth);
3145 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3146 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3147 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3148 					 const struct f2fs_filename *fname,
3149 					 struct page **res_page);
3150 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3151 			const struct qstr *child, struct page **res_page);
3152 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3153 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3154 			struct page **page);
3155 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3156 			struct page *page, struct inode *inode);
3157 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3158 			  const struct f2fs_filename *fname);
3159 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3160 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3161 			unsigned int bit_pos);
3162 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3163 			struct inode *inode, nid_t ino, umode_t mode);
3164 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3165 			struct inode *inode, nid_t ino, umode_t mode);
3166 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3167 			struct inode *inode, nid_t ino, umode_t mode);
3168 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3169 			struct inode *dir, struct inode *inode);
3170 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3171 bool f2fs_empty_dir(struct inode *dir);
3172 
3173 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3174 {
3175 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3176 				inode, inode->i_ino, inode->i_mode);
3177 }
3178 
3179 /*
3180  * super.c
3181  */
3182 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3183 void f2fs_inode_synced(struct inode *inode);
3184 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3185 int f2fs_quota_sync(struct super_block *sb, int type);
3186 void f2fs_quota_off_umount(struct super_block *sb);
3187 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3188 int f2fs_sync_fs(struct super_block *sb, int sync);
3189 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3190 
3191 /*
3192  * hash.c
3193  */
3194 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3195 
3196 /*
3197  * node.c
3198  */
3199 struct dnode_of_data;
3200 struct node_info;
3201 
3202 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3203 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3204 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3205 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3206 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3207 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3208 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3209 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3210 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3211 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3212 						struct node_info *ni);
3213 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3214 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3215 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3216 int f2fs_truncate_xattr_node(struct inode *inode);
3217 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3218 					unsigned int seq_id);
3219 int f2fs_remove_inode_page(struct inode *inode);
3220 struct page *f2fs_new_inode_page(struct inode *inode);
3221 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3222 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3223 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3224 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3225 int f2fs_move_node_page(struct page *node_page, int gc_type);
3226 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3227 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3228 			struct writeback_control *wbc, bool atomic,
3229 			unsigned int *seq_id);
3230 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3231 			struct writeback_control *wbc,
3232 			bool do_balance, enum iostat_type io_type);
3233 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3234 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3235 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3236 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3237 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3238 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3239 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3240 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3241 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3242 			unsigned int segno, struct f2fs_summary_block *sum);
3243 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3244 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3245 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3246 int __init f2fs_create_node_manager_caches(void);
3247 void f2fs_destroy_node_manager_caches(void);
3248 
3249 /*
3250  * segment.c
3251  */
3252 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3253 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3254 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3255 void f2fs_drop_inmem_pages(struct inode *inode);
3256 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3257 int f2fs_commit_inmem_pages(struct inode *inode);
3258 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3259 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3260 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3261 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3262 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3263 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3264 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3265 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3266 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3267 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3268 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3269 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3270 					struct cp_control *cpc);
3271 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3272 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3273 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3274 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3275 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3276 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3277 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3278 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3279 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3280 			unsigned int *newseg, bool new_sec, int dir);
3281 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3282 					unsigned int start, unsigned int end);
3283 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3284 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3285 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3286 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3287 					struct cp_control *cpc);
3288 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3289 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3290 					block_t blk_addr);
3291 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3292 						enum iostat_type io_type);
3293 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3294 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3295 			struct f2fs_io_info *fio);
3296 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3297 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3298 			block_t old_blkaddr, block_t new_blkaddr,
3299 			bool recover_curseg, bool recover_newaddr,
3300 			bool from_gc);
3301 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3302 			block_t old_addr, block_t new_addr,
3303 			unsigned char version, bool recover_curseg,
3304 			bool recover_newaddr);
3305 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3306 			block_t old_blkaddr, block_t *new_blkaddr,
3307 			struct f2fs_summary *sum, int type,
3308 			struct f2fs_io_info *fio);
3309 void f2fs_wait_on_page_writeback(struct page *page,
3310 			enum page_type type, bool ordered, bool locked);
3311 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3312 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3313 								block_t len);
3314 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3315 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3316 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3317 			unsigned int val, int alloc);
3318 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3319 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3320 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3321 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3322 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3323 int __init f2fs_create_segment_manager_caches(void);
3324 void f2fs_destroy_segment_manager_caches(void);
3325 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3326 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3327 			enum page_type type, enum temp_type temp);
3328 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3329 			unsigned int segno);
3330 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3331 			unsigned int segno);
3332 
3333 /*
3334  * checkpoint.c
3335  */
3336 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3337 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3338 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3339 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3340 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3341 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3342 					block_t blkaddr, int type);
3343 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3344 			int type, bool sync);
3345 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3346 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3347 			long nr_to_write, enum iostat_type io_type);
3348 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3349 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3350 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3351 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3352 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3353 					unsigned int devidx, int type);
3354 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3355 					unsigned int devidx, int type);
3356 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3357 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3358 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3359 void f2fs_add_orphan_inode(struct inode *inode);
3360 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3361 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3362 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3363 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3364 void f2fs_remove_dirty_inode(struct inode *inode);
3365 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3366 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3367 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3368 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3369 int __init f2fs_create_checkpoint_caches(void);
3370 void f2fs_destroy_checkpoint_caches(void);
3371 
3372 /*
3373  * data.c
3374  */
3375 int __init f2fs_init_bioset(void);
3376 void f2fs_destroy_bioset(void);
3377 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3378 int f2fs_init_bio_entry_cache(void);
3379 void f2fs_destroy_bio_entry_cache(void);
3380 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3381 				struct bio *bio, enum page_type type);
3382 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3383 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3384 				struct inode *inode, struct page *page,
3385 				nid_t ino, enum page_type type);
3386 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3387 					struct bio **bio, struct page *page);
3388 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3389 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3390 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3391 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3392 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3393 			block_t blk_addr, struct bio *bio);
3394 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3395 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3396 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3397 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3398 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3399 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3400 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3401 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3402 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3403 			int op_flags, bool for_write);
3404 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3405 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3406 			bool for_write);
3407 struct page *f2fs_get_new_data_page(struct inode *inode,
3408 			struct page *ipage, pgoff_t index, bool new_i_size);
3409 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3410 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3411 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3412 			int create, int flag);
3413 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3414 			u64 start, u64 len);
3415 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3416 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3417 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3418 int f2fs_write_single_data_page(struct page *page, int *submitted,
3419 				struct bio **bio, sector_t *last_block,
3420 				struct writeback_control *wbc,
3421 				enum iostat_type io_type,
3422 				int compr_blocks);
3423 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3424 			unsigned int length);
3425 int f2fs_release_page(struct page *page, gfp_t wait);
3426 #ifdef CONFIG_MIGRATION
3427 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3428 			struct page *page, enum migrate_mode mode);
3429 #endif
3430 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3431 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3432 int f2fs_init_post_read_processing(void);
3433 void f2fs_destroy_post_read_processing(void);
3434 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3435 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3436 
3437 /*
3438  * gc.c
3439  */
3440 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3441 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3442 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3443 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3444 			unsigned int segno);
3445 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3446 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3447 int __init f2fs_create_garbage_collection_cache(void);
3448 void f2fs_destroy_garbage_collection_cache(void);
3449 
3450 /*
3451  * recovery.c
3452  */
3453 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3454 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3455 
3456 /*
3457  * debug.c
3458  */
3459 #ifdef CONFIG_F2FS_STAT_FS
3460 struct f2fs_stat_info {
3461 	struct list_head stat_list;
3462 	struct f2fs_sb_info *sbi;
3463 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3464 	int main_area_segs, main_area_sections, main_area_zones;
3465 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3466 	unsigned long long hit_total, total_ext;
3467 	int ext_tree, zombie_tree, ext_node;
3468 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3469 	int ndirty_data, ndirty_qdata;
3470 	int inmem_pages;
3471 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3472 	int nats, dirty_nats, sits, dirty_sits;
3473 	int free_nids, avail_nids, alloc_nids;
3474 	int total_count, utilization;
3475 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3476 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3477 	int nr_dio_read, nr_dio_write;
3478 	unsigned int io_skip_bggc, other_skip_bggc;
3479 	int nr_flushing, nr_flushed, flush_list_empty;
3480 	int nr_discarding, nr_discarded;
3481 	int nr_discard_cmd;
3482 	unsigned int undiscard_blks;
3483 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3484 	int compr_inode;
3485 	unsigned long long compr_blocks;
3486 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3487 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3488 	unsigned int bimodal, avg_vblocks;
3489 	int util_free, util_valid, util_invalid;
3490 	int rsvd_segs, overp_segs;
3491 	int dirty_count, node_pages, meta_pages;
3492 	int prefree_count, call_count, cp_count, bg_cp_count;
3493 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3494 	int bg_node_segs, bg_data_segs;
3495 	int tot_blks, data_blks, node_blks;
3496 	int bg_data_blks, bg_node_blks;
3497 	unsigned long long skipped_atomic_files[2];
3498 	int curseg[NR_CURSEG_TYPE];
3499 	int cursec[NR_CURSEG_TYPE];
3500 	int curzone[NR_CURSEG_TYPE];
3501 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3502 	unsigned int full_seg[NR_CURSEG_TYPE];
3503 	unsigned int valid_blks[NR_CURSEG_TYPE];
3504 
3505 	unsigned int meta_count[META_MAX];
3506 	unsigned int segment_count[2];
3507 	unsigned int block_count[2];
3508 	unsigned int inplace_count;
3509 	unsigned long long base_mem, cache_mem, page_mem;
3510 };
3511 
3512 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3513 {
3514 	return (struct f2fs_stat_info *)sbi->stat_info;
3515 }
3516 
3517 #define stat_inc_cp_count(si)		((si)->cp_count++)
3518 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3519 #define stat_inc_call_count(si)		((si)->call_count++)
3520 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3521 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3522 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3523 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3524 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3525 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3526 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3527 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3528 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3529 #define stat_inc_inline_xattr(inode)					\
3530 	do {								\
3531 		if (f2fs_has_inline_xattr(inode))			\
3532 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3533 	} while (0)
3534 #define stat_dec_inline_xattr(inode)					\
3535 	do {								\
3536 		if (f2fs_has_inline_xattr(inode))			\
3537 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3538 	} while (0)
3539 #define stat_inc_inline_inode(inode)					\
3540 	do {								\
3541 		if (f2fs_has_inline_data(inode))			\
3542 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3543 	} while (0)
3544 #define stat_dec_inline_inode(inode)					\
3545 	do {								\
3546 		if (f2fs_has_inline_data(inode))			\
3547 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3548 	} while (0)
3549 #define stat_inc_inline_dir(inode)					\
3550 	do {								\
3551 		if (f2fs_has_inline_dentry(inode))			\
3552 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3553 	} while (0)
3554 #define stat_dec_inline_dir(inode)					\
3555 	do {								\
3556 		if (f2fs_has_inline_dentry(inode))			\
3557 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3558 	} while (0)
3559 #define stat_inc_compr_inode(inode)					\
3560 	do {								\
3561 		if (f2fs_compressed_file(inode))			\
3562 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3563 	} while (0)
3564 #define stat_dec_compr_inode(inode)					\
3565 	do {								\
3566 		if (f2fs_compressed_file(inode))			\
3567 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3568 	} while (0)
3569 #define stat_add_compr_blocks(inode, blocks)				\
3570 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3571 #define stat_sub_compr_blocks(inode, blocks)				\
3572 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3573 #define stat_inc_meta_count(sbi, blkaddr)				\
3574 	do {								\
3575 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3576 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3577 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3578 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3579 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3580 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3581 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3582 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3583 	} while (0)
3584 #define stat_inc_seg_type(sbi, curseg)					\
3585 		((sbi)->segment_count[(curseg)->alloc_type]++)
3586 #define stat_inc_block_count(sbi, curseg)				\
3587 		((sbi)->block_count[(curseg)->alloc_type]++)
3588 #define stat_inc_inplace_blocks(sbi)					\
3589 		(atomic_inc(&(sbi)->inplace_count))
3590 #define stat_update_max_atomic_write(inode)				\
3591 	do {								\
3592 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3593 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3594 		if (cur > max)						\
3595 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3596 	} while (0)
3597 #define stat_inc_volatile_write(inode)					\
3598 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3599 #define stat_dec_volatile_write(inode)					\
3600 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3601 #define stat_update_max_volatile_write(inode)				\
3602 	do {								\
3603 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3604 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3605 		if (cur > max)						\
3606 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3607 	} while (0)
3608 #define stat_inc_seg_count(sbi, type, gc_type)				\
3609 	do {								\
3610 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3611 		si->tot_segs++;						\
3612 		if ((type) == SUM_TYPE_DATA) {				\
3613 			si->data_segs++;				\
3614 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3615 		} else {						\
3616 			si->node_segs++;				\
3617 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3618 		}							\
3619 	} while (0)
3620 
3621 #define stat_inc_tot_blk_count(si, blks)				\
3622 	((si)->tot_blks += (blks))
3623 
3624 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3625 	do {								\
3626 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3627 		stat_inc_tot_blk_count(si, blks);			\
3628 		si->data_blks += (blks);				\
3629 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3630 	} while (0)
3631 
3632 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3633 	do {								\
3634 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3635 		stat_inc_tot_blk_count(si, blks);			\
3636 		si->node_blks += (blks);				\
3637 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3638 	} while (0)
3639 
3640 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3641 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3642 void __init f2fs_create_root_stats(void);
3643 void f2fs_destroy_root_stats(void);
3644 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3645 #else
3646 #define stat_inc_cp_count(si)				do { } while (0)
3647 #define stat_inc_bg_cp_count(si)			do { } while (0)
3648 #define stat_inc_call_count(si)				do { } while (0)
3649 #define stat_inc_bggc_count(si)				do { } while (0)
3650 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3651 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3652 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3653 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3654 #define stat_inc_total_hit(sbi)				do { } while (0)
3655 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3656 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3657 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3658 #define stat_inc_inline_xattr(inode)			do { } while (0)
3659 #define stat_dec_inline_xattr(inode)			do { } while (0)
3660 #define stat_inc_inline_inode(inode)			do { } while (0)
3661 #define stat_dec_inline_inode(inode)			do { } while (0)
3662 #define stat_inc_inline_dir(inode)			do { } while (0)
3663 #define stat_dec_inline_dir(inode)			do { } while (0)
3664 #define stat_inc_compr_inode(inode)			do { } while (0)
3665 #define stat_dec_compr_inode(inode)			do { } while (0)
3666 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3667 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3668 #define stat_inc_atomic_write(inode)			do { } while (0)
3669 #define stat_dec_atomic_write(inode)			do { } while (0)
3670 #define stat_update_max_atomic_write(inode)		do { } while (0)
3671 #define stat_inc_volatile_write(inode)			do { } while (0)
3672 #define stat_dec_volatile_write(inode)			do { } while (0)
3673 #define stat_update_max_volatile_write(inode)		do { } while (0)
3674 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3675 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3676 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3677 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3678 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3679 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3680 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3681 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3682 
3683 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3684 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3685 static inline void __init f2fs_create_root_stats(void) { }
3686 static inline void f2fs_destroy_root_stats(void) { }
3687 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3688 #endif
3689 
3690 extern const struct file_operations f2fs_dir_operations;
3691 #ifdef CONFIG_UNICODE
3692 extern const struct dentry_operations f2fs_dentry_ops;
3693 #endif
3694 extern const struct file_operations f2fs_file_operations;
3695 extern const struct inode_operations f2fs_file_inode_operations;
3696 extern const struct address_space_operations f2fs_dblock_aops;
3697 extern const struct address_space_operations f2fs_node_aops;
3698 extern const struct address_space_operations f2fs_meta_aops;
3699 extern const struct inode_operations f2fs_dir_inode_operations;
3700 extern const struct inode_operations f2fs_symlink_inode_operations;
3701 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3702 extern const struct inode_operations f2fs_special_inode_operations;
3703 extern struct kmem_cache *f2fs_inode_entry_slab;
3704 
3705 /*
3706  * inline.c
3707  */
3708 bool f2fs_may_inline_data(struct inode *inode);
3709 bool f2fs_may_inline_dentry(struct inode *inode);
3710 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3711 void f2fs_truncate_inline_inode(struct inode *inode,
3712 						struct page *ipage, u64 from);
3713 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3714 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3715 int f2fs_convert_inline_inode(struct inode *inode);
3716 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3717 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3718 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3719 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3720 					const struct f2fs_filename *fname,
3721 					struct page **res_page);
3722 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3723 			struct page *ipage);
3724 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3725 			struct inode *inode, nid_t ino, umode_t mode);
3726 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3727 				struct page *page, struct inode *dir,
3728 				struct inode *inode);
3729 bool f2fs_empty_inline_dir(struct inode *dir);
3730 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3731 			struct fscrypt_str *fstr);
3732 int f2fs_inline_data_fiemap(struct inode *inode,
3733 			struct fiemap_extent_info *fieinfo,
3734 			__u64 start, __u64 len);
3735 
3736 /*
3737  * shrinker.c
3738  */
3739 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3740 			struct shrink_control *sc);
3741 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3742 			struct shrink_control *sc);
3743 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3744 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3745 
3746 /*
3747  * extent_cache.c
3748  */
3749 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3750 				struct rb_entry *cached_re, unsigned int ofs);
3751 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3752 				struct rb_root_cached *root,
3753 				struct rb_node **parent,
3754 				unsigned long long key, bool *left_most);
3755 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3756 				struct rb_root_cached *root,
3757 				struct rb_node **parent,
3758 				unsigned int ofs, bool *leftmost);
3759 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3760 		struct rb_entry *cached_re, unsigned int ofs,
3761 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3762 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3763 		bool force, bool *leftmost);
3764 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3765 				struct rb_root_cached *root, bool check_key);
3766 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3767 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3768 void f2fs_drop_extent_tree(struct inode *inode);
3769 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3770 void f2fs_destroy_extent_tree(struct inode *inode);
3771 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3772 			struct extent_info *ei);
3773 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3774 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3775 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3776 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3777 int __init f2fs_create_extent_cache(void);
3778 void f2fs_destroy_extent_cache(void);
3779 
3780 /*
3781  * sysfs.c
3782  */
3783 int __init f2fs_init_sysfs(void);
3784 void f2fs_exit_sysfs(void);
3785 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3786 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3787 
3788 /* verity.c */
3789 extern const struct fsverity_operations f2fs_verityops;
3790 
3791 /*
3792  * crypto support
3793  */
3794 static inline bool f2fs_encrypted_file(struct inode *inode)
3795 {
3796 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3797 }
3798 
3799 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3800 {
3801 #ifdef CONFIG_FS_ENCRYPTION
3802 	file_set_encrypt(inode);
3803 	f2fs_set_inode_flags(inode);
3804 #endif
3805 }
3806 
3807 /*
3808  * Returns true if the reads of the inode's data need to undergo some
3809  * postprocessing step, like decryption or authenticity verification.
3810  */
3811 static inline bool f2fs_post_read_required(struct inode *inode)
3812 {
3813 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3814 		f2fs_compressed_file(inode);
3815 }
3816 
3817 /*
3818  * compress.c
3819  */
3820 #ifdef CONFIG_F2FS_FS_COMPRESSION
3821 bool f2fs_is_compressed_page(struct page *page);
3822 struct page *f2fs_compress_control_page(struct page *page);
3823 int f2fs_prepare_compress_overwrite(struct inode *inode,
3824 			struct page **pagep, pgoff_t index, void **fsdata);
3825 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3826 					pgoff_t index, unsigned copied);
3827 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3828 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3829 bool f2fs_is_compress_backend_ready(struct inode *inode);
3830 int f2fs_init_compress_mempool(void);
3831 void f2fs_destroy_compress_mempool(void);
3832 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3833 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3834 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3835 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3836 int f2fs_write_multi_pages(struct compress_ctx *cc,
3837 						int *submitted,
3838 						struct writeback_control *wbc,
3839 						enum iostat_type io_type);
3840 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3841 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3842 				unsigned nr_pages, sector_t *last_block_in_bio,
3843 				bool is_readahead, bool for_write);
3844 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3845 void f2fs_free_dic(struct decompress_io_ctx *dic);
3846 void f2fs_decompress_end_io(struct page **rpages,
3847 			unsigned int cluster_size, bool err, bool verity);
3848 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3849 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3850 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3851 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3852 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3853 int __init f2fs_init_compress_cache(void);
3854 void f2fs_destroy_compress_cache(void);
3855 #else
3856 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3857 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3858 {
3859 	if (!f2fs_compressed_file(inode))
3860 		return true;
3861 	/* not support compression */
3862 	return false;
3863 }
3864 static inline struct page *f2fs_compress_control_page(struct page *page)
3865 {
3866 	WARN_ON_ONCE(1);
3867 	return ERR_PTR(-EINVAL);
3868 }
3869 static inline int f2fs_init_compress_mempool(void) { return 0; }
3870 static inline void f2fs_destroy_compress_mempool(void) { }
3871 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3872 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3873 static inline int __init f2fs_init_compress_cache(void) { return 0; }
3874 static inline void f2fs_destroy_compress_cache(void) { }
3875 #endif
3876 
3877 static inline void set_compress_context(struct inode *inode)
3878 {
3879 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3880 
3881 	F2FS_I(inode)->i_compress_algorithm =
3882 			F2FS_OPTION(sbi).compress_algorithm;
3883 	F2FS_I(inode)->i_log_cluster_size =
3884 			F2FS_OPTION(sbi).compress_log_size;
3885 	F2FS_I(inode)->i_cluster_size =
3886 			1 << F2FS_I(inode)->i_log_cluster_size;
3887 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3888 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3889 	stat_inc_compr_inode(inode);
3890 	f2fs_mark_inode_dirty_sync(inode, true);
3891 }
3892 
3893 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3894 {
3895 	struct f2fs_inode_info *fi = F2FS_I(inode);
3896 
3897 	if (!f2fs_compressed_file(inode))
3898 		return true;
3899 	if (S_ISREG(inode->i_mode) &&
3900 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3901 		return false;
3902 
3903 	fi->i_flags &= ~F2FS_COMPR_FL;
3904 	stat_dec_compr_inode(inode);
3905 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3906 	f2fs_mark_inode_dirty_sync(inode, true);
3907 	return true;
3908 }
3909 
3910 #define F2FS_FEATURE_FUNCS(name, flagname) \
3911 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3912 { \
3913 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3914 }
3915 
3916 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3917 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3918 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3919 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3920 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3921 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3922 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3923 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3924 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3925 F2FS_FEATURE_FUNCS(verity, VERITY);
3926 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3927 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3928 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3929 
3930 #ifdef CONFIG_BLK_DEV_ZONED
3931 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3932 				    block_t blkaddr)
3933 {
3934 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3935 
3936 	return test_bit(zno, FDEV(devi).blkz_seq);
3937 }
3938 #endif
3939 
3940 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3941 {
3942 	return f2fs_sb_has_blkzoned(sbi);
3943 }
3944 
3945 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3946 {
3947 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3948 	       bdev_is_zoned(bdev);
3949 }
3950 
3951 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3952 {
3953 	int i;
3954 
3955 	if (!f2fs_is_multi_device(sbi))
3956 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3957 
3958 	for (i = 0; i < sbi->s_ndevs; i++)
3959 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3960 			return true;
3961 	return false;
3962 }
3963 
3964 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3965 {
3966 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3967 					f2fs_hw_should_discard(sbi);
3968 }
3969 
3970 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3971 {
3972 	int i;
3973 
3974 	if (!f2fs_is_multi_device(sbi))
3975 		return bdev_read_only(sbi->sb->s_bdev);
3976 
3977 	for (i = 0; i < sbi->s_ndevs; i++)
3978 		if (bdev_read_only(FDEV(i).bdev))
3979 			return true;
3980 	return false;
3981 }
3982 
3983 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
3984 {
3985 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
3986 }
3987 
3988 static inline bool f2fs_may_compress(struct inode *inode)
3989 {
3990 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
3991 				f2fs_is_atomic_file(inode) ||
3992 				f2fs_is_volatile_file(inode))
3993 		return false;
3994 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
3995 }
3996 
3997 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
3998 						u64 blocks, bool add)
3999 {
4000 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4001 	struct f2fs_inode_info *fi = F2FS_I(inode);
4002 
4003 	/* don't update i_compr_blocks if saved blocks were released */
4004 	if (!add && !atomic_read(&fi->i_compr_blocks))
4005 		return;
4006 
4007 	if (add) {
4008 		atomic_add(diff, &fi->i_compr_blocks);
4009 		stat_add_compr_blocks(inode, diff);
4010 	} else {
4011 		atomic_sub(diff, &fi->i_compr_blocks);
4012 		stat_sub_compr_blocks(inode, diff);
4013 	}
4014 	f2fs_mark_inode_dirty_sync(inode, true);
4015 }
4016 
4017 static inline int block_unaligned_IO(struct inode *inode,
4018 				struct kiocb *iocb, struct iov_iter *iter)
4019 {
4020 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4021 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4022 	loff_t offset = iocb->ki_pos;
4023 	unsigned long align = offset | iov_iter_alignment(iter);
4024 
4025 	return align & blocksize_mask;
4026 }
4027 
4028 static inline int allow_outplace_dio(struct inode *inode,
4029 				struct kiocb *iocb, struct iov_iter *iter)
4030 {
4031 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4032 	int rw = iov_iter_rw(iter);
4033 
4034 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4035 				!block_unaligned_IO(inode, iocb, iter));
4036 }
4037 
4038 static inline bool f2fs_force_buffered_io(struct inode *inode,
4039 				struct kiocb *iocb, struct iov_iter *iter)
4040 {
4041 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4042 	int rw = iov_iter_rw(iter);
4043 
4044 	if (f2fs_post_read_required(inode))
4045 		return true;
4046 	if (f2fs_is_multi_device(sbi))
4047 		return true;
4048 	/*
4049 	 * for blkzoned device, fallback direct IO to buffered IO, so
4050 	 * all IOs can be serialized by log-structured write.
4051 	 */
4052 	if (f2fs_sb_has_blkzoned(sbi))
4053 		return true;
4054 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4055 		if (block_unaligned_IO(inode, iocb, iter))
4056 			return true;
4057 		if (F2FS_IO_ALIGNED(sbi))
4058 			return true;
4059 	}
4060 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4061 					!IS_SWAPFILE(inode))
4062 		return true;
4063 
4064 	return false;
4065 }
4066 
4067 #ifdef CONFIG_F2FS_FAULT_INJECTION
4068 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4069 							unsigned int type);
4070 #else
4071 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4072 #endif
4073 
4074 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4075 {
4076 #ifdef CONFIG_QUOTA
4077 	if (f2fs_sb_has_quota_ino(sbi))
4078 		return true;
4079 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4080 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4081 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4082 		return true;
4083 #endif
4084 	return false;
4085 }
4086 
4087 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4088 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4089 
4090 #endif /* _LINUX_F2FS_H */
4091