xref: /openbmc/linux/fs/f2fs/f2fs.h (revision f80d2f08)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
28 #include <linux/fscrypt.h>
29 
30 #ifdef CONFIG_F2FS_CHECK_FS
31 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
32 #else
33 #define f2fs_bug_on(sbi, condition)					\
34 	do {								\
35 		if (unlikely(condition)) {				\
36 			WARN_ON(1);					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 		}							\
39 	} while (0)
40 #endif
41 
42 enum {
43 	FAULT_KMALLOC,
44 	FAULT_KVMALLOC,
45 	FAULT_PAGE_ALLOC,
46 	FAULT_PAGE_GET,
47 	FAULT_ALLOC_BIO,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_TRUNCATE,
54 	FAULT_READ_IO,
55 	FAULT_CHECKPOINT,
56 	FAULT_DISCARD,
57 	FAULT_WRITE_IO,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_BG_GC		0x00000001
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_ADAPTIVE		0x00020000
95 #define F2FS_MOUNT_LFS			0x00040000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	bool test_dummy_encryption;	/* test dummy encryption */
140 };
141 
142 #define F2FS_FEATURE_ENCRYPT		0x0001
143 #define F2FS_FEATURE_BLKZONED		0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
146 #define F2FS_FEATURE_PRJQUOTA		0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
149 #define F2FS_FEATURE_QUOTA_INO		0x0080
150 #define F2FS_FEATURE_INODE_CRTIME	0x0100
151 #define F2FS_FEATURE_LOST_FOUND		0x0200
152 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
153 #define F2FS_FEATURE_SB_CHKSUM		0x0800
154 
155 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
156 	((raw_super->feature & cpu_to_le32(mask)) != 0)
157 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
158 #define F2FS_SET_FEATURE(sbi, mask)					\
159 	(sbi->raw_super->feature |= cpu_to_le32(mask))
160 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
161 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
162 
163 /*
164  * Default values for user and/or group using reserved blocks
165  */
166 #define	F2FS_DEF_RESUID		0
167 #define	F2FS_DEF_RESGID		0
168 
169 /*
170  * For checkpoint manager
171  */
172 enum {
173 	NAT_BITMAP,
174 	SIT_BITMAP
175 };
176 
177 #define	CP_UMOUNT	0x00000001
178 #define	CP_FASTBOOT	0x00000002
179 #define	CP_SYNC		0x00000004
180 #define	CP_RECOVERY	0x00000008
181 #define	CP_DISCARD	0x00000010
182 #define CP_TRIMMED	0x00000020
183 #define CP_PAUSE	0x00000040
184 
185 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
186 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
187 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
188 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
189 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
190 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
191 #define DEF_CP_INTERVAL			60	/* 60 secs */
192 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
193 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
194 
195 struct cp_control {
196 	int reason;
197 	__u64 trim_start;
198 	__u64 trim_end;
199 	__u64 trim_minlen;
200 };
201 
202 /*
203  * indicate meta/data type
204  */
205 enum {
206 	META_CP,
207 	META_NAT,
208 	META_SIT,
209 	META_SSA,
210 	META_MAX,
211 	META_POR,
212 	DATA_GENERIC,
213 	META_GENERIC,
214 };
215 
216 /* for the list of ino */
217 enum {
218 	ORPHAN_INO,		/* for orphan ino list */
219 	APPEND_INO,		/* for append ino list */
220 	UPDATE_INO,		/* for update ino list */
221 	TRANS_DIR_INO,		/* for trasactions dir ino list */
222 	FLUSH_INO,		/* for multiple device flushing */
223 	MAX_INO_ENTRY,		/* max. list */
224 };
225 
226 struct ino_entry {
227 	struct list_head list;		/* list head */
228 	nid_t ino;			/* inode number */
229 	unsigned int dirty_device;	/* dirty device bitmap */
230 };
231 
232 /* for the list of inodes to be GCed */
233 struct inode_entry {
234 	struct list_head list;	/* list head */
235 	struct inode *inode;	/* vfs inode pointer */
236 };
237 
238 struct fsync_node_entry {
239 	struct list_head list;	/* list head */
240 	struct page *page;	/* warm node page pointer */
241 	unsigned int seq_id;	/* sequence id */
242 };
243 
244 /* for the bitmap indicate blocks to be discarded */
245 struct discard_entry {
246 	struct list_head list;	/* list head */
247 	block_t start_blkaddr;	/* start blockaddr of current segment */
248 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
249 };
250 
251 /* default discard granularity of inner discard thread, unit: block count */
252 #define DEFAULT_DISCARD_GRANULARITY		16
253 
254 /* max discard pend list number */
255 #define MAX_PLIST_NUM		512
256 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
257 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
258 
259 enum {
260 	D_PREP,			/* initial */
261 	D_PARTIAL,		/* partially submitted */
262 	D_SUBMIT,		/* all submitted */
263 	D_DONE,			/* finished */
264 };
265 
266 struct discard_info {
267 	block_t lstart;			/* logical start address */
268 	block_t len;			/* length */
269 	block_t start;			/* actual start address in dev */
270 };
271 
272 struct discard_cmd {
273 	struct rb_node rb_node;		/* rb node located in rb-tree */
274 	union {
275 		struct {
276 			block_t lstart;	/* logical start address */
277 			block_t len;	/* length */
278 			block_t start;	/* actual start address in dev */
279 		};
280 		struct discard_info di;	/* discard info */
281 
282 	};
283 	struct list_head list;		/* command list */
284 	struct completion wait;		/* compleation */
285 	struct block_device *bdev;	/* bdev */
286 	unsigned short ref;		/* reference count */
287 	unsigned char state;		/* state */
288 	unsigned char queued;		/* queued discard */
289 	int error;			/* bio error */
290 	spinlock_t lock;		/* for state/bio_ref updating */
291 	unsigned short bio_ref;		/* bio reference count */
292 };
293 
294 enum {
295 	DPOLICY_BG,
296 	DPOLICY_FORCE,
297 	DPOLICY_FSTRIM,
298 	DPOLICY_UMOUNT,
299 	MAX_DPOLICY,
300 };
301 
302 struct discard_policy {
303 	int type;			/* type of discard */
304 	unsigned int min_interval;	/* used for candidates exist */
305 	unsigned int mid_interval;	/* used for device busy */
306 	unsigned int max_interval;	/* used for candidates not exist */
307 	unsigned int max_requests;	/* # of discards issued per round */
308 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
309 	bool io_aware;			/* issue discard in idle time */
310 	bool sync;			/* submit discard with REQ_SYNC flag */
311 	bool ordered;			/* issue discard by lba order */
312 	unsigned int granularity;	/* discard granularity */
313 };
314 
315 struct discard_cmd_control {
316 	struct task_struct *f2fs_issue_discard;	/* discard thread */
317 	struct list_head entry_list;		/* 4KB discard entry list */
318 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
319 	struct list_head wait_list;		/* store on-flushing entries */
320 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
321 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
322 	unsigned int discard_wake;		/* to wake up discard thread */
323 	struct mutex cmd_lock;
324 	unsigned int nr_discards;		/* # of discards in the list */
325 	unsigned int max_discards;		/* max. discards to be issued */
326 	unsigned int discard_granularity;	/* discard granularity */
327 	unsigned int undiscard_blks;		/* # of undiscard blocks */
328 	unsigned int next_pos;			/* next discard position */
329 	atomic_t issued_discard;		/* # of issued discard */
330 	atomic_t queued_discard;		/* # of queued discard */
331 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
332 	struct rb_root_cached root;		/* root of discard rb-tree */
333 	bool rbtree_check;			/* config for consistence check */
334 };
335 
336 /* for the list of fsync inodes, used only during recovery */
337 struct fsync_inode_entry {
338 	struct list_head list;	/* list head */
339 	struct inode *inode;	/* vfs inode pointer */
340 	block_t blkaddr;	/* block address locating the last fsync */
341 	block_t last_dentry;	/* block address locating the last dentry */
342 };
343 
344 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
345 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
346 
347 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
348 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
349 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
350 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
351 
352 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
353 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
354 
355 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
356 {
357 	int before = nats_in_cursum(journal);
358 
359 	journal->n_nats = cpu_to_le16(before + i);
360 	return before;
361 }
362 
363 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
364 {
365 	int before = sits_in_cursum(journal);
366 
367 	journal->n_sits = cpu_to_le16(before + i);
368 	return before;
369 }
370 
371 static inline bool __has_cursum_space(struct f2fs_journal *journal,
372 							int size, int type)
373 {
374 	if (type == NAT_JOURNAL)
375 		return size <= MAX_NAT_JENTRIES(journal);
376 	return size <= MAX_SIT_JENTRIES(journal);
377 }
378 
379 /*
380  * ioctl commands
381  */
382 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
383 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
384 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
385 
386 #define F2FS_IOCTL_MAGIC		0xf5
387 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
388 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
389 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
390 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
391 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
392 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
393 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
394 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
395 						struct f2fs_defragment)
396 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
397 						struct f2fs_move_range)
398 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
399 						struct f2fs_flush_device)
400 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
401 						struct f2fs_gc_range)
402 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
403 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
404 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
405 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
406 
407 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
408 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
409 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
410 
411 /*
412  * should be same as XFS_IOC_GOINGDOWN.
413  * Flags for going down operation used by FS_IOC_GOINGDOWN
414  */
415 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
416 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
417 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
418 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
419 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
420 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
421 
422 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
423 /*
424  * ioctl commands in 32 bit emulation
425  */
426 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
427 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
428 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
429 #endif
430 
431 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
432 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
433 
434 struct f2fs_gc_range {
435 	u32 sync;
436 	u64 start;
437 	u64 len;
438 };
439 
440 struct f2fs_defragment {
441 	u64 start;
442 	u64 len;
443 };
444 
445 struct f2fs_move_range {
446 	u32 dst_fd;		/* destination fd */
447 	u64 pos_in;		/* start position in src_fd */
448 	u64 pos_out;		/* start position in dst_fd */
449 	u64 len;		/* size to move */
450 };
451 
452 struct f2fs_flush_device {
453 	u32 dev_num;		/* device number to flush */
454 	u32 segments;		/* # of segments to flush */
455 };
456 
457 /* for inline stuff */
458 #define DEF_INLINE_RESERVED_SIZE	1
459 #define DEF_MIN_INLINE_SIZE		1
460 static inline int get_extra_isize(struct inode *inode);
461 static inline int get_inline_xattr_addrs(struct inode *inode);
462 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
463 				(CUR_ADDRS_PER_INODE(inode) -		\
464 				get_inline_xattr_addrs(inode) -	\
465 				DEF_INLINE_RESERVED_SIZE))
466 
467 /* for inline dir */
468 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
469 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
470 				BITS_PER_BYTE + 1))
471 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
472 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
473 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
474 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
475 				NR_INLINE_DENTRY(inode) + \
476 				INLINE_DENTRY_BITMAP_SIZE(inode)))
477 
478 /*
479  * For INODE and NODE manager
480  */
481 /* for directory operations */
482 struct f2fs_dentry_ptr {
483 	struct inode *inode;
484 	void *bitmap;
485 	struct f2fs_dir_entry *dentry;
486 	__u8 (*filename)[F2FS_SLOT_LEN];
487 	int max;
488 	int nr_bitmap;
489 };
490 
491 static inline void make_dentry_ptr_block(struct inode *inode,
492 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
493 {
494 	d->inode = inode;
495 	d->max = NR_DENTRY_IN_BLOCK;
496 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
497 	d->bitmap = t->dentry_bitmap;
498 	d->dentry = t->dentry;
499 	d->filename = t->filename;
500 }
501 
502 static inline void make_dentry_ptr_inline(struct inode *inode,
503 					struct f2fs_dentry_ptr *d, void *t)
504 {
505 	int entry_cnt = NR_INLINE_DENTRY(inode);
506 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
507 	int reserved_size = INLINE_RESERVED_SIZE(inode);
508 
509 	d->inode = inode;
510 	d->max = entry_cnt;
511 	d->nr_bitmap = bitmap_size;
512 	d->bitmap = t;
513 	d->dentry = t + bitmap_size + reserved_size;
514 	d->filename = t + bitmap_size + reserved_size +
515 					SIZE_OF_DIR_ENTRY * entry_cnt;
516 }
517 
518 /*
519  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
520  * as its node offset to distinguish from index node blocks.
521  * But some bits are used to mark the node block.
522  */
523 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
524 				>> OFFSET_BIT_SHIFT)
525 enum {
526 	ALLOC_NODE,			/* allocate a new node page if needed */
527 	LOOKUP_NODE,			/* look up a node without readahead */
528 	LOOKUP_NODE_RA,			/*
529 					 * look up a node with readahead called
530 					 * by get_data_block.
531 					 */
532 };
533 
534 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
535 
536 /* maximum retry quota flush count */
537 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
538 
539 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
540 
541 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
542 
543 /* for in-memory extent cache entry */
544 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
545 
546 /* number of extent info in extent cache we try to shrink */
547 #define EXTENT_CACHE_SHRINK_NUMBER	128
548 
549 struct rb_entry {
550 	struct rb_node rb_node;		/* rb node located in rb-tree */
551 	unsigned int ofs;		/* start offset of the entry */
552 	unsigned int len;		/* length of the entry */
553 };
554 
555 struct extent_info {
556 	unsigned int fofs;		/* start offset in a file */
557 	unsigned int len;		/* length of the extent */
558 	u32 blk;			/* start block address of the extent */
559 };
560 
561 struct extent_node {
562 	struct rb_node rb_node;		/* rb node located in rb-tree */
563 	struct extent_info ei;		/* extent info */
564 	struct list_head list;		/* node in global extent list of sbi */
565 	struct extent_tree *et;		/* extent tree pointer */
566 };
567 
568 struct extent_tree {
569 	nid_t ino;			/* inode number */
570 	struct rb_root_cached root;	/* root of extent info rb-tree */
571 	struct extent_node *cached_en;	/* recently accessed extent node */
572 	struct extent_info largest;	/* largested extent info */
573 	struct list_head list;		/* to be used by sbi->zombie_list */
574 	rwlock_t lock;			/* protect extent info rb-tree */
575 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
576 	bool largest_updated;		/* largest extent updated */
577 };
578 
579 /*
580  * This structure is taken from ext4_map_blocks.
581  *
582  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
583  */
584 #define F2FS_MAP_NEW		(1 << BH_New)
585 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
586 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
587 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
588 				F2FS_MAP_UNWRITTEN)
589 
590 struct f2fs_map_blocks {
591 	block_t m_pblk;
592 	block_t m_lblk;
593 	unsigned int m_len;
594 	unsigned int m_flags;
595 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
596 	pgoff_t *m_next_extent;		/* point to next possible extent */
597 	int m_seg_type;
598 	bool m_may_create;		/* indicate it is from write path */
599 };
600 
601 /* for flag in get_data_block */
602 enum {
603 	F2FS_GET_BLOCK_DEFAULT,
604 	F2FS_GET_BLOCK_FIEMAP,
605 	F2FS_GET_BLOCK_BMAP,
606 	F2FS_GET_BLOCK_DIO,
607 	F2FS_GET_BLOCK_PRE_DIO,
608 	F2FS_GET_BLOCK_PRE_AIO,
609 	F2FS_GET_BLOCK_PRECACHE,
610 };
611 
612 /*
613  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
614  */
615 #define FADVISE_COLD_BIT	0x01
616 #define FADVISE_LOST_PINO_BIT	0x02
617 #define FADVISE_ENCRYPT_BIT	0x04
618 #define FADVISE_ENC_NAME_BIT	0x08
619 #define FADVISE_KEEP_SIZE_BIT	0x10
620 #define FADVISE_HOT_BIT		0x20
621 #define FADVISE_VERITY_BIT	0x40	/* reserved */
622 
623 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
624 
625 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
626 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
627 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
628 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
629 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
630 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
631 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
632 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
633 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
634 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
635 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
636 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
637 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
638 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
639 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
640 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
641 
642 #define DEF_DIR_LEVEL		0
643 
644 enum {
645 	GC_FAILURE_PIN,
646 	GC_FAILURE_ATOMIC,
647 	MAX_GC_FAILURE
648 };
649 
650 struct f2fs_inode_info {
651 	struct inode vfs_inode;		/* serve a vfs inode */
652 	unsigned long i_flags;		/* keep an inode flags for ioctl */
653 	unsigned char i_advise;		/* use to give file attribute hints */
654 	unsigned char i_dir_level;	/* use for dentry level for large dir */
655 	unsigned int i_current_depth;	/* only for directory depth */
656 	/* for gc failure statistic */
657 	unsigned int i_gc_failures[MAX_GC_FAILURE];
658 	unsigned int i_pino;		/* parent inode number */
659 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
660 
661 	/* Use below internally in f2fs*/
662 	unsigned long flags;		/* use to pass per-file flags */
663 	struct rw_semaphore i_sem;	/* protect fi info */
664 	atomic_t dirty_pages;		/* # of dirty pages */
665 	f2fs_hash_t chash;		/* hash value of given file name */
666 	unsigned int clevel;		/* maximum level of given file name */
667 	struct task_struct *task;	/* lookup and create consistency */
668 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
669 	nid_t i_xattr_nid;		/* node id that contains xattrs */
670 	loff_t	last_disk_size;		/* lastly written file size */
671 
672 #ifdef CONFIG_QUOTA
673 	struct dquot *i_dquot[MAXQUOTAS];
674 
675 	/* quota space reservation, managed internally by quota code */
676 	qsize_t i_reserved_quota;
677 #endif
678 	struct list_head dirty_list;	/* dirty list for dirs and files */
679 	struct list_head gdirty_list;	/* linked in global dirty list */
680 	struct list_head inmem_ilist;	/* list for inmem inodes */
681 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
682 	struct task_struct *inmem_task;	/* store inmemory task */
683 	struct mutex inmem_lock;	/* lock for inmemory pages */
684 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
685 
686 	/* avoid racing between foreground op and gc */
687 	struct rw_semaphore i_gc_rwsem[2];
688 	struct rw_semaphore i_mmap_sem;
689 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
690 
691 	int i_extra_isize;		/* size of extra space located in i_addr */
692 	kprojid_t i_projid;		/* id for project quota */
693 	int i_inline_xattr_size;	/* inline xattr size */
694 	struct timespec64 i_crtime;	/* inode creation time */
695 	struct timespec64 i_disk_time[4];/* inode disk times */
696 };
697 
698 static inline void get_extent_info(struct extent_info *ext,
699 					struct f2fs_extent *i_ext)
700 {
701 	ext->fofs = le32_to_cpu(i_ext->fofs);
702 	ext->blk = le32_to_cpu(i_ext->blk);
703 	ext->len = le32_to_cpu(i_ext->len);
704 }
705 
706 static inline void set_raw_extent(struct extent_info *ext,
707 					struct f2fs_extent *i_ext)
708 {
709 	i_ext->fofs = cpu_to_le32(ext->fofs);
710 	i_ext->blk = cpu_to_le32(ext->blk);
711 	i_ext->len = cpu_to_le32(ext->len);
712 }
713 
714 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
715 						u32 blk, unsigned int len)
716 {
717 	ei->fofs = fofs;
718 	ei->blk = blk;
719 	ei->len = len;
720 }
721 
722 static inline bool __is_discard_mergeable(struct discard_info *back,
723 			struct discard_info *front, unsigned int max_len)
724 {
725 	return (back->lstart + back->len == front->lstart) &&
726 		(back->len + front->len <= max_len);
727 }
728 
729 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
730 			struct discard_info *back, unsigned int max_len)
731 {
732 	return __is_discard_mergeable(back, cur, max_len);
733 }
734 
735 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
736 			struct discard_info *front, unsigned int max_len)
737 {
738 	return __is_discard_mergeable(cur, front, max_len);
739 }
740 
741 static inline bool __is_extent_mergeable(struct extent_info *back,
742 						struct extent_info *front)
743 {
744 	return (back->fofs + back->len == front->fofs &&
745 			back->blk + back->len == front->blk);
746 }
747 
748 static inline bool __is_back_mergeable(struct extent_info *cur,
749 						struct extent_info *back)
750 {
751 	return __is_extent_mergeable(back, cur);
752 }
753 
754 static inline bool __is_front_mergeable(struct extent_info *cur,
755 						struct extent_info *front)
756 {
757 	return __is_extent_mergeable(cur, front);
758 }
759 
760 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
761 static inline void __try_update_largest_extent(struct extent_tree *et,
762 						struct extent_node *en)
763 {
764 	if (en->ei.len > et->largest.len) {
765 		et->largest = en->ei;
766 		et->largest_updated = true;
767 	}
768 }
769 
770 /*
771  * For free nid management
772  */
773 enum nid_state {
774 	FREE_NID,		/* newly added to free nid list */
775 	PREALLOC_NID,		/* it is preallocated */
776 	MAX_NID_STATE,
777 };
778 
779 struct f2fs_nm_info {
780 	block_t nat_blkaddr;		/* base disk address of NAT */
781 	nid_t max_nid;			/* maximum possible node ids */
782 	nid_t available_nids;		/* # of available node ids */
783 	nid_t next_scan_nid;		/* the next nid to be scanned */
784 	unsigned int ram_thresh;	/* control the memory footprint */
785 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
786 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
787 
788 	/* NAT cache management */
789 	struct radix_tree_root nat_root;/* root of the nat entry cache */
790 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
791 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
792 	struct list_head nat_entries;	/* cached nat entry list (clean) */
793 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
794 	unsigned int nat_cnt;		/* the # of cached nat entries */
795 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
796 	unsigned int nat_blocks;	/* # of nat blocks */
797 
798 	/* free node ids management */
799 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
800 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
801 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
802 	spinlock_t nid_list_lock;	/* protect nid lists ops */
803 	struct mutex build_lock;	/* lock for build free nids */
804 	unsigned char **free_nid_bitmap;
805 	unsigned char *nat_block_bitmap;
806 	unsigned short *free_nid_count;	/* free nid count of NAT block */
807 
808 	/* for checkpoint */
809 	char *nat_bitmap;		/* NAT bitmap pointer */
810 
811 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
812 	unsigned char *nat_bits;	/* NAT bits blocks */
813 	unsigned char *full_nat_bits;	/* full NAT pages */
814 	unsigned char *empty_nat_bits;	/* empty NAT pages */
815 #ifdef CONFIG_F2FS_CHECK_FS
816 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
817 #endif
818 	int bitmap_size;		/* bitmap size */
819 };
820 
821 /*
822  * this structure is used as one of function parameters.
823  * all the information are dedicated to a given direct node block determined
824  * by the data offset in a file.
825  */
826 struct dnode_of_data {
827 	struct inode *inode;		/* vfs inode pointer */
828 	struct page *inode_page;	/* its inode page, NULL is possible */
829 	struct page *node_page;		/* cached direct node page */
830 	nid_t nid;			/* node id of the direct node block */
831 	unsigned int ofs_in_node;	/* data offset in the node page */
832 	bool inode_page_locked;		/* inode page is locked or not */
833 	bool node_changed;		/* is node block changed */
834 	char cur_level;			/* level of hole node page */
835 	char max_level;			/* level of current page located */
836 	block_t	data_blkaddr;		/* block address of the node block */
837 };
838 
839 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
840 		struct page *ipage, struct page *npage, nid_t nid)
841 {
842 	memset(dn, 0, sizeof(*dn));
843 	dn->inode = inode;
844 	dn->inode_page = ipage;
845 	dn->node_page = npage;
846 	dn->nid = nid;
847 }
848 
849 /*
850  * For SIT manager
851  *
852  * By default, there are 6 active log areas across the whole main area.
853  * When considering hot and cold data separation to reduce cleaning overhead,
854  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
855  * respectively.
856  * In the current design, you should not change the numbers intentionally.
857  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
858  * logs individually according to the underlying devices. (default: 6)
859  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
860  * data and 8 for node logs.
861  */
862 #define	NR_CURSEG_DATA_TYPE	(3)
863 #define NR_CURSEG_NODE_TYPE	(3)
864 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
865 
866 enum {
867 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
868 	CURSEG_WARM_DATA,	/* data blocks */
869 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
870 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
871 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
872 	CURSEG_COLD_NODE,	/* indirect node blocks */
873 	NO_CHECK_TYPE,
874 };
875 
876 struct flush_cmd {
877 	struct completion wait;
878 	struct llist_node llnode;
879 	nid_t ino;
880 	int ret;
881 };
882 
883 struct flush_cmd_control {
884 	struct task_struct *f2fs_issue_flush;	/* flush thread */
885 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
886 	atomic_t issued_flush;			/* # of issued flushes */
887 	atomic_t queued_flush;			/* # of queued flushes */
888 	struct llist_head issue_list;		/* list for command issue */
889 	struct llist_node *dispatch_list;	/* list for command dispatch */
890 };
891 
892 struct f2fs_sm_info {
893 	struct sit_info *sit_info;		/* whole segment information */
894 	struct free_segmap_info *free_info;	/* free segment information */
895 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
896 	struct curseg_info *curseg_array;	/* active segment information */
897 
898 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
899 
900 	block_t seg0_blkaddr;		/* block address of 0'th segment */
901 	block_t main_blkaddr;		/* start block address of main area */
902 	block_t ssa_blkaddr;		/* start block address of SSA area */
903 
904 	unsigned int segment_count;	/* total # of segments */
905 	unsigned int main_segments;	/* # of segments in main area */
906 	unsigned int reserved_segments;	/* # of reserved segments */
907 	unsigned int ovp_segments;	/* # of overprovision segments */
908 
909 	/* a threshold to reclaim prefree segments */
910 	unsigned int rec_prefree_segments;
911 
912 	/* for batched trimming */
913 	unsigned int trim_sections;		/* # of sections to trim */
914 
915 	struct list_head sit_entry_set;	/* sit entry set list */
916 
917 	unsigned int ipu_policy;	/* in-place-update policy */
918 	unsigned int min_ipu_util;	/* in-place-update threshold */
919 	unsigned int min_fsync_blocks;	/* threshold for fsync */
920 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
921 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
922 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
923 
924 	/* for flush command control */
925 	struct flush_cmd_control *fcc_info;
926 
927 	/* for discard command control */
928 	struct discard_cmd_control *dcc_info;
929 };
930 
931 /*
932  * For superblock
933  */
934 /*
935  * COUNT_TYPE for monitoring
936  *
937  * f2fs monitors the number of several block types such as on-writeback,
938  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
939  */
940 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
941 enum count_type {
942 	F2FS_DIRTY_DENTS,
943 	F2FS_DIRTY_DATA,
944 	F2FS_DIRTY_QDATA,
945 	F2FS_DIRTY_NODES,
946 	F2FS_DIRTY_META,
947 	F2FS_INMEM_PAGES,
948 	F2FS_DIRTY_IMETA,
949 	F2FS_WB_CP_DATA,
950 	F2FS_WB_DATA,
951 	F2FS_RD_DATA,
952 	F2FS_RD_NODE,
953 	F2FS_RD_META,
954 	F2FS_DIO_WRITE,
955 	F2FS_DIO_READ,
956 	NR_COUNT_TYPE,
957 };
958 
959 /*
960  * The below are the page types of bios used in submit_bio().
961  * The available types are:
962  * DATA			User data pages. It operates as async mode.
963  * NODE			Node pages. It operates as async mode.
964  * META			FS metadata pages such as SIT, NAT, CP.
965  * NR_PAGE_TYPE		The number of page types.
966  * META_FLUSH		Make sure the previous pages are written
967  *			with waiting the bio's completion
968  * ...			Only can be used with META.
969  */
970 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
971 enum page_type {
972 	DATA,
973 	NODE,
974 	META,
975 	NR_PAGE_TYPE,
976 	META_FLUSH,
977 	INMEM,		/* the below types are used by tracepoints only. */
978 	INMEM_DROP,
979 	INMEM_INVALIDATE,
980 	INMEM_REVOKE,
981 	IPU,
982 	OPU,
983 };
984 
985 enum temp_type {
986 	HOT = 0,	/* must be zero for meta bio */
987 	WARM,
988 	COLD,
989 	NR_TEMP_TYPE,
990 };
991 
992 enum need_lock_type {
993 	LOCK_REQ = 0,
994 	LOCK_DONE,
995 	LOCK_RETRY,
996 };
997 
998 enum cp_reason_type {
999 	CP_NO_NEEDED,
1000 	CP_NON_REGULAR,
1001 	CP_HARDLINK,
1002 	CP_SB_NEED_CP,
1003 	CP_WRONG_PINO,
1004 	CP_NO_SPC_ROLL,
1005 	CP_NODE_NEED_CP,
1006 	CP_FASTBOOT_MODE,
1007 	CP_SPEC_LOG_NUM,
1008 	CP_RECOVER_DIR,
1009 };
1010 
1011 enum iostat_type {
1012 	APP_DIRECT_IO,			/* app direct IOs */
1013 	APP_BUFFERED_IO,		/* app buffered IOs */
1014 	APP_WRITE_IO,			/* app write IOs */
1015 	APP_MAPPED_IO,			/* app mapped IOs */
1016 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1017 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1018 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1019 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1020 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1021 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1022 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1023 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1024 	FS_DISCARD,			/* discard */
1025 	NR_IO_TYPE,
1026 };
1027 
1028 struct f2fs_io_info {
1029 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1030 	nid_t ino;		/* inode number */
1031 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1032 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1033 	int op;			/* contains REQ_OP_ */
1034 	int op_flags;		/* req_flag_bits */
1035 	block_t new_blkaddr;	/* new block address to be written */
1036 	block_t old_blkaddr;	/* old block address before Cow */
1037 	struct page *page;	/* page to be written */
1038 	struct page *encrypted_page;	/* encrypted page */
1039 	struct list_head list;		/* serialize IOs */
1040 	bool submitted;		/* indicate IO submission */
1041 	int need_lock;		/* indicate we need to lock cp_rwsem */
1042 	bool in_list;		/* indicate fio is in io_list */
1043 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1044 	bool retry;		/* need to reallocate block address */
1045 	enum iostat_type io_type;	/* io type */
1046 	struct writeback_control *io_wbc; /* writeback control */
1047 	unsigned char version;		/* version of the node */
1048 };
1049 
1050 #define is_read_io(rw) ((rw) == READ)
1051 struct f2fs_bio_info {
1052 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1053 	struct bio *bio;		/* bios to merge */
1054 	sector_t last_block_in_bio;	/* last block number */
1055 	struct f2fs_io_info fio;	/* store buffered io info. */
1056 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1057 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1058 	struct list_head io_list;	/* track fios */
1059 };
1060 
1061 #define FDEV(i)				(sbi->devs[i])
1062 #define RDEV(i)				(raw_super->devs[i])
1063 struct f2fs_dev_info {
1064 	struct block_device *bdev;
1065 	char path[MAX_PATH_LEN];
1066 	unsigned int total_segments;
1067 	block_t start_blk;
1068 	block_t end_blk;
1069 #ifdef CONFIG_BLK_DEV_ZONED
1070 	unsigned int nr_blkz;			/* Total number of zones */
1071 	u8 *blkz_type;				/* Array of zones type */
1072 #endif
1073 };
1074 
1075 enum inode_type {
1076 	DIR_INODE,			/* for dirty dir inode */
1077 	FILE_INODE,			/* for dirty regular/symlink inode */
1078 	DIRTY_META,			/* for all dirtied inode metadata */
1079 	ATOMIC_FILE,			/* for all atomic files */
1080 	NR_INODE_TYPE,
1081 };
1082 
1083 /* for inner inode cache management */
1084 struct inode_management {
1085 	struct radix_tree_root ino_root;	/* ino entry array */
1086 	spinlock_t ino_lock;			/* for ino entry lock */
1087 	struct list_head ino_list;		/* inode list head */
1088 	unsigned long ino_num;			/* number of entries */
1089 };
1090 
1091 /* For s_flag in struct f2fs_sb_info */
1092 enum {
1093 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1094 	SBI_IS_CLOSE,				/* specify unmounting */
1095 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1096 	SBI_POR_DOING,				/* recovery is doing or not */
1097 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1098 	SBI_NEED_CP,				/* need to checkpoint */
1099 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1100 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1101 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1102 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1103 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1104 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1105 };
1106 
1107 enum {
1108 	CP_TIME,
1109 	REQ_TIME,
1110 	DISCARD_TIME,
1111 	GC_TIME,
1112 	DISABLE_TIME,
1113 	MAX_TIME,
1114 };
1115 
1116 enum {
1117 	GC_NORMAL,
1118 	GC_IDLE_CB,
1119 	GC_IDLE_GREEDY,
1120 	GC_URGENT,
1121 };
1122 
1123 enum {
1124 	WHINT_MODE_OFF,		/* not pass down write hints */
1125 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1126 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1127 };
1128 
1129 enum {
1130 	ALLOC_MODE_DEFAULT,	/* stay default */
1131 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1132 };
1133 
1134 enum fsync_mode {
1135 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1136 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1137 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1138 };
1139 
1140 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1141 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1142 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1143 #else
1144 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1145 #endif
1146 
1147 struct f2fs_sb_info {
1148 	struct super_block *sb;			/* pointer to VFS super block */
1149 	struct proc_dir_entry *s_proc;		/* proc entry */
1150 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1151 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1152 	int valid_super_block;			/* valid super block no */
1153 	unsigned long s_flag;				/* flags for sbi */
1154 	struct mutex writepages;		/* mutex for writepages() */
1155 
1156 #ifdef CONFIG_BLK_DEV_ZONED
1157 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1158 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1159 #endif
1160 
1161 	/* for node-related operations */
1162 	struct f2fs_nm_info *nm_info;		/* node manager */
1163 	struct inode *node_inode;		/* cache node blocks */
1164 
1165 	/* for segment-related operations */
1166 	struct f2fs_sm_info *sm_info;		/* segment manager */
1167 
1168 	/* for bio operations */
1169 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1170 	/* keep migration IO order for LFS mode */
1171 	struct rw_semaphore io_order_lock;
1172 	mempool_t *write_io_dummy;		/* Dummy pages */
1173 
1174 	/* for checkpoint */
1175 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1176 	int cur_cp_pack;			/* remain current cp pack */
1177 	spinlock_t cp_lock;			/* for flag in ckpt */
1178 	struct inode *meta_inode;		/* cache meta blocks */
1179 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1180 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1181 	struct rw_semaphore node_write;		/* locking node writes */
1182 	struct rw_semaphore node_change;	/* locking node change */
1183 	wait_queue_head_t cp_wait;
1184 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1185 	long interval_time[MAX_TIME];		/* to store thresholds */
1186 
1187 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1188 
1189 	spinlock_t fsync_node_lock;		/* for node entry lock */
1190 	struct list_head fsync_node_list;	/* node list head */
1191 	unsigned int fsync_seg_id;		/* sequence id */
1192 	unsigned int fsync_node_num;		/* number of node entries */
1193 
1194 	/* for orphan inode, use 0'th array */
1195 	unsigned int max_orphans;		/* max orphan inodes */
1196 
1197 	/* for inode management */
1198 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1199 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1200 
1201 	/* for extent tree cache */
1202 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1203 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1204 	struct list_head extent_list;		/* lru list for shrinker */
1205 	spinlock_t extent_lock;			/* locking extent lru list */
1206 	atomic_t total_ext_tree;		/* extent tree count */
1207 	struct list_head zombie_list;		/* extent zombie tree list */
1208 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1209 	atomic_t total_ext_node;		/* extent info count */
1210 
1211 	/* basic filesystem units */
1212 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1213 	unsigned int log_blocksize;		/* log2 block size */
1214 	unsigned int blocksize;			/* block size */
1215 	unsigned int root_ino_num;		/* root inode number*/
1216 	unsigned int node_ino_num;		/* node inode number*/
1217 	unsigned int meta_ino_num;		/* meta inode number*/
1218 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1219 	unsigned int blocks_per_seg;		/* blocks per segment */
1220 	unsigned int segs_per_sec;		/* segments per section */
1221 	unsigned int secs_per_zone;		/* sections per zone */
1222 	unsigned int total_sections;		/* total section count */
1223 	unsigned int total_node_count;		/* total node block count */
1224 	unsigned int total_valid_node_count;	/* valid node block count */
1225 	loff_t max_file_blocks;			/* max block index of file */
1226 	int dir_level;				/* directory level */
1227 	int readdir_ra;				/* readahead inode in readdir */
1228 
1229 	block_t user_block_count;		/* # of user blocks */
1230 	block_t total_valid_block_count;	/* # of valid blocks */
1231 	block_t discard_blks;			/* discard command candidats */
1232 	block_t last_valid_block_count;		/* for recovery */
1233 	block_t reserved_blocks;		/* configurable reserved blocks */
1234 	block_t current_reserved_blocks;	/* current reserved blocks */
1235 
1236 	/* Additional tracking for no checkpoint mode */
1237 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1238 
1239 	unsigned int nquota_files;		/* # of quota sysfile */
1240 
1241 	u32 s_next_generation;			/* for NFS support */
1242 
1243 	/* # of pages, see count_type */
1244 	atomic_t nr_pages[NR_COUNT_TYPE];
1245 	/* # of allocated blocks */
1246 	struct percpu_counter alloc_valid_block_count;
1247 
1248 	/* writeback control */
1249 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1250 
1251 	/* valid inode count */
1252 	struct percpu_counter total_valid_inode_count;
1253 
1254 	struct f2fs_mount_info mount_opt;	/* mount options */
1255 
1256 	/* for cleaning operations */
1257 	struct mutex gc_mutex;			/* mutex for GC */
1258 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1259 	unsigned int cur_victim_sec;		/* current victim section num */
1260 	unsigned int gc_mode;			/* current GC state */
1261 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1262 	/* for skip statistic */
1263 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1264 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1265 
1266 	/* threshold for gc trials on pinned files */
1267 	u64 gc_pin_file_threshold;
1268 
1269 	/* maximum # of trials to find a victim segment for SSR and GC */
1270 	unsigned int max_victim_search;
1271 	/* migration granularity of garbage collection, unit: segment */
1272 	unsigned int migration_granularity;
1273 
1274 	/*
1275 	 * for stat information.
1276 	 * one is for the LFS mode, and the other is for the SSR mode.
1277 	 */
1278 #ifdef CONFIG_F2FS_STAT_FS
1279 	struct f2fs_stat_info *stat_info;	/* FS status information */
1280 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1281 	unsigned int segment_count[2];		/* # of allocated segments */
1282 	unsigned int block_count[2];		/* # of allocated blocks */
1283 	atomic_t inplace_count;		/* # of inplace update */
1284 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1285 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1286 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1287 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1288 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1289 	atomic_t inline_inode;			/* # of inline_data inodes */
1290 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1291 	atomic_t aw_cnt;			/* # of atomic writes */
1292 	atomic_t vw_cnt;			/* # of volatile writes */
1293 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1294 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1295 	int bg_gc;				/* background gc calls */
1296 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1297 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1298 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1299 #endif
1300 	spinlock_t stat_lock;			/* lock for stat operations */
1301 
1302 	/* For app/fs IO statistics */
1303 	spinlock_t iostat_lock;
1304 	unsigned long long write_iostat[NR_IO_TYPE];
1305 	bool iostat_enable;
1306 
1307 	/* For sysfs suppport */
1308 	struct kobject s_kobj;
1309 	struct completion s_kobj_unregister;
1310 
1311 	/* For shrinker support */
1312 	struct list_head s_list;
1313 	int s_ndevs;				/* number of devices */
1314 	struct f2fs_dev_info *devs;		/* for device list */
1315 	unsigned int dirty_device;		/* for checkpoint data flush */
1316 	spinlock_t dev_lock;			/* protect dirty_device */
1317 	struct mutex umount_mutex;
1318 	unsigned int shrinker_run_no;
1319 
1320 	/* For write statistics */
1321 	u64 sectors_written_start;
1322 	u64 kbytes_written;
1323 
1324 	/* Reference to checksum algorithm driver via cryptoapi */
1325 	struct crypto_shash *s_chksum_driver;
1326 
1327 	/* Precomputed FS UUID checksum for seeding other checksums */
1328 	__u32 s_chksum_seed;
1329 };
1330 
1331 struct f2fs_private_dio {
1332 	struct inode *inode;
1333 	void *orig_private;
1334 	bio_end_io_t *orig_end_io;
1335 	bool write;
1336 };
1337 
1338 #ifdef CONFIG_F2FS_FAULT_INJECTION
1339 #define f2fs_show_injection_info(type)					\
1340 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n",	\
1341 		KERN_INFO, f2fs_fault_name[type],			\
1342 		__func__, __builtin_return_address(0))
1343 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1344 {
1345 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1346 
1347 	if (!ffi->inject_rate)
1348 		return false;
1349 
1350 	if (!IS_FAULT_SET(ffi, type))
1351 		return false;
1352 
1353 	atomic_inc(&ffi->inject_ops);
1354 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1355 		atomic_set(&ffi->inject_ops, 0);
1356 		return true;
1357 	}
1358 	return false;
1359 }
1360 #else
1361 #define f2fs_show_injection_info(type) do { } while (0)
1362 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1363 {
1364 	return false;
1365 }
1366 #endif
1367 
1368 /* For write statistics. Suppose sector size is 512 bytes,
1369  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1370  */
1371 #define BD_PART_WRITTEN(s)						 \
1372 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1373 		(s)->sectors_written_start) >> 1)
1374 
1375 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1376 {
1377 	unsigned long now = jiffies;
1378 
1379 	sbi->last_time[type] = now;
1380 
1381 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1382 	if (type == REQ_TIME) {
1383 		sbi->last_time[DISCARD_TIME] = now;
1384 		sbi->last_time[GC_TIME] = now;
1385 	}
1386 }
1387 
1388 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1389 {
1390 	unsigned long interval = sbi->interval_time[type] * HZ;
1391 
1392 	return time_after(jiffies, sbi->last_time[type] + interval);
1393 }
1394 
1395 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1396 						int type)
1397 {
1398 	unsigned long interval = sbi->interval_time[type] * HZ;
1399 	unsigned int wait_ms = 0;
1400 	long delta;
1401 
1402 	delta = (sbi->last_time[type] + interval) - jiffies;
1403 	if (delta > 0)
1404 		wait_ms = jiffies_to_msecs(delta);
1405 
1406 	return wait_ms;
1407 }
1408 
1409 /*
1410  * Inline functions
1411  */
1412 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1413 			      const void *address, unsigned int length)
1414 {
1415 	struct {
1416 		struct shash_desc shash;
1417 		char ctx[4];
1418 	} desc;
1419 	int err;
1420 
1421 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1422 
1423 	desc.shash.tfm = sbi->s_chksum_driver;
1424 	desc.shash.flags = 0;
1425 	*(u32 *)desc.ctx = crc;
1426 
1427 	err = crypto_shash_update(&desc.shash, address, length);
1428 	BUG_ON(err);
1429 
1430 	return *(u32 *)desc.ctx;
1431 }
1432 
1433 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1434 			   unsigned int length)
1435 {
1436 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1437 }
1438 
1439 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1440 				  void *buf, size_t buf_size)
1441 {
1442 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1443 }
1444 
1445 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1446 			      const void *address, unsigned int length)
1447 {
1448 	return __f2fs_crc32(sbi, crc, address, length);
1449 }
1450 
1451 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1452 {
1453 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1454 }
1455 
1456 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1457 {
1458 	return sb->s_fs_info;
1459 }
1460 
1461 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1462 {
1463 	return F2FS_SB(inode->i_sb);
1464 }
1465 
1466 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1467 {
1468 	return F2FS_I_SB(mapping->host);
1469 }
1470 
1471 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1472 {
1473 	return F2FS_M_SB(page->mapping);
1474 }
1475 
1476 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1477 {
1478 	return (struct f2fs_super_block *)(sbi->raw_super);
1479 }
1480 
1481 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1482 {
1483 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1484 }
1485 
1486 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1487 {
1488 	return (struct f2fs_node *)page_address(page);
1489 }
1490 
1491 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1492 {
1493 	return &((struct f2fs_node *)page_address(page))->i;
1494 }
1495 
1496 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1497 {
1498 	return (struct f2fs_nm_info *)(sbi->nm_info);
1499 }
1500 
1501 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1502 {
1503 	return (struct f2fs_sm_info *)(sbi->sm_info);
1504 }
1505 
1506 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1507 {
1508 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1509 }
1510 
1511 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1512 {
1513 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1514 }
1515 
1516 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1517 {
1518 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1519 }
1520 
1521 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1522 {
1523 	return sbi->meta_inode->i_mapping;
1524 }
1525 
1526 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1527 {
1528 	return sbi->node_inode->i_mapping;
1529 }
1530 
1531 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1532 {
1533 	return test_bit(type, &sbi->s_flag);
1534 }
1535 
1536 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1537 {
1538 	set_bit(type, &sbi->s_flag);
1539 }
1540 
1541 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1542 {
1543 	clear_bit(type, &sbi->s_flag);
1544 }
1545 
1546 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1547 {
1548 	return le64_to_cpu(cp->checkpoint_ver);
1549 }
1550 
1551 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1552 {
1553 	if (type < F2FS_MAX_QUOTAS)
1554 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1555 	return 0;
1556 }
1557 
1558 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1559 {
1560 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1561 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1562 }
1563 
1564 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1565 {
1566 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1567 
1568 	return ckpt_flags & f;
1569 }
1570 
1571 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1572 {
1573 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1574 }
1575 
1576 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1577 {
1578 	unsigned int ckpt_flags;
1579 
1580 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1581 	ckpt_flags |= f;
1582 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1583 }
1584 
1585 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1586 {
1587 	unsigned long flags;
1588 
1589 	spin_lock_irqsave(&sbi->cp_lock, flags);
1590 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1591 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1592 }
1593 
1594 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1595 {
1596 	unsigned int ckpt_flags;
1597 
1598 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1599 	ckpt_flags &= (~f);
1600 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1601 }
1602 
1603 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1604 {
1605 	unsigned long flags;
1606 
1607 	spin_lock_irqsave(&sbi->cp_lock, flags);
1608 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1609 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1610 }
1611 
1612 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1613 {
1614 	unsigned long flags;
1615 
1616 	/*
1617 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1618 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1619 	 * so let's rely on regular fsck or unclean shutdown.
1620 	 */
1621 
1622 	if (lock)
1623 		spin_lock_irqsave(&sbi->cp_lock, flags);
1624 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1625 	kvfree(NM_I(sbi)->nat_bits);
1626 	NM_I(sbi)->nat_bits = NULL;
1627 	if (lock)
1628 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1629 }
1630 
1631 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1632 					struct cp_control *cpc)
1633 {
1634 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1635 
1636 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1637 }
1638 
1639 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1640 {
1641 	down_read(&sbi->cp_rwsem);
1642 }
1643 
1644 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1645 {
1646 	return down_read_trylock(&sbi->cp_rwsem);
1647 }
1648 
1649 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1650 {
1651 	up_read(&sbi->cp_rwsem);
1652 }
1653 
1654 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1655 {
1656 	down_write(&sbi->cp_rwsem);
1657 }
1658 
1659 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1660 {
1661 	up_write(&sbi->cp_rwsem);
1662 }
1663 
1664 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1665 {
1666 	int reason = CP_SYNC;
1667 
1668 	if (test_opt(sbi, FASTBOOT))
1669 		reason = CP_FASTBOOT;
1670 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1671 		reason = CP_UMOUNT;
1672 	return reason;
1673 }
1674 
1675 static inline bool __remain_node_summaries(int reason)
1676 {
1677 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1678 }
1679 
1680 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1681 {
1682 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1683 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1684 }
1685 
1686 /*
1687  * Check whether the inode has blocks or not
1688  */
1689 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1690 {
1691 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1692 
1693 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1694 }
1695 
1696 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1697 {
1698 	return ofs == XATTR_NODE_OFFSET;
1699 }
1700 
1701 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1702 					struct inode *inode, bool cap)
1703 {
1704 	if (!inode)
1705 		return true;
1706 	if (!test_opt(sbi, RESERVE_ROOT))
1707 		return false;
1708 	if (IS_NOQUOTA(inode))
1709 		return true;
1710 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1711 		return true;
1712 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1713 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1714 		return true;
1715 	if (cap && capable(CAP_SYS_RESOURCE))
1716 		return true;
1717 	return false;
1718 }
1719 
1720 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1721 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1722 				 struct inode *inode, blkcnt_t *count)
1723 {
1724 	blkcnt_t diff = 0, release = 0;
1725 	block_t avail_user_block_count;
1726 	int ret;
1727 
1728 	ret = dquot_reserve_block(inode, *count);
1729 	if (ret)
1730 		return ret;
1731 
1732 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1733 		f2fs_show_injection_info(FAULT_BLOCK);
1734 		release = *count;
1735 		goto enospc;
1736 	}
1737 
1738 	/*
1739 	 * let's increase this in prior to actual block count change in order
1740 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1741 	 */
1742 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1743 
1744 	spin_lock(&sbi->stat_lock);
1745 	sbi->total_valid_block_count += (block_t)(*count);
1746 	avail_user_block_count = sbi->user_block_count -
1747 					sbi->current_reserved_blocks;
1748 
1749 	if (!__allow_reserved_blocks(sbi, inode, true))
1750 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1751 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1752 		avail_user_block_count -= sbi->unusable_block_count;
1753 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1754 		diff = sbi->total_valid_block_count - avail_user_block_count;
1755 		if (diff > *count)
1756 			diff = *count;
1757 		*count -= diff;
1758 		release = diff;
1759 		sbi->total_valid_block_count -= diff;
1760 		if (!*count) {
1761 			spin_unlock(&sbi->stat_lock);
1762 			goto enospc;
1763 		}
1764 	}
1765 	spin_unlock(&sbi->stat_lock);
1766 
1767 	if (unlikely(release)) {
1768 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1769 		dquot_release_reservation_block(inode, release);
1770 	}
1771 	f2fs_i_blocks_write(inode, *count, true, true);
1772 	return 0;
1773 
1774 enospc:
1775 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1776 	dquot_release_reservation_block(inode, release);
1777 	return -ENOSPC;
1778 }
1779 
1780 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1781 						struct inode *inode,
1782 						block_t count)
1783 {
1784 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1785 
1786 	spin_lock(&sbi->stat_lock);
1787 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1788 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1789 	sbi->total_valid_block_count -= (block_t)count;
1790 	if (sbi->reserved_blocks &&
1791 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1792 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1793 					sbi->current_reserved_blocks + count);
1794 	spin_unlock(&sbi->stat_lock);
1795 	f2fs_i_blocks_write(inode, count, false, true);
1796 }
1797 
1798 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1799 {
1800 	atomic_inc(&sbi->nr_pages[count_type]);
1801 
1802 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1803 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA ||
1804 		count_type == F2FS_RD_DATA || count_type == F2FS_RD_NODE ||
1805 		count_type == F2FS_RD_META)
1806 		return;
1807 
1808 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1809 }
1810 
1811 static inline void inode_inc_dirty_pages(struct inode *inode)
1812 {
1813 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1814 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1815 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1816 	if (IS_NOQUOTA(inode))
1817 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1818 }
1819 
1820 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1821 {
1822 	atomic_dec(&sbi->nr_pages[count_type]);
1823 }
1824 
1825 static inline void inode_dec_dirty_pages(struct inode *inode)
1826 {
1827 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1828 			!S_ISLNK(inode->i_mode))
1829 		return;
1830 
1831 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1832 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1833 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1834 	if (IS_NOQUOTA(inode))
1835 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1836 }
1837 
1838 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1839 {
1840 	return atomic_read(&sbi->nr_pages[count_type]);
1841 }
1842 
1843 static inline int get_dirty_pages(struct inode *inode)
1844 {
1845 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1846 }
1847 
1848 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1849 {
1850 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1851 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1852 						sbi->log_blocks_per_seg;
1853 
1854 	return segs / sbi->segs_per_sec;
1855 }
1856 
1857 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1858 {
1859 	return sbi->total_valid_block_count;
1860 }
1861 
1862 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1863 {
1864 	return sbi->discard_blks;
1865 }
1866 
1867 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1868 {
1869 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1870 
1871 	/* return NAT or SIT bitmap */
1872 	if (flag == NAT_BITMAP)
1873 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1874 	else if (flag == SIT_BITMAP)
1875 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1876 
1877 	return 0;
1878 }
1879 
1880 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1881 {
1882 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1883 }
1884 
1885 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1886 {
1887 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1888 	int offset;
1889 
1890 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1891 		offset = (flag == SIT_BITMAP) ?
1892 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1893 		return &ckpt->sit_nat_version_bitmap + offset;
1894 	}
1895 
1896 	if (__cp_payload(sbi) > 0) {
1897 		if (flag == NAT_BITMAP)
1898 			return &ckpt->sit_nat_version_bitmap;
1899 		else
1900 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1901 	} else {
1902 		offset = (flag == NAT_BITMAP) ?
1903 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1904 		return &ckpt->sit_nat_version_bitmap + offset;
1905 	}
1906 }
1907 
1908 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1909 {
1910 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1911 
1912 	if (sbi->cur_cp_pack == 2)
1913 		start_addr += sbi->blocks_per_seg;
1914 	return start_addr;
1915 }
1916 
1917 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1918 {
1919 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1920 
1921 	if (sbi->cur_cp_pack == 1)
1922 		start_addr += sbi->blocks_per_seg;
1923 	return start_addr;
1924 }
1925 
1926 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1927 {
1928 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1929 }
1930 
1931 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1932 {
1933 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1934 }
1935 
1936 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1937 					struct inode *inode, bool is_inode)
1938 {
1939 	block_t	valid_block_count;
1940 	unsigned int valid_node_count;
1941 	int err;
1942 
1943 	if (is_inode) {
1944 		if (inode) {
1945 			err = dquot_alloc_inode(inode);
1946 			if (err)
1947 				return err;
1948 		}
1949 	} else {
1950 		err = dquot_reserve_block(inode, 1);
1951 		if (err)
1952 			return err;
1953 	}
1954 
1955 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1956 		f2fs_show_injection_info(FAULT_BLOCK);
1957 		goto enospc;
1958 	}
1959 
1960 	spin_lock(&sbi->stat_lock);
1961 
1962 	valid_block_count = sbi->total_valid_block_count +
1963 					sbi->current_reserved_blocks + 1;
1964 
1965 	if (!__allow_reserved_blocks(sbi, inode, false))
1966 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1967 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1968 		valid_block_count += sbi->unusable_block_count;
1969 
1970 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1971 		spin_unlock(&sbi->stat_lock);
1972 		goto enospc;
1973 	}
1974 
1975 	valid_node_count = sbi->total_valid_node_count + 1;
1976 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1977 		spin_unlock(&sbi->stat_lock);
1978 		goto enospc;
1979 	}
1980 
1981 	sbi->total_valid_node_count++;
1982 	sbi->total_valid_block_count++;
1983 	spin_unlock(&sbi->stat_lock);
1984 
1985 	if (inode) {
1986 		if (is_inode)
1987 			f2fs_mark_inode_dirty_sync(inode, true);
1988 		else
1989 			f2fs_i_blocks_write(inode, 1, true, true);
1990 	}
1991 
1992 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1993 	return 0;
1994 
1995 enospc:
1996 	if (is_inode) {
1997 		if (inode)
1998 			dquot_free_inode(inode);
1999 	} else {
2000 		dquot_release_reservation_block(inode, 1);
2001 	}
2002 	return -ENOSPC;
2003 }
2004 
2005 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2006 					struct inode *inode, bool is_inode)
2007 {
2008 	spin_lock(&sbi->stat_lock);
2009 
2010 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2011 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2012 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
2013 
2014 	sbi->total_valid_node_count--;
2015 	sbi->total_valid_block_count--;
2016 	if (sbi->reserved_blocks &&
2017 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2018 		sbi->current_reserved_blocks++;
2019 
2020 	spin_unlock(&sbi->stat_lock);
2021 
2022 	if (is_inode)
2023 		dquot_free_inode(inode);
2024 	else
2025 		f2fs_i_blocks_write(inode, 1, false, true);
2026 }
2027 
2028 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2029 {
2030 	return sbi->total_valid_node_count;
2031 }
2032 
2033 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2034 {
2035 	percpu_counter_inc(&sbi->total_valid_inode_count);
2036 }
2037 
2038 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2039 {
2040 	percpu_counter_dec(&sbi->total_valid_inode_count);
2041 }
2042 
2043 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2044 {
2045 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2046 }
2047 
2048 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2049 						pgoff_t index, bool for_write)
2050 {
2051 	struct page *page;
2052 
2053 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2054 		if (!for_write)
2055 			page = find_get_page_flags(mapping, index,
2056 							FGP_LOCK | FGP_ACCESSED);
2057 		else
2058 			page = find_lock_page(mapping, index);
2059 		if (page)
2060 			return page;
2061 
2062 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2063 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2064 			return NULL;
2065 		}
2066 	}
2067 
2068 	if (!for_write)
2069 		return grab_cache_page(mapping, index);
2070 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2071 }
2072 
2073 static inline struct page *f2fs_pagecache_get_page(
2074 				struct address_space *mapping, pgoff_t index,
2075 				int fgp_flags, gfp_t gfp_mask)
2076 {
2077 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2078 		f2fs_show_injection_info(FAULT_PAGE_GET);
2079 		return NULL;
2080 	}
2081 
2082 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2083 }
2084 
2085 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2086 {
2087 	char *src_kaddr = kmap(src);
2088 	char *dst_kaddr = kmap(dst);
2089 
2090 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2091 	kunmap(dst);
2092 	kunmap(src);
2093 }
2094 
2095 static inline void f2fs_put_page(struct page *page, int unlock)
2096 {
2097 	if (!page)
2098 		return;
2099 
2100 	if (unlock) {
2101 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2102 		unlock_page(page);
2103 	}
2104 	put_page(page);
2105 }
2106 
2107 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2108 {
2109 	if (dn->node_page)
2110 		f2fs_put_page(dn->node_page, 1);
2111 	if (dn->inode_page && dn->node_page != dn->inode_page)
2112 		f2fs_put_page(dn->inode_page, 0);
2113 	dn->node_page = NULL;
2114 	dn->inode_page = NULL;
2115 }
2116 
2117 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2118 					size_t size)
2119 {
2120 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2121 }
2122 
2123 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2124 						gfp_t flags)
2125 {
2126 	void *entry;
2127 
2128 	entry = kmem_cache_alloc(cachep, flags);
2129 	if (!entry)
2130 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2131 	return entry;
2132 }
2133 
2134 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2135 						int npages, bool no_fail)
2136 {
2137 	struct bio *bio;
2138 
2139 	if (no_fail) {
2140 		/* No failure on bio allocation */
2141 		bio = bio_alloc(GFP_NOIO, npages);
2142 		if (!bio)
2143 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2144 		return bio;
2145 	}
2146 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2147 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2148 		return NULL;
2149 	}
2150 
2151 	return bio_alloc(GFP_KERNEL, npages);
2152 }
2153 
2154 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2155 {
2156 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2157 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2158 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2159 		get_pages(sbi, F2FS_DIO_READ) ||
2160 		get_pages(sbi, F2FS_DIO_WRITE) ||
2161 		atomic_read(&SM_I(sbi)->dcc_info->queued_discard) ||
2162 		atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2163 		return false;
2164 	return f2fs_time_over(sbi, type);
2165 }
2166 
2167 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2168 				unsigned long index, void *item)
2169 {
2170 	while (radix_tree_insert(root, index, item))
2171 		cond_resched();
2172 }
2173 
2174 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2175 
2176 static inline bool IS_INODE(struct page *page)
2177 {
2178 	struct f2fs_node *p = F2FS_NODE(page);
2179 
2180 	return RAW_IS_INODE(p);
2181 }
2182 
2183 static inline int offset_in_addr(struct f2fs_inode *i)
2184 {
2185 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2186 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2187 }
2188 
2189 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2190 {
2191 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2192 }
2193 
2194 static inline int f2fs_has_extra_attr(struct inode *inode);
2195 static inline block_t datablock_addr(struct inode *inode,
2196 			struct page *node_page, unsigned int offset)
2197 {
2198 	struct f2fs_node *raw_node;
2199 	__le32 *addr_array;
2200 	int base = 0;
2201 	bool is_inode = IS_INODE(node_page);
2202 
2203 	raw_node = F2FS_NODE(node_page);
2204 
2205 	/* from GC path only */
2206 	if (is_inode) {
2207 		if (!inode)
2208 			base = offset_in_addr(&raw_node->i);
2209 		else if (f2fs_has_extra_attr(inode))
2210 			base = get_extra_isize(inode);
2211 	}
2212 
2213 	addr_array = blkaddr_in_node(raw_node);
2214 	return le32_to_cpu(addr_array[base + offset]);
2215 }
2216 
2217 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2218 {
2219 	int mask;
2220 
2221 	addr += (nr >> 3);
2222 	mask = 1 << (7 - (nr & 0x07));
2223 	return mask & *addr;
2224 }
2225 
2226 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2227 {
2228 	int mask;
2229 
2230 	addr += (nr >> 3);
2231 	mask = 1 << (7 - (nr & 0x07));
2232 	*addr |= mask;
2233 }
2234 
2235 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2236 {
2237 	int mask;
2238 
2239 	addr += (nr >> 3);
2240 	mask = 1 << (7 - (nr & 0x07));
2241 	*addr &= ~mask;
2242 }
2243 
2244 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2245 {
2246 	int mask;
2247 	int ret;
2248 
2249 	addr += (nr >> 3);
2250 	mask = 1 << (7 - (nr & 0x07));
2251 	ret = mask & *addr;
2252 	*addr |= mask;
2253 	return ret;
2254 }
2255 
2256 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2257 {
2258 	int mask;
2259 	int ret;
2260 
2261 	addr += (nr >> 3);
2262 	mask = 1 << (7 - (nr & 0x07));
2263 	ret = mask & *addr;
2264 	*addr &= ~mask;
2265 	return ret;
2266 }
2267 
2268 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2269 {
2270 	int mask;
2271 
2272 	addr += (nr >> 3);
2273 	mask = 1 << (7 - (nr & 0x07));
2274 	*addr ^= mask;
2275 }
2276 
2277 /*
2278  * Inode flags
2279  */
2280 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2281 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2282 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2283 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2284 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2285 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2286 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2287 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2288 /* Reserved for compression usage... */
2289 #define F2FS_DIRTY_FL			0x00000100
2290 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2291 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2292 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2293 /* End compression flags --- maybe not all used */
2294 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2295 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2296 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2297 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2298 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2299 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2300 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2301 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2302 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2303 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2304 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2305 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2306 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2307 
2308 #define F2FS_FL_USER_VISIBLE		0x304BDFFF /* User visible flags */
2309 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2310 
2311 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2312 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2313 					 F2FS_IMMUTABLE_FL | \
2314 					 F2FS_APPEND_FL | \
2315 					 F2FS_NODUMP_FL | \
2316 					 F2FS_NOATIME_FL | \
2317 					 F2FS_PROJINHERIT_FL)
2318 
2319 /* Flags that should be inherited by new inodes from their parent. */
2320 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2321 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2322 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2323 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2324 			   F2FS_PROJINHERIT_FL)
2325 
2326 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2327 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2328 
2329 /* Flags that are appropriate for non-directories/regular files. */
2330 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2331 
2332 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2333 {
2334 	if (S_ISDIR(mode))
2335 		return flags;
2336 	else if (S_ISREG(mode))
2337 		return flags & F2FS_REG_FLMASK;
2338 	else
2339 		return flags & F2FS_OTHER_FLMASK;
2340 }
2341 
2342 /* used for f2fs_inode_info->flags */
2343 enum {
2344 	FI_NEW_INODE,		/* indicate newly allocated inode */
2345 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2346 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2347 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2348 	FI_INC_LINK,		/* need to increment i_nlink */
2349 	FI_ACL_MODE,		/* indicate acl mode */
2350 	FI_NO_ALLOC,		/* should not allocate any blocks */
2351 	FI_FREE_NID,		/* free allocated nide */
2352 	FI_NO_EXTENT,		/* not to use the extent cache */
2353 	FI_INLINE_XATTR,	/* used for inline xattr */
2354 	FI_INLINE_DATA,		/* used for inline data*/
2355 	FI_INLINE_DENTRY,	/* used for inline dentry */
2356 	FI_APPEND_WRITE,	/* inode has appended data */
2357 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2358 	FI_NEED_IPU,		/* used for ipu per file */
2359 	FI_ATOMIC_FILE,		/* indicate atomic file */
2360 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2361 	FI_VOLATILE_FILE,	/* indicate volatile file */
2362 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2363 	FI_DROP_CACHE,		/* drop dirty page cache */
2364 	FI_DATA_EXIST,		/* indicate data exists */
2365 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2366 	FI_DO_DEFRAG,		/* indicate defragment is running */
2367 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2368 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2369 	FI_HOT_DATA,		/* indicate file is hot */
2370 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2371 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2372 	FI_PIN_FILE,		/* indicate file should not be gced */
2373 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2374 };
2375 
2376 static inline void __mark_inode_dirty_flag(struct inode *inode,
2377 						int flag, bool set)
2378 {
2379 	switch (flag) {
2380 	case FI_INLINE_XATTR:
2381 	case FI_INLINE_DATA:
2382 	case FI_INLINE_DENTRY:
2383 	case FI_NEW_INODE:
2384 		if (set)
2385 			return;
2386 		/* fall through */
2387 	case FI_DATA_EXIST:
2388 	case FI_INLINE_DOTS:
2389 	case FI_PIN_FILE:
2390 		f2fs_mark_inode_dirty_sync(inode, true);
2391 	}
2392 }
2393 
2394 static inline void set_inode_flag(struct inode *inode, int flag)
2395 {
2396 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2397 		set_bit(flag, &F2FS_I(inode)->flags);
2398 	__mark_inode_dirty_flag(inode, flag, true);
2399 }
2400 
2401 static inline int is_inode_flag_set(struct inode *inode, int flag)
2402 {
2403 	return test_bit(flag, &F2FS_I(inode)->flags);
2404 }
2405 
2406 static inline void clear_inode_flag(struct inode *inode, int flag)
2407 {
2408 	if (test_bit(flag, &F2FS_I(inode)->flags))
2409 		clear_bit(flag, &F2FS_I(inode)->flags);
2410 	__mark_inode_dirty_flag(inode, flag, false);
2411 }
2412 
2413 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2414 {
2415 	F2FS_I(inode)->i_acl_mode = mode;
2416 	set_inode_flag(inode, FI_ACL_MODE);
2417 	f2fs_mark_inode_dirty_sync(inode, false);
2418 }
2419 
2420 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2421 {
2422 	if (inc)
2423 		inc_nlink(inode);
2424 	else
2425 		drop_nlink(inode);
2426 	f2fs_mark_inode_dirty_sync(inode, true);
2427 }
2428 
2429 static inline void f2fs_i_blocks_write(struct inode *inode,
2430 					block_t diff, bool add, bool claim)
2431 {
2432 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2433 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2434 
2435 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2436 	if (add) {
2437 		if (claim)
2438 			dquot_claim_block(inode, diff);
2439 		else
2440 			dquot_alloc_block_nofail(inode, diff);
2441 	} else {
2442 		dquot_free_block(inode, diff);
2443 	}
2444 
2445 	f2fs_mark_inode_dirty_sync(inode, true);
2446 	if (clean || recover)
2447 		set_inode_flag(inode, FI_AUTO_RECOVER);
2448 }
2449 
2450 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2451 {
2452 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2453 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2454 
2455 	if (i_size_read(inode) == i_size)
2456 		return;
2457 
2458 	i_size_write(inode, i_size);
2459 	f2fs_mark_inode_dirty_sync(inode, true);
2460 	if (clean || recover)
2461 		set_inode_flag(inode, FI_AUTO_RECOVER);
2462 }
2463 
2464 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2465 {
2466 	F2FS_I(inode)->i_current_depth = depth;
2467 	f2fs_mark_inode_dirty_sync(inode, true);
2468 }
2469 
2470 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2471 					unsigned int count)
2472 {
2473 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2474 	f2fs_mark_inode_dirty_sync(inode, true);
2475 }
2476 
2477 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2478 {
2479 	F2FS_I(inode)->i_xattr_nid = xnid;
2480 	f2fs_mark_inode_dirty_sync(inode, true);
2481 }
2482 
2483 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2484 {
2485 	F2FS_I(inode)->i_pino = pino;
2486 	f2fs_mark_inode_dirty_sync(inode, true);
2487 }
2488 
2489 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2490 {
2491 	struct f2fs_inode_info *fi = F2FS_I(inode);
2492 
2493 	if (ri->i_inline & F2FS_INLINE_XATTR)
2494 		set_bit(FI_INLINE_XATTR, &fi->flags);
2495 	if (ri->i_inline & F2FS_INLINE_DATA)
2496 		set_bit(FI_INLINE_DATA, &fi->flags);
2497 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2498 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2499 	if (ri->i_inline & F2FS_DATA_EXIST)
2500 		set_bit(FI_DATA_EXIST, &fi->flags);
2501 	if (ri->i_inline & F2FS_INLINE_DOTS)
2502 		set_bit(FI_INLINE_DOTS, &fi->flags);
2503 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2504 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2505 	if (ri->i_inline & F2FS_PIN_FILE)
2506 		set_bit(FI_PIN_FILE, &fi->flags);
2507 }
2508 
2509 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2510 {
2511 	ri->i_inline = 0;
2512 
2513 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2514 		ri->i_inline |= F2FS_INLINE_XATTR;
2515 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2516 		ri->i_inline |= F2FS_INLINE_DATA;
2517 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2518 		ri->i_inline |= F2FS_INLINE_DENTRY;
2519 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2520 		ri->i_inline |= F2FS_DATA_EXIST;
2521 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2522 		ri->i_inline |= F2FS_INLINE_DOTS;
2523 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2524 		ri->i_inline |= F2FS_EXTRA_ATTR;
2525 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2526 		ri->i_inline |= F2FS_PIN_FILE;
2527 }
2528 
2529 static inline int f2fs_has_extra_attr(struct inode *inode)
2530 {
2531 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2532 }
2533 
2534 static inline int f2fs_has_inline_xattr(struct inode *inode)
2535 {
2536 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2537 }
2538 
2539 static inline unsigned int addrs_per_inode(struct inode *inode)
2540 {
2541 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2542 }
2543 
2544 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2545 {
2546 	struct f2fs_inode *ri = F2FS_INODE(page);
2547 
2548 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2549 					get_inline_xattr_addrs(inode)]);
2550 }
2551 
2552 static inline int inline_xattr_size(struct inode *inode)
2553 {
2554 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2555 }
2556 
2557 static inline int f2fs_has_inline_data(struct inode *inode)
2558 {
2559 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2560 }
2561 
2562 static inline int f2fs_exist_data(struct inode *inode)
2563 {
2564 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2565 }
2566 
2567 static inline int f2fs_has_inline_dots(struct inode *inode)
2568 {
2569 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2570 }
2571 
2572 static inline bool f2fs_is_pinned_file(struct inode *inode)
2573 {
2574 	return is_inode_flag_set(inode, FI_PIN_FILE);
2575 }
2576 
2577 static inline bool f2fs_is_atomic_file(struct inode *inode)
2578 {
2579 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2580 }
2581 
2582 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2583 {
2584 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2585 }
2586 
2587 static inline bool f2fs_is_volatile_file(struct inode *inode)
2588 {
2589 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2590 }
2591 
2592 static inline bool f2fs_is_first_block_written(struct inode *inode)
2593 {
2594 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2595 }
2596 
2597 static inline bool f2fs_is_drop_cache(struct inode *inode)
2598 {
2599 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2600 }
2601 
2602 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2603 {
2604 	struct f2fs_inode *ri = F2FS_INODE(page);
2605 	int extra_size = get_extra_isize(inode);
2606 
2607 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2608 }
2609 
2610 static inline int f2fs_has_inline_dentry(struct inode *inode)
2611 {
2612 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2613 }
2614 
2615 static inline int is_file(struct inode *inode, int type)
2616 {
2617 	return F2FS_I(inode)->i_advise & type;
2618 }
2619 
2620 static inline void set_file(struct inode *inode, int type)
2621 {
2622 	F2FS_I(inode)->i_advise |= type;
2623 	f2fs_mark_inode_dirty_sync(inode, true);
2624 }
2625 
2626 static inline void clear_file(struct inode *inode, int type)
2627 {
2628 	F2FS_I(inode)->i_advise &= ~type;
2629 	f2fs_mark_inode_dirty_sync(inode, true);
2630 }
2631 
2632 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2633 {
2634 	bool ret;
2635 
2636 	if (dsync) {
2637 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2638 
2639 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2640 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2641 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2642 		return ret;
2643 	}
2644 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2645 			file_keep_isize(inode) ||
2646 			i_size_read(inode) & ~PAGE_MASK)
2647 		return false;
2648 
2649 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2650 		return false;
2651 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2652 		return false;
2653 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2654 		return false;
2655 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2656 						&F2FS_I(inode)->i_crtime))
2657 		return false;
2658 
2659 	down_read(&F2FS_I(inode)->i_sem);
2660 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2661 	up_read(&F2FS_I(inode)->i_sem);
2662 
2663 	return ret;
2664 }
2665 
2666 static inline bool f2fs_readonly(struct super_block *sb)
2667 {
2668 	return sb_rdonly(sb);
2669 }
2670 
2671 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2672 {
2673 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2674 }
2675 
2676 static inline bool is_dot_dotdot(const struct qstr *str)
2677 {
2678 	if (str->len == 1 && str->name[0] == '.')
2679 		return true;
2680 
2681 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2682 		return true;
2683 
2684 	return false;
2685 }
2686 
2687 static inline bool f2fs_may_extent_tree(struct inode *inode)
2688 {
2689 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2690 
2691 	if (!test_opt(sbi, EXTENT_CACHE) ||
2692 			is_inode_flag_set(inode, FI_NO_EXTENT))
2693 		return false;
2694 
2695 	/*
2696 	 * for recovered files during mount do not create extents
2697 	 * if shrinker is not registered.
2698 	 */
2699 	if (list_empty(&sbi->s_list))
2700 		return false;
2701 
2702 	return S_ISREG(inode->i_mode);
2703 }
2704 
2705 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2706 					size_t size, gfp_t flags)
2707 {
2708 	void *ret;
2709 
2710 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2711 		f2fs_show_injection_info(FAULT_KMALLOC);
2712 		return NULL;
2713 	}
2714 
2715 	ret = kmalloc(size, flags);
2716 	if (ret)
2717 		return ret;
2718 
2719 	return kvmalloc(size, flags);
2720 }
2721 
2722 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2723 					size_t size, gfp_t flags)
2724 {
2725 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2726 }
2727 
2728 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2729 					size_t size, gfp_t flags)
2730 {
2731 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2732 		f2fs_show_injection_info(FAULT_KVMALLOC);
2733 		return NULL;
2734 	}
2735 
2736 	return kvmalloc(size, flags);
2737 }
2738 
2739 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2740 					size_t size, gfp_t flags)
2741 {
2742 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2743 }
2744 
2745 static inline int get_extra_isize(struct inode *inode)
2746 {
2747 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2748 }
2749 
2750 static inline int get_inline_xattr_addrs(struct inode *inode)
2751 {
2752 	return F2FS_I(inode)->i_inline_xattr_size;
2753 }
2754 
2755 #define f2fs_get_inode_mode(i) \
2756 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2757 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2758 
2759 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2760 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2761 	offsetof(struct f2fs_inode, i_extra_isize))	\
2762 
2763 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2764 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2765 		((offsetof(typeof(*f2fs_inode), field) +	\
2766 		sizeof((f2fs_inode)->field))			\
2767 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2768 
2769 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2770 {
2771 	int i;
2772 
2773 	spin_lock(&sbi->iostat_lock);
2774 	for (i = 0; i < NR_IO_TYPE; i++)
2775 		sbi->write_iostat[i] = 0;
2776 	spin_unlock(&sbi->iostat_lock);
2777 }
2778 
2779 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2780 			enum iostat_type type, unsigned long long io_bytes)
2781 {
2782 	if (!sbi->iostat_enable)
2783 		return;
2784 	spin_lock(&sbi->iostat_lock);
2785 	sbi->write_iostat[type] += io_bytes;
2786 
2787 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2788 		sbi->write_iostat[APP_BUFFERED_IO] =
2789 			sbi->write_iostat[APP_WRITE_IO] -
2790 			sbi->write_iostat[APP_DIRECT_IO];
2791 	spin_unlock(&sbi->iostat_lock);
2792 }
2793 
2794 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2795 
2796 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META &&	\
2797 				(!is_read_io(fio->op) || fio->is_meta))
2798 
2799 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2800 					block_t blkaddr, int type);
2801 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2802 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2803 					block_t blkaddr, int type)
2804 {
2805 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2806 		f2fs_msg(sbi->sb, KERN_ERR,
2807 			"invalid blkaddr: %u, type: %d, run fsck to fix.",
2808 			blkaddr, type);
2809 		f2fs_bug_on(sbi, 1);
2810 	}
2811 }
2812 
2813 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2814 {
2815 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2816 		return false;
2817 	return true;
2818 }
2819 
2820 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2821 						block_t blkaddr)
2822 {
2823 	if (!__is_valid_data_blkaddr(blkaddr))
2824 		return false;
2825 	verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2826 	return true;
2827 }
2828 
2829 /*
2830  * file.c
2831  */
2832 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2833 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2834 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock,
2835 							bool buf_write);
2836 int f2fs_truncate(struct inode *inode);
2837 int f2fs_getattr(const struct path *path, struct kstat *stat,
2838 			u32 request_mask, unsigned int flags);
2839 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2840 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2841 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2842 int f2fs_precache_extents(struct inode *inode);
2843 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2844 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2845 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2846 int f2fs_pin_file_control(struct inode *inode, bool inc);
2847 
2848 /*
2849  * inode.c
2850  */
2851 void f2fs_set_inode_flags(struct inode *inode);
2852 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2853 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2854 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2855 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2856 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2857 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2858 void f2fs_update_inode_page(struct inode *inode);
2859 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2860 void f2fs_evict_inode(struct inode *inode);
2861 void f2fs_handle_failed_inode(struct inode *inode);
2862 
2863 /*
2864  * namei.c
2865  */
2866 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2867 							bool hot, bool set);
2868 struct dentry *f2fs_get_parent(struct dentry *child);
2869 
2870 /*
2871  * dir.c
2872  */
2873 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2874 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2875 			f2fs_hash_t namehash, int *max_slots,
2876 			struct f2fs_dentry_ptr *d);
2877 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2878 			unsigned int start_pos, struct fscrypt_str *fstr);
2879 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2880 			struct f2fs_dentry_ptr *d);
2881 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2882 			const struct qstr *new_name,
2883 			const struct qstr *orig_name, struct page *dpage);
2884 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2885 			unsigned int current_depth);
2886 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2887 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2888 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2889 			struct fscrypt_name *fname, struct page **res_page);
2890 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2891 			const struct qstr *child, struct page **res_page);
2892 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2893 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2894 			struct page **page);
2895 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2896 			struct page *page, struct inode *inode);
2897 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2898 			const struct qstr *name, f2fs_hash_t name_hash,
2899 			unsigned int bit_pos);
2900 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2901 			const struct qstr *orig_name,
2902 			struct inode *inode, nid_t ino, umode_t mode);
2903 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2904 			struct inode *inode, nid_t ino, umode_t mode);
2905 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2906 			struct inode *inode, nid_t ino, umode_t mode);
2907 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2908 			struct inode *dir, struct inode *inode);
2909 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2910 bool f2fs_empty_dir(struct inode *dir);
2911 
2912 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2913 {
2914 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2915 				inode, inode->i_ino, inode->i_mode);
2916 }
2917 
2918 /*
2919  * super.c
2920  */
2921 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2922 void f2fs_inode_synced(struct inode *inode);
2923 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2924 int f2fs_quota_sync(struct super_block *sb, int type);
2925 void f2fs_quota_off_umount(struct super_block *sb);
2926 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2927 int f2fs_sync_fs(struct super_block *sb, int sync);
2928 extern __printf(3, 4)
2929 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2930 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2931 
2932 /*
2933  * hash.c
2934  */
2935 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2936 				struct fscrypt_name *fname);
2937 
2938 /*
2939  * node.c
2940  */
2941 struct dnode_of_data;
2942 struct node_info;
2943 
2944 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2945 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2946 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2947 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2948 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2949 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2950 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2951 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2952 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2953 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2954 						struct node_info *ni);
2955 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2956 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2957 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2958 int f2fs_truncate_xattr_node(struct inode *inode);
2959 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2960 					unsigned int seq_id);
2961 int f2fs_remove_inode_page(struct inode *inode);
2962 struct page *f2fs_new_inode_page(struct inode *inode);
2963 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2964 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2965 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2966 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2967 int f2fs_move_node_page(struct page *node_page, int gc_type);
2968 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2969 			struct writeback_control *wbc, bool atomic,
2970 			unsigned int *seq_id);
2971 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2972 			struct writeback_control *wbc,
2973 			bool do_balance, enum iostat_type io_type);
2974 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2975 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2976 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2977 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2978 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2979 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2980 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2981 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2982 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2983 			unsigned int segno, struct f2fs_summary_block *sum);
2984 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2985 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2986 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2987 int __init f2fs_create_node_manager_caches(void);
2988 void f2fs_destroy_node_manager_caches(void);
2989 
2990 /*
2991  * segment.c
2992  */
2993 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
2994 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
2995 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
2996 void f2fs_drop_inmem_pages(struct inode *inode);
2997 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
2998 int f2fs_commit_inmem_pages(struct inode *inode);
2999 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3000 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3001 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3002 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3003 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3004 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3005 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3006 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3007 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3008 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3009 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
3010 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3011 					struct cp_control *cpc);
3012 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3013 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
3014 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3015 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3016 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3017 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3018 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3019 					struct cp_control *cpc);
3020 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3021 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3022 					block_t blk_addr);
3023 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3024 						enum iostat_type io_type);
3025 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3026 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3027 			struct f2fs_io_info *fio);
3028 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3029 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3030 			block_t old_blkaddr, block_t new_blkaddr,
3031 			bool recover_curseg, bool recover_newaddr);
3032 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3033 			block_t old_addr, block_t new_addr,
3034 			unsigned char version, bool recover_curseg,
3035 			bool recover_newaddr);
3036 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3037 			block_t old_blkaddr, block_t *new_blkaddr,
3038 			struct f2fs_summary *sum, int type,
3039 			struct f2fs_io_info *fio, bool add_list);
3040 void f2fs_wait_on_page_writeback(struct page *page,
3041 			enum page_type type, bool ordered, bool locked);
3042 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3043 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3044 								block_t len);
3045 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3046 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3047 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3048 			unsigned int val, int alloc);
3049 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3050 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3051 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3052 int __init f2fs_create_segment_manager_caches(void);
3053 void f2fs_destroy_segment_manager_caches(void);
3054 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3055 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3056 			enum page_type type, enum temp_type temp);
3057 
3058 /*
3059  * checkpoint.c
3060  */
3061 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3062 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3063 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3064 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3065 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3066 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3067 					block_t blkaddr, int type);
3068 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3069 			int type, bool sync);
3070 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3071 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3072 			long nr_to_write, enum iostat_type io_type);
3073 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3074 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3075 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3076 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3077 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3078 					unsigned int devidx, int type);
3079 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3080 					unsigned int devidx, int type);
3081 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3082 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3083 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3084 void f2fs_add_orphan_inode(struct inode *inode);
3085 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3086 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3087 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3088 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3089 void f2fs_remove_dirty_inode(struct inode *inode);
3090 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3091 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3092 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3093 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3094 int __init f2fs_create_checkpoint_caches(void);
3095 void f2fs_destroy_checkpoint_caches(void);
3096 
3097 /*
3098  * data.c
3099  */
3100 int f2fs_init_post_read_processing(void);
3101 void f2fs_destroy_post_read_processing(void);
3102 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3103 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3104 				struct inode *inode, struct page *page,
3105 				nid_t ino, enum page_type type);
3106 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3107 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3108 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3109 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3110 			block_t blk_addr, struct bio *bio);
3111 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3112 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3113 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3114 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3115 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3116 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3117 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3118 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3119 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3120 			int op_flags, bool for_write);
3121 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3122 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3123 			bool for_write);
3124 struct page *f2fs_get_new_data_page(struct inode *inode,
3125 			struct page *ipage, pgoff_t index, bool new_i_size);
3126 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3127 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3128 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3129 			int create, int flag);
3130 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3131 			u64 start, u64 len);
3132 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3133 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3134 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3135 			unsigned int length);
3136 int f2fs_release_page(struct page *page, gfp_t wait);
3137 #ifdef CONFIG_MIGRATION
3138 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3139 			struct page *page, enum migrate_mode mode);
3140 #endif
3141 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3142 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3143 
3144 /*
3145  * gc.c
3146  */
3147 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3148 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3149 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3150 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3151 			unsigned int segno);
3152 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3153 
3154 /*
3155  * recovery.c
3156  */
3157 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3158 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3159 
3160 /*
3161  * debug.c
3162  */
3163 #ifdef CONFIG_F2FS_STAT_FS
3164 struct f2fs_stat_info {
3165 	struct list_head stat_list;
3166 	struct f2fs_sb_info *sbi;
3167 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3168 	int main_area_segs, main_area_sections, main_area_zones;
3169 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3170 	unsigned long long hit_total, total_ext;
3171 	int ext_tree, zombie_tree, ext_node;
3172 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3173 	int ndirty_data, ndirty_qdata;
3174 	int inmem_pages;
3175 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3176 	int nats, dirty_nats, sits, dirty_sits;
3177 	int free_nids, avail_nids, alloc_nids;
3178 	int total_count, utilization;
3179 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3180 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3181 	int nr_dio_read, nr_dio_write;
3182 	unsigned int io_skip_bggc, other_skip_bggc;
3183 	int nr_flushing, nr_flushed, flush_list_empty;
3184 	int nr_discarding, nr_discarded;
3185 	int nr_discard_cmd;
3186 	unsigned int undiscard_blks;
3187 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3188 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3189 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3190 	unsigned int bimodal, avg_vblocks;
3191 	int util_free, util_valid, util_invalid;
3192 	int rsvd_segs, overp_segs;
3193 	int dirty_count, node_pages, meta_pages;
3194 	int prefree_count, call_count, cp_count, bg_cp_count;
3195 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3196 	int bg_node_segs, bg_data_segs;
3197 	int tot_blks, data_blks, node_blks;
3198 	int bg_data_blks, bg_node_blks;
3199 	unsigned long long skipped_atomic_files[2];
3200 	int curseg[NR_CURSEG_TYPE];
3201 	int cursec[NR_CURSEG_TYPE];
3202 	int curzone[NR_CURSEG_TYPE];
3203 
3204 	unsigned int meta_count[META_MAX];
3205 	unsigned int segment_count[2];
3206 	unsigned int block_count[2];
3207 	unsigned int inplace_count;
3208 	unsigned long long base_mem, cache_mem, page_mem;
3209 };
3210 
3211 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3212 {
3213 	return (struct f2fs_stat_info *)sbi->stat_info;
3214 }
3215 
3216 #define stat_inc_cp_count(si)		((si)->cp_count++)
3217 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3218 #define stat_inc_call_count(si)		((si)->call_count++)
3219 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3220 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3221 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3222 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3223 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3224 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3225 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3226 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3227 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3228 #define stat_inc_inline_xattr(inode)					\
3229 	do {								\
3230 		if (f2fs_has_inline_xattr(inode))			\
3231 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3232 	} while (0)
3233 #define stat_dec_inline_xattr(inode)					\
3234 	do {								\
3235 		if (f2fs_has_inline_xattr(inode))			\
3236 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3237 	} while (0)
3238 #define stat_inc_inline_inode(inode)					\
3239 	do {								\
3240 		if (f2fs_has_inline_data(inode))			\
3241 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3242 	} while (0)
3243 #define stat_dec_inline_inode(inode)					\
3244 	do {								\
3245 		if (f2fs_has_inline_data(inode))			\
3246 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3247 	} while (0)
3248 #define stat_inc_inline_dir(inode)					\
3249 	do {								\
3250 		if (f2fs_has_inline_dentry(inode))			\
3251 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3252 	} while (0)
3253 #define stat_dec_inline_dir(inode)					\
3254 	do {								\
3255 		if (f2fs_has_inline_dentry(inode))			\
3256 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3257 	} while (0)
3258 #define stat_inc_meta_count(sbi, blkaddr)				\
3259 	do {								\
3260 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3261 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3262 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3263 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3264 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3265 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3266 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3267 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3268 	} while (0)
3269 #define stat_inc_seg_type(sbi, curseg)					\
3270 		((sbi)->segment_count[(curseg)->alloc_type]++)
3271 #define stat_inc_block_count(sbi, curseg)				\
3272 		((sbi)->block_count[(curseg)->alloc_type]++)
3273 #define stat_inc_inplace_blocks(sbi)					\
3274 		(atomic_inc(&(sbi)->inplace_count))
3275 #define stat_inc_atomic_write(inode)					\
3276 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3277 #define stat_dec_atomic_write(inode)					\
3278 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3279 #define stat_update_max_atomic_write(inode)				\
3280 	do {								\
3281 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3282 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3283 		if (cur > max)						\
3284 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3285 	} while (0)
3286 #define stat_inc_volatile_write(inode)					\
3287 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3288 #define stat_dec_volatile_write(inode)					\
3289 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3290 #define stat_update_max_volatile_write(inode)				\
3291 	do {								\
3292 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3293 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3294 		if (cur > max)						\
3295 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3296 	} while (0)
3297 #define stat_inc_seg_count(sbi, type, gc_type)				\
3298 	do {								\
3299 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3300 		si->tot_segs++;						\
3301 		if ((type) == SUM_TYPE_DATA) {				\
3302 			si->data_segs++;				\
3303 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3304 		} else {						\
3305 			si->node_segs++;				\
3306 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3307 		}							\
3308 	} while (0)
3309 
3310 #define stat_inc_tot_blk_count(si, blks)				\
3311 	((si)->tot_blks += (blks))
3312 
3313 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3314 	do {								\
3315 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3316 		stat_inc_tot_blk_count(si, blks);			\
3317 		si->data_blks += (blks);				\
3318 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3319 	} while (0)
3320 
3321 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3322 	do {								\
3323 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3324 		stat_inc_tot_blk_count(si, blks);			\
3325 		si->node_blks += (blks);				\
3326 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3327 	} while (0)
3328 
3329 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3330 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3331 int __init f2fs_create_root_stats(void);
3332 void f2fs_destroy_root_stats(void);
3333 #else
3334 #define stat_inc_cp_count(si)				do { } while (0)
3335 #define stat_inc_bg_cp_count(si)			do { } while (0)
3336 #define stat_inc_call_count(si)				do { } while (0)
3337 #define stat_inc_bggc_count(si)				do { } while (0)
3338 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3339 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3340 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3341 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3342 #define stat_inc_total_hit(sb)				do { } while (0)
3343 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3344 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3345 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3346 #define stat_inc_inline_xattr(inode)			do { } while (0)
3347 #define stat_dec_inline_xattr(inode)			do { } while (0)
3348 #define stat_inc_inline_inode(inode)			do { } while (0)
3349 #define stat_dec_inline_inode(inode)			do { } while (0)
3350 #define stat_inc_inline_dir(inode)			do { } while (0)
3351 #define stat_dec_inline_dir(inode)			do { } while (0)
3352 #define stat_inc_atomic_write(inode)			do { } while (0)
3353 #define stat_dec_atomic_write(inode)			do { } while (0)
3354 #define stat_update_max_atomic_write(inode)		do { } while (0)
3355 #define stat_inc_volatile_write(inode)			do { } while (0)
3356 #define stat_dec_volatile_write(inode)			do { } while (0)
3357 #define stat_update_max_volatile_write(inode)		do { } while (0)
3358 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3359 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3360 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3361 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3362 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3363 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3364 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3365 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3366 
3367 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3368 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3369 static inline int __init f2fs_create_root_stats(void) { return 0; }
3370 static inline void f2fs_destroy_root_stats(void) { }
3371 #endif
3372 
3373 extern const struct file_operations f2fs_dir_operations;
3374 extern const struct file_operations f2fs_file_operations;
3375 extern const struct inode_operations f2fs_file_inode_operations;
3376 extern const struct address_space_operations f2fs_dblock_aops;
3377 extern const struct address_space_operations f2fs_node_aops;
3378 extern const struct address_space_operations f2fs_meta_aops;
3379 extern const struct inode_operations f2fs_dir_inode_operations;
3380 extern const struct inode_operations f2fs_symlink_inode_operations;
3381 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3382 extern const struct inode_operations f2fs_special_inode_operations;
3383 extern struct kmem_cache *f2fs_inode_entry_slab;
3384 
3385 /*
3386  * inline.c
3387  */
3388 bool f2fs_may_inline_data(struct inode *inode);
3389 bool f2fs_may_inline_dentry(struct inode *inode);
3390 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3391 void f2fs_truncate_inline_inode(struct inode *inode,
3392 						struct page *ipage, u64 from);
3393 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3394 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3395 int f2fs_convert_inline_inode(struct inode *inode);
3396 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3397 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3398 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3399 			struct fscrypt_name *fname, struct page **res_page);
3400 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3401 			struct page *ipage);
3402 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3403 			const struct qstr *orig_name,
3404 			struct inode *inode, nid_t ino, umode_t mode);
3405 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3406 				struct page *page, struct inode *dir,
3407 				struct inode *inode);
3408 bool f2fs_empty_inline_dir(struct inode *dir);
3409 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3410 			struct fscrypt_str *fstr);
3411 int f2fs_inline_data_fiemap(struct inode *inode,
3412 			struct fiemap_extent_info *fieinfo,
3413 			__u64 start, __u64 len);
3414 
3415 /*
3416  * shrinker.c
3417  */
3418 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3419 			struct shrink_control *sc);
3420 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3421 			struct shrink_control *sc);
3422 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3423 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3424 
3425 /*
3426  * extent_cache.c
3427  */
3428 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3429 				struct rb_entry *cached_re, unsigned int ofs);
3430 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3431 				struct rb_root_cached *root,
3432 				struct rb_node **parent,
3433 				unsigned int ofs, bool *leftmost);
3434 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3435 		struct rb_entry *cached_re, unsigned int ofs,
3436 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3437 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3438 		bool force, bool *leftmost);
3439 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3440 						struct rb_root_cached *root);
3441 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3442 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3443 void f2fs_drop_extent_tree(struct inode *inode);
3444 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3445 void f2fs_destroy_extent_tree(struct inode *inode);
3446 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3447 			struct extent_info *ei);
3448 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3449 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3450 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3451 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3452 int __init f2fs_create_extent_cache(void);
3453 void f2fs_destroy_extent_cache(void);
3454 
3455 /*
3456  * sysfs.c
3457  */
3458 int __init f2fs_init_sysfs(void);
3459 void f2fs_exit_sysfs(void);
3460 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3461 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3462 
3463 /*
3464  * crypto support
3465  */
3466 static inline bool f2fs_encrypted_inode(struct inode *inode)
3467 {
3468 	return file_is_encrypt(inode);
3469 }
3470 
3471 static inline bool f2fs_encrypted_file(struct inode *inode)
3472 {
3473 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3474 }
3475 
3476 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3477 {
3478 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3479 	file_set_encrypt(inode);
3480 	f2fs_set_inode_flags(inode);
3481 #endif
3482 }
3483 
3484 /*
3485  * Returns true if the reads of the inode's data need to undergo some
3486  * postprocessing step, like decryption or authenticity verification.
3487  */
3488 static inline bool f2fs_post_read_required(struct inode *inode)
3489 {
3490 	return f2fs_encrypted_file(inode);
3491 }
3492 
3493 #define F2FS_FEATURE_FUNCS(name, flagname) \
3494 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3495 { \
3496 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3497 }
3498 
3499 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3500 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3501 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3502 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3503 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3504 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3505 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3506 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3507 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3508 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3509 
3510 #ifdef CONFIG_BLK_DEV_ZONED
3511 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3512 			struct block_device *bdev, block_t blkaddr)
3513 {
3514 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3515 	int i;
3516 
3517 	for (i = 0; i < sbi->s_ndevs; i++)
3518 		if (FDEV(i).bdev == bdev)
3519 			return FDEV(i).blkz_type[zno];
3520 	return -EINVAL;
3521 }
3522 #endif
3523 
3524 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3525 {
3526 	return f2fs_sb_has_blkzoned(sbi);
3527 }
3528 
3529 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3530 {
3531 	return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3532 }
3533 
3534 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3535 {
3536 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3537 					f2fs_hw_should_discard(sbi);
3538 }
3539 
3540 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3541 {
3542 	clear_opt(sbi, ADAPTIVE);
3543 	clear_opt(sbi, LFS);
3544 
3545 	switch (mt) {
3546 	case F2FS_MOUNT_ADAPTIVE:
3547 		set_opt(sbi, ADAPTIVE);
3548 		break;
3549 	case F2FS_MOUNT_LFS:
3550 		set_opt(sbi, LFS);
3551 		break;
3552 	}
3553 }
3554 
3555 static inline bool f2fs_may_encrypt(struct inode *inode)
3556 {
3557 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3558 	umode_t mode = inode->i_mode;
3559 
3560 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3561 #else
3562 	return false;
3563 #endif
3564 }
3565 
3566 static inline int block_unaligned_IO(struct inode *inode,
3567 				struct kiocb *iocb, struct iov_iter *iter)
3568 {
3569 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3570 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3571 	loff_t offset = iocb->ki_pos;
3572 	unsigned long align = offset | iov_iter_alignment(iter);
3573 
3574 	return align & blocksize_mask;
3575 }
3576 
3577 static inline int allow_outplace_dio(struct inode *inode,
3578 				struct kiocb *iocb, struct iov_iter *iter)
3579 {
3580 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3581 	int rw = iov_iter_rw(iter);
3582 
3583 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3584 				!block_unaligned_IO(inode, iocb, iter));
3585 }
3586 
3587 static inline bool f2fs_force_buffered_io(struct inode *inode,
3588 				struct kiocb *iocb, struct iov_iter *iter)
3589 {
3590 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3591 	int rw = iov_iter_rw(iter);
3592 
3593 	if (f2fs_post_read_required(inode))
3594 		return true;
3595 	if (sbi->s_ndevs)
3596 		return true;
3597 	/*
3598 	 * for blkzoned device, fallback direct IO to buffered IO, so
3599 	 * all IOs can be serialized by log-structured write.
3600 	 */
3601 	if (f2fs_sb_has_blkzoned(sbi))
3602 		return true;
3603 	if (test_opt(sbi, LFS) && (rw == WRITE) &&
3604 				block_unaligned_IO(inode, iocb, iter))
3605 		return true;
3606 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3607 		return true;
3608 
3609 	return false;
3610 }
3611 
3612 #ifdef CONFIG_F2FS_FAULT_INJECTION
3613 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3614 							unsigned int type);
3615 #else
3616 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3617 #endif
3618 
3619 #endif
3620 
3621 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3622 {
3623 #ifdef CONFIG_QUOTA
3624 	if (f2fs_sb_has_quota_ino(sbi))
3625 		return true;
3626 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3627 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3628 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3629 		return true;
3630 #endif
3631 	return false;
3632 }
3633